WorldWideScience

Sample records for residential load savings

  1. Development of an Energy-Savings Calculation Methodology for Residential Miscellaneous Electric Loads: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.; Eastment, M.

    2006-08-01

    In order to meet whole-house energy savings targets beyond 50% in residential buildings, it will be essential that new technologies and systems approaches be developed to address miscellaneous electric loads (MELs). These MELs are comprised of the small and diverse collection of energy-consuming devices found in homes, including what are commonly known as plug loads (televisions, stereos, microwaves), along with all hard-wired loads that do not fit into other major end-use categories (doorbells, security systems, garage door openers). MELs present special challenges because their purchase and operation are largely under the control of the occupants. If no steps are taken to address MELs, they can constitute 40-50% of the remaining source energy use in homes that achieve 60-70% whole-house energy savings, and this percentage is likely to increase in the future as home electronics become even more sophisticated and their use becomes more widespread. Building America (BA), a U.S. Department of Energy research program that targets 50% energy savings by 2015 and 90% savings by 2025, has begun to identify and develop advanced solutions that can reduce MELs.

  2. Energy savings in Danish residential building stock

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2006-01-01

    a short account of the technical energy-saving possibilities that are present in existing dwellings and presents a financial methodology used for assessing energy-saving measures. In order to estimate the total savings potential detailed calculations have been performed in a case with two typical...... buildings representing the residential building stock and based on these calculations an assessment of the energy-saving potential is performed. A profitable savings potential of energy used for space heating of about 80% is identified over 45 years (until 2050) within the residential building stock......A large potential for energy savings exists in the Danish residential building stock due to the fact that 75% of the buildings were constructed before 1979 when the first important demands for energy performance of building were introduced. It is also a fact that many buildings in Denmark face...

  3. Potential energy savings by using direct current for residential applications

    DEFF Research Database (Denmark)

    Diaz, Enrique Rodriguez; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2017-01-01

    This paper presents a study of the potential energy savings by implementing dc distribution systems for residential applications. In general, it is commonly accepted that the use of dc voltage improves the efficiency of the distribution, due to a decrease in the conduction losses and an efficiency...... improvement in the power converter units. However, for residential applications, the efficiency is not always improved. A grid connected residential microgrid, with renewable energy sources (RES), energy storage systems (ESS) and local loads, is presented in this work. The microgrid has been modelled...... loads. However, for isolated microgrids, the use of dc voltage has the potential to bring a significant efficiency improvement. Nevertheless the potential for cost reduction in all scenarios is very promising....

  4. Improving the thermal integrity of new single-family detached residential buildings: Documentation for a regional database of capital costs and space conditioning load savings

    International Nuclear Information System (INIS)

    Koomey, J.G.; McMahon, J.E.; Wodley, C.

    1991-07-01

    This report summarizes the costs and space-conditioning load savings from improving new single-family building shells. It relies on survey data from the National Association of Home-builders (NAHB) to assess current insulation practices for these new buildings, and NAHB cost data (aggregated to the Federal region level) to estimate the costs of improving new single-family buildings beyond current practice. Space-conditioning load savings are estimated using a database of loads for prototype buildings developed at Lawrence Berkeley Laboratory, adjusted to reflect population-weighted average weather in each of the ten federal regions and for the nation as a whole

  5. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan; Burch, Gabriel

    2011-10-13

    An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the ‘direct-DC house’ with respect to today’s typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly

  6. Procedures for Calculating Residential Dehumidification Loads

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booten, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-01

    Residential building codes and voluntary labeling programs are continually increasing the energy efficiency requirements of residential buildings. Improving a building's thermal enclosure and installing energy-efficient appliances and lighting can result in significant reductions in sensible cooling loads leading to smaller air conditioners and shorter cooling seasons. However due to fresh air ventilation requirements and internal gains, latent cooling loads are not reduced by the same proportion. Thus, it's becoming more challenging for conventional cooling equipment to control indoor humidity at part-load cooling conditions and using conventional cooling equipment in a non-conventional building poses the potential risk of high indoor humidity. The objective of this project was to investigate the impact the chosen design condition has on the calculated part-load cooling moisture load, and compare calculated moisture loads and the required dehumidification capacity to whole-building simulations. Procedures for sizing whole-house supplemental dehumidification equipment have yet to be formalized; however minor modifications to current Air-Conditioner Contractors of America (ACCA) Manual J load calculation procedures are appropriate for calculating residential part-load cooling moisture loads. Though ASHRAE 1% DP design conditions are commonly used to determine the dehumidification requirements for commercial buildings, an appropriate DP design condition for residential buildings has not been investigated. Two methods for sizing supplemental dehumidification equipment were developed and tested. The first method closely followed Manual J cooling load calculations; whereas the second method made more conservative assumptions impacting both sensible and latent loads.

  7. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    Energy Technology Data Exchange (ETDEWEB)

    Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Roderick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Odukomaiya, Adewale [Georgia Inst. of Technology, Atlanta, GA (United States); Gehl, Anthony C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in the cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.

  8. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  9. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  10. Indoor Noise Loading in Residential Prefabricated Buildings

    Science.gov (United States)

    Kraus, Michal; Juhásová Šenitková, Ingrid

    2017-10-01

    Quality on indoor environment is among others also defined by an acoustic comfort and noise emissions. The indoor noise loading in the residential prefabricated buildings is specific problem related to structural design of these buildings. Problems with noise level of sanitary systems are mostly associated with hydraulic shock such as water distribution and sewage drainage. Another very common cause of excessive noise is also flushing the toilet or water fall on enamelled steel (bath or shower). This paper aims to analyse the acoustic properties in the residential prefabricated buildings. Sanitary core of the assessed apartment is in original condition without any alterations. The sanitary core is based on a formica (high-pressure laminate). The study discusses the maximum sound levels in the three assessed rooms for the three different noise sources. The values of maximum noise level are measured for the corridor, bedroom and living room. Sources of noise are common activities relating to the operation of sanitary core - the toilet flush in the toilet, falling water from the shower in the bathroom and the water falling on the bottom of the kitchen sink in the kitchen. Other sources of noise are eliminated or minimized during the experiment. The digital sound level meter Testo 815 is used for measurements. The measured values of maximum sound level LA,max [dB] are adjusted by the correction coefficient. The obtained values are compared with the hygienic limits for day and night period. Night hygienic limit (30 dB) is exceeded in all the rooms for all noise sources. This limit is exceeded from 17 to 73%. The values in the bedroom and the living room meet the daily hygienic limit (40 dB). The daily limit is exceeded only in the corridor. The highest values of noise are identified for the toilet flushing.

  11. Analysis of Installed Measures and Energy Savings for Single-Family Residential Better Buildings Projects

    Energy Technology Data Exchange (ETDEWEB)

    Heaney, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Polly, B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-04-30

    This report presents an analysis of data for residential single-family projects reported by 37 organizations that were awarded federal financial assistance (cooperative agreements or grants) by the U.S. Department of Energy’s Better Buildings Neighborhood Program.1 The report characterizes the energy-efficiency measures installed for single-family residential projects and analyzes energy savings and savings prediction accuracy for measures installed in a subset of those projects.

  12. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Sutherland, Timothy [Navigant Consulting, Inc., Burlington, MA (United States); Reis, Callie [Navigant Consulting, Inc., Burlington, MA (United States)

    2013-12-04

    This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies. After analyzing the technical savings potential offered by motor upgrades and variable speed technologies, recommended actions are presented.

  13. Optimal load scheduling in commercial and residential microgrids

    Science.gov (United States)

    Ganji Tanha, Mohammad Mahdi

    Residential and commercial electricity customers use more than two third of the total energy consumed in the United States, representing a significant resource of demand response. Price-based demand response, which is in response to changes in electricity prices, represents the adjustments in load through optimal load scheduling (OLS). In this study, an efficient model for OLS is developed for residential and commercial microgrids which include aggregated loads in single-units and communal loads. Single unit loads which include fixed, adjustable and shiftable loads are controllable by the unit occupants. Communal loads which include pool pumps, elevators and central heating/cooling systems are shared among the units. In order to optimally schedule residential and commercial loads, a community-based optimal load scheduling (CBOLS) is proposed in this thesis. The CBOLS schedule considers hourly market prices, occupants' comfort level, and microgrid operation constraints. The CBOLS' objective in residential and commercial microgrids is the constrained minimization of the total cost of supplying the aggregator load, defined as the microgrid load minus the microgrid generation. This problem is represented by a large-scale mixed-integer optimization for supplying single-unit and communal loads. The Lagrangian relaxation methodology is used to relax the linking communal load constraint and decompose the independent single-unit functions into subproblems which can be solved in parallel. The optimal solution is acceptable if the aggregator load limit and the duality gap are within the bounds. If any of the proposed criteria is not satisfied, the Lagrangian multiplier will be updated and a new optimal load schedule will be regenerated until both constraints are satisfied. The proposed method is applied to several case studies and the results are presented for the Galvin Center load on the 16th floor of the IIT Tower in Chicago.

  14. Residential energy use in Mexico: Structure, evolution, environmental impacts, and savings potential

    Energy Technology Data Exchange (ETDEWEB)

    Masera, O.; Friedmann, R.; deBuen, O.

    1993-05-01

    This article examines the characteristics of residential energy use in Mexico, its environmental impacts, and the savings potential of the major end-uses. The main options and barriers to increase the efficiency of energy use are discussed. The energy analysis is based on a disaggregation of residential energy use by end-uses. The dynamics of the evolution of the residential energy sector during the past 20 years are also addressed when the information is available. Major areas for research and for innovative decision-making are identified and prioritized.

  15. Shelter planning based on self-saving concepts in urban residential districts

    Directory of Open Access Journals (Sweden)

    Buri Qi

    2017-01-01

    Full Text Available With increasing population density in Asia, the potential higher risk was resulted from the residential districts with the higher plot ratio, especially in some megapolis (eg. Beijing and Shanghai. Presently it is more difficult for the rescue operation during the disasters because of the decreasing safe space among the buildings as a result of higher buildings and denser the district. Thus, an immediate self-saving action is more important than before during the disaster in the residential districts, and its realization depends on the reasonable shelter planning and its management system. In this study, the factors related to the self-saving were analyzed and concluded by the related the literatures retrieval and case study, and the case study was done by the in-depth interview and questionnaires in three different residential districts in Shanghai. It was found that the following factors related to the self-saving should be considered in the shelters planning: the distribution of the shelters including their space accessibility and area, evacuation passageways, the facilities of the disaster prevention (such as fire hydrant and guide signs and subsidiary facilities (such as vegetation for the disaster prevention, the social cohesion, awareness of the self-saving and disaster prevention. Simultaneously, the shelters planning countermeasures based on the self-saving were proposed, which provided some theoretical bases for the study  and plan of the security residential districts in future.

  16. Does energy labelling on residential housing cause energy savings?

    Energy Technology Data Exchange (ETDEWEB)

    Kjaerbye, V.H.

    2009-07-01

    Danish households use more than 30% of the total amount of energy being used in Denmark. More than 80% of this energy is dedicated to space heating. The same relation is seen in many OECD countries. The corresponding energy savings potential was recently estimated at 30% of the energy used in buildings. Energy labelling is seen as an important instrument to target these potential energy savings. This paper evaluates the effects of the Danish Energy Labelling Scheme on energy consumption in existing single-family houses with propensity score matching using real metered natural gas consumption and a very wide range of register data describing the houses and households. The study did not find significant energy savings due to the Danish Energy Labelling Scheme, but more research would be needed to complement this conclusion

  17. Understanding the spectrum of residential energy-saving behaviours: French evidence using disaggregated data

    International Nuclear Information System (INIS)

    Belaïd, Fateh; Garcia, Thomas

    2016-01-01

    Analysing household energy-saving behaviours is crucial to improve energy consumption predictions and energy policy making. How should we quantitatively measure them? What are their determinants? This study explores the main factors influencing residential energy-saving behaviours based on a bottom-up multivariate statistical approach using data from the recent French PHEBUS survey. Firstly, we assess energy-saving behaviours on a one-dimension scale using IRT. Secondly, we use linear regression with an innovative variable selection method via adaptive lasso to tease out the effects of both macro and micro factors on the behavioural score. The results highlight the impact of five main attributes incentivizing energy-saving behaviours based on cross-variable analyses: energy price, household income, education level, age of head of household and dwelling energy performance. In addition, our results suggest that the analysis of the inverted U-shape impact of age enables the expansion of the energy consumption life cycle theory to energy-saving behaviours. - Highlights: • We examine the main factors influencing residential energy-saving behaviours. • We use data from the recent French PHEBUS survey. • We use IRT to assess energy-saving behaviours on a one-dimension scale. • We use linear regression with an innovative variable selection method via adaptive lasso. • We highlight the impact of five main attributes incentivizing energy-saving behaviours.

  18. Potency of energy saving and emission reduction from lighting system in residential sector of Indonesia

    Science.gov (United States)

    Ambarita, H.

    2018-03-01

    The Government of Indonesia (GoI) has a strong commitment to the target of decreasing energy intensity and reducing Greenhouse gas emissions. One of the significant solutions to reach the target is increasing energy efficiency in the lighting system in the residential sector. The objective of this paper is twofold, to estimate the potency of energy saving and emission reduction from lighting in the residential sector. Literature related to the lighting system in Indonesia has been reviewed to provide sufficient data for the estimation of the energy saving and emission reduction. The results show that the in the year 2016, a total of 95.33 TWh of nationally produced electricity is used in the residential sector. This is equal to 44% of total produced electricity. The number of costumers is 64.78 million houses. The average number of lamps and average wattage of lamps used in Indonesia are 8.35 points and 13.8 W, respectively. The number of lighting and percentage of electricity used for lighting in the residential sector in Indonesia are 20.03 TWh (21.02 %) and 497 million lamps, respectively. The projection shows that in the year 2026 the total energy for lighting and number of lamps in the residential sector are 25.05 TWh and 619 million, respectively. By promoting the present technology of high efficient lamps (LED), the potency of energy saving and emission reduction in 2026 are 2.6 TWh and 2.1 million tons CO2eq, respectively.

  19. Public participation in energy saving retrofitting of residential buildings in China

    International Nuclear Information System (INIS)

    Liu, Wenling; Zhang, Jinyun; Bluemling, Bettina; Mol, Arthur P.J.; Wang, Can

    2015-01-01

    Highlights: • We compare public participation in three early cases of residential retrofitting in Beijing. • Residents’ involvement in pre-retrofit activities as well as in the choice and use of technologies varied. • More involvement of residents during retrofitting improves energy saving performance. • Taking into account motives and energy use practices of residents improves energy saving through retrofitting. - Abstract: Retrofitting existing residential buildings has been claimed as one crucial way to reduce energy consumption and greenhouse gas emissions within the Chinese residential sector. In China’s government-dominated retrofitting projects, the participation of residents is often neglected. The objective of this paper is to assess the influence level of public participation (before, during and after retrofit) on energy saving by comparing three Beijing neighborhoods with different retrofitting models: a central government-led model, a local government-led model, and an old neighborhood retrofit model. In the three cases data were collected through interviews with neighborhood workers and residents. The results show that residents’ involvement in pre-retrofit activities, in technology selection and in the use of technology differs greatly among the three cases. This study concludes that in order to improve the effectiveness of energy saving interventions, the motives, intentions and living habits of residents need to be given more consideration when designing and implementing retrofitting. By highlighting the importance of public participation this paper contributes to energy saving policy development in China

  20. Effects of heat and electricity saving measures in district-heated multistory residential buildings

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Dodoo, Ambrose; Gustavsson, Leif

    2014-01-01

    Highlights: • We analyzed the potential for energy savings in district heated buildings. • Measures that reduce more peak load production give higher primary energy savings. • Efficient appliances increase heat demand but give net primary energy savings. • Efficient appliances give the largest net primary energy savings. - Abstract: The effects of heat and electricity saving measures in district-heated buildings can be complex because these depend not only on how energy is used on the demand side but also on how energy is provided from the supply side. In this study, we analyze the effects of heat and electricity saving measures in multistory concrete-framed and wood-framed versions of an existing district-heated building and examine the impacts of the reduced energy demand on different district heat (DH) production configurations. The energy saving measures considered are for domestic hot water reduction, building thermal envelope improvement, ventilation heat recovery (VHR), and household electricity savings. Our analysis is based on a measured heat load profile of an existing DH production system in Växjö, Sweden. Based on the measured heat load profile, we model three minimum-cost DH production system using plausible environmental and socio-political scenarios. Then, we investigate the primary energy implications of the energy saving measures applied to the two versions of the existing building, taking into account the changed DH demand, changed cogenerated electricity, and changed electricity use due to heat and electricity saving measures. Our results show that the difference between the final and primary energy savings of the concrete-framed and wood-framed versions of the case-study building is minor. The primary energy efficiency of the energy saving measures depends on the type of measure and on the composition of the DH production system. Of the various energy saving measures explored, electricity savings give the highest primary energy savings

  1. On the prediction of residential loads in India

    NARCIS (Netherlands)

    Fuchs, P.S.; Lele, A.; Venkatesha-Prasad, R.R.

    2015-01-01

    The Indian Energy grid is growing rapidly and there is a large simulation to improve not only the grid reliability, but also provide power for all by 2027. To this aim the Government of India has launched the Restructured Accelerated Power Development Program (RAPDRP). In India, residential loads

  2. Keys to the House: Unlocking Residential Savings With Program Models for Home Energy Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Grevatt, Jim [Energy Futures Group (United States); Hoffman, Ian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoffmeyer, Dale [US Department of Energy, Washington, DC (United States)

    2017-07-05

    After more than 40 years of effort, energy efficiency program administrators and associated contractors still find it challenging to penetrate the home retrofit market, especially at levels commensurate with state and federal goals for energy savings and emissions reductions. Residential retrofit programs further have not coalesced around a reliably successful model. They still vary in design, implementation and performance, and they remain among the more difficult and costly options for acquiring savings in the residential sector. If programs are to contribute fully to meeting resource and policy objectives, administrators need to understand what program elements are key to acquiring residential savings as cost effectively as possible. To that end, the U.S. Department of Energy (DOE) sponsored a comprehensive review and analysis of home energy upgrade programs with proven track records, focusing on those with robustly verified savings and constituting good examples for replication. The study team reviewed evaluations for the period 2010 to 2014 for 134 programs that are funded by customers of investor-owned utilities. All are programs that promote multi-measure retrofits or major system upgrades. We paid particular attention to useful design and implementation features, costs, and savings for nearly 30 programs with rigorous evaluations of performance. This meta-analysis describes program models and implementation strategies for (1) direct install retrofits; (2) heating, ventilating and air-conditioning (HVAC) replacement and early retirement; and (3) comprehensive, whole-home retrofits. We analyze costs and impacts of these program models, in terms of both energy savings and emissions avoided. These program models can be useful guides as states consider expanding their strategies for acquiring energy savings as a resource and for emissions reductions. We also discuss the challenges of using evaluations to create program models that can be confidently applied in

  3. Towards Cost and Comfort Based Hybrid Optimization for Residential Load Scheduling in a Smart Grid

    Directory of Open Access Journals (Sweden)

    Nadeem Javaid

    2017-10-01

    Full Text Available In a smart grid, several optimization techniques have been developed to schedule load in the residential area. Most of these techniques aim at minimizing the energy consumption cost and the comfort of electricity consumer. Conversely, maintaining a balance between two conflicting objectives: energy consumption cost and user comfort is still a challenging task. Therefore, in this paper, we aim to minimize the electricity cost and user discomfort while taking into account the peak energy consumption. In this regard, we implement and analyse the performance of a traditional dynamic programming (DP technique and two heuristic optimization techniques: genetic algorithm (GA and binary particle swarm optimization (BPSO for residential load management. Based on these techniques, we propose a hybrid scheme named GAPSO for residential load scheduling, so as to optimize the desired objective function. In order to alleviate the complexity of the problem, the multi dimensional knapsack is used to ensure that the load of electricity consumer will not escalate during peak hours. The proposed model is evaluated based on two pricing schemes: day-ahead and critical peak pricing for single and multiple days. Furthermore, feasible regions are calculated and analysed to develop a relationship between power consumption, electricity cost, and user discomfort. The simulation results are compared with GA, BPSO and DP, and validate that the proposed hybrid scheme reflects substantial savings in electricity bills with minimum user discomfort. Moreover, results also show a phenomenal reduction in peak power consumption.

  4. Saving water to save the environment: Contrasting the effectiveness of environmental and monetary appeals in a residential water saving intervention

    NARCIS (Netherlands)

    Tijs, M.S.; Karremans, J.C.T.M.; Veling, H.P.; Lange, M.A. de; Meegeren, P. van; Lion, R.

    2017-01-01

    To convince people to reduce their energy consumption, two types of persuasive appeals often are used by environmental organizations: Monetary appeals (i.e., 'conserving energy will save you money') and environmental appeals (i.e., 'conserving energy will protect the environment'). In this field

  5. Energy usage and technical potential for energy saving measures in the Swedish residential building stock

    International Nuclear Information System (INIS)

    Mata, Érika; Sasic Kalagasidis, Angela; Johnsson, Filip

    2013-01-01

    This paper provides an analysis of the current energy usage (net energy and final energy by fuels) and associated carbon dioxide (CO 2 ) emissions of the Swedish residential building stock, which includes single-family dwellings and multi-family dwellings. Twelve energy saving measures (ESMs) are assessed using a bottom–up modeling methodology, in which the Swedish residential stock is represented by a sample of 1400 buildings (based on data from the year 2005). Application of the ESMs studied gives a maximum technical reduction potential in energy demand of 53%, corresponding to a 63% reduction in CO 2 emissions. Although application of the investigated ESMs would reduce CO 2 emissions, the measures that reduce electricity consumption for lighting and appliances (LA) will increase CO 2 emissions, since the saved electricity production is less CO 2 -intensive than the fuel mix used for the increased space heating required to make up for the loss in indirect heating obtained from LA. - Highlights: ► Analysis of year 2005energy use and CO2 emissions of Swedish residential buildings. ► Includes all single-family dwellings and multi-family dwellings. ► Bottom–up modeling of building stock represented by 1400 buildings. ► Technical effects of 12 energy saving measures are assessed. ► Energy demand can be reduced by53% and associated CO 2 emissions by 63%

  6. Conceptual provisions of the implementation of energy saving measures in the residential facilities

    Directory of Open Access Journals (Sweden)

    Meshcheryakova Tatiana

    2017-01-01

    Full Text Available Research purpose is identification of sales problems of energy saving actions for residential sector of economy, including with use of the power service contract. The choice of the object of the study is related to the general issues on energy saving of residential facilities and increasing the number of unresolved problems. Unfortunately, the efficiency of energy consumption of housing stock is extremely low that directly leads to an increase in citizens’ payments for public utilities (housing and communal services. There are many problems associated with the aging of fixed assets: it becomes especially evident in winter seasons. The level of quality of delivery, distribution and consumption of expensive heat resources that has the greatest impact on a residence comfort and sometimes human life and health, is very low. Our population faces to year overheating or freezing, to leakages through worn pipes and the subsequent disconnection of water and heat. Despite the public declaration of the of the active processes of modernization of the housing municipal economy in the Russian Federation, the implementation of the necessary energy-saving elements in the housing sector is evolving very slowly. The article presents conceptual positions, which will bring the issues related to energy saving and efficiency to a new level.

  7. Consistent cost curves for identification of optimal energy savings across industry and residential sectors

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik; Baldini, Mattia

    with constructing and applying the cost curves in modelling: • Cost curves do not have the same cost interpretation across economic subsectors and end-use technologies (investment cost for equipment varies – including/excluding installation – adaptation costs – indirect production costs) • The time issue of when...... the costs are incurred and savings (difference in discount rates both private and social) • The issue of marginal investment in a case of replacement anyway or a full investment in the energy saving technology • Implementation costs (and probability of investment) differs across sectors • Cost saving......, the difference between marginal investment costs in residential heating of a more efficient building element (windows) in a larger renovation project compared to the costs of just replacing the windows. This is done based on some of the results from Zvingilaite & Klinge Jacobsen 2016. We compare to the results...

  8. Review of Residential Low-Load HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Scott A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thornton, Brian A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Widder, Sarah H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    In support of the U.S. Department of Energy’s (DOE’s) Building America Program, Pacific Northwest National Laboratory (PNNL) conducted an investigation to inventory commercially available HVAC technologies that are being installed in low-load homes. The first step in this investigation was to conduct a review of published literature to identify low-load HVAC technologies available in the United States and abroad, and document the findings of existing case studies that have evaluated the performance of the identified technologies. This report presents the findings of the literature review, identifies gaps in the literature or technical understanding that must be addressed before low-load HVAC technologies can be fully evaluated, and introduces PNNL’s planned research and analysis for this project to address identified gaps and potential future work on residential low-load HVAC systems.

  9. Optimum Insulation Thickness for Walls and Roofs for Reducing Peak Cooling Loads in Residential Buildings in Lahore

    Directory of Open Access Journals (Sweden)

    SIBGHA SIDDIQUE SIDDIQUE

    2016-10-01

    Full Text Available Thermal insulation is the most effective energy saving measure for cooling in buildings. Therefore, the main subject of many engineering investigations is the selection and determination of the optimum insulation thickness. In the present study, the optimum insulation thickness on external walls and roofs is determined based on the peak cooling loads for an existing residential building in Lahore, Pakistan. Autodesk® Revit 2013 is used for the analysis of the building and determination of the peak cooling loads. The analysis shows that the optimum insulation thickness to reduce peak cooling loads up to 40.1% is 1 inch for external walls and roof respectively.

  10. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  11. The economic impact of energy saving retrofits of residential and public buildings in Croatia

    International Nuclear Information System (INIS)

    Mikulić, Davor; Bakarić, Ivana Rašić; Slijepčević, Sunčana

    2016-01-01

    The purpose of this paper is to estimunate the impact of energy saving investment in residential and public buildings in Croatia for the period 2015–2020. The aim is to assess the overall socio-economic impact of energy saving renovation measures defined in Croatian strategic documents in terms of the direct, indirect and induced growth of gross value added, employment and government revenues. An estimate of the avoided costs of air pollution is also included. The overall economic impact assessment is based on an input-output methodology. From the point of view of individual investors, the benefits in terms of reduced future expenses related to energy products are usually below energy efficient renovation investment costs, making an investment financially viable only if government support is provided. If the benefits for society as a whole are included, energy efficient renovation could be assessed as viable even in the short-run. Energy saving retrofits of residential and public buildings positively contribute to economic growth, employment and protection of the environment. Because of economic growth, the tax revenues induced by these investments could compensate for government expenditures, and the overall impact on the public deficit is expected to be neutral even in the short-run. - Highlights: •Estimate of the overall socioeconomic impact of energy saving renovation measures on national economy. •Energy efficient renovation if not subsidised is not financially viable from the owner perspective. •Total social benefits are higher than social costs due to positive externalities. •Impact of subsidies on public deficit is neutral even in the short run.

  12. Historical changes and recent energy saving potential of residential heating in Korea

    International Nuclear Information System (INIS)

    Yeo, M.-S.; Yang, I.-H.; Kim, K.-W.

    2003-01-01

    The residential heating method in Korea underwent various phases of development to reach the current system. The first phase was the traditional Ondol (the traditional under-floor heating system in Korea), where the floor was heated by the circulation of hot gas produced by a fire furnace (before the 1950s). The second phase involved the use of the modified anthracite coal Ondol, for which the fire furnace was modified for briquette use (from the early 1950s to the late 1970s). The third phase involved the use of hot water radiant floor heating with embedded tubes (from the late 1970s). This paper presents insights into the problem of current residential heating in Korea and the general aspects of heating energy savings by tracing the history of residential heating in Korea and analyzing related data. The results show that modern apartment buildings with hot water radiant floor heating (the third phase) yield less heat loss due to the tighter envelope, but also yield higher energy consumption than the traditional Ondol heating housing (the first phase). Because of an inefficient system and lack of thermal insulation of the traditional Ondol heating housing, Ondol heating was used to heat occupants sitting directly on the floor, keeping lower room temperature and higher floor surface temperature. So the range of comfortable floor temperature for Korean people is higher and this unique comfort sense is related to energy consumption in modern apartment housing. As a result, several energy saving methods were found such as reducing the total floor heating area or zoning the floor area, receiving continuous heat supply, and installing a delicate control system and metering devices. (author)

  13. Energy saving analysis on mine-water source heat pump in a residential district of Henan province, central China

    Science.gov (United States)

    Wang, Hong; Duan, Huanlin; Chen, Aidong

    2018-02-01

    In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.

  14. Optimal Residential Load Scheduling Under Utility and Rooftop Photovoltaic Units

    Directory of Open Access Journals (Sweden)

    Ghulam Hafeez

    2018-03-01

    Full Text Available With the rapid advancement in technology, electrical energy consumption is increasing rapidly. Especially, in the residential sector, more than 80% of electrical energy is being consumed because of consumer negligence. This brings the challenging task of maintaining the balance between the demand and supply of electric power. In this paper, we focus on the problem of load balancing via load scheduling under utility and rooftop photovoltaic (PV units to reduce electricity cost and peak to average ratio (PAR in demand-side management. For this purpose, we adopted genetic algorithm (GA, binary particle swarm optimization (BPSO, wind-driven optimization (WDO, and our proposed genetic WDO (GWDO algorithm, which is a hybrid of GA and WDO, to schedule the household load. For energy cost estimation, combined real-time pricing (RTP and inclined block rate (IBR were used. The proposed algorithm shifts load from peak consumption hours to off-peak hours based on combined pricing scheme and generation from rooftop PV units. Simulation results validate our proposed GWDO algorithm in terms of electricity cost and PAR reduction while considering all three scenarios which we have considered in this work: (1 load scheduling without renewable energy sources (RESs and energy storage system (ESS, (2 load scheduling with RESs, and (3 load scheduling with RESs and ESS. Furthermore, our proposed scheme reduced electricity cost and PAR by 22.5% and 29.1% in scenario 1, 47.7% and 30% in scenario 2, and 49.2% and 35.4% in scenario 3, respectively, as compared to unscheduled electricity consumption.

  15. A DFuzzy-DAHP Decision-Making Model for Evaluating Energy-Saving Design Strategies for Residential Buildings

    Directory of Open Access Journals (Sweden)

    Yu-Lung Chen

    2012-11-01

    Full Text Available The construction industry is a high-pollution and high-energy-consumption industry. Energy-saving designs for residential buildings not only reduce the energy consumed during construction, but also reduce long-term energy consumption in completed residential buildings. Because building design affects investment costs, designs are often influenced by investors’ decisions. A set of appropriate decision-support tools for residential buildings are required to examine how building design influences corporations externally and internally. From the perspective of energy savings and environmental protection, we combined three methods to develop a unique model for evaluating the energy-saving design of residential buildings. Among these methods, the Delphi group decision-making method provides a co-design feature, the analytical hierarchy process (AHP includes multi-criteria decision-making techniques, and fuzzy logic theory can simplify complex internal and external factors into easy-to-understand numbers or ratios that facilitate decisions. The results of this study show that incorporating solar building materials, double-skin facades, and green roof designs can effectively provide high energy-saving building designs.

  16. Study on the optimum PCM melting temperature for energy savings in residential buildings worldwide

    Science.gov (United States)

    Saffari, M.; de Gracia, A.; Fernández, C.; Zsembinszki, G.; Cabeza, L. F.

    2017-10-01

    To maintain comfort conditions in residential buildings along a full year period, the use of active systems is generally required to either supply heating or cooling. The heating and cooling demands strongly depend on the climatic conditions, type of building and occupants’ behaviour. The overall annual energy consumption of the building can be reduced by the use of renewable energy sources and/or passive systems. The use of phase change materials (PCM) as passive systems in buildings enhances the thermal mass of the envelope, and reduces the indoor temperature fluctuations. As a consequence, the overall energy consumption of the building is generally lower as compared to the case when no PCM systems are used. The selection of the PCM melting temperature is a key issue to reduce the energy consumption of the buildings. The main focus of this study is to determine the optimum PCM melting temperature for passive heating and cooling according to different weather conditions. To achieve that, numerical simulations were carried out using EnergyPlus v8.4 coupled with GenOpt® v3.1.1 (a generic optimization software). A multi-family residential apartment was selected from ASHRAE Standard 90.1- 2013 prototype building model, and different climate conditions were considered to determine the optimum melting temperature (in the range from 20ºC to 26ºC) of the PCM contained in gypsum panels. The results confirm that the optimum melting temperature of the PCM strongly depends on the climatic conditions. In general, in cooling dominant climates the optimum PCM temperature is around 26ºC, while in heating dominant climates it is around 20ºC. Furthermore, the results show that an adequate selection of the PCM as passive system in building envelope can provide important energy savings for both heating dominant and cooling dominant regions.

  17. Chapter 17: Residential Behavior Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stewart, James [Cadmus, Waltham, MA (United States); Todd, Annika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-11-01

    Residential behavior-based (BB) programs use strategies grounded in the behavioral and social sciences to influence household energy use. These may include providing households with real-time or delayed feedback about their energy use; supplying energy efficiency education and tips; rewarding households for reducing their energy use; comparing households to their peers; and establishing games, tournaments, and competitions. BB programs often target multiple energy end uses and encourage energy savings, demand savings, or both. Savings from BB programs are usually a small percentage of energy use, typically less than 5 percent. Utilities will continue to implement residential BB programs as large-scale, randomized control trials (RCTs); however, some are now experimenting with alternative program designs that are smaller scale; involve new communication channels such as the web, social media, and text messaging; or that employ novel strategies for encouraging behavior change (for example, Facebook competitions). These programs will create new evaluation challenges and may require different evaluation methods than those currently employed to verify any savings they generate. Quasi-experimental methods, however, require stronger assumptions to yield valid savings estimates and may not measure savings with the same degree of validity and accuracy as randomized experiments.

  18. The impact of rate design and net metering on the bill savings from distributed PV for residential customers in California

    International Nuclear Information System (INIS)

    Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

    2011-01-01

    Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate. - Highlights: → We examine the value of bill savings under net metering to PV owners in California. → Bill savings per kWh of PV generation varies by a factor of four with net metering. The variation is attributable to rate design, the unique inclining block structure. → The median value of bill savings is reduced by 40-67% with MPR feed-in tariff. → The median value of bill savings is reduced by 6-12% with hourly netting.

  19. ENCOURAGING ELECTRICITY SAVINGS IN A UNIVERSITY RESIDENTIAL HALL THROUGH A COMBINATION OF FEEDBACK, VISUAL PROMPTS, AND INCENTIVES

    Science.gov (United States)

    Bekker, Marthinus J; Cumming, Tania D; Osborne, Nikola K.P; Bruining, Angela M; McClean, Julia I; Leland, Louis S

    2010-01-01

    This experiment investigated the combined use of visual prompts, daily feedback, and rewards to reduce electricity consumption in a university residential hall. After a 17-day baseline period, the experimental intervention was introduced in the intervention hall, and no change was made in the control hall. Energy usage decreased in the intervention hall, but energy usage did not change appreciably in the control hall. In the intervention hall, mean daytime and nighttime savings were 16.2% and 10.7%, respectively, compared to savings of 3.8% (day) and 6.5% (night) in the control hall. PMID:21119909

  20. Cost and Benefit Tradeoffs in Using a Shade Tree for Residential Building Energy Saving

    Directory of Open Access Journals (Sweden)

    Sappinandana Akamphon

    2014-01-01

    Full Text Available Global warming and urban heat islands result in increased cooling energy consumption in buildings. Previous literature shows that planting trees to shade a building can reduce its cooling load. This work proposes a model to determine the cost effectiveness and profitability of planting a shade tree by considering both its potential to reduce cooling energy and its purchase and maintenance cost. A comparison between six selected tree species is used for illustration. Using growth rates, crown sizes, and shading coefficients, cooling energy savings from the tree shades are computed using an industrial-standard building energy simulation program, offset by costs of purchase, planting, and maintenance of these trees. The result shows that most worthwhile tree to plant should have high shading coefficient and moderate crown size to maximize shading while keeping the maintenance costs manageable.

  1. Evaluation of heat pumps usage and energy savings in residential buildings

    OpenAIRE

    Nehad Elsawaf, Tarek Abdel-Salam, Leslie Pagliari

    2012-01-01

    The residential housing sector is a major consumer of energy in most countries around the world. In the United States the residential sector consumes about 21 % of the energy and about 35% of the electricity production. Of the total energy consumption per house hold about 33% is consumed for space heating. This study evaluates the energy consumption in residential houses during the heating season. The main objective of the study is to test the effectiveness of using heat pumps for space heati...

  2. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States); Schmidt, Justin [Navigant Consulting, Inc., Burlington, MA (United States)

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  3. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

  4. Residential Saudi load forecasting using analytical model and Artificial Neural Networks

    Science.gov (United States)

    Al-Harbi, Ahmad Abdulaziz

    In recent years, load forecasting has become one of the main fields of study and research. Short Term Load Forecasting (STLF) is an important part of electrical power system operation and planning. This work investigates the applicability of different approaches; Artificial Neural Networks (ANNs) and hybrid analytical models to forecast residential load in Kingdom of Saudi Arabia (KSA). These two techniques are based on model human modes behavior formulation. These human modes represent social, religious, official occasions and environmental parameters impact. The analysis is carried out on residential areas for three regions in two countries exposed to distinct people activities and weather conditions. The collected data are for Al-Khubar and Yanbu industrial city in KSA, in addition to Seattle, USA to show the validity of the proposed models applied on residential load. For each region, two models are proposed. First model is next hour load forecasting while second model is next day load forecasting. Both models are analyzed using the two techniques. The obtained results for ANN next hour models yield very accurate results for all areas while relatively reasonable results are achieved when using hybrid analytical model. For next day load forecasting, the two approaches yield satisfactory results. Comparative studies were conducted to prove the effectiveness of the models proposed.

  5. Residential sector dossier. Energy savings as target; Dossier residentiel. Les economies d'energie en point de mire

    Energy Technology Data Exchange (ETDEWEB)

    Sappa, F.

    2004-05-01

    With the 2003 heat wave in Europe, the sales of air conditioning split systems have reached records with a progress of about 40%. Beside these data, it is a new perception of these devices that is progressively gaining the consumers mind, in particular in the residential sector which has been considered as 'very promising' by air conditioning professionals, but which has never reached its expected development in France, so far. Manufacturers are more and more looking towards this sector with the energy savings and the environment protection as main arguments. The French scientific and technical committee of air conditioning industries (Costic) is carrying out several actions in parallel which aim at giving help to professionals for the realisation of quality air conditioning installations. This dossier takes stock of the technical and regulatory aspects of residential air conditioning (choice of appliances, evacuation of condensates, air flow, abatement of energy consumptions and noise pollution, Vivrelec offer of Electricite de France (EdF), improvement of esthetics and efficiency..). Some examples of innovative realizations illustrate this dossier: high environmental quality house with 77% of space heating savings, combination of ventilation and radiant ceiling. (J.S.)

  6. Empirical Investigations of the Opportunity Limits of Automatic Residential Electric Load Shaping: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Cruickshank, Robert F.; Henze, Gregor P.; Balaji, Rajagopalan; Hodge, Bri-Mathias S.; Florita, Anthony R.

    2017-04-01

    Residential electric load shaping is often modeled as infrequent, utility-initiated, short-duration deferral of peak demand through direct load control. In contrast, modeled herein is the potential for frequent, transactive, intraday, consumer-configurable load shaping for storage-capable thermostatically controlled electric loads (TCLs), including refrigerators, freezers, and hot water heaters. Unique to this study are 28 months of 15-minute-interval observations of usage in 101 homes in the Pacific Northwest United States that specify exact start, duration, and usage patterns of approximately 25 submetered loads per home. The magnitudes of the load shift from voluntarily-participating TCL appliances are aggregated to form hourly upper and lower load-shaping limits for the coordination of electrical generation, transmission, distribution, storage, and demand. Empirical data are statistically analyzed to define metrics that help quantify load-shaping opportunities.

  7. Does energy labelling on residential housing cause energy savings? Working paper

    Energy Technology Data Exchange (ETDEWEB)

    Kjaerbye, V.H.

    2008-12-15

    More than 80% of energy used in households is dedicated to space heating. Large potential energy savings have been identified in the existing housing stock. Energy labelling of single-family houses is seen as an important instrument to provide new house owners with information on efficient energy saving investments that can be made on the house. This paper evaluates the effects of the Danish Energy Labelling Scheme on energy consumption in existing single-family houses with propensity score matching using actual consumption of energy and register data describing the houses and households. We do not find significant energy savings due to the Danish Energy Labelling Scheme. (Author)

  8. Evaluation of energy performance indicators and financial aspects of energy saving techniques in residential real estate

    NARCIS (Netherlands)

    Entrop, Alexis Gerardus; Brouwers, Jos; Reinders, Angelina H.M.E.

    2010-01-01

    The energy consumption in the existing residential building stock accounts for about 40% of the total energy consumption in the built environment. Different types of energy performance indicators to assess the energy consumption of buildings were and still are internationally under development. In

  9. Pilot Evaluation of Energy Savings from Residential Energy Demand Feedback Devices

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Danny S. [Florida Solar Energy Center, Cocoa, FL (United States); Hoak, David [Florida Solar Energy Center, Cocoa, FL (United States); Cummings, Jamie [Florida Solar Energy Center, Cocoa, FL (United States)

    2008-01-01

    This report discusses instantaneous feedback on household electrical demand has shown promise to reduce energy consumption. This report reviews past research and describes a two year pilot evaluation of a low cost residential energy feedback system installed in twenty case study homes in FL.

  10. An analysis of representative heating load lines for residential HSPF ratings

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-01

    This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirement (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28

  11. An Energy Saving Green Plug Device for Nonlinear Loads

    Science.gov (United States)

    Bloul, Albe; Sharaf, Adel; El-Hawary, Mohamed

    2018-03-01

    The paper presents a low cost a FACTS Based flexible fuzzy logic based modulated/switched tuned arm filter and Green Plug compensation (SFC-GP) scheme for single-phase nonlinear loads ensuring both voltage stabilization and efficient energy utilization. The new Green Plug-Switched filter compensator SFC modulated LC-Filter PWM Switched Capacitive Compensation Devices is controlled using a fuzzy logic regulator to enhance power quality, improve power factor at the source and reduce switching transients and inrush current conditions as well harmonic contents in source current. The FACTS based SFC-GP Device is a member of family of Green Plug/Filters/Compensation Schemes used for efficient energy utilization, power quality enhancement and voltage/inrush current/soft starting control using a dynamic error driven fuzzy logic controller (FLC). The device with fuzzy logic controller is validated using the Matlab / Simulink Software Environment for enhanced power quality (PQ), improved power factor and reduced inrush currents. This is achieved using modulated PWM Switching of the Filter-Capacitive compensation scheme to cope with dynamic type nonlinear and inrush cyclical loads..

  12. Customer-economics of residential photovoltaic systems (Part 1): The impact of high renewable energy penetrations on electricity bill savings with net metering

    International Nuclear Information System (INIS)

    Darghouth, Naïm R.; Barbose, Galen; Wiser, Ryan H.

    2014-01-01

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. Given the uncertainty in future retail rates and the inherent links between rates and the customer–economics of behind-the-meter PV, there is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. In this article, we first use a production cost and capacity expansion model to project California hourly wholesale electricity market prices under two potential electricity market scenarios, including a reference and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, we develop retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV is estimated for 226 California residential customers under two types of net metering, for each scenario. We find that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV. - Highlights: • We investigate the impact of high renewables on customer economics of solar. • We model three types of residential retail electricity rates. • Based on the rates, we calculate the bill savings from photovoltaic (PV) generation. • High renewables penetration can lead to lower bill savings with time-varying rates. • There is substantial uncertainty in the future bill savings from residential PV

  13. Scheduling algorithms for saving energy and balancing load

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Antonios

    2012-08-03

    In this thesis we study problems of scheduling tasks in computing environments. We consider both the modern objective function of minimizing energy consumption, and the classical objective of balancing load across machines. We first investigate offline deadline-based scheduling in the setting of a single variable-speed processor that is equipped with a sleep state. The objective is that of minimizing the total energy consumption. Apart from settling the complexity of the problem by showing its NP-hardness, we provide a lower bound of 2 for general convex power functions, and a particular natural class of schedules called s{sub crit}-schedules. We also present an algorithmic framework for designing good approximation algorithms. For general convex power functions our framework improves the best known approximation-factor from 2 to 4/3. This factor can be reduced even further to 137/117 for a specific well-motivated class of power functions. Furthermore, we give tight bounds to show that our framework returns optimal s{sub crit}-schedules for the two aforementioned power-function classes. We then focus on the multiprocessor setting where each processor has the ability to vary its speed. Job migration is allowed, and we again consider classical deadline-based scheduling with the objective of energy minimization. We first study the offline problem and show that optimal schedules can be computed efficiently in polynomial time for any convex and non-decreasing power function. Our algorithm relies on repeated maximum flow computations. Regarding the online problem and power functions P(s) = s{sup {alpha}}, where s is the processor speed and {alpha} > 1 a constant, we extend the two well-known single-processor algorithms Optimal Available and Average Rate. We prove that Optimal Available is {alpha}{sup {alpha}}-competitive as in the single-processor case. For Average Rate we show a competitive factor of (2{alpha}){sup {alpha}}/2 + 1, i.e., compared to the single

  14. Effects of residential energy-saving lamps on the attraction of nocturnal insects

    OpenAIRE

    Poiani, S. [UNESP; Dietrich, C. [UNESP; Barroso, A.; Costa-Leonardo, Ana Maria [UNESP

    2015-01-01

    Many species of insects display a disposition to move towards light. As a consequence, nocturnal artificial lighting often contributes to an increase in insect population among humans. We tested the hypothesis that residential white lamps can evoke significantly different attraction to insects even when their light outputs are nearly indistinguishable to humans. In a two-choice experiment using insect traps equipped with either a compact fluorescent or a LED light source with similar photomet...

  15. Environmental benefit analysis of strategies for potable water savings in residential buildings.

    Science.gov (United States)

    Marinoski, Ana Kelly; Rupp, Ricardo Forgiarini; Ghisi, Enedir

    2018-01-15

    The objective of this study is to assess the environmental benefit of using rainwater, greywater, water-efficient appliances and their combinations in low-income houses. The study was conducted surveying twenty households located in southern Brazil, which resulted in water end-uses estimation. Then, embodied energy, potential for potable water savings and sewage reduction when using the different strategies were estimated. The environmental benefit analysis of these strategies was performed using an indicator that includes embodied energy, potable water savings, reduction of sewage and energy consumption in the water utility, and sewage production during the life cycle of the system. The results indicated that the strategy with the greatest environmental benefit is the use of water-efficient appliances, which resulted in substantial water savings and reduction of sewage, causing low environmental impact due to lower embodied energy over the life cycle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs

    International Nuclear Information System (INIS)

    Zvingilaite, Erika; Klinge Jacobsen, Henrik

    2015-01-01

    The trade-off between investing in energy savings and investing in individual heating technologies with high investment and low variable costs in single family houses is modelled for a number of building and consumer categories in Denmark. For each group the private economic cost of providing heating comfort is minimised. The private solution may deviate from the socio-economical optimal solution and we suggest changes to policy to incentivise the individuals to make choices more in line with the socio-economic optimal mix of energy savings and technologies. The households can combine their primary heating source with secondary heating e.g. a woodstove. This choice results in increased indoor air pollution with fine particles causing health effects. We integrate health cost due to use of woodstoves into household optimisation of heating expenditures. The results show that due to a combination of low costs of primary fuel and low environmental performance of woodstoves today, included health costs lead to decreased use of secondary heating. Overall the interdependence of heat generation technology- and heat saving-choice is significant. The total optimal level of heat savings for private consumers decrease by 66% when all have the option to shift to the technology with lowest variable costs. - Highlights: • Heat saving investment and heat technology choice are interdependent. • Health damage costs should be included in private heating choice optimisation. • Flexibility in heating technology choice reduce the optimal level of saving investments. • Models of private and socioeconomic optimal heating produce different technology mix. • Rebound effects are moderate but varies greatly among consumer categories

  17. VOLTTRON-Based System for Providing Ancillary Services with Residential Building Loads

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin

    2016-07-01

    Ancillary services entail controlled modulation of building equipment to maintain a stable balance of generation and load in the power system. Ancillary services include frequency regulation and contingency reserves, whose acting time ranges from several seconds to several minutes. Many pilot studies have been implemented to use industrial loads to provide ancillary services, and some have explored services from commercial building loads or electric vehicle charging loads. Residential loads, such as space conditioning and water heating, represent a largely untapped resource for providing ancillary services. The residential building sector accounts for a significant fraction of the total electricity use in the United States. Many loads in residential buildings are flexible and could potentially be curtailed or shifted at the request of the grid. However, there are many barriers that prevent residential loads being widely used for ancillary services. One of the major technical barriers is the lack of communication capabilities between end-use devices and the grid. End-use devices need to be able to receive the automatic generation control (AGC) signal from the grid operator and supply certain types of telemetry to verify response. With the advance of consumer electronics, communication-enabled, or 'connected,' residential equipment has emerged to overcome the communication barrier. However, these end-use devices have introduced a new interoperability challenge due to the existence of numerous standards and communication protocols among different end devices. In this paper, we present a VOLTTRON-based system that overcomes these technical challenges and provides ancillary services with residential loads. VOLTTRON is an open-source control and sensing platform for building energy management, facilitating interoperability solutions for end devices. We have developed drivers to communicate and control different types of end devices through standard

  18. Methods and models for the residential load management in distribution networks

    Science.gov (United States)

    Molina Garcia, Angel

    The main purpose of this thesis is the development of new tools to obtain and assess residential load control strategies. In this way, elemental load models to simulate electrical and thermal behaviors have been implemented and validated; an appropriate aggregation technique, based on kernel estimators, has been selected; and a load control strategy algorithm has been developed and applied on the air conditioning-heat pump individual loads, analyzing the control action effects from two viewpoints: customer (demand pattern changes, services...) and utility (resource optimization, profile demand modifications...). As a consequence, this integrated tool allows to know the flexibility degree of a specific residential demand profile, according to a target demand profile previously defined, by means of an optimum combination of forced connections and disconnections, taking into account the discomfort level maximum accepted by the customers. Electrical thermal storage appliances have also been studied. In this case, the day-valley periods are proposed as possible partial storage periods. This would involve to divide the actual storage periods into two partial periods, decreasing the thermal capacity necessities as well as the discharge period forecasts. A thermal study about this proposal has been developed, comparing the indoor temperatures in both cases. Finally, and taking into account the modifications suffered by the electrical market during these last years, the developed tools can be applied by utility and customer side, within an electrical sector (residential) which supposes around 25 per cent the total electrical demand.

  19. Aggregated Residential Load Modeling Using Dynamic Bayesian Networks

    Energy Technology Data Exchange (ETDEWEB)

    Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai

    2014-09-28

    Abstract—It is already obvious that the future power grid will have to address higher demand for power and energy, and to incorporate renewable resources of different energy generation patterns. Demand response (DR) schemes could successfully be used to manage and balance power supply and demand under operating conditions of the future power grid. To achieve that, more advanced tools for DR management of operations and planning are necessary that can estimate the available capacity from DR resources. In this research, a Dynamic Bayesian Network (DBN) is derived, trained, and tested that can model aggregated load of Heating, Ventilation, and Air Conditioning (HVAC) systems. DBNs can provide flexible and powerful tools for both operations and planing, due to their unique analytical capabilities. The DBN model accuracy and flexibility of use is demonstrated by testing the model under different operational scenarios.

  20. Prioritized rule based load management technique for residential building powered by PV/battery system

    Directory of Open Access Journals (Sweden)

    T.R. Ayodele

    2017-06-01

    Full Text Available In recent years, Solar Photovoltaic (PV system has presented itself as one of the main solutions to the electricity poverty plaguing the majority of buildings in rural communities with solar energy potential. However, the stochasticity associated with solar PV power output owing to vagaries in weather conditions is a major challenge in the deployment of the systems. This study investigates approach for maximizing the benefits of a Stand-Alone Photovoltaic-Battery (SAPVB system via techniques that provide for optimum energy gleaning and management. A rule-based load management scheme is developed and tested for a residential building. The approach allows load prioritizing and shifting based on certain rules. To achieve this, the residential loads are classified into Critical Loads (CLs and Uncritical Loads (ULs. The CLs are given higher priority and therefore are allowed to operate at their scheduled time while the ULs are of less priority, hence can be shifted to a time where there is enough electric power generation from the PV arrays rather than the loads being operated at the time period set by the user. Four scenarios were created to give insight into the applicability of the proposed rule based load management scheme. The result revealed that when the load management technique is not utilized as in the case of scenario 1 (Base case, the percentage satisfaction of the critical and uncritical loads by the PV system are 49.8% and 23.7%. However with the implementation of the load management scheme in scenarios 2, 3 and 4, the percentage satisfaction of the loads (CLs, ULs are (93.8%, 74.2%, (90.9%, 70.1% and (87.2%, 65.4% for scenarios 2, 3 and 4, respectively.

  1. Modeling and forecasting residential loads as probabilistic currents for LV network design

    Energy Technology Data Exchange (ETDEWEB)

    Herman, R.; Gaunt, C.T. [Cape Town Univ., Rondebosch (South Africa)

    2007-07-01

    This paper presented different approaches to the design of low voltage (LV) electrical distribution systems found in North America and Europe. Systems based on the European approach have long LV feeders that require careful consideration at the design stage. The common basic principle of the 2 different systems is the uncertainty associated with customer loads due to their stochastic behaviour. The most important criterion in conductor sizing is the estimation of the design loads. This comparative study of various deterministic design procedures was conducted in response to concerns regarding the validity and accuracy of design calculations. The study involved extensive residential load modeling and probabilistic design methods. It described how the Beta probability density function (PDF) is used in South Africa to describe the statistical properties of residential loads. The Beta parameters may be readily applied in voltage design calculations. The study demonstrated how these load parameters may be derived in other developing countries from a typical customer group after-diversity-maximum demand (ADMD) survey. The Herman Beta algorithm can be used to calculate feeder voltage drop, given the relationship between ADMD and the Beta load parameters .8 refs., 5 figs.

  2. An analysis of hybrid power generation systems for a residential load

    OpenAIRE

    Ceran Bartosz; Hassan Qusay; Jaszczur Marek; Sroka Krzysztof

    2017-01-01

    This paper presents the results of an energetic and economical analysis of a hybrid power generation system (HPGS) which utilises photovoltaic modules, wind turbines, fuel cells and an electrolyzer with hydrogen tank working as the energy storage. The analysis was carried out for three different residential loads, local solar radiation and local wind speed, based on the real measurement values. The analysis shows the optimal solution and the limits of the investment costs required for the sys...

  3. Data-Driven Residential Load Modeling and Validation in GridLAB-D

    Energy Technology Data Exchange (ETDEWEB)

    Gotseff, Peter; Lundstrom, Blake

    2017-05-11

    Accurately characterizing the impacts of high penetrations of distributed energy resources (DER) on the electric distribution system has driven modeling methods from traditional static snap shots, often representing a critical point in time (e.g., summer peak load), to quasi-static time series (QSTS) simulations capturing all the effects of variable DER, associated controls and hence, impacts on the distribution system over a given time period. Unfortunately, the high time resolution DER source and load data required for model inputs is often scarce or non-existent. This paper presents work performed within the GridLAB-D model environment to synthesize, calibrate, and validate 1-second residential load models based on measured transformer loads and physics-based models suitable for QSTS electric distribution system modeling. The modeling and validation approach taken was to create a typical GridLAB-D model home that, when replicated to represent multiple diverse houses on a single transformer, creates a statistically similar load to a measured load for a given weather input. The model homes are constructed to represent the range of actual homes on an instrumented transformer: square footage, thermal integrity, heating and cooling system definition as well as realistic occupancy schedules. House model calibration and validation was performed using the distribution transformer load data and corresponding weather. The modeled loads were found to be similar to the measured loads for four evaluation metrics: 1) daily average energy, 2) daily average and standard deviation of power, 3) power spectral density, and 4) load shape.

  4. Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Klinge Jacobsen, Henrik

    2015-01-01

    their primary heating source with secondary heating e.g. a woodstove. This choice results in increased indoor air pollution with fine particles causing health effects. We integrate health cost due to use of woodstoves into household optimisation of heating expenditures. The results show that due...... heating comfort is minimised. The private solution may deviate from the socio-economical optimal solution and we suggest changes to policy to incentivise the individuals to make choices more in line with the socio-economic optimal mix of energy savings and technologies. The households can combine...

  5. Climate Change Impacts on Residential and Commercial Loads in the Western U.S. Grid

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ning; Taylor, Zachary T.; Jiang, Wei; Xie, YuLong; Leung, Lai R.; Correia, James; Wong, Pak C.; Mackey, Patrick S.; Paget, Maria L.

    2008-09-30

    This report presents a multi-disciplinary modeling approach to quickly quantify climate change impacts on energy consumption, peak load, and load composition of residential and commercial buildings. This research focuses on addressing the impact of temperature changes on the building cooling load in 10 major cities across the Western United States and Canada. Our results have shown that by the mid-century, building yearly energy consumption and peak load will increase in the Southwest. Moreover, the peak load months will spread out to not only the summer months but also spring and autumn months. The Pacific Northwest will experience more hot days in the summer months. The penetration of the air conditioning (a/c) system in this area is likely to increase significantly over the years. As a result, some locations in the Pacific Northwest may be shifted from winter peaking to summer peaking. Overall, the Western U.S. grid may see more simultaneous peaks across the North and South in summer months. Increased cooling load will result in a significant increase in the motor load, which consumes more reactive power and requires stronger voltage support from the grid. This study suggests an increasing need for the industry to implement new technology to increase the efficiency of temperature-sensitive loads and apply proper protection and control to prevent possible adverse impacts of a/c motor loads.

  6. Impacts of Commercial Building Controls on Energy Savings and Peak Load Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas E.P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Corbin, Charles D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-30

    Commercial buildings in the United States use about 18 Quadrillion British thermal units (Quads) of primary energy annually . Studies have shown that as much as 30% of building energy consumption can be avoided by using more accurate sensing, using existing controls better, and deploying advanced controls; hence, the motivation for the work described in this report. Studies also have shown that 10% to 20% of the commercial building peak load can be temporarily managed/curtailed to provide grid services. Although many studies have indicated significant potential for reducing the energy consumption in commercial buildings, very few have documented the actual savings. The studies that did so only provided savings at the whole building level, which makes it difficult to assess the savings potential of each individual measure deployed.

  7. Start point to savings - Better load demand analysis in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Abaravicius, Juozas; Pyrko, Jurek [Lund Univ., Dept of Energy Sciences (Sweden)

    2007-07-01

    Existing installations and energy systems in most commercial buildings could be used in a more efficient way to provide savings - both in terms of energy and load demand. The key for effective operation is a thorough and detailed analysis of energy use patterns that creates essential baseline for energy savings and the development of demand response (DR) strategies. The knowledge of energy demand variations is still very limited and the use of methods to analyse the load demand is rare. Many utilities have recently installed interval (hourly) metering even for smaller commercial users and households. This is a big step forward; however, experience shows that the data is being used only to a limited extent, mostly for billing purposes only. This paper reports about a study conducted with the objective of developing a detailed load demand analysis for commercial buildings. The study results should provide essential information for the formation and evaluation of future DR and energy efficiency strategies. This study was performed in collaboration with IKEA and E.ON and contributes to an ongoing IKEA energy efficiency programme. Two sample department stores in Sweden were selected and analysed within this project. The demand data analysis covers almost 3 years period, 2004-2006.This study contributes to new knowledge of energy use patterns (load demand) in commercial buildings. It proposes solutions of load-related problems, evaluates energy and load savings potential, identifies and analyses the needs, motives and barriers for participation in DR programmes. The study provides recommendations for ongoing and future efficiency and DR strategies and discusses the potential economic benefits from the DR measures.

  8. Modeling electric load and water consumption impacts from an integrated thermal energy and rainwater storage system for residential buildings in Texas

    International Nuclear Information System (INIS)

    Upshaw, Charles R.; Rhodes, Joshua D.; Webber, Michael E.

    2017-01-01

    Highlights: • Hydronic integrated rainwater thermal storage (ITHERST) system concept presented. • ITHERST system modeled to assess peak electric load shifting and water savings. • Case study shows 75% peak load reduction and 9% increase in energy consumption. • Potable rainwater collection could provide ∼50–90% of water used for case study. - Abstract: The United States’ built environment is a significant direct and indirect consumer of energy and water. In Texas, and other parts of the Southern and Western US, air conditioning loads, particularly from residential buildings, contribute significantly to the peak electricity load on the grid, straining transmission. In parallel, water resources in these regions are strained by growing populations and shrinking supplies. One potential method to address both of these issues is to develop integrated thermal energy and auxiliary water (e.g. rainwater, greywater, etc.) storage and management systems that reduce peak load and freshwater consumption. This analysis focuses on a proposed integrated thermal energy and rainwater storage (ITHERST) system that is incorporated into a residential air-source chiller/heat pump with hydronic distribution. This paper describes a step-wise hourly thermodynamic model of the thermal storage system to assess on-peak performance, and a daily volume-balance model of auxiliary water collection and consumption to assess water savings potential. While the model is generalized, this analysis uses a case study of a single family home in Austin, Texas to illustrate its capabilities. The results indicate this ITHERST system could reduce on-peak air conditioning electric power demand by over 75%, with increased overall electric energy consumption of approximately 7–9%, when optimally sized. Additionally, the modeled rainwater collection reduced municipal water consumption by approximately 53–89%, depending on the system size.

  9. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    Science.gov (United States)

    Darghouth, Naim Richard

    Net metering has become a widespread policy mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), allowing customers with PV systems to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption. Although net metering is one of the principal drivers for the residential PV market in the U.S., the academic literature on this policy has been sparse and this dissertation contributes to this emerging body of literature. This dissertation explores the linkages between the availability of net metering, wholesale electricity market conditions, retail rates, and the residential bill savings from behind-the-meter PV systems. First, I examine the value of the bill savings that customers receive under net metering and alternatives to net metering, and the associated role of retail rate design, based on current rates and a sample of approximately two hundred residential customers of California's two largest electric utilities. I find that the bill savings per kWh of PV electricity generated varies greatly, largely attributable to the increasing block structure of the California utilities' residential retail rates. I also find that net metering provides significantly greater bill savings than alternative compensation mechanisms based on avoided costs. However, retail electricity rates may shift as wholesale electricity market conditions change. I then investigate a potential change in market conditions -- increased solar PV penetrations -- on wholesale prices in the short-term based on the merit-order effect. This demonstrates the potential price effects of changes in market conditions, but also points to a number of methodological shortcomings of this method, motivating my usage of a long-term capacity investment and economic dispatch model to examine wholesale price effects of various wholesale market scenarios in the subsequent analysis. By developing

  10. Solar plus: Optimization of distributed solar PV through battery storage and dispatchable load in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    O' Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen; Margolis, Robert

    2018-03-01

    As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt model is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.

  11. Lambda-Based Data Processing Architecture for Two-Level Load Forecasting in Residential Buildings

    Directory of Open Access Journals (Sweden)

    Gde Dharma Nugraha

    2018-03-01

    Full Text Available Building energy management systems (BEMS have been intensively used to manage the electricity consumption of residential buildings more efficiently. However, the dynamic behavior of the occupants introduces uncertainty problems that affect the performance of the BEMS. To address this uncertainty problem, the BEMS may implement load forecasting as one of the BEMS modules. Load forecasting utilizes historical load data to compute model predictions for a specific time in the future. Recently, smart meters have been introduced to collect electricity consumption data. Smart meters not only capture aggregation data, but also individual data that is more frequently close to real-time. The processing of both smart meter data types for load forecasting can enhance the performance of the BEMS when confronted with uncertainty problems. The collection of smart meter data can be processed using a batch approach for short-term load forecasting, while the real-time smart meter data can be processed for very short-term load forecasting, which adjusts the short-term load forecasting to adapt to the dynamic behavior of the occupants. This approach requires different data processing techniques for aggregation and individual of smart meter data. In this paper, we propose Lambda-based data processing architecture to process the different types of smart meter data and implement the two-level load forecasting approach, which combines short-term and very short-term load forecasting techniques on top of our proposed data processing architecture. The proposed approach is expected to enhance the BEMS to address the uncertainty problem in order to process data in less time. Our experiment showed that the proposed approaches improved the accuracy by 7% compared to a typical BEMS with only one load forecasting technique, and had the lowest computation time when processing the smart meter data.

  12. A Location Selection Policy of Live Virtual Machine Migration for Power Saving and Load Balancing

    Directory of Open Access Journals (Sweden)

    Jia Zhao

    2013-01-01

    Full Text Available Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA. This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.

  13. A location selection policy of live virtual machine migration for power saving and load balancing.

    Science.gov (United States)

    Zhao, Jia; Ding, Yan; Xu, Gaochao; Hu, Liang; Dong, Yushuang; Fu, Xiaodong

    2013-01-01

    Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.

  14. An analysis of hybrid power generation systems for a residential load

    Directory of Open Access Journals (Sweden)

    Ceran Bartosz

    2017-01-01

    Full Text Available This paper presents the results of an energetic and economical analysis of a hybrid power generation system (HPGS which utilises photovoltaic modules, wind turbines, fuel cells and an electrolyzer with hydrogen tank working as the energy storage. The analysis was carried out for three different residential loads, local solar radiation and local wind speed, based on the real measurement values. The analysis shows the optimal solution and the limits of the investment costs required for the system construction. The presented results confirm the effectiveness of the proposed approach, which could be assumed as a very useful tool in the design and analysis of a hybrid power generation system.

  15. A comparison of fuel savings in the residential and commercial sectors generated by the installation of solar heating and cooling systems under three tax credit scenarios

    Science.gov (United States)

    Moden, R.

    An analysis of expected energy savings between 1977 and 1980 under three different solar tax credit scenarios is presented. The results were obtained through the solar heating and cooling of buildings (SHACOB) commercialization model. This simulation provides projected savings of conventional fuels through the installation of solar heating and cooling systems on buildings in the residential and commercial sectors. The three scenarios analyzed considered the tax credits contained in the Windfall Profits Tax of April 1980, the National Tax Act of November 1978, and a case where no tax credit is in effect.

  16. Load Management in Residential Buildings Considering Techno-Economic and Environmental Aspects

    Energy Technology Data Exchange (ETDEWEB)

    Abaravicius, Juozas

    2004-12-01

    Load problems in electricity markets occur both on the supply and demand side and can have technical, economic and even political causes. Commonly, such problems have been solved by expanding production and/or distribution capacity, importing electricity or by load management. Load management is a techno-economic measure for harmonizing the relations between supply and demand sides, optimizing power generation and transmission and increasing security of supply. Interest in load management differs depending on the perspective of the actors involved: from customer, utility, or producer to state policy maker. The problem of load demand and load management in residential sector is in this thesis approached from different perspectives, i.e. technical, economic, and environmental. The study does not go deep into detailed analyses of each perspective, but rather aims to establish and analyze the links between them. This trans-disciplinary approach is the key methodological moment used in the research work performed by the research group for load management in buildings at the Lund Institute of Technology. The key objective of this study is to analyze load demand variation and load management possibilities in residential sector, particularly detached and semi-detached houses, to experimentally test and analyze the conditions and potential of direct load management from customer and utility viewpoint. Techno-economic and environmental aspects are investigated. The study was performed in collaboration with one electric utility in Southern Sweden. Ten electric-heated houses were equipped with extra meters, enabling hourly load measurements for heating, hot water and total electricity use. Household heating and hot water systems were controlled by the utility using an existing remote reading and monitoring system. The residents noticed some of the control periods, although they didn't express any larger discomfort. The experiments proved that direct load management might

  17. Establishment of windows-based load management system for electricity cost savings in competitive electricity markets

    International Nuclear Information System (INIS)

    Chung, K.H.; Kim, B.H.; Hur, D.

    2007-01-01

    For electricity markets to function in a truly competitive and efficient manner, it is not enough to focus solely on improving the efficiencies of power supply. To recognize price-responsive load as a reliability resource, the customer must be provided with price signals and an instrument to respond to these signals, preferably automatically. This paper attempts to develop the Windows-based load management system in competitive electricity markets, allowing the user to monitor the current energy consumption or billing information, to analyze the historical data, and to implement the consumption strategy for cost savings with nine possible scenarios adopted. Finally, this modeling framework will serve as a template containing the basic concepts that any load management system should address. (author)

  18. Part-load performance characterization and energy savings potential of the RTU challenge unit: Carrier weather expert

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taasevigen, Danny J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-29

    This report documents the development of part-load performance curves and there use with the EnergyPlus simulation tool to estimate the potential savings from the use of WeatherExpert units compared to other standard options.

  19. Optimum residential load management strategy for real time pricing (RTP) demand response programs

    International Nuclear Information System (INIS)

    Lujano-Rojas, Juan M.; Monteiro, Cláudio; Dufo-López, Rodolfo; Bernal-Agustín, José L.

    2012-01-01

    This paper presents an optimal load management strategy for residential consumers that utilizes the communication infrastructure of the future smart grid. The strategy considers predictions of electricity prices, energy demand, renewable power production, and power-purchase of energy of the consumer in determining the optimal relationship between hourly electricity prices and the use of different household appliances and electric vehicles in a typical smart house. The proposed strategy is illustrated using two study cases corresponding to a house located in Zaragoza (Spain) for a typical day in summer. Results show that the proposed model allows users to control their diary energy consumption and adapt their electricity bills to their actual economical situation. - Highlights: ► This work shows an optimal load management strategy for residential consumers. ► It has been considered the communication infrastructure of the future smart grid. ► A study case shows the optimal utilization of some appliances and electric vehicles. ► Results showed that the proposed model allows users to reduce their electricity bill.

  20. Part-Load Performance Characterization and Energy Savings Potential of the RTU Challenge Unit: Daikin Rebel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas

    2013-09-30

    In 2011, the U.S. Department of Energy’s Building Technology Office (DOE’s BTO), with help from the Better Buildings Alliance (BBA) members, developed a specification for high performance rooftop air-conditioning units (RTU Challenge) with capacity ranges between 10 and 20 tons (DOE 2013). Daikin’s Rebel for the first rooftop unit system that was recognized by DOE in May 2012 as meeting the RTU Challenge specifications. This report documents the development of part-load performance curves and its use with EnergyPlus simulation tool to estimate the potential savings from use of Rebel compared to other standard options.

  1. Research on Energy-Saving Design of Overhead Travelling Crane Camber Based on Probability Load Distribution

    Directory of Open Access Journals (Sweden)

    Tong Yifei

    2014-01-01

    Full Text Available Crane is a mechanical device, used widely to move materials in modern production. It is reported that the energy consumptions of China are at least 5–8 times of other developing countries. Thus, energy consumption becomes an unavoidable topic. There are several reasons influencing the energy loss, and the camber of the girder is the one not to be neglected. In this paper, the problem of the deflections induced by the moving payload in the girder of overhead travelling crane is examined. The evaluation of a camber giving a counterdeflection of the girder is proposed in order to get minimum energy consumptions for trolley to move along a nonstraight support. To this aim, probabilistic payload distributions are considered instead of fixed or rated loads involved in other researches. Taking 50/10 t bridge crane as a research object, the probability loads are determined by analysis of load distribution density functions. According to load distribution, camber design under different probability loads is discussed in detail as well as energy consumptions distribution. The research results provide the design reference of reasonable camber to obtain the least energy consumption for climbing corresponding to different P0; thus energy-saving design can be achieved.

  2. Scenario analysis of energy saving and CO2 emissions reduction potentials to ratchet up Japanese mitigation target in 2030 in the residential sector

    International Nuclear Information System (INIS)

    Wakiyama, Takako; Kuramochi, Takeshi

    2017-01-01

    This paper assesses to what extent CO 2 emissions from electricity in the residential sector can be further reduced in Japan beyond its post-2020 mitigation target (known as “Intended Nationally Determined Contribution (INDC)”). The paper examines the reduction potential of electricity demand and CO 2 emissions in the residential sector by conducting a scenario analysis. Electricity consumption scenarios are set up using a time-series regression model, and used to forecast the electricity consumption patterns to 2030. The scenario analysis also includes scenarios that reduce electricity consumption through enhanced energy efficiency and energy saving measures. The obtained results show that Japan can reduce electricity consumption and CO 2 emissions in the residential sector in 2030 more than the Japanese post-2020 mitigation target indicates. At the maximum, the electricity consumption could be reduced by 35 TWh, which contributes to 55.4 MtCO 2 of emissions reduction in 2030 compared to 2013 if the voluntarily targeted CO 2 intensity of electricity is achieved. The result implies that Japan has the potential to ratchet up post-2020 mitigation targets discussed under the Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC). - Highlights: • Further reduction of electricity consumption is possible beyond Japan's post-2020 mitigation target. • Energy saving efforts by households and incentives to reduce electricity demands are required. • Improvement of CO 2 intensity from electricity is a key factor in the reduction of CO 2 emissions.

  3. Energy efficiency in the U.S. residential sector: An engineering and economic assessment of opportunities for large energy savings and greenhouse gas emissions reductions

    Science.gov (United States)

    Lima de Azevedo, Ines Margarida

    Energy efficiency and conservation is a very promising part of a portfolio of the needed strategies to mitigate climate change. Several technologies and energy efficiency measures in the residential sector offer potential for large energy savings. However, while energy efficiency options are currently considered as a means of reducing carbon emissions, there is still large uncertainty about the effect of such measures on overall carbon savings. The first part of this thesis provides a national assessment of the energy efficiency potential in the residential sector under several different scenarios, which include the perspectives of different economic agents (consumers, utilities, ESCOs, and a society). The scenarios also include maximizing energy, electricity or carbon dioxide savings. The second part of this thesis deals with a detailed assessment of the potential for white-light LEDs for energy and carbon dioxide savings in the U.S. commercial and residential sectors. Solid-state lighting shows great promise as a source of efficient, affordable, color-balanced white light. Indeed, assuming market discount rates, the present work demonstrates that white solid-state lighting already has a lower levelized annual cost (LAC) than incandescent bulbs and that it will be lower than that of the most efficient fluorescent bulbs by the end of this decade. However, a large literature indicates that households do not make their decisions in terms of simple expected economic value. The present analysis shows that incorporating the findings from literature on high implicit discount rates from households when performing decisions towards efficient technologies delays the adoption of white LEDs by a couple of years. After a review of the technology, the present work compares the electricity consumption, carbon emissions and cost-effectiveness of current lighting technologies, when accounting for expected performance evolution through 2015. Simulations of lighting electricity

  4. Using of residential load curves obtained for determination of the load diversity, and loading of distribution transformers; Utilizacao de curvas de carga de consumidores industriais medidas para determinacao de diversidade de carga, e carregamento de transformadores de distribuicao

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Eduardo Luiz; Jardini, Jose Antonio

    1996-07-01

    This work presents some applications of the residential loads, obtained from measurements conducted by the electric power utilities in the state of Sao Paulo , Brazil. During the first application, curve of coincidence of load peaks occurrence, as function of the number of consumers simultaneously connected to a specific residential distribution transformer. This curve provides a information on the number of consumers presenting coincident load peaks coincident relative to the total numbers of consumers connected to the distribution transformer. Those curves allow to obtain the diversity curves. The second application focused the calculation of the distribution transformer life reduction.

  5. Chapter 6: Residential Lighting Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dimetrosky, Scott [Apex Analytics, LLC, Boulder, CO (United States); Parkinson, Katie [Apex Analytics, LLC, Boulder, CO (United States); Lieb, Noah [Apex Analytics, LLC, Boulder, CO (United States)

    2017-10-19

    Given new regulations, increased complexity in the market, and the general shift from CFLs to LEDs, this evaluation protocol was updated in 2017 to shift the focus of the protocols toward LEDs and away from CFLs and to resolve evaluation uncertainties affecting residential lighting incentive programs.

  6. Energy Savings Analysis of the Proposed Revision of the Washington D.C. Non-Residential Energy Code

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I.; Athalye, Rahul A.; Hart, Philip R.

    2017-12-01

    This report presents the results of an assessment of savings for the proposed Washington D.C. energy code relative to ASHRAE Standard 90.1-2010. It includes annual and life cycle savings for site energy, source energy, energy cost, and carbon dioxide emissions that would result from adoption and enforcement of the proposed code for newly constructed buildings in Washington D.C. over a five year period.

  7. Dynamic behavior of PEM FCPPs under various load conditions and voltage stability analysis for stand-alone residential applications

    Science.gov (United States)

    Uzunoglu, M.; Onar, O. C.; Alam, M. S.

    In this paper, dynamic behavior and performance of a fuel cell power plant (FCPP) which operates in parallel with a battery bank is tested under classified load conditions, such as mostly resistive, mostly inductive, resistive-inductive and non-linear loads. Thereafter, voltage stability analysis is performed using the dynamic response of the FCPP for stand-alone residential applications. Simulation results are obtained using the MATLAB ® and Simulink ® software packages, based on the mathematical and dynamic electrical models of the system. Using the experimental results, a validated model has been realized and voltage stability analysis is performed through this model.

  8. User-Preference-Driven Model Predictive Control of Residential Building Loads and Battery Storage for Demand Response: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baker, Kyri A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Dane T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Isley, Steven C. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-21

    This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility and reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.

  9. User-Preference-Driven Model Predictive Control of Residential Building Loads and Battery Storage for Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baker, Kyri A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Isley, Steven C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Dane T [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-03

    This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility and reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.

  10. Analysing socioeconomic diversity and scaling effects on residential electricity load profiles in the context of low carbon technology uptake

    International Nuclear Information System (INIS)

    McKenna, R.; Hofmann, L.; Merkel, E.; Fichtner, W.; Strachan, N.

    2016-01-01

    Adequately accounting for interactions between Low Carbon Technologies (LCTs) at the building level and the overarching energy system means capturing the granularity associated with decentralised heat and power supply in residential buildings. The approach presented here adds novelty in terms of a realistic socioeconomic differentiation by employing dwelling/household archetypes (DHAs) and neighbourhood clusters at the Output Area (OA) level. These archetypes are combined with a mixed integer linear program (MILP) to generate optimum (minimum cost) technology configurations and operation schedules. Even in the baseline case, without any LCT penetration, a substantial deviation from the standard load profile (SLP) is encountered, suggesting that for some neighbourhoods this profile is not appropriate. With the application of LCTs, including heat pumps, micro-CHP and photovoltaic (PV), this effect is much stronger, including more negative residual load, more variability, and higher ramps with increased LCT penetration, and crucially different between neighbourhood clusters. The main policy implication of the study is the importance of understanding electrical load profiles at the neighbourhood level, because of the consequences they have for investment in the overarching energy system, including transmission and distribution infrastructure, and centralised generation plant. Further work should focus on attaining a superior socioeconomic differentiation between households. - Highlights: • Low carbon technologies (LCTs) for heat/electricity in residential buildings. • Socioeconomic effects and interactions with overarching energy system. • Building thermal/electrical model combined with optimisation. • Significant differences between neighbourhood load profiles. • Policy implications: support for LCTs and investment in infrastructure.

  11. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); Florida Solar Energy Center (FSEC); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-01-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

  12. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  13. Improved modelling of thermal energy savings potential in the existing residential stock using a newly available data source

    International Nuclear Information System (INIS)

    Dineen, D.; Rogan, F.; Ó Gallachóir, B.P.

    2015-01-01

    This paper presents a novel bottom up approach to modelling the energy savings potential of energy efficiency improvement measures to be applied through retrofit of the existing dwelling stock. It takes advantage of a newly available, rich dataset on the construction characteristics of the 2011 housing stock in Ireland. The methodological innovation centres on the use of wall construction type in the modelling and analysis. While Ireland is the focus, this approach is applicable to any EU member state for which data on dwelling characteristics exists from surveys carried as part of Energy Performance Certificate calculations. The model is calibrated to the national energy balance for 2011 by varying the internal temperature assumptions. Sensitivity analysis is performed on the effects of internal temperature and rebound. The paper also highlights some limitations posed by data availability on the accuracy and sophistication of models that can currently be developed, specifically in the Irish case. - Highlights: • Archetype model of energy savings potential from retrofit of existing dwelling stock. • Takes advantage of rich dataset on the construction characteristics of the Irish housing stock. • Innovative use of wall construction types in archetype definition possible due to improved data. • Results calibrated to top down estimate of heating demand by adjusting internal temperature. • Highlights limitations on the accuracy and sophistication of models posed by data availability.

  14. Customer baseline load models for residential sector in a smart-grid environment

    Directory of Open Access Journals (Sweden)

    R. Sharifi

    2016-11-01

    In this paper, a new method is presented for the calculation of CBL for customers in residential sector in the context of a smart grid, considering the impact of weather changes. The results clearly show the high impact of changes in weather conditions on the calculation of CBL, and also show the extent of effect of buildings’ improved insulation on this parameter. It is also indicated that implementing DR programs can increase the willingness of customers in residential sector to improve the insulations of their buildings.

  15. Empirical assessment of the Hellenic non-residential building stock, energy consumption, emissions and potential energy savings

    International Nuclear Information System (INIS)

    Gaglia, Athina G.; Balaras, Constantinos A.; Mirasgedis, Sevastianos; Georgopoulou, Elena; Sarafidis, Yiannis; Lalas, Dimitris P.

    2007-01-01

    Comprehensive information and detailed data for the non-residential (NR) building stock is rather limited, although it is the fastest growing energy demand sector. This paper elaborates the approach used to determine the potential energy conservation in the Hellenic NR building stock. A major obstacle that had to be overcome was the need to make suitable assumptions for missing detailed primary data. A qualitative and quantitative assessment of scattered national data resulted in a realistic assessment of the existing NR building stock and energy consumption. Different energy conservation scenarios and their impact on the reduction of CO 2 emissions were evaluated. Accordingly, the most effective energy conservation measures are: addition of thermal insulation of exposed external walls, primarily in hotels and hospitals; installation of energy efficient lamps; installation of solar collectors for sanitary hot water production, primarily in hotels and health care; installation of building management systems in office/commercial and hotel buildings; replacement of old inefficient boilers; and regular maintenance of central heating boilers

  16. Status and challenges of residential and industrial non-intrusive load monitoring

    DEFF Research Database (Denmark)

    Adabi, Ali; Mantey, Patrick; Holmegaard, Emil

    2015-01-01

    in recent years due to improvement in algorithms and methodologies. Currently, the important challenges facing residential NILM are inaccessibility of electricity meter high sampling data, and lack of reliable high resolution datasets. For industrial NILM the identification is more challenging due...

  17. Residential Mechanical Precooling

    Energy Technology Data Exchange (ETDEWEB)

    German, Alea [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation (ARBI); Hoeschele, Marc [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation (ARBI)

    2014-12-01

    Residential air conditioning (AC) represents a challenging load for many electric utilities with poor load factors. Mechanical precooling improves the load factor by shifting cooling operation from on-peak to off-peak hours. This provides benefits to utilities and the electricity grid, as well as to occupants who can take advantage of time-of-use (TOU) electricity rates. Performance benefits stem from reduced compressor cycling, and shifting condensing unit operation to earlier periods of the day when outdoor temperatures are more favorable to operational efficiency. Finding solutions that save energy and reduce demand on the electricity grid is an important national objective and supports key Building America goals. The Alliance for Residential Building Innovation team evaluated mechanical AC precooling strategies in homes throughout the United States. EnergyPlus modeling was used to evaluate two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes. A successful off-peak AC strategy offers the potential for increased efficiency and improved occupant comfort, and promotes a more reliable and robust electricity grid. Demand response capabilities and further integration with photovoltaic TOU generation patterns provide additional opportunities to flatten loads and optimize grid impacts.

  18. Estimating Demand Response Load Impacts: Evaluation of BaselineLoad Models for Non-Residential Buildings in California

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote,Sila

    2008-01-01

    Both Federal and California state policymakers areincreasingly interested in developing more standardized and consistentapproaches to estimate and verify the load impacts of demand responseprograms and dynamic pricing tariffs. This study describes a statisticalanalysis of the performance of different models used to calculate thebaseline electric load for commercial buildings participating in ademand-response (DR) program, with emphasis onthe importance of weathereffects. During a DR event, a variety of adjustments may be made tobuilding operation, with the goal of reducing the building peak electricload. In order to determine the actual peak load reduction, an estimateof what the load would have been on the day of the event without any DRactions is needed. This baseline load profile (BLP) is key to accuratelyassessing the load impacts from event-based DR programs and may alsoimpact payment settlements for certain types of DR programs. We testedseven baseline models on a sample of 33 buildings located in California.These models can be loosely categorized into two groups: (1) averagingmethods, which use some linear combination of hourly load values fromprevious days to predict the load on the event, and (2) explicit weathermodels, which use a formula based on local hourly temperature to predictthe load. The models were tested both with and without morningadjustments, which use data from the day of the event to adjust theestimated BLP up or down.Key findings from this study are: - The accuracyof the BLP model currently used by California utilities to estimate loadreductions in several DR programs (i.e., hourly usage in highest 3 out of10 previous days) could be improved substantially if a morning adjustmentfactor were applied for weather-sensitive commercial and institutionalbuildings. - Applying a morning adjustment factor significantly reducesthe bias and improves the accuracy of all BLP models examined in oursample of buildings. - For buildings with low load

  19. Energy efficiency - The struggle for load management is raging. The French Riviera redoubles savings

    International Nuclear Information System (INIS)

    Moragues, Manuel; Barla, Jean-Christophe

    2014-01-01

    A first article discusses the debate initiated by a decree on load management associated with the French Brottes law on energy. Load management is the possibility for consumers to reduce their consumption at peak hours. Electricity producers and suppliers are of course against, whereas new actors (load managers or aggregators) are for. The issue is then to determine who will pay this managed (and not consumed) energy. The article also evokes a controversy about the Brottes law which creates a bonus to subsidy load management, and comments the development of this load management market and its legal framework. A second article describes actions undertaken by industries of the French Riviera to manage their energy consumption

  20. Cluster analysis of residential heat load profiles and the role of technical and household characteristics

    DEFF Research Database (Denmark)

    Carmo, Carolina; Christensen, Toke Haunstrup

    2016-01-01

    of the temporality of the energy demand is needed. This paper contributes to this by focusing on the daily load profiles of energy demand for heating of Danish dwellings with heat pumps. Based on hourly recordings from 139 dwellings and employing cluster and regression analysis, the paper explores patterns...... (typologies) in daily heating load profiles and how these relate to socio-economic and technical characteristics of the included households. The study shows that the load profiles vary according to the external load conditions. Two main clusters were identified for both weekdays and weekends and across load...

  1. Short-term residential load forecasting: Impact of calendar effects and forecast granularity

    DEFF Research Database (Denmark)

    Lusis, Peter; Khalilpour, Kaveh Rajab; Andrew, Lachlan

    2017-01-01

    forecasting for a single-customer or even down at an appliance level. Access to high resolution data from smart meters has enabled the research community to assess conventional load forecasting techniques and develop new forecasting strategies suitable for demand-side disaggregated loads. This paper studies...

  2. Reducing Gridlock on the Grid: Utility Trends in Managing Peak Electric Load through Residential Demand Response

    Science.gov (United States)

    McDonald, Betsy

    Utilities across the United States are piloting residential demand response programs to help manage peak electric demand. Using publicly available program evaluations, this thesis analyzes nine such programs to uncover and synthesize the range of program offerings, goals, enrollment strategies, and customer experiences. This review reveals that program participation, components, and results differ based on a variety of factors, including geographic characteristics, program goals, and implementation strategies. The diversity of program designs and evaluation findings suggests an underlying tension between the need to generate cost-effective program impacts and the desire to increase accessibility so that program benefits are not exclusive to certain segments of the population. For more significant and impactful engagement, program goals may need to shift. State level policy support could help shift program goals toward increasing program accessibility. Future research should explore creative strategies that target existing barriers and allow for more inclusive deployment.

  3. The Effect of Electric Load Profiles on the Performance of Off-Grid Residential Hybrid Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Stephen Treado

    2015-10-01

    Full Text Available This paper investigates the energy performance of off-grid residential hybrid renewable electric power systems, particularly the effect of electric load profiles on the ability to harvest available solar energy and avoid the consumption of auxiliary energy in the form of propane. The concepts are illustrated by an analysis of the energy performance of electric and propane-fired refrigerators. Off-grid electric power systems frequently incorporate a renewable source, such as wind or solar photovoltaic (PV, with a back-up power provided by a propane fueled motor/generator. Among other design decisions, residential consumers face the choice of employing an electric refrigerator with a conventional vapor compression refrigeration system, or a fuel-fired refrigerator operating as an absorption refrigeration system. One interesting question is whether it is more advantageous from an energy perspective to use electricity to run the refrigerator, which might be provided by some combination of the PV and propane motor/generator, thereby taking advantage of the relatively higher electric refrigerator Coefficient of Performance (COP and free solar energy but having to accept a low electrical conversion efficiency of the motor/generator, or use thermal energy from the combustion of propane to produce the refrigeration effect via an absorption system, albeit with a much lower COP. The analysis is complicated by the fact that most off-grid renewable electrical power systems utilize a battery bank to provide electrical power when it is not available from the wind turbine or PV system, so the state of charge of the battery bank will have a noticeable impact on what energy source is available at any moment in time. Daily electric load profiles combined with variable solar energy input determine the state of charge of the battery bank, with the degree of synchronization between the two being a critical factor in determining performance. The annual energy usage

  4. Stormwater quality and pollution loading from an urban residential catchment in Johor, Malaysia.

    Science.gov (United States)

    Nazahiyah, R; Yusop, Z; Abustan, I

    2007-01-01

    Sampling of urban runoff was carried out in a small catchment, which represents a residential area (3.34 ha) in Skudai, Johor. One hundred and seventeen runoff samples from ten storm events were analysed. Runoff quality showed large variations in concentrations during storms, especially for SS, BOD5 and COD. Concentrations of NO3-N, NO2-N, NH3-N, and P were also high. Lead (Pb) was also detected but the levels were low (<0.001 mg/L). In general, the river quality is badly polluted and falls in Class V based on the Malaysian Interim National Water Quality Standards. Event mean concentrations for all parameters were found to vary greatly between storms. The values (mg/L) were BOD5 (72), COD (325), SS (386), NO3-N (2.5), NO2-N (0.58), NH3-N (6.8), P (3.4), respectively. First flush phenomena were observed for BOD, COD, SS, NO3-N, NH3-N and P. The first 20-30% of the runoff volume evacuated between 20-59% BOD, 15-69% COD, 15-78% SS, 14-49% NO3-N, 14-19% NO2-N, 23-53% NH3-N and 23-43% P.

  5. Drift Reliability Assessment of a Four Storey Frame Residential Building Under Seismic Loading Considering Multiple Factors

    Science.gov (United States)

    Sil, Arjun; Longmailai, Thaihamdau

    2017-09-01

    The lateral displacement of Reinforced Concrete (RC) frame building during an earthquake has an important impact on the structural stability and integrity. However, seismic analysis and design of RC building needs more concern due to its complex behavior as the performance of the structure links to the features of the system having many influencing parameters and other inherent uncertainties. The reliability approach takes into account the factors and uncertainty in design influencing the performance or response of the structure in which the safety level or the probability of failure could be ascertained. This present study, aims to assess the reliability of seismic performance of a four storey residential RC building seismically located in Zone-V as per the code provisions given in the Indian Standards IS: 1893-2002. The reliability assessment performed by deriving an explicit expression for maximum roof-lateral displacement as a failure function by regression method. A total of 319, four storey RC buildings were analyzed by linear static method using SAP2000. However, the change in the lateral-roof displacement with the variation of the parameters (column dimension, beam dimension, grade of concrete, floor height and total weight of the structure) was observed. A generalized relation established by regression method which could be used to estimate the expected lateral displacement owing to those selected parameters. A comparison made between the displacements obtained from analysis with that of the equation so formed. However, it shows that the proposed relation could be used directly to determine the expected maximum lateral displacement. The data obtained from the statistical computations was then used to obtain the probability of failure and the reliability.

  6. STANDALONE PHOTOVOLTAIC SYSTEMS SIZING OPTIMIZATION USING DESIGN SPACE APPROACH: CASE STUDY FOR RESIDENTIAL LIGHTING LOAD

    Directory of Open Access Journals (Sweden)

    D. F. AL RIZA

    2015-07-01

    Full Text Available This paper presents a sizing optimization methodology of panel and battery capacity in a standalone photovoltaic system with lighting load. Performance of the system is identified by performing Loss of Power Supply Probability (LPSP calculation. Input data used for the calculation is the daily weather data and system components parameters. Capital Cost and Life Cycle Cost (LCC is calculated as optimization parameters. Design space for optimum system configuration is identified based on a given LPSP value, Capital Cost and Life Cycle Cost. Excess energy value is used as an over-design indicator in the design space. An economic analysis, including cost of the energy and payback period, for selected configurations are also studied.

  7. A comparison of four methods to evaluate the effect of a utility residential air-conditioner load control program on peak electricity use

    Energy Technology Data Exchange (ETDEWEB)

    Newsham, Guy R., E-mail: guy.newsham@nrc-cnrc.gc.ca [National Research Council Canada-Institute for Research in Construction, Building M24, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Birt, Benjamin J. [National Research Council Canada-Institute for Research in Construction, Building M24, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Rowlands, Ian H. [University of Waterloo, Ontario (Canada)

    2011-10-15

    We analyzed the peak load reductions due to a residential direct load control program for air-conditioners in southern Ontario in 2008. In this program, participant thermostats were increased by 2 deg. C for four hours on five event days. We used hourly, whole-house data for 195 participant households and 268 non-participant households, and four different methods of analysis ranging from simple spreadsheet-based comparisons of average loads on event days, to complex time-series regression. Average peak load reductions were 0.2-0.9 kWh/h per household, or 10-35%. However, there were large differences between event days and across event hours, and in results for the same event day/hour, with different analysis methods. There was also a wide range of load reductions between individual households, and only a minority of households contributed to any given event. Policy makers should be aware of how the choice of an analysis method may affect decisions regarding which demand-side management programs to support, and how they might be incentivized. We recommend greater use of time-series methods, although it might take time to become comfortable with their complexity. Further investigation of what type of households contribute most to aggregate load reductions would also help policy makers better target programs. - Highlights: > We analyzed peak load reductions due to residential a/c load control. > We used four methods, ranging from simple comparisons to time-series regression. > Average peak load reductions were 0.2-0.9 kW per household, varying by method. > We recommend a move towards time-series regression for future studies. > A minority of participant households contributed to a given load control event.

  8. Energy saving or privatization? The case of the electric residential sector of Mexico; Ahorro de energia o privatizacion? El caso del sector electrico residencial de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, Rafael [University of California, Berkeley, CA (United States)

    1993-12-31

    The validity of the premise that proposes the privatization of the electric sector as a solution to the problem of obtaining enough investment capital for the continuous expansion of the electric sector is examined. It is shown that the growth of the demand foreseen for the residential sector for year 2000, can be totally reduced by introducing technologies economically feasible to increase the efficiency and end uses of the residential electricity. With the efficient use of the electricity, the economical development is allowed for the residential sector, without large increments of the residential electricity demand. [Espanol] Se examina la validez de la premisa que propone la privatizacion del sector electrico como una solucion al problema de conseguir suficientes capitales de inversion para la continua expansion del sector. Se muestra que se puede reducir casi totalmente el crecimiento en la demanda prevista del sector residencial al ano 2000, introduciendo tecnologias economicamente factibles para aumentar la eficiencia en los usos finales de electricidad residencial. Con el uso eficiente de la electricidad, se permite el desarrollo economico del sector residencial sin grandes incrementos en la demanda residencial de electricidad.

  9. Inter-model, analytical, and experimental validation of a heat balance based residential cooling load calculation procedure

    Science.gov (United States)

    Xiao, Dongyi

    Scope and method of study. A systematic validation of the ASHRAE heat balance based residential cooling load calculation procedure (RHB) has been performed with inter-model comparison, analytical verification and experimental validation. The inter-model validation was performed using ESP-r as the reference model. The testing process was automated through parametric generation and simulation of large sets of test cases for both RHB and ESP-r. The house prototypes covered include a simple Shoebox prototype and a real 4-bedroom house prototype. An analytical verification test suite for building fabric models of whole building energy simulation programs has been developed. The test suite consists of a series of sixteen tests covering convection, conduction, solar irradiation, long-wave radiation, infiltration and ground-coupled floors. Using the test suite, a total of twelve analytical tests have been done with the RHB procedure. The experimental validation has been conducted using experimental data collected from a Cardinal Project house located in Fort Wayne, Indiana. During the diagnostic process of the experimental validation, comparisons have also been made between ESP-r simulation results and experimental data. Findings and conclusions. It is concluded RHB is acceptable as a design tool on a typical North American house. Analytical tests confirmed the underlying mechanisms for modeling basic heat transfer phenomena in building fabric. The inter-model comparison showed that the differences found between RHB and ESP-r can be traced to the differences in sub-models used by RHB and ESP-r. It also showed that the RHB-designed systems can meet the design criteria and that the RHB temperature swing option is helpful in reducing system over-sizing. The experimental validation demonstrated that the systems designed with the method will have adequate size to meet the room temperatures specified in the design, whether or not swing is utilized. However, actual system

  10. Building America Residential System Research Results. Achieving 30% Whole House Energy Savings Level in Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hendron, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eastment, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jalalzadeh-Azar, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2006-01-01

    This report summarizes Building America research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost-neutral basis.

  11. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hendron, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eastment, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jalalzadeh-Azar, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2006-12-01

    This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  12. Dynamics of Nitrogen loads in surface water of an agricultural watershed by modelling approach, the Save, Southwest France.

    Science.gov (United States)

    Ferrant, S.; Oeurng, C.; Sauvage, S.; Durand, P.; Probst, J. L.; Sanchez-Perez, J. M.

    2009-04-01

    Agriculture is known to have a great impact of nutrients enrichment on continental water resources. In south-West of France (Gascogne region), water resource are essentially surface water and shallow aquifer. Nitrogen dynamic in river is complex and highly variable throughout season and year, depending on hydrology, landuse, removal in stream. In this context, agricultural impacts on nitrogen concentration are a matter of concern for agricultural decision-maker. In order to introduce sustainable land use concepts in this hilly, clayey and agricultural shallow soil context, the hydrological simulation model SWAT2005 has been tested as a valuable tool to evaluate the consequences of such land use changes on water and nutrient balance components. This semi-distributed hydrological model coupled with agronomical model EPIC is able to simulate the impact of each agricultural landuse at the outlet of the Save catchment (1100 km2). Hydrological parameters model are calibrated based on 14-year historical record (1994-2008). Nitrogen losses have been measured during 2 years (2006-2008) at the outlet and are used to validate the model calibration. Agricultural data at communal scale coupled with Spot image analyses have been used to evaluate agricultural distribution and pressure in SWAT. The aim of this modelling exercise is to simulate nitrogen cycle in whole agricultural Hydrological Response Units (HRU), depending on plant growth and culture rotation, to simulate accurately nitrate load in river. The ability of SWAT to reproduce nitrogen transfert and transformation at this scale and in this agricultural context will be evaluated by a discussion of importance of each nitrogen cycle process in nitrogen losses. SWAT could be a useful tool to test agricultural scenario to improve the nitrogen management in river.

  13. Energy Savings Lifetimes and Persistence

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Ian M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steven R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Todd, Annika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Billingsley, Megan A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-02-01

    This technical brief explains the concepts of energy savings lifetimes and savings persistence and discusses how program administrators use these factors to calculate savings for efficiency measures, programs and portfolios. Savings lifetime is the length of time that one or more energy efficiency measures or activities save energy, and savings persistence is the change in savings throughout the functional life of a given efficiency measure or activity. Savings lifetimes are essential for assessing the lifecycle benefits and cost effectiveness of efficiency activities and for forecasting loads in resource planning. The brief also provides estimates of savings lifetimes derived from a national collection of costs and savings for electric efficiency programs and portfolios.

  14. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    OpenAIRE

    Darghouth, Naim Richard

    2013-01-01

    Net metering has become a widespread policy mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), allowing customers with PV systems to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption. Although net metering is one of the principal drivers for the residential PV market in the U.S., the academic literature on this policy has been sparse and this dissertation co...

  15. Optimal Load Response to Time-of-Use Power Price for Demand Side Management in Denmark

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    -of-use power price for demand side management in order to save the energy costs as much as possible. 3 typical different kinds of loads (industrial load, residential load and commercial load) in Denmark are chosen as study cases. The energy costs decrease up to 9.6% with optimal load response to time......-of-use power price for different loads. Simulation results show that the optimal load response to time-of-use power price for demand side management generates different load profiles and reduces the load peaks. This kind of load patterns may also have significant effects on the power system normal operation....

  16. Effectiveness of an energy-consumption information system for residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Tsuyoshi [Central Research Institute of Electric Power Industry, Tokyo (Japan); Inada, Ryo; Saeki, Osamu; Tsuji, Kiichiro [Osaka University, (Japan). Graduate School of Engineering

    2006-08-15

    The authors have proposed a method of reducing the energy consumption in residential buildings by providing household members with information on energy consumptions in their own houses. An on-line interactive 'energy-consumption information system' that displays power consumptions of, at most, 18 different appliances, power and city-gas consumption of the whole house and room temperature, for the purpose of motivating energy-saving activities has been constructed and the effectiveness of the system investigated by installing it in 10 residential buildings. The experiment showed that energy-saving consciousness was raised and energy consumption was in fact reduced by the energy-saving activities of the household members. In this paper, the system is described in detail and the effectiveness of reducing energy-consumption of the whole house and for space heating will be discussed. Also the energy-saving activities in a certain household are shown by using load duration curves. (author)

  17. Chapter 5: Residential Furnaces and Boilers Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jacobson, David [Jacobson Energy Research, Providence, RI (United States)

    2017-09-01

    The high-efficiency boiler and furnace measure produces gas heating savings resulting from installation of more energy-efficient heating equipment in a residence. Such equipment, which ranges in size from 60 kBtu/hr to 300 kBtu/hr, is installed primarily in single-family homes and multifamily buildings with individual heating systems for each dwelling unit. This protocol does not cover integrated heating and water heating units which can be used in lieu of space heating only equipment.

  18. Development of methods for evaluation of electricity saving and load levelling measures. Part 2: The planning and implementation of a power conservation campaign

    Energy Technology Data Exchange (ETDEWEB)

    Storm Soerensen, M.; Madsen, P.K. [NESA A/S, Research and Development Dept. (Denmark)

    1997-12-01

    In recent years many campaigns and projects have been carried out with the purpose of reducing the energy consumption. Simultaneously a lot of economic and structural changes are taking place in society in general; changes which also affect the size of the electricity consumption. Furthermore, there is a trend towards increased use of wind mills and decentral combined heating and power plants, which affects the electricity load of the local area. It is difficult to identify and separate the effect of each of these attitude-adjusting activities. The project `Development of methods for evaluation of the effect of electricity saving and load levelling measures` focuses on two different methods which, on different levels, can be used to determine the impact of different different activities on the electricity consumption. Both methods are based on mathematical statistics, and they consist of an analysis of historical data and a test campaign which will make it possible to test specific activities in a comparatively small scale. The historical part covers the years 1974 to 1994 and include such variables as: demography, economic factors, climatic conditions, periods of electricity saving campaigns, the start of billing according to time of day tariff etc. The wish to be able to measure the extent of these energy saving and load reducing initiatives resulted in a test campaign which was carried out under very restricted conditions starting in the fall of 1996. If the effect of the test campaign can be measured and as a consequence of this a method can be estimated, it will be possible to place models which can measure the effect of future campaigns. The primary object of the campaign is not the size of the electricity savings of the individual customer, but rather to obtain total savings for the entire group of customers. The test has been structured in a way which makes it possible to perform an analysis of the effect of the campaign by use of analysis of intervention

  19. Power load leveling and energy saving measures for office buildings. Power load leveling and energy saving technology for the new building of the Kobe branch of the Kansai Electric Power Co., and its effect; Office biru no denryoku fuka heijunka sho energy hosaku. Kobe shiten shinshaoku ni okeru denryoku fuka heijunka sho energy gijutsu to sono koka

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiyama, M. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1999-06-10

    This paper presents power load leveling and energy saving measures for heat source, air conditioning and lighting of the new Kobe branch building. The low-temperature hot-air system adopts an ice storage system, and reduces blowing power by 12 degreesC blowing in place of normal 16 degreesC blowing, and an initial cost by duct size reduction. The continuous air conditioning system levels an initial peak load of air conditioning as compared with normal air conditioning only for working hours for buildings with large heat capacity. In addition, as power load leveling measures for the whole building, the complete heat storage system using an underground internal melting type ice storage tank is adopted. Energy saving for lighting is achieved with a dimming lighting controlling its lighting output by inverter. The following effects are expected by these new technologies: Load leveling effect of 30%, energy saving effect of 20.2% and CO{sub 2} reduction effect of 24.1%. (NEDO)

  20. Research on the Efficiency and Economic Impact of Energy-Saving Transformation of Residential Buildings in Different Climatic Regions of China

    Directory of Open Access Journals (Sweden)

    Qibo Liu

    2015-01-01

    Full Text Available In China, the transformation of existing buildings is confronted with various problems in aspects ranging from technology to policy and even to economic efficiency, which restrains the pace of existing building transformation. Aiming at these conditions, a building model is established with simulation software in the research herein to deeply analyze the energy-saving effect of building envelope transformation in different climatic regions and its economic efficiency based on regional and national policies. The research results show that any single technology is difficult to completely satisfy the requirements of current energy efficiency standards, and technical measures should be taken according to different climatic regions. For the northern heating area, the building envelope transformation must be carried out simultaneously with the transformation of heat metering. Policy formulation and fund determination for the energy-saving transformation of existing buildings in China should be more flexible based on transformation effect and rely more on social and commercial forces rather than solely on the promotion of government.

  1. 12 CFR 541.16 - Improved residential real estate.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Improved residential real estate. 541.16... REGULATIONS AFFECTING FEDERAL SAVINGS ASSOCIATIONS § 541.16 Improved residential real estate. The term improved residential real estate means residential real estate containing offsite or other improvements...

  2. 12 CFR 541.23 - Residential real estate.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Residential real estate. 541.23 Section 541.23... AFFECTING FEDERAL SAVINGS ASSOCIATIONS § 541.23 Residential real estate. The terms residential real estate... home used in part for business); (c) Other real estate used for primarily residential purposes other...

  3. RESIDENTIAL LOAD ON THE STEPPE LANDSCAPE OF THE NORTHWEST AND WEST NORTHWEST CISCAUCASIA AND ITS TURIST-RECREATIONAL USE WITHIN THE KRASNODAR REGION

    Directory of Open Access Journals (Sweden)

    Alexander Alexandrovich Mishchenko

    2014-07-01

    Full Text Available As a result of the cumulative interaction of political, ethnic, demographic, economic, social, biological and other ties, processes and relationships the structure of modern landscapes was formed. Aggregate settlement the Krasnodar region, especially large and medium, together with the lines of communication between them forms a supporting framework of the settlement. Determination of anthropogenic loads on individual components of nature and also on the natural complexes in general, is a central part in assessing the contemporary geo-ecological situation of the area. Within the boundaries of the Northwest Ciscaucasia rural residential landscape occupies 99% of the residential landscape. Agricultural zoning based on landscape approaches is one of the main directions of the transition to sustainable agriculture, which focuses on the combination of high productivity and environmental sustainability of the agrogeosistems. The optimal existence of the landscapes requires that their functions are consistent with their natural properties, resource potential. Complex process of impacts on the landscape extends as chain reactions on the vertical and horizontal landscape relations. On this territory, there is a significant recreational potential. Territory can be used for weekend tours for urban residents, who are located quite close to these recreational richest places. Development of the agro-tourism is the most effective if the industry is evolving as a support towards the main tourist or agricultural specialization.DOI: http://dx.doi.org/10.12731/2218-7405-2014-4-6

  4. How to tackle energy saving and load leveling. Energy saving towards 2000 and measures for the coming winter (energy-saving activities by California`s SCE, demand side management activities); Sho energy fuka heijunka ni do torikumuka. Seireki 2000 nen ni muketa sho energy to konto no shoene taisaku, Kashu SCE no sho energy (DSM katsudo wo saguru)

    Energy Technology Data Exchange (ETDEWEB)

    Nasu, S. [The Energy Conservation Center Japan, Tokyo (Japan)

    1997-02-01

    Tokyo Electric Power has realized a peak shift of 5% for the maximum power demand by various measures to cope with increasing power demand and differential rate by time zone, including expansion of the differential rate system and heat-storage systems. Some of more notable recent techniques are eco-ice and eco-vendor systems, the former storing ice in the heat-storage tanks and the latter strongly cooling vending machines during nighttime. The NAS battery system is being developed as the new technique for load leveling. The energy-related advisory organ for Minister of International Trade and Industry asks each industrial unit to save at least 1% of power on the annual average as the energy-saving measure towards 2000. The energy-saving measures promoted by the government for the coming winter are controlled release of wastes, efficient use of power, setting room temperature at 19{degree}C or lower and voluntarily refrain from commuting by cars. The US power industry is abandoning the concept of DSM in the midst of deregulation and increased competition, and cutting budgets for new energy development. California`s SCE is promoting energy-saving through expanded use of high-efficiency motors, accurate grasp of customers` needs and publicity activities through internet systems. 4 figs., 1 tab.

  5. Save Energy: Save Money!

    Science.gov (United States)

    Eccli, Eugene; And Others

    This publication is a collection of inexpensive energy saving tips and home improvements for home owners, particularly in low-income areas or in older homes. Section titles are: (1) Keeping Warm; (2) Getting Heat Where You Need It; (3) Using the Sun; (4) Furnaces, Stoves, and Fireplaces; (5) Insulation and Other Energy Needs; (6) Do-It-Yourself…

  6. Hood River Conservation Project load analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, T.K.

    1987-11-01

    As a part of the Hood River Conservation Project (HRCP), 314 homes were monitored to measure electrical energy use. The total electrical load, space heating load, water heating load (in about 200 homes), wood-stove heat output (in about 100 homes), and indoor temperature were monitored. Data were collected for one full year before and one full year after these homes were retrofit with conservation measures. Local weather information was also collected on a 15-min basis. This data base was used to evaluate the load savings attributable to HRCP. Two methods of weather normalization were used and showed close agreement. The weather-normalized diversified residential load savings on the Pacific Power and Light system and Hood River area peak days were >0.5 kW/household. The average spring, summer, and fall savings were much smaller, <0.1 kW/household. The load factor for the diversified residential load decreased following the conservation retrofit actions. 11 refs., 40 figs., 13 tabs.

  7. The effect of utility time-varying pricing and load control strategies on residential summer peak electricity use. A review

    International Nuclear Information System (INIS)

    Newsham, Guy R.; Bowker, Brent G.

    2010-01-01

    Peak demand for electricity in North America is expected to grow, challenging electrical utilities to supply this demand in a cost-effective, reliable manner. Therefore, there is growing interest in strategies to reduce peak demand by eliminating electricity use, or shifting it to non-peak times. This strategy is commonly called 'demand response'. In households, common strategies are time-varying pricing, which charge more for energy use on peak, or direct load control, which allows utilities to curtail certain loads during high demand periods. We reviewed recent North American studies of these strategies. The data suggest that the most effective strategy is a critical peak price (CPP) program with enabling technology to automatically curtail loads on event days. There is little evidence that this causes substantial hardship for occupants, particularly if they have input into which loads are controlled and how, and have an override option. In such cases, a peak load reduction of at least 30% is a reasonable expectation. It might be possible to attain such load reductions without enabling technology by focusing on household types more likely to respond, and providing them with excellent support. A simple time-of-use (TOU) program can only expect to realise on-peak reductions of 5%. (author)

  8. Exploring Demand Charge Savings from Commercial Solar

    Energy Technology Data Exchange (ETDEWEB)

    Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gagnon, Pieter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-07-31

    Commercial retail electricity rates commonly include a demand charge component, based on some measure of the customer’s peak demand. Customer-sited solar PV can potentially reduce demand charges, but the magnitude of these savings can be difficult to predict, given variations in demand charge designs, customer loads, and PV generation profiles. Moreover, depending on the circumstances, demand charges from solar may or may not align well with associated utility cost savings. Lawrence Berkeley National Laboratory (Berkeley Lab) and the National Renewable Energy Laboratory (NREL) are collaborating in a series of studies to understand how solar PV can reduce demand charge levels for a variety of customer types and demand charges designs. Previous work focused on residential customs with solar. This study, instead, focuses on commercial customers and seeks to understand the extent and conditions under which rooftop can solar reduce commercial demand charges. To answer these questions, we simulate demand charge savings for a broad range of commercial customer types, demand charge designs, locations, and PV system characteristics. This particular analysis does not include storage, but a subsequent analysis in this series will evaluate demand charge savings for commercial customers with solar and storage.

  9. Observed Temperature Effects on Hourly Residential Electric LoadReduction in Response to an Experimental Critical Peak PricingTariff

    Energy Technology Data Exchange (ETDEWEB)

    Herter, Karen B.; McAuliffe, Patrick K.; Rosenfeld, Arthur H.

    2005-11-14

    The goal of this investigation was to characterize themanual and automated response of residential customers to high-price"critical" events dispatched under critical peak pricing tariffs testedin the 2003-2004 California Statewide Pricing Pilot. The 15-monthexperimental tariff gave customers a discounted two-price time-of-userate on 430 days in exchange for 27 critical days, during which the peakperiod price (2 p.m. to 7 p.m.) was increased to about three times thenormal time-of-use peak price. We calculated response by five-degreetemperature bins as the difference between peak usage on normal andcritical weekdays. Results indicatedthat manual response to criticalperiods reached -0.23 kW per home (-13 percent) in hot weather(95-104.9oF), -0.03 kW per home (-4 percent) in mild weather (60-94.9oF),and -0.07 kW per home (-9 percent) during cold weather (50-59.9oF).Separately, we analyzed response enhanced by programmable communicatingthermostats in high-use homes with air-conditioning. Between 90oF and94.9oF, the response of this group reached -0.56 kW per home (-25percent) for five-hour critical periods and -0.89 kW/home (-41 percent)for two-hour critical periods.

  10. Costs of Residential Solar PV Plants in Distribution Grid Networks

    DEFF Research Database (Denmark)

    Kjær, Søren Bækhøj; Yang, Guangya; Ipsen, Hans Henrik

    2015-01-01

    In this article we investigate the impact of residential solar PV plants on energy losses in distribution networks and their impact on distribution transformers lifetime. Current guidelines in Denmark states that distribution transformers should not be loaded with more than 67% solar PV power...... called “Availability Tariff”. According to the Danish Energy Regulatory Authority, the Availability Tariff must cover the exact expenses, with energy savings etc. from the solar PV plants taken into consideration. Our conclusion is that a distribution network, which represents a typical residential...... to avoid accelerated loss of life. If a solar PV plant causes this limit to be exceeded, the particular owner has to pay for upgrading the transformer. Distribution Network Operators also charge an annual tariff from the solar PV plants to cover the expenses to keep the grid capacity available, the so...

  11. Costs of Residential Solar PV Plants in Distribution Grid Networks

    DEFF Research Database (Denmark)

    Kjær, Søren Bækhøj; Yang, Guangya; Ipsen, Hans Henrik

    2015-01-01

    In this article we investigate the impact of residential solar PV plants on energy losses in distribution networks and their impact on distribution transformers lifetime. Current guidelines in Denmark states that distribution transformers should not be loaded with more than 67% solar PV power...... to avoid accelerated loss of life. If a solar PV plant causes this limit to be exceeded, the particular owner has to pay for upgrading the transformer. Distribution Network Operators also charge an annual tariff from the solar PV plants to cover the expenses to keep the grid capacity available, the so...... called “Availability Tariff”. According to the Danish Energy Regulatory Authority, the Availability Tariff must cover the exact expenses, with energy savings etc. from the solar PV plants taken into consideration. Our conclusion is that a distribution network, which represents a typical residential...

  12. Evaluation of Multi Residential House Renovation Efficiency

    Directory of Open Access Journals (Sweden)

    Daiva Rapcevičienė

    2011-03-01

    Full Text Available Analyzed multi residential house renovation investment projects efficiency evaluation methods: economic-social, and environmental, as well as key financial valuation methods: simple pay-back period, the energy cost savings, the net present value, internal rate of return. Building walls condition regenerative rate which is used to evaluate investments in energy-saving measures is also discussed. According to reconstruction investments of multi residential house, three government financing programs of multi residential house are evaluated and selected the most effective program by comparing financial valuation methods taking and without taking into account building walls condition regenerative rate. Article in Lithuanian

  13. Chapter 17: Residential Behavior Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, James [Cadmus Group, Waltham, MA (United States); Todd, Annika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-01

    Residential behavior-based (BB) programs use strategies grounded in the behavioral social sciences to influence household energy use. Strategies may include providing households with real-time or delayed feedback about their energy use; supplying energy-efficiency education and tips; rewarding households for reducing their energy use; comparing households to their peers; and establishing games, tournaments, and competitions. BB programs often target multiple energy end uses and encourage energy savings, demand savings, or both. Savings from BB programs are usually a small percentage of energy use, typically less than 5%.

  14. Evaluation of the useful life losses and the energy expenses in typical residential and commercially load cycles; Avaliacao da perda de vida e energia despendida em ciclos de carga tipicamente residenciais e comerciais

    Energy Technology Data Exchange (ETDEWEB)

    Ravaglio, M.A.; Gamboa, L.R.A.; Schaefer, J.C. [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil). Unidade de Alta Tensao]. E-mails: marcelo@lactec.org.br; schaefer@lactec.org.br; gamboa@lactec.org.br; Paranhos, J.R.; Adonis, N.G. [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil). Area de Normalizacao]. E-mails: paranhos@mail.copel.br; ngadonis@mail.copel.br

    2002-07-01

    This paper presents the main results obtained by the first phase of the Evaluation of the COPEL Distribution Transformers Useful Life project performed by the LACTEC in the period of June 2000-July 2001. The loss of life of 15 kV class distribution transformer were evaluated, based on the standard calculation procedure of the IEEE C57.91-1995. The hottest point temperature were estimated from the losses measurements in residential and commercial load cycle laboratory simulation, for loading levels up to 140 percent. The energy spent with total losses in typical load cycles were also determined, aiming to propose criteria for the economic loading and lesser aging of the distribution transformers.

  15. Chapter 6: Residential Lighting Evaluation Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Dimetrosky, Scott [Apex Analytics LLC, Boulder, CO (United States); Parkinson, Katie [Apex Analytics LLC, Boulder, CO (United States); Lieb, Noah [Apex Analytics LLC, Boulder, CO (United States)

    2015-02-01

    In recent years, residential lighting has represented a significant share of ratepayer-funded energy-efficiency electricity savings. Utilities have achieved the majority of these savings by promoting the purchase and installation of compact fluorescent lamps (CFLs), both standard 'twister' bulbs and specialty CFLs such as reflectors, A-Lamps, globes, and dimmable lights.

  16. Methodology to determine the consumption and potential of saving of electrical energy in the systems of air-conditioning in the residential sector: case the Northwest of Mexico; Metodologia para determinar el consumo y potencial de ahorro de energia electrica en los sistemas de climatizacion en el sector residencial: caso Noroeste de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Rosas Flores, J. A.; Morillon Galvez, D.

    2008-07-01

    In this work there are studied the characteristics of the consumption of electrical residential energy due to the systems of air conditioning and to cos mell, in the region Northwest of Mexico (Sonora, Sinaloa, Baja California Norte, Baja California Sur, and Nayarit) and the North region (Coahuila, Chihuahua, Durango, Nuevo Leon). Between the principal results one finds that the potential saving of electrical energy, with base in the use of passive systems as the isolation of the housings, decided in 3,356 GWh (similar to the electrical annual supply that there needs the state of Durango or Guerrero). (Author)

  17. Residential implementation of critical-peak pricing ofelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Herter, Karen

    2006-06-29

    This paper investigates how critical-peak pricing (CPP)affects households with different usage and income levels, with the goalof informing policy makers who are considering the implementation of CPPtariffs in the residential sector. Using a subset of data from theCalifornia Statewide Pricing Pilot of 2003-2004, average load changeduring summer events, annual percent bill change, and post-experimentsatisfaction ratings are calculated across six customer segments,categorized by historical usage and income levels. Findings show thathigh-use customers respond significantly more in kW reduction than dolow-use customers, while low-use customers save significantly more inpercentage reduction of annual electricity bills than do high-usecustomers results that challenge the strategy of targeting only high-usecustomers for CPP tariffs. Across income levels, average load and billchanges were statistically indistinguishable, as were satisfaction ratesresults that are compatible with a strategy of full-scale implementationof CPP rates in the residential sector. Finally, the high-use customersearning less than $50,000 annually were the most likely of the groups tosee bill increases about 5 percent saw bill increases of 10 percent ormore suggesting that any residential CPP implementation might considertargeting this customer group for increased energy efficiencyefforts.

  18. Residential implementation of critical-peak pricing of electricity

    International Nuclear Information System (INIS)

    Herter, Karen

    2007-01-01

    This paper investigates how critical-peak pricing (CPP) affects households with different usage and income levels, with the goal of informing policy makers who are considering the implementation of CPP tariffs in the residential sector. Using a subset of data from the California Statewide Pricing Pilot of 2003-04, average load change during summer events, annual percent bill change, and post-experiment satisfaction ratings are calculated across six customer segments, categorized by historical usage and income levels. Findings show that high-use customers respond significantly more in kW reduction than do low-use customers, while low-use customers save significantly more in percentage reduction of annual electricity bills than do high-use customers-results that challenge the strategy of targeting only high-use customers for CPP tariffs. Across income levels, average load and bill changes were statistically indistinguishable, as were satisfaction rates-results that are compatible with a strategy of full-scale implementation of CPP rates in the residential sector. Finally, the high-use customers earning less than $50,000 annually were the most likely of the groups to see bill increases-about 5% saw bill increases of 10% or more-suggesting that any residential CPP implementation might consider targeting this customer group for increased energy efficiency efforts

  19. Estimation of energy efficiency of residential buildings

    Directory of Open Access Journals (Sweden)

    Glushkov Sergey

    2017-01-01

    Full Text Available Increasing energy performance of the residential buildings by means of reducing heat consumption on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy saving process are heat producing and transportation over the main lines and outside distribution networks. In the period from 2006 to 2013. by means of the heat-supply schemes optimization and modernization of the heating systems. using expensive (200–300 $US per 1 m though hugely effective preliminary coated pipes. the economy reached 2.7 mln tons of fuel equivalent. Considering the multi-stage and multifactorial nature (electricity. heat and water supply of the residential sector energy saving. the reasonable estimate of the efficiency of the saving of residential buildings energy should be performed in tons of fuel equivalent per unit of time.

  20. Detailed residential electric determination

    Energy Technology Data Exchange (ETDEWEB)

    1984-06-01

    Data on residential loads has been collected from four residences in real time. The data, measured at 5-second intervals for 53 days of continuous operation, were statistically characterized. An algorithm was developed and incorporated into the modeling code SOLCEL. Performance simulations with SOLCEL using these data as well as previous data collected over longer time intervals indicate that no significant errors in system value are introduced through the use of long-term average data.

  1. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in South Carolina. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in South Carolina.

  2. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Nebraska

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Nebraska. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Nebraska.

  3. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Georgia. Moving to the 2015 IECC from the 2011 Georgia State Code base code is cost-effective for residential buildings in all climate zones in Georgia.

  4. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Wisconsin. Moving to the 2015 IECC from the 2006 IECC base code is cost-effective for residential buildings in all climate zones in Wisconsin.

  5. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Illinois. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Illinois.

  6. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Pennsylvania. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Pennsylvania.

  7. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Arkansas. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Arkansas.

  8. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Alabama. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Alabama.

  9. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Nevada. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Nevada.

  10. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Texas

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Texas. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Texas.

  11. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Maine

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Maine. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Maine.

  12. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Oklahoma. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Oklahoma.

  13. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Missouri. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Missouri.

  14. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Indiana. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Indiana.

  15. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Rhode Island

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Rhode Island. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Rhode Island.

  16. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Florida

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Florida. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Florida.

  17. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in New Mexico. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in New Mexico.

  18. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in North Dakota. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in North Dakota.

  19. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Ohio. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Ohio.

  20. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Arizona. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Arizona.

  1. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Louisiana. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Louisiana.

  2. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Connecticut

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Connecticut. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Connecticut.

  3. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for New York

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in New York. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in New York.

  4. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Delaware. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Delaware.

  5. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Kansas. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Kansas.

  6. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Iowa. Moving to the 2015 IECC from the 2014 Iowa State Code base code is cost-effective for residential buildings in all climate zones in Iowa.

  7. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Massachusetts. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Massachusetts.

  8. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Vermont

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Vermont. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Vermont.

  9. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Kentucky. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Kentucky.

  10. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Mississippi. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Mississippi.

  11. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Virginia. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Virginia.

  12. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Wyoming. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Wyoming.

  13. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Idaho. Moving to the 2015 IECC from the 2015 Idaho State Code base code is cost-effective for residential buildings in all climate zones in Idaho.

  14. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in West Virginia. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in West Virginia.

  15. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Colorado. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Colorado.

  16. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Alaska. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Alaska.

  17. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Utah

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Utah. Moving to the 2015 IECC from the 2012 Utah State Code base code is cost-effective for residential buildings in all climate zones in Utah.

  18. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Tennessee. Moving to the 2015 IECC from the 2006 IECC base code is cost-effective for residential buildings in all climate zones in Tennessee.

  19. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in South Dakota. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in South Dakota.

  20. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Hawaii. Moving to the 2015 IECC from the 2006 IECC base code is cost-effective for residential buildings in all climate zones in Hawaii.

  1. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Maryland. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Maryland.

  2. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Michigan. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Michigan.

  3. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Minnesota. Moving to the 2015 IECC from the 2012 IECC base code is cost-effective for residential buildings in all climate zones in Minnesota.

  4. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Montana

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Montana. Moving to the 2015 IECC from the 2014 Montana State Code base code is cost-effective for residential buildings in all climate zones in Montana.

  5. Thermal Profiling of Residential Energy Use

    Energy Technology Data Exchange (ETDEWEB)

    Albert, A; Rajagopal, R

    2015-03-01

    This work describes a methodology for informing targeted demand-response (DR) and marketing programs that focus on the temperature-sensitive part of residential electricity demand. Our methodology uses data that is becoming readily available at utility companies-hourly energy consumption readings collected from "smart" electricity meters, as well as hourly temperature readings. To decompose individual consumption into a thermal-sensitive part and a base load (non-thermally-sensitive), we propose a model of temperature response that is based on thermal regimes, i.e., unobserved decisions of consumers to use their heating or cooling appliances. We use this model to extract useful benchmarks that compose thermal profiles of individual users, i.e., terse characterizations of the statistics of these users' temperature-sensitive consumption. We present example profiles generated using our model on real consumers, and show its performance on a large sample of residential users. This knowledge may, in turn, inform the DR program by allowing scarce operational and marketing budgets to be spent on the right users-those whose influencing will yield highest energy reductions-at the right time. We show that such segmentation and targeting of users may offer savings exceeding 100% of a random strategy.

  6. Thermal Performance of Typical Residential Building in Karachi with Different Materials for Construction

    Directory of Open Access Journals (Sweden)

    Nafeesa Shaheen

    2016-04-01

    Full Text Available This research work deals with a study of a residential building located in climatic context of Karachi with the objective of being the study of thermal performance based upon passive design techniques. The study helps in reducing the electricity consumption by improving indoor temperatures. The existing residential buildings in Karachi were studied with reference to their planning and design, analyzed and evaluated. Different construction?s compositions of buildings were identified, surveyed and analyzed in making of the effective building envelops. Autodesk® Ecotect, 2011 was used to determine indoor comfort conditions and HVAC (Heating, Ventilation, Air-Conditioning and Cooling loads. The result of the research depicted significant energy savings of 38.5% in HVAC loads with proposed building envelop of locally available materials and glazing.

  7. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by the scouts...... twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the source...

  8. 78 FR 151 - Energy Conservation Program: Test Procedures for Residential Clothes Dryers

    Science.gov (United States)

    2013-01-02

    ... (NRDC), Alliance to Save Energy (ASE), Alliance for Water Efficiency (AWE), Northwest Power and... in the docket of the residential dishwasher, dehumidifier, and conventional cooking products test...

  9. Learning Residential Electrical Wiring through Computer Simulation: The Impact of Computer-Based Learning Environments on Student Achievement and Cognitive Load

    Science.gov (United States)

    Liu, Han-Chin; Su, I-Hsien

    2011-01-01

    Multimedia learning environments such as computer simulations are widely accepted as tools for supporting science learning. Although the design of multimedia learning environments can be domain specific, few studies have focused on the use of computer simulations for learning residential electrical wiring. This study aimed to determine whether…

  10. Load curve modelling of the residential segment electric power consumption applying a demand side energy management program; Modelagem da curva de carga das faixas de consumo de energia eletrica residencial a partir da aplicacao de um programa de gerenciamento de energia pelo lado da demanda

    Energy Technology Data Exchange (ETDEWEB)

    Rahde, Sergio Barbosa [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre (Brazil). Dept. de Engenharia Mecanica e Mecatronica]. E-mail: sergio@em.pucrs.br; Kaehler, Jose Wagner [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre (Brazil). Faculdade de Engenharia]. E-mail: kaehlerjw@pucrs.br

    2000-07-01

    The dissertation aims to offer a current vision on the use of electrical energy inside CEEE's newly defined area of operation. It also intends to propose different alternatives to set up a Demand Side Management (DSM) project to be carried out on the same market segment, through a Residential Load Management program. Starting from studies developed by DNAEE (the Brazilian federal government's agency for electrical energy), to establish the load curve characteristics, as well as from a research on electrical equipment ownership and electricity consumption habits, along with the contribution supplied by other utilities, especially in the US, an evaluation is offered, concerning several approaches to residential energy management, setting up conditions that simulate the residential segment's scenarios and their influence on the general system's load. (author)

  11. Research report for fiscal 1997 on analysis and evaluation of demonstration tests for establishment of residential photovoltaic power generation load leveling technology; 1997 nendo kenkyu hokokusho. Jutaku you taiyoko hatsuden fuka heijunka gijutsu tou kakuritsu jissho shiken ni kansuru kaiseki hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Tests and researches have been performed with the objectives to establish an evaluation technology for load leveling effect by using a small photovoltaic power generation system for residential use, to clarify the effectiveness of the system as a discrete power supply source through demonstration operation, and furthermore to achieve optimization of designs of the small photovoltaic power generation system for residential use. This paper summarizes the achievements in fiscal 1997. The current fiscal year has performed the continued collection of data of the demonstration operation, and analysis and evaluation on the photovoltaic power generation characteristics and the house load characteristics. According to the data analysis result for fiscals 1995 through 1997, it was shown that, although the photovoltaic power generation system for residential use does not contribute much to load leveling in a house, it contributes to load leveling in the distribution line on the whole or a case as large as a grid. In addition, according to the survey on users who have installed the photovoltaic power generation system, it was indicated that the consciousness of electric power and energy conservation has heightened. The capacity of a photovoltaic power generation system for residential use is 3 kW for a standard type of home, which can take care of more than 60% of the house load. It was concluded that, if a storage battery of small capacity is accommodated, the system is effective for reduction of momentary peak load, enhancement of the power quality, and supply of power at a disaster. (NEDO)

  12. Research report for fiscal 1996 on analysis and evaluation of demonstration tests for establishment of residential photovoltaic power generation load leveling technology; 1996 nendo kenkyu hokokusho. Jutaku you taiyoko hatsuden fuka heijunka gijutsu tou kakuritsu jissho shiken ni kansuru kaiseki hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Tests and researches have been performed with the objectives to establish an evaluation technology for load leveling effect by using a small photovoltaic power generation system for residential use, to clarify the effectiveness of the system as a discrete power supply source through demonstration operation, and furthermore to achieve optimization of designs of the small photovoltaic power generation system for residential use. This paper summarizes the achievements in fiscal 1996. The current fiscal year has performed collection of data of the demonstration operation, checked the consistency in photovoltaic power generation characteristics, and housing and distribution line load characteristics, and the results were mounted on the database. The demonstration operation data were used to analyze and evaluate the facility utilization rate in the photovoltaic power generation, photovoltaic power generation dependence of the house load, load rate, and peak load reduction rate. As a result, it was found that not much of the peak load reduction effect by the photovoltaic power generation was recognized because the house load is related mainly on lighting load. However, as seen from the distribution line load, the peak load reduction was recognized when the house load and the commercial and industrial load are mixed, whereas it was revealed that the reduction effect is worth evaluation. (NEDO)

  13. The effects of residential real-time pricing contracts on transco loads, pricing, and profitability: Simulations using the N-ABLE trademark agent-based model

    International Nuclear Information System (INIS)

    Ehlen, Mark A.; Scholand, Andrew J.; Stamber, Kevin L.

    2007-01-01

    An agent-based model is constructed in which a demand aggregator sells both uniform-price and real-time price (RTP) contracts to households as means for adding price elasticity in residential power use sectors, particularly during peak-price hours of the day. Simulations suggest that RTP contracts help a demand aggregator (1) shift its long-term contracts toward off-peak hours, thereby reducing its cost of power and (2) increase its short-run profits if it is one of the first aggregators to have large numbers of RTP contracts; but (3) create susceptibilities to short-term market demand and price volatilities. (author)

  14. 45% power saving in a 0.25μm BiCMOS 10Gb/s 50Ω-terminated packaged active-load laser driver

    DEFF Research Database (Denmark)

    Ayranci, E.; Christensen, K.; Andreani, Pietro

    2007-01-01

    A 0.25μm BiCMOS laser driver based on active loads allows operation at 10Gb/s while drawing 5mA from a 1.8V supply. The design guarantees the correct matching of the driver outputs without the use of physical 50Ω load resistors. This enables a theoretical current consumption reduction of 50% (45...

  15. Economic impacts of current harmonic from nonlinear loads on residential electricity distribution networks; Impactos economicos dos harmonicos de corrente das cargas nao lineares em redes eletricas de distribuicao residenciais

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Carlos Henrique

    2010-04-15

    To achieve more efficient energy use, power electronics systems (PES) may be employed. However, this introduce nonlinear loads into the system by generating undesired frequencies that are harmonic in relation to (multiples of) the fundamental frequency (60 Hz in Brazil). Consequently, devices using PES (power electronics systems) are more efficient but also contribute significantly to degradation of power quality. Besides this, both the conventional rules on design and operation of power systems and the usual premises followed in energy efficiency programs (without mentioning the electricity consumed by the devices themselves) consider the sinusoidal voltage and current waveforms at the fixed fundamental frequency (60 Hz in Brazil) of the power grid. Thus, analysis of electricity consumption reductions in energy efficiency programs that include the use of PES considers the reduction of kWh to the final consumer but not the additional losses caused by the increase in harmonic distortion. This dissertation investigates this problem by exploring a case study of the ownership and use of television sets (TV sets) to estimate the economic impacts of residential PES on a mainly residential electricity distribution system. (author)

  16. Integrated Management of Residential Energy Resources

    Directory of Open Access Journals (Sweden)

    Antunes C. H.

    2012-10-01

    Full Text Available The increasing deployment of distributed generation systems based on renewables in the residential sector, the development of information and communication technologies and the expected evolution of traditional power systems towards smart grids are inducing changes in the passive role of end-users, namely with stimuli to change residential demand patterns. The residential user should be able to make decisions and efficiently manage his energy resources by taking advantages from his flexibility in load usage with the aim to minimize the electricity bill without depreciating the quality of energy services provided. The aim of this paper is characterizing electricity consumption in the residential sector and categorizing the different loads according to their typical usage, working cycles, technical constraints and possible degree of control. This categorization of end-use loads contributes to ascertain the availability of controllable loads to be managed as well as the different direct management actions that can be implemented. The ability to implement different management actions over diverse end-use load will increase the responsiveness of demand and potentially raises the willingness of end-users to accept such activities. The impacts on the aggregated national demand of large-scale dissemination of management systems that would help the end-user to make decisions regarding electricity consumption are predicted using a simulator that generates the aggregated residential sector electricity consumption under variable prices.

  17. Simulation of energy saving potential of a centralized HVAC system in an academic building using adaptive cooling technique

    International Nuclear Information System (INIS)

    Bhaskoro, Petrus Tri; Gilani, Syed Ihtsham Ul Haq; Aris, Mohd Shiraz

    2013-01-01

    Highlights: • We have simulated and validated the cooling loads of a multi-zone academic building, in a tropical region. • We have analyzed the effect of occupancy patterns on the cooling loads. • Adaptive cooling technique has been utilized to minimize the energy usage of HVAC system. • The results are promising and show a reduction of energy saving in the range of 20–30%. - Abstract: Application of adaptive comfort temperature as room temperature set points potentially reduce energy usage of the HVAC system during a cooling and heating period. The savings are mainly due to higher indoor temperature set point during hot period and lower indoor temperature set point during cold period than the recommended value. Numerous works have been carried out to show how much energy can be saved during cooling and heating period by applying adaptive comfort temperature. The previous work, however, focused on a continuous cooling load as found in many office and residential buildings. Therefore, this paper aims to simulate the energy saving potential for an academic glazed building in tropical Malaysian climate by developing adaptive cooling technique. A building simulation program (TRNSYS) was used to model the building and simulate the cooling load characteristic using current and proposed technique. Two experimental measurements were conducted and the results were used to validate the model. Finally, cooling load characteristic of the academic building using current and proposed technique were compared and the results showed that annual energy saving potential as much as 305,150 kW h can be achieved

  18. Housing-related lifestyle and energy saving

    DEFF Research Database (Denmark)

    Thøgersen, John

    2017-01-01

    in the home and for the energy-consumer’s openness to new energy saving opportunities (i.e., energy saving innovativeness) is investigated. The HRL instrument’s 71 items load on 16 dimensions within five lifestyle elements. Multi-group confirmatory factor analysis reveals that the instrument possesses metric....... However, these two behavioural tendencies vary significantly and substantially between lifestyle segments. The study shows that HRL segmentation is a useful tool for creating more targeted and effective energy-saving campaigns....

  19. Research report for fiscal 1995 on analysis and evaluation of demonstration tests for establishment of residential photovoltaic power generation load leveling technology; 1995 nendo kenkyu hokokusho. Jutaku you taiyoko hatsuden fuka heijunka gijutsu tou kakuritsu jissho shiken ni kansuru kaiseki hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research and development has been performed with the objectives to establish an evaluation technology for load leveling effect by using a small photovoltaic power generation system for residential use, to clarify the effectiveness of the system as a discrete power supply source through demonstration operation, and furthermore to achieve optimization of the small photovoltaic power generation system for residential use. This paper summarizes the achievements in fiscal 1995. With the demonstration operation in the current fiscal year, through-the-year data have been accumulated for the first time since the start of the demonstration operation, and were mounted on the load leveling database. As a result of analyzing the demonstration operation data, the following points were revealed: regarding the housing load, the lighting load is the main factor both in summer and winter; the effect of reducing the peak load by photovoltaic power generation is recognized at about 60% as maximum, but the substantial effect has large variation, hence stochastic; and the reverse current becomes the main factor during daytime, not necessarily leading to improvement of the housing load characteristics in the aspect of load rate. According to the surveys on the energy demand trends up to the year 2030, the power supply configuration, and introduction cost, it was revealed that the photovoltaic power generation can be sufficiently expected as a power supply to handle the peak load. (NEDO)

  20. Net savings

    International Nuclear Information System (INIS)

    Roche, P.

    2001-01-01

    The state of e-commerce in the Canadian upstream oil and natural gas sector is examined in an effort to discover the extent to which the .com economy has penetrated the marketplace. The overall assessment is that although the situation varies from producer to producer and process to process, a bustling digital marketplace in the Canadian oil business has yet to emerge. Nevertheless, there are several examples of companies using e-business tools to minimize technology staffing and to eliminate wasteful practices. Initiatives cited include streamlining of supply chains to cut handling costs, using application service providers to trim information technology budgets, and adopting electronic joint interest billing to save on printing, postage and re-entering data. Most notable efforts have been made by companies such as BXL Energy Limited and Genesis Exploration Limited, both of which are boosting efficiency on the inside by contracting out data storage and software applications. For example, BXL has replaced its microfilm log library occupying six cabinets, and totalling about 9,000 lbs., by a fibre optic line. All applications can now be run from a laptop which weighs three to four pounds. In a similar vein, Genesis Exploration started using application service providers (ASPs) to avoid the cost and hassle of buying and maintaining major software applications in-house. By accessing the ASPs, Genesis staff can run software without buying or installing it on their own computers. In yet another example of cutting information technology costs, Pengrowth Corporation has its network administration done remotely over the Internet by Northwest Digital Systems (NWD). As far as the industry at large is concerned, the answer appears to be in a digital marketplace specifically tailored to the upstream sector's unique profile. As a start, a study is underway by Deloitte Consulting to explore producer interest in joining or founding an upstream digital marketplace. The study was

  1. Load leveling total system. Part 2. Development of load leveling logic for residential customer; Fuka heijunka total system. 2. Kateiyo juyoka wo taisho to shita heijunka ronri no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Asari, M.; Nanahara, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1995-05-01

    It is essential, in order to meet steadily increasing demands for electrical power, to develop techniques for effective utilization of energy and load leveling. Described herein is development, by the aid of linear programming, of logic for daily management of charge/discharge of load conditioners and reverse power flow, for predicted loads and patterns of power generated by photovoltaic cells installed at individual customers. It is aimed at minimizing power rate and leveling of load at distribution systems. Predicted loads, outputs by photovoltaic cell units and different power rates by time zone for the next day are inputted, to determine the charge/discharge schedules and power supply/reverse flow patterns for that day, in order to minimize power rates and level loads at higher hierarchical levels. The logic-aided daily simulation for various districts confirms the operational patterns that realize improved utilization of pole-mounted transformers while reducing costs at customers, and effects of prediction errors. 4 refs., 14 figs.

  2. Strategy Guideline: High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  3. When financiers are concerned with energy saving

    International Nuclear Information System (INIS)

    Chauveau, J.

    2005-01-01

    Innovative financial systems allow to finance investments for the energy efficiency improvement of public or residential buildings. Such solutions are implemented in Belgium and Germany. They are based on the association between a financial company, an energy supplier who makes an energy audit and the building owner who refunds the investments with the saving made on the space heating and power consumption of the building. Short paper. (J.S.)

  4. Monitoring and Characterization of Miscellaneous Electrical Loads in a Large Retail Environment

    Energy Technology Data Exchange (ETDEWEB)

    Gentile-Polese, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frank, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sheppy, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lobato, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rader, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Long, N. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    Buildings account for 40% of primary energy consumption in the United States (residential 22%; commercial 18%). Most (70% residential and 79% commercial) is used as electricity. Thus, almost 30% of U.S. primary energy is used to provide electricity to buildings. Plug loads play an increasingly critical role in reducing energy use in new buildings (because of their increased efficiency requirements), and in existing buildings (as a significant energy savings opportunity). If all installed commercial building miscellaneous electrical loads (CMELs) were replaced with energy-efficient equipment, a potential annual energy saving of 175 TWh, or 35% of the 504 TWh annual energy use devoted to MELs, could be achieved. This energy saving is equivalent to the annual energy production of 14 average-sized nuclear power plants. To meet DOE's long-term goals of reducing commercial building energy use and carbon emissions, the energy efficiency community must better understand the components and drivers of CMEL energy use, and develop effective reduction strategies. These goals can be facilitated through improved data collection and monitoring methodologies, and evaluation of CMELs energy-saving techniques.

  5. Solar Photovoltaic Financing: Residential Sector Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, J.; Cory, K.

    2009-03-01

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  6. Load monitoring program: Status and results report. Volume 1: Summary

    International Nuclear Information System (INIS)

    1994-06-01

    British Columbia Hydro conducts a monitoring program to provide information on customer needs and values for planning; to measure customer response, energy savings impacts, and load shape impacts due to changes in rate level, rate restructuring, and Power Smart programs; to estimate end-use consumption and load shapes by customer class; and to provide load information for distribution and system load studies. To achieve these objectives, the monitoring program tracks the characteristics and energy use patterns of a sample of BC Hydro residential, commercial, and industrial customers over a period of several years. The entire sample will be surveyed periodically to obtain information on changes in building characteristics, equipment stocks, and energy-use behavior and attitudes. A report is provided on the status of monitoring program activities and some results obtained in 1993/94. For the residential sector, the results include typical load profiles, end-user demographics, and extent of electric space heating and water heating. In the commercial sector, customers were divided into two main groups. The large-building group was relatively well organized in terms of energy needs and participated in Power Smart programs. The small-building group was relatively energy-inefficient and relatively unaware of Power Smart programs. 43 figs., 15 tabs

  7. The impact of the daylight saving time on electricity consumption-A case study from Jordan

    International Nuclear Information System (INIS)

    Awad Momani, Mohammad; Yatim, Baharudin; Ali, Mohd Alauddin Mohd

    2009-01-01

    The paper examines the impact of daylight saving time (DST) on electricity consumption in Jordan. Two types of analysis were done: the first analysis examines the impact of DST on the lighting loads based on a survey study made for residential and commercial sectors. The second examines the impact of DST on the over all electricity generation through analyzing the daily load curves (DLCs) before and after the DST onset and removal in 2000 and 2007. The results show that the application of DST during the year 2000 saves the electricity used for illumination by -0.73% but it increases the overall generation at the onset and removal of DST by 0.5% and 1.4% due to increase in the heating and cooling loads. The analysis of DLCs during the year 2007 shows similar effects as in the year 2000 except during the early morning period at the DST onset where DST decreases the demand during this time. The analysis shows that DST decreases the electricity demand at DST onset by 0.2% and increases it at DST removal by 0.3%. A possible decrease in the electricity consumption may take place if the DST is implemented from April to end of August.

  8. Development of a Residential Integrated Ventilation Controller

    Energy Technology Data Exchange (ETDEWEB)

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  9. Evaluation of automated residential demand response with flat and dynamic pricing

    International Nuclear Information System (INIS)

    Swisher, Joel; Wang, Kitty; Stewart, Stewart

    2005-01-01

    This paper reviews the performance of two recent automated load management programs for residential customers of electric utilities in two American states. Both pilot programs have been run with about 200 participant houses each, and both programs have control populations of similar customers without the technology or program treatment. In both cases, the technology used in the pilot is GoodWatts, an advanced, two-way, real-time, comprehensive home energy management system. The purpose of each pilot is to determine the household kW reduction in coincident peak electric load from the energy management technology. Nevada Power has conducted a pilot program for Air-Conditioning Load Management (ACLM), in which customers are sent an electronic curtailment signal for three-hour intervals during times of maximum peak demand. The participating customers receive an annual incentive payment, but otherwise they are on a conventional utility tariff. In California, three major utilities are jointly conducting a pilot demonstration of an Automated Demand Response System (ADRS). Customers are on a time-of-use (ToU) tariff, which includes a critical peak pricing (CPP) element. During times of maximum peak demand, customers are sent an electronic price signal that is three times higher than the normal on-peak price. Houses with the automated GoodWatts technology reduced their demand in both the ACLM and the ADRS programs by about 50% consistently across the summer curtailment or super peak events, relative to homes without the technology or any load management program or tariff in place. The absolute savings were greater in the ACLM program, due to the higher baseline air conditioning loads in the hotter Las Vegas climate. The results suggest that either automated technology or dynamic pricing can deliver significant demand response in low-consumption houses. However, for high-consumption houses, automated technology can reduce load by a greater absolute kWh difference. Targeting

  10. Efficient Energy Management for a Grid-Tied Residential Microgrid

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    generation characteristics, heat transfer and thermal dynamics of sustainable residential buildings and load scheduling potentials of household appliances with associated constraints. Through various simulation studies under different working scenarios with real data, different system constraints and user...

  11. Advanced Controls for Residential Whole-House Ventilation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

  12. Discover the benefits of residential wood heating

    International Nuclear Information System (INIS)

    2003-01-01

    This publication described how residential wood-heating systems are being used to reduce energy costs and increase home comfort. Biomass energy refers to all forms are renewable energy that is derived from plant materials. The source of fuel may include sawmills, woodworking shops, forest operations and farms. The combustion of biomass is also considered to be carbon dioxide neutral, and is not considered to be a major producer of greenhouse gases (GHG) linked to global climate change. Wood burning does, however, release air pollutants, particularly if they are incompletely burned. Incomplete combustion of wood results in dense smoke consisting of toxic gases. Natural Resources Canada helped create new safety standards and the development of the Wood Energy Technical Training Program to ensure that all types of wood-burning appliances are installed correctly and safely to reduce the risk of fire and for effective wood heating. In Canada, more than 3 million families heat with wood as a primary or secondary heating source in homes and cottages. Wood heating offers security from energy price fluctuations and electrical power failures. This paper described the benefits of fireplace inserts that can transform old fireplaces into modern heating systems. It also demonstrated how an add-on wood furnace can be installed next to oil furnaces to convert an oil-only heating system to a wood-oil combination system, thereby saving thousands of dollars in heating costs. Wood pellet stoves are another wood burning option. The fuel for the stoves is produced from dried, finely ground wood waste that is compressed into hard pellets that are loaded into a hopper. The stove can run automatically for up to 24 hours. New high-efficiency advanced fireplaces also offer an alternative heating system that can reduce heating costs while preserving Canada's limited supply of fossil fuels such as oil and gas. 13 figs

  13. Evaluation of Northern Illinois Residential Retrofit Delivery Practices

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, P. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Kerr, R. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Brand, L. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2012-11-01

    Using a detailed BEopt analysis, PARR has developed packages of measures following a 'loading order' appropriate for cold climates at increasing levels of savings. Packages of measures to provide 'good, better, best' energy savings were determined based on predicted source energy savings, safety issues, program costs and simple payback for customers.

  14. Evaluation of Northern Illinois Residential Retrofit Delivery Practices

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, P.; Kerr, R.; Brand, L.

    2012-10-01

    Using a detailed BEopt analysis, PARR has developed packages of measures following a 'loading order' appropriate for cold climates at increasing levels of savings. Packages of measures to provide 'good, better, best' energy savings were determined based on predicted source energy savings, safety issues, program costs and simple payback for customers.

  15. Post-Retrofit Residential Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, Ross; lutzenhiser, Loren; Moezzi, Mithra; Widder, Sarah H.; Chandra, Subrato; Baechler, Michael C.

    2012-04-30

    This study examined a range of factors influencing energy consumption in households that had participated in residential energy-efficiency upgrades. The study was funded by a grant from the U.S. Department of Energy’s Pacific Northwest National Laboratory and was conducted by faculty and staff of Portland State University Center for Urban Studies and Department of Economics. This work was made possible through the assistance and support of the Energy Trust of Oregon (ETO), whose residential energy-efficiency programs provided the population from which the sample cases were drawn. All households in the study had participated in the ETO Home Performance with Energy Star (HPwES) program. A number of these had concurrently pursued measures through other ETO programs. Post-retrofit energy outcomes are rarely investigated on a house-by-house basis. Rather, aggregate changes are ordinarily the focus of program impact evaluations, with deviation from aggregate expectations chalked up to measurement error, the vagaries of weather and idiosyncrasies of occupants. However, understanding how homes perform post-retrofit on an individual basis can give important insights to increase energy savings at the participant and the programmatic level. Taking a more disaggregated approach, this study analyzed energy consumption data from before and after the retrofit activity and made comparisons with engineering estimates for the upgrades, to identify households that performed differently from what may have been expected based on the estimates. A statistical analysis using hierarchal linear models, which accounted for weather variations, was performed looking separately at gas and electrical use during the periods before and after upgrades took place. A more straightforward comparison of billing data for 12-month periods before and after the intervention was also performed, yielding the majority of the cases examined. The later approach allowed total energy use and costs to be

  16. Data on European non-residential buildings.

    Science.gov (United States)

    D'Agostino, Delia; Cuniberti, Barbara; Bertoldi, Paolo

    2017-10-01

    This data article relates to the research paper Energy consumption and efficiency technology measures in European non-residential buildings (D'Agostino et al., 2017) [1]. The reported data have been collected in the framework of the Green Building Programme that ran from 2006 to 2014. The project has encouraged the adoption of efficiency measures to boost energy savings in European non-residential buildings. Data focus on the one-thousand buildings that joined the Programme allowing to save around 985 GWh/year. The main requirement to join the Programme was the reduction of at least 25% primary energy consumption in a new or retrofitted building. Energy consumption before and after the renovation are provided for retrofitted buildings while, in new constructions, a building had to be designed using at least 25% less energy than requested by the country's building codes. The following data are linked within this article: energy consumption, absolute and relative savings related to primary energy, saving percentages, implemented efficiency measures and renewables. Further information is given about each building in relation to geometry, envelope, materials, lighting and systems.

  17. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in New Jersey. Moving to the 2015 IECC from the 2015 New Jersey State Code base code is cost-effective for residential buildings in all climate zones in New Jersey.

  18. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in New Hampshire. Moving to the 2015 IECC from the 2010 New Hampshire State Code base code is cost-effective for residential buildings in all climate zones in New Hampshire.

  19. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in North Carolina. Moving to the 2015 IECC from the 2012 North Carolina State Code base code is cost-effective for residential buildings in all climate zones in North Carolina.

  20. ARC Code TI: Save

    Data.gov (United States)

    National Aeronautics and Space Administration — Save is a framework for implementing highly available network-accessible services. Save consists of a command-line utility and a small set of extensions for the...

  1. Research report for fiscal 1995 on analysis and evaluation of demonstration tests for establishment of residential photovoltaic power generation load leveling technology (putting of related data into order); 1995 nendo kenkyu hokokusho. Jutaku you taiyoko hatsuden fuka heijunka gijutsu tou kakuritsu jissho shiken ni kansuru kaiseki hyoka (Kanren data no seibi)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research and development has been performed with the objectives to establish an evaluation technology for load leveling effect by using a small photovoltaic power generation system for residential use, to clarify the effectiveness of the system as a discrete power supply source through demonstration operation, and furthermore to achieve optimization of the small photovoltaic power generation system for residential use. This paper describes the actual state survey data related to grid connection systems for the small photovoltaic power generation system for residential use. The survey has been performed mainly on the system for individuals' use inside and outside Japan with regard to the small grid connection systems of 1-10 kW scale. The number of survey has reached 216 cases for 46 prefectures in Japan (1,004.02 kW in total), and 47 cases for 13 other countries (205.60 kW in total), or 263 cases in grand total (1,209.63 kW). These 263 cases were tabulated with items of owners (or the facility names and installation locations) as seen by territories (prefectures or countries), facility operators (or executing organizations), connection modes, and power generation scales. These data will serve for discussions on the load leveling effect and the optimized system forms. (NEDO)

  2. Fatalism and Savings

    OpenAIRE

    Stephen, Wu; Joel, Shapiro

    2010-01-01

    We examine the impact of fatalism, the belief that one has little or no control over future events, on the decision of whether or not to save. We develop a model that predicts that fatalism decreases savings for moderately risk averse individuals, increases savings for highly risk averse individuals, and otherwise has no impact. Furthermore, fatalism decreases effort in learning about savings and investment options. We use data from National Longitudinal Survey of Youth (NLSY) and find genera...

  3. Emission factors and chemical characterisation of fine particulate emissions from modern and old residential biomass heating systems determined for typical load cycles; Emissionsfaktoren und chemische Charakterisierung von Feinstaubemissionen moderner und alter Biomasse-Kleinfeuerungen ueber typische Tageslastverlaeufe

    Energy Technology Data Exchange (ETDEWEB)

    Kelz, Joachim [BIOENERGY 2020+ GmbH, Graz (Austria); Brunner, Thomas; Obernberger, Ingwald [BIOENERGY 2020+ GmbH, Graz (Austria); Technische Universitaet Graz, Institut fuer Prozess- und Partikeltechnik, Graz (Austria); BIOS BIOENERGIESYSTEME GmbH, Graz (Austria)

    2012-12-15

    It is already well known that there are significant differences regarding the emissions, especially particulate matter (PM) emissions, of old and modern as well as automatically and not automatically controlled biomass based residential heating systems. This concerns their magnitude as well as their chemical composition. In order to investigate emission factors for particulate emissions and the chemical compositions of the PM emissions over typical whole day operation cycles, a project on the determination and characterisation of PM emissions from the most relevant small-scale biomass combustion systems was performed at the BIOENERGY 2020+ GmbH, Graz, Austria, in cooperation with the Institute for Process and Particle Engineering, Graz University of Technology. The project was based on test stand measurements, during which relevant operation parameters (gaseous emissions, boiler load, flue gas temperature, combustion chamber temperature etc.) as well as PM emissions have been measured and PM samples have been taken and forwarded to chemical analyses. Firstly, typical whole day operation cycles for residential biomass combustion systems were specified for the test runs. Thereby automatically fed and automatically controlled boilers, manually fed and automatically controlled boilers as well as manually fed stoves were distinguished. The results show a clear correlation between the gaseous emissions (CO and OGC) and the PM{sub 1} emissions. It is indicated that modern biomass combustion systems emit significantly less gaseous and PM emissions than older technologies (up to a factor of 100). Moreover, automatically fed systems emit much less gaseous and PM emissions than manually fed batch-combustion systems. PM emissions from modern and automatically controlled systems mainly consist of alkaline metal salts, while organic aerosols and soot dominate the composition of aerosols from old and not automatically controlled systems. As an important result comprehensive data

  4. Saving-enhanced memory: the benefits of saving on the learning and remembering of new information.

    Science.gov (United States)

    Storm, Benjamin C; Stone, Sean M

    2015-02-01

    With the continued integration of technology into people's lives, saving digital information has become an everyday facet of human behavior. In the present research, we examined the consequences of saving certain information on the ability to learn and remember other information. Results from three experiments showed that saving one file before studying a new file significantly improved memory for the contents of the new file. Notably, this effect was not observed when the saving process was deemed unreliable or when the contents of the to-be-saved file were not substantial enough to interfere with memory for the new file. These results suggest that saving provides a means to strategically off-load memory onto the environment in order to reduce the extent to which currently unneeded to-be-remembered information interferes with the learning and remembering of other information. © The Author(s) 2014.

  5. Deep Residential Retrofits in East Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Boudreaux, Philip R [ORNL; Hendrick, Timothy P [ORNL; Christian, Jeffrey E [ORNL; Jackson, Roderick K [ORNL

    2012-04-01

    Executive Summary Oak Ridge National Laboratory (ORNL) is furthering residential energy retrofit research in the mixed-humid climate of East Tennessee by selecting 10 homes and guiding the homeowners in the energy retrofit process. The homeowners pay for the retrofits, and ORNL advises which retrofits to complete and collects post-retrofit data. This effort is in accordance with the Department of Energy s Building America program research goal of demonstrating market-ready energy retrofit packages that reduce home energy use by 30 50%. Through this research, ORNL researchers hope to understand why homeowners decide to partake in energy retrofits, the payback of home energy retrofits, and which retrofit packages most economically reduce energy use. Homeowner interviews help the researchers understand the homeowners experience. Information gathered during the interviews will aid in extending market penetration of home energy retrofits by helping researchers and the retrofit industry understand what drives homeowners in making positive decisions regarding these retrofits. This report summarizes the selection process, the pre-retrofit condition, the recommended retrofits, the actual cost of the retrofits (when available), and an estimated energy savings of the retrofit package using EnergyGauge . Of the 10 households selected to participate in the study, only five completed the recommended retrofits, three completed at least one but no more than three of the recommended retrofits, and two households did not complete any of the recommended retrofits. In the case of the two homes that did none of the recommended work, the pre-retrofit condition of the homes and the recommended retrofits are reported. The five homes that completed the recommended retrofits are monitored for energy consumption of the whole house, appliances, space conditioning equipment, water heater, and most of the other circuits with miscellaneous electric loads (MELs) and lighting. Thermal comfort is

  6. Life-cycle energy of residential buildings in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Ries, Robert J.; Wang, Yaowu

    2013-01-01

    In the context of rapid urbanization and new construction in rural China, residential building energy consumption has the potential to increase with the expected increase in demand. A process-based hybrid life-cycle assessment model is used to quantify the life-cycle energy use for both urban and rural residential buildings in China and determine the energy use characteristics of each life cycle phase. An input–output model for the pre-use phases is based on 2007 Chinese economic benchmark data. A process-based life-cycle assessment model for estimating the operation and demolition phases uses historical energy-intensity data. Results show that operation energy in both urban and rural residential buildings is dominant and varies from 75% to 86% of life cycle energy respectively. Gaps in living standards as well as differences in building structure and materials result in a life-cycle energy intensity of urban residential buildings that is 20% higher than that of rural residential buildings. The life-cycle energy of urban residential buildings is most sensitive to the reduction of operational energy intensity excluding heating energy which depends on both the occupants' energy-saving behavior as well as the performance of the building itself. -- Highlights: •We developed a hybrid LCA model to quantify the life-cycle energy for urban and rural residential buildings in China. •Operation energy in urban and rural residential buildings is dominant, varying from 75% to 86% of life cycle energy respectively. •Compared with rural residential buildings, the life-cycle energy intensity of urban residential buildings is 20% higher. •The life-cycle energy of urban residential buildings is most sensitive to the reduction of daily activity energy

  7. Assessment of the impact of energy-efficient household appliances on the electricity consumption in the residential sector of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Claudia; Ghisi, Enedir

    2010-09-15

    In many countries the residential sector accounts for about 20.0% of the electricity consumption, which increases the concern about energy savings. The main objective of this paper is to assess the impact of energy-efficient household appliances on the electricity consumption of the Brazilian residential sector by using electricity end-use data. The consumption of each appliance is obtained based on official data from existing studies, being estimated for a dwelling and for the whole residential sector. Results indicate that the potential for energy savings by replacing existing appliances with energy-efficient household appliances would be 29.5% in the residential sector of Brazil.

  8. Energy Savings from Industrial Water Reductions

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Prakash; McKane, Aimee; de Fontaine, Andre

    2015-08-03

    Although it is widely recognized that reducing freshwater consumption is of critical importance, generating interest in industrial water reduction programs can be hindered for a variety of reasons. These include the low cost of water, greater focus on water use in other sectors such as the agriculture and residential sectors, high levels of unbilled and/or unregulated self-supplied water use in industry, and lack of water metering and tracking capabilities at industrial facilities. However, there are many additional components to the resource savings associated with reducing site water use beyond the water savings alone, such as reductions in energy consumption, greenhouse gas emissions, treatment chemicals, and impact on the local watershed. Understanding and quantifying these additional resource savings can expand the community of businesses, NGOs, government agencies, and researchers with a vested interest in water reduction. This paper will develop a methodology for evaluating the embedded energy consumption associated with water use at an industrial facility. The methodology developed will use available data and references to evaluate the energy consumption associated with water supply and wastewater treatment outside of a facility’s fence line for various water sources. It will also include a framework for evaluating the energy consumption associated with water use within a facility’s fence line. The methodology will develop a more complete picture of the total resource savings associated with water reduction efforts and allow industrial water reduction programs to assess the energy and CO2 savings associated with their efforts.

  9. SWEEP - Save Water & Energy Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Gregory P.; Elliott, Douglas B.; Hillman, Tim C.; Hadley, Adam; Ledbetter, Marc R.; Payson, David R.

    2001-05-03

    The objective of this study was to develop, monitor, analyze, and report on an integrated resource-conservation program highlighting efficient residential appliances and fixtures. The sites of study were 50 homes in two water-constrained communities located in Oregon. The program was designed to maximize water savings to these communities and to serve as a model for other communities seeking an integrated approach to energy and water resource efficiency. The program included the installation and in-place evaluation of energy- and water-efficient devices including the following: horizontal axis clothes washers (and the matching clothes dryers), resource-efficient dishwashers, an innovative dual flush low-flow toilet, low-flow showerheads, and faucet aerators. The significance of this activity lies in its integrated approach and unique metering evaluation of individual end-use, aggregated residential total use, and system-wide energy and water benefits.

  10. Modelling and forecasting Turkish residential electricity demand

    International Nuclear Information System (INIS)

    Dilaver, Zafer; Hunt, Lester C

    2011-01-01

    This research investigates the relationship between Turkish residential electricity consumption, household total final consumption expenditure and residential electricity prices by applying the structural time series model to annual data over the period from 1960 to 2008. Household total final consumption expenditure, real energy prices and an underlying energy demand trend are found to be important drivers of Turkish residential electricity demand with the estimated short run and the long run total final consumption expenditure elasticities being 0.38 and 1.57, respectively, and the estimated short run and long run price elasticities being -0.09 and -0.38, respectively. Moreover, the estimated underlying energy demand trend, (which, as far as is known, has not been investigated before for the Turkish residential sector) should be of some benefit to Turkish decision makers in terms of energy planning. It provides information about the impact of past policies, the influence of technical progress, the impacts of changes in consumer behaviour and the effects of changes in economic structure. Furthermore, based on the estimated equation, and different forecast assumptions, it is predicted that Turkish residential electricity demand will be somewhere between 48 and 80 TWh by 2020 compared to 40 TWh in 2008. - Research highlights: → Estimated short run and long run expenditure elasticities of 0.38 and 1.57, respectively. → Estimated short run and long run price elasticities of -0.09 and -0.38, respectively. → Estimated UEDT has increasing (i.e. energy using) and decreasing (i.e. energy saving) periods. → Predicted Turkish residential electricity demand between 48 and 80 TWh in 2020.

  11. Energy saving certificates

    International Nuclear Information System (INIS)

    2005-11-01

    The French ministry of economy, finances and industry and the French agency of environment and energy mastery (Ademe) have organized on November 8, 2005, a colloquium for the presentation of the energy saving certificates, a new tool to oblige the energy suppliers to encourage their clients to make energy savings. This document gathers the transparencies presented at this colloquium about the following topics: state-of-the-art and presentation of the energy saving certificates system: presentation of the EEC system, presentation of the EEC standard operations; the energy saving certificates in Europe today: energy efficiency commitment in UK, Italian white certificate scheme, perspectives of the different European systems. (J.S.)

  12. Builder System Performance Package Targeting 30% - 40% Savings in Space Conditioning Energy Use: December 2002 - December 2003

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-06-01

    The Consortium for Advanced Residential Building (CARB) describes recommended best practices to achieve 30% - 40% energy savings without compromising health or safety in houses built in cold climates, hot-humid climates, and hot-dry climates.

  13. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    Energy Technology Data Exchange (ETDEWEB)

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  14. Strategy Guideline. High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J. [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  15. Measuring industrial energy savings

    International Nuclear Information System (INIS)

    Kelly Kissock, J.; Eger, Carl

    2008-01-01

    Accurate measurement of energy savings from industrial energy efficiency projects can reduce uncertainty about the efficacy of the projects, guide the selection of future projects, improve future estimates of expected savings, promote financing of energy efficiency projects through shared-savings agreements, and improve utilization of capital resources. Many efforts to measure industrial energy savings, or simply track progress toward efficiency goals, have had difficulty incorporating changing weather and production, which are frequently major drivers of plant energy use. This paper presents a general method for measuring plant-wide industrial energy savings that takes into account changing weather and production between the pre and post-retrofit periods. In addition, the method can disaggregate savings into components, which provides additional resolution for understanding the effectiveness of individual projects when several projects are implemented together. The method uses multivariable piece-wise regression models to characterize baseline energy use, and disaggregates savings by taking the total derivative of the energy use equation. Although the method incorporates search techniques, multi-variable least-squares regression and calculus, it is easily implemented using data analysis software, and can use readily available temperature, production and utility billing data. This is important, since more complicated methods may be too complex for widespread use. The method is demonstrated using case studies of actual energy assessments. The case studies demonstrate the importance of adjusting for weather and production between the pre- and post-retrofit periods, how plant-wide savings can be disaggregated to evaluate the effectiveness of individual retrofits, how the method can identify the time-dependence of savings, and limitations of engineering models when used to estimate future savings

  16. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for the District of Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in the District of Columbia. Moving to the 2015 IECC from the 2013 Washington DC Code base code is cost-effective for residential buildings in all climate zones in the District of Columbia.

  17. Energy saving report; Energispareredegoerelse

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-01

    Making the energy consumption more efficient in Denmark by means of energy saving are connected to the Danish government's overall National Growth Strategy. A reduced consumption of energy as a result of economic attractive energy saving initiatives leads to reduced energy costs and consequently an improvement of Denmark's competitive power. Furthermore, reducing the energy consumption decreases the vulnerability towards rising energy prices, and the security of supplies is increased. Finally energy conservation serves as a means of reducing environmental impact from the energy sector. Energy consumption is not damaging to the environment in itself, however, to the extent that energy consumption causes negative impact on the environment, e.g. through discharge of environmentally damaging substances generated during energy production, a reduction of the energy consumption will benefit the environment. Energy saving in itself does not lead to a decrease in CO{sub 2} emission in Denmark unless it is accompanied by an adjustment of CO{sub 2} quotas on production of electricity. The Danish Government emphasizes that the energy saving efforts are cost-effective both for the society and for the consumers. The energy saving report contains an updated projection of the Danish energy consumption and an evaluation of the impacts of the energy saving efforts. The impacts of more effective end use of energy are described, and an account of the barriers preventing the realization of a number of potential economic attractive energy saving initiatives is made. Finally the energy saving report presents a number of proposals for new energy saving initiatives. (BA)

  18. Post-evaluation of a ground source heat pump system for residential space heating in Shanghai China

    Science.gov (United States)

    Lei, Y.; Tan, H. W.; Wang, L. Z.

    2017-11-01

    Residents of Southern China are increasingly concerned about the space heating in winter. The chief aim of the present work is to find a cost-effective way for residential space heating in Shanghai, one of the biggest city in south China. Economic and energy efficiency of three residential space heating ways, including ground source heat pump (GSHP), air source heat pump (ASHP) and wall-hung gas boiler (WHGB), are assessed based on Long-term measured data. The results show that the heat consumption of the building is 120 kWh/m2/y during the heating season, and the seasonal energy efficiency ratio (SEER) of the GSHP, ASHP and WHGB systems are 3.27, 2.30, 0.88 respectively. Compared to ASHP and WHGB, energy savings of GSHP during the heating season are 6.2 kgce/(m2.y) and 2.2 kgce/(m2.y), and the payback period of GSHP are 13.3 and 7.6 years respectively. The sensitivity analysis of various factors that affect the payback period is carried out, and the results suggest that SEER is the most critical factor affecting the feasibility of ground source heat pump application, followed by building load factor and energy price factor. These findings of the research have led the author to the conclusion that ground source heat pump for residential space heating in Shanghai is a good alternative, which can achieve significant energy saving benefits, and a good system design and operation management are key factors that can shorten the payback period.

  19. Preliminary Study of Perception and Consumer Behaviour Towards Energy Saving for Household Appliances: A Case of Makassar

    Science.gov (United States)

    Syam Akil, Yusri; Mangngenre, Saiful; Mawar, Sri; Amar, Kifayah

    2018-03-01

    Electricity load has tendency to increase over the time. Therefore, efforts to maintain a balance between electricity supply and demand such as increasing energy saving related to the use of home electricity appliances are urgently needed. In general, one of the household appliances which consumes relatively high electricity energy is refrigerator. The purpose of this study is to analyze residential consumers perceptions and their behaviours about electricity energy saving in relation to the usage of household appliances in Makassar, Indonesia particularly for refrigerator. Moreover, typical relationship between perceptions and consumers behaviours is also analyzed by composed two regression models, namely model for usage behaviour (UREFm model) and model for habitual behaviour (HREFm model) by using general perception, specific perception, and external factors as explanation variables. To collect data, a questionnaire was designed for survey which involved 40 respondents as a preliminary study and then statistical tests including regression analysis were applied to analyze usable data. The target of respondent was an owner of a house in Makassar with installed power capacity at least 900 VA. Reliability test shown that all items in the developed questionnaire can be used for main survey as obtained Cronbach’s alpha values were above 0.6. Evaluation for consumers perceptions on energy saving in relation to demographic aspect using mean and Standard Deviation values indicated some significant differences. Other results regarding regression analysis shown that both composed models were well validated and had quite good fitness degree with adjusted R-squared values around 49.31% for UREFm model and 80.90% for HREFm model. Among considered variables, specific perception, and external factors were found have significant influence to the usage and habitual behaviours of consumers as confirmed by their p-values in each model below 0.05. Findings of this research can be

  20. Energy saving house utilizing photovoltaic system. 3; Taiyoko hatsuden wo donyushita sho energy jutaku. 3

    Energy Technology Data Exchange (ETDEWEB)

    Itsumi, J. [Kumamoto Institute of Technology, Kumamoto (Japan)

    1997-11-25

    Various measurements are conducted in an energy-efficient house equipped with a photovoltaic power generation system and actually lived in by people, and matching between the household load and photovoltaic power generation, and the consumption of power, are examined. As the result investigation of power consumption in the house, it is found that 13.31kWh is consumed in the daytime in winter, and 14.15kWh in summer. Thirty-two 153W modules are used, and they produce 12.74kWh in four hours on a fine summer day, which amount nearly satisfies the demand of the household. As for the records during a year beginning in May, 1996, it is found that an annual amount of 4326kWh was generated, with 68% being surplus and 32% consumed for the household. Details of the household consumption were that 49.2% was consumed for house heating and cooling and 34.1% for cooking, the two in total occupying more than 80% of the whole household consumption. Energy-saving behavior is evaluated by comparing the energy-efficient house with some ordinary residential houses in Kumamoto City, and it is found that there is a yearly difference of 104,310 yen in electricity bill or 47% in energy saving effect. 5 refs., 4 figs., 4 tabs.

  1. Realized Cost Savings 2016

    Data.gov (United States)

    Department of Veterans Affairs — This dataset is provided as a requirement of OMB’s Integrated Data Collection (IDC) and links to VA’s Realized Cost Savings and Avoidances data in JSON format. Cost...

  2. Savings potential of ENERGY STAR (registered trademark) voluntary labeling programs

    International Nuclear Information System (INIS)

    Webber, Carrie A.; Brown, Richard E.

    1998-01-01

    In 1993 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has introduced programs for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. We present potential energy, dollar and carbon savings forecasts for these programs for the period 1998 to 2010. Our target market penetration case represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide results under the assumption of 100% market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period. Finally, we assess the sensitivity of our target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future energy prices, and higher or lower rates of carbon emission by electricity generators. The potential savings of ENERGY STAR are substantial. If all purchasers chose Energy Star-compliant products instead of standard efficiency products over the next 15 years, they would save more than$100 billion on their energy bills during those 15 years. (Bill savings are in 1995 dollars, discounted at a 4% real discount rate.)

  3. Empirically Derived Strength of Residential Roof Structures for Solar Installations.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Stephen F.; Sanchez, Alfred; Campos, Ivan A.; Gerstle, Walter H.

    2014-12-01

    Engineering certification for the installation of solar photovoltaic (PV) modules on wood roofs is often denied because existing wood roofs do not meet structural design codes. This work is intended to show that many roofs are actually sufficiently strong given the conservatism in codes, documented allowable strengths, roof structure system effects, and beam composite action produced by joist-sheathing interaction. This report provides results from a testing program to provide actual load carrying capacity of residential rooftops. The results reveal that the actual load carrying capacity of structural members and systems tested are significantly stronger than allowable loads provided by the International Residential Code (IRC 2009) and the national structural code found in Minimum Design Loads for Buildings and Other Structures (ASCE 7-10). Engineering analysis of residential rooftops typically ignores the system affects and beam composite action in determining rooftop stresses given a potential PV installation. This extreme conservatism combined with conservatism in codes and published allowable stress values for roof building materials (NDS 2012) lead to the perception that well built homes may not have adequate load bearing capacity to enable a rooftop PV installation. However, based on the test results presented in this report of residential rooftop structural systems, the actual load bearing capacity is several times higher than published values (NDS 2012).

  4. Condition assessment and strengthening of residential units

    Directory of Open Access Journals (Sweden)

    Tatheer Zahra

    2014-01-01

    Full Text Available About 40, ground plus one (G+1 residential units were designed using a hybrid structural framing system (RC frame and load bearing walls. A few months after the completion of the ground floor of the residential units, cracks appeared at several locations in the structure. Field and Laboratory testing was conducted to ascertain the in situ strength of concrete and steel reinforcement. The results of the experimental work were used in the analytical ETABS model for the structural stability calculations. The results indicated that residential units were marginally safe in the existing condition (completed ground floor, but the anticipated construction of the floor above the ground floor (G+1 could not be carried out as the strength of the structural system was inadequate. To increase the safety of existing ground floor and to provide the option of the construction of one floor above, rehabilitation and strengthening design was performed. The proposed strengthening design made use of welded wire fabric (WWF and carbon fibre reinforced polymer (CFRP laminates/sheets for the strengthening of walls, columns and slabs. The residential units will be strengthened in the near future.

  5. Comparative economic assessment of the energy performance of air-conditioning within the Mexican residential sector

    Directory of Open Access Journals (Sweden)

    Ivan Oropeza-Perez

    2016-11-01

    Full Text Available This work shows a sensitivity analysis of the economic impact of different energy performances of air-conditioning within the Mexican housing sector. For this purpose, a cooling-load calculator program in function of the indoor temperature is developed. The program also calculates the electricity consumption along with the expenditure with the different residential rates of the Mexican Federal Commission of Electricity (CFE, initials in Spanish set according to the season of the year and zone of the country. After the results onto the national-scale scenario are validated with the literature, a sensitivity analysis is carried out by changing three parameters that are considered as influential on the consumption and which can be considered as energy saving strategies. With these strategies, it is found that the indoor temperature decrease due to the use of a passive cooling system is the most important characteristic to take into account followed by the coefficient of performance (COP of the air-conditioning and the increase of the comfort temperature set-point, respectively. Thereby, an economic analysis is carried out, finding an annual saving up to 770 USD within a single air-conditioned dwelling having a payback period of 3 years for using a combination of passive cooling techniques and increasing the comfort temperature set-point; or a 2 years payback period if the air-conditioning is changed by a high-efficient equipment.

  6. Residential Mechanical Precooling

    Energy Technology Data Exchange (ETDEWEB)

    German, a. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2014-12-01

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  7. Residential Solar Systems.

    Science.gov (United States)

    Fulkerson, Dan

    This publication contains student and teacher instructional materials for a course in residential solar systems. The text is designed either as a basic solar course or as a supplement to extend student skills in areas such as architectural drafting, air conditioning and refrigeration, and plumbing. The materials are presented in four units…

  8. Integrated Urban System and Energy Consumption Model: Residential Buildings

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available This paper describes a segment of research conducted within the project PON 04a2_E Smart Energy Master for the energetic government of the territory conducted by the Department of Civil, Architectural and Environment Engineering, University of Naples "Federico II".  In particular, this article is part of the study carried out for the definition of the comprehension/interpretation model that correlates buildings, city’s activities and users’ behaviour in order to promote energy savings. In detail, this segment of the research wants to define the residential variables to be used in the model. For this purpose a knowledge framework at international level has been defined, to estimate the energy requirements of residential buildings and the identification of a set of parameters, whose variation has a significant influence on the energy consumption of residential buildings.

  9. 78 FR 48661 - Notice of Petition for Waiver of Whirlpool Corporation From the Department of Energy Residential...

    Science.gov (United States)

    2013-08-09

    ... use system'' saves water from the final rinse of a given dishwasher cycle for use in a subsequent.... Background The dishwasher ``water use system'' saves water from the final rinse of a given dishwasher cycle... Petition for Waiver of Whirlpool Corporation From the Department of Energy Residential Dishwasher Test...

  10. Estimating Response to Price Signals in Residential Electricity Consumption

    OpenAIRE

    Huang, Yizhang

    2013-01-01

    Based on a previous empirical study of the effect of a residential demand response program in Sala, Sweden, this project  investigated the economic consequences of consumer behaviour change after a demand-based time of use distribution tariff was employed. The economic consequences of consumers were proven to be disadvantageous in terms of unit electricity price. Consumers could achieve more electricity bill saving through stabilising their electricity consumption during peak hours, and this ...

  11. Estimating the cost of saving electricity through U.S. utility customer-funded energy efficiency programs

    International Nuclear Information System (INIS)

    Hoffman, Ian M.; Goldman, Charles A.; Rybka, Gregory; Leventis, Greg; Schwartz, Lisa; Sanstad, Alan H.; Schiller, Steven

    2017-01-01

    The program administrator and total cost of saved energy allow comparison of the cost of efficiency across utilities, states, and program types, and can identify potential performance improvements. Comparing program administrator cost with the total cost of saved energy can indicate the degree to which programs leverage investment by participants. Based on reported total costs and savings information for U.S. utility efficiency programs from 2009 to 2013, we estimate the savings-weighted average total cost of saved electricity across 20 states at $0.046 per kilowatt-hour (kW h), comparing favorably with energy supply costs and retail rates. Programs targeted on the residential market averaged $0.030 per kW h compared to $0.053 per kW h for non-residential programs. Lighting programs, with an average total cost of $0.018 per kW h, drove lower savings costs in the residential market. We provide estimates for the most common program types and find that program administrators and participants on average are splitting the costs of efficiency in half. More consistent, standardized and complete reporting on efficiency programs is needed. Differing definitions and quantification of costs, savings and savings lifetimes pose challenges for comparing program results. Reducing these uncertainties could increase confidence in efficiency as a resource among planners and policymakers. - Highlights: • The cost of saved energy allows comparisons among energy resource investments. • Findings from the most expansive collection yet of total energy efficiency program costs. • The weighted average total cost of saved electricity was $0.046 for 20 states in 2009–2013. • Averages in the residential and non-residential sectors were $0.030 and $0.053 per kW h, respectively. • Results strongly indicate need for more consistent, reliable and complete reporting on efficiency programs.

  12. SOME FEATURES OF THE POWER SUPPLY OF RESIDENTIAL BUILDINGS DURING THE HEATING SEASON

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2017-01-01

    Full Text Available A large proportion of consumption of different types of energy by the residential sector, especially in the heating period, makes the energy efficiency of buildings without considering the loss of fuel with a significant reduction in hourly load on the generators, especially at night, already insufficient for real energy savings. Therefore in Belarus, in order to attract the consumer, electricity tariff for heating at night hours (from 11 p.m. to 6.00 a.m. is three times cheaper than at any other time. Significant increase of the electricity consumption of at night could be achieved by using heat accumulators for heating and hot water supply to the residential sector. Particularly effective are water accumulators of heat and accumulators of underfloor heating that enable to use a coolant with a temperature of 40 оC and to increase the useful supply of heat. The use of heat accumulators for daily heating, ventilation and hot water supply of buildings significantly reduces the cost of creating the infrastructure of the territory under construction by eliminating the necessity of running the distribution network of heat or gas supply. The use of the heat accumulators is necessary due to the increase of the time-weighted average outdoor temperature. The mentioned increase in the City of Minsk in the heating season is of about 0.1 °C per year in average, and as for the last 20 years, the increase has led to a reduction of the required heat load on the premises by about 10 %. Research and project work on choosing the most effective options for the arrangement and use the heat accumulators in buildings of the various functions ought to be fulfilled in order to make the application of heat accumulators successful. In this respect civil and power engineers as well as operators should work together so to determine the chronological, technical and economic conditions of charging and use of heat accumulators.

  13. Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)

    Energy Technology Data Exchange (ETDEWEB)

    Starke, Michael R [ORNL; Onar, Omer C [ORNL; DeVault, Robert C [ORNL

    2011-09-01

    Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The power system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads

  14. Home Appliance Load Scheduling with SEMIAH

    DEFF Research Database (Denmark)

    Jacobsen, Rune Hylsberg; Ghasem Azar, Armin; Zhang, Qi

    2015-01-01

    The European research project SEMIAH aims at designing a scalable infrastructure for residential demand response. This paper presents the progress towards a centralized load scheduling algorithm for controlling home appliances taking power grid constraints and satisfaction of consumers into account....

  15. Evaluating Cool Impervious Surfaces: Application to an Energy-Efficient Residential Roof and to City Pavements

    Science.gov (United States)

    Rosado, Pablo Javier

    Summer urban heat island (UHI) refers to the phenomenon of having higher urban temperatures compared to the those in surrounding suburban and rural areas. Higher urban air temperatures lead to increased cooling demand, accelerates the formation of smog, and contributes to the generation of greenhouse gas emissions. Dark-colored impervious surfaces cover a significant fraction of an urban fabric, and as hot and dry surfaces, are a major contributor to the UHI effect. Adopting solar-reflective ("cool") roofs and cool pavements, and increasing the urban vegetation, are strategies proven to mitigate urban heat islands. These strategies often have an "indirect" effect (ambient cooling) and "direct" effect (change in solar energy flux entering the conditioned space) on the energy use of buildings. This work investigates some elements of the UHI mitigation strategies, specifically the annual direct effect of a cool roof, and the direct and indirect effects of cool pavements. The first topic researched in this paper consists in an experimental assessment of the direct effects from replacing a conventional dark roof with a highly energy-efficient cool roof. The study measures and calculates the annual benefits of the cool roof on the cooling and heating energy uses, and the associated emission reductions. The energy savings attributed to the cool roof are validated by measuring the difference between the homes in the heat loads that entered the conditioned space through the ceiling and HVAC ducts. Fractional annual cooling energy savings (26%) were 2.6 times the 10% daily cooling energy savings measured in a previous study that used a white coating to increase the albedo of an asphalt shingle roof by the same amount (0.44). The improved cooling energy savings (26% vs. 10%) may be attributed to the cool tile's above-sheathing ventilation, rather than to its high thermal mass. The roof also provided energy savings during the heating season, yielding fractional annual gas

  16. Save Our Water Resources.

    Science.gov (United States)

    Bromley, Albert W.

    The purpose of this booklet, developed as part of Project SOAR (Save Our American Resources), is to give Scout leaders some facts about the world's resources, the sources of water pollution, and how people can help in obtaining solutions. Among the topics discussed are the world's water resources, the water cycle, water quality, sources of water…

  17. Sign Up for Savings.

    Science.gov (United States)

    Kennedy, Mike

    2002-01-01

    Discusses performance service contracts between educational facilities and energy services companies, in which the company provides the money for energy-efficiency improvements and the school pays the company an annual fee. The company guarantees the savings will meet or exceed the fee. (EV)

  18. Saving Malta's music memory

    OpenAIRE

    Sant, Toni

    2013-01-01

    Maltese music is being lost. Along with it Malta loses its culture, way of life, and memories. Dr Toni Sant is trying to change this trend through the Malta Music Memory Project (M3P) http://www.um.edu.mt/think/saving-maltas-music-memory-2/

  19. Residential hot water distribution systems: Roundtablesession

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  20. Comparison of Clustering Techniques for Residential Energy Behavior using Smart Meter Data

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ling; Lee, Doris; Sim, Alex; Borgeson, Sam; Wu, Kesheng; Spurlock, C. Anna; Todd, Annika

    2017-03-21

    Current practice in whole time series clustering of residential meter data focuses on aggregated or subsampled load data at the customer level, which ignores day-to-day differences within customers. This information is critical to determine each customer’s suitability to various demand side management strategies that support intelligent power grids and smart energy management. Clustering daily load shapes provides fine-grained information on customer attributes and sources of variation for subsequent models and customer segmentation. In this paper, we apply 11 clustering methods to daily residential meter data. We evaluate their parameter settings and suitability based on 6 generic performance metrics and post-checking of resulting clusters. Finally, we recommend suitable techniques and parameters based on the goal of discovering diverse daily load patterns among residential customers. To the authors’ knowledge, this paper is the first robust comparative review of clustering techniques applied to daily residential load shape time series in the power systems’ literature.

  1. Technical Support Document: 50% Energy Savings Design Technology Packages for Highway Lodging Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei; Gowri, Krishnan; Lane, Michael D.; Thornton, Brian A.; Rosenberg, Michael I.; Liu, Bing

    2009-09-28

    This Technical Support Document (TSD) describes the process, methodology and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document intended to provide recommendations for achieving 50% energy savings in highway lodging properties over the energy-efficiency levels contained in ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

  2. Guidelines for residential commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to

  3. Residential space heating systems: energy conservation and economics

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, D.L.

    1979-01-01

    Annual energy use for residential space heating was 8.6 Quads in 1975. This accounted for over 50% of the energy used in the residential sector and 12% of energy used in the U.S. that year. Because residential space heating accounts for such a large share of energy use, improvements in new space heating systems could have significant long-term conservation effects. Several energy-saving design changes in residential space heating systems are examined to determine their energy conservation potential and cost effectiveness. Both changes in conventional and advanced systems are considered. Conventional design changes include options such as the flue damper, sealed combustion, electric ignition and improved heat exchangers. Some of the advanced designs include the gas heat pump, pulse combustion furnace, and dual speed compressor heat pump. The energy use and cost estimates are developed from current literature, heating and equipment manufacturers and dealers, and discussions with individuals doing research and testing on residential space heating equipment. Results indicate that implementation of conventional design changes can reduce energy use of representative gas, oil, and electric space heating systems by 26, 20, and 57%, respectively. These changes increase the capital cost of the systems by 27, 16, and 26%. Advanced gas and electric space heating systems can reduce energy use 45 and 67%, respectively. However, the advanced systems cost 80 and 35% more than representative gas and electric systems.

  4. Residential Indoor Temperature Study

    Energy Technology Data Exchange (ETDEWEB)

    Booten, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robertson, Joseph [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, Dane [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heaney, Mike [Arrow Electronics, Centennial, CO (United States); Brown, David [Univ. of Virginia, Charlottesville, VA (United States); Norton, Paul [Norton Energy Research and Development, Boulder, CO (United States); Smith, Chris [Ingersoll-Rand Corp., Dublin (Ireland)

    2017-04-07

    In this study, we are adding to the body of knowledge around answering the question: What are good assumptions for HVAC set points in U.S. homes? We collected and analyzed indoor temperature data from US homes using funding from the U.S. Department of Energy's Building America (BA) program, due to the program's reliance on accurate energy simulation of homes. Simulations are used to set Building America goals, predict the impact of new building techniques and technologies, inform research objectives, evaluate home performance, optimize efficiency packages to meet savings goals, customize savings approaches to specific climate zones, and myriad other uses.

  5. High Performance Residential Housing Units at U.S. Coast Guard Base Kodiak: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Romero, R.; Hickey, J.

    2013-10-01

    The United States Coast Guard (USCG) constructs residential housing throughout the country using a basic template that must meet the minimum Leadership in Energy and Environmental Design (LEED) Silver criteria or better for the units. In Kodiak, Alaska, USCG is procuring between 24 and 100 residential multi-family housing units. Priorities for the Kodiak project were to reduce overall energyconsumption by at least 20% over existing units, improve envelope construction, and evaluate space heating options. USCG is challenged with maintaining similar existing units that have complicated residential diesel boilers. Additionally, fuel and material costs are high in Kodiak. While USCG has worked to optimize the performance of the housing units with principles of improved buildingenvelope, the engineers realize there are still opportunities for improvement, especially within the heating, ventilation, and air conditioning (HVAC) system and different envelope measures. USCG staff also desires to balance higher upfront project costs for significantly reduced life-cycle costs of the residential units that have an expected lifetime of 50 or more years. To answer thesequestions, this analysis used the residential modeling tool BEoptE+ to examine potential energy- saving opportunities for the climate. The results suggest criteria for achieving optimized housing performance at the lowest cost. USCG will integrate the criteria into their procurement process. To achieve greater than 50% energy savings, USCG will need to specify full 2x 6 wood stud R-21 insulationwith two 2 inches of exterior foam, R-38 ceiling insulation or even wall insulation in the crawl space, and R-49 fiberglass batts in a the vented attic. The air barrier should be improved to ensure a tight envelope with minimal infiltration to the goal of 2.0 ACH50. With the implementation of an air source heat pump for space heating requirements, the combination of HVAC and envelope savings inthe residential unit can save

  6. Save More Tomorrow: Using Behavioral Economics to Increase Employee Saving.

    Science.gov (United States)

    Thaler, Richard H.; Benartzi, Shlomo

    2004-01-01

    As firms switch from defined-benefit plans to defined-contribution plans, employees bear more responsibility for making decisions about how much to save. The employees who fail to join the plan or who participate at a very low level appear to be saving at less than the predicted life cycle savings rates. Behavioral explanations for this behavior…

  7. We Need to Talk... Developing Communicating Power Supplies to Monitor & Control Miscellaneous Electric Loads

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Andrew; Lanzisera, Steven; Liao, Anna; Meier, Alan

    2014-08-11

    Plug loads represent 30percent of total electricity use in residential buildings. Significant energy savings would result from an accurate understanding of which miscellaneous electric devices are using energy, at what time, and in what quantity. Commercially available plug load monitoring and control solutions replace or limit the attached device's native controls - forcing the user to adapt to a separate set of controls associated with the monitoring and control hardware. A better solution is integration of these capabilities at the power supply level. In this paper, we demonstrate a method achieving this integration. Our solution allows unobtrusive power monitoring and control while retaining native device control features. Further, our prototype enables intelligent behaviors by allowing devices to respond to the state of one another automatically. The CPS enables energy savings while demonstrating an added level of functionality to the user. If CPS technology became widespread in devices, a combination of automated and human interactive solutions would enable high levels of energy savings in buildings.

  8. Load shift control schemes for residential cooling devices. Results of a field test; Ergebnisse eines Feldtests zum oszillationsfreien Lastmanagement von Kuehl-/Gefriergeraeten in Privathaushalten auf Basis von Temperaturvorgaben

    Energy Technology Data Exchange (ETDEWEB)

    Hinrichs, Christian [Oldenburg Univ. (Germany); Luensdorf, Ontje; Sonnenschein, Michael [OFFIS Institut fuer Informatik, Oldenburg (Germany); Loewenstein, Claas [EWE AG, Oldenburg (Germany)

    2012-07-01

    Due to the increasing integration of renewable energy resources with fluctuating feed-in of electrical power, the use of flexible loads in energy management systems gains more and more interest lately. However, because of technical restrictions, direct control of the power consumption of such appliances is usually not feasible. The contribution at hand presents a control mechanism for domestic cooling devices, which is based on temperature set points and thus can be realized using standard comfort functions. The proposed mechanism is able to actively reverse synchronizations of device states, and hence prevents oscillations in the resulting load curve. Results of a field test are shown subsequently. (orig.)

  9. 'Nothing works' in secure residential youth care?

    NARCIS (Netherlands)

    Souverein, F.A.; van der Helm, G.H.P.; Stams, G.J.J.M.

    2013-01-01

    A debate about the effectiveness of secure residential youth care is currently going on. While some continue to support secure residential youth care, others conclude that ‘nothing works’ in secure residential youth care, and argue that non-residential treatment is superior to secure residential

  10. Re-thinking residential mobility

    Science.gov (United States)

    van Ham, Maarten; Findlay, Allan M.

    2015-01-01

    While researchers are increasingly re-conceptualizing international migration, far less attention has been devoted to re-thinking short-distance residential mobility and immobility. In this paper we harness the life course approach to propose a new conceptual framework for residential mobility research. We contend that residential mobility and immobility should be re-conceptualized as relational practices that link lives through time and space while connecting people to structural conditions. Re-thinking and re-assessing residential mobility by exploiting new developments in longitudinal analysis will allow geographers to understand, critique and address pressing societal challenges. PMID:27330243

  11. Large-Scale Residential Demolition

    Science.gov (United States)

    The EPA provides resources for handling residential demolitions or renovations. This includes planning, handling harmful materials, recycling, funding, compliance assistance, good practices and regulations.

  12. Contribution of promoting the green residence assessment scheme to energy saving

    International Nuclear Information System (INIS)

    Huang, Zhiyu; Yuan, Hongping; Shen, Liyin

    2012-01-01

    Green residence development has been one of the important strategies for promoting sustainable urban development. Governments throughout the world have been encouraging property developers to deliver green properties. In line with this development, governments have been implementing various assessment programs to certify green residential buildings with the aim of contributing to sustainable urban development. With reference to the Chinese construction practice, this paper examines the effectiveness of the green residence assessment scheme toward its defined aim through investigating the contents and procedures of the green residence assessment scheme by referring to the practices of Chongqing city in western China. Based on the results of five case studies and five semi-structured interviews, this study reveals the significant contribution from implementing the green residence assessment scheme particularly to energy saving in residential buildings. Further, the green residence assessment scheme promotes the application of green building materials and green construction technologies in the entire process of delivering and operating residential buildings. The findings provide valuable references for further investigating alternative methods to achieve better energy saving in developing residential buildings. - Highlights: ► Energy saving in residence development is important for sustainable urban development. ► Green residence assessment scheme contributes significantly to energy saving in residences. ► Green residence assessment promotes application of environmentally friendly building materials and technologies

  13. Economic aspects of possible residential heating conservation

    Energy Technology Data Exchange (ETDEWEB)

    Hopkowicz, M.; Szul, A. [Technical Univ., Cracow (Poland)

    1995-12-31

    The paper presents methods of evaluation of energy and economy related effects of different actions aimed at conservation in residential buildings. It identifies also the method of selecting the most effective way of distribution funds assigned to weatherization as well as necessary improvements to be implemented within the heating node and the internal heating system of the building. The analysis of data gathered for four 11-stories high residential buildings of {open_quotes}Zeran{close_quotes} type being subject of the Conservation Demonstrative Project, included a differentiated scope of weatherization efforts and various actions aimed at system upgrading. Basing upon the discussion of the split of heat losses in a building as well as the established energy savings for numerous options of upgrading works, the main problem has been defined. It consists in optimal distribution of financial means for the discussed measures if the total amount of funds assigned for modifications is defined. The method based upon the principle of relative increments has been suggested. The economical and energy specifications of the building and its components, required for this method have also been elaborated. The application of this method allowed to define the suggested optimal scope of actions within the entire fund assigned for the comprehensive weatherization.

  14. Social Capital and Savings Behavior

    DEFF Research Database (Denmark)

    Newman, Carol; Tarp, Finn; Khai, Luu Duc

    In this paper, we analyze household savings in rural Vietnam paying particular attention to the factors that determine the proportion of savings held as formal deposits. Our aim is to explore the extent to which social capital can play a role in promoting formal savings behavior. Social capital...

  15. Saving water through global trade

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; Savenije, H.H.G.

    2005-01-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water

  16. ASHRAE and residential ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.

    2003-10-01

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the

  17. Energy Saving by Chopping off Peak Demand Using Day Light

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Maitra

    2011-08-01

    Full Text Available An artificial intelligent technique has been implemented in this research using real time datas to calculate how much energy can be chopped from peak load demand. The results are based on real time data that are taken from power delivering centers. These datas do reflect the present condition of power and a solution to those critical conditions during the peak period. These are done in such a way such that helps in judicious scheduling of load. The time based load scheduling has been done so as to understand the basic criteria for solving power crisis during morning peak and early evening peak. The sunray availability and percentage of load that will use day light saving (DLS technique has been taken into account in this work. The results shows that about 0.5% to 1% of load can be shedded off from the peak load period which otherwise is reduction of power. Thus it otherwise also means that an equivalent amount of energy is saved which amounts to a large saving of national money. This result is obtained on monthly and even daily basis. Thus this paper justifies DLS gives a new renewable technique to save energy.

  18. Solar ejector refrigerant system in China’s residential buildings

    Directory of Open Access Journals (Sweden)

    Zheng Hui-Fan

    2014-01-01

    Full Text Available A simulation program describing the performance of solar ejector refrigerant system for air conditioning of China’s residential buildings was established. Hourly performance of the system under different operate conditions, the collector efficiency, coefficient of performance, cooling capacity and cooling load were analyzed. It is found that the collector efficiency and the overall coefficient of performance increase first and then decline, and it can be concluded that the application of solar ejector refrigerant system will have a better developmental prospect in China’s residential buildings.

  19. Savings for the Poor

    OpenAIRE

    Ignacio Mas

    2010-01-01

    This paper reviews the relevance of formal financial services – in particular, savings – to poor people, the economic factors that have hindered the mass-scale delivery of such services in developing countries, and the technology-based opportunities that exist today to make massive gains in financial inclusion. It also highlights the benefits to government from universal financial access, as well as the key policy enablers that would need to be put in place to allow the necessary innovati...

  20. Water Saving for Development

    Science.gov (United States)

    Zacharias, Ierotheos

    2013-04-01

    The project "Water Saving for Development (WaS4D)" is financed by European Territorial Cooperational Programme, Greece-Italy 2007-2013, and aims at developing issues on water saving related to improvement of individual behaviors and implementing innovative actions and facilities in order to harmonize policies and start concrete actions for a sustainable water management, making also people and stakeholders awake to water as a vital resource, strategic for quality of life and territory competitiveness. Drinkable water saving culture & behavior, limited water resources, water supply optimization, water resources and demand management, water e-service & educational e-tools are the key words of WaS4D. In this frame the project objectives are: • Definition of water need for domestic and other than domestic purposes: regional and territorial hydro-balance; • promotion of locally available resources not currently being used - water recycling or reuse and rainwater harvesting; • scientific data implementation into Informative Territorial System and publication of geo-referred maps into the institutional web sites, to share information for water protection; • participated review of the regulatory framework for the promotion of water-efficient devices and practices by means of the definition of Action Plans, with defined targets up to brief (2015) and medium (2020) term; • building up water e-services, front-office for all the water issues in building agricultural, industrial and touristic sectors, to share information, procedures and instruments for the water management; • creation and publication of a user friendly software, a game, to promote sustainability for houses also addressed to young people; • creation of water info point into physical spaces called "Water House" to promote education, training, events and new advisory services to assist professionals involved in water uses and consumers; • implementation of participatory approach & networking for a

  1. Publishers: Save Authors' Time.

    Science.gov (United States)

    Moustafa, Khaled

    2017-02-02

    Scientific journals ask authors to put their manuscripts, at the submission stage, sometimes in a complex style and a specific pagination format that are time consuming while it is unclear yet that the submitted manuscripts will be accepted. In the case of rejections, authors need to submit to another journal most likely with a different style and formatting that require additional work and time. To save authors' time, publishers should allow authors to submit their manuscripts in any format and to comply with the style required by the targeted journal only in revised versions, but not at the submission step when the manuscripts are not yet approved for publication.

  2. A Case Study in Market Transformation for Residential Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Building Technologies Office

    2017-09-01

    This case study describes how the Midwest Energy Efficiency Alliance (MEEA) partnered with gas and electric utilities in Iowa to establish the Iowa residential heating, ventilation, and air conditioning System Adjustment and Verified Efficiency (HVAC SAVE) program, taking it to scale improving the performance and energy efficiency of HVAC systems, growing businesses, and gaining consumer trust.

  3. Learning to save lives!

    CERN Document Server

    2003-01-01

    They're all around you and watch over you, but you won't be aware of them unless you look closely at their office doors. There are 308 of them and they have all been given 12 hours of training with the CERN Fire Brigade. Who are they? Quite simply, those who could one day save your life at work, the CERN first-aiders. First-aiders are recruited on a volunteer basis. "Training is in groups of 10 to 12 people and a lot of emphasis is placed on the practical to ensure that they remember the life-saving techniques we show them", explains Patrick Berlinghi, a CERN first-aid instructor from TIS Division. He is looking forward to the arrival of four new instructors, which will bring the total number to twelve (eleven firemen and one member of the Medical Service). "The new instructors were trained at CERN from 16 to 24 May by Marie-Christine Boucher Da Ros (a member of the Commission Pédagogie de l'Observatoire National Français du Secourisme, the education commission of France's national first-aid body). This in...

  4. Where to place the saving obligation: Energy end-users or suppliers?

    International Nuclear Information System (INIS)

    Bertoldi, Paolo; Labanca, Nicola; Rezessy, Silvia; Steuwer, Sibyl; Oikonomou, Vlasis

    2013-01-01

    Obligations to save energy differentiate, among other features, by obliged parties. These are obligations on energy suppliers and energy end-users. Supplier obligations have been introduced in North America, Europe and Australia. Under supplier obligations energy suppliers have to comply with mandatory energy saving targets and thus they implement (directly or via third parties) energy efficiency projects on their clients’ premises, or they decide to trade certified project savings if this option is envisaged by their obligation scheme. In several emerging schemes such as the UK Carbon Reduction Commitment (CRC) Energy Efficiency Scheme, the Tokyo Emission Trading Scheme or the Perform Achieve and Trade (PAT) Scheme in India, the obligation to reduce energy consumption is placed on large end-users directly and end-users are allowed to trade emissions allowances or energy saving certificates. The paper starts with presenting these two conceptually different ways for introducing energy saving obligations. Then it analyses advantages and disadvantages of end-users obligations compared to suppliers obligations. The preliminary conclusion of the paper is that supplier obligations seem to be well-suited for the residential sector, but end-user saving obligations may offer advantages when it comes to the industrial and commercial sectors. - Highlights: • We present different ways for introducing energy saving obligations. • We analyse energy end-users obligations vs. supplier obligations. • Supplier obligations seem to be well-suited for the residential sector. • End-user obligations offer advantages in the industrial and commercial sectors

  5. Implications of Cost Effectiveness Screening Practices in a Low Natural Gas Price Environment: Case Study of a Midwestern Residential Energy Upgrade Program

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Ian M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Borgeson, Merrian Goggio [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zimring, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-04-12

    With the proliferation of statewide energy savings targets and other policies favorable to energy efficiency, savings from utility customer-funded energy efficiency programs could rise to offset much of annual load growth by 2025 (Barbose et al 2013). For these increased savings to occur, however, nearly all of these programs must pass screening for cost effectiveness. Some program administrators and state regulators are finding that conventional analyses, which only consider a narrow set of energy-savings related efficiency program benefits, are now resulting in some natural gas efficiency programs failing their cost-effectiveness criteria in the new low natural gas price environment. Regulators are considering whether to scale back or terminate gas portfolios in at least four states (WA, OR, ID, NM) because of cost-effectiveness concerns. Stakeholders in several regions of the country have asked LBNL to help assess alternatives to reducing the pursuit of energy savings in their regions. We address these requests by producing two working papers: one exploring cost-effectiveness screening policy implications of low to moderate natural gas prices, and a second assessing some of the values that policymakers may take into account in weighing the pros and cons of ending natural gas efficiency programs. In this policy brief, we lay out the challenges that low gas prices pose for cost effectiveness of an electric-gas efficiency program and portfolio. We then quantify options available to regulators and administrators who want to evaluate the tradeoffs among multiple policy objectives. A multi-measure, residential energy upgrade program in the Midwest is used as a lens to explore the implications of common and emerging cost-effectiveness policies in the context of low prices for natural gas. We illustrate the results across a range of cost-effectiveness screening options, including different discount rates, levels of test application, various benefit-cost tests, and the

  6. SWEEP - Save Water and Energy Education Program; FINAL

    International Nuclear Information System (INIS)

    Sullivan, Gregory P; Elliott, Douglas B; Hillman, Tim C; Hadley, Adam; Ledbetter, Marc R; Payson, David R

    2001-01-01

    The objective of this study was to develop, monitor, analyze, and report on an integrated resource-conservation program highlighting efficient residential appliances and fixtures. The sites of study were 50 homes in two water-constrained communities located in Oregon. The program was designed to maximize water savings to these communities and to serve as a model for other communities seeking an integrated approach to energy and water resource efficiency. The program included the installation and in-place evaluation of energy- and water-efficient devices including the following: horizontal axis clothes washers (and the matching clothes dryers), resource-efficient dishwashers, an innovative dual flush low-flow toilet, low-flow showerheads, and faucet aerators. The significance of this activity lies in its integrated approach and unique metering evaluation of individual end-use, aggregated residential total use, and system-wide energy and water benefits

  7. Profits or preferences? Assessing the adoption of residential solar thermal technologies

    International Nuclear Information System (INIS)

    Mills, Bradford F.; Schleich, Joachim

    2009-01-01

    Solar thermal technologies offer the potential to meet a substantial share of residential water and space heating needs in the EU, but current levels of adoption are low. This paper uses data from a large sample of German households to assess the effects of geographic, residence, and household characteristics on the adoption of solar thermal water and space heating technologies. In addition, the impact of solar thermal technology adoption on household energy expenditures is estimated after controlling for observed household heterogeneity in geographic, residential, and household characteristics. While evidence is found of moderate household energy expenditure savings from combined solar water and space heating systems, the findings generally confirm that low in-home energy cost savings and fixed housing stocks limit the diffusion of residential solar thermal technologies. Little evidence is found of differential adoption by distinct socio-economic groups.

  8. Hybrid LSA-ANN Based Home Energy Management Scheduling Controller for Residential Demand Response Strategy

    Directory of Open Access Journals (Sweden)

    Maytham S. Ahmed

    2016-09-01

    Full Text Available Demand response (DR program can shift peak time load to off-peak time, thereby reducing greenhouse gas emissions and allowing energy conservation. In this study, the home energy management scheduling controller of the residential DR strategy is proposed using the hybrid lightning search algorithm (LSA-based artificial neural network (ANN to predict the optimal ON/OFF status for home appliances. Consequently, the scheduled operation of several appliances is improved in terms of cost savings. In the proposed approach, a set of the most common residential appliances are modeled, and their activation is controlled by the hybrid LSA-ANN based home energy management scheduling controller. Four appliances, namely, air conditioner, water heater, refrigerator, and washing machine (WM, are developed by Matlab/Simulink according to customer preferences and priority of appliances. The ANN controller has to be tuned properly using suitable learning rate value and number of nodes in the hidden layers to schedule the appliances optimally. Given that finding proper ANN tuning parameters is difficult, the LSA optimization is hybridized with ANN to improve the ANN performances by selecting the optimum values of neurons in each hidden layer and learning rate. Therefore, the ON/OFF estimation accuracy by ANN can be improved. Results of the hybrid LSA-ANN are compared with those of hybrid particle swarm optimization (PSO based ANN to validate the developed algorithm. Results show that the hybrid LSA-ANN outperforms the hybrid PSO based ANN. The proposed scheduling algorithm can significantly reduce the peak-hour energy consumption during the DR event by up to 9.7138% considering four appliances per 7-h period.

  9. Performance-based potential for residential energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Performance-based potential for residential energy efficiency

    2013-01-15

    Energy performance contracts (EPCs) have proven an effective mechanism for increasing energy efficiency in nearly all sectors of the economy since their introduction nearly 30 years ago. In the modern form, activities undertaken as part of an EPC are scoped and implemented by experts with specialized technical knowledge, financed by commercial lenders, and enable a facility owner to limit risk and investment of time and resources while receiving the rewards of improved energy performance. This report provides a review of the experiences of the US with EPCs and discusses the possibilities for the residential sector to utilize EPCs. Notably absent from the EPC market is the residential segment. Historically, research has shown that the residential sector varies in several key ways from markets segments where EPCs have proven successful, including: high degree of heterogeneity of energy use characteristics among and within households, comparatively small quantity of energy consumed per residence, limited access to information about energy consumption and savings potential, and market inefficiencies that constrain the value of efficiency measures. However, the combination of recent technological advances in automated metering infrastructure, flexible financing options, and the expansion of competitive wholesale electricity markets to include energy efficiency as a biddable supply-side resource present an opportunity for EPC-like efforts to successfully engage the residential sector, albeit following a different model than has been used in EPCs traditionally.(Author)

  10. Can lean save lives?

    Science.gov (United States)

    Fillingham, David

    2007-01-01

    The purpose of this paper is to show how over the last 18 months Bolton Hospitals NHS Trust have been exploring whether or not lean methodologies, often known as the Toyota Production System, can indeed be applied to healthcare. This paper is a viewpoint. One's early experience is that lean really can save lives. The Toyota Production System is an amazingly successful way of manufacturing cars. It cannot be simply translated unthinkingly into a hospital but lessons can be learned from it and the method can be adapted and developed so that it becomes owned by healthcare staff and focused towards the goal of improved patient care. Working in healthcare is a stressful and difficult thing. Everyone needs a touch of inspiration and encouragement. Applying lean to healthcare in Bolton seems to be achieving just that for those who work there.

  11. Residential Energy Performance Metrics

    Directory of Open Access Journals (Sweden)

    Christopher Wright

    2010-06-01

    Full Text Available Techniques for residential energy monitoring are an emerging field that is currently drawing significant attention. This paper is a description of the current efforts to monitor and compare the performance of three solar powered homes built at Missouri University of Science and Technology. The homes are outfitted with an array of sensors and a data logger system to measure and record electricity production, system energy use, internal home temperature and humidity, hot water production, and exterior ambient conditions the houses are experiencing. Data is being collected to measure the performance of the houses, compare to energy modeling programs, design and develop cost effective sensor systems for energy monitoring, and produce a cost effective home control system.

  12. College residential sleep environment.

    Science.gov (United States)

    Sexton-Radek, Kathy; Hartley, Andrew

    2013-12-01

    College students regularly report increased sleep disturbances as well as concomitant reductions in performance (e.g., academic grades) upon entering college. Sleep hygiene refers to healthy sleep practices that are commonly used as first interventions in sleep disturbances. One widely used practice of this sort involves arranging the sleep environment to minimize disturbances from excessive noise and light at bedtime. Communal sleep situations such as those in college residence halls do not easily support this intervention. Following several focus groups, a questionnaire was designed to gather self-reported information on sleep disturbances in a college population. The present study used The Young Adult Sleep Environment Inventory (YASEI) and sleep logs to investigate the sleep environment of college students living in residential halls. A summary of responses indicated that noise and light are significant sleep disturbances in these environments. Recommendations are presented related to these findings.

  13. Energy impacts of recycling disassembly material in residential buildings

    International Nuclear Information System (INIS)

    Gao, Weijun; Ariyama, Takahiro; Ojima, Toshio; Meier, Alan

    2000-01-01

    In order to stop the global warmth due to the CO2 concentration, the energy use should be decreased. The investment of building construction industry in Japan is about 20 percent of GDP. This fraction is much higher than in most developed countries. That results the Japanese building construction industry including residential use consumes about one third of all energy and resources of the entire industrial sectors. In order to save energy as well as resource, the recycle of the building materials should be urgent to be carried out. In this paper, we focus on the potential energy savings with a simple calculated method when the building materials or products are manufactured from recycled materials. We examined three kinds of residential buildings with different construction techniques and estimated the decreased amount of energy consumption and resources resulting from use of recycled materials. The results have shown for most building materials, the energy consumption needed to remake housing materials from recycled materials is lower than that to make new housing materials. The energy consumption of building materials in all case-study housing can be saved by at least 10 percent. At the same time, the resource, measured by mass of building materials (kg) can be decreased by over 50 percent

  14. Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Hockett, S.

    2010-06-01

    This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

  15. Business Case for Nonintrusive Load Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hao, He [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-01

    This report explores how utilities, researchers, and consumers could benefit from a lower cost approach to submetering using non-intrusive load monitoring (NILM). NILM is a process of using data from a single point of monitoring, such as a utility smart meter, to provide an itemized accounting of end use energy consumption in residential and small commercial buildings. Pacific Northwest National Laboratory (PNNL) prepared this report for the Bonneville Power Administration (BPA). PNNL participated in an advisory group as part of a research project sponsored by the U.S. Department of Energy (DOE), the Bonneville Power Administration, and the State of Washington. The Electric Power Research Institute (EPRI) convened the advisory committee for two workshops held to identify ways in which NILM may be used. PNNL, on behalf of DOE, helped to cosponsor the first of these workshops. Results of an end-use monitoring study of a bank branch conducted by PNNL are also presented for purposes of illustrating the need for better data in energy savings modeling (DOE 2013a).

  16. Puget Sound Area Electric Reliability Plan. Appendix D, Conservation, Load Management and Fuel Switching Analysis : Draft Environmental Impact Statement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1991-09-01

    Various conservation, load management, and fuel switching programs were considered as ways to reduce or shift system peak load. These programs operate at the end-use level, such as residential water heat. Figure D-1a shows what electricity consumption for water heat looks like on normal and extreme peak days. Load management programs, such as water heat control, are designed to reduce electricity consumption at the time of system peak. On the coldest day in average winter, system load peaks near 8:00 a.m. In a winter with extremely cold weather, electricity consumption increases fr all hours, and the system peak shifts to later in the morning. System load shapes in the Puget Sound area are shown in Figure D-1b for a normal winter peak day (February 2, 1988) and extreme peak day (February 3, 1989). Peak savings from any program are calculated to be the reduction in loads on the entire system at the hour of system peak. Peak savings for all programs are measured at 8:00 a.m. on a normal peak day and 9:00 a.m. on an extreme peak day. On extremely cold day, some water heat load shifts to much later in the morning, with less load available for shedding at the time of system peak. Models of hourly end-use consumption were constructed to simulate the impact of conservation, land management, and fuel switching programs on electricity consumption. Javelin, a time-series simulating package for personal computers, was chosen for the hourly analysis. Both a base case and a program case were simulated. 15 figs., 7 tabs.

  17. Technology change and energy consumption: A comparison of residential subdivisions

    Science.gov (United States)

    Nieves, L. A.; Nieves, A. L.

    The energy savings in residential buildings likely to result from implementation of the building energy performance standards (BEPS) were assessed. The goals were to: compare energy use in new homes designed to meet or exceed BEPS levels of energy efficiency with that in similar but older homes designed to meet conventional building codes, and to survey the home owners regarding their energy conservation attitudes and behaviors and to ascertain the degree to which conservation attitudes and behaviors are related to residential energy use. The consumer demand theory which provides the framework for the empirical analysis is presented. The sample residences are described and the data collection method discussed. The definition and measurement of major variables are presented.

  18. Saving-Based Asset Pricing

    DEFF Research Database (Denmark)

    Dreyer, Johannes Kabderian; Schneider, Johannes; T. Smith, William

    2013-01-01

    This paper explores the implications of a novel class of preferences for the behavior of asset prices. Following a suggestion by Marshall (1920), we entertain the possibility that people derive utility not only from consumption, but also from the very act of saving. These ‘‘saving-based’’ prefere......This paper explores the implications of a novel class of preferences for the behavior of asset prices. Following a suggestion by Marshall (1920), we entertain the possibility that people derive utility not only from consumption, but also from the very act of saving. These ‘‘saving...

  19. Reinforcement Learning and Savings Behavior.

    Science.gov (United States)

    Choi, James J; Laibson, David; Madrian, Brigitte C; Metrick, Andrew

    2009-12-01

    We show that individual investors over-extrapolate from their personal experience when making savings decisions. Investors who experience particularly rewarding outcomes from saving in their 401(k)-a high average and/or low variance return-increase their 401(k) savings rate more than investors who have less rewarding experiences with saving. This finding is not driven by aggregate time-series shocks, income effects, rational learning about investing skill, investor fixed effects, or time-varying investor-level heterogeneity that is correlated with portfolio allocations to stock, bond, and cash asset classes. We discuss implications for the equity premium puzzle and interventions aimed at improving household financial outcomes.

  20. Energy Saving Potential by Utilizing Natural Ventilation under Warm Conditions

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg

    2014-01-01

    –airflow simulations of 27 common cases of dwellings (considered as one thermal zone) based on the combination of specific features of the building design, occupancy and climate conditions. The energy saving potential is assessed then by the use of a new assessment method suitable for large-scale scenarios using......The objective of this article is to show the potential of natural ventilation as a passive cooling method within the residential sector of countries which are located in warm conditions using Mexico as a case study. The method is proposed as performing, with a simplified ventilation model, thermal...... the actual number of air-conditioned dwellings distributed among the 27 cases. Thereby, the energy saving is presented as the difference in the cooling demand of the dwelling during one year without and with natural ventilation, respectively. Results indicate that for hot-dry conditions, buildings with high...

  1. Projected Benefits of New Residential Evaporative Cooling Systems: Progress Report #2

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.; Eastment, M.; Hancock, E.; Reeves, P.

    2006-10-01

    The use of conventional evaporative cooling has rapidly declined in the United States despite the fact that it has high potential for energy savings in dry climates. Evaporative systems are very competitive in terms of first cost and provide significant reductions in operating energy use, as well as peak-load reduction benefits. Significant market barriers still remain and can be addressed through improved systems integration. This report investigates the first of these approaches, exploring innovative components. The U.S. Department of Energy (DOE) Building America research teams are investigating the use of two promising new pieces of residential cooling equipment that employ evaporative cooling as a part of their system design. The OASys unit, which is a combination of direct and indirect evaporative cooling stages developed by Davis Energy Group (DEG) and manufactured by Speakman CRS, is used to ultimately provide outside air to the living space. The outdoor air provided is indirectly and directly evaporatively cooled in two stages to a condition that can be below the wet-bulb (wb) temperature of the outside air, thus outperforming a conventional single-stage direct evaporative cooler.

  2. Assessment of Alternative Scenarios for CO2 Reduction Potential in the Residential Building Sector

    Directory of Open Access Journals (Sweden)

    Young-Sun Jeong

    2017-03-01

    Full Text Available The South Korean government announced its goals of reducing the country’s CO2 emissions by up to 30% below the business as usual (BAU projections by 2020 in 2009 and 37% below BAU projections by 2030 in 2015. This paper explores the potential energy savings and reduction in CO2 emissions offered by residential building energy efficiency policies and plans in South Korea. The current and future energy consumption and CO2 emissions in the residential building were estimated using an energy–environment model from 2010 to 2030. The business as usual scenario is based on the energy consumption characteristic of residential buildings using the trends related to socio-economic prospects and the number of dwellings. The alternative scenarios took into account energy efficiency for new residential buildings (scenario I, refurbishment of existing residential buildings (scenario II, use of highly efficient boilers (scenario III, and use of a solar thermal energy system (scenario IV. The results show that energy consumption in the residential building sector will increase by 33% between 2007 and 2030 in the BAU scenario. Maximum reduction in CO2 emissions in the residential building sector of South Korea was observed by 2030 in scenario I. In each alternative scenario analysis, CO2 emissions were 12.9% lower than in the business as usual scenario by the year 2030.

  3. GridLAB-D Technical Support Document: Residential End-Use Module Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Zachary T.; Gowri, Krishnan; Katipamula, Srinivas

    2008-07-31

    1.0 Introduction The residential module implements the following end uses and characteristics to simulate the power demand in a single family home: • Water heater • Lights • Dishwasher • Range • Microwave • Refrigerator • Internal gains (plug loads) • House (heating/cooling loads) The house model considers the following four major heat gains/losses that contribute to the building heating/cooling load: 1. Conduction through exterior walls, roof and fenestration (based on envelope UA) 2. Air infiltration (based on specified air change rate) 3. Solar radiation (based on CLTD model and using tmy data) 4. Internal gains from lighting, people, equipment and other end use objects. The Equivalent Thermal Parameter (ETP) approach is used to model the residential loads and energy consumption. The following sections describe the modeling assumptions for each of the above end uses and the details of power demand calculations in the residential module.

  4. Saving gas project

    Energy Technology Data Exchange (ETDEWEB)

    Vasques, Maria Anunciacao S. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Garantizado, Maria Auxiliadora G. [CONCREMAT Engenharia, Rio de Janeiro, RJ (Brazil)

    2009-12-19

    The work presented was implemented in municipalities around the construction of the pipeline project Urucu-Coari-Manaus, the Engineering / IETEG-IENOR, because of the constant release of workers, consequently the finishing stages of this work and its future completion. The Project aims to guide saving gas with the workforce, their families and communities to the enterprise of small business cooperatives and solidarity within the potential of the site. This project is developed through the workshops: entrepreneur ship, tourism, use, reuse and recycling of products, and hortifruiti culture, agroecology, agribusiness (cooperativism solidarity) and forestry. Its execution took place in two phases, the first called 'pilot' of 12/12/2007 to 27/03/2008 in sections A and B1, in the municipality of Coari stretch and B2 in Caapiranga. The second phase occurred from 30/06 to 27/09/08, in the words B1, in the municipalities of Codajas and Anori words and B2 in Iranduba, Manacapuru and Anama. The workshops were held in state and municipal schools and administered by the Institute of Social and Environmental Amazon - ISAM, which had a team of coordinators, teachers, experts and masters of the time until the nineteen twenty-two hours to implement the project. (author)

  5. Integration of plug-in hybrid electric vehicles (PHEV) with grid connected residential photovoltaic energy systems

    Science.gov (United States)

    Nagarajan, Adarsh; Shireen, Wajiha

    2013-06-01

    This paper proposes an approach for integrating Plug-In Hybrid Electric Vehicles (PHEV) to an existing residential photovoltaic system, to control and optimize the power consumption of residential load. Control involves determining the source from which residential load will be catered, where as optimization of power flow reduces the stress on the grid. The system built to achieve the goal is a combination of the existing residential photovoltaic system, PHEV, Power Conditioning Unit (PCU), and a controller. The PCU involves two DC-DC Boost Converters and an inverter. This paper emphasizes on developing the controller logic and its implementation in order to accommodate the flexibility and benefits of the proposed integrated system. The proposed controller logic has been simulated using MATLAB SIMULINK and further implemented using Digital Signal Processor (DSP) microcontroller, TMS320F28035, from Texas Instruments

  6. Possibility of hydrogen supply by shared residential fuel cell systems for fuel cell vehicles

    Directory of Open Access Journals (Sweden)

    Ono Yusuke

    2017-01-01

    Full Text Available Residential polymer electrolyte fuel cells cogeneration systems (residential PEFC systems produce hydrogen from city gas by internal gas-reformer, and generate electricity, the hot water at the same time. From the viewpoint of the operation, it is known that residential PEFC systems do not continuously work but stop for long time, because the systems generate enough hot water for short operation time. In other words, currently residential PEFC systems are dominated by the amount of hot water demand. This study focuses on the idle time of residential PEFC systems. Since their gas-reformers are free, the systems have potential to produce hydrogen during the partial load operations. The authors expect that residential PEFC systems can take a role to supply hydrogen for fuel cell vehicles (FCVs before hydrogen fueling stations are distributed enough. From this perspective, the objective of this study is to evaluate the hydrogen production potential of residential PEFC systems. A residential PEFC system was modeled by the mixed integer linear programming to optimize the operation including hydrogen supply for FCV. The objective function represents annual system cost to be minimized with the constraints of energy balance. It should be noted that the partial load characteristics of the gas-reformer and the fuel cell stack are taken into account to derive the optimal operation. The model was employed to estimate the possible amount of hydrogen supply by a residential PEFC system. The results indicated that the system could satisfy at least hydrogen demand for transportation of 8000 km which is as far as the average annual mileage of a passenger car in Japan. Furthermore, hydrogen production by sharing a residential PEFC system with two households is more effective to reduce primary energy consumption with hydrogen supply for FCV than the case of introducing PEFC in each household.

  7. Residential energy use in Lithuania: The prospects for energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E. [Lawrence Berkeley National Lab., CA (United States); Kazakevicius, E. [Kazakevicius (Eduardas), Vilnius (Lithuania)

    1998-06-01

    While the potential for saving energy in Lithuania`s residential sector (especially, space heating in apartment buildings) is large, significant barriers (financial, administration, etc.) to energy efficiency remain. Removing or ameliorating these barriers will be difficult since these are systematic barriers that require societal change. Furthermore, solutions to these problems will require the cooperation and, in some cases, active participation of households and homeowner associations. Therefore, prior to proposing and implementing energy-efficiency solutions, one must understand the energy situation from a household perspective.

  8. Residential Feedback Devices and Programs: Opportunities for Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, R.; Tondro, M.

    2012-12-01

    Behavior-based approaches have been a growing interest in the energy efficiency field over recent years and the use of residential energy feedback has garnered particular interest. By providing an increased level of detail, feedback can greatly increase a consumer's understanding of how energy is used in their home. This project reviewed the existing body of research on electricity feedback to identify parallel lessons for gas, discussed the benefits and challenges of different types of feedback, and identifying three feedback options that show strong potential for natural gas savings.

  9. Residential Feedback Devices and Programs. Opportunities for Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, R. [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Tondro, M. [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2012-12-01

    Behavior-based approaches have been a growing interest in the energy efficiency field over recent years and the use of residential energy feedback has garnered particular interest. By providing an increased level of detail, feedback can greatly increase a consumer’s understanding of how energy is used in their home. This project reviewed the existing body of research on electricity feedback to identify parallel lessons for gas, discussed the benefits and challenges of different types of feedback, and identifying three feedback options that show strong potential for natural gas savings.

  10. Program evaluation: Weatherization Residential Assistance Partnership (WRAP) Program

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Bonnie B.; Lundien, Barbara; Kaufman, Jeffrey; Kreczko, Adam; Ferrey, Steven; Morgan, Stephen

    1991-12-01

    The Weatherization Residential Assistance Partnership,'' or WRAP program, is a fuel-blind conservation program designed to assist Northeast Utilities' low-income customers to use energy safely and efficiently. Innovative with respect to its collaborative approach and its focus on utilizing and strengthening the existing low-income weatherization service delivery network, the WRAP program offers an interesting model to other utilities which traditionally have relied on for-profit energy service contractors and highly centralized program implementation structures. This report presents appendices with surveys, participant list, and computers program to examine and predict potential energy savings.

  11. Residential energy usage comparison: Findings

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.A.; Uhlaner, R.T.; Cason, T.N.; Courteau, S. (Quantum Consulting, Inc., Berkeley, CA (United States))

    1991-08-01

    This report presents the research methods and results from the Residential Energy Usage Comparison (REUC) project, a joint effort by Southern California Edison Company (SCE) and the Electric Power Research Institute (EPRI). The REUC project design activities began in early 1986. The REUC project is an innovative demand-site project designed to measure and compare typical energy consumption patterns of energy efficient residential electric and gas appliances. 95 figs., 33 tabs.

  12. The influence of an estimated energy saving due to natural ventilation on the Mexican energy system

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg

    2014-01-01

    This article shows the impacts of the extensive use of NV (natural ventilation) in the Mexican residential sector on the Mexican energy system. By integrating a thermal-airflow simulation programme with an energy systems analysis model, the impact on the Mexican energy system of replacing air...... conditioning, in particular, with natural ventilation to cool residential buildings is determined. It is shown that when, as in Mexico, there is a relatively simple connection between supply and electricity demand, NV creates savings which could be used to reduce either the fossil-fuel-based generation...

  13. Residential Conservation Service. Model Audit manual

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    The Model Audit is a free technical assistance resource for voluntary use by utilities. The manual contains procedures for customer interviews, residence inspections, and cost and saving calculations. Data forms, calculation aids, weather and other data, and a section on presenting results to the customer are included. This revision incorporates updates issued on the original February 1980 version: improved calculational procedures for cooling load, replacement air conditioners, solar domestic hot water, thermosiphon air panels, sunspaces, and new procedures for several state-added measures.

  14. Selection and Exergy Analysis of Fuel Cell System to Meet all Energy Needs of Residential Buildings

    OpenAIRE

    G.R. Ashari; N.Hedayat; S. Shalbaf; E.Hajidavalloo

    2011-01-01

    In this paper a polymer electrolyte membrane (PEM) fuel cell power system including burner, steam reformer, heat exchanger and water heater has been considered to meet the electrical, heating, cooling and domestic hot water loads of residential building which in Tehran. The system uses natural gas as fuel and works in CHP mode. Design and operating conditions of a PEM fuel cell system is considered in this study. The energy requirements of residential building and the num...

  15. Responding to the Drought: A Spatial Statistical Approach to Investigating Residential Water Consumption in Fresno, California

    Directory of Open Access Journals (Sweden)

    Chih-Hao Wang

    2017-02-01

    Full Text Available Using data from the 2015 Residential Water Consumption Survey, this study examines residential water-use behavior and attitudes after the recent drought in Fresno, California. Spatial autoregressive models of residential water consumption were estimated, accounting for the effects of social interactions in communities (i.e., neighborhood effects, while controlling for indoor and outdoor house attributes, economic conditions, and attitudes toward water uses. The findings show that the spatial autocorrelations do exist. This suggests that the neighborhood effects can be a useful lever to facilitate initiatives aiming at promoting community engagement on water-saving practices. The results also indicate that a larger house tends to incur more water use, so does the presence of pools. Using a drip irrigation system for watering the backyard can help reduce water consumption. Medium income families turn out to use the least amount of water among different income groups, suggesting that water-saving policies may yield different results among residents of various income levels. Interestingly, respondents who considered themselves heavy water users actually used less water. This implies that the awareness of water importance can significantly influence residents’ water-use behavior and therefore the promotion of a water-saving culture can help reduce residential water consumption.

  16. Micro-CHP systems for residential applications

    International Nuclear Information System (INIS)

    Paepe, Michel de; D'Herdt, Peter; Mertens, David

    2006-01-01

    Micro-CHP systems are now emerging on the market. In this paper, a thorough analysis is made of the operational parameters of 3 types of micro-CHP systems for residential use. Two types of houses (detached and terraced) are compared with a two storey apartment. For each building type, the energy demands for electricity and heat are dynamically determined. Using these load profiles, several CHP systems are designed for each building type. Data were obtained for two commercially available gas engines, two Stirling engines and a fuel cell. Using a dynamic simulation, including start up times, these five system types are compared to the separate energy system of a natural gas boiler and buying electricity from the grid. All CHP systems, if well sized, result in a reduction of primary energy use, though different technologies have very different impacts. Gas engines seem to have the best performance. The economic analysis shows that fuel cells are still too expensive and that even the gas engines only have a small internal rate of return (<5%), and this only occurs in favourable economic circumstances. It can, therefore, be concluded that although the different technologies are technically mature, installation costs should at least be reduced by 50% before CHP systems become interesting for residential use. Condensing gas boilers, now very popular in new homes, prove to be economically more interesting and also have a modest effect on primary energy consumption

  17. Method for Determining Optimal Residential Energy Efficiency Retrofit Packages

    Energy Technology Data Exchange (ETDEWEB)

    Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

    2011-04-01

    Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.

  18. PowerChoice Residential Customer Response to TOU Rates

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Jane S.; Moezzi, Mithra; Lutzenhiser, Susan; Woods, James; Dethman, Linda; Kunkle, Rick

    2009-10-01

    Research Into Action, Inc. and the Sacramento Municipal Utility District (SMUD) worked together to conduct research on the behaviors and energy use patterns of SMUD residential customers who voluntarily signed on to a Time-of-Use rate pilot launched under the PowerChoice label. The project was designed to consider the how and why of residential customers ability and willingness to engage in demand reduction behaviors, and to link social and behavioral factors to observed changes in demand. The research drew on a combination of load interval data and three successive surveys of participating households. Two experimental treatments were applied to test the effects of increased information on households ability to respond to the Time-of-Use rates. Survey results indicated that participants understood the purpose of the Time-of-Use rate and undertook substantial appropriate actions to shift load and conserve. Statistical tests revealed minor initial price effects and more marked, but still modest, adjustments to seasonal rate changes. Tests of the two information interventions indicated that neither made much difference to consumption patterns. Despite the lackluster statistical evidence for load shifting, the analysis points to key issues for critical analysis and development of residential Time-of-Use rates, especially pertinent as California sets the stage for demand response in more California residences.

  19. Using ANNs to predict cooling requirements for residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Karatasou, S.; Santamouris, M.; Geros, V. [University of Athens (Greece). Physics Dept.

    2004-07-01

    Artificial neural networks (ANNs) have been used for the prediction of cooling loads of residential buildings in Athens, Greece. The investigation was performed for the summer period, where for Southern European countries, short time cooling load forecasting in residential buildings with lead times from 1 hour to 7 days can play a key role in the economic and energy efficient operation of cooling appliances. The objective of this work is to produce a simulation algorithm, using ANNs, capable to forecast the following 24-hour cooling load profiles. Reliable cooling consumption measurements are required but are not usually available for residential buildings. State-ofthe- art building simulation software, TRNSYS, was used to calculate energy demand for cooling for five selected apartments in Athens, Greece, using detailed building data (geometry, wall construction, occupancy etc) and Athens climate conditions. These data are used to train artificial neural networks in order to generate the relationship between selected inputs and the desired output, the next day building energy consumption for cooling. A multiplayer perceptron architecture using the standard back-propagation learning algorithm has been applied yielded to satisfactory results and the conclusion that when ANNs are trained on reliable data they can simulate the behavior of the building, thus they can be effectively used to predict future performance. (orig.)

  20. Probabilistic Quantification of Potentially Flexible Residential Demand

    DEFF Research Database (Denmark)

    Kouzelis, Konstantinos; Mendaza, Iker Diaz de Cerio; Bak-Jensen, Birgitte

    2014-01-01

    The balancing of power systems with high penetration of renewable energy is a serious challenge to be faced in the near future. One of the possible solutions, recently capturing a lot of attention, is demand response. Demand response can only be achieved by power consumers holding loads which allow...... them to modify their normal power consumption pattern, namely flexible consumers. However flexibility, despite being constantly mentioned, is usually not properly defined and even rarer quantified. This manuscript introduces a methodology to identify and quantify potentially flexible demand...... of residential consumers. The procedure is based on non-flexible consumer clustering and subsequent statistical analysis. Consequently, the power consumption pattern of a flexible consumer is compared to a 3D probability distribution created by the previously referred methodology. The results show a strong...

  1. REMINDER: Saved Leave Scheme (SLS)

    CERN Multimedia

    2003-01-01

    Transfer of leave to saved leave accounts Under the provisions of the voluntary saved leave scheme (SLS), a maximum total of 10 days'* annual and compensatory leave (excluding saved leave accumulated in accordance with the provisions of Administrative Circular No 22B) can be transferred to the saved leave account at the end of the leave year (30 September). We remind you that unused leave of all those taking part in the saved leave scheme at the closure of the leave year accounts is transferred automatically to the saved leave account on that date. Therefore, staff members have no administrative steps to take. In addition, the transfer, which eliminates the risk of omitting to request leave transfers and rules out calculation errors in transfer requests, will be clearly shown in the list of leave transactions that can be consulted in EDH from October 2003 onwards. Furthermore, this automatic leave transfer optimizes staff members' chances of benefiting from a saved leave bonus provided that they ar...

  2. Low-complexity energy disaggregation using appliance load modelling

    Directory of Open Access Journals (Sweden)

    Hana Altrabalsi

    2016-01-01

    Full Text Available Large-scale smart metering deployments and energy saving targets across the world have ignited renewed interest in residential non-intrusive appliance load monitoring (NALM, that is, disaggregating total household’s energy consumption down to individual appliances, using purely analytical tools. Despite increased research efforts, NALM techniques that can disaggregate power loads at low sampling rates are still not accurate and/or practical enough, requiring substantial customer input and long training periods. In this paper, we address these challenges via a practical low-complexity lowrate NALM, by proposing two approaches based on a combination of the following machine learning techniques: k-means clustering and Support Vector Machine, exploiting their strengths and addressing their individual weaknesses. The first proposed supervised approach is a low-complexity method that requires very short training period and is fairly accurate even in the presence of labelling errors. The second approach relies on a database of appliance signatures that we designed using publicly available datasets. The database compactly represents over 200 appliances using statistical modelling of measured active power. Experimental results on three datasets from US, Italy, Austria and UK, demonstrate the reliability and practicality.

  3. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ardani, Kristen B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-03

    The installed cost of solar photovoltaics (PV) has fallen rapidly in recent years and is expected to continue declining in the future. In this report, we focus on the potential for continued PV cost reductions in the residential market. From 2010 to 2017, the levelized cost of energy (LCOE) for residential PV declined from 52 cents per kilowatt-hour (cents/kWh) to 16 cents/kWh (Fu et al. 2017). The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office (SETO) recently set new LCOE targets for 2030, including a target of 5 cents/kWh for residential PV. We present a roadmap for achieving the SETO 2030 residential PV target. Because the 2030 target likely will not be achieved under business-as-usual trends (NREL 2017), we examine two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof replacement and installing PV as part of the new home construction process. Within both market segments, we identify four key cost-reduction opportunities: market maturation, business model integration, product innovation, and economies of scale. To assess the potential impact of these cost reductions, we compare modeled residential PV system prices in 2030 to the National Renewable Energy Laboratory's (NREL's) quarter one 2017 (Q1 2017) residential PV system price benchmark (Fu et al. 2017). We use a bottom-up accounting framework to model all component and project-development costs incurred when installing a PV system. The result is a granular accounting for 11 direct and indirect costs associated with installing a residential PV system in 2030. All four modeled pathways demonstrate significant installed-system price savings over the Q1 2017 benchmark, with the visionary pathways yielding the greatest price benefits. The largest modeled cost savings are in the supply chain, sales and marketing, overhead, and installation labor cost categories. When we translate these

  4. Social Capital and Savings Behaviour

    DEFF Research Database (Denmark)

    Newman, Carol; Tarp, Finn; Van Den Broeck, Katleen

    We explore the extent to which social capital can play a role in imparting information about the returns to saving where potential knowledge gaps and mistrust exists. Using data from Vietnam we find strong evidence to support the hypothesis that information transmitted via reputable social...... organizations increases the proportion of liquid assets held in the form of deposits that yield a return. Our results imply that targeting information on the benefits of deposit saving through formal networks or groups would be effective in increasing the number of households that save at grassroots level....

  5. Energy conservation, energy efficiency and energy savings regulatory hypotheses - taxation, subsidies and underlying economics

    Energy Technology Data Exchange (ETDEWEB)

    Trumpy, T. [International Legal Counsel, Brussels (Belgium)

    1995-12-01

    More efficient use of energy resources can be promoted by various regulatory means, i.e., taxation, subsidies, and pricing. Various incentives can be provided by income and revenue tax breaks-deductible energy audit fees, energy saving investment credits, breaks for energy saving entrepreneurs, and energy savings accounts run through utility accounts. Value added and excise taxes can also be adjusted to reward energy saving investments and energy saving entrepreneurial activity. Incentives can be provided in the form of cash refunds, including trade-in-and-scrap programs and reimbursements or subsidies on audit costs and liability insurance. Pricing incentives include lower rates for less energy use, prepayment of deposit related to peak load use, electronically dispatched multiple tariffs, savings credits based on prior peak use, and subsidized {open_quotes}leasing{close_quotes} of more efficient appliances and lights. Credits, with an emphasis on pooling small loans, and 5-year energy savings contracts are also discussed.

  6. The evaluation of retrofit measures in a tall residential building

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, M.M.; McLain, H.A.

    1995-07-01

    As part of a joint demonstration effort involving the US Department of Energy (DOE), the US Department of Housing and Urban Development (HUD), Boston Edison Company (BECo), and the Chelsea Housing Authority, Oak Ridge National Laboratory (ORNL) participated in the evaluation of energy and demand saving retrofits for a tall residential building located in Boston. The thirteen story all-electric building underwent window, lighting, and control renovations in December, 1992. annual energy consumption was reduced by 15% and peak demand fell by 17%. Hourly should building consumption data were available for the comparison of pre- and post- conditions and for calibration of a DOE-2.1D simulation model. The analysis found the window retrofit accounted for 90% of total energy savings and 95% of average demand savings, due to reductions in both conduction and infiltration. Benefits from lighting retrofits were low in cooling months and negligible in winter months due to the increase in the demand for electric resistance heating which was proportional to the reduction in lighting capacity. Finally, the simulation model verified that heating system controls had not been used as intended, and that the utility rate structure would not allow cost savings from the original control strategy. These results and other interesting lessons learned are presented.

  7. Field Trial of a Low-Cost, Distributed Plug Load Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Auchter, B. [Energy Center of Wisconsin, Madison, WI (United States); Cautley, D. [Energy Center of Wisconsin, Madison, WI (United States); Ahl, D. [Energy Center of Wisconsin, Madison, WI (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jin, X. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-01

    Researchers have struggled to inventory and characterize the energy use profiles of the ever-growing category of so-called miscellaneous electric loads (MELs) because plug-load monitoring is cost-prohibitive to the researcher and intrusive to the homeowner. However, these data represent a crucial missing link to understanding how homes use energy. Detailed energy use profiles would enable the nascent automated home energy management (AHEM) industry to develop effective control algorithms that target consumer electronics and other plug loads. If utility and other efficiency programs are to incent AHEM devices, they need large-scale datasets that provide statistically meaningful justification of their investments by quantifying the aggregate energy savings achievable. To address this need, NREL researchers investigated a variety of plug-load measuring devices available commercially and tested them in the laboratory to identify the most promising candidates for field applications. This report centers around the lessons learned from a field validation of one proof-of-concept system, called Smartenit (formerly SimpleHomeNet). The system was evaluated based on the rate of successful data queries, reliability over a period of days to weeks, and accuracy. This system offers good overall performance when deployed with up to 10 end nodes in a residential environment, although deployment with more nodes and in a commercial environment is much less robust. NREL concludes that the current system is useful in selected field research projects, with the recommendation that system behavior is observed over time.

  8. Reinforcement Learning and Savings Behavior*

    Science.gov (United States)

    Choi, James J.; Laibson, David; Madrian, Brigitte C.; Metrick, Andrew

    2009-01-01

    We show that individual investors over-extrapolate from their personal experience when making savings decisions. Investors who experience particularly rewarding outcomes from saving in their 401(k)—a high average and/or low variance return—increase their 401(k) savings rate more than investors who have less rewarding experiences with saving. This finding is not driven by aggregate time-series shocks, income effects, rational learning about investing skill, investor fixed effects, or time-varying investor-level heterogeneity that is correlated with portfolio allocations to stock, bond, and cash asset classes. We discuss implications for the equity premium puzzle and interventions aimed at improving household financial outcomes. PMID:20352013

  9. Energy saving work of frequency controlled induction cage machine

    International Nuclear Information System (INIS)

    Gnacinski, P.

    2007-01-01

    Energy saving work, understood as lowering the supply voltage when load torque is much less than rated, is one way of reducing power losses in an induction cage machine working with a variable load. Reduction in power losses also affects the thermal properties of an induction machine because the energy saving work allows the temperature rise of the windings to decrease. Thanks to a lower temperature of the windings, the same load torque can be carried by a machine of less rated power. The ability of energy saving work to reduce the temperature of windings depends on the thermal properties of an induction machine, which are different in the case of a machine with foreign ventilation and its own ventilation. This paper deals with the thermal effect of energy saving work on a frequency controlled induction cage machine. A comparison of the properties of a machine with its own and outside ventilation is presented. The results of the investigations are shown for a 3 kW induction cage machine with the two previously mentioned ways of ventilation: one provided with a fan placed on a shaft and the other provided with a fan driven by an auxiliary motor

  10. Overview of contractual savings institutions

    OpenAIRE

    Vittas, Dimitri; Skully, Michael

    1991-01-01

    Contractual savings institutions include national provident funds, life insurance companies, private pension funds, and funded social pension insurance systems. They have long-term liabilities and stable cash flows and are therefore ideal providers of term finance, not only to government and industry, but also to municipal authorities and the housing sector. Except for Singapore, Malaysia, and a few other countries, most developing countries have small and insignificant contractual savings in...

  11. Essay on Saving and Consumption

    Directory of Open Access Journals (Sweden)

    Fabris Nikola

    2015-09-01

    Full Text Available Consumption and saving decisions are at the heart of both short- and long-term macroeconomic analyses. Since the global crisis outbreak, one of the main issues for indebted countries has been whether to pursue a policy which promotes saving or to try to induce economic growth by increasing consumption. Consensus has not been reached on this issue, which is based on an old debate of whether a country should pursue a policy of Keynesianism or monetarism.

  12. Impacts of Water Quality on Residential Water Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  13. Distributed demand-side management optimisation for multi-residential users with energy production and storage strategies

    Directory of Open Access Journals (Sweden)

    Emmanuel Chifuel Manasseh

    2014-12-01

    Full Text Available This study considers load control in a multi-residential setup where energy scheduler (ES devices installed in smart meters are employed for demand-side management (DSM. Several residential end-users share the same energy source and each residential user has non-adjustable loads and adjustable loads. In addition, residential users may have storage devices and renewable energy sources such as wind turbines or solar as well as dispatchable generators. The ES devices exchange information automatically by executing an iterative distributed algorithm to locate the optimal energy schedule for each end-user. This will reduce the total energy cost and the peak-to-average ratio (PAR in energy demand in the electric power distribution. Users possessing storage devices and dispatchable generators strategically utilise their resources to minimise the total energy cost together with the PAR. Simulation results are provided to evaluate the performance of the proposed game theoretic-based distributed DSM technique.

  14. How to Save Money on Infant Formula

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000805.htm How to save money on infant formula To use the sharing features ... several months. Here are some ways you can save money on infant formula . Money-Saving Ideas Here are ...

  15. An innovative educational program for residential energy efficiency. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Laquatra, J.; Chi, P.S.K.

    1996-09-01

    Recognizing the importance of energy conservation, under sponsorship of the US Department of Energy, Cornell University conducted a research and demonstration project entitled An Innovative Educational Program for Residential Energy Efficiency. The research project examined the amount of residential energy that can be saved through changes in behavior and practices of household members. To encourage these changes, a workshop was offered to randomly-selected households in New York State. Two surveys were administered to household participants (Survey 1 and Survey 2, Appendix A) and a control group; and a manual was developed to convey many easy but effective ways to make a house more energy efficient (see Residential Manual, Appendix B). Implementing methods of energy efficiency will help reduce this country`s dependence on foreign energy sources and will also reduce the amount of money that is lost on inefficient energy use. Because Cornell Cooperative Extension operates as a component of the land-grant university system throughout the US, the results of this research project have been used to develop a program that can be implemented by the Cooperative Extension Service nationwide. The specific goals and objectives for this project will be outlined, the population and sample for the research will be described, and the instruments utilized for the survey will be explained. A description of the workshop and manual will also be discussed. This report will end with a summary of the results from this project and any observed changes and/or recommendations for future surveys pertaining to energy efficiency.

  16. Energy savings in mobile broadband network based on load predictions

    DEFF Research Database (Denmark)

    Samulevicius, Saulius; Pedersen, Torben Bach; Sørensen, Troels Bundgaard

    2012-01-01

    Abstract—The deployment of new network equipment is resulting in increasing energy consumption in mobile broadband networks (MBNs). This contributes to higher CO2 emissions. Over the last 10 years MBNs have grown considerably, and are still growing to meet the evolution in traffic volume carried...

  17. Autonomous Hybrid Priority Queueing for Scheduling Residential Energy Demands

    Science.gov (United States)

    Kalimullah, I. Q.; Shamroukh, M.; Sahar, N.; Shetty, S.

    2017-05-01

    The advent of smart grid technologies has opened up opportunities to manage the energy consumption of the users within a residential smart grid system. Demand response management is particularly being employed to reduce the overall load on an electricity network which could in turn reduce outages and electricity costs. The objective of this paper is to develop an intelligible scheduler to optimize the energy available to a micro grid through hybrid queueing algorithm centered around the consumers’ energy demands. This is achieved by shifting certain schedulable load appliances to light load hours. Various factors such as the type of demand, grid load, consumers’ energy usage patterns and preferences are considered while formulating the logical constraints required for the algorithm. The algorithm thus obtained is then implemented in MATLAB workspace to simulate its execution by an Energy Consumption Scheduler (ECS) found within smart meters, which automatically finds the optimal energy consumption schedule tailor made to fit each consumer within the micro grid network.

  18. Exploring efficacy of residential energy efficiency programs in Florida

    Science.gov (United States)

    Taylor, Nicholas Wade

    Electric utilities, government agencies, and private interests in the U.S. have committed and continue to invest substantial resources in the pursuit of energy efficiency and conservation through demand-side management (DSM) programs. Program investments, and the demand for impact evaluations that accompany them, are projected to grow in coming years due to increased pressure from state-level energy regulation, costs and challenges of building additional production capacity, fuel costs and potential carbon or renewable energy regulation. This dissertation provides detailed analyses of ex-post energy savings from energy efficiency programs in three key sectors of residential buildings: new, single-family, detached homes; retrofits to existing single-family, detached homes; and retrofits to existing multifamily housing units. Each of the energy efficiency programs analyzed resulted in statistically significant energy savings at the full program group level, yet savings for individual participants and participant subgroups were highly variable. Even though savings estimates were statistically greater than zero, those energy savings did not always meet expectations. Results also show that high variability in energy savings among participant groups or subgroups can negatively impact overall program performance and can undermine marketing efforts for future participation. Design, implementation, and continued support of conservation programs based solely on deemed or projected savings is inherently counter to the pursuit of meaningful energy conservation and reductions in greenhouse gas emissions. To fully understand and optimize program impacts, consistent and robust measurement and verification protocols must be instituted in the design phase and maintained over time. Furthermore, marketing for program participation must target those who have the greatest opportunity for savings. In most utility territories it is not possible to gain access to the type of large scale

  19. Social implications of residential demand response in cool temperate climates

    International Nuclear Information System (INIS)

    Darby, Sarah J.; McKenna, Eoghan

    2012-01-01

    Residential electrical demand response (DR) offers the prospect of reducing the environmental impact of electricity use, and also the supply costs. However, the relatively small loads and numerous actors imply a large effort: response ratio. Residential DR may be an essential part of future smart grids, but how viable is it in the short to medium term? This paper reviews some DR concepts, then evaluates the propositions that households in cool temperate climates will be in a position to contribute to grid flexibility within the next decade, and that that they will allow some automated load control. Examples of demand response from around the world are discussed in order to assess the main considerations for cool climates. Different tariff types and forms of control are assessed in terms of what is being asked of electricity users, with a focus on real-time pricing and direct load control in energy systems with increasingly distributed resources. The literature points to the significance of thermal loads, supply mix, demand-side infrastructure, market regulation, and the framing of risks and opportunities associated with DR. In concentrating on social aspects of residential demand response, the paper complements the body of work on technical and economic potential. - Highlights: ► Demand response implies major change in governance of electricity systems. ► Households in cool temperate climates can be flexible, mainly with thermal loads. ► DR requires simple tariffs, appropriate enabling technology, education, and feedback. ► Need to test consumer acceptance of DR in specific conditions. ► Introduce tariffs with technologies e.g., TOU tariff plus DLC with electric vehicles.

  20. Optimizing Hydronic System Performance in Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L.; Faakye, O.

    2013-10-01

    Even though new homes constructed with hydronic heat comprise only 3% of the market (US Census Bureau 2009), of the 115 million existing homes in the United States, almost 14 million of those homes (11%) are heated with steam or hot water systems according to 2009 US Census data. Therefore, improvements in hydronic system performance could result in significant energy savings in the US. When operating properly, the combination of a gas-fired condensing boiler with baseboard convectors and an indirect water heater is a viable option for high-efficiency residential space heating in cold climates. Based on previous research efforts, however, it is apparent that these types of systems are typically not designed and installed to achieve maximum efficiency. Furthermore, guidance on proper design and commissioning for heating contractors and energy consultants is hard to find and is not comprehensive. Through modeling and monitoring, CARB sought to determine the optimal combination(s) of components - pumps, high efficiency heat sources, plumbing configurations and controls - that result in the highest overall efficiency for a hydronic system when baseboard convectors are used as the heat emitter. The impact of variable-speed pumps on energy use and system performance was also investigated along with the effects of various control strategies and the introduction of thermal mass.

  1. Energy saving in housing in Syria; Energieeinsparung im Wohnungsbau in Syrien

    Energy Technology Data Exchange (ETDEWEB)

    Hantouch, Yaser

    2009-06-03

    The demand for energy is increasing in Syria annually by 10-11% and the population increases annually 2.54% This growth leads also to increase in the housing,that it is energy-unconscious and consumes many energy. This large increase in energy consumption is an important problem in the housing in Syria, particularly with the lack of observance of various climatic factors,this leads to install the heating or cooling system in all housing in order to improve thermal comfort. The aim of this work is to provide insights into residential buildings with very high energy efficiency. The starting point is the experience from other countries (such as Germany), which have extensive policies, experience and rules for energy-saving buildings. The aim of this work is to provide insights into residential buildings with very high energy efficiency to win. The starting point is the experience from other countries such as Germany, which has extensive policies and rules for energy-saving buildings have. These are transferred with appropriate additions to residential buildings in Syria, and they are specified for special conditions, as well as the economic, social, climatic and regulatory requirements in Syria. There is a new architectural concepts in the design of residential buildings in Syria on their energy issues to research.it was discussed the links between architecture, energy and ecology, concepts of energy-saving building and influencing factors in energy consumption in buildings analyzed and influence of these factors on building and energy in the study area (Syria). This work includes the calculations of energy-efficient building (temperature and energy consumption) for different variants with different simulation programs, and these are assessed socially and economically through interviews, surveys and calculations of Energy Price and the Cost of Buildings. It turns out that there are many opportunities for energy saving in housing in Syria by architectural, design

  2. Technical Support Document: 50% Energy Savings Design Technology Packages for Medium Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Brian A.; Wang, Weimin; Lane, Michael D.; Rosenberg, Michael I.; Liu, Bing

    2009-09-01

    This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Medium Offices (AEDG-MO or the Guide), a design guidance document which intends to provide recommendations for achieving 50% energy savings in medium office buildings that just meet the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

  3. Main challenges of residential areas

    Directory of Open Access Journals (Sweden)

    Oana Luca

    2017-06-01

    Full Text Available The present article is a position paper aiming to initiate a professional debate related to the aspects related to the urban dysfunctions leading to the wear of the residential areas. The paper proposes a definition of the wear process, identify the main causes leading to its occurrence and propose a number of solutions to neutralise the dysfunctions. The three wearing phases of residential areas components are emphasized, exploring their lifecycle. In order to perform the study of urban wear, the status of the residential areas components can be established and monitored, and also the variables of the function that can mathematically model the specific wear process may be considered. The paper is considered a first step for the model adjustment, to be tested and validated in the following steps. Based on the mathematical method and model, there can be created, in a potential future research, the possibility of determining the precarity degree for residential areas/neighbourhoods and cities, by minimising the subjective component of the analyses preceding the decision for renovation or regeneration.

  4. Trends of Sustainable Residential Architecture

    OpenAIRE

    Narvydas, A

    2014-01-01

    The article is based on Master’s research conducted during Scottish Housing Expo 2010. The aim of the research was to determine the prevailing trends in sustainable residential architecture. Each trend can be described by features detected during visual and technical observation of project data. Based on that architects may predict possible problems related to a specific trend.

  5. Technical Problems of Residential Construction

    Science.gov (United States)

    Nowogońska, Beata; Cibis, Jerzy

    2017-10-01

    Beauty, utility, durability - these are the features of good architecture and should also be the distinguishing qualities of every residential building. But do beauty and utility remain along with the passing of time? Performance characteristics are an indicator of both, the technical as well as aesthetic state of buildings. Aesthetic needs are in disagreement with the merciless aging process. The beauty of a city is formed not only by the original forms of new residential buildings, but also by existing tenement housing; thus preserving their aesthetics becomes a necessity. Time is continuously passing and along with it, aging intensifies. The aging process is a natural phenomenon for every material. The life expectancy of building materials is also limited. Along with the passing of time, the technical state of residential buildings continuously deteriorates. With the passing of time, the aesthetic values and preferences of users of flats change and the usability of the building decreases. The permanence of buildings, including residential buildings, is shaped not only by the forces of nature but also by activities of humans. A long lifespan is ensured by carrying out ongoing, systematic renovation-repair works. It is thanks to them that buildings derived from past centuries are still being used, and their market attractiveness is not decreasing.

  6. Congestion and residential moving behaviour

    DEFF Research Database (Denmark)

    Larsen, Morten Marott; Pilegaard, Ninette; Van Ommeren, Jos

    2008-01-01

    we study how congestion and residential moving behaviour are interrelated, using a two-region job search model. Workers choose between interregional commuting and residential moving, in order to live closer to their place of work. This choice affects the external costs of commuting, due to conges......we study how congestion and residential moving behaviour are interrelated, using a two-region job search model. Workers choose between interregional commuting and residential moving, in order to live closer to their place of work. This choice affects the external costs of commuting, due...... to congestion. We focus on the equilibrium in which some workers currently living in one region accept jobs in the other, with a fraction of them choosing to commute from their current residence to the new job in the other region and the remainder choosing to move to the region in which the new job is located....... The welfare-maximising road tax is derived, which is essentially the Pigouvian tax, given the absence of a tax on moving. Given the presence of moving taxes, which are substantial in Europe, the optimal road tax for commuters is the Pigouvian tax plus the amortised value of the moving tax, evaluated...

  7. Convergence of Residential Gateway Technology

    NARCIS (Netherlands)

    Hartog, F.T.H. den; Balm, M.; Jong, C.M. de; Kwaaitaal, J.J.B.

    2004-01-01

    A new OSI-based model is described that can be used for the classification of residential gateways. It is applied to analyze current gateway solutions and draw evolutionary paths for the medium to long term. From this it is concluded that particularly set-top boxes and broadband modems, as opposed

  8. Residential energy usage comparison project: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.A.; Uhlaner, R.T.; Cason, T.N. (Quantum Consulting, Inc., Berkeley, CA (USA))

    1990-10-01

    This report provides an overveiw of the residential energy usage comparison project, an integrated load and market research project sponsored by EPRI and the Southern California Edison Company. Traditional studies of the relative energy consumption of electric and gas household appliances have relied on laboratory analyses and computer simulations. This project was designed to study the appliance energy consumption patterns of actual households. Ninety-two households in Orange County, California, southeast of Los Angeles, served as the study sample. Half of the households received new electric space-conditioning, water-heating, cooking, and clothes-drying equipment; the other half received gas equipment. The electric space-conditioning and water-heating appliances were heat pump technologies. All of the appliances were metered to collect load-shape and energy consumption data. The households were also surveyed periodically to obtain information on their energy needs and their acceptance of the appliances. The metered energy consumption data provide an important benchmark for comparing the energy consumption and costs of alternative end-use technologies. The customer research results provide new insights into customer preferences for fuel and appliance types. 15 figs., 3 tabs.

  9. Cost-Effectiveness Analysis of the 2009 and 2012 IECC Residential Provisions – Technical Support Document

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V.; Lucas, Robert G.; Goel, Supriya

    2012-12-04

    This analysis was conducted by Pacific Northwest National Laboratory (PNNL) in support of the U.S. Department of Energy’s (DOE) Building Energy Codes Program (BECP). DOE supports the development and adoption of efficient residential and commercial building energy codes. These codes set the minimum requirements for energy efficient building design and construction and ensure energy savings on a national level. This analysis focuses on one and two family dwellings, townhomes, and low-rise multifamily residential buildings. For these buildings, the basis of the energy codes is the International Energy Conservation Code (IECC). This report does not address commercial and high-rise residential buildings, which reference ANSI/ASHRAE/IES Standard 90.1.

  10. Dual-Cell HSDPA for Network Energy Saving

    DEFF Research Database (Denmark)

    Micallef, Gilbert

    2010-01-01

    The increasing demand for mobile broadband is pushing existing 3G networks closer to their capacity limit. Additional carriers together with new HSPA features (HSPA+) are expected to provide the next necessary boost in network capacity. One specific feature in HSPA+ is referred to as Dual...... consumption. This paper proposes an energy saving feature that exploits variations in network traffic. Based on the individual load of each sector, the feature determines if the secondary carrier is detrimental for reaching some pre-set minimum requirements. Each sector is allowed to switch off one...... of their two carriers, during periods of low network traffic. It is concluded that an energy saving ranging between 14% and 36% is possible. This saving comes without degradation of network performance....

  11. Advancing Residential Retrofits in Atlanta

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Roderick K [ORNL; Kim, Eyu-Jin [Southface Energy Institute; Roberts, Sydney [Southface Energy Institute; Stephenson, Robert [Southface Energy Institute

    2012-07-01

    This report will summarize the home energy improvements performed in the Atlanta, GA area. In total, nine homes were retrofitted with eight of the homes having predicted source energy savings of approximately 30% or greater based on simulated energy consumption.

  12. Areas of residential development in the southern Appalachian Mountains are characterized by low riparian zone nitrogen cycling and no increase in soil greenhouse gas emissions

    Science.gov (United States)

    Peter Baas; Jennifer D. Knoepp; Daniel Markewitz; Jacqueline E. Mohan

    2017-01-01

    The critical role streamside riparian zones play in mitigating the movement of nitrogen (N) and other elements from terrestrial to aquatic ecosystems could be threatened by residential development in the southern Appalachian Mountains. Many studies have investigated the influence of agriculture on N loading to streams but less is known about the impacts of residential...

  13. Durable consumption, saving and retirement

    DEFF Research Database (Denmark)

    Andersen, Torben M.; Hermansen, Mikkel Nørlem

    2014-01-01

    Durables yield services through life but are also a store of value and both features may have important implications for savings and retirement decisions. Durables also affect bequest and thus induce intergenerational transfers. We show that allowing explicitly for durables has important implicat......Durables yield services through life but are also a store of value and both features may have important implications for savings and retirement decisions. Durables also affect bequest and thus induce intergenerational transfers. We show that allowing explicitly for durables has important...... implications for retirement decisions and responses to various changes in the environment. An improvement in the possibility of freeing housing capital makes the old retire earlier (income effect) while the young plan to retire later since they increase housing demand and reduce financial savings. Considering...

  14. Water Saving Strategies & Ecological Modernisation

    DEFF Research Database (Denmark)

    Hoffmann, Birgitte; Jensen, Jesper Ole; Elle, Morten

    2005-01-01

    as a frame for understanding resource manage-ment. The water management in Copenhagen has in recent years undergone a rather radi-cal transition. Along with strong drivers for resource management in the region the mu-nicipal water supplier has tested and implemented a number of initiatives to promote sus......-tainable water management. The paper focuses on the experiences from different water saving initiatives carried out since the mid 80s relating them to some central aspects of Ecological Modernisation theories: · Demands for tools and targets · New tasks and roles for suppliers, consumers and stakeholders...... feature is the use of intermediary actors as links between suppliers and consumers, and as facilita-tors of learning processes in water savings and local water management. Hence the questions are: How does EM help us understand the development of water saving activities and the emergence of intermediary...

  15. Control Evaluation Information System Savings

    Directory of Open Access Journals (Sweden)

    Eddy Sutedjo

    2011-05-01

    Full Text Available The purpose of this research is to evaluate the control of information system savings in the banking and to identify the weaknesses and problem happened in those saving systems. Research method used are book studies by collecting data and information needed and field studies by interview, observation, questioner, and checklist using COBIT method as a standard to assess the information system control of the company. The expected result about the evaluation result that show in the problem happened and recommendation given as the evaluation report and to give a view about the control done by the company. Conclusion took from this research that this banking company has met standards although some weaknesses still exists in the system.Index Terms - Control Information System, Savings

  16. Identifying electricity-saving potential in rural China: Empirical evidence from a household survey

    International Nuclear Information System (INIS)

    Yu, Yihua; Guo, Jin

    2016-01-01

    In recent years, there has been a fast-growing body of literature examining energy-saving potential in relation to electricity. However, empirical studies focusing on non-Western nations are limited. To fill this gap, this study intends to examine the electricity-saving potential of rural households in China using a unique data set from the China Residential Electricity Consumption Survey (CRECS) in collaboration with the China General Social Survey (CGSS), conducted nationwide at the household level in rural China. We use a stochastic frontier model, which allows us to decompose residential electricity consumption into the minimum necessary amount of consumption based on physical characteristics (e.g. house size, house age, number of televisions or refrigerators) and estimate the consumption slack (i.e. the amount of electricity consumption that could be saved), which depends on various factors. We find that rural households in China are generally efficient in electricity saving and the saving potential is affected by (fast) information feedback and social-demographic characteristics, instead of by the (averaged) electricity price, or energy efficiency labelling signals. In addition, we find no evidence of regional heterogeneity on electricity saving potential for rural households. Policy implications are derived. - Highlights: •Electricity saving potential of rural households in China is examined. •Unique survey data from the CRECS in collaboration with the CGSS are used. •A stochastic frontier model is applied. •Information feedback and social-demographic characteristics matter. •Electricity price or energy efficiency tier rating does not matter.

  17. Energy efficiency and energy saving air conditioners window and split type; Eficiencia energetica e economia de energia de condicionadores de ar tipo janela e split

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Edson Palhares de; Cardoso, Rafael Balbino; Nogueira, Luiz Augusto Horta [Universidade Federal de Itajuba (EXCEN/UNIFEI), MG (Brazil). Centro de Excelencia em Eficiencia Energetica

    2010-07-01

    The air-conditioners of window end Split type are responsible for a significant portion of energy consumption in residential sector of Brazil, from 20% of the sector. This study evaluates the impact energy of the Seal Program PROCEL in air-conditioners of window end Split type, showing the efficiency gains for the country in terms of energy saving. For this evaluation it was considered the effects of temperature and loss of performance due to age, PROCEL Stamp Program resulted in a power savings of 664 GWh in air-conditioners of window type residential sector in 2008. (author)

  18. Are Women Empowered to Save?

    Directory of Open Access Journals (Sweden)

    Frances Woolley

    2013-12-01

    Full Text Available Female economic empowerment – rising earnings, increased opportunities, greater labour force participation – has given many women the means to save. The shifting of responsibility for retirement security from employers and governments onto individuals has given women a reason to save. But are women actually saving? In this paper, we explore the relationship between the gender dynamics within a family and the accumulation of wealth. We find that little evidence in support of the conventional wisdom that families with a female financial manager save more and repay their debts more often. We find some evidence that male financial management leads to greater savings, and other evidence suggesting that savings patterns have a complex relationship with intra-family gender dynamics. El empoderamiento económico de la mujer – el aumento de los ingresos, mayores oportunidades, mayor participación laboral – ha dado a muchas mujeres los medios para ahorrar. Al pasar la responsabilidad de los ingresos de la jubilación de los empleadores y el gobierno a los individuos ha dado a las mujeres un motivo para ahorrar. ¿Pero realmente ahorran las mujeres? En este artículo se analizan las relaciones entre las dinámicas de género en una familia, y la acumulación de riqueza. Se ha llegado a la conclusión de que hay poca evidencia que apoye la creencia convencional de que las familias en las que una mujer gestiona las financias ahorran más y devuelven sus créditos más frecuentemente. Se ha encontrado alguna evidencia de que la gestión financiera por varones acarrea mayores ahorros, y otras evidencias que sugieren que los patrones de ahorro tienen una relación compleja con las dinámicas de género dentro de la familia.

  19. 12 CFR 561.42 - Savings account.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Savings account. 561.42 Section 561.42 Banks... AFFECTING ALL SAVINGS ASSOCIATIONS § 561.42 Savings account. The term savings account means any withdrawable account, except a demand account as defined in § 561.16 of this chapter, a tax and loan account, a note...

  20. Determinants and Patterns of Family Saving.

    Science.gov (United States)

    Hefferan, Colien

    1982-01-01

    Studies the relative importance of income, wealth, and family characteristics in explaining the decision to save, the level of saving in households, and the patterns of saving in several types of families. Findings suggest that the level of saving is best explained by a family's current wealth position. (Author/CT)

  1. Save journalism - to what end?

    OpenAIRE

    Tobie Wiese

    2011-01-01

    I was given a rather sexy heading – 'Forget the rhino, save journalism' – under which to say a few words. I would agree with the assumption that both are under threat, but while most people will have a natural inclination to save an endangered animal I’m not so sure about how many will stand up for the survival of journalism. After all, why do we need journalism? And secondly, it seems to me that much of the woes that journalism is going through at present are self-inflicted.
    It is...

  2. Demonstration of energy savings of cool roofs

    Energy Technology Data Exchange (ETDEWEB)

    Konopacki, S.; Gartland, L.; Akbari, H. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Rainer, L. [Davis Energy Group, Davis, CA (United States)

    1998-06-01

    Dark roofs raise the summertime air-conditioning demand of buildings. For highly-absorptive roofs, the difference between the surface and ambient air temperatures can be as high as 90 F, while for highly-reflective roofs with similar insulative properties, the difference is only about 20 F. For this reason, cool roofs are effective in reducing cooling energy use. Several experiments on individual residential buildings in California and Florida show that coating roofs white reduces summertime average daily air-conditioning electricity use from 2--63%. This demonstration project was carried out to address some of the practical issues regarding the implementation of reflective roofs in a few commercial buildings. The authors monitored air-conditioning electricity use, roof surface temperature, plenum, indoor, and outdoor air temperatures, and other environmental variables in three buildings in California: two medical office buildings in Gilroy and Davis and a retail store in San Jose. Coating the roofs of these buildings with a reflective coating increased the roof albedo from an average of 0.20--0.60. The roof surface temperature on hot sunny summer afternoons fell from 175 F--120 F after the coating was applied. Summertime average daily air-conditioning electricity use was reduced by 18% (6.3 kWh/1000ft{sup 2}) in the Davis building, 13% (3.6 kWh/1000ft{sup 2}) in the Gilroy building, and 2% (0.4 kWh/1000ft{sup 2}) in the San Jose store. In each building, a kiosk was installed to display information from the project in order to educate and inform the general public about the environmental and energy-saving benefits of cool roofs. They were designed to explain cool-roof coating theory and to display real-time measurements of weather conditions, roof surface temperature, and air-conditioning electricity use. 55 figs., 15 tabs.

  3. Energy Impacts of Envelope Tightening and Mechanical Ventilation for the U.S. Residential Sector

    Energy Technology Data Exchange (ETDEWEB)

    Logue, J. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, M. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, I. S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, B. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-01

    Effective residential envelope air sealing reduces infiltration and associated energy costs for thermal conditioning, yet often creates a need for mechanical ventilation to protect indoor air quality. This study estimated the potential energy savings of implementing airtightness improvements or absolute standards along with mechanical ventilation throughout the U.S. housing stock. We used a physics-based modeling framework to simulate the impact of envelope tightening, providing mechanical ventilation as needed. There are 113 million homes in the US. We calculated the change in energy demand for each home in a nationally representative sample of 50,000 virtual homes developed from the 2009 Residential Energy Consumption Survey. Ventilation was provided as required by 2010 and proposed 2013 versions of ASHRAE Standard 62.2. Ensuring that all current homes comply with 62.2-2010 would increase residential site energy demand by 0.07 quads (0.07 exajoules (EJ)) annually. Improving airtightness of all homes at current average retrofit performance levels would decrease demand by 0.7 quads (0.74 EJ) annually and upgrading all homes to be as airtight as the top 10% of similar homes would double the savings, leading to roughly $22 billion in annual savings in energy bills. We also analyzed the potential benefits of bringing the entire stock to airtightness specifications of IECC 2012, Canada's R2000, and Passive House standards.

  4. Research report for fiscal 1997 on analysis and evaluation of demonstration tests for establishment of residential photovoltaic power generation load leveling technology, of which evaluation on weatherability of devices used in residential photovoltaic power generation system; 1997 nendo kenkyu hokokusho. Jutaku you taiyoko hatsuden fuka heijunka gijutsu tou kakuritsu jissho shiken ni kansuru kaiseki hyoka no uchi jutaku you taiyoko hatsuden system kiki no taikosei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    With the objectives to analyze and evaluate the safety and reliability due to aging of the devices used in the residential photovoltaic power generation system, weatherability tests have been performed on devices used in the residential photovoltaic power generation system by means of exposure. This paper summarizes the achievements in fiscal 1997. In the outdoor exposure tests on multi-crystalline silicon solar cell modules at Choshi City, Miyako Island and the Miyako Island seashore, the output characteristics after the exposure tests showed a result that the insolation intensity and the change in the short circuit current are approximately proportional, and the temperature in the module and the change in the open voltage are inversely proportional. The module characteristics retention rate showed no change in the 29-month exposure at all of the three exposure locations. The insulation resistance in the exposure test specimens have been good at 2,000 M{omega} or more in all the locations until 18 months have elapsed. However, the test specimens in Miyako Island and the Miyako Island seashore showed 99 M{omega} after 23 months, and 129 to 1,774 M{omega} after 29 months. According to the outdoor exposure tests of metal test pieces, noticeable difference was found in corrosion due to difference in the environment by each exposure location, whose order of the corrosion degree was the Miyako Island seashore > Miyako Island > Choshi City. (NEDO)

  5. Research report for fiscal 1995 on analysis and evaluation of demonstration tests for establishment of residential photovoltaic power generation load leveling technology, of which evaluation on weatherability of devices used in residential photovoltaic power generation system; 1995 nendo kenkyu hokokusho. Jutaku you taiyoko hatsuden fuka heijunka gijutsu tou kakuritsu jissho shiken ni kansuru kaiseki hyoka no uchi jutaku you taiyoko hatsuden system kiki no taikosei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Weatherability tests have been performed on devices used in the residential photovoltaic power generation system by means of exposure, with the objectives to analyze and evaluate the safety and reliability due to aging of the devices used in the residential photovoltaic power generation system. This paper summarizes the achievements in fiscal 1995. In the outdoor exposure test on solar cell modules, multi-crystalline silicon solar cell modules were selected as the test specimens, and thermo-couples were embedded in the modules to measure the temperatures. Also for the purpose of comparison, storage test specimens were stored in a constant temperature and humidity chamber. The exposure tests were carried out in three locations of the city of Choshi in Chiba Prefecture, the Miyako Island test site in Okinawa Prefecture, and the Miyako Island seashore. In the measurement and evaluation, appearance observation and measurements of output characteristics and insulation resistance were executed in summer and winter. No noticeable changes were observed in the measurements after lapse of four months and six months. In the outdoor exposure tests of metal test pieces, aluminum alloys were tested for corrosion caused by contact with different kinds of metals. Although the test period was short in the current fiscal year, difference in corrosion degrees in the aluminum alloys was found already in three months. (NEDO)

  6. Research report for fiscal 1996 on analysis and evaluation of demonstration tests for establishment of residential photovoltaic power generation load leveling technology, of which evaluation on weatherability of devices used in residential photovoltaic power generation system; 1996 nendo kenkyu hokokusho. Jutaku you taiyoko hatsuden fuka heijunka gijutsu tou kakuritsu jissho shiken ni kansuru kaiseki hyoka no uchi jutaku you taiyoko hatsuden system kiki no taikosei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Weatherability tests have been performed on devices used in the residential photovoltaic power generation system by means of exposure, with the objectives to analyze and evaluate the safety and reliability due to aging of the devices used in the residential photovoltaic power generation system. This paper summarizes the achievements in fiscal 1996. In the outdoor exposure tests on solar cell modules, results of the tests were derived for up to 18 months after the start of the exposure at Choshi City, Miyako Island and the Miyako Island seashore. In the appearance observation, some white rust has appeared in the contact section of the aluminum frames of the solar cell modules and fixing screws, which have been exposed at Miyako Island and the Miyako Island seashore, but no changes that may give influence on the performance of the solar cells have been observed. The results showed performance similar to or slightly inferior to that before the exposure as a whole. The insulation resistances were all found good. According to the result of the outdoor exposure test of metal test pieces, noticeable difference in the corrosion degrees was recognized in the contact corrosion section of the aluminum alloys exposed in three areas having different meteorological and environmental factors. Electroplated zinc was found to have severer pitting corrosion in the contact sections than treatment-free zinc. (NEDO)

  7. Baseline data for the residential sector and development of a residential forecasting database

    Energy Technology Data Exchange (ETDEWEB)

    Hanford, J.W.; Koomey, J.G.; Stewart, L.E.; Lecar, M.E.; Brown, R.E.; Johnson, F.X.; Hwang, R.J.; Price, L.K.

    1994-05-01

    This report describes the Lawrence Berkeley Laboratory (LBL) residential forecasting database. It provides a description of the methodology used to develop the database and describes the data used for heating and cooling end-uses as well as for typical household appliances. This report provides information on end-use unit energy consumption (UEC) values of appliances and equipment historical and current appliance and equipment market shares, appliance and equipment efficiency and sales trends, cost vs efficiency data for appliances and equipment, product lifetime estimates, thermal shell characteristics of buildings, heating and cooling loads, shell measure cost data for new and retrofit buildings, baseline housing stocks, forecasts of housing starts, and forecasts of energy prices and other economic drivers. Model inputs and outputs, as well as all other information in the database, are fully documented with the source and an explanation of how they were derived.

  8. Saving Face and Group Identity

    DEFF Research Database (Denmark)

    Eriksson, Tor; Mao, Lei; Villeval, Marie-Claire

    2015-01-01

    their self- but also other group members' image. This behavior is frequent even in the absence of group identity. When group identity is more salient, individuals help regardless of whether the least performer is an in-group or an out-group. This suggests that saving others' face is a strong social norm....

  9. Revolving fund for energy saving

    International Nuclear Information System (INIS)

    Prebensen, K.

    1993-01-01

    A key issue in Eastern Europe is the adjustment of prices from the former COMECON level to a level conforming with free market conditions. In the case of household heating, this issue involves the removal of government subsidies leading to sharply increasing prices, metering of individual consumption, improving the efficiency of energy production, distribution and use - where savings of 30-50% in each link are technically feasible - thereby providing a potential for a adapting consumption patterns to higher energy prices, provided that funds are available. Currently, investment in commercial heat production and distribution systems have received substantial international support - whereas investment in reduction of demand has been little exploited. The Revolving Fund for Energy Savings in Polish Households is a concept for efficient financing of small-scale projects. It aims at financing, on the level of housing cooperatives, on the basis of a simplified lending and project evaluation procedure, well suited to current Polish conditions or an organizationally and financially weak banking system and little developed technical knowledge in the field of energy saving. A general introduction to the issue is given and technical problems are elaborated. The implementation of Energy Savings in Housing seen from the banking point of view, and a current pilot scheme for financing, are described. (AB)

  10. Fast approach for toner saving

    Science.gov (United States)

    Safonov, Ilia V.; Kurilin, Ilya V.; Rychagov, Michael N.; Lee, Hokeun; Kim, Sangho; Choi, Donchul

    2011-01-01

    Reducing toner consumption is an important task in modern printing devices and has a significant positive ecological impact. Existing toner saving approaches have two main drawbacks: appearance of hardcopy in toner saving mode is worse in comparison with normal mode; processing of whole rendered page bitmap requires significant computational costs. We propose to add small holes of various shapes and sizes to random places inside a character bitmap stored in font cache. Such random perforation scheme is based on processing pipeline in RIP of standard printer languages Postscript and PCL. Processing of text characters only, and moreover, processing of each character for given font and size alone, is an extremely fast procedure. The approach does not deteriorate halftoned bitmap and business graphics and provide toner saving for typical office documents up to 15-20%. Rate of toner saving is adjustable. Alteration of resulted characters' appearance is almost indistinguishable in comparison with solid black text due to random placement of small holes inside the character regions. The suggested method automatically skips small fonts to preserve its quality. Readability of text processed by proposed method is fine. OCR programs process that scanned hardcopy successfully too.

  11. Shining a Light on Savings.

    Science.gov (United States)

    Kennedy, Mike

    2000-01-01

    Discusses how schools and universities can save energy and money by evaluating lighting systems and changing behaviors. Retrofitting older buildings with better lighting technology and use of natural light are examined. An example of an energy conservation education program to reduce energy waste is highlighted. (GR)

  12. Saving Green on Energy Costs

    Science.gov (United States)

    Tacke, Diane L.

    2006-01-01

    In recent years, colleges and universities have begun efforts to reduce their energy costs, an initiative that can not only save an institution money, but also strengthen relationships across campus. Board leadership has been central to this endeavor in setting goals, prioritizing projects, and financing those projects. Using her experiences with…

  13. Save the Boulders Beach Penguins

    Science.gov (United States)

    Sheerer, Katherine; Schnittka, Christine

    2012-01-01

    Maybe it's the peculiar way they walk or their cute little suits, but students of all ages are drawn to penguins. To meet younger students' curiosity, the authors adapted a middle-school level, penguin-themed curriculum unit called Save the Penguins (Schnittka, Bell, and Richards 2010) for third-grade students. The students loved learning about…

  14. Market and own load bulletin - December 1992

    International Nuclear Information System (INIS)

    1992-12-01

    The electric power consumption in the residential, commercial and industrial Brazilian sectors and in the five Brazilian regions during december of 1992 is described. The industrial production indexes, the cost of tariffs and fuel consumption and the evolution of own load energy and the energy demand are also shown. (C.G.C.)

  15. Market and own load bulletin - June 1993

    International Nuclear Information System (INIS)

    1993-06-01

    The electric power consumption in the residential, commercial and industrial Brazilian sectors and in the five Brazilian regions during the month of June 1993 is described. The industrial production indexes, the cost of tariffs and fuel consumption and the evolution of own load energy and the energy demand are also shown. (C.G.C.)

  16. Market and own load bulletin - August 1993

    International Nuclear Information System (INIS)

    1993-08-01

    The electric power consumption in the residential, commercial and industrial Brazilian sectors and in the five Brazilian regions during the month of August 1993 is described. The industrial production indexes, the cost of tariffs and fuel consumption and the evolution of own load energy and the energy demand are also shown. (C.G.C.)

  17. Market and own load bulletin - November 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The electric power consumption in the residential, commercial and industrial Brazilian sectors, and in the five Brazilian regions, during January-November 93, and December 92-November 93 is described. The industrial production indexes, the cost of tariffs and fuel consumption, the evolution of own load energy and energy demand are also shown. (C.G.C.)

  18. Market and own load bulletin - October 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The electric power consumption in the residential, commercial and industrial Brazilian sectors, and in the five Brazilian regions, during January-October 93, and November 92-October 93 is described. The industrial production indexes, the cost of tariffs and fuel consumption, the evolution of own load energy and energy demand are also shown. (C.G.C.)

  19. Market and own load bulletin - July 1993

    International Nuclear Information System (INIS)

    1993-07-01

    The electric power consumption in the residential, commercial and industrial Brazilian sectors and in the five Brazilian regions during the month of July 1993 is described. The industrial production indexes, the cost of tariffs and fuel consumption and the evolution of own load energy and the energy demand are also shown. (C.G.C.)

  20. Market and own load bulletin - December 1993

    International Nuclear Information System (INIS)

    1993-12-01

    The electric power consumption in the residential, commercial and industrial Brazilian sectors and in the five Brazilian regions during december of 1993 is described. The industrial production indexes, the cost of tariffs and fuel consumption and the evolution of own load energy and the energy demand are also shown. (C.G.C.)

  1. 2006 Status Report Savings Estimates for the ENERGY STAR(R)Voluntary Labeling Program

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Carrie A.; Brown, Richard E.; Sanchez, Marla; Homan,Gregory K.

    2006-03-07

    ENERGY STAR(R) is a voluntary labeling program designed toidentify and promote energy-efficient products, buildings and practices.Operated jointly by the Environmental Protection Agency (EPA) and theU.S. Department of Energy (DOE), ENERGY STAR labels exist for more thanthirty products, spanning office equipment, residential heating andcooling equipment, commercial and residential lighting, home electronics,and major appliances. This report presents savings estimates for a subsetof ENERGY STAR labeled products. We present estimates of the energy,dollar and carbon savings achieved by the program in the year 2005, whatwe expect in 2006, and provide savings forecasts for two marketpenetration scenarios for the periods 2006 to 2015 and 2006 to 2025. Thetarget market penetration forecast represents our best estimate of futureENERGY STAR savings. It is based on realistic market penetration goalsfor each of the products. We also provide a forecast under the assumptionof 100 percent market penetration; that is, we assume that all purchasersbuy ENERGY STAR-compliant products instead of standard efficiencyproducts throughout the analysis period.

  2. 2003 status report savings estimates for the energy star(R)voluntary labeling program

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla

    2004-11-09

    ENERGY STAR(R) is a voluntary labeling program designed to identify and promote energy-efficient products, buildings and practices. Operated jointly by the Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), ENERGY STAR labels exist for more than thirty products, spanning office equipment, residential heating and cooling equipment, commercial and residential lighting, home electronics, and major appliances. This report presents savings estimates for a subset of ENERGY STAR program activities, focused primarily on labeled products. We present estimates of the energy, dollar and carbon savings achieved by the program in the year 2002, what we expect in 2003, and provide savings forecasts for two market penetration scenarios for the period 2003 to 2020. The target market penetration forecast represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide a forecast under the assumption of 100 percent market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period.

  3. Savings estimates for the ENERGY STAR (registered trademark) voluntary labeling program: 2001 status report

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Carrie A.; Brown, Richard E.; Mahajan, Akshay; Koomey, Jonathan G.

    2002-02-15

    ENERGY STAR(Registered Trademark) is a voluntary labeling program designed to identify and promote energy-efficient products, buildings and practices. Operated jointly by the Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), ENERGY STAR labels exist for more than thirty products, spanning office equipment, residential heating and cooling equipment, commercial and residential lighting, home electronics, and major appliances. This report presents savings estimates for a subset of ENERGY STAR program activities, focused primarily on labeled products. We present estimates of the energy, dollar and carbon savings achieved by the program in the year 2000, what we expect in 2001, and provide savings forecasts for two market penetration scenarios for the period 2001 to 2020. The target market penetration forecast represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide a forecast under the assumption of 100 percent market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period.

  4. 2004 status report: Savings estimates for the Energy Star(R)voluntarylabeling program

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla

    2004-03-09

    ENERGY STAR(R) is a voluntary labeling program designed toidentify and promote energy-efficient products, buildings and practices.Operated jointly by the Environmental Protection Agency (EPA) and theU.S. Department of Energy (DOE), ENERGY STAR labels exist for more thanthirty products, spanning office equipment, residential heating andcooling equipment, commercial and residential lighting, home electronics,and major appliances. This report presents savings estimates for a subsetof ENERGY STAR labeled products. We present estimates of the energy,dollar and carbon savings achieved by the program in the year 2003, whatwe expect in 2004, and provide savings forecasts for two marketpenetration scenarios for the periods 2004 to 2010 and 2004 to 2020. Thetarget market penetration forecast represents our best estimate of futureENERGY STAR savings. It is based on realistic market penetration goalsfor each of the products. We also provide a forecast under the assumptionof 100 percent market penetration; that is, we assume that all purchasersbuy ENERGY STAR-compliant products instead of standard efficiencyproducts throughout the analysis period.

  5. 2005 Status Report Savings Estimates for the ENERGY STAR(R)Voluntary Labeling Program

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Carrie A.; Brown, Richard E.; Sanchez, Marla

    2006-03-07

    ENERGY STAR(R) is a voluntary labeling program designed toidentify and promote energy-efficient products, buildings and practices.Operated jointly by the Environmental Protection Agency (EPA) and theU.S. Department of Energy (DOE), Energy Star labels exist for more thanforty products, spanning office equipment, residential heating andcooling equipment, commercial and residential lighting, home electronics,and major appliances. This report presents savings estimates for a subsetof ENERGY STAR labeled products. We present estimates of the energy,dollar and carbon savings achieved by the program in the year 2004, whatwe expect in 2005, and provide savings forecasts for two marketpenetration scenarios for the periods 2005 to 2010 and 2005 to 2020. Thetarget market penetration forecast represents our best estimate of futureENERGY STAR savings. It is based on realistic market penetration goalsfor each of the products. We also provide a forecast under the assumptionof 100 percent market penetration; that is, we assume that all purchasersbuy ENERGY STAR-compliant products instead of standard efficiencyproducts throughout the analysis period.

  6. 2002 status report: Savings estimates for the ENERGY STAR(R) voluntary labeling program

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla; Koomey, Jonathan

    2003-03-03

    ENERGY STAR [registered trademark] is a voluntary labeling program designed to identify and promote energy-efficient products, buildings and practices. Operated jointly by the Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), ENERGY STAR labels exist for more than thirty products, spanning office equipment, residential heating and cooling equipment, commercial and residential lighting, home electronics, and major appliances. This report presents savings estimates for a subset of ENERGY STAR program activities, focused primarily on labeled products. We present estimates of the energy, dollar and carbon savings achieved by the program in the year 2001, what we expect in 2002, and provide savings forecasts for two market penetration scenarios for the period 2002 to 2020. The target market penetration forecast represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide a forecast under the assumption of 100 percent market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period.

  7. 2007 Status Report: Savings Estimates for the ENERGY STAR(R)VoluntaryLabeling Program

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marla; Webber, Carrie A.; Brown, Richard E.; Homan,Gregory K.

    2007-03-23

    ENERGY STAR(R) is a voluntary labeling program designed toidentify and promote energy-efficient products, buildings and practices.Operated jointly by the Environmental Protection Agency (EPA) and theU.S. Department of Energy (DOE), ENERGY STAR labels exist for more thanthirty products, spanning office equipment, residential heating andcooling equipment, commercial and residential lighting, home electronics,and major appliances. This report presents savings estimates for a subsetof ENERGY STAR labeled products. We present estimates of the energy,dollar and carbon savings achieved by the program in the year 2006, whatwe expect in 2007, and provide savings forecasts for two marketpenetration scenarios for the periods 2007 to 2015 and 2007 to 2025. Thetarget market penetration forecast represents our best estimate of futureENERGY STAR savings. It is based on realistic market penetration goalsfor each of the products. We also provide a forecast under the assumptionof 100 percent market penetration; that is, we assume that all purchasersbuy ENERGY STAR-compliant products instead of standard efficiencyproducts throughout the analysis period.

  8. A low-cost-solar liquid desiccant system for residential cooling

    Science.gov (United States)

    Ware, Joel D., III

    The use of liquid desiccants for dehumidification of heating, ventilation, and air conditioning (HVAC) process air is becoming a more promising concept as the drive for energy conservation continues to grow. Recently, liquid desiccant systems have been implemented on the commercial level in conjunction with evaporative coolers and have recorded energy savings upwards of 50%. The aim of this research is to test the potential liquid desiccant systems have on the residential level when paired with a conventional vapor compression cycle and to construct a system that would overcome some of its barriers to the residential market. A complete low-cost-solar liquid desiccant system was designed, constructed, and tested in the Off-Grid Zero Emissions Building (OGZEB) at the Florida State University. Key design characteristics include turbulent process air flow through the conditioner and airside heating in the regenerator. The system was tested in the two following ways: (1) for the energy savings while maintaining a constant temperature over a twenty four hour period and (2) for the energy savings over a single cooling cycle. The liquid desiccant system achieved a maximum energy savings of 38% over a complete day and 52% over a single cooling cycle. It was projected that the system has the potential to save 1064 kWh over the course of a year. When combined with a renewable source of heat for regeneration, liquid desiccant systems become very cost effective. The levelized cost of energy for the combination of the liquid desiccant system and solar thermal collectors was calculated to be 7.06 C/kWh with a payback period of 4.4 years. This research provides evidence of the technology's potential on the residential sector and suggests ways for it to become competitive in the market.

  9. Reconciling Consumer and Utility Objectives in the Residential Solar PV Market

    Science.gov (United States)

    Arnold, Michael R.

    Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This study provides a series of analyses---utility-side, consumer-side, and combined analyses---to understand and evaluate the effect of increases in residential solar PV market penetration. Three urban regions have been selected as study locations---Chicago, Phoenix, Seattle---with simulated load data and solar insolation data at each locality. Various time-of-use pricing schedules are investigated, and the effect of net metering is evaluated to determine the optimal capacity of solar PV and battery storage in a typical residential home. The net residential load profile is scaled to assess system-wide technical and economic figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and electricity sales with increasing solar PV penetration. The combined analysis evaluates the least-cost solar PV system for the consumer and models the associated system-wide effects on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV penetration increase, net metering on a monthly or annual basis improved the cost-effectiveness of solar PV but not battery storage, the removal of net metering policy and usage of an improved the cost-effectiveness of battery storage and increases in solar PV penetration reduced the system load factor. As expected, Phoenix had the most favorable economic scenario for residential solar PV, primarily due to high solar insolation. The study location---solar insolation and load profile---was also found to affect the time of year at which the largest net negative system load was realized.

  10. Energy consumption and energy saving : their evolution in Spain and other countries

    International Nuclear Information System (INIS)

    Serrano Martinez, F.

    1995-01-01

    The article shows the development of energy consumption since the seventies in three main energy consuming sectors: industry, residential services and transport. While the energy intensity and consumption in the industrial sector have considerably decreased- taking 100 as index in 1973, this was 68 in 1988-in the other sectors, the increase of comfort in houses and business offices, as well as the number or automobiles, have made consumption in these sectors increase despite the efforts made in the improvement of return of installations and reduction of cars consumption. In the industry, large energy savings coincide with remarkable technological innovations and for the future, the achieved savings and future trends, as well as conditions for the energy saving, are analyzed for the rest of the sectors. (Author)

  11. Residential mobility and childhood leukemia.

    Science.gov (United States)

    Amoon, A T; Oksuzyan, S; Crespi, C M; Arah, O A; Cockburn, M; Vergara, X; Kheifets, L

    2018-07-01

    Studies of environmental exposures and childhood leukemia studies do not usually account for residential mobility. Yet, in addition to being a potential risk factor, mobility can induce selection bias, confounding, or measurement error in such studies. Using data collected for California Powerline Study (CAPS), we attempt to disentangle the effect of mobility. We analyzed data from a population-based case-control study of childhood leukemia using cases who were born in California and diagnosed between 1988 and 2008 and birth certificate controls. We used stratified logistic regression, case-only analysis, and propensity-score adjustments to assess predictors of residential mobility between birth and diagnosis, and account for potential confounding due to residential mobility. Children who moved tended to be older, lived in housing other than single-family homes, had younger mothers and fewer siblings, and were of lower socioeconomic status. Odds ratios for leukemia among non-movers living mobility, including dwelling type, increased odds ratios for leukemia to 2.61 (95% CI: 1.76-3.86) for living mobility of childhood leukemia cases varied by several sociodemographic characteristics, but not by the distance to the nearest power line or calculated magnetic fields. Mobility appears to be an unlikely explanation for the associations observed between power lines exposure and childhood leukemia. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. RESIDENTIAL MORTGAGE IN MODERN RUSSIA

    Directory of Open Access Journals (Sweden)

    Dementiev N. P.

    2015-03-01

    Full Text Available The article presents a comparative analysis of residential mortgages in Russia and the United States. The primary ways of mortgage refinancing are outlined. Predominance of the elements of two-level refinancing system of residential mortgage in Russia and the United States is shown. The activity of the Agency for Housing Mortgage Lending (AHML, the basic tool of the Russian government’s mortgage policy, is described in detail. In its objectives and functions the AHML is similar to the American mortgage agencies Ginnie Mae, Fannie Mae and Freddie Mac. Similarities were identified in the Russian and US residential mortgages in the pre-crisis period (high rates of mortgage growth, favourable economic conjuncture, low interest rates, large increase in house prices, speculative housing demand. During the mortgage crisis, the policies of the Russian and US governments and monetary authorities had also much in common (monetary policy easing, cheap central banks loans, extended facilities of mortgage refinancing on the part of state agencies, mortgage rescue scheme, social mortgage programs. But the scope of mortgage in Russia is enormously narrow as compared to the US mortgage. The most important reason for that - low incomes of the Russian population.

  13. Dramix® Steel fibres in residential foundation slabs in Czech Republic: design approach

    Science.gov (United States)

    Pouillon, S.

    2017-09-01

    Steel fibres are used more and more in structural concrete elements, like residential foundation slabs. The development of high performant steel fibres (e.g. Dramix® 4D and 5D), the evolution in standardization and the demand coming from construction companies and investors are pushing this trend. Engineers are using the yield line method to design steel fibre concrete structures in an easy and economical way, especially if the structure has a regular load layout mainly containing wall loads and point loads. The load configuration, soil characteristics and material characteristics determine the final solution.

  14. Strategies for Controlling Plug Loads. A Tool for Reducing Plug Loads in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bonnema, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sheppy, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Shanti [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Plug loads are often not considered as part of the energy savings measures in Commercial Buildings; however, they can account for up to 50% of the energy used in the building. These loads are numerous and often scattered throughout a building. Some of these loads are purchased by the owner and some designed into the building or the tenant finishes for a space. This document provides a strategy and a tool for minimizing these loads.

  15. Net-zero emission residential building in temperate weather condition

    Directory of Open Access Journals (Sweden)

    Arif Mohammad T.

    2017-01-01

    Full Text Available Residential load consumes a significant amount of grid energy for electrical and heating or cooling application. Greenhouse gas (GHG emission or equivalent CO2 emission is the direct or indirect effect from either form of these energy uses. Energy demand is increasing with the addition of various new home appliances and energy price is also going up. Various initiatives can be taken to reduce energy demand. However the best way is by improving energy efficiency and that eventually reduces the emission. Using renewable energy (RE to support local load demand is another approach to reduce CO2 emission. However effective use of RE depends on the climatic condition and synchronization of load-demand and local generation. Although unmatched energy from local RE generation can be sold back to the grid, the same amount of energy has to be purchased from the grid at higher cost. When the overall total amount of GHG emission in a year can be balanced by improving energy efficiency and by increasing local RE generation the condition of the house can be termed as zero emission house. This paper investigates the possibility of net-zero emission house in temperate weather condition in Geelong, Australia considering the cost of all relevant components. It was found that net-zero emission building can be implemented and can effectively reduce a total of 44 Mt of CO2 emission in a year from all 9 million residential buildings in Australia.

  16. Effects of a behaviour change intervention for Girl Scouts on child and parent energy-saving behaviours

    Science.gov (United States)

    Boudet, Hilary; Ardoin, Nicole M.; Flora, June; Armel, K. Carrie; Desai, Manisha; Robinson, Thomas N.

    2016-08-01

    Energy education programmes for children are hypothesized to have great potential to save energy. Such interventions are often assumed to impact child and family behaviours. Here, using a cluster-randomized controlled trial with 30 Girl Scout troops in Northern California, we assess the efficacy of two social cognitive theory-based interventions focused on residential and food-and-transportation energy-related behaviours of Girl Scouts and their families. We show that Girl Scouts and parents in troops randomly assigned to the residential energy intervention significantly increased their self-reported residential energy-saving behaviours immediately following the intervention and after more than seven months of follow-up, compared with controls. Girl Scouts in troops randomly assigned to the food-and-transportation energy intervention significantly increased their self-reported food-and-transportation energy-saving behaviours immediately following the intervention, compared with controls, but not at follow-up. The results demonstrate that theory-based, child-focused energy interventions have the potential to increase energy-saving behaviours among both children and their parents.

  17. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at

  18. Stakeholders’ influence on the adoption of energy-saving technologies in Italian homes

    International Nuclear Information System (INIS)

    Berardi, Umberto

    2013-01-01

    The instability and fragmentation of the temporary aggregations of many stakeholders in construction processes are barriers to adopting new technologies. This paper investigates the influence of different stakeholders on the adoption of mature energy-saving technologies in new residential buildings. Recent literature about the influence of different stakeholders on construction processes is reviewed focusing in their interest for energy saving technologies. To gain an insight into the specific roles played by stakeholders (general contractors, construction firms, architects, users and public governments) in different projects, a case study methodology was used. The influence on the adoption of energy-saving technologies of stakeholders was assessed through semi-structured interviews. These interviews focused on the interest and power for the adoption of several energy-saving technologies. Having recognized that the interest in adoption is often expressed late in the construction processes, the time of introduction of this interest was assessed. This paper provides an empirical insight into significant barriers for the adoption of energy saving technologies which are the low influence of highly motivated stakeholders on the decision of adoption, and the delay at which the interest in energy-saving technologies emerges. Finally, policies to overcome these barriers are suggested. - Highlights: • Why energy saving technologies are rarely adopted in buildings? • Diffusion is slowed by the late participation of stakeholders with great interest for energy technologies. • The influence of construction stakeholders for the adoption of energy saving technologies is measured in Italian case studies. • More integrated relationships among stakeholders are required to help the adoption of energy saving technologies. • Process re-organizations and policies which increase final users’ power are needed

  19. Energy Savings Measure Packages: Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Casey, S.; Booten, C.

    2011-11-01

    This document presents the most cost effective Energy Savings Measure Packages (ESMP) for existing mixed-fuel and all electric homes to achieve 15% and 30% savings for each BetterBuildings grantee location across the US. These packages are optimized for minimum cost to homeowners for given source energy savings given the local climate and prevalent building characteristics (i.e. foundation types). Maximum cost savings are typically found between 30% and 50% energy savings over the reference home. The dollar value of the maximum annual savings varies significantly by location but typically amounts to $300 - $700/year.

  20. Integration of Solar Photovoltaics and Electric Vehicles in Residential Grids

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Huang, Shaojun; Bak-Jensen, Birgitte

    2013-01-01

    In the last few years, there is an increased penetration of solar photovoltaic (SPV) units in low voltage (LV) distribution grids. Also electric vehicles (EVs) are introduced to these LV networks. This has caused the distribution networks to be more active and complex as these local generation...... and load units are characterised by unpredictable and diverse operating characteristics. This paper analyses the combined effect of SPVs and EVs in LV Danish residential grids. The EVs charging needs based on typical driving patterns of passenger cars and SPV power profiles during winter/summer days...

  1. FY 1997 cost savings report

    Energy Technology Data Exchange (ETDEWEB)

    Sellards, J.B.

    1998-06-01

    With the end of the cold war, funding for the Environmental Management program increased rapidly as nuclear weapons production facilities were shut down, cleanup responsibilities increased, and facilities were transferred to the cleanup program. As funding for the Environmental Management (EM) program began to level off in response to Administration and Congressional efforts to balance the Federal budget, the program redoubled its efforts to increase efficiency and get more productivity out of every dollar. Cost savings and enhanced performance are an integral pair of Hanford Site operations. FY1997 was the third year of a cost savings program that was initially defined in FY 1995. The definitions and process remained virtually the same as those used in FY 1996.

  2. FY 1997 cost savings report

    International Nuclear Information System (INIS)

    Sellards, J.B.

    1998-01-01

    With the end of the cold war, funding for the Environmental Management program increased rapidly as nuclear weapons production facilities were shut down, cleanup responsibilities increased, and facilities were transferred to the cleanup program. As funding for the Environmental Management (EM) program began to level off in response to Administration and Congressional efforts to balance the Federal budget, the program redoubled its efforts to increase efficiency and get more productivity out of every dollar. Cost savings and enhanced performance are an integral pair of Hanford Site operations. FY1997 was the third year of a cost savings program that was initially defined in FY 1995. The definitions and process remained virtually the same as those used in FY 1996

  3. Energy savings in Polish buildings

    Energy Technology Data Exchange (ETDEWEB)

    Markel, L.C.; Gula, A.; Reeves, G.

    1995-12-31

    A demonstration of low-cost insulation and weatherization techniques was a part of phase 1 of the Krakow Clean Fossil Fuels and Energy Efficient Project. The objectives were to identify a cost-effective set of measures to reduce energy used for space heating, determine how much energy could be saved, and foster widespread implementation of those measures. The demonstration project focused on 4 11-story buildings in a Krakow housing cooperative. Energy savings of over 20% were obtained. Most important, the procedures and materials implemented in the demonstration project have been adapted to Polish conditions and applied to other housing cooperatives, schools, and hospitals. Additional projects are being planned, in Krakow and other cities, under the direction of FEWE-Krakow, the Polish Energie Cities Network, and Biuro Rozwoju Krakowa.

  4. Residential care : Dutch and Italian residents of residential care facilities compared

    NARCIS (Netherlands)

    de Heer-Wunderink, Charlotte; Caro-Nienhuis, Annemarie D.; Sytema, Sjoerd; Wiersma, Durk

    2008-01-01

    Aims - Characteristics of patients living in residential care facilities and the availability of mental hospital- and residential beds in Italy and The Netherlands were compared to assess whether differences in the process of deinstitutionalisation have influenced the composition of their

  5. Lifting and protecting residential structures from subsidence damage using airbags

    International Nuclear Information System (INIS)

    Triplett, T.L.; Bennett, R.M.

    1998-01-01

    Conventional practice in protecting residential structures from subsidence damage concentrates on saving the superstructure. The foundation is sacrificed, even though it represents the structural component with the greatest replacement cost. In this study, airbags were used to lift a 20 ft x 30 ft structure to test their ability to protect both the foundation and superstructure from ground settlement. Two contiguous sides of the test foundation were unreinforced, and the other two contiguous sides incorporated footing and wall reinforcement. The airbags successfully lifted the structure without causing damage, even on the unreinforced sides. This paper gives a procedure for determining airbag spacing, and describes installation and operation techniques of the airbags. The paper then focuses on the performance of the airbags in lifting the structure, and shows that airbags can preserve existing foundations during subsidence movements

  6. Resource saving solutions for the shared use of household waste removal systemsand sewage networks in modern residential buildings РЕСУРСОСБЕРЕГАЮЩИЕ РЕШЕНИЯ ПРИ СОВМЕСТНОМ ИСПОЛЬЗОВАНИИ СИСТЕМ МУСОРОУДАЛЕНИЯ И КАНАЛИЗАЦИИ В СОВРЕМЕННЫХ ЖИЛЫХ ДОМАХ

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    2013-06-01

    Full Text Available The problem of resource saving is particularly relevant for household waste removal systems and sewage networks in modern residential houses. Some options for the shared use of sewage networks and natural organic waste removal systems in residential buildings are assessed by the author. Layouts, operation patterns and elements of the systems are provided. Strengths of shared operation of the systems and networks are analyzed with account for the present-day requirements applicable to the systems in question. The positive factor is that residents do not need to spend money for expensive food waste disposers for their homes. They will also use garbage chutes in their houses.Joint operation of food waste removal systems and domestic sewage networks will reduce the load on landfills which has been increasing in the recent years. It will increase the load on urban sewage networks and water treatment facilities, but it will not be a critical factor, because treatment facilities are capable of purifying water without much difficulty. Processed food waste may be applied to produce fertilizers and biogas to be used as fuel. Therefore, benefits of the limited use of landfills are obvious.Waste shredding is the most convenient, efficient and nature friendly way of processing the organic waste at the initial stage of its generation. It prevents rotting typical for the organic waste if disposed together with the municipal solid waste.The experience of the United States, where food waste is treated by in-sink food erators and removed into the sewage system is less expensive for city budgets than their disposal at landfills.Food wastes consist mainly of the water (70 %; therefore, water treatment facilities assure a more natural way of processing this type of waste than waste collection and disposal. Separation of organic waste from solid waste also reduces the number of disease vectors such as flies, rodents, and cockroaches.В современных

  7. Analysis of Applications to Improve the Energy Savings in Residential Buildings Based on Systemic Quality Model

    Directory of Open Access Journals (Sweden)

    Antoni Fonseca i Casas

    2016-10-01

    Full Text Available Creating a definition of the features and the architecture of a new Energy Management Software (EMS is complex because different professionals will be involved in creating that definition and in using the tool. To simplify this definition and aid in the eventual selection of an existing EMS to fit a specific need, a set of metrics that considers the primary issues and drawbacks of the EMS is decisive. This study proposes a set of metrics to evaluate and compare EMS applications. Using these metrics will allow professionals to highlight the tendencies and detect the drawbacks of current EMS applications and to eventually develop new EMS applications based on the results of the analysis. This study presents a list of the applications to be examined and describes the primary issues to be considered in the development of a new application. This study follows the Systemic Quality Model (SQMO, which has been used as a starting point to develop new EMS, but can also be used to select an existing EMS that fits the goals of a company. Using this type of analysis, we were able to detect the primary features desired in an EMS software. These features are numerically scaled, allowing professionals to select the most appropriate EMS that fits for their purposes. This allows the development of EMS utilizing an iterative and user-centric approach. We can apply this methodology to guide the development of future EMS and to define the priorities that are desired in this type of software.

  8. Development of a new energy efficiency rating system for existing residential buildings

    International Nuclear Information System (INIS)

    Koo, Choongwan; Hong, Taehoon; Lee, Minhyun; Seon Park, Hyo

    2014-01-01

    Building energy efficiency rating systems have been established worldwide to systematically manage the energy consumption of existing buildings. This study aimed to develop a new energy efficiency rating system for existing residential buildings from two perspectives: (i) establishment of reasonable and fair criteria for the building energy efficiency rating system; and (ii) establishment of comparative incentive and penalty programs to encourage the voluntary participation of all residents in the energy saving campaign. Based on the analysis of the conventional energy efficiency rating system for existing residential buildings, this study was conducted in five steps: (i) data collection and analysis; (ii) correlation analysis between the household size and the CO 2 emission density (i.e., CO 2 emission per unit area); (iii) cluster formation based on results of the correlation analysis using a decision tree; (iv) establishment of a new energy efficiency rating system for existing buildings; and (v) establishment of incentive and penalty programs using advanced case-based reasoning. The proposed system can allow a policymaker to establish a reasonable and fair energy efficiency rating system for existing residential buildings and can encourage the voluntary participation of all residents in the energy saving campaign. - Highlights: • A new energy efficiency rating system for the residential building was developed. • The incentive and penalty programs were established using an advanced CBR model. • The new system was established using reasonable and fair standards. • It allows all residents to voluntarily participate in the energy saving campaign. • It can be applied to any country or sector in the global environment

  9. Criteria of Architectural Composition Design in Residential Courtyards

    Science.gov (United States)

    Ziemeļniece, Aija; Īle, Una

    2017-10-01

    The totalitarian times of the 50s-80s of the 20th century have brought the building of high-rise residential blocks in Latvian cities, characterized by an uninteresting solution of standard buildings and the alien scale which does not meet the regional features. During the above period, areas of the residential courtyards have not been addressed. The conclusion of the research is that today the courtyards of the high-rise residential houses have become a stagnant, functionally irrelevant area that forms a depressing nature of the outdoor living space. The uncharted area of courtyards is not being used fully which highlights a wide range of issues that applies to car parks, recreation areas, and the green areas. With the development of the urban infrastructure, the creation of high-rise parking facilities and separate car parks are insufficiently addressed. Consequently, the implementation of improvements in courtyards of high-rise residential houses is not possible if the above issue on the removal of the car load from courtyards is not solved. Many building districts are characterized by the same compositional, architectural-spatial structure which even more influences and causes discomfort in these areas to stay. In recent years, the solution to the above issue is sought by the municipal authorities of Latvia to create a new courtyard zoning. It applies to the project development and construction works. In the research, courtyards of the city of Jelgava are analysed and evaluated which from the qualitative point of view demonstrates and is a vivid example where the issues of the research are readable. The city of Jelgava, located 45 km away from Riga, is an expressed satellite city and serves for the agglomeration of Riga as a huge high-rise residential district. Consequently, the research includes separate courtyards of high-rise residential buildings of the city of Jelgava and their study is carried out from the point of view of the architectural composition

  10. Residential Energy Efficiency Potential: Washington

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Washington single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  11. Residential Energy Efficiency Potential: Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Colorado single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. Residential Energy Efficiency Potential: Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Delaware single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Residential Energy Efficiency Potential: Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Kentucky single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Residential Energy Efficiency Potential: Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Minnesota single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Residential Energy Efficiency Potential: Nebraska

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Nebraska single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  16. Residential Energy Efficiency Potential: Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Illinois single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Iowa single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wisconsin single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Residential Energy Efficiency Potential: Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wyoming single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Residential Energy Efficiency Potential: Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Oregon single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  1. Residential Energy Efficiency Potential: Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-17

    Energy used by Georgia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  2. Residential Energy Efficiency Potential: Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Ohio single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  3. Residential Energy Efficiency Potential: Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Arkansas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Residential Energy Efficiency Potential: Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Indiana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  5. Residential Energy Efficiency Potential: Vermont

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Vermont single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  6. Residential Energy Efficiency Potential: Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Missouri single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. Residential Energy Efficiency Potential: Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-15

    Energy used by Alabama single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  8. Residential Energy Efficiency Potential: Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Nevada single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  9. Residential Energy Efficiency Potential: California

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by California single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  10. Residential Energy Efficiency Potential: Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Tennessee single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  11. Residential Energy Efficiency Potential: Maine

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Maine single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. Residential Energy Efficiency Potential: Florida

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Florida single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Residential Energy Efficiency Potential: Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Pennsylvania single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Residential Energy Efficiency Potential: Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Virginia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Residential Energy Efficiency Potential: Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Oklahoma single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  16. Residential Energy Efficiency Potential: Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Idaho single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Michigan single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Arizona single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Residential Energy Efficiency Potential: Texas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Texas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Residential Energy Efficiency Potential: Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Kansas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  1. Residential Energy Efficiency Potential: Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-21

    Energy used by Massachusetts single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  2. Residential Energy Efficiency Potential: Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Mississippi single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  3. Residential Energy Efficiency Potential: Connecticut

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Connecticut single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Residential Energy Efficiency Potential: Montana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Montana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  5. Residential Energy Efficiency Potential: Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Maryland single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  6. Residential Energy Efficiency Potential: Utah

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Utah single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. Residential Energy Efficiency Potential: Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Louisiana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  8. How to save money on medicines

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000863.htm How to save money on medicines To use the sharing features on ... can look out for you, recommend ways to save money, and make sure all the drugs you take ...

  9. Savings account for health care costs

    Science.gov (United States)

    ... patientinstructions/000864.htm Savings account for health care costs To use the sharing features on this page, ... JavaScript. As health insurance changes, out-of-pocket costs continue to grow. With special savings accounts, you ...

  10. Potential for energy technologies in residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  11. Investigate and Comparsion Self-Esteem and Happiness Among Residential and Non-Residential Old People

    Directory of Open Access Journals (Sweden)

    Zakieh Nasiri

    2012-07-01

    Full Text Available Objectives: The main aim of this study was to investigate and to compare elderly happiness and self-esteem among residential and non-residential. Methods & Materials: This research was designed as descriptive. Two groups were selected in convenience method. Member of residential elderly (416 elderly were chosen based on Morgan Table. Hundred-twenty elderly, 60 residential (30 men and 30 women and 60 non-residential (30 men and 30 women were chosen for study. Data used the three questionnaires, like Demographic questionnaires, Oxford Happiness Inventory and Self-esteem Scale’s Rozenberg. Data were gathered and analyzed with Pearson test, t-student test. Results: The results were indicated that a significant relationship between happiness and self-esteem, among residential and non- residential old people. The findings showed significant difference in happiness, self-esteem among residential and home participants in both groups (P<0.01. Conclusion: The results were showed that a significant relationship between social support and self-esteem, among residential and non-residential old people. Also, the results were indicated that significant difference between social support. In general, residential participants had lower social support and self-esteem than non-residential participants.

  12. Residential energy consumption in urban China: A decomposition analysis

    International Nuclear Information System (INIS)

    Zhao Xiaoli; Li Na; Ma, Chunbo

    2012-01-01

    Residential energy consumption (REC) is the second largest energy use category (10%) in China and urban residents account for 63% of the REC. Understanding the underlying drivers of variations of urban REC thus helps to identify challenges and opportunities and provide advices for future policy measures. This paper applies the LMDI method to a decomposition of China's urban REC during the period of 1998–2007 at disaggregated product/activity level using data collected from a wide range of sources. Our results have shown an extensive structure change towards a more energy-intensive household consumption structure as well as an intensive structure change towards high-quality and cleaner energy such as electricity, oil, and natural gas, which reflects a changing lifestyle and consumption mode in pursuit of a higher level of comfort, convenience and environmental protection. We have also found that China's price reforms in the energy sector have contributed to a reduction of REC while scale factors including increased urban population and income levels have played a key role in the rapid growth of REC. We suggest that further deregulation in energy prices and regulatory as well as voluntary energy efficiency and conservation policies in the residential sector should be promoted. - Highlights: ► We examine china's residential energy consumption (REC) at detailed product level. ► Results show significant extensive and intensive structure changed. ► Price deregulation in the energy sector has contributed a reduction of REC. ► Growth of population and income played a key role in REC rapid growth. ► We provide policy suggestions to promote REC saving.

  13. Factors Affecting Green Residential Building Development: Social Network Analysis

    Directory of Open Access Journals (Sweden)

    Xiaodong Yang

    2018-05-01

    Full Text Available Green residential buildings (GRBs are one of the effective practices of energy saving and emission reduction in the construction industry. However, many real estate developers in China are less willing to develop GRBs, because of the factors affecting green residential building development (GRBD. In order to promote the sustainable development of GRBs in China, this paper, based on the perspective of real estate developers, identifies the influential and critical factors affecting GRBD, using the method of social network analysis (SNA. Firstly, 14 factors affecting GRBD are determined from 64 preliminary factors of three main elements, and the framework is established. Secondly, the relationships between the 14 factors are analyzed by SNA. Finally, four critical factors for GRBD, which are on the local economy development level, development strategy and innovation orientation, developer’s acknowledgement and positioning for GRBD, and experience and ability for GRBD, are identified by the social network centrality test. The findings illustrate the key issues that affect the development of GRBs, and provide references for policy making by the government and strategy formulation by real estate developers.

  14. Load Measurements

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes Load measurements carried out on a given wind turbine. The aim of the measurement program regarding the loads on the turbine is to verify the basic characteristics of the wind turbine and loads on the blades, the rotor and the tower, using [Ref 1], [Ref2] and [Ref 3]. Regarding...... the fatigue loads, the rotor, blades and tower moments are presented. The fatigue loads are evaluated using rainflow counting described in detail in Ref. [1]. The 1Hz equivalent load ranges are calculated at different wind speeds. All information regarding the instrumentation is collected in [ref 4] and [ref...

  15. Builder System Performance Package Targeting 30% -- 40% Savings in Space Conditioning Energy Use: Period of Performance; December 2002 to December 2003

    Energy Technology Data Exchange (ETDEWEB)

    2004-07-01

    The Consortium for Advanced Residential Building (CARB), one of the Building America teams, describes recommended best practices to achieve 30% - 40% energy savings without compromising health or safety in houses built in cold climates, hot-humid climates, and hot-dry climates.

  16. Consumer Socialization: Children's Saving and Spending.

    Science.gov (United States)

    Cohen, Stewart

    1994-01-01

    Provides examples of age-appropriate saving and spending activities that teachers can encourage in students to help them develop wise consumer behaviors. Suggests that younger children can save money in piggy banks or savings accounts, and older students can utilize checking accounts and mutual funds. All students can donate unneeded possessions…

  17. Building Savings and Investments Culture among Nigerians

    African Journals Online (AJOL)

    DR Nneka

    ? What Is Savings and Investments? According to Olusoji (2003), savings represent that part of net income that is not spent on current consumption, but when applied to capital investment output increases. In other words, saving is a sacrifice of ...

  18. Life-cycle energy implications of different residential settings: Recognizing buildings, travel, and public infrastructure

    International Nuclear Information System (INIS)

    Nichols, Brice G.; Kockelman, Kara M.

    2014-01-01

    The built environment can be used to influence travel demand, but very few studies consider the relative energy savings of such policies in context of a complex urban system. This analysis quantifies the day-to-day and embodied energy consumption of four different neighborhoods in Austin, Texas, to examine how built environment variations influence various sources of urban energy consumption. A microsimulation combines models for petroleum use (from driving) and residential and commercial power and natural gas use with rigorously measured building stock and infrastructure materials quantities (to arrive at embodied energy). Results indicate that the more suburban neighborhoods, with mostly detached single-family homes, consume up to 320% more embodied energy, 150% more operational energy, and about 160% more total life-cycle energy (per capita) than a densely developed neighborhood with mostly low-rise-apartments and duplexes. Across all neighborhoods, operational energy use comprised 83 to 92% of total energy use, and transportation sources (including personal vehicles and transit, plus street, parking structure, and sidewalk infrastructure) made up 44 to 47% of the life-cycle energy demands tallied. Energy elasticity calculations across the neighborhoods suggest that increased population density and reduced residential unit size offer greatest life-cycle energy savings per capita, by reducing both operational demands from driving and home energy use, and from less embodied energy from construction. These results provide measurable metrics for comparing different neighborhood styles and develop a framework to anticipate energy-savings from changes in the built environment versus household energy efficiency. - Highlights: • Total energy demands (operational and embodied) of 5 Austin settings were studied here. • Suburban settings consume much more energy than densely developed neighborhoods. • Transportation sources make up 44 to 47% of the total energy

  19. Technical Support Document: Development of the Advanced Energy Design Guide for K-12 Schools--30% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Torcellini, P.; Long, N.

    2007-09-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings (K-12 AEDG), a design guidance document intended to provide recommendations for achieving 30% energy savings in K-12 Schools over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The 30% energy savings target is the first step toward achieving net-zero energy schools; schools that, on an annual basis, draw from outside sources less or equal energy than they generate on site from renewable energy sources.

  20. Value of travel time savings

    DEFF Research Database (Denmark)

    Le Masurier, P.; Polak, J.; Pawlak, Janet

    2015-01-01

    A team of specialist market researchers and Value of Time experts comprising members from SYSTRA, Imperial College London and the Technical University of Denmark has conducted a formal audit and peer review of research undertaken by Arup/ITS Leeds/Accent to derive Value of Travel Time Savings...... Preference (RP) models that were used to derive final Values of Travel Time (VTT). This report contains the findings of our audit and peer review of the procedures adopted by the research team during data collection of the three surveys (SP, RP and Employers Surveys); a peer review of the reported approach...

  1. Residential ventilation standards scoping study

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  2. Residential Electricity Consumption in Poland

    Directory of Open Access Journals (Sweden)

    Edyta Ropuszyńska-Surma

    2016-01-01

    Full Text Available Key factors influencing electricity consumption in the residential sector in Poland have been identified. A fixed-effects model was used, which includes time effects, and a set of covariates, based on the model developed by Houthakker et al. This model estimates electricity demand by using lagged values of the dependent variable along with current and lagged values of electricity prices, and other variables that affect electricity demand such as: population, economic growth, income per capita, price of related goods, etc. The model has been identified according to the research results of the authors and those obtained by Bentzen and Engsted. The set of covariates was extended to the lagged electricity price given by a tariff (taken from two years previous to the time of interest and heating degree days index, a very important factor in European Union countries, where the climate is temperate. The authors propose four models of residential electricity demand, for which a confidence interval of 95% has been assumed. Estimation was based on Polish quarterly data for the years 2003-2013. (original abstract

  3. Connecting possibilistic prudence and optimal saving

    Directory of Open Access Journals (Sweden)

    Ana María Lucia Casademunt

    2013-12-01

    Full Text Available In this paper we study the optimal saving problem in the framework of possibility theory. The notion of possibilistic precautionary saving is introduced as a measure of the way the presence of possibilistic risk (represented by a fuzzy number influences a consumer in establishing the level of optimal saving. The notion of prudence of an agent in the face of possibilistic risk is defined and the equivalence between the prudence condition and a positive possibilistic precautionary saving is proved. Some relations between possibilistic risk aversion, prudence and possibilistic precautionary saving were established.

  4. Energy Savings Measure Packages. Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booten, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-11-01

    This document presents the most cost effective Energy Savings Measure Packages (ESMP) for existing mixed-fuel and all electric homes to achieve 15% and 30% savings for each BetterBuildings grantee location across the United States. These packages are optimized for minimum cost to homeowners for source energy savings given the local climate and prevalent building characteristics (i.e. foundation types). Maximum cost savings are typically found between 30% and 50% energy savings over the reference home; this typically amounts to $300 - $700/year.

  5. Residential instability: a perspective on system imbalance.

    Science.gov (United States)

    Appleby, Lawrence; Desai, Prakash

    1987-10-01

    In an exploration of residential instability and recidivism in chronic mental patients, 215 psychiatric admissions were followed for a year after the initial episode. In addition to an unusually high incidence of residential mobility, a relationship between mobility and number of hospitalizations was evident, as were isolation, disruptive family situations, and homelessness. The needed response of the mental health system is discussed.

  6. Credit Scores, Race, and Residential Sorting

    Science.gov (United States)

    Nelson, Ashlyn Aiko

    2010-01-01

    Credit scores have a profound impact on home purchasing power and mortgage pricing, yet little is known about how credit scores influence households' residential location decisions. This study estimates the effects of credit scores on residential sorting behavior using a novel mortgage industry data set combining household demographic, credit, and…

  7. Does immigrant residential crowding reflect hidden homelessness?

    Directory of Open Access Journals (Sweden)

    Michael Haan

    2011-12-01

    the extent to which heightened levels of residential crowding might reflect “hidden homelessness.” I find mixed evidence to support this link, and, if anything, find some evidence to suggest that the link between residential crowding and hidden homelessness, if one exists, is strongest for the Canadian-born.

  8. Stochastic analysis of residential micro combined heat and power system

    International Nuclear Information System (INIS)

    Karami, H.; Sanjari, M.J.; Gooi, H.B.; Gharehpetian, G.B.; Guerrero, J.M.

    2017-01-01

    Highlights: • Applying colonial competitive algorithm to the problem of optimal dispatching. • Economic modeling of the residential integrated energy system. • Investigating differences of stand-alone and system-connected modes of fuel cell operation. • Considering uncertainty on the electrical load. • The effects of battery capacity and its efficiency on the system is investigated. - Abstract: In this paper the combined heat and power functionality of a fuel-cell in a residential hybrid energy system, including a battery, is studied. The demand uncertainties are modeled by investigating the stochastic load behavior by applying Monte Carlo simulation. The colonial competitive algorithm is adopted to the hybrid energy system scheduling problem and different energy resources are optimally scheduled to have optimal operating cost of hybrid energy system. In order to show the effectiveness of the colonial competitive algorithm, the results are compared with the results of the harmony search algorithm. The optimized scheduling of different energy resources is listed in an efficient look-up table for all time intervals. The effects of time of use and the battery efficiency and its size are investigated on the operating cost of the hybrid energy system. The results of this paper are expected to be used effectively in a real hybrid energy system.

  9. Savings estimates for the Energy Star(registered trademark) voluntary labeling program

    International Nuclear Information System (INIS)

    Webber, Carrie A.; Brown, Richard E.; Koomey, Jonathan G.

    2000-01-01

    ENERGY STAR7 is a voluntary labeling program designed to identify and promote energy-efficient products. Operated jointly by the Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), ENERGY STAR labels exist for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. We present estimates of the energy, dollar and carbon savings already achieved by the program and provide savings forecasts for several market penetration scenarios for the period 2001 to 2010. The target market penetration forecast represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide a forecast under the assumption of 100 percent market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period. Finally, we assess the sensitivity of our target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future energy prices, and higher or lower rates of carbon emissions by electricity generators

  10. Room air conditioner load control under summer comfort constraint

    OpenAIRE

    Da Silva , David; Brancaccio , M; Duplessis , Bruno; Adnot , J

    2010-01-01

    International audience; Load control options interest is growing because it can represent a response to future network investments and to congestion problems. In this frame, the present paper gives a methodology to quantify the value of load control for heat pumps (room air conditioners), in small tertiary and residential buildings, considering the occupant's comfort and the electrical grid needs for load shift. This methodology was applied to a small office building where simulations were ma...

  11. Characteristics of MSW and heat energy recovery between residential and commercial areas in Seoul.

    Science.gov (United States)

    Yi, Sora; Yoo, Kee-Young; Hanaki, Keisuke

    2011-03-01

    This paper analyzes the amount and characteristics of municipal solid waste (MSW) according to the inhabitant density of population and the business concentration in 25 districts in Seoul. Further, the heat energy recovery and avoided CO(2) emissions of four incineration plants located in residential and commercial areas in Seoul are examined. The amount of residential waste per capita tended to increase as the density of inhabitants decreased. The amount of commercial waste per capita tended to increase as the business concentration increased. The examination of the heat energy recovery characteristics indicated that the four incineration plants produced heat energy that depended on residential or commercial areas based on population and business. The most important result regarding avoided CO(2) emissions was that commercial areas with many office-type businesses had the most effective CO(2) emission savings by combusting 1 kg of waste. Assuming the full-scale operation of the four incineration plants, the amount of saved CO(2) emissions per year was 444 Gg CO(2) and 57,006 households in Seoul can be provided with heat energy equivalent to 542,711 Nm(3) of LNG. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Risk transfer via energy-savings insurance

    International Nuclear Information System (INIS)

    Mills, Evan

    2003-01-01

    Among the key barriers to investment in energy efficiency are uncertainties about attaining projected energy savings and potential disputes over stipulated savings. The fields of energy management and risk management are thus intertwined. While many technical methods have emerged to manage performance risks (e.g. building diagnostics and commissioning), financial methods are less developed in the energy management arena than in other segments of the economy. Energy-savings insurance (ESI) - formal insurance of predicted energy savings - transfers and spreads both types of risk over a larger pool of energy efficiency projects and reduces barriers to market entry of smaller energy service firms who lack sufficiently strong balance sheets to self-insure the savings. ESI encourages those implementing energy-saving projects to go beyond standard measures and thereby achieve more significant levels of energy savings. Insurance providers are proponents of improved savings measurement and verification techniques, as well as maintenance, thereby contributing to national energy-saving objectives. If properly applied, ESI can potentially reduce the net cost of energy-saving projects by reducing the interest rates charged by lenders, and by increasing the level of savings through quality control. Governmental agencies have been pioneers in the use of ESI and could continue to play a role

  13. Saving in cycles: how to get people to save more money.

    Science.gov (United States)

    Tam, Leona; Dholakia, Utpal

    2014-02-01

    Low personal savings rates are an important social issue in the United States. We propose and test one particular method to get people to save more money that is based on the cyclical time orientation. In contrast to conventional, popular methods that encourage individuals to ignore past mistakes, focus on the future, and set goals to save money, our proposed method frames the savings task in cyclical terms, emphasizing the present. Across the studies, individuals who used our proposed cyclical savings method, compared with individuals who used a linear savings method, provided an average of 74% higher savings estimates and saved an average of 78% more money. We also found that the cyclical savings method was more efficacious because it increased implementation planning and lowered future optimism regarding saving money.

  14. Federal Aviation Administration retained savings program proposal

    International Nuclear Information System (INIS)

    Hostick, D.J.; Larson, L.L.; Hostick, C.J.

    1998-03-01

    Federal legislation allows federal agencies to retain up to 50% of the savings associated with implementing energy efficiency and water conservation measures and practices. Given budget pressures to reduce expenditures, the use of retained savings to fund additional projects represents a source of funds outside of the traditional budget cycle. The Southwest Region Federal Aviation Administration (FAA) has tasked Pacific Northwest National Laboratory (PNNL) to develop a model retained savings program for Southwest Region FAA use and as a prototype for consideration by the FAA. PNNL recommends the following steps be taken in developing a Southwest Region FAA retained savings program: Establish a retained savings mechanism. Determine the level at which the retained savings should be consolidated into a fund. The preliminary recommendation is to establish a revolving efficiency loan fund at the regional level. Such a mechanism allows some consolidation of savings to fund larger projects, while maintaining a sense of facility ownership in that the funds will remain within the region

  15. Energy saving synergies in national energy systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck; Lund, Henrik

    2015-01-01

    In the transition towards a 100% renewable energy system, energy savings are essential. The possibility of energy savings through conservation or efficiency increases can be identified in, for instance, the heating and electricity sectors, in industry, and in transport. Several studies point...... to various optimal levels of savings in the different sectors of the energy system. However, these studies do not investigate the idea of energy savings being system dependent. This paper argues that such system dependency is critical to understand, as it does not make sense to analyse an energy saving...... without taking into account the actual benefit of the saving in relation to the energy system. The study therefore identifies a need to understand how saving methods may interact with each other and the system in which they are conducted. By using energy system analysis to do hourly simulation...

  16. Converting Energy Subsidies to Investments: Scaling-Up Deep Energy Retrofit in Residential Sector of Ukraine

    Science.gov (United States)

    Denysenko, Artur

    After collapse of the Soviet Union, Ukraine inherited vast and inefficient infrastructure. Combination of historical lack of transparency, decades without reforms, chronical underinvestment and harmful cross-subsidization resulted in accumulation of energy problems, which possess significant threat to economic prosperity and national security. High energy intensity leads to excessive use of energy and heavy reliance on energy import to meet domestic demand. Energy import, in turn, results in high account balance deficit and heavy burden on the state finances. A residential sector, which accounts for one third of energy consumption and is the highest consumer of natural gas, is particularly challenging to reform. This thesis explores energy consumption of the residential sector of Ukraine. Using energy decomposition method, recent changes in energy use is analyzed. Energy intensity of space heating in the residential sector of Ukraine is compared with selected EU member states with similar climates. Energy efficiency potential is evaluated for whole residential sector in general and for multistory apartment buildings connected to the district heating in particular. Specifically, investments in thermal modernization of multistory residential buildings will result in almost 45TWh, or 3.81 Mtoe, of annual savings. Required investments for deep energy retrofit of multistory buildings is estimated as much as $19 billion in 2015 prices. Experience of energy subsidy reforms as well as lessons from energy retrofit policy from selected countries is analyzed. Policy recommendations to turn energy subsidies into investments in deep energy retrofit of residential sector of Ukraine are suggested. Regional dimension of existing energy subsidies and capital subsidies required for energy retrofit is presented.

  17. SAVE ENERGY IN TEXTILE SMES

    Directory of Open Access Journals (Sweden)

    SCALIA Mauro

    2016-05-01

    Full Text Available Efficiency and competitiveness in textile and clothing manufacturing sector must take into account the current and future energy challenges. Energy efficiency is a subject of critical importance for the Textile & Clothing industry, for other sectors and for the society in general. EURATEX has initiated Energy Made-to-Measure, an information campaign running until 2016 to empower over 300 textile & clothing companies, notably SMEs, to become more energy efficient. SET( Save Energy in Textile SMEs a collaborative project co-funded within the European Programme Intelligent Energy Europe II helps companies to understand their energy consumption and allows them to compare the sector benchmarks in different production processes. SET has developed the SET tool, Energy Saving and Efficiency Tool, a free of charge tool customized for textile manufacturers. The SET tool is made up of 4 elements: a stand-alone software (SET Tool for self-assessment based on an Excel application; an on-line part (SET tool Web for advanced benchmarking and comparison of the performances across years; a guiding document for the companies and overview of financial incentives and legal obligations regarding energy efficiency. Designed specifically for small and medium enterprises (SMEs, the SET tool enables the evaluation of energy consumption and recommends measures to reduce the consumption. Prior to modifying the company’s production processes and making investments to increase energy efficiency, textile SMEs need to get different type of information, including legal context, economic and technical peculiarities.

  18. Assessment of energy savings and of side effects associated with consumption cutoffs. Complete report + abridged version

    International Nuclear Information System (INIS)

    2016-03-01

    As France has been the first European country to implement a legal and regulatory framework which acknowledges the role of cut-off operators, and promotes their direct participation to markets, this report aims at preparing an evolution of this framework, notably by focusing on the notion of energy saving. It highlights the importance of definitions regarding levels of consumption deferment and of energy saving associated with consumption cutoffs. The report first analyses the context: assessment of energy savings associated with consumption cutoffs, discussion of the existence or absence of a typical profile of consumption deferment, and definition of a consumption deferment rate, importance of these works for cut-off integration into the electric power system. It proposes a presentation of the present status of knowledge on energy savings and side effects, defines the energy saving rate, and discusses the sensitivity of this rate to calculation parameters. The next part presents the method adopted to analyse results obtained during experiments. The obtained results are then discussed by distinguishing those obtained in the industrial sector, in the tertiary sector, and in the residential sector. Economic studies are then reported regarding the impact of a wrong choice for the deferment rate on market mechanism rules, and the impact of an explicit taking of the deferment into account. Appendices contain detailed presentations of some specific aspects of these assessments and studies. An abridged version of the report is then provided

  19. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A.; Iyer, Maithili

    2009-05-30

    The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

  20. Electricity-cost savings obtained by means of nuclear plant life extension

    International Nuclear Information System (INIS)

    Forest, L.; Fletcher, T.; DuCharme, A.; Harrison, D.L.

    1987-01-01

    This study examines savings caused by nuclear-plant life extension (NUPLEX) and describes the effects of changes in assumptions on costs and technology using an approach simpler than the large economic-model simulations used in other reports. Under the simplified approach, we estimate savings at the broad national level by comparing projected costs/kWh for the typical NUPLEX plant with those for new coal-fired plants, which seem the most likely alternative in most regions. While ignoring some complications handled by the large, regionally disaggregated econometric models, the approach used in this study has advantages in sensitivity analyses. It reveals relationships between savings and basic assumptions on costs and technology in a more transparent way than in large-model simulations. We find that, absent major technological breakthroughs for present generating options, NUPLEX saves consumers money on their electric bills under most plausible economic scenarios. Using mid-range assumptions, we find that NUPLEX saves consumers a total of about dollar 180 billion spread over the period 2010-50. Under optimistic assumptions, the savings swell to over dollar 900 billion. Under extremely pessimistic assumptions, the savings actually turn negative. This wide range of estimates largely reflects the uncertainty in cost projections. Within plausible limits, higher- or lower-than-expected load growth does not affect the savings estimates. The NUPLEX construction costs stand out as the most critical unknown. If they turn out to be 50% (dollar 500 billion) above the baseline estimate savings would fall by almost 60% (dollar 105 billion). A 50% rise in nuclear fuel costs would drop baseline savings by almost 22%. A 50% increase in nuclear-plant operations-and-maintenance costs, would cut baseline savings by about 36%. These sensitivities highlight the need for continued monitoring of economic developments

  1. Impact of Rate Design Alternatives on Residential Solar Customer Bills. Increased Fixed Charges, Minimum Bills and Demand-based Rates

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    With rapid growth in energy efficiency and distributed generation, electric utilities are anticipating stagnant or decreasing electricity sales, particularly in the residential sector. Utilities are increasingly considering alternative rates structures that are designed to recover fixed costs from residential solar photovoltaic (PV) customers with low net electricity consumption. Proposed structures have included fixed charge increases, minimum bills, and increasingly, demand rates - for net metered customers and all customers. This study examines the electricity bill implications of various residential rate alternatives for multiple locations within the United States. For the locations analyzed, the results suggest that residential PV customers offset, on average, between 60% and 99% of their annual load. However, roughly 65% of a typical customer's electricity demand is non-coincidental with PV generation, so the typical PV customer is generally highly reliant on the grid for pooling services.

  2. Residential radon survey in Finland

    International Nuclear Information System (INIS)

    Arvela, H.; Maekelaeinen, I.; Castren, O.

    1993-02-01

    The study measured the indoor radon concentration in the dwellings of 3074 persons, selected randomly from the central population register of Finland. Alpha track detectors and two consecutive half year measuring periods were used. The national mean of indoor radon concentration for persons living in low-rise residential buildings as well as blocks of flats was 145 and 82 Bq/m 3 , respectively. The mean for the total population was 123 Bq/m 3 . Based on the decision of the Ministry of Social Affairs and Health in 1992, the indoor radon concentration should not exceed 400 Bq/m 3 in already existing houses, the target for new construction being less than 200 Bq/m 3 . According to the study, the percentage of the Finnish population living in houses with an indoor radon concentration exceeding 200, 400 and 800 Bq/m 3 was 12.3 %, 3.6 % and 1.0 %

  3. Economic and environmental impacts of community-based residential building energy efficiency investment

    International Nuclear Information System (INIS)

    Choi, Jun-Ki; Morrison, Drew; Hallinan, Kevin P.; Brecha, Robert J.

    2014-01-01

    A systematic framework for evaluating the local economic and environmental impacts of investment in building energy efficiency is developed. Historical residential building energy data, community-wide economic input–output data, and emission intensity data are utilized. The aim of this study is to show the comprehensive insights and connection among achieving variable target reductions for a residential building energy use, economic and environmental impacts. Central to this approach for the building energy reduction goal is the creation of individual energy models for each building based upon historical energy data and available building data. From these models, savings estimates and cost implications can be estimated for various conservation measures. A ‘worst to first’ (WF) energy efficient investment strategy is adopted to optimize the level of various direct, indirect, and induced economic impacts on the local community. This evaluation helps to illumine opportunities to establish specific energy reduction targets having greatest economic impact in the community. From an environmental perspective, short term economy-wide CO 2 emissions increase because of the increased community-wide economic activities spurred by the production and installation of energy efficiency measures, however the resulting energy savings provide continuous CO 2 reduction for various target savings. - Highlights: • WF energy efficient strategy helps to optimize various level of economic impacts. • Greatest community benefits are achieved from specific energy reduction targets. • Community-wide economic impacts vary for different energy conservation measures

  4. Best practices guide for residential HVAC Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.

    2003-08-11

    This best practices guide for residential HVAC system retrofits is aimed at contractors who want guidance on delivering energy efficient, cost effective and innovative products. It has been developed around the idea of having packages of changes to the building HVAC system and building envelope that are climate and house construction dependent. These packages include materials, procedures and equipment and are designed to remove some of the guesswork from a builder, contractor, installer or homeowner decisions about how best to carry out HVAC changes. The packages are not meant to be taken as rigid requirements--instead they are systems engineered guidelines that form the basis for energy efficient retrofits. Similar approaches have been taken previously for new construction to develop extremely energy efficient homes that are comfortable safe and durable, and often cost less than standard construction. This is best epitomized by the Building America program whose partners have built thousands of residences throughout the U.S. using these principles. The differences between retrofitting and new construction tend to limit the changes one can make to a building, so these packages rely on relatively simple and non-intrusive technologies and techniques. The retrofits also focus on changes to a building that will give many years of service to the occupants. Another key aspect of these best practices is that we need to know how a house is working so that we know what parts have the potential for improvement. To do this we have put together a set of diagnostic tools that combine physical measurements and checklists/questionnaires. The measured test results, observations and homeowner answers to questions are used to direct us towards the best retrofits applicable to each individual house. The retrofits will depend on the current condition of the building envelope and HVAC system, the local climate, the construction methods used for the house, and the presence of various

  5. Savings and Debts in Agriculture

    Directory of Open Access Journals (Sweden)

    Marina Luminita Sarbovan

    2012-05-01

    Full Text Available The savings and debts problematic bring us in front the Keynesian principles of supporting the global demand, so spectacular immortalized inside his “General Theory of Money. The architects of the European Union consider that production in agriculture and other economic branches is “ab initio” grounded on the credit mechanism administrated by banks: the present day approach of the agricultural process configured it as costly, owing a relatively medium to long term duration, and risky, making important the banking institution for mitigating such constrains. Romania fights for the ambitious goal of entering in the euro zone, and this target became even more challenging after the new EU Regulation No 1176/2011 on the prevention and correction of macroeconomic imbalances, which stipulates a safer surveillance for the member states. In fact, our country has to meet the exigencies of nominal and real convergence criteria, measured by the European scoreboard and relevant index.

  6. Models of Energy Saving Systems

    DEFF Research Database (Denmark)

    Nørgård, Jørgen Stig

    1999-01-01

    The paper first describes the concepts and methods around energy saving, such as energy chain, energy services, end-use technologies, secondary energy, etc. Next are discussed the problems of defining and adding energy services and hence end-use energy efficiency or intensity. A section is devoted...... to what is termed lifestyle efficiency, including the cultural values and the ability of the economy to provide the services wanted. As explained, integrated resource planning with its optimizing the whole energy chain cannot be combined with sub-optimizing part of it, for instance the supply technology...... only. The need for including also the economic policy in the energy planning is illustrated with what is termed the efficiency pittfall. This points towards difficulties in imaging an integrated resource planning combined with a liberalized market. The three variable parameters, population, energy...

  7. Saving Behavior in Latin America: Overview and Policy Issues

    OpenAIRE

    Michael Gavin; Ricardo Hausmann; Ernesto Talvi

    1997-01-01

    This paper reviews and contributes to the policy debate on the issue of saving in Latin America, presenting an alternative perspective on the relationship between saving and growth, saving and inflation stabilization and structural reform, and saving and capital flows.

  8. European Union Energy Saving Policy

    Directory of Open Access Journals (Sweden)

    Nikolay Y. Kaveshnikov

    2014-01-01

    Full Text Available This article analyses methods of energy efficiency stimulation in the European Union. The author investigates basic areas of the EU activity; in particular, the author estimates results of implementation of the Energy Star program, new provisions of labeling of energy-using products, measures to increase energy efficiency in buildings. The paper also analyzes the provisions of the Directive 2012/27 that is the first EU document, providing for a comprehensive approach to energy saving at all stages: production, transformation and consumption. Today EU policy includes: 7 a general political and regulatory framework laid down by the European action plan on energy efficiency and Directive 2012/27; 2 national action plans on energy efficiency, which should be in line with indicative targets set at the EU level; 3 special EU documents in key areas of energy efficiency (buildings, energy-consuming equipment etc.; 4 accompanying instruments, such as target funding, information dissemination, support of specialized networks. The paper gives a comprehensive analysis of the key methods of implementation of EU policy in the area of energy saving. The author concludes that EU operates within the framework of the open method of coordination. The system of mandatory/voluntary technical standards has allowed to achieve significant success, but indicative planning and monitoring of national actions are not completely effective. In the long term EU policy in the area of energy efficiency is restrained by member states unwillingness to delegate to the European Union a more detailed powers in this field and to give the EU bodies facilities to execute more strict control. In the short term - in conditions of economic crisis, the EU countries are not ready to invest significant budget funds in projects with long payback period.

  9. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently re-emerged on the U.S. market, and they have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine the actual energy consumption of a HPWH in different U.S. regions, annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the United States. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  10. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently reemerged on the U.S. market. These units have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine what actual in use energy consumption of a HPWH may be in different regions of the U.S., annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the U.S. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  11. Load forecasting

    International Nuclear Information System (INIS)

    Mak, H.

    1995-01-01

    Slides used in a presentation at The Power of Change Conference in Vancouver, BC in April 1995 about the changing needs for load forecasting were presented. Technological innovations and population increase were said to be the prime driving forces behind the changing needs in load forecasting. Structural changes, market place changes, electricity supply planning changes, and changes in planning objectives were other factors discussed. It was concluded that load forecasting was a form of information gathering, that provided important market intelligence

  12. Development of residential-conservation-survey methodology for the US Air Force. Interim report. Task two

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, D. W.; Hartman, T. L.; Lau, A. S.

    1981-11-13

    A US Air Force (USAF) Residential Energy Conservation Methodology was developed to compare USAF needs and available data to the procedures of the Residential Conservation Service (RCS) program as developed for general use by utility companies serving civilian customers. Attention was given to the data implications related to group housing, climatic data requirements, life-cycle cost analysis, energy saving modifications beyond those covered by RCS, and methods for utilizing existing energy consumption data in approaching the USAF survey program. Detailed information and summaries are given on the five subtasks of the program. Energy conservation alternatives are listed and the basic analysis techniques to be used in evaluating their thermal performane are described. (MCW)

  13. Residential Central Air Conditioning and Heat Pump Installation – Workshop Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States); Bargach, Youssef [Navigant Consulting, Burlington, MA (United States)

    2016-11-01

    DOE's Building Technologies Office works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption in residential and commercial buildings. This report aims to advance BTO’s energy savings, emissions reduction, and other program goals by identifying research and development (R&D), demonstration and deployment, and other non-regulatory initiatives for improving the design and installation of residential central air conditioners (CAC) and central heat pumps (CHP). Improving the adoption of CAC/CHP design and installation best practices has significant potential to reduce equipment costs, improve indoor air quality and comfort, improve system performance, and most importantly, reduce household energy consumption and costs for heating and cooling by addressing a variety of common installation issues.

  14. MV and LV Residential Grid Impact of Combined Slow and Fast Charging of Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Niels Leemput

    2015-03-01

    Full Text Available This article investigates the combined low voltage (LV and medium voltage (MV residential grid impact for slow and fast electric vehicle (EV charging, for an increasing local penetration rate and for different residential slow charging strategies. A realistic case study for a Flemish urban distribution grid is used, for which three residential slow charging strategies are modeled: uncoordinated charging, residential off-peak charging, and EV-based peak shaving. For each slow charging strategy, the EV hosting capacity is determined, with and without the possibility of fast charging, while keeping the grid within its operating limits. The results show that the distribution grid impact is much less sensitive to the presence of fast charging compared to the slow charging strategy. EV-based peak shaving results in the lowest grid impact, allowing for the highest EV hosting capacity. Residential off-peak charging has the highest grid impact, due the load synchronization effect that occurs, resulting in the lowest EV hosting capacity. Therefore, the EV users should be incentivized to charge their EVs in a more grid-friendly manner when the local EV penetration rate becomes significant, as this increases the EV hosting capacity much more than the presence of fast charging decreases it.

  15. Field Trial of a Low-Cost, Distributed Plug Load Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Auchter, B. [Energy Center of Wisconsin, Madison, WI (United States); Cautley, D. [Energy Center of Wisconsin, Madison, WI (United States); Ahl, D. [Energy Center of Wisconsin, Madison, WI (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jin, X. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-01

    Researchers have struggled to inventory and characterize the energy use profiles of the ever-growing category of so-called miscellaneous electric loads (MELs) because plug-load monitoring is cost-prohibitive to the researcher and intrusive to the homeowner. However, these data represent a crucial missing link to our understanding of how homes use energy, and we cannot control what we do not understand. Detailed energy use profiles would enable the nascent automated home energy management (AHEM) industry to develop effective control algorithms that target consumer electronics and other plug loads. If utility and other efficiency programs are to incent AHEM devices, they need large-scale datasets that provide statistically meaningful justification of their investments by quantifying the aggregate energy savings achievable. To address this need, we have investigated a variety of plug-load measuring devices available commercially and tested them in the laboratory to identify the most promising candidates for field applications. The scope of this report centers around the lessons learned from a field validation of one proof-of-concept system, called Smartenit (formerly SimpleHomeNet). The system was evaluated based on the rate of successful data queries, reliability over a period of days to weeks, and accuracy. This system offers good overall performance when deployed with up to ten end nodes in a residential environment, although deployment with more nodes and in a commercial environment is much less robust. We conclude that the current system is useful in selected field research projects, with the recommendation that system behavior is observed over time.

  16. New Energy-Saving Technologies Use Induction Generators

    Science.gov (United States)

    Nola, F.

    1982-01-01

    Two energy-saving technologies tested recently at Marshall Space Flight Center use an induction motor operated in reverse (as an induction generator). In the first, energy ordinarily dissipated during load testing of machinery is recovered and returned to powerline. In the second, efficiency of wind-driven induction generator is improved, and useful range of windspeed is broadened. Both technologies take advantage of ac voltage developed across terminals of an induction motor when rotated at higher than-synchronous speed in the direction it normally turns when power is appled.

  17. Saving in Sub-Saharan Africa

    OpenAIRE

    Ernest Aryeetey; Christopher Udry

    2000-01-01

    Gross domestic savings in Africa averaged only 8 percent of GDP in the 1980s, compared to 23 percent for Southeast Asia and 35 percent in the Newly Industrialized Economies. Aside from being generally low, saving rates in most of Africa have shown consistent decline over the last thirty years. These savings figures must be considered tentative, because they are derived as a residual in the national accounts from expenditure and production data that are themselves quite unreliable. Notwithstan...

  18. 75 FR 27863 - Savings Bank of Maine, MHC and Savings Bank of Maine, Gardiner, Maine; Approval of Conversion...

    Science.gov (United States)

    2010-05-18

    ...] Savings Bank of Maine, MHC and Savings Bank of Maine, Gardiner, Maine; Approval of Conversion Application... Savings Bank of Maine, MHC and Savings Bank of Maine, Gardiner, Maine, to convert to the stock form of...

  19. Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration

    International Nuclear Information System (INIS)

    Darcovich, K.; Henquin, E.R.; Kenney, B.; Davidson, I.J.; Saldanha, N.; Beausoleil-Morrison, I.

    2013-01-01

    Highlights: • Characterized two novel high capacity electrode materials for Li-ion batteries. • A numerical discharge model was run to characterize Li-ion cell behavior. • Engineering model of Li-ion battery pack developed from cell fundamentals. • ESP-r model integrated micro-cogeneration and high capacity Li-ion storage. • Higher capacity batteries shown to improve micro-cogeneration systems. - Abstract: Combined heat and power on a residential scale, also known as micro-cogeneration, is currently gaining traction as an energy savings practice. The configuration of micro-cogeneration systems is highly variable, as local climate, energy supply, energy market and the feasibility of including renewable type components such as wind turbines or photovoltaic panels are all factors. Large-scale lithium ion batteries for electrical storage in this context can provide cost savings, operational flexibility, and reduced stress on the distribution grid as well as a degree of contingency for installations relying upon unsteady renewables. Concurrently, significant advances in component materials used to make lithium ion cells offer performance improvements in terms of power output, energy capacity, robustness and longevity, thereby enhancing their prospective utility in residential micro-cogeneration installations. The present study evaluates annual residential energy use for a typical Canadian home connected to the electrical grid, equipped with a micro-cogeneration system consisting of a Stirling engine for supplying heat and power, coupled with a nominal 2 kW/6 kW h lithium ion battery. Two novel battery cathode chemistries, one a new Li–NCA material, the other a high voltage Ni-doped lithium manganate, are compared in the residential micro-cogeneration context with a system equipped with the presently conventional LiMn 2 O 4 spinel-type battery

  20. Freshwater savings from marine protein consumption

    Science.gov (United States)

    Gephart, Jessica A.; Pace, Michael L.; D'Odorico, Paolo

    2014-01-01

    Marine fisheries provide an essential source of protein for many people around the world. Unlike alternative terrestrial sources of protein, marine fish production requires little to no freshwater inputs. Consuming marine fish protein instead of terrestrial protein therefore represents freshwater savings (equivalent to an avoided water cost) and contributes to a low water footprint diet. These water savings are realized by the producers of alternative protein sources, rather than the consumers of marine protein. This study quantifies freshwater savings from marine fish consumption around the world by estimating the water footprint of replacing marine fish with terrestrial protein based on current consumption patterns. An estimated 7 600 km3 yr-1 of water is used for human food production. Replacing marine protein with terrestrial protein would require an additional 350 km3 yr-1 of water, meaning that marine protein provides current water savings of 4.6%. The importance of these freshwater savings is highly uneven around the globe, with savings ranging from as little as 0 to as much as 50%. The largest savings as a per cent of current water footprints occur in Asia, Oceania, and several coastal African nations. The greatest national water savings from marine fish protein occur in Southeast Asia and the United States. As the human population increases, future water savings from marine fish consumption will be increasingly important to food and water security and depend on sustainable harvest of capture fisheries and low water footprint growth of marine aquaculture.