WorldWideScience

Sample records for residential heating energy

  1. Residential heat pumps in the future Danish energy system

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...... temperature while installation of ground-source heat pumps is constrained by available ground area. In this study, TIMES-DK model is utilised to test the effects of improved modelling of residential heat pumps on the Danish energy system until 2050.The analysis of the Danish energy system was done...... for politically agreed targets which include: at least 50% of electricity consumption from wind power starting from 2020, fossil fuel free heat and power sector from 2035 and 100% renewable energy system starting from 2050. Residential heat pumps supply around 25% of total residential heating demand after 2035...

  2. Residential space heating systems: energy conservation and economics

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, D.L.

    1979-01-01

    Annual energy use for residential space heating was 8.6 Quads in 1975. This accounted for over 50% of the energy used in the residential sector and 12% of energy used in the U.S. that year. Because residential space heating accounts for such a large share of energy use, improvements in new space heating systems could have significant long-term conservation effects. Several energy-saving design changes in residential space heating systems are examined to determine their energy conservation potential and cost effectiveness. Both changes in conventional and advanced systems are considered. Conventional design changes include options such as the flue damper, sealed combustion, electric ignition and improved heat exchangers. Some of the advanced designs include the gas heat pump, pulse combustion furnace, and dual speed compressor heat pump. The energy use and cost estimates are developed from current literature, heating and equipment manufacturers and dealers, and discussions with individuals doing research and testing on residential space heating equipment. Results indicate that implementation of conventional design changes can reduce energy use of representative gas, oil, and electric space heating systems by 26, 20, and 57%, respectively. These changes increase the capital cost of the systems by 27, 16, and 26%. Advanced gas and electric space heating systems can reduce energy use 45 and 67%, respectively. However, the advanced systems cost 80 and 35% more than representative gas and electric systems.

  3. Evaluation of heat pumps usage and energy savings in residential buildings

    OpenAIRE

    Nehad Elsawaf, Tarek Abdel-Salam, Leslie Pagliari

    2012-01-01

    The residential housing sector is a major consumer of energy in most countries around the world. In the United States the residential sector consumes about 21 % of the energy and about 35% of the electricity production. Of the total energy consumption per house hold about 33% is consumed for space heating. This study evaluates the energy consumption in residential houses during the heating season. The main objective of the study is to test the effectiveness of using heat pumps for space heati...

  4. Wood energy for residential heating in Alaska: current conditions, attitudes, and expected use

    Science.gov (United States)

    David L. Nicholls; Allen M. Brackley; Valerie. Barber

    2010-01-01

    This study considered three aspects of residential wood energy use in Alaska: current conditions and fuel consumption, knowledge and attitudes, and future use and conditions. We found that heating oil was the primary fuel for home heating in southeast and interior Alaska, whereas natural gas was used most often in south-central Alaska (Anchorage). Firewood heating...

  5. Historical changes and recent energy saving potential of residential heating in Korea

    International Nuclear Information System (INIS)

    Yeo, M.-S.; Yang, I.-H.; Kim, K.-W.

    2003-01-01

    The residential heating method in Korea underwent various phases of development to reach the current system. The first phase was the traditional Ondol (the traditional under-floor heating system in Korea), where the floor was heated by the circulation of hot gas produced by a fire furnace (before the 1950s). The second phase involved the use of the modified anthracite coal Ondol, for which the fire furnace was modified for briquette use (from the early 1950s to the late 1970s). The third phase involved the use of hot water radiant floor heating with embedded tubes (from the late 1970s). This paper presents insights into the problem of current residential heating in Korea and the general aspects of heating energy savings by tracing the history of residential heating in Korea and analyzing related data. The results show that modern apartment buildings with hot water radiant floor heating (the third phase) yield less heat loss due to the tighter envelope, but also yield higher energy consumption than the traditional Ondol heating housing (the first phase). Because of an inefficient system and lack of thermal insulation of the traditional Ondol heating housing, Ondol heating was used to heat occupants sitting directly on the floor, keeping lower room temperature and higher floor surface temperature. So the range of comfortable floor temperature for Korean people is higher and this unique comfort sense is related to energy consumption in modern apartment housing. As a result, several energy saving methods were found such as reducing the total floor heating area or zoning the floor area, receiving continuous heat supply, and installing a delicate control system and metering devices. (author)

  6. Environmental and energy efficiency evaluation of residential gas and heat pump heating

    International Nuclear Information System (INIS)

    Ganji, A.R.

    1993-01-01

    Energy efficiency and source air pollutant emission factors of gas heaters, gas engine heat pumps, and electric heat pumps for domestic heating have been evaluated and compared. The analysis shows that with the present state of technology, gas engine heat pumps have the highest energy efficiency followed by electric heat pumps and then gas heaters. Electric heat pumps produce more than twice as much NO x , and comparable CO 2 and CO per unit of useful heating energy compared to natural gas heaters. CO production per unit of useful heating energy from gas engine heat pumps without any emission control is substantially higher than electric heat pumps and natural gas heaters. NO x production per unit of useful heating energy from natural gas engine heat pumps (using lean burn technology) without any emission control is about the same as effective NO x production from electric heat pumps. Gas engine heat pumps produce about one-half CO 2 compared to electric heat pumps

  7. Characteristics of MSW and heat energy recovery between residential and commercial areas in Seoul.

    Science.gov (United States)

    Yi, Sora; Yoo, Kee-Young; Hanaki, Keisuke

    2011-03-01

    This paper analyzes the amount and characteristics of municipal solid waste (MSW) according to the inhabitant density of population and the business concentration in 25 districts in Seoul. Further, the heat energy recovery and avoided CO(2) emissions of four incineration plants located in residential and commercial areas in Seoul are examined. The amount of residential waste per capita tended to increase as the density of inhabitants decreased. The amount of commercial waste per capita tended to increase as the business concentration increased. The examination of the heat energy recovery characteristics indicated that the four incineration plants produced heat energy that depended on residential or commercial areas based on population and business. The most important result regarding avoided CO(2) emissions was that commercial areas with many office-type businesses had the most effective CO(2) emission savings by combusting 1 kg of waste. Assuming the full-scale operation of the four incineration plants, the amount of saved CO(2) emissions per year was 444 Gg CO(2) and 57,006 households in Seoul can be provided with heat energy equivalent to 542,711 Nm(3) of LNG. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Assessment of infiltration heat recovery and its impact on energy consumption for residential buildings

    International Nuclear Information System (INIS)

    Solupe, Mikel; Krarti, Moncef

    2014-01-01

    Highlights: • Five steady-state air infiltration heat recovery or IHR models are described and compared. • IHR models are incorporated within whole-building simulation analysis tool. • IHR can reduce the thermal loads of residential buildings by 5–30%. - Abstract: Infiltration is a major contributor to the energy consumption of buildings, particularly in homes where it accounts for one-third of the heating and cooling loads. Traditionally, infiltration is calculated independent of the building envelope performance, however, it has been established that a thermal coupling exists between the infiltration and conduction heat transfer of the building envelope. This effect is known as infiltration heat recovery (IHR). Experiments have shown that infiltration heat recovery can typically reduce the infiltration thermal load by 10–20%. Currently, whole-building energy simulation tools do not account for the effect of infiltration heat recovery on heating and cooling loads. In this paper, five steady-state IHR models are described to account for the thermal interaction between infiltration air and building envelope components. In particular, inter-model and experimental comparisons are carried out to assess the prediction accuracy of five IHR models. In addition, the results from a series of sensitivity analyses are presented, including an evaluation of the predictions for heating energy use associated with four audited homes obtained from whole-building energy simulation analysis with implemented infiltration heat recovery models. Experimental comparison of the IHR models reveal that the predictions from all the five models are consistent and are within 2% when 1-D flow and heat transfer conditions are considered. When implementing IHR models to a whole-building simulation environment, a reduction of 5–30% in heating consumption is found for four audited residential homes

  9. Regional analysis of residential water heating options: energy use and economics

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, D.; Carney, J.; Hirst, E.

    1978-10-01

    This report evaluates the energy and direct economic effects of introducing improved electric-water-heating systems to the residential market. These systems are: electric heat pumps offered in 1981, solar systems offered in 1977, and solar systems offered in 1977 with a Federal tax credit in effect from 1977 through 1984. The ORNL residential energy model is used to calculate energy savings by type of fuel for each system in each of the ten Federal regions and for the nation as a whole for each year between 1977 and 2000. Changes in annual fuel bills and capital costs for water heaters are also computed at the same level of detail. Model results suggest that heat-pump water heaters are likely to offer much larger energy and economic benefits than will solar systems, even with tax credits. This is because heat pumps provide about the same savings in electricity for water heating (about half) at a much lower capital cost ($700 to $2000) than do solar systems. However, these results are based on highly uncertain estimates of future performance and cost characteristics for both heat pump and solar systems. The cumulative national energy saving by the year 2000 due to commercialization of heat-pump water heaters in 1981 is estimated to be 1.5 QBtu. Solar-energy benefits are about half this much without tax credits and two-thirds as much with tax credits. The net economic benefit to households of heat-pump water heaters (present worth of fuel bill reductions less the present worth of extra costs for more-efficient systems) is estimated to be $640 million. Again, the solar benefits are much less.

  10. Targeting energy justice: Exploring spatial, racial/ethnic and socioeconomic disparities in urban residential heating energy efficiency

    International Nuclear Information System (INIS)

    Reames, Tony Gerard

    2016-01-01

    Fuel poverty, the inability of households to afford adequate energy services, such as heating, is a major energy justice concern. Increasing residential energy efficiency is a strategic fuel poverty intervention. However, the absence of easily accessible household energy data impedes effective targeting of energy efficiency programs. This paper uses publicly available data, bottom-up modeling and small-area estimation techniques to predict the mean census block group residential heating energy use intensity (EUI), an energy efficiency proxy, in Kansas City, Missouri. Results mapped using geographic information systems (GIS) and statistical analysis, show disparities in the relationship between heating EUI and spatial, racial/ethnic, and socioeconomic block group characteristics. Block groups with lower median incomes, a greater percentage of households below poverty, a greater percentage of racial/ethnic minority headed-households, and a larger percentage of adults with less than a high school education were, on average, less energy efficient (higher EUIs). Results also imply that racial segregation, which continues to influence urban housing choices, exposes Black and Hispanic households to increased fuel poverty vulnerability. Lastly, the spatial concentration and demographics of vulnerable block groups suggest proactive, area- and community-based targeting of energy efficiency assistance programs may be more effective than existing self-referral approaches. - Highlights: • Develops statistical model to predict block group (BG) residential heating energy use intensity (EUI), an energy efficiency proxy. • Bivariate and multivariate analyses explore racial/ethnic and socioeconomic relationships with heating EUI. • BGs with more racial/ethnic minority households had higher heating EUI. • BGs with lower socioeconomics had higher heating EUI. • Mapping heating EUI can facilitate effective energy efficiency intervention targeting.

  11. 76 FR 63211 - Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating...

    Science.gov (United States)

    2011-10-12

    ... Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters... residential water heaters, direct heating equipment, and pool heaters. This rulemaking is intended to fulfill... water heaters, possible clarifications and improvement of the direct heating equipment test procedures...

  12. An optimisation framework for thermal energy storage integration in a residential heat pump heating system

    International Nuclear Information System (INIS)

    Renaldi, R.; Kiprakis, A.; Friedrich, D.

    2017-01-01

    Highlights: • An integrated framework for the optimal design of low carbon heating systems. • Development of a synthetic heat demand model with occupancy profiles. • Linear model of a heat pump with thermal energy storage heating system. • Evaluation of domestic heating system from generally available input parameters. • The lower carbon heating system can be cost competitive with conventional systems. - Abstract: Domestic heating has a large share in the UK total energy consumption and significant contribution to the greenhouse gas emissions since it is mainly fulfilled by fossil fuels. Therefore, decarbonising the heating system is essential and an option to achieve this is by heating system electrification through heat pumps (HP) installation in combination with renewable power generation. A potential increase in performance and flexibility can be achieved by pairing HP with thermal energy storage (TES), which allows the shifting of heat demand to off peak periods or periods with surplus renewable electricity. We present a design and operational optimisation model which is able to assess the performance of HP–TES relative to conventional heating systems. The optimisation is performed on a synthetic heat demand model which requires only the annual heat demand, temperature and occupancy profiles. The results show that the equipment and operational cost of a HP system without TES are significantly higher than for a conventional system. However, the integration of TES and time-of-use tariffs reduce the operational cost of the HP systems and in combination with the Renewable Heating Incentive make the HP systems cost competitive with conventional systems. The presented demand model and optimisation procedure will enable the design of low carbon district heating systems which integrate the heating system with the variable renewable electricity supply.

  13. Energy and exergy performance of residential heating systems with separate mechanical ventilation

    International Nuclear Information System (INIS)

    Zmeureanu, Radu; Yu Wu, Xin

    2007-01-01

    The paper brings new evidence on the impact of separate mechanical ventilation system on the annual energy and exergy performance of several design alternatives of residential heating systems, when they are designed for a house in Montreal. Mathematical models of residential heating, ventilation and domestic hot water (HVAC-DHW) systems, which are needed for this purpose, are developed and furthermore implemented in the Engineering Equation Solver (EES) environment. The Coefficient of Performance and the exergy efficiency are estimated as well as the entropy generation and exergy destruction of the overall system. The equivalent greenhouse gas emissions due to the on-site and off-site use of primary energy sources are also estimated. The addition of a mechanical ventilation system with heat recovery to any HVAC-DHW system discussed in the paper increases the energy efficiency; however, it decreases the exergy efficiency, which indicates a potential long-term damaging impact on the natural environment. Therefore, the use of a separate mechanical ventilation system in a house should be considered with caution, and recommended only when other means for controlling the indoor air quality cannot be applied

  14. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  15. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  16. Incentive mechanism design for the residential building energy efficiency improvement of heating zones in North China

    International Nuclear Information System (INIS)

    Zhong, Y.; Cai, W.G.; Wu, Y.; Ren, H.

    2009-01-01

    Starting with analyzing the investigation results by Ministry of Housing and Urban-Rural Development of China in 2005, more than half of the 10,236 participants are willing to improve the residential building energy efficiency and accept an additional cost of less than 10% of the total cost, the authors illustrate that incenting actions are necessary to improve building energy efficiency and build a central government-local government-market model. As a result of the model analysis, to pursue good execution effects brought by the incentive policies, the executors are required to distinguish the differences of incentive objects' economic activities and strongly respect the incenting on the energy conservation performance. A case study on the incentive policies of existing residential building energy efficiency improvement in heating zones in North China is given as well. Finally, it is strongly recommended to give the first priority to performance-based incentives so that to reduce the lazy behaviors of the incented objects and ensure the targets to be achieved.

  17. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  18. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China

    Science.gov (United States)

    Zhen, Xiaofei; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively. PMID:29651424

  19. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China.

    Science.gov (United States)

    Zhen, Xiaofei; Li, Jinping; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin; Kang, Jian

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.

  20. Achievements and suggestions of heat metering and energy efficiency retrofit for existing residential buildings in northern heating regions of China

    International Nuclear Information System (INIS)

    Yan Ding; Zhe Tian; Yong Wu; Neng Zhu

    2011-01-01

    In order to promote energy efficiency and emission reduction, the importance of improving building energy efficiency received sufficient attention from Chinese Government. The heat metering and energy efficiency retrofit for existing residential buildings of 0.15 billion m 2 in northern heating regions of China was initiated in 2007 and completed successfully at the end of 2010. This article introduced the background and outline of the retrofit project during the period of 11th five-year plan. Numerous achievements that received by retrofit such as environmental protection effect, improvement of indoor environment, improvement of heating system, investment guidance effect, promotion of relevant industries and increasing chances of employment were concluded. Valuable experience that acquired from the retrofit project during the period of 11th five-year plan was also summarized in this article. By analyzing the main problems emerged in the past, pertinent suggestions were put forward to promote a larger scale and more efficient retrofit project in the period of 12th five-year plan. - Highlights: →Successful implementation of a retrofit project in China is introduced. → Significance of the project contributing to emission reduction is analyzed. →Achievements are summarized and future suggestions are put forward.

  1. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change

    International Nuclear Information System (INIS)

    Isaac, Morna; Vuuren, Detlef P. van

    2009-01-01

    In this article, we assess the potential development of energy use for future residential heating and air conditioning in the context of climate change. In a reference scenario, global energy demand for heating is projected to increase until 2030 and then stabilize. In contrast, energy demand for air conditioning is projected to increase rapidly over the whole 2000-2100 period, mostly driven by income growth. The associated CO 2 emissions for both heating and cooling increase from 0.8 Gt C in 2000 to 2.2 Gt C in 2100, i.e. about 12% of total CO 2 emissions from energy use (the strongest increase occurs in Asia). The net effect of climate change on global energy use and emissions is relatively small as decreases in heating are compensated for by increases in cooling. However, impacts on heating and cooling individually are considerable in this scenario, with heating energy demand decreased by 34% worldwide by 2100 as a result of climate change, and air-conditioning energy demand increased by 72%. At the regional scale considerable impacts can be seen, particularly in South Asia, where energy demand for residential air conditioning could increase by around 50% due to climate change, compared with the situation without climate change

  2. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Winkler, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kruis, N. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brandemuehl, M. [Univ. of Colorado, Boulder, CO (United States)

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost-effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  3. Residential energy-tax-credit eligibility: a case study for the heat-pump water heater

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S M; Cardell, N S

    1982-09-01

    Described are the methodology and results of an analysis to determine the eligibility of an energy-efficient item for the residential energy-tax credit. Although energy credits are granted only on a national basis, an attempt to determine the tax-credit eligibility for an item such as the heat-pump water heater (HPWH) analyzing national data is inappropriate. The tax-credit eligibility of the HPWH is evaluated for the ten federal regions to take into consideration the regional differences of: (1) HPWH annual efficiency, (2) existing water heater stocks by fuel type, (3) electricity, fuel oil, and natural-gas price variations, and (4) electric-utility oil and gas use for electricity generation. A computer model of consumer choice of HPWH selection as well as a computer code evaluating the economics of tax-credit eligibility on a regional basis were developed as analytical tools for this study. The analysis in this report demonstrates that the HPWH meets an important criteria for eligibility by the Treasury Department for an energy tax credit (nationally, the estimated dollar value of savings of oil and gas over the lifetime of those HPWH's sold during 1981 to 1985 due to the tax credit exceeds the revenue loss to the treasury). A natural-gas price-deregulation scenario is one of two fuel scenarios that are evaluated using the equipment choice and tax-credit models. These two cases show the amounts of oil and gas saved by additional HPWH units sold (due to the tax credit during 1981 to 1985 (range from 13.9 to 23.1 million barrels of oil equivalent over the lifetime of the equipment.

  4. Feasibility study of a hybrid renewable energy system with geothermal and solar heat sources for residential buildings in South Korea

    International Nuclear Information System (INIS)

    Kim, Young Ju; Woo, Nam Sub; Jang, Sung Cheol; Choi, Jeong Ju

    2013-01-01

    This study investigates the economic feasibility of a hybrid renewable energy system (HRES) that uses geothermal and solar heat sources for water heating, space heating, and space cooling in a residential building in Korea. A small-scale HRES consists of a geothermal heat pump for heating and cooling, solar collectors for hot water, a gas-fired backup boiler, and incidental facilities. To determine whether the Hares will produce any economic benefits for homeowners, an economic analysis is conducted to compare the Hares with conventional methods of space heating and cooling in Korea. The payback period of a small-scale Hares is predicted as a maximum of 9 yrs by life cycle costing based on a performance index compared with conventional systems. However, the payback period of large-scale HRES above 400 RT is 6 yrs to 7 yrs.

  5. ENERGY-EFFICIENT REGIMES FOR HEATING-SUPPLY OF THE RESIDENTIAL BUILDINGS

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2015-01-01

    Full Text Available Rise in comfort and inhabitation safety is one of the main requirements of the general maintenance, reconstruction of the old and construction of the new residential houses. One of the essential factors of it is substitution in the household hot-water preparing sources: from the individual domestic gas  water-heaters to  the common  entire-building hot-water supply at the expense of the centralized heat supply. Extremely erratic hot-water daily consumption by tenants leads to the necessity of sharp increase in central heat-supply level during a few hours of the day, which requires a significant increase of the source heat-power. On that score, the authors propose to direct a significant part (up to 50 % of the centralized heating and ventilation heat power-consumption to the hot water preparation during the period of short-term hot water consumption peak.Substitution  of  the  individual  domestic  gas  water-heaters  with  the  common  entirebuilding hot-water supply releases a huge amount of natural gas which can be utilized not only for production of the necessary heat power but as well for electric power producing. This substitution is especially advantageous if heat-power is delivered to the residential area from a НРС where significant part of heat especially in a relatively warm season of the year is thrown out into the air. The content of the article is based on several patents received earlier.

  6. Decreasing of energy consumption for space heating in existing residential buildings

    International Nuclear Information System (INIS)

    Stamov, S.; Zlateva, M.; Gechkov, N.

    2000-01-01

    An analysis is for the technical possibilities for reducing the energy consumption in existing buildings by means of the heat control and measurement. The basic performances of the heat capacity control methods, of the hierarchy structure of the control and of the heat measurement technologies are presented. This paper also presents the results from the long-term investigation of energy consumption for heating. The results area consist of three typical and uniform buildings in the city of Kazanlak (Bulgaria). The outcome of the investigation provides a valuable basis for future decisions to be made concerning reconstruction of heating installations and enables the results to be transferred. (Authors)

  7. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States); Schmidt, Justin [Navigant Consulting, Inc., Burlington, MA (United States)

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  8. Optimisation of a Swedish district heating system with reduced heat demand due to energy efficiency measures in residential buildings

    International Nuclear Information System (INIS)

    Åberg, M.; Henning, D.

    2011-01-01

    The development towards more energy efficient buildings, as well as the expansion of district heating (DH) networks, is generally considered to reduce environmental impact. But the combined effect of these two progressions is more controversial. A reduced heat demand (HD) due to higher energy efficiency in buildings might hamper co-production of electricity and DH. In Sweden, co-produced electricity is normally considered to displace electricity from less efficient European condensing power plants. In this study, a potential HD reduction due to energy efficiency measures in the existing building stock in the Swedish city Linköping is calculated. The impact of HD reduction on heat and electricity production in the Linköping DH system is investigated by using the energy system optimisation model MODEST. Energy efficiency measures in buildings reduce seasonal HD variations. Model results show that HD reductions primarily decrease heat-only production. The electricity-to-heat output ratio for the system is increased for HD reductions up to 30%. Local and global CO 2 emissions are reduced. If co-produced electricity replaces electricity from coal-fired condensing power plants, a 20% HD reduction is optimal for decreasing global CO 2 emissions in the analysed DH system. - Highlights: ► A MODEST optimisation model of the Linköping district heating system is used. ► The impact of heat demand reduction on heat and electricity production is examined. ► Model results show that heat demand reductions decrease heat-only production. ► Local and global CO 2 emissions are reduced. ► The system electricity-to-heat output increases for reduced heat demand up to 30%.

  9. Decreasing of energy consumption for space heating in existing residential buildings; Combined geothermal and gas district heating systems

    International Nuclear Information System (INIS)

    Rosca, Marcel

    2000-01-01

    The City of Oradea, Romania, has a population of about 230 000 inhabitants. Almost 70% of the total heat demand, including industrial, is supplied by a classical East European type district heating system. The heat is supplied by two low grade coal fired co-generation power plants. The oldest distribution networks and substitutions, as well as one power plant, are 35 years old and require renovation or even reconstruction. The geothermal reservoir located under the city supplies at present 2,2% of the total heat demand. By generalizing the reinjection, the production can be increased to supply about 8% of the total heat demand, without any significant reservoir pressure or temperature decline over 25 years. Another potential energy source is natural gas, a main transport pipeline running close to the city. Two possible scenarios are envisaged to replace the low grade coal by natural gas and geothermal energy as heat sources for Oradea. In one scenario, the geothermal energy supplies the heat for tap water heating and the base load for space heating in a limited number of substations, with peak load being produced by natural gas fired boilers. In the other scenario, the geothermal energy is only used for tap water heating. In both scenarios, all substations are converted into heat plants, natural gas being the main energy source. The technical, economic, and environmental assessment of the two proposed scenarios are compared with each other, as well as with the existing district heating system. Two other possible options, namely to renovate and convert the existing co-generation power plants to natural gas fired boilers or to gas turbines, are only briefly discussed, being considered unrealistic, at least for the short and medium term future. (Author)

  10. Energy saving analysis on mine-water source heat pump in a residential district of Henan province, central China

    Science.gov (United States)

    Wang, Hong; Duan, Huanlin; Chen, Aidong

    2018-02-01

    In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.

  11. Hybrid renewable energy system application for electricity and heat supply of a residential building

    Directory of Open Access Journals (Sweden)

    Nakomčić-Smaragdakis Branka B.

    2016-01-01

    Full Text Available Renewable and distributed energy systems could provide a solution to the burning issue of reliable and clean supply of energy, having in mind current state and future predictions for population growth and fossil fuel scarcity. Hybrid renewable energy systems are novelty in Serbia and warrant further detailed research. The aim of this paper is to analyze the application of renewable energy sources(RES for electricity and heat supply of a typical household in Serbia, as well as the cost-effectiveness of the proposed system. The influence of feed-in tariff change on the value of the investment is analyzed. Small, grid-connected hybrid system (for energy supply of a standard household, consisting of geothermal heat pump for heating/cooling, solar photovoltaic panels and small wind turbine for power supply is analyzed as a case study. System analysis was conducted with the help of RETScreen software. Results of techno-economics analysis have shown that investing in geothermal heat pump and photovoltaic panels is cost-effective, while that is not the case with small wind turbine.

  12. Energy Efficiency Modelling of Residential Air Source Heat Pump Water Heater

    Directory of Open Access Journals (Sweden)

    Cong Toan Tran

    2016-03-01

    Full Text Available The heat pump water heater is one of the most energy efficient technologies for heating water for household use. The present work proposes a simplified model of coefficient of performance and examines its predictive capability. The model is based on polynomial functions where the variables are temperatures and the coefficients are derived from the Australian standard test data, using regression technics. The model enables to estimate the coefficient of performance of the same heat pump water heater under other test standards (i.e. US, Japanese, European and Korean standards. The resulting estimations over a heat-up phase and a full test cycle including a draw off pattern are in close agreement with the measured data. Thus the model allows manufacturers to avoid the need to carry out physical tests for some standards and to reduce product cost. The limitations of the methodology proposed are also discussed.

  13. Estimation of energy efficiency of residential buildings

    Directory of Open Access Journals (Sweden)

    Glushkov Sergey

    2017-01-01

    Full Text Available Increasing energy performance of the residential buildings by means of reducing heat consumption on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy saving process are heat producing and transportation over the main lines and outside distribution networks. In the period from 2006 to 2013. by means of the heat-supply schemes optimization and modernization of the heating systems. using expensive (200–300 $US per 1 m though hugely effective preliminary coated pipes. the economy reached 2.7 mln tons of fuel equivalent. Considering the multi-stage and multifactorial nature (electricity. heat and water supply of the residential sector energy saving. the reasonable estimate of the efficiency of the saving of residential buildings energy should be performed in tons of fuel equivalent per unit of time.

  14. Development of Innovative Heating and Cooling Systems Using Renewable Energy Sources for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    Cinzia Buratti

    2013-10-01

    Full Text Available Industrial and commercial areas are synonymous with high energy consumption, both for heating/cooling and electric power requirements, which are in general associated to a massive use of fossil fuels producing consequent greenhouse gas emissions. Two pilot systems, co-funded by the Italian Ministry for the Environment, have been created to upgrade the heating/cooling systems of two existing buildings on the largest industrial estate in Umbria, Italy. The upgrade was specifically designed to improve the system efficiency and to cover the overall energy which needs with renewable energy resources. In both cases a solar photovoltaic plant provides the required electric power. The first system features a geothermal heat pump with an innovative layout: a heat-storage water tank, buried just below ground level, allows a significant reduction of the geothermal unit size, hence requiring fewer and/or shorter boreholes (up to 60%–70%. In the other system a biomass boiler is coupled with an absorption chiller machine, controlling the indoor air temperature in both summer and winter. In this case, lower electricity consumption, if compared to an electric compression chiller, is obtained. The first results of the monitoring of summer cooling are presented and an evaluation of the performance of the two pilot systems is given.

  15. Application of solar energy in heating and cooling of residential buildings under Central Asian conditions

    Directory of Open Access Journals (Sweden)

    Usmonov Shukhrat Zaurovich

    2014-04-01

    Full Text Available Solar radiation is the main source of thermal energy for almost all the processes developing in the atmosphere, hydrosphere, and biosphere. The total duration of sunshine in Tajikistan ranges from 2100 to 3170 hours per year. Solar collectors can be mounted on the roof of a house after its renovation and modernization. One square meter of surface area in Central Asia accounts for up to 1600 kW/h of solar energy gain, whilst the average gain is 1200 kW/h. Active solar thermal systems are able to collect both low- and high-temperature heat. Active systems require the use of special engineering equipment for the collection, storage, conversion and distribution of heat, while a low-grade system is based on the principle of using a flat solar collector. The collector is connected to the storage tank for storing the heated water, gas, etc. The water temperature is in the range 50-60 °C. For summer air conditioning in hot climates, absorption-based solar installations with open evaporating solution are recommended. The UltraSolar PRO system offers an opportunity to make a home independent of traditional electricity. Combining Schneider Electric power generation and innovative energy storage technology results in an independent power supply. Traditional power supply systems can be short-lived since they store energy in lead-acid batteries which have a negligible lifetime. Lead-acid batteries operate in a constant charge-discharge mode, require specific conditions for best performance and can fail suddenly. Sudden failure of lead acid batteries, especially in winter in the northern part of Tajikistan, completely disables the heating system of a building. Instead, it is recommended to use industrial lithium-ion batteries, which have a significantly longer life and reliability compared to lead-acid type. UltraSolar PRO are ideal and provide a complete package, low noise and compact lithium-ion power supply.

  16. An optimization methodology for the design of renewable energy systems for residential net zero energy buildings with on-site heat production

    DEFF Research Database (Denmark)

    Milan, Christian; Bojesen, Carsten; Nielsen, Mads Pagh

    2011-01-01

    The concept of net zero energy buildings (NZEB) has received increased attention throughout the last years. A well adapted and optimized design of the energy supply system is crucial for the performance of such buildings. This paper aims at developing a method for the optimal sizing of renewable...... energy supply systems for residential NZEB involving on-site production of heat and electricity in combination with electricity exchanged with the public grid. The model is based on linear programming and determines the optimal capacities for each relevant supply technology in terms of the overall system...

  17. Micro combined heat and power operating on renewable energy for residential building

    International Nuclear Information System (INIS)

    Aoun, Bernard

    2008-01-01

    The building sector consumes more than 43% of the total national energy consumption in France leading to more than 25% of CO 2 emissions associated to this energy consumption. A large number of options exist to limit CO 2 emissions and to improve the performance of buildings. One of these options is developed in this thesis, the use of renewable energies (solar and biomass) in combined production of heat and power. Conventional systems of combined heat and power production are briefly analyzed. The major part of this work has been focused on the development of a micro-CHP system based on an organic Rankine cycle operating on renewable energies intermittent and non-intermittent (solar and wood). The working fluids have been analyzed to allow reaching high thermodynamic performance. The different promising technologies, for each components of the system are identified, depending on the working fluid. A special test bench has been designed and realized to test and characterize an oil-free vapor scroll expander suitable for our application. The different components have been sized using computerized tools developed for the modeling of the Organic Rankine cycle. A dynamic simulation tool has been developed to simulate the annual performance of the micro-CHP system operating under different climate conditions and thermal loads. Results show that the micro-CHP system could save more than 40% of the primary energy consumption and up to 60% of CO 2 emissions. The Levelized electricity cost has been calculated using economic analysis; results show that the electricity cost (50 c-euros/kWhel) is still high compared to other technologies. (author)

  18. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank

    2005-01-01

    The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both....... In Denmark and Norway the focus is on solar heating/natural gas systems, and in Sweden and Latvia the focus is on solar heating/pellet systems. Additionally, Lund Institute of Technology and University of Oslo are studying solar collectors of various types being integrated into the roof and facade...... of the building....

  19. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2016-09-01

    Full Text Available With the urbanization process of the hot summer and cold winter (HSCW zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE and sustainability index based on exergy efficiency, are adopted to perform the evaluation. Models for the energy and total exergy efficiencies of various space and water heating equipment/systems are developed. The evaluation results indicate that common uses of electricity for space and water heating are the most unsustainable ways of space and water heating. In terms of PEE and sustainability index, air-source heat pumps for space and water heating are suitable for the HSCW zone. The PEE and sustainability index of solar water heaters with auxiliary electric heaters are greatly influenced by local solar resources. Air-source heat pump assisted solar hot water systems are the most sustainable among all water heating equipment/systems investigated in this study. Our works suggest the key potential for improving the energy efficiency and the sustainability of space and water heating in urban residential buildings of the HSCW zone.

  20. Residential Energy Performance Metrics

    Directory of Open Access Journals (Sweden)

    Christopher Wright

    2010-06-01

    Full Text Available Techniques for residential energy monitoring are an emerging field that is currently drawing significant attention. This paper is a description of the current efforts to monitor and compare the performance of three solar powered homes built at Missouri University of Science and Technology. The homes are outfitted with an array of sensors and a data logger system to measure and record electricity production, system energy use, internal home temperature and humidity, hot water production, and exterior ambient conditions the houses are experiencing. Data is being collected to measure the performance of the houses, compare to energy modeling programs, design and develop cost effective sensor systems for energy monitoring, and produce a cost effective home control system.

  1. Energy flexibility of residential buildings using short term heat storage in the thermal mass

    DEFF Research Database (Denmark)

    Dreau, Jerome Le; Heiselberg, Per Kvols

    2016-01-01

    Highlights •Two residential buildings (80's and passive house) with two emitters (radiator, UH). •Different modulations of the set-point (upward/downward, duration, starting time). •Large differences between the 80s and the passive house, influence of the emitter. •Evaluation of the flexibility p...... potential: comfort, capacity, efficiency, shifting. •Test of simple control strategies on the elspot price from 2009 in Denmark....

  2. Integration of a magnetocaloric heat pump in a low-energy residential building

    DEFF Research Database (Denmark)

    Johra, Hicham; Filonenko, Konstantin; Heiselberg, Per

    2018-01-01

    magnetocaloric effect of a solid refrigerant to build a cooling/heating cycle. It has the potential for high coefficient of performance, more silent operation and efficient part-load control. After presenting the operation principles of the magnetocaloric device and the different models used in the current......The EnovHeat project aims at developing an innovative heat pump system based on the magnetocaloric effect and active magnetic regenerator technology to provide for the heating needs of a single family house in Denmark. Unlike vapor-compression devices, magnetocaloric heat pumps use the reversible...... heat pump can deliver 2600 W of heating power with an appreciable average seasonal system COP of 3.93. On variable part-load operation with a simple fluid flow controller, it can heat up an entire house with an average seasonal system COP of 1.84....

  3. Integration of a magnetocaloric heat pump in a low-energy residential building

    DEFF Research Database (Denmark)

    Johra, Hicham

    2018-01-01

    The EnovHeat project aims at developing an innovative heat pump system based on the magnetocaloric effect and active magnetic regenerator technology to provide for the heating needs of a single family house in Denmark. Unlike vapor-compression devices, magnetocaloric heat pumps use the reversible...... magnetocaloric effect of a solid refrigerant to build a cooling/heating cycle. It has the potential for high coefficient of performance, more silent operation and efficient part-load control. After presenting the operation principles of the magnetocaloric device and the different models used in the current...

  4. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    Energy Technology Data Exchange (ETDEWEB)

    Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Roderick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Odukomaiya, Adewale [Georgia Inst. of Technology, Atlanta, GA (United States); Gehl, Anthony C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in the cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.

  5. Energy and economic analysis of total energy systems for residential and commercial buildings. [utilizing waste heat recovery techniques

    Science.gov (United States)

    Maag, W. L.; Bollenbacher, G.

    1974-01-01

    Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.

  6. Discover the benefits of residential wood heating

    International Nuclear Information System (INIS)

    2003-01-01

    This publication described how residential wood-heating systems are being used to reduce energy costs and increase home comfort. Biomass energy refers to all forms are renewable energy that is derived from plant materials. The source of fuel may include sawmills, woodworking shops, forest operations and farms. The combustion of biomass is also considered to be carbon dioxide neutral, and is not considered to be a major producer of greenhouse gases (GHG) linked to global climate change. Wood burning does, however, release air pollutants, particularly if they are incompletely burned. Incomplete combustion of wood results in dense smoke consisting of toxic gases. Natural Resources Canada helped create new safety standards and the development of the Wood Energy Technical Training Program to ensure that all types of wood-burning appliances are installed correctly and safely to reduce the risk of fire and for effective wood heating. In Canada, more than 3 million families heat with wood as a primary or secondary heating source in homes and cottages. Wood heating offers security from energy price fluctuations and electrical power failures. This paper described the benefits of fireplace inserts that can transform old fireplaces into modern heating systems. It also demonstrated how an add-on wood furnace can be installed next to oil furnaces to convert an oil-only heating system to a wood-oil combination system, thereby saving thousands of dollars in heating costs. Wood pellet stoves are another wood burning option. The fuel for the stoves is produced from dried, finely ground wood waste that is compressed into hard pellets that are loaded into a hopper. The stove can run automatically for up to 24 hours. New high-efficiency advanced fireplaces also offer an alternative heating system that can reduce heating costs while preserving Canada's limited supply of fossil fuels such as oil and gas. 13 figs

  7. Economic aspects of possible residential heating conservation

    Energy Technology Data Exchange (ETDEWEB)

    Hopkowicz, M.; Szul, A. [Technical Univ., Cracow (Poland)

    1995-12-31

    The paper presents methods of evaluation of energy and economy related effects of different actions aimed at conservation in residential buildings. It identifies also the method of selecting the most effective way of distribution funds assigned to weatherization as well as necessary improvements to be implemented within the heating node and the internal heating system of the building. The analysis of data gathered for four 11-stories high residential buildings of {open_quotes}Zeran{close_quotes} type being subject of the Conservation Demonstrative Project, included a differentiated scope of weatherization efforts and various actions aimed at system upgrading. Basing upon the discussion of the split of heat losses in a building as well as the established energy savings for numerous options of upgrading works, the main problem has been defined. It consists in optimal distribution of financial means for the discussed measures if the total amount of funds assigned for modifications is defined. The method based upon the principle of relative increments has been suggested. The economical and energy specifications of the building and its components, required for this method have also been elaborated. The application of this method allowed to define the suggested optimal scope of actions within the entire fund assigned for the comprehensive weatherization.

  8. Energy savings in Danish residential building stock

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2006-01-01

    a short account of the technical energy-saving possibilities that are present in existing dwellings and presents a financial methodology used for assessing energy-saving measures. In order to estimate the total savings potential detailed calculations have been performed in a case with two typical...... buildings representing the residential building stock and based on these calculations an assessment of the energy-saving potential is performed. A profitable savings potential of energy used for space heating of about 80% is identified over 45 years (until 2050) within the residential building stock......A large potential for energy savings exists in the Danish residential building stock due to the fact that 75% of the buildings were constructed before 1979 when the first important demands for energy performance of building were introduced. It is also a fact that many buildings in Denmark face...

  9. Augmenting natural ventilation using solar heat and free cool energy for residential buildings

    Directory of Open Access Journals (Sweden)

    N. B. Geetha

    2014-03-01

    Full Text Available In many urban buildings ventilation is not sufficient that will increase the temperature and also create unhealthy atmosphere inside the room. In such buildings artificially induced ventilation through freely available energy promote comfort conditions by reducing the temperature by 2 to 3°C and also creating good circulation of fresh air inside the room. In the present work the concept of improving the ventilation by excess hot energy available during summer days from the solar flat plate collector and by storing cool energy available during the early morning hour in the Phase Change Material (PCM based storage system is attempted. An experimental setup is made to study the effect of improvement in natural ventilation and the results are reported. A visible reduction in temperature is observed through circulation of air from the bottom side of the room to the roof of the house using the stored hot and cool energy. A CFD analysis is also carried out using ANSYS-CFX software to simulate and evaluate the mass flow of air at the inlet and at the selected RTD location by matching the transient temperature profile of the simulated result with the experimental results at the selected RTD location.

  10. Residential energy usage comparison: Findings

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.A.; Uhlaner, R.T.; Cason, T.N.; Courteau, S. (Quantum Consulting, Inc., Berkeley, CA (United States))

    1991-08-01

    This report presents the research methods and results from the Residential Energy Usage Comparison (REUC) project, a joint effort by Southern California Edison Company (SCE) and the Electric Power Research Institute (EPRI). The REUC project design activities began in early 1986. The REUC project is an innovative demand-site project designed to measure and compare typical energy consumption patterns of energy efficient residential electric and gas appliances. 95 figs., 33 tabs.

  11. Combined heat and power generation with fuel cells in residential buildings in the future energy system; Kraft-Waerme-Kopplung mit Brennstoffzellen in Wohngebaeuden im zukuenftigen Energiesystem

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, C.H.

    2007-04-27

    Combined heat and power generation (CHP) is regarded as one of the cornerstones of a future sustainable energy system. The application of this approach can be substantially extended by employing fuel cell technologies in small units for supplying heat to residential buildings. This could create an additional market for combined heat and power generation corresponding to approx. 25% of the final energy demand in Germany today. In parallel, the extensive application of distributed fuel cell systems in residential buildings would have substantial effects on energy infrastructures, primary energy demand, the energy mix and greenhouse gas emissions. It is the aim of the present study to quantify these effects via scenario modelling of energy demand and supply for Germany up to the year 2050. Two scenarios, reference and ecological commitment, are set up, and the application and operation of fuel cell plants in the future stock of residential buildings is simulated by a bottom-up approach. A model of the building stock was developed for this purpose, consisting of 213 types of reference buildings, as well as detailed simulation models of the plant operation modes. The aim was, furthermore, to identify economically and ecologically optimised plant designs and operation modes for fuel cells in residential buildings. Under the assumed conditions of the energy economy, economically optimised plant sizes for typical one- or two-family homes are in the range of a generating capacity of a few hundred watts of electrical power. Plant sizes of 2 to 4.7 kW{sub el} as discussed today are only economically feasible in multifamily dwellings. The abolition of the CHP bonus reduces profitability, especially for larger plants operated by contractors. In future, special strategies for power generation and supply can be an economically useful addition for the heat-oriented operation mode of fuel cells. On the basis of the assumed conditions of the energy economy, a technical potential for

  12. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank

    2005-01-01

    .D. studies in Denmark, Sweden and Latvia, and a post-doc. study in Norway. Close cooperation between the researchers and the industry partners ensures that the results of the project can be utilized. By the end of the project the industry partners will be able to bring the developed systems onto the market...... from an economical and architectural point of view. The project includes education, research, development and demonstration. The project started in 2003 and will be finished by the end of 2006. The participants of the project, which is financed by Nordic Energy Research and the participants themselves......The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both...

  13. Annual Performance of a Two-Speed, Dedicated Dehumidification Heat Pump in the NIST Net-Zero Energy Residential Test Facility.

    Science.gov (United States)

    Payne, W Vance

    2016-01-01

    A 2715 ft 2 (252 m 2 ), two story, residential home of the style typical of the Gaithersburg, Maryland area was constructed in 2012 to demonstrate technologies for net-zero energy (NZE) homes (or ZEH). The NIST Net-Zero Energy Residential Test Facility (NZERTF) functions as a laboratory to support the development and adoption of cost-effective NZE designs, technologies, construction methods, and building codes. The primary design goal was to meet the comfort and functional needs of the simulated occupants. The first annual test period began on July 1, 2013 and ended June 30, 2014. During the first year of operation, the home's annual energy consumption was 13039 kWh (4.8 kWh ft -2 , 51.7 kWh m -2 ), and the 10.2 kW solar photovoltaic system generated an excess of 484 kWh. During this period the heating and air conditioning of the home was performed by a novel air-source heat pump that utilized a reheat heat exchanger to allow hot compressor discharge gas to reheat the supply air during a dedicated dehumidification mode. During dedicated dehumidification, room temperature air was supplied to the living space until the relative humidity setpoint of 50% was satisfied. The heat pump consumed a total of 6225 kWh (2.3 kWh ft -2, 24.7 kWh m -2 ) of electrical energy for cooling, heating, and dehumidification. Annual cooling efficiency was 10.1 Btu W -1 h -1 (2.95 W W -1 ), relative to the rated SEER of the heat pump of 15.8 Btu W -1 h -1 (4.63 W W -1 ). Annual heating efficiency was 7.10 Btu W -1 h -1 (2.09 W W -1 ), compared with the unit's rated HSPF of 9.05 Btu W -1 h -1 (2.65 W W -1 ). These field measured efficiency numbers include dedicated dehumidification operation and standby energy use for the year. Annual sensible heat ratio was approximately 70%. Standby energy consumption was 5.2 % and 3.5 % of the total electrical energy used for cooling and heating, respectively.

  14. Energy in the residential building. Electricity, heat, e-mobility. 2. rev. and enl. ed.; Energie im Wohngebaeude. Strom, Waerme, E-Mobilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzburger, Heiko

    2017-11-01

    Photovoltaics, heat pumps and fuel cells offer enormous potential for sustainable energy supply in residential buildings. Solar thermal energy and wood-fired boilers also play an important role in refurbishment. Due to the wide range of possible combinations, the wishes of building owners and homeowners for an ecologically and economically individually adapted energy concept can be fulfilled accurately. This book provides you with a holistic approach to the residential building and its supply of electricity, heat and water. All processes that play a role in the house's energy consumption are examined in their entirety for their potentials and potential savings. The author analyses and describes in detail the resources of buildings and their surroundings - and how they can be used for a truly independent supply. The focus is on reducing energy consumption and costs, the generation and supply of energy from renewable sources and energy storage - considered in new construction and modernisation. The supply of water is also dealt with if it touches on energy issues. The author draws attention to standards and regulations and gives practical advice for planning and installation. The focus is on the so-called sector coupling: electricity from the sun, wind and hydrogen is used to supply electrical consumers in the home, charging technology for electric vehicles, hot water and heating. The time of the boilers and combustion engines has elapsed. Clean electricity and digital controls - power and intelligence - determine the regenerative building technology. [German] Photovoltaik, Waermepumpen und Brennstoffzellen bieten enormes Potenzial, die Energieversorgung im Wohngebaeude nachhaltig zu gestalten. In der Sanierung spielen auch Solarthermie und Holzfeuerungen eine wichtige Rolle. Aufgrund der vielfaeltigen Kombinationsmoeglichkeiten lassen sich die Wuensche der Bauherren und Hausbesitzer nach einem oekologisch und oekonomisch individuell angepassten Energiekonzept

  15. Target-oriented obstacle analysis by PESTEL modeling of energy efficiency retrofit for existing residential buildings in China's northern heating region

    International Nuclear Information System (INIS)

    Shilei, Lv; Wu Yong

    2009-01-01

    According to the 'Comprehensive Work Program of Energy Efficiency and Emission Reduction' of the Chinese government, during the period of the '11th Five-Year Plan', 1.5x10 8 m 2 of existing residential buildings in China's northern heating region are to be retrofitted for energy efficiency. However, at present, this 'Energy Efficiency Retrofit for Existing Residential Buildings' (EERFERB) faces many obstacles. Under the current working and market system, both the central and local governments and the energy supply companies can not push on this work smoothly. Using both the results of the annual national special inspection of building energy efficiency and some case analyses, this paper examines the necessity for energy efficiency retrofit, along with the relationships among the various Political, Economic, Social, Technological, Environmental and Legal (PESTEL) factors affecting it. Furthermore, organizational, financial and technical support systems are explored to promote the development of retrofit. Finally, some primary principles to be followed toward the implementation of EERFERB are suggested.

  16. Target-oriented obstacle analysis by PESTEL modeling of energy efficiency retrofit for existing residential buildings in China's northern heating region

    Energy Technology Data Exchange (ETDEWEB)

    Shilei, Lv [School of Environment Science and Technology, Tianjin University, Tianjin 300072 (China); Yong, Wu [Department of Science and Technology, Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China)

    2009-06-15

    According to the 'Comprehensive Work Program of Energy Efficiency and Emission Reduction' of the Chinese government, during the period of the '11th Five-Year Plan', 1.5 x 10{sup 8} m{sup 2} of existing residential buildings in China's northern heating region are to be retrofitted for energy efficiency. However, at present, this 'Energy Efficiency Retrofit for Existing Residential Buildings' (EERFERB) faces many obstacles. Under the current working and market system, both the central and local governments and the energy supply companies can not push on this work smoothly. Using both the results of the annual national special inspection of building energy efficiency and some case analyses, this paper examines the necessity for energy efficiency retrofit, along with the relationships among the various Political, Economic, Social, Technological, Environmental and Legal (PESTEL) factors affecting it. Furthermore, organizational, financial and technical support systems are explored to promote the development of retrofit. Finally, some primary principles to be followed toward the implementation of EERFERB are suggested. (author)

  17. Passive annual heat storage principles in earth sheltered housing, a supplementary energy saving system in residential housing

    Energy Technology Data Exchange (ETDEWEB)

    Anselm, Akubue Jideofor [Green Architecture Department, School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2008-07-01

    This paper looks through the many benefits of earth not only as a building element in its natural form but as a building mass, energy pack and spatial enclosure which characterized by location, unique physical terrain and climatic factors can be utilized in developing housing units that will provide the needed benefits of comfort alongside the seasons. Firstly the study identifies existing sunken earth houses in the North-west of China together with identifying the characters that formed the ideas behind the choice of going below the ground. Secondly, the study examines the pattern of heat exchange, heat gains and losses as to identify the principles that makes building in earth significant as an energy conservation system. The objective of this, is to relate the ideas of sunken earth home design with such principles as the passive annual heat storage systems (PAHS) in producing houses that will serve as units used to collect free solar heat all summer and cools passively while heating the earth around it and also keeping warm in winter by retrieving heat from the soil while utilizing the free solar heat stored throughout the summer as a year-round natural thermal resource. (author)

  18. Planning for a Low Carbon Future? Comparing Heat Pumps and Cogeneration as the Energy System Options for a New Residential Area

    Directory of Open Access Journals (Sweden)

    Jukka Heinonen

    2015-08-01

    Full Text Available The purpose of this paper is to compare, from an urban planning perspective, the choice between combined heat and power (CHP and a ground-source heat pump (HP as the energy systems of a new residential area in the light of the uncertainty related to the assessments. There has been a strong push globally for CHP due to its climate mitigation potential compared to separate production, and consequently it is often prioritized in planning without questioning. However, the uncertainties in assessing the emissions from CHP and alternative options in a certain planning situation make it very difficult to give robust decision guidelines. In addition, even the order of magnitude of the climate impact of a certain plan is actually difficult to assess robustly. With a case study of the new residential development of Härmälänranta in Tampere, Finland, we show how strongly the uncertainties related to (1 utilizing average or marginal electricity as the reference; (2 assigning emissions intensities for the production; and (3 allocating the emissions from CHP to heat and electricity affect the results and lead to varying decision guidelines. We also depict how a rather rarely utilized method in assigning the emissions from CHP is the most robust for planning support.

  19. Life-cycle energy of residential buildings in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Ries, Robert J.; Wang, Yaowu

    2013-01-01

    In the context of rapid urbanization and new construction in rural China, residential building energy consumption has the potential to increase with the expected increase in demand. A process-based hybrid life-cycle assessment model is used to quantify the life-cycle energy use for both urban and rural residential buildings in China and determine the energy use characteristics of each life cycle phase. An input–output model for the pre-use phases is based on 2007 Chinese economic benchmark data. A process-based life-cycle assessment model for estimating the operation and demolition phases uses historical energy-intensity data. Results show that operation energy in both urban and rural residential buildings is dominant and varies from 75% to 86% of life cycle energy respectively. Gaps in living standards as well as differences in building structure and materials result in a life-cycle energy intensity of urban residential buildings that is 20% higher than that of rural residential buildings. The life-cycle energy of urban residential buildings is most sensitive to the reduction of operational energy intensity excluding heating energy which depends on both the occupants' energy-saving behavior as well as the performance of the building itself. -- Highlights: •We developed a hybrid LCA model to quantify the life-cycle energy for urban and rural residential buildings in China. •Operation energy in urban and rural residential buildings is dominant, varying from 75% to 86% of life cycle energy respectively. •Compared with rural residential buildings, the life-cycle energy intensity of urban residential buildings is 20% higher. •The life-cycle energy of urban residential buildings is most sensitive to the reduction of daily activity energy

  20. Residential space heating with wood burning stoves. Energy efficiency and indoor climate; Boligopvarmning ved braendefyring. Energieffektivitet og indeklima

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Ole Michael; Afshari, A.; Bergsoee, N.C.; Carvalho, R. [Miljoestyrelsen, Copenhagen (Denmark); Aalborg Univ.. Statens Byggeforskningsinstitut, Aalborg (Denmark))

    2012-11-01

    Two issues turn up concerning how to use wood-burning stoves in modern homes. The first is whether wood-burning stoves in future may still act as a genuine heat source, given that new and refurbished single-family houses retain the heat much better than older ones and therefore need less and less energy for space heating. The second issue is whether it will still be possible to use wood-burning stoves in modern houses where the air exchange is controlled by mechanical ventilation or possibly heat recovery. It is a question whether firing techniques can be developed that will work in airtight houses with mechanical ventilation and negative pressure, so that harmful particle emissions can be avoided. To illustrate the first issue, a field study was designed to look carefully at seven modern wood-burning stoves that were set up in six new houses and one older house and investigated, both in terms of firing and heat release. As a background for this part of the study, a heat balance calculation was made for each house. The question is, whether wood-burning stoves will also in the future have a role to play as a heating source. Modern houses grow ever tighter and only need to be supplied with a small quantity of heat. The new Danish Buildings Requirement, 2010 has resulted in a further reduction of 25 % of the energy demand, including the energy supply for heating. However, the new requirements imply that the heating season eventually become so short that a traditional central heating installation becomes superfluous. This means that by using the small amounts of wood cut in gardens and hedgerows of the neighbourhood, a wood-burning stove will, in principle, cover the heating demand. Therefore, the question is rather whether a wood-burning stove is manufactured that can successfully be adapted to new houses. As a consequence of this development, future stoves must be further scaled down in order to meet the heating demand of a modern low-energy house and the stoves must

  1. Comprehensive areal model of residential heating demands

    Energy Technology Data Exchange (ETDEWEB)

    Tessmer, R.G. Jr.

    1978-01-01

    Data sources and methodology for modeling annual residential heating demands are described. A small areal basis is chosen, census tract or minor civil division, to permit estimation of demand densities and economic evaluation of community district heating systems. The demand model is specified for the entire nation in order to provide general applicability and to permit validation with other published fuel consumption estimates for 1970.

  2. Energy literacy, awareness, and conservation behavior of residential households

    International Nuclear Information System (INIS)

    Brounen, Dirk; Kok, Nils; Quigley, John M.

    2013-01-01

    The residential sector accounts for one-fifth of global energy consumption, resulting from the requirements to heat, cool, and light residential dwellings. It is therefore not surprising that energy efficiency in the residential market has gained importance in recent years. In this paper, we examine awareness, literacy and behavior of households with respect to their residential energy expenditures. Using a detailed survey of 1721 Dutch households, we measure the extent to which consumers are aware of their energy consumption and whether they have taken measures to reduce their energy costs. Our results show that “energy literacy” and awareness among respondents is low: just 56% of the respondents are aware of their monthly charges for energy consumption, and 40% do not appropriately evaluate investment decisions in energy efficient equipment. We document that demographics and consumer attitudes towards energy conservation, but not energy literacy and awareness, have direct effects on behavior regarding heating and cooling of the home. The impact of a moderating factor, measured by thermostat settings, ultimately results in strong variation in the energy consumption of private consumers. - Highlights: • We use a detailed survey of 1,721 Dutch households to measure awareness and conservation behavior in energy consumption. • Energy literacy and awareness among residential households is low. • 40 percent of the sample does not appropriately evaluate investment decisions in energy efficient equipment • Demographics and consumer attitudes affect behavior regarding heating and cooling of a home

  3. Residential energy usage comparison project: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.A.; Uhlaner, R.T.; Cason, T.N. (Quantum Consulting, Inc., Berkeley, CA (USA))

    1990-10-01

    This report provides an overveiw of the residential energy usage comparison project, an integrated load and market research project sponsored by EPRI and the Southern California Edison Company. Traditional studies of the relative energy consumption of electric and gas household appliances have relied on laboratory analyses and computer simulations. This project was designed to study the appliance energy consumption patterns of actual households. Ninety-two households in Orange County, California, southeast of Los Angeles, served as the study sample. Half of the households received new electric space-conditioning, water-heating, cooking, and clothes-drying equipment; the other half received gas equipment. The electric space-conditioning and water-heating appliances were heat pump technologies. All of the appliances were metered to collect load-shape and energy consumption data. The households were also surveyed periodically to obtain information on their energy needs and their acceptance of the appliances. The metered energy consumption data provide an important benchmark for comparing the energy consumption and costs of alternative end-use technologies. The customer research results provide new insights into customer preferences for fuel and appliance types. 15 figs., 3 tabs.

  4. Residential energy use in Lithuania: The prospects for energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E. [Lawrence Berkeley National Lab., CA (United States); Kazakevicius, E. [Kazakevicius (Eduardas), Vilnius (Lithuania)

    1998-06-01

    While the potential for saving energy in Lithuania`s residential sector (especially, space heating in apartment buildings) is large, significant barriers (financial, administration, etc.) to energy efficiency remain. Removing or ameliorating these barriers will be difficult since these are systematic barriers that require societal change. Furthermore, solutions to these problems will require the cooperation and, in some cases, active participation of households and homeowner associations. Therefore, prior to proposing and implementing energy-efficiency solutions, one must understand the energy situation from a household perspective.

  5. Impacts of Water Quality on Residential Water Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  6. 77 FR 29322 - Updating State Residential Building Energy Efficiency Codes

    Science.gov (United States)

    2012-05-17

    ... the Buildings Technologies Program-Building Energy Codes Program Manager, U.S. Department of Energy... hotel, motel, and other transient residential building types of any height as commercial buildings for... insulation and length requirements Skylight definition change Penalizing electric resistance heating in the...

  7. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  8. An engineering economic assessment of whole-house residential wood heating in New York

    Science.gov (United States)

    Wood devices are being selected increasingly for residential space heating by households in New York State. Motivations for their use include energy independence, mitigating climate change, stimulating local economic development, and reducing exposure to high and variable fuel c...

  9. Thermal Profiling of Residential Energy Use

    Energy Technology Data Exchange (ETDEWEB)

    Albert, A; Rajagopal, R

    2015-03-01

    This work describes a methodology for informing targeted demand-response (DR) and marketing programs that focus on the temperature-sensitive part of residential electricity demand. Our methodology uses data that is becoming readily available at utility companies-hourly energy consumption readings collected from "smart" electricity meters, as well as hourly temperature readings. To decompose individual consumption into a thermal-sensitive part and a base load (non-thermally-sensitive), we propose a model of temperature response that is based on thermal regimes, i.e., unobserved decisions of consumers to use their heating or cooling appliances. We use this model to extract useful benchmarks that compose thermal profiles of individual users, i.e., terse characterizations of the statistics of these users' temperature-sensitive consumption. We present example profiles generated using our model on real consumers, and show its performance on a large sample of residential users. This knowledge may, in turn, inform the DR program by allowing scarce operational and marketing budgets to be spent on the right users-those whose influencing will yield highest energy reductions-at the right time. We show that such segmentation and targeting of users may offer savings exceeding 100% of a random strategy.

  10. Engineering economic assessment of residential wood heating in NY

    Science.gov (United States)

    We provide insight into the recent resurgence in residential wood heating in New York by: (i) examining the lifetime costs of outdoor wood hydronic heaters (OWHHs) and other whole-house residential wood heat devices,(ii) comparing these lifetime costs with those of competing tech...

  11. Stochastic analysis of residential micro combined heat and power system

    DEFF Research Database (Denmark)

    Karami, H.; Sanjari, M. J.; Gooi, H. B.

    2017-01-01

    In this paper the combined heat and power functionality of a fuel-cell in a residential hybrid energy system, including a battery, is studied. The demand uncertainties are modeled by investigating the stochastic load behavior by applying Monte Carlo simulation. The colonial competitive algorithm...... is adopted to the hybrid energy system scheduling problem and different energy resources are optimally scheduled to have optimal operating cost of hybrid energy system. In order to show the effectiveness of the colonial competitive algorithm, the results are compared with the results of the harmony search...... algorithm. The optimized scheduling of different energy resources is listed in an efficient look-up table for all time intervals. The effects of time of use and the battery efficiency and its size are investigated on the operating cost of the hybrid energy system. The results of this paper are expected...

  12. Stochastic analysis of residential micro combined heat and power system

    International Nuclear Information System (INIS)

    Karami, H.; Sanjari, M.J.; Gooi, H.B.; Gharehpetian, G.B.; Guerrero, J.M.

    2017-01-01

    Highlights: • Applying colonial competitive algorithm to the problem of optimal dispatching. • Economic modeling of the residential integrated energy system. • Investigating differences of stand-alone and system-connected modes of fuel cell operation. • Considering uncertainty on the electrical load. • The effects of battery capacity and its efficiency on the system is investigated. - Abstract: In this paper the combined heat and power functionality of a fuel-cell in a residential hybrid energy system, including a battery, is studied. The demand uncertainties are modeled by investigating the stochastic load behavior by applying Monte Carlo simulation. The colonial competitive algorithm is adopted to the hybrid energy system scheduling problem and different energy resources are optimally scheduled to have optimal operating cost of hybrid energy system. In order to show the effectiveness of the colonial competitive algorithm, the results are compared with the results of the harmony search algorithm. The optimized scheduling of different energy resources is listed in an efficient look-up table for all time intervals. The effects of time of use and the battery efficiency and its size are investigated on the operating cost of the hybrid energy system. The results of this paper are expected to be used effectively in a real hybrid energy system.

  13. Energy and IAQ Implications of Residential Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  14. Deep influence of passive low energy consumption multi-storey residential building in cold region

    Science.gov (United States)

    Shuai, Zhang; Lihua, Zhao; Rong, Jin; Dong, Junyan

    2018-02-01

    The example of passive architecture demonstration building in Jilin Province, China, based on the practical experience of this project, the control index of passive and low energy consumption residential buildings in cold and passive buildings is referenced by reference to the German construction standard and the Chinese residence construction document, “passive ultra-low energy consumption green Building Technology Guide (Trial)”. The requirement of passive low energy residential buildings on the ground heat transfer coefficient limits is determined, and the performance requirements of passive residential buildings are discussed. This paper analyzes the requirement of the passive low energy residential building on the ground heat transfer coefficient limit, and probes into the influence factors of the ground thermal insulation of the passive low energy consumption residential building. The construction method of passive low energy consumption residential building is proposed.

  15. 75 FR 52892 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2010-08-30

    ... for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters AGENCY: Office of Energy... ``Energy Conservation Program for Consumer Products Other Than Automobiles,'' including residential water... energy consumption, and because off mode is not applicable to water heaters, no amendment is required...

  16. 77 FR 74559 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2012-12-17

    ... Energy (DOE) is amending its test procedures for residential water heaters, direct heating equipment (DHE... procedures for residential water heaters include a full- year accounting of energy use, both electricity and... water heaters already account for standby mode and off mode energy consumption. III. Discussion In the...

  17. 76 FR 56347 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2011-09-13

    ... procedure for residential water heaters fully addresses standby mode and off mode energy consumption, this... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket No. EERE-2009-BT-TP-0013] RIN 1904-AB95 Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters, Direct Heating...

  18. Improved reliability of residential heat pumps; Foerbaettrad driftsaekerhet hos villavaermepumpar

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Larsson, Kristin; Jensen, Sara; Larsson, Johan; Berg, Johan; Lidbom, Peter; Rolfsman, Lennart

    2012-07-01

    Today, heat pump heating systems are common in Swedish single-family houses. Many owners are pleased with their installation, but statistics show that a certain number of heat pumps break every year, resulting in high costs for both insurance companies and owners. On behalf of Laensfoersaekringars Forskningsfond, SP Energy Technology has studied the cause of the most common failures for residential heat pumps. The objective of the study was to suggest what measures to be taken to reduce the number of failures, i.e. improving the reliability of heat pumps. The methods used were analysis of public failure statistics and sales statistics and interviews with heat pump manufacturers, installers, service representatives and assessors at Laensfoersaekringar. In addition, heat pump manuals have been examined and literature searches for various methods for durability tests have been performed. Based on the outcome from the interviews the most common failures were categorized by if they; 1. Could have been prevented by better operation and maintenance of the heat pump. 2. Caused by a poorly performed installation. 3. Could have been prevented if certain parameters had been measured, recorded and followed up. 4. Are due to poor quality of components or systems. However, the results show that many of the common failures fall into several different categories and therefore, different types of measures must be taken to improve the operational reliability of residential heat pumps. The interviews tell that failures often are caused by poor installation, neglected maintenance and surveillance, and poor quality of standard components or that components are used outside their declared operating range. The quality of the installations could be improved by increasing installers' knowledge about heat pumps and by requiring that an installation protocol shall be filled-in. It is also important that the owner of the heat pump performs the preventive maintenance recommended by the

  19. Michigan residential heating oil and propane price survey: 1995-1996 heating season. Final report

    International Nuclear Information System (INIS)

    Moriarty, C.

    1996-05-01

    This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan's Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy's (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply

  20. 75 FR 21981 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-27

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EE-2006-BT-STD-0129] RIN 1904-AA90 Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters Correction In rule document 2010-7611 beginning on page 20112 in the issue of Friday...

  1. An analysis of residential energy consumption in a temperate climate

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common energy package.'' Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  2. Scenarios to decarbonize residential water heating in California

    OpenAIRE

    Raghavan, SV; Wei, M; Kammen, DM

    2017-01-01

    © 2017 Elsevier Ltd This paper presents the first detailed long-term stock turnover model to investigate scenarios to decarbonize the residential water heating sector in California, which is currently dominated by natural gas. We model a mix of water heating (WH) technologies including conventional and on-demand (tank-less) natural gas heating, electric resistance, existing electric heat pumps, advanced heat pumps with low global warming refrigerants and solar thermal water heaters. Technical...

  3. Converting Energy Subsidies to Investments: Scaling-Up Deep Energy Retrofit in Residential Sector of Ukraine

    Science.gov (United States)

    Denysenko, Artur

    After collapse of the Soviet Union, Ukraine inherited vast and inefficient infrastructure. Combination of historical lack of transparency, decades without reforms, chronical underinvestment and harmful cross-subsidization resulted in accumulation of energy problems, which possess significant threat to economic prosperity and national security. High energy intensity leads to excessive use of energy and heavy reliance on energy import to meet domestic demand. Energy import, in turn, results in high account balance deficit and heavy burden on the state finances. A residential sector, which accounts for one third of energy consumption and is the highest consumer of natural gas, is particularly challenging to reform. This thesis explores energy consumption of the residential sector of Ukraine. Using energy decomposition method, recent changes in energy use is analyzed. Energy intensity of space heating in the residential sector of Ukraine is compared with selected EU member states with similar climates. Energy efficiency potential is evaluated for whole residential sector in general and for multistory apartment buildings connected to the district heating in particular. Specifically, investments in thermal modernization of multistory residential buildings will result in almost 45TWh, or 3.81 Mtoe, of annual savings. Required investments for deep energy retrofit of multistory buildings is estimated as much as $19 billion in 2015 prices. Experience of energy subsidy reforms as well as lessons from energy retrofit policy from selected countries is analyzed. Policy recommendations to turn energy subsidies into investments in deep energy retrofit of residential sector of Ukraine are suggested. Regional dimension of existing energy subsidies and capital subsidies required for energy retrofit is presented.

  4. Integrated Management of Residential Energy Resources

    Directory of Open Access Journals (Sweden)

    Antunes C. H.

    2012-10-01

    Full Text Available The increasing deployment of distributed generation systems based on renewables in the residential sector, the development of information and communication technologies and the expected evolution of traditional power systems towards smart grids are inducing changes in the passive role of end-users, namely with stimuli to change residential demand patterns. The residential user should be able to make decisions and efficiently manage his energy resources by taking advantages from his flexibility in load usage with the aim to minimize the electricity bill without depreciating the quality of energy services provided. The aim of this paper is characterizing electricity consumption in the residential sector and categorizing the different loads according to their typical usage, working cycles, technical constraints and possible degree of control. This categorization of end-use loads contributes to ascertain the availability of controllable loads to be managed as well as the different direct management actions that can be implemented. The ability to implement different management actions over diverse end-use load will increase the responsiveness of demand and potentially raises the willingness of end-users to accept such activities. The impacts on the aggregated national demand of large-scale dissemination of management systems that would help the end-user to make decisions regarding electricity consumption are predicted using a simulator that generates the aggregated residential sector electricity consumption under variable prices.

  5. Optimal Scheduling of Residential Microgrids Considering Virtual Energy Storage System

    Directory of Open Access Journals (Sweden)

    Weiliang Liu

    2018-04-01

    Full Text Available The increasingly complex residential microgrids (r-microgrid consisting of renewable generation, energy storage systems, and residential buildings require a more intelligent scheduling method. Firstly, aiming at the radiant floor heating/cooling system widely utilized in residential buildings, the mathematical relationship between the operative temperature and heating/cooling demand is established based on the equivalent thermodynamic parameters (ETP model, by which the thermal storage capacity is analyzed. Secondly, the radiant floor heating/cooling system is treated as virtual energy storage system (VESS, and an optimization model based on mixed-integer nonlinear programming (MINLP for r-microgrid scheduling is established which takes thermal comfort level and economy as the optimization objectives. Finally, the optimal scheduling results of two typical r-microgrids are analyzed. Case studies demonstrate that the proposed scheduling method can effectively employ the thermal storage capacity of radiant floor heating/cooling system, thus lowering the operating cost of the r-microgrid effectively while ensuring the thermal comfort level of users.

  6. Price and income elasticities of residential energy demand in Germany

    International Nuclear Information System (INIS)

    Schulte, Isabella; Heindl, Peter

    2017-01-01

    We apply a quadratic expenditure system to estimate price and expenditure elasticities of residential energy demand (electricity and heating) in Germany. Using official expenditure data from 1993 to 2008, we estimate an expenditure elasticity for electricity of 0.3988 and of 0.4055 for space heating. The own price elasticity for electricity is −0.4310 and −0.5008 in the case of space heating. Disaggregation of households by expenditure and socio-economic composition reveals that the behavioural response to energy price changes is weaker (stronger) for low-income (top-income) households. There are considerable economies of scale in residential energy use but scale effects are not well approximated by the new OECD equivalence scale. Real increases in energy prices show a regressive pattern of incidence, implying that the welfare consequences of direct energy taxation are larger for low income households. The application of zero-elasticities in assessments of welfare consequences of energy taxation strongly underestimates potential welfare effects. The increase in inequality is 22% smaller when compared to the application of disaggregated price and income elasticities as estimated in this paper. - Highlights: • We estimate price, income, and expenditure elasticities for residential energy demand in Germany. • We differentiate elasticities by income groups and household type. • Electricity and space heating are necessary goods since the expenditure elasticities are smaller than unity. • Low-income households show a weaker reaction to changing prices when compared to high-income households. • Direct energy taxation has regressive effects, meaning that larger burdens fall upon low-income households.

  7. Energy statistics for non-residential premises 2012; Energistatistik foer lokaler 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    This report presents data on a number of non-residential premises, heated floor area, use of energy (totals and averages) and use of fuels (totals and averages) for the total population and for various subDivs.

  8. Taylor dispersion and the optimization of residential geothermal heating systems

    Science.gov (United States)

    Townsend, Jessica; Ortan, Alexandra; Quenneville-Belair, Vincent; Tilley, B. S.

    2008-11-01

    Residential geothermal heating systems have been developed over the past few decades as an alternative to fossil-fuel based heating. These systems consist of tubing (2 cm radius, 1 km in length) buried below the ground surface through which a coolant flows. Tube length has a direct correlation to installation cost. The temperature of this fluid rises as it flows through the tubing, and the energy from this temperature difference is utilized to heat the residence. As a first model, we consider a single tube of fluid encased in an infinite medium of soil, with the goal to find the minimum length over which temperature variations occur. Through lubrication theory, we derive an evolution equation for the local soil temperature near the tubing. We find that Taylor dispersion of heat in the fluid and thermostat frequency dictate the minimum tubing length needed for successful operation in an insulated subsystem. Next, matched asymptotics is used to incorporate far-field temperature variations. Comparison of our model with experiment is presented.

  9. Residential Energy Efficiency Potential: Washington

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Washington single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  10. Residential Energy Efficiency Potential: Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Colorado single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  11. Residential Energy Efficiency Potential: Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Delaware single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. Residential Energy Efficiency Potential: Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Kentucky single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Residential Energy Efficiency Potential: Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Minnesota single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Residential Energy Efficiency Potential: Nebraska

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Nebraska single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Residential Energy Efficiency Potential: Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Illinois single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  16. Residential Energy Efficiency Potential: Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Iowa single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wisconsin single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wyoming single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Residential Energy Efficiency Potential: Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Oregon single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Residential Energy Efficiency Potential: Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-17

    Energy used by Georgia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  1. Residential Energy Efficiency Potential: Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Ohio single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  2. Residential Energy Efficiency Potential: Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Arkansas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  3. Residential Energy Efficiency Potential: Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Indiana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Residential Energy Efficiency Potential: Vermont

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Vermont single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  5. Residential Energy Efficiency Potential: Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Missouri single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  6. Residential Energy Efficiency Potential: Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-15

    Energy used by Alabama single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. Residential Energy Efficiency Potential: Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Nevada single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  8. Residential Energy Efficiency Potential: California

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by California single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  9. Residential Energy Efficiency Potential: Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Tennessee single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  10. Residential Energy Efficiency Potential: Maine

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Maine single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  11. Residential Energy Efficiency Potential: Florida

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Florida single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. Residential Energy Efficiency Potential: Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Pennsylvania single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Residential Energy Efficiency Potential: Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Virginia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Residential Energy Efficiency Potential: Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Oklahoma single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Residential Energy Efficiency Potential: Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Idaho single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  16. Residential Energy Efficiency Potential: Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Michigan single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Arizona single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: Texas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Texas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Residential Energy Efficiency Potential: Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Kansas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Residential Energy Efficiency Potential: Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-21

    Energy used by Massachusetts single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  1. Residential Energy Efficiency Potential: Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Mississippi single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  2. Residential Energy Efficiency Potential: Connecticut

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Connecticut single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  3. Residential Energy Efficiency Potential: Montana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Montana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Residential Energy Efficiency Potential: Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Maryland single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  5. Residential Energy Efficiency Potential: Utah

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Utah single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  6. Residential Energy Efficiency Potential: Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Louisiana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. Residential/commercial market for energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M M

    1979-08-01

    The residential/commercial market sector, particularly as it relates to energy technologies, is described. Buildings account for about 25% of the total energy consumed in the US. Market response to energy technologies is influenced by several considerations. Some considerations discussed are: industry characteristics; market sectors; energy-consumption characeristics; industry forecasts; and market influences. Market acceptance may be slow or nonexistent, the technology may have little impact on energy consumption, and redesign or modification may be necessary to overcome belatedly perceived market barriers. 7 figures, 20 tables.

  8. Solar Energy Systems for Ohioan Residential Homeowners

    Science.gov (United States)

    Luckett, Rickey D.

    Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.

  9. Forecasting the adoption of residential ductless heat pumps

    International Nuclear Information System (INIS)

    Hlavinka, Alexander N.; Mjelde, James W.; Dharmasena, Senarath; Holland, Christine

    2016-01-01

    Energy-efficient technologies have the potential to provide savings to households and utilities, but consumers do not always adopt these innovations over traditional technologies. The ductless heat pump (DHP) is one such technology designed to increase energy efficiency and comfort in space conditioning. DHP adoption by single-family residences in the Pacific Northwest of the United States is investigated by quantifying the effects of utility-provided rebates and expenditures on activities such as advertising and installer training on the number of installations and forecasting installations through 2018. The number of installations is elastic with respect to net installation costs and inelastic with respect to expenditures. Given the proposed rebate budgets, doubling the current rebate is necessary to maximize installations through 2018. - Highlights: • The ductless heat pump (DHP) is an energy-efficient form of space conditioning. • Rebate and marketing programs designed to increase adoptions of DHPs are examined. • Residential adoption of DHPs is sensitive to rebates and tax credits. • Advertising and training have a smaller effect on adoption than rebates.

  10. A REVIEW ON HEAT DISSIPATING PASSIVE COOLING TECHNIQUES FOR RESIDENTIAL BUILDINGS AT TROPICAL REGION

    Directory of Open Access Journals (Sweden)

    D. PRAKASH

    2017-08-01

    Full Text Available Thermal comfort is very essential for the occupants in a residential building without air-conditioning system especially in tropical region. Passive cooling is the only solution to achieve the required thermal comfort without sacrificing occupant’s health with zero energy consumption. All passive cooling techniques are broadly categorized under (i solar and heat protection, (ii heat modulation and (iii heat dissipation techniques. This paper reviews various techniques and advancements in passive cooling of buildings through heat dissipation approach. In the heat dissipation approach, the heat generated from various sources are reduced by natural ventilation and natural cooling.

  11. Dynamic management of integrated residential energy systems

    Science.gov (United States)

    Muratori, Matteo

    This study combines principles of energy systems engineering and statistics to develop integrated models of residential energy use in the United States, to include residential recharging of electric vehicles. These models can be used by government, policymakers, and the utility industry to provide answers and guidance regarding the future of the U.S. energy system. Currently, electric power generation must match the total demand at each instant, following seasonal patterns and instantaneous fluctuations. Thus, one of the biggest drivers of costs and capacity requirement is the electricity demand that occurs during peak periods. These peak periods require utility companies to maintain operational capacity that often is underutilized, outdated, expensive, and inefficient. In light of this, flattening the demand curve has long been recognized as an effective way of cutting the cost of producing electricity and increasing overall efficiency. The problem is exacerbated by expected widespread adoption of non-dispatchable renewable power generation. The intermittent nature of renewable resources and their non-dispatchability substantially limit the ability of electric power generation of adapting to the fluctuating demand. Smart grid technologies and demand response programs are proposed as a technical solution to make the electric power demand more flexible and able to adapt to power generation. Residential demand response programs offer different incentives and benefits to consumers in response to their flexibility in the timing of their electricity consumption. Understanding interactions between new and existing energy technologies, and policy impacts therein, is key to driving sustainable energy use and economic growth. Comprehensive and accurate models of the next-generation power system allow for understanding the effects of new energy technologies on the power system infrastructure, and can be used to guide policy, technology, and economic decisions. This

  12. Residential Energy Consumption Survey: Quality Profile

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

  13. Prediction of residential building energy consumption: A neural network approach

    International Nuclear Information System (INIS)

    Biswas, M.A. Rafe; Robinson, Melvin D.; Fumo, Nelson

    2016-01-01

    Some of the challenges to predict energy utilization has gained recognition in the residential sector due to the significant energy consumption in recent decades. However, the modeling of residential building energy consumption is still underdeveloped for optimal and robust solutions while this research area has become of greater relevance with significant advances in computation and simulation. Such advances include the advent of artificial intelligence research in statistical model development. Artificial neural network has emerged as a key method to address the issue of nonlinearity of building energy data and the robust calculation of large and dynamic data. The development and validation of such models on one of the TxAIRE Research houses has been demonstrated in this paper. The TxAIRE houses have been designed to serve as realistic test facilities for demonstrating new technologies. The input variables used from the house data include number of days, outdoor temperature and solar radiation while the output variables are house and heat pump energy consumption. The models based on Levenberg-Marquardt and OWO-Newton algorithms had promising results of coefficients of determination within 0.87–0.91, which is comparable to prior literature. Further work will be explored to develop a robust model for residential building application. - Highlights: • A TxAIRE research house energy consumption data was collected in model development. • Neural network models developed using Levenberg–Marquardt or OWO-Newton algorithms. • Model results match well with data and statistically consistent with literature.

  14. Energy use and conservation in China`s residential and commercial sectors: Patterns, problems, and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F.

    1993-07-01

    This report discusses the determinants of residential and commercial energy demand, profiles the patterns and problems of energy consumption, and evaluates popular energy conservation measures of the People`s Republic of China. It also discusses technological and institutional opportunities for realizing greater energy conservation. General characteristics related to energy use include: population growth, economic growth, residential and commercial energy, and improved standards of living. Specific end-use areas that are examined in detail are space heating, cooking and water heating, and lighting and appliances.

  15. Calculated heat-and-technical indicators of brick external walls of the historical residential buildings

    Science.gov (United States)

    Pukhkal, Viktor; Murgul, Vera

    2017-10-01

    The analysis of the external brick walls structures of the historical residential buildings (constructions of XIX century and the beginnings of the 20th century) in St. Petersburg is carried out. The heat-and-technical indicators (coefficient of heat conductivity of brick and coefficient of the heat transfer of external brick walls) are defined. That is established that the use of modern norms of design is possible. The obtained data allow to carry out some heat-and-technical and moist calculations during designing of heating systems as well during the development of measures for energy saving.

  16. Post-evaluation of a ground source heat pump system for residential space heating in Shanghai China

    Science.gov (United States)

    Lei, Y.; Tan, H. W.; Wang, L. Z.

    2017-11-01

    Residents of Southern China are increasingly concerned about the space heating in winter. The chief aim of the present work is to find a cost-effective way for residential space heating in Shanghai, one of the biggest city in south China. Economic and energy efficiency of three residential space heating ways, including ground source heat pump (GSHP), air source heat pump (ASHP) and wall-hung gas boiler (WHGB), are assessed based on Long-term measured data. The results show that the heat consumption of the building is 120 kWh/m2/y during the heating season, and the seasonal energy efficiency ratio (SEER) of the GSHP, ASHP and WHGB systems are 3.27, 2.30, 0.88 respectively. Compared to ASHP and WHGB, energy savings of GSHP during the heating season are 6.2 kgce/(m2.y) and 2.2 kgce/(m2.y), and the payback period of GSHP are 13.3 and 7.6 years respectively. The sensitivity analysis of various factors that affect the payback period is carried out, and the results suggest that SEER is the most critical factor affecting the feasibility of ground source heat pump application, followed by building load factor and energy price factor. These findings of the research have led the author to the conclusion that ground source heat pump for residential space heating in Shanghai is a good alternative, which can achieve significant energy saving benefits, and a good system design and operation management are key factors that can shorten the payback period.

  17. Selection and Exergy Analysis of Fuel Cell System to Meet all Energy Needs of Residential Buildings

    OpenAIRE

    G.R. Ashari; N.Hedayat; S. Shalbaf; E.Hajidavalloo

    2011-01-01

    In this paper a polymer electrolyte membrane (PEM) fuel cell power system including burner, steam reformer, heat exchanger and water heater has been considered to meet the electrical, heating, cooling and domestic hot water loads of residential building which in Tehran. The system uses natural gas as fuel and works in CHP mode. Design and operating conditions of a PEM fuel cell system is considered in this study. The energy requirements of residential building and the num...

  18. TESTING OF REFRIGERANT MIXTURES IN RESIDENTIAL HEAT PUMPS

    Science.gov (United States)

    The report gives results of an investigation of four possibilities for replacing Hydrochlorofluorocarbon-22 (HCFC-22) with the non-ozone-depleting new refrigerants R-407D and R-407C in residential heat pumps. The first and simplest scenario was a retrofit with no hardware modific...

  19. Heat pumps: Residential and commercial applications. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    The bibliography contains citations concerning the design and development of heat pumps for use in residential houses, apartments, and commercial installations. Energy exchange systems examined include air-to-air, ground-coupled, air-to-water, and water-to-water types. The citations cover costs and reliability of the heat pump systems, and studies of operations in differing climates and seasons. (Contains a minimum of 70 citations and includes a subject term index and title list.)

  20. Heat pumps: Residential and commercial applications. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The bibliography contains citations concerning the design and development of heat pumps for use in residential houses, apartments, and commercial installations. Energy exchange systems examined include air-to-air, ground-coupled, air-to-water, and water-to-water types. The citations cover costs and reliability of the heat pump systems, and studies of operations in differing climates and seasons. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  1. Energy options for residential buildings assessment

    International Nuclear Information System (INIS)

    Rezaie, Behnaz; Dincer, Ibrahim; Esmailzadeh, Ebrahim

    2013-01-01

    Highlights: ► Studying various building energy options. ► Assessing these options from various points. ► Comparing these options for better environment and sustainability. ► Proposing renewable energy options as potential solutions. - Abstract: The building sector, as one of the major energy consumers, demands most of the energy research to assess different energy options from various aspects. In this paper, two similar residential buildings, with either low or high energy consumption patterns, are chosen as case studies. For these case studies, three different renewable energy technology and three different hybrid systems are designed for a specified size. Then, the environmental impact indices, renewable energy indices, and the renewable exergy indices have been estimated for every energy options. Results obtained show that the hybrid systems (without considering the economics factors) are superior and having top indices. The importance of the energy consumption patterns in buildings are proven by the indices. By cutting the energy consumption to about 40% the environment index would increase by more than twice (2.1). Utilization of the non-fossil fuels is one part of the solution to environmental problems while energy conservation being the other. It has been shown that the re-design of the energy consumption model is less complex but more achievable for buildings.

  2. H2NG (hydrogen-natural gas mixtures) effects on energy performances of a condensing micro-CHP (combined heat and power) for residential applications: An expeditious assessment of water condensation and experimental analysis

    International Nuclear Information System (INIS)

    Lo Basso, Gianluigi; Santoli, Livio de; Albo, Angelo; Nastasi, Benedetto

    2015-01-01

    In order to accomplish significant primary energy saving and GHG (greenhouse gas) emissions reduction, CHP (combined heat and power) technology can be adopted largely for industrial and civil sectors. Waiting for the cutting-edge appliances (i.e. Fuel Cell) wide deployment, ICEs (internal combustion engines) fuelled with an environmentally-friendly fuel, such as H 2 NG (hydrogen-natural gas mixtures) could represent the bridge technology towards the forthcoming pure hydrogen economy. This paper deals with the results of an experimental campaign carried out on a Single Cylinder ICE, fuelled with NG (natural gas) and H 2 NG @ 15% vol. In detail, energy performances were assessed at rated and partial loads. From data analysis, it emerged that the electrical efficiency increased up to 2.28%, at the expense of the heat recovery one, having added hydrogen. Additionally, due to the higher water content in exhaust gas when H 2 NG is burned, it was investigated on how heat recovery efficiency has been affected by condensing operating conditions. Finally, to estimate this benefit, an expeditious procedure was developed building three maps for H 2 NG blends condensing properties from 0% up to 30% vol. of H 2 . Their outputs provided the condensation efficiency value and the absolute gain of heat recovery one with varying exhaust gas temperatures and hydrogen fraction in the mixture. - Highlights: • H 2 NG mixture effects on a commercial technology μCHP for residential applications. • Experimental analysis and methodology for H 2 NG condensing properties assessment. • CO 2 specific emissions calculation accounting for electrical and thermal outputs. • Uncertainty analysis on the μCHP energy performances and methodology validation. • H 2 addition coupling a condensing heat exchanger enhance CHP First Law efficiency

  3. Demand flexibility from residential heat pump

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2014-01-01

    with high thermal time constant, heat pumps (HP) can offer a great deal of flexibility in the future intelligent grids especially to compensate fluctuating generation. However, the HP flexibility is highly dependent on thermal demand profile, namely hot water and space heating demand. This paper proposes...... price based scheduling followed by a demand dispatch based central control and a local voltage based adaptive control, to realize HP demand flexibility. Two-step control architecture, namely local primary control encompassed by the central coordinative control, is proposed to implement...... the aforementioned control techniques. Results show that HP flexibility can contribute significantly to both the local network and system level balancing....

  4. SOME FEATURES OF THE POWER SUPPLY OF RESIDENTIAL BUILDINGS DURING THE HEATING SEASON

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2017-01-01

    Full Text Available A large proportion of consumption of different types of energy by the residential sector, especially in the heating period, makes the energy efficiency of buildings without considering the loss of fuel with a significant reduction in hourly load on the generators, especially at night, already insufficient for real energy savings. Therefore in Belarus, in order to attract the consumer, electricity tariff for heating at night hours (from 11 p.m. to 6.00 a.m. is three times cheaper than at any other time. Significant increase of the electricity consumption of at night could be achieved by using heat accumulators for heating and hot water supply to the residential sector. Particularly effective are water accumulators of heat and accumulators of underfloor heating that enable to use a coolant with a temperature of 40 оC and to increase the useful supply of heat. The use of heat accumulators for daily heating, ventilation and hot water supply of buildings significantly reduces the cost of creating the infrastructure of the territory under construction by eliminating the necessity of running the distribution network of heat or gas supply. The use of the heat accumulators is necessary due to the increase of the time-weighted average outdoor temperature. The mentioned increase in the City of Minsk in the heating season is of about 0.1 °C per year in average, and as for the last 20 years, the increase has led to a reduction of the required heat load on the premises by about 10 %. Research and project work on choosing the most effective options for the arrangement and use the heat accumulators in buildings of the various functions ought to be fulfilled in order to make the application of heat accumulators successful. In this respect civil and power engineers as well as operators should work together so to determine the chronological, technical and economic conditions of charging and use of heat accumulators.

  5. Simulation and optimisation of a ground source heat pump with different ground heat exchanger configurations for a single-family residential house

    DEFF Research Database (Denmark)

    Pavlov, Georgi Krasimiroy; Olesen, Bjarne W.

    2012-01-01

    In the future there will be an increased demand for energy efficient cooling of residential buildings. Therefore it is essential to develop cooling concepts that are passive and/or using very little primary energy. A possible solution is a ground source heat pump combined with a low-temperature h......In the future there will be an increased demand for energy efficient cooling of residential buildings. Therefore it is essential to develop cooling concepts that are passive and/or using very little primary energy. A possible solution is a ground source heat pump combined with a low......-temperature heating and high-temperature cooling system. The present work evaluates the performance in relation to thermal comfort and energy consumption of a GSHP with different GHE concepts. The different configurations are analyzed being part of the energy supply system of a low-energy residential house...

  6. Residential gas-fired sorption heat pumps. Test and technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    2008-12-15

    Heat pumps may be the next step in gas-fired residential space heating. Together with solar energy it is an option to combine natural gas and renewable energy. Heat pumps for residential space heating are likely to be based on the absorption or adsorption process, i.e. sorption heat pumps. Manufacturers claim that the efficiency could reach 140-160%. The annual efficiency will be lower but it is clear that gas-fired heat pumps can involve an efficiency and technology step equal to the transition from non-condensing gas boilers with atmospheric burners to condensing boilers. This report contains a review of the current sorption gas-fired heat pumps for residential space heating and also the visible development trends. A prototype heat pump has been laboratory tested. Field test results from Germany and the Netherlands are also used for a technology evaluation. The tested heat pump unit combines a small heat pump and a supplementary condensing gas boiler. Field tests show an average annual efficiency of 120% for this prototype design. The manufacturer abandoned the tested design during the project period and the current development concentrates on a heat pump design only comprising the heat pump, although larger. The heat pump development at three manufacturers in Germany indicates a commercial stage around 2010-2011. A fairly high electricity consumption compared to traditional condensing boilers was observed in the tested heat pump. Based on current prices for natural gas and electricity the cost savings were estimated to 12% and 27% for heat pumps with 120% and 150% annual efficiency respectively. There is currently no widespread performance testing procedure useful for annual efficiency calculations of gas-fired heat pumps. The situation seems to be clearer for electric compression heat pumps regarding proposed testing and calculation procedures. A German environmental label exists and gasfired sorption heat pumps are also slightly treated in the Eco-design work

  7. Analysis of heat source selection for residential buildings in rural areas

    OpenAIRE

    Szul Tomasz

    2018-01-01

    The research aiming to check whether the output of currently installed boilers matches the use requirements together with estimation of their energy efficiency was carried out on a group of 84 single-family residential buildings located in rural areas. Heating and hot water energy needs were calculated for each building in order to determine the use requirements. This enabled verification whether the currently installed boilers match the actual use requirements in the buildings. Based on the ...

  8. District heating in sequential energy supply

    International Nuclear Information System (INIS)

    Persson, Urban; Werner, Sven

    2012-01-01

    Highlights: ► European excess heat recovery and utilisation by district heat distribution. ► Heat recovery in district heating systems – a structural energy efficiency measure. ► Introduction of new theoretical concepts to express excess heat recovery. ► Fourfold potential for excess heat utilisation in EU27 compared to current levels. ► Large scale excess heat recovery – a collaborative challenge for future Europe. -- Abstract: Increased recovery of excess heat from thermal power generation and industrial processes has great potential to reduce primary energy demands in EU27. In this study, current excess heat utilisation levels by means of district heat distribution are assessed and expressed by concepts such as recovery efficiency, heat recovery rate, and heat utilisation rate. For two chosen excess heat activities, current average EU27 heat recovery levels are compared to currently best Member State practices, whereby future potentials of European excess heat recovery and utilisation are estimated. The principle of sequential energy supply is elaborated to capture the conceptual idea of excess heat recovery in district heating systems as a structural and organisational energy efficiency measure. The general conditions discussed concerning expansion of heat recovery into district heating systems include infrastructure investments in district heating networks, collaboration agreements, maintained value chains, policy support, world market energy prices, allocation of synergy benefits, and local initiatives. The main conclusion from this study is that a future fourfold increase of current EU27 excess heat utilisation by means of district heat distribution to residential and service sectors is conceived as plausible if applying best Member State practice. This estimation is higher than the threefold increase with respect to direct feasible distribution costs estimated by the same authors in a previous study. Hence, no direct barriers appear with

  9. The demand function for residential heat through district heating system and its consumption benefits in Korea

    International Nuclear Information System (INIS)

    Lim, Seul-Ye; Kim, Hyo-Jin; Yoo, Seung-Hoon

    2016-01-01

    The demand for residential heat (RH) through a district heating system (DHS) has been and will be expanded in Korea due to its better performance in energy efficiency and the abatement of greenhouse gas emissions than decentralized boilers. The purposes of this paper are two-fold. The first is to obtain the demand function for DHS-based RH in Korea and investigate the price and income elasticities of the demand employing the quarterly data covering the period 1988–2013. The short-run price and income elasticities are estimated as −0.700 and 0.918, respectively. Moreover, the long-run elasticities are −1.253 and 1.642, respectively. The second purpose is to measure the consumption benefits of DHS-based-RH employing the economic theory that they are the sum of the actual payment and consumer surplus for the consumption. Considering that the average price and estimated consumer surplus of the DHS-based RH use in 2013 are computed to be KRW 87,870 (USD 84.1) and KRW 62,764 (USD 60.1) per Gcal, the consumption benefits of the DHS-based RH are calculated to be KRW 150,634 (USD 144.2) per Gcal. This information can be beneficially utilized to conduct an economic feasibility study for a new DHS project related to RH supply. - Highlights: • Demand for residential heat (RH) from district heating system (DHS) is expanding. • We estimate the demand function for and consumption benefits of DHS-based RH. • Short-run price and income elasticities are −0.700 and 0.918, respectively. • Long-run price and income elasticities are −1.253 and 1.642, respectively. • Consumption benefits of DHS-based RH are KRW 150,634 (USD 144.2) per Gcal.

  10. Potential for energy technologies in residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  11. Market Potential for Residential Biomass Heating Equipment: Stochastic and Econometric Assessments

    OpenAIRE

    Adee Athiyaman

    2015-01-01

    This paper provides estimates of market potential for biomass-residential-heating equipment in the US: that is, the greatest amount of biomass-residential-heating equipment that can be sold by the industry. The author's analysis is limited to biomass equipment used most to heat the housing unit. Assuming that households equipped with 10+ year old primary heating devices will replace rather than repair the devices he predicts that approximately 1.4 million units of residential home heating equ...

  12. Energy usage and technical potential for energy saving measures in the Swedish residential building stock

    International Nuclear Information System (INIS)

    Mata, Érika; Sasic Kalagasidis, Angela; Johnsson, Filip

    2013-01-01

    This paper provides an analysis of the current energy usage (net energy and final energy by fuels) and associated carbon dioxide (CO 2 ) emissions of the Swedish residential building stock, which includes single-family dwellings and multi-family dwellings. Twelve energy saving measures (ESMs) are assessed using a bottom–up modeling methodology, in which the Swedish residential stock is represented by a sample of 1400 buildings (based on data from the year 2005). Application of the ESMs studied gives a maximum technical reduction potential in energy demand of 53%, corresponding to a 63% reduction in CO 2 emissions. Although application of the investigated ESMs would reduce CO 2 emissions, the measures that reduce electricity consumption for lighting and appliances (LA) will increase CO 2 emissions, since the saved electricity production is less CO 2 -intensive than the fuel mix used for the increased space heating required to make up for the loss in indirect heating obtained from LA. - Highlights: ► Analysis of year 2005energy use and CO2 emissions of Swedish residential buildings. ► Includes all single-family dwellings and multi-family dwellings. ► Bottom–up modeling of building stock represented by 1400 buildings. ► Technical effects of 12 energy saving measures are assessed. ► Energy demand can be reduced by53% and associated CO 2 emissions by 63%

  13. 2011 Residential Energy Efficiency Technical Update Meeting Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-11-01

    This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

  14. Energy Conservation for Residential Dwellings. Course Syllabus.

    Science.gov (United States)

    Bergen County Vocational-Technical High School, Hackensack, NJ.

    This course is one of four in a solar systems and energy management program developed by the Bergen County Vocational-Technical Schools to help tradespeople (heating, ventilation, and air conditioning mechanics; plumbers; and electricians) to develop an awareness of alternate energy sources and to gain skills in the areas of solar installations…

  15. Residential Central Air Conditioning and Heat Pump Installation – Workshop Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States); Bargach, Youssef [Navigant Consulting, Burlington, MA (United States)

    2016-11-01

    DOE's Building Technologies Office works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption in residential and commercial buildings. This report aims to advance BTO’s energy savings, emissions reduction, and other program goals by identifying research and development (R&D), demonstration and deployment, and other non-regulatory initiatives for improving the design and installation of residential central air conditioners (CAC) and central heat pumps (CHP). Improving the adoption of CAC/CHP design and installation best practices has significant potential to reduce equipment costs, improve indoor air quality and comfort, improve system performance, and most importantly, reduce household energy consumption and costs for heating and cooling by addressing a variety of common installation issues.

  16. An analysis of representative heating load lines for residential HSPF ratings

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-01

    This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirement (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28

  17. Control of energy flow in residential buildings; Energieflussregelung in Wohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Martin

    2011-07-01

    Energy systems in residential buildings are changing from monovalent, combustion based systems to multivalent systems containing technologies such as solar collectors, pellet boilers, heat pumps, CHP and multiple storages. Multivalent heat and electricity generation and additional storages raise the number of possible control signals in the system. This creates additional degrees of freedom regarding the choice of the energy converter and the instant of time for energy conversion. New functionality of controllers such as prioritisation of energy producers, optimization of electric self consumption and control of storages and energy feed-in are required. Within the scope of this thesis, new approaches for demand-driven optimal control of energy flows in multivalent building energy systems are developed and evaluated. The approaches are evaluated by means of system energy costs and operating emissions. For parametrisation of the controllers an easily understandable operating concept is developed. The energy flow controllers are implemented as a multi agent system (MAS) and a nonlinear model predictive controller (MPC). Proper functionality and stability are demonstrated in simulations of two example energy systems. In both example systems the MPC controller achieves less energy costs and operating emissions due to system wide global optimization and the more detailed system model within the controller. The multi agent approach turns out to perform better for systems with a huge number of components, e.g. in home automation and energy management systems. Due to the good performance of the reference control strategies, a significant reduction of energy costs and operating emissions is only possible with limitations. Systems for heat generation show only an especially low potential for optimization because of marginal variation ins heat production costs. The adaptation of the operation mode to user priorities, changing utilization characteristics and dynamic energy

  18. Energy data sourcebook for the US residential sector

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, T.P.; Koomey, J.G.; Sanchez, M. [and others

    1997-09-01

    Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment efficiency; historical and current appliance and equipment market shares; appliances and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for new and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl. gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.

  19. National Program for Solar Heating and Cooling of Buildings. Project Date Summaries. Vol. I: Commercial and Residential Demonstrations.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    Three volumes present brief abstracts of projects funded by the Energy Research and Development Administration (ERDA) and conducted under the National Program for Solar Heating and Cooling of Buildings through July 1976. The overall federal program includes demonstrations of heating and/or combined cooling for residential and commercial buildings…

  20. State energy price projections for the residential sector, 1992--1993

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this report, State Energy Price Projections for the Residential Sector, 1992--1993, is to provide projections of State-level residential prices for 1992 and 1993 for the following fuels: electricity, natural gas, heating oil, liquefied petroleum gas (LPG), kerosene, and coal. Prices for 1991 are also included for comparison purposes. This report also explains the methodology used to produce these estimates and the limitations

  1. Efficient Energy Management for a Grid-Tied Residential Microgrid

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    generation characteristics, heat transfer and thermal dynamics of sustainable residential buildings and load scheduling potentials of household appliances with associated constraints. Through various simulation studies under different working scenarios with real data, different system constraints and user...

  2. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  3. DOE Webinar - Residential Geothermal Heat Pump Retrofits (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E. R.

    2010-12-14

    This presentation was given December 14, 2010, as part of DOE's Webinar series. The presentation discusses geothermal heat pump retrofits, technology options, and an overview of geothermal energy and geothermal heat pumps.

  4. A Case Study in Market Transformation for Residential Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Building Technologies Office

    2017-09-01

    This case study describes how the Midwest Energy Efficiency Alliance (MEEA) partnered with gas and electric utilities in Iowa to establish the Iowa residential heating, ventilation, and air conditioning System Adjustment and Verified Efficiency (HVAC SAVE) program, taking it to scale improving the performance and energy efficiency of HVAC systems, growing businesses, and gaining consumer trust.

  5. Dynamic Heat Production Modeling for Life Cycle Assessment of Insulation in Danish Residential Buildings

    DEFF Research Database (Denmark)

    Sohn, Joshua L.; Kalbar, Pradip; Birkved, Morten

    2017-01-01

    insulation in a Danish single-family detached home. This single family house, is based on averages of current Danish construction practices with building heat losses estimated using Be10. To simulate a changing district heating grid mix, heat supply fuel sources are modeled according to Danish energy mix...... reports of fuel mix since 1972. Both the dynamic impact potentials saved by using insulation and the impacts induced from insulations production are utilized to create an overall dynamic energy inventory for the life cycle assessment. Our study shows that the use of such a dynamic energy inventory......Residential building insulation is regarded as an easy solution for environmentally friendly building design. This assumption is based on the perception that the amount of thermal energy used to create insulation in most cases is much smaller than the amount of thermal energy that is needed...

  6. Modeling hourly consumption of electricity and district heat in non-residential buildings

    International Nuclear Information System (INIS)

    Kipping, A.; Trømborg, E.

    2017-01-01

    Models for hourly consumption of heat and electricity in different consumer groups on a regional level can yield important data for energy system planning and management. In this study hourly meter data, combined with cross-sectional data derived from the Norwegian energy label database, is used to model hourly consumption of both district heat and electrical energy in office buildings and schools which either use direct electric heating (DEH) or non-electric hydronic heating (OHH). The results of the study show that modeled hourly total energy consumption in buildings with DEH and in buildings with OHH (supplied by district heat) exhibits differences, e.g. due to differences in heat distribution and control systems. In a normal year, in office buildings with OHH the main part of total modeled energy consumption is used for electric appliances, while in schools with OHH the main part is used for heating. In buildings with OHH the share of modeled annual heating energy is higher than in buildings with DEH. Although based on small samples our regression results indicate that the presented method can be used for modeling hourly energy consumption in non-residential buildings, but also that larger samples and additional cross-sectional information could yield improved models and more reliable results. - Highlights: • Schools with district heating (DH) tend to use less night-setback. • DH in office buildings tends to start earlier than direct electric heating (DEH). • In schools with DH the main part of annual energy consumption is used for heating. • In office buildings with DH the main part is used for electric appliances. • Buildings with DH use a larger share of energy for heating than buildings with DEH.

  7. Efficiency Analysis of Independent and Centralized Heating Systems for Residential Buildings in Northern Italy

    Directory of Open Access Journals (Sweden)

    Fabio Rinaldi

    2011-11-01

    Full Text Available The primary energy consumption in residential buildings is determined by the envelope thermal characteristics, air change, outside climatic data, users’ behaviour and the adopted heating system and its control. The new Italian regulations strongly suggest the installation of centralized boilers in renovated buildings with more than four apartments. This work aims to investigate the differences in primary energy consumption and efficiency among several independent and centralized heating systems installed in Northern Italy. The analysis is carried out through the following approach: firstly building heating loads are evaluated using the software TRNSYS® and, then, heating system performances are estimated through a simplified model based on the European Standard EN 15316. Several heating systems have been analyzed, evaluating: independent and centralized configurations, condensing and traditional boilers, radiator and radiant floor emitters and solar plant integration. The heating systems are applied to four buildings dating back to 2010, 2006, 1960s and 1930s. All the combinations of heating systems and buildings are analyzed in detail, evaluating efficiency and primary energy consumption. In most of the cases the choice between centralized and independent heating systems has minor effects on primary energy consumption, less than 3%: the introduction of condensing technology and the integration with solar heating plant can reduce energy consumption by 11% and 29%, respectively.

  8. Geothermal heating saves energy

    International Nuclear Information System (INIS)

    Romsaas, Tor

    2003-01-01

    The article reviews briefly a pioneer project for a construction area of 200000 m''2 with residences, business complexes, a hotel and conference centre and a commercial college in Oslo. The energy conservation potential is estimated to be about 60-70 % compared to direct heating with oil, gas or electricity as sources. There will also be substantial reduction in environmentally damaging emissions. The proposed energy central combines geothermal energy sources with heat pump technology, utilises water as energy carrier and uses terrestrial wells for energy storage. A cost approximation is presented

  9. Residential Energy Efficiency Research Planning Meeting Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-02-01

    This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Residential Energy Efficiency Research Planning meeting, held on October 28-29, 2011, in Washington, D.C.

  10. Nuclear energy and process heating

    International Nuclear Information System (INIS)

    Kozier, K.S.

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a determined

  11. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a

  12. Optimized Energy Management of a Single-House Residential Micro-Grid With Automated Demand Response

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Monsef, Hassan; Rahimi-Kian, Ashkan

    2015-01-01

    In this paper, an intelligent multi-objective energy management system (MOEMS) is proposed for applications in residential LVAC micro-grids where households are equipped with smart appliances, such as washing machine, dishwasher, tumble dryer and electric heating and they have the capability to t...... to reduce residential energy use and improve the user’s satisfaction degree by optimal management of demand/generation sides.......In this paper, an intelligent multi-objective energy management system (MOEMS) is proposed for applications in residential LVAC micro-grids where households are equipped with smart appliances, such as washing machine, dishwasher, tumble dryer and electric heating and they have the capability...... to take part in demand response (DR) programs. The superior performance and efficiency of the proposed system is studied through several scenarios and case studies and validated in comparison with the conventional models. The simulation results demonstrate that the proposed MOEMS has the capability...

  13. Clustering-based analysis for residential district heating data

    DEFF Research Database (Denmark)

    Gianniou, Panagiota; Liu, Xiufeng; Heller, Alfred

    2018-01-01

    residential heating consumption data and evaluate information included in national building databases. The proposed method uses the K-means algorithm to segment consumption groups based on consumption intensity and representative patterns and ranks the groups according to daily consumption. This paper also......The wide use of smart meters enables collection of a large amount of fine-granular time series, which can be used to improve the understanding of consumption behavior and used for consumption optimization. This paper presents a clustering-based knowledge discovery in databases method to analyze...

  14. Solar Heating and Cooling of Residential Buildings: Sizing, Installation and Operation of Systems.

    Science.gov (United States)

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This training course and a companion course titled "Design of Systems for Solar Heating and Cooling of Residential Buildings," are designed to train home designers and builders in the fundamentals of solar hydronic and air systems for space heating and cooling and domestic hot water heating for residential buildings. Each course, organized in 22…

  15. Simulation and optimisation of a ground source heat pump with different ground heat exchanger configurations for a single-family residential house

    DEFF Research Database (Denmark)

    Pavlov, Georgi Krasimiroy; Olesen, Bjarne W.

    2012-01-01

    In the future there will be an increased demand for energy efficient cooling of residential buildings. Therefore it is essential to develop cooling concepts that are passive and/or using very little primary energy. A possible solution is a ground source heat pump combined with a low-temperature h...

  16. IEA Project on Indoor Air Quality Design and Control in Low Energy Residential Buildings

    DEFF Research Database (Denmark)

    Rode, Carsten; Abadie, Marc; Qin, Menghao

    2016-01-01

    with heat recovery systems, one of the next focal points to limiting energy consumption for thermally conditioning the indoor environment will be to possibly reducing the ventilation rate, or to make it in a new way demand controlled. However, this must be done such that it has no have adverse effects...... on Indoor Air Quality (IAQ). Annex 68, Indoor Air Quality Design and Control in Low Energy Residential Buildings, is a project under IEA’s Energy Conservation in Buildings and Communities Program (EBC), which will endeavor to investigate how future residential buildings are able to have very high energy...... the hygrothermal parameters, the chemical conditions, ventilation and the wellbeing of occupants. A flagship outcome of the project is anticipated to be a guidebook on design and operation of ventilation in residential buildings to achieve high IAQ with smallest possible energy consumption....

  17. Green hypocrisy? Environmental attitudes and residential space heating expenditure

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, Laura; Lange, Ian; Moro, Mirko [Stirling Univ. (United Kingdom). Division of Economics

    2012-06-15

    In the UK, the largest proportion of household energy use is for space heating. Popular media make claims of a green hypocrisy: groups which have the strongest attitude towards the environment have the highest emissions. This study examines whether environmental attitudes and behaviours are associated with space heating energy use using data from the British Household Panel Survey. Results find that environmentally friendly attitudes generally do not lead to lower heating expenditures though environmentally friendly behaviours are associated with lower heating expenditure. Also, the effect of these attitudes and behaviours do not change as income increase.

  18. Leverage of Behavioural Patterns of Window Opening and Heating Set Point Adjustments on Energy Consumption and Thermal Comfort in Residential Buildings

    DEFF Research Database (Denmark)

    Corgnati, Stefano Paolo; D'Oca, Simona; Fabi, Valentina

    2014-01-01

    The current trend in reduction in energy use in buildings is oriented towards sustainable measures and techniques aimed to energy need restraint. Even so, studies have underlined large differences in energy consumption in similar buildings, suggesting strong influence of occupant behaviour...... through a better and more accurate prediction of energy use; however, they are still unable to replicate the actual dynamics that govern energy uses within buildings. Furthermore, occupant behaviour is currently described by static profiles, based on assumptions and average values of typical behaviour......, considering different behavioural patterns and preferences among indoor environmental quality, is arising. Final goal of this research is to simulate, in a more accurate way, the variation in actual energy consumption due to human interaction within buildings. In this effort, the study has highlighted which...

  19. Market Assessment for Residential Refrigerator-Freezer with Novel Rotating Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen [CSRA International, Inc., Fairfax, VA (United States); Blackburn, Julia [CSRA International, Inc., Fairfax, VA (United States); Grubbs, Tyler [CSRA International, Inc., Fairfax, VA (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Momen, Ayyoub [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-01

    Despite a steady record of energy efficiency improvements in residential refrigerators and freezers over recent decades, these products still account for 4% of the site energy consumption for the average U.S. household. The Oak Ridge National Laboratory (ORNL) – along with partners Sandia National Laboratories (SNL) and the University of Maryland – are pursuing further efficiency improvements in this market sector by using a novel/prototype rotating heat exchanger (RHX) based on a Sandia Cooler technology as an evaporator in a residential refrigerator-freezer. The purpose of this study is to investigate the market potential of refrigerator-freezer products equipped with RHX evaporators in the United States, including projections of maximum annual market share and unit shipments and maximum direct and indirect job creation.

  20. Analysis of rural residential energy consumption and corresponding carbon emissions in China

    International Nuclear Information System (INIS)

    Yao Chunsheng; Chen Chongying; Li Ming

    2012-01-01

    The analysis of rural residential energy consumption in China from 2001 to 2008 and corresponding impacts on climate change is presented in the paper. It is found that rural residential energy consumption has shown obvious transition from non-commercial energy to commercial energy. The percentage of biomass energy consumption dropped from 81.5% in 2001 to 70.9% in 2008, while the percentage of commercial energy increased from 17.1% to 25.1%. Besides, other renewable energy increased very fast with annual growth rate of 19.8%. Correspondingly, total CO 2 emissions from rural residential energy consumption had significant increase from 152.2 Million tons in 2001 to 283.6 Million tons in 2008. The annual growth rate of per capita CO 2 emissions was nearly 2 times faster than that of urban area. The major driving force for the consumption of commercial energy was the income of rural farmers, while strong rural energy policies supported the development of renewable energy. To satisfy the goals of energy supply and CO 2 emissions reduction in rural areas, it is advised to change the energy structure and improve the energy efficiency, such as to generate electricity using renewable technologies and to replace coal with modern biomass energy for cooking and heating. - Highlights: ► This study analyzed rural residential energy consumption in China 2001–2008. ► It shows obvious transition from non-commercial energy to commercial energy. ► CO 2 emissions from rural residential energy consumption have significant increases. ► Major driving forces are income of rural farmers and rural energy policies. ► Generate electricity using renewable technology and replace coal with modern biomass.

  1. Residential heating costs: a comparison of geothermal, solar and conventional resources

    Energy Technology Data Exchange (ETDEWEB)

    Bloomster, C.H.; Garrett-Price, B.A.; Fassbender, L.L.

    1980-08-01

    The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location - being dependent on the local prices of conventional energy supplies, local solar insolation, cimate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.

  2. Effectiveness of an energy-consumption information system for residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Tsuyoshi [Central Research Institute of Electric Power Industry, Tokyo (Japan); Inada, Ryo; Saeki, Osamu; Tsuji, Kiichiro [Osaka University, (Japan). Graduate School of Engineering

    2006-08-15

    The authors have proposed a method of reducing the energy consumption in residential buildings by providing household members with information on energy consumptions in their own houses. An on-line interactive 'energy-consumption information system' that displays power consumptions of, at most, 18 different appliances, power and city-gas consumption of the whole house and room temperature, for the purpose of motivating energy-saving activities has been constructed and the effectiveness of the system investigated by installing it in 10 residential buildings. The experiment showed that energy-saving consciousness was raised and energy consumption was in fact reduced by the energy-saving activities of the household members. In this paper, the system is described in detail and the effectiveness of reducing energy-consumption of the whole house and for space heating will be discussed. Also the energy-saving activities in a certain household are shown by using load duration curves. (author)

  3. Residential wood heating: The forest, the atmosphere and the public consciousness

    International Nuclear Information System (INIS)

    Gulland, J.F.; Hendrickson, O.Q.

    1993-01-01

    It is generally agreed by both energy and forestry scientists that, provided harvesting is conducted in a sustainable manner, the combustion of wood for energy production is essentially carbon dioxide neutral when the normal forest regeneration period is considered. When wood combustion replaces the consumption of fossil fuels, however, the net reduction in carbon dioxide release is almost immediate. In addition to the requirement of sustainable forestry practices, the maintenance of site biodiversity must also be considered. A preliminary review of the literature reveals that periodic selective harvesting can actually have a positive impact on the biodiversity of the forest. Despite the fact that the harvesting, processing and transportation of wood fuel invariably consumes fossil fuels, it has been shown in case studies that the energy return on investment can easily exceed a ratio of 25:1. Approximately 20 percent of the single family dwellings in Canada are heated to some extent with wood and the potential exists for an increasing contribution of wood fuel to residential energy requirements. However, there is evidence of confusion among the public regarding the environmental impact of woodburning, particularly as it relates to CO 2 emissions and carbon storage in forests. The confusion could impede the increased use of wood for residential heating because it calls into question the appropriateness of using wood for energy purposes. The forms of residential wood energy use that have evolved in rural North America provide important but neglected models of sustainable development. This could serve as the central theme of public information program to clarify the role of wood energy in the reduction of greenhouse gas emissions

  4. Residential energy consumption: A convergence analysis across Chinese regions

    International Nuclear Information System (INIS)

    Herrerias, M.J.; Aller, Carlos; Ordóñez, Javier

    2017-01-01

    The process of urbanization and the raise of living standards in China have led an increasing trend in the patterns of residential consumption. Projections for the population growth rate in urban areas do not paint a very optimistic picture for energy conservation policies. In addition, the concentration of economic activities around coastal areas calls for new prospects to be formulated for energy policy. In this context, the objective of this paper is twofold. First, we analyse the effect of the urbanization process of the Chinese economy in terms of the long-run patterns of residential energy consumption at national level. By using the concept of club convergence, we examine whether electricity and coal consumption in rural and urban areas converge to the same long-run equilibrium or whether in fact they diverge. Second, the impact of the regional concentration of the economic activity on energy consumption patterns is also assessed by source of energy across Chinese regions from 1995 to 2011. Our results suggest that the process of urbanization has led to coal being replaced by electricity in urban residential energy consumption. In rural areas, the evidence is mixed. The club convergence analysis confirms that rural and urban residential energy consumption converge to different steady-states. At the regional level, we also confirm the effect of the regional concentration of economic activity on residential energy consumption. The existence of these regional clusters converging to different equilibrium levels is indicative of the need of regional-tailored set of energy policies in China.

  5. Recommendations for energy conservation standards for new residential buildings: Volume 2: Automated residential energy standard---user's guide--version 1. 1

    Energy Technology Data Exchange (ETDEWEB)

    Lortz, V.B.; Taylor, Z.T.

    1989-05-01

    This report documents the development and testing of a set of recommendations from the American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) Special Projects Committee No. 53, designed to provide the technical foundation for the Congressionally-mandated energy standard for new residential buildings. The recommendations were developed over a 25-month period by a multidisciplinary project team under the management of the DOE and its prime contractor, Pacific Northwest Laboratory (PNL).

  6. The effects of utility cost reduction on residential energy consumption in Hungary – a decomposition analysis

    Directory of Open Access Journals (Sweden)

    Tekla Sebestyén Szép

    2017-01-01

    Full Text Available The residential energy consumption is influenced by a lot of factors. Understanding and calculating these factors is essential to making conscious energy policy decisions and feedbacks. Since 2013 the energy prices for households have been controlled by the government in Hungary and as a result of the utility cost reduction program a sharp decline can be observed in residential electricity, district heating and natural gas prices. This paper applies the LMDI (~Logarithmic Mean Division Index method to decompose the absolute change of the residential energy consumption during the period of 2010-2015. We calculate the price, the intensive structure (it means the change of energy expenditure share on energy sources, the extensive structure (it is in connection with the change of energy expenditure share in total expenditure, expenditure (it is the change of per capita total expenditure and population effect. All of that shows the impact of the specific factor on the residential energy consumption by income deciles. Our results have verified the preliminary expectations: the decreasing energy prices for households have a positive impact on energy use and it has been strengthened by the expenditure effect as well. However, the intensive structure, the extensive structure and the population effect have largely offset it.

  7. Do homes that are more energy efficient consume less energy?: A structural equation model of the English residential sector

    International Nuclear Information System (INIS)

    Kelly, Scott

    2011-01-01

    Energy consumption from the residential sector is a complex socio-technical problem that can be explained using a combination of physical, demographic and behavioural characteristics of a dwelling and its occupants. A structural equation model (SEM) is introduced to calculate the magnitude and significance of explanatory variables on residential energy consumption. The benefit of this approach is that it explains the complex relationships that exist between manifest variables and their overall effect though direct, indirect and total effects. Using the English House Condition Survey (EHCS) consisting of 2531 unique cases, the main drivers behind residential energy consumption are found to be the number of household occupants, floor area, household income, dwelling efficiency (SAP), household heating patterns and living room temperature. In the multivariate case, SAP explains very little of the variance of residential energy consumption. However, this procedure fails to account for simultaneity bias between energy consumption and SAP. Using SEM its shown that dwelling energy efficiency (SAP), has reciprocal causality with dwelling energy consumption and the magnitude of these two effects are calculable. When non-recursivity between SAP and energy consumption is allowed for, SAP is shown to have a negative effect on energy consumption but conversely, homes with a propensity to consume more energy also have higher SAP rates. -- Highlights: → A Structural Equation Model (SEM) is developed to explain residential energy demand. → Key variables that drive residential energy consumption are empirically identified. → Direct, indirect and total effects are determined. → It is found that occupancy and household income are strongly mediated by floor area. → A non-recursive relationship is found to exist between energy consumption and SAP.

  8. Residential Photovoltaic/Thermal Energy System

    Science.gov (United States)

    Selcuk, M. K.

    1987-01-01

    Proposed system supplies house with both heat and electricity. Pair of reports describes concept for self-sufficient heating, cooling, and power-generating system for house. Panels on walls of house provide hot water, space heating, and heat to charge heat-storage system, and generate electricity for circulation pumps and fans. Roof panels generate electricity for household, operate heat pump for summer cooling, and provide supplementary winter heating via heat pump, using solar-cell cooling-fluid loop. Wall and roof panels used independently.

  9. Calculation of the yearly energy performance of heating systems based on the European Building Energy Directive and related CEN Standards

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.; de Carli, Michele

    2011-01-01

    According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting syst......–20% of the building energy demand. The additional loss depends on the type of heat emitter, type of control, pump and boiler. Keywords: Heating systems; CEN standards; Energy performance; Calculation methods......According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting...

  10. Does energy labelling on residential housing cause energy savings?

    Energy Technology Data Exchange (ETDEWEB)

    Kjaerbye, V.H.

    2009-07-01

    Danish households use more than 30% of the total amount of energy being used in Denmark. More than 80% of this energy is dedicated to space heating. The same relation is seen in many OECD countries. The corresponding energy savings potential was recently estimated at 30% of the energy used in buildings. Energy labelling is seen as an important instrument to target these potential energy savings. This paper evaluates the effects of the Danish Energy Labelling Scheme on energy consumption in existing single-family houses with propensity score matching using real metered natural gas consumption and a very wide range of register data describing the houses and households. The study did not find significant energy savings due to the Danish Energy Labelling Scheme, but more research would be needed to complement this conclusion

  11. Promoting Residential Renewable Energy via Peer-to-Peer Learning

    Science.gov (United States)

    Heiskanen, Eva; Nissilä, Heli; Tainio, Pasi

    2017-01-01

    Peer-to-peer learning is gaining increasing attention in nonformal community-based environmental education. This article evaluates a novel modification of a concept for peer-to-peer learning about residential energy solutions (Open Homes). We organized collective "Energy Walks" visiting several homes with novel energy solutions and…

  12. Compliance Verification Paths for Residential and Commercial Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Conover, David R.; Makela, Eric J.; Fannin, Jerica D.; Sullivan, Robin S.

    2011-10-10

    This report looks at different ways to verify energy code compliance and to ensure that the energy efficiency goals of an adopted document are achieved. Conformity assessment is the body of work that ensures compliance, including activities that can ensure residential and commercial buildings satisfy energy codes and standards. This report identifies and discusses conformity-assessment activities and provides guidance for conducting assessments.

  13. Impact of window selection on the energy performance of residential buildings in South Korea

    International Nuclear Information System (INIS)

    Ihm, Pyeongchan; Park, Lyool; Krarti, Moncef; Seo, Donghyun

    2012-01-01

    With rapidly increasing energy consumption attributed to residential buildings in South Korea, there is a need to update requirements of the building energy code in order to improve the energy performance of buildings. This paper provides some guidelines to improve the building energy code to better select glazing types that minimize total energy use of residential buildings in Korea. In particular, detailed energy simulation analyses coupled with economical and environmental assessments are carried out to assess the thermal, economical, and environmental impacts of glazing thermal characteristics as well as window sizes associated with housing units in various representative climates within South Korea. The results of the analyses have clearly indicated that selecting glazing with low solar heat gain coefficient is highly beneficial especially for large windows and for mild climates. In particular, it is found that using any double-pane low-e glazing would provide better performance for windows in residential buildings than the clear double-pane glazing, currently required by the Korean building energy code. - Highlights: ► Results show that windows can be energy neutral for residential buildings. ► In Korea, double-pane low-e glazing would provide better energy performance. ► Double low-e clear filled with argon gas glazing is the most cost-effective.

  14. The structure of residential energy demand in Greece

    International Nuclear Information System (INIS)

    Rapanos, Vassilis T.; Polemis, Michael L.

    2006-01-01

    This paper attempts to shed light on the determinants of residential energy demand in Greece, and to compare it with some other OECD countries. From the estimates of the short-run and long-run elasticities of energy demand for the period 1965-1999, we find that residential energy demand appears to be price inelastic. Also, we do not find evidence of a structural change probably because of the low efficiency of the energy sector. We find, however, that the magnitude of the income elasticity varies substantially between Greece and other OECD countries

  15. Influence of India’s transformation on residential energy demand

    International Nuclear Information System (INIS)

    Bhattacharyya, Subhes C.

    2015-01-01

    Highlights: • The middle income group emerges as the dominant segment by 2030. • Commercial residential energy demand increases 3–4 folds compared to 2010. • Electricity and LPG demand grows above 6% per year in the reference scenario. • India faces the potential of displacing the domination of biomass by 2030. - Abstract: India’s recent macro-economic and structural changes are transforming the economy and bringing significant changes to energy demand behaviour. Life-style and consumption behaviour are evolving rapidly due to accelerated economic growth in recent times. The population structure is changing, thereby offering the country with the potential to reap the population dividend. The country is also urbanising rapidly, and the fast-growing middle class segment of the population is fuelling consumerism by mimicking international life-styles. These changes are likely to have significant implications for energy demand in the future, particularly in the residential sector. Using the end-use approach of demand analysis, this paper analyses how residential energy demand is likely to evolve as a consequence of India’s transformation and finds that by 2030, India’s commercial energy demand in the residential sector can quadruple in the high scenario compared to the demand in 2010. Demand for modern fuels like electricity and liquefied petroleum gas is likely to grow at a faster rate. However, there is a window of opportunity to better manage the evolution of residential demand in India through energy efficiency improvement

  16. Modeling and optimization of a heat-pump-assisted high temperature proton exchange membrane fuel cell micro-combined-heat-and-power system for residential applications

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Kær, Søren Knudsen; Nielsen, Mads Pagh

    2015-01-01

    -CHP system assumes heat-led operation, to avoid dumping of heat and the use of complicated thermal energy storage. The overall system is grid-interconnected to allow importing and exporting of electricity as necessary. In this study emphasis is given on the operational characterization of the system......In this study a micro-combined-heat-and-power (micro-CHP) system is coupled to a vapor-compression heat pump to fulfill the residential needs for heating (space heating and water heating) and electricity in detached single-family households in Denmark. Such a combination is assumed to be attractive...... for application, since both fuel cell technology and electric heat pumps are found to be two of the most efficient technologies for generation/conversion of useful energy. The micro-CHP system is fueled with natural gas and includes a fuel cell stack, a fuel processor and other auxiliary components. The micro...

  17. Integrated Urban System and Energy Consumption Model: Residential Buildings

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available This paper describes a segment of research conducted within the project PON 04a2_E Smart Energy Master for the energetic government of the territory conducted by the Department of Civil, Architectural and Environment Engineering, University of Naples "Federico II".  In particular, this article is part of the study carried out for the definition of the comprehension/interpretation model that correlates buildings, city’s activities and users’ behaviour in order to promote energy savings. In detail, this segment of the research wants to define the residential variables to be used in the model. For this purpose a knowledge framework at international level has been defined, to estimate the energy requirements of residential buildings and the identification of a set of parameters, whose variation has a significant influence on the energy consumption of residential buildings.

  18. Solar energy heating panel

    Energy Technology Data Exchange (ETDEWEB)

    McMurtrie, T.

    1984-08-14

    A solar energy collecting and radiating panel for heating a fluid such as air circulating in an enclosure disposed behind the panel. The panel is in the form of a pan made of sheet metal, such as thin aluminum, darkened on its irradiated surface, the blackened or darkened surface being protected by a pane of glass. The panel has a plurality of dome-shaped dimples embossed on and projecting from its irradiated surface such as to present a large surface area to exposure to sun rays and to capture solar energy independently of the sun height or position relative to the horizon. The heat absorbed by the panel is conveyed by its back surface to air circulating by convection or by forced circulation in a thermally insulated enclosure, for heating a building or for any other utilization. A plurality of panels may be disposed side by side to form a solar energy collecting array preferably mounted on an outside wall of a building, in a southerly orientation.

  19. An analysis of residential energy consumption in a temperate climate. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common ``energy package.`` Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  20. An analysis of residential energy consumption in a temperate climate. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common ``energy package.`` Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  1. The potential demand for bioenergy in residential heating applications (bio-heat) in the UK based on a market segment analysis

    International Nuclear Information System (INIS)

    Jablonski, S.; Pantaleo, A.; Bauen, A.; Pearson, P.; Panoutsou, C.; Slade, R.

    2008-01-01

    How large is the potential demand for bio-heat in the UK? Whilst most research has focused on the supply of biomass for energy production, an understanding of the potential demand is crucial to the uptake of heat from bioenergy. We have designed a systematic framework utilising market segmentation techniques to assess the potential demand for biomass heat in the UK. First, the heat market is divided into relevant segments, characterised in terms of their final energy consumption, technological and fuel supply options. Second, the key technical, economic and organisational factors that affect the uptake of bioenergy in each heat segment are identified, classified and then analysed to reveal which could be strong barriers, which could be surmounted easily, and for which bioenergy heat represents an improvement compared to alternatives. The defined framework is applied to the UK residential sector. We identify provisionally the most promising market segments for bioenergy heat, and their current levels of energy demand. We find that, depending on the assumptions, the present potential demand for bio-heat in the UK residential sector ranges between 3% (conservative estimate) and 31% (optimistic estimate) of the total energy consumed in the heat market. (author)

  2. Factor Analysis of Residential Energy Consumption at the Provincial Level in China

    Directory of Open Access Journals (Sweden)

    Weibin Lin

    2014-11-01

    Full Text Available This paper analyzes the differences in the amount and the structure of residential energy consumption at the provincial level in China and identifies the hidden factors behind such differences. The econometrical analysis reveals that population, economic development level, energy resource endowment and climatic conditions are the main factors driving residential energy consumption; while the regional differences in energy consumption per capita and the consumption structure can be mainly illustrated by various economic development levels, energy resource endowments and climatic conditions. Economic development level has a significant positive impact on the proportion of gasoline consumption, whereas its impact on the proportion of electricity consumption is not notable; energy resource endowment and climatic condition indirectly affect both the proportion of electricity consumption and that of gasoline consumption, primarily through their impacts on the proportions of coal consumption and heat consumption.

  3. A review of residential computer oriented energy control systems

    Energy Technology Data Exchange (ETDEWEB)

    North, Greg

    2000-07-01

    The purpose of this report is to bring together as much information on Residential Computer Oriented Energy Control Systems as possible within a single document. This report identifies the main elements of the system and is intended to provide many technical options for the design and implementation of various energy related services.

  4. Beyond the EPBD: The low energy residential settlement Borgo Solare

    International Nuclear Information System (INIS)

    Aste, Niccolo; Adhikari, R.S.; Buzzetti, Michela

    2010-01-01

    The European Directive on Energy Performance of Buildings (EPBD) imposes the adoption of measures for improving the energy efficiency in buildings. These measures should take into account the local weather conditions as well as internal thermal environment and cost-effectiveness. In this respect, Italy is a very interesting benchmark. For Northern Italy, the climatic context is particularly difficult to deal with cold winters and hot summers. The legislations are changing very rapidly, but has not fully adapted to the local context. The considered methodology still involves winter heating while summer cooling is addressed in incomplete and inadequate ways. The energy issue is addressed only partially as final energy consumption, but with little attention to LCA. Moreover, the belief that the buildings with high energy savings are too expensive, and therefore not attractive from economic point of view. For these reasons, it is very important to develop case studies to demonstrate the effectiveness of sustainable energy in architecture, according to a holistic approach. This paper describes a detailed techno-economic analysis for Borgo Solare project, an extremely advanced and innovative residential settlement designed on sustainable architecture concepts. One of the most innovative aspects of the project is that it is not just an experimental operation but Borgo Solare is a real urban district, which will be built without public funds and should be inhabited by common people. Excellent energy performance, therefore, must be accompanied by affordable market prices. The energy and economical analysis is presented taking into account also the embodied energy of the building. The results on the performance of a sample building (case study) of this settlement are reported, according to different construction standards: prior to EPBD, present from the EPBD and more efficient developed specifically for the project. It has been shown that using the better design practices

  5. Assessment of retrofit automatic vent dampers for residential heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, D.L.; Wilson, R.P. Jr.; Ashley, L.E.; Butterfield, J.F.

    1977-11-01

    Automatic vent dampers are devices installed in the exhaust vent of a central heating system which prohibit the chimney flow of warm air from the dwelling space and from within the furnace when the heating system is not operating. An investigation of the effect of thermally actuated or electrically actuated dampers on home energy conservation, their cost, and safety is described. Eleven heating system types in 2 geographic regions were used in this study. It was determined that good quality, safe electrically actuated dampers are available in the U.S. and that thermally actuated units will be available soon; an average savings of approximately 8% in home heating cost could be achieved by using automatic dampers with suitable furnace systems in regions with a heating season of more than 4000 degree-days; the cost of the automatic dampers is from $65 to $140 with a payback period of 3 to 4 1/2 y; and, with the average heating system, vent damper retrofit alone is not as an attractive energy conservation option as combined vent damper, intermittent ignition device retrofit, and reduced gas orifice. (LCL)

  6. Material Research on Salt Hydrates for Seasonal Heat Storage Application in a Residential Environment

    Energy Technology Data Exchange (ETDEWEB)

    Ferchaud, C.J.; Zondag, H.A.; De Boer, R. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-09-15

    Water vapor sorption in salt hydrates is a promising method to realize seasonal solar heat storage in the residential sector. Several materials already showed promising performance for this application. However, the stability of these materials needs to be improved for long-term (30 year) application in seasonal solar heat storages. The purpose of this article is to identify the influence of the material properties of the salt hydrates on the performance and the reaction kinetics of the sorption process. The experimental investigation presented in this article shows that the two salt hydrates Li2SO4.H2O and CuSO4.5H2O can store and release heat under the operating conditions of a seasonal solar heat storage in a fully reversible way. However, these two materials show differences in terms of energy density and reaction kinetics. Li2SO4.H2O can release heat with an energy density of around 0.80 GJ/m{sup 3} within 4 hours of rehydration at 25C, while CuSO4.5H2O needs around 130 hours at the same temperature to be fully rehydrated and reaches an energy density of 1.85 GJ/m{sup 3}. Since the two salts are dehydrated and hydrated under the same conditions, this difference in behavior is directly related to the intrinsic properties of the materials.

  7. Quo vadis, domestic fuel market. [Coal for residential heating

    Energy Technology Data Exchange (ETDEWEB)

    Pott, E. (Gesamtverband des Deutschen Steinkohlenbergbaus, Essen (Germany, F.R.))

    1980-04-01

    Some aspects of recent trends on the domestic fuel market are analysed with regard to the position of coal. An evaluation of the capital charges and expenditure for maintenance of heating systems and a comparison of prices of the various energy sources show that coal has again become competitive on the domestic fuel market. In the vicinity of coal-mining areas, coal can compete with the price of heating gas currently being available at the most favourable price. Considering the energy supply in the years to come, price increases and energy supply ensurance clearly speak in favour of coal. The development of future energy technologies will also favour coal and increase its fraction of the domestic fuel market.

  8. Potential energy savings by using direct current for residential applications

    DEFF Research Database (Denmark)

    Diaz, Enrique Rodriguez; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2017-01-01

    This paper presents a study of the potential energy savings by implementing dc distribution systems for residential applications. In general, it is commonly accepted that the use of dc voltage improves the efficiency of the distribution, due to a decrease in the conduction losses and an efficiency...... improvement in the power converter units. However, for residential applications, the efficiency is not always improved. A grid connected residential microgrid, with renewable energy sources (RES), energy storage systems (ESS) and local loads, is presented in this work. The microgrid has been modelled...... loads. However, for isolated microgrids, the use of dc voltage has the potential to bring a significant efficiency improvement. Nevertheless the potential for cost reduction in all scenarios is very promising....

  9. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  10. Future Services for District Heating Solutions in Residential Districts

    Directory of Open Access Journals (Sweden)

    Hannele Ahvenniemi

    2014-06-01

    Full Text Available The underlying assumption of this study is that in order to retain the competitiveness while reaching for the EU targets regarding low-energy construction, district heating companies need to develop new business and service models. How district heating companies could broaden their perspective and switch to a more service-oriented way of thinking is a key interest of our research. The used methods in our study are house builder interviews and a questionnaire. With the help of these methods we discussed the potential interest in heating related services acquiring a comprehensive understanding of the customer needs. The results indicate the importance of certain criteria when choosing the heating system in households: easiness, comfort and affordability seem to dominate the house builders’ preferences. Also environmental awareness seems to be for many an important factor when making a decision about the heating of the house. Altogether, based on the results of this study, we suggest that the prospects of district heating could benefit from highlighting certain aspects and strengths in the future. District heating companies need to increase flexibility, readiness to adopt new services, to invest in new marketing strategies and improving the communication skills.

  11. A Method for Determining Optimal Residential Energy Efficiency Packages

    Energy Technology Data Exchange (ETDEWEB)

    Polly, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gestwick, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bianchi, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Anderson, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Judkoff, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-04-01

    This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location.

  12. Performance-based potential for residential energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Performance-based potential for residential energy efficiency

    2013-01-15

    Energy performance contracts (EPCs) have proven an effective mechanism for increasing energy efficiency in nearly all sectors of the economy since their introduction nearly 30 years ago. In the modern form, activities undertaken as part of an EPC are scoped and implemented by experts with specialized technical knowledge, financed by commercial lenders, and enable a facility owner to limit risk and investment of time and resources while receiving the rewards of improved energy performance. This report provides a review of the experiences of the US with EPCs and discusses the possibilities for the residential sector to utilize EPCs. Notably absent from the EPC market is the residential segment. Historically, research has shown that the residential sector varies in several key ways from markets segments where EPCs have proven successful, including: high degree of heterogeneity of energy use characteristics among and within households, comparatively small quantity of energy consumed per residence, limited access to information about energy consumption and savings potential, and market inefficiencies that constrain the value of efficiency measures. However, the combination of recent technological advances in automated metering infrastructure, flexible financing options, and the expansion of competitive wholesale electricity markets to include energy efficiency as a biddable supply-side resource present an opportunity for EPC-like efforts to successfully engage the residential sector, albeit following a different model than has been used in EPCs traditionally.(Author)

  13. Motivational factors influencing the homeowners’ decisions between residential heating systems: An empirical analysis for Germany

    International Nuclear Information System (INIS)

    Michelsen, Carl Christian; Madlener, Reinhard

    2013-01-01

    Heating demand accounts for a large fraction of the overall energy demand of private households in Germany. A better understanding of the adoption and diffusion of energy-efficient and renewables-based residential heating systems (RHS) is of high policy relevance, particularly against the background of climate change, security of energy supply and increasing energy prices. In this paper, we explore the multi-dimensionality of the homeowners’ motivation to decide between competing RHS. A questionnaire survey (N=2440) conducted in 2010 among homeowners who had recently installed a RHS provides the empirical foundation. Principal component analysis shows that 25 items capturing different adoption motivations can be grouped around six dimensions: (1) cost aspects, (2) general attitude towards the RHS, (3) government grant, (4) reactions to external threats (i.e., environmental or energy supply security considerations), (5) comfort considerations, and (6) influence of peers. Moreover, a cluster analysis with the identified motivational factors as segmentation variables reveals three adopter types: (1) the convenience-oriented, (2) the consequences-aware, and (3) the multilaterally-motivated RHS adopter. Finally, we show that the influence of the motivational factors on the adoption decision also differs by certain characteristics of the homeowner and features of the home. - Highlights: ► Study of the multi-dimensionality of the motivation to adopt residential heating systems (RHS). ► Principal component and cluster analysis are applied to representative survey data for Germany. ► Motivation has six dimensions, including rational decision-making and emotional factors. ► Adoption motivation differs by certain characteristics of the homeowner and of the home. ► Many adopters are driven by existing habits and perceptions about the convenience of the RHS

  14. A Hierarchical Transactive Energy Management System for Energy Sharing in Residential Microgrids

    Directory of Open Access Journals (Sweden)

    Most Nahida Akter

    2017-12-01

    Full Text Available This paper presents an analytical framework to develop a hierarchical energy management system (EMS for energy sharing among neighbouring households in residential microgrids. The houses in residential microgrids are categorized into three different types, traditional, proactive and enthusiastic, based on the inclusion of solar photovoltaic (PV systems and battery energy storage systems (BESSs. Each of these three houses has an individual EMS, which is defined as the primary EMS. Two other EMSs (secondary and tertiary are also considered in the proposed hierarchical energy management framework for the purpose of effective energy sharing. The intelligences of each EMS are presented in this paper for the purpose of energy sharing in a residential microgrid along with the priorities. The effectiveness of the proposed hierarchical framework is evaluated on a residential microgrid in Australia. The analytical results clearly reflect that the proposed scheme effectively and efficiently shares the energy among neighbouring houses in a residential microgrid.

  15. Design and optimization of zero-energy-consumption based solar energy residential building systems

    Science.gov (United States)

    Zheng, D. L.; Yu, L. J.; Tan, H. W.

    2017-11-01

    Energy consumption of residential buildings has grown fast in recent years, thus raising a challenge on zero energy residential building (ZERB) systems, which aim at substantially reducing energy consumption of residential buildings. Thus, how to facilitate ZERB has become a hot but difficult topic. In the paper, we put forward the overall design principle of ZERB based on analysis of the systems’ energy demand. In particular, the architecture for both schematic design and passive technology is optimized and both energy simulation analysis and energy balancing analysis are implemented, followed by committing the selection of high-efficiency appliance and renewable energy sources for ZERB residential building. In addition, Chinese classical residential building has been investigated in the proposed case, in which several critical aspects such as building optimization, passive design, PV panel and HVAC system integrated with solar water heater, Phase change materials, natural ventilation, etc., have been taken into consideration.

  16. Mitigation of Short-Lived Climate Pollutants from Residential Coal Heating and Combined Heating/Cooking Stoves: Impacts on the Cryosphere, Policy Options, and Co-benefits

    Science.gov (United States)

    Chafe, Z.; Anenberg, S.; Klimont, Z.; Kupiainen, K.; Lewis, J.; Metcalfe, J.; Pearson, P.

    2017-12-01

    Residential solid fuel combustion for cooking, heating, and other energy services contributes to indoor and outdoor air pollution, and creates impacts on the cryosphere. Solid fuel use often occurs in colder climates and at higher elevations, where a wide range of combustion emissions can reduce reflectivity of the snow- and ice-covered surfaces, causing climatic warming. Reducing short-lived climate pollutants (SLCPs), such as black carbon (BC), could have substantial climate and health co-benefits, especially in areas where emissions influence the cryosphere. A review of existing literature and emissions estimates, conducted as part of the Warsaw Summit on BC and Other Emissions from Residential Coal Heating Stoves and Combined Cooking/Heating Stoves, found little nationally-representative data on the fuels and technologies used for heating and combined cooking/heating. The GAINS model estimates that 24 million tonnes of coal equivalent were combusted by households for space heating globally in 2010, releasing 190 kilotons (kt) BC. Emissions from combined cooking/heating are virtually unknown. Policy instruments could mitigate cryosphere-relevant emissions of SLCPs from residential heating or cooking. These include indoor air quality guidelines, stove emission limits, bans on the use of specific fuels, regulatory codes that stipulate when burning can occur, stove changeout programs, and voluntary public education campaigns. These measures are being implemented in countries such as Chile (fuelwood moisture reduction campaign, energy efficiency, heating system improvements), Mongolia (stove renovation, fuel switching), Peru (improved stove programs), Poland (district heating, local fuel bans), United States (stove emission regulation) and throughout the European Community (Ecodesign Directive). Few, if any, of these regulations are likely to reduce emissions from combined cooking/heating. This research team found no global platform to create and share model

  17. Betrayal of the consumer. [Heating oils for residential use

    Energy Technology Data Exchange (ETDEWEB)

    Schlatterer, R. (Tankanlagenbau KG., Freiburg im Breisgau (Germany, F.R.))

    1980-05-01

    The government supports energy conservation measures in order to attain the economic policy goal of 'getting away from oil'. However, this slogan used by many politicians and authorities does not serve to save energy and energy costs, but rather constitutes a way of exerting psychological influence on consumers within the framework of energy policy. Especially for space heating purposes oil, compared with other sources of energy, is a non-polluting, safe and low-cost alternative. In addition to the advantage of the consumer being able to keep his own reserves and in this way ensure the continuity of his supply, tank facilities held by the consumers also offer economic advantages resulting from decentralized stockkeeping. Consumers of fuel oil can save energy costs also by increasing their stockpiles up to one year's consumption.

  18. Effects of heat and electricity saving measures in district-heated multistory residential buildings

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Dodoo, Ambrose; Gustavsson, Leif

    2014-01-01

    Highlights: • We analyzed the potential for energy savings in district heated buildings. • Measures that reduce more peak load production give higher primary energy savings. • Efficient appliances increase heat demand but give net primary energy savings. • Efficient appliances give the largest net primary energy savings. - Abstract: The effects of heat and electricity saving measures in district-heated buildings can be complex because these depend not only on how energy is used on the demand side but also on how energy is provided from the supply side. In this study, we analyze the effects of heat and electricity saving measures in multistory concrete-framed and wood-framed versions of an existing district-heated building and examine the impacts of the reduced energy demand on different district heat (DH) production configurations. The energy saving measures considered are for domestic hot water reduction, building thermal envelope improvement, ventilation heat recovery (VHR), and household electricity savings. Our analysis is based on a measured heat load profile of an existing DH production system in Växjö, Sweden. Based on the measured heat load profile, we model three minimum-cost DH production system using plausible environmental and socio-political scenarios. Then, we investigate the primary energy implications of the energy saving measures applied to the two versions of the existing building, taking into account the changed DH demand, changed cogenerated electricity, and changed electricity use due to heat and electricity saving measures. Our results show that the difference between the final and primary energy savings of the concrete-framed and wood-framed versions of the case-study building is minor. The primary energy efficiency of the energy saving measures depends on the type of measure and on the composition of the DH production system. Of the various energy saving measures explored, electricity savings give the highest primary energy savings

  19. Technology change and energy consumption: A comparison of residential subdivisions

    Science.gov (United States)

    Nieves, L. A.; Nieves, A. L.

    The energy savings in residential buildings likely to result from implementation of the building energy performance standards (BEPS) were assessed. The goals were to: compare energy use in new homes designed to meet or exceed BEPS levels of energy efficiency with that in similar but older homes designed to meet conventional building codes, and to survey the home owners regarding their energy conservation attitudes and behaviors and to ascertain the degree to which conservation attitudes and behaviors are related to residential energy use. The consumer demand theory which provides the framework for the empirical analysis is presented. The sample residences are described and the data collection method discussed. The definition and measurement of major variables are presented.

  20. The trigger matters: The decision-making process for heating systems in the residential building sector

    International Nuclear Information System (INIS)

    Hecher, Maria; Hatzl, Stefanie; Knoeri, Christof; Posch, Alfred

    2017-01-01

    As heat demand of buildings accounts for a significant amount of final energy use and related carbon emissions, it’s important to gain insights into the homeowners’ decision-making processes and to identify factors determining the choice of heating systems. In this study, data was collected in an online survey carried out in 2015, from private homeowners of existing and newly built single and double-family houses in Austria who had invested in a new heating system within the last ten years (N=484). In contrast to previous studies, this study specifically investigates the triggers behind homeowner decisions to invest in a new heating system (e.g. problem, opportunity, or new building situation). Results of binary logistic regression analysis show that subsidies for heating system tabinvestments and infrastructural adjustments reveal to be most effective for homeowners in problem situations to foster alternative heating systems. For homeowners in opportunity situations (e.g. building refurbishment), in addition operational convenience appears to be important. For new buildings, the main barriers for alternative heating system adoption were found in the positive perception of fuel supply security and feasibility of fossil systems. Thus, the use of trigger-specific policy measures is proposed to foster alternative heating systems in the residential building sector. - Highlights: • Homeowners’ triggers determine heating system adoption decisions. • It is crucial to reach homeowners early enough to avoid problem situations. • For problem-triggered homeowners, subsidies are most effective. • Opportunity-triggered homeowners prefer alternative heating systems. • Opportunity-triggered homeowners need solid decision basis for technology comparison.

  1. An innovative educational program for residential energy efficiency. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Laquatra, J.; Chi, P.S.K.

    1996-09-01

    Recognizing the importance of energy conservation, under sponsorship of the US Department of Energy, Cornell University conducted a research and demonstration project entitled An Innovative Educational Program for Residential Energy Efficiency. The research project examined the amount of residential energy that can be saved through changes in behavior and practices of household members. To encourage these changes, a workshop was offered to randomly-selected households in New York State. Two surveys were administered to household participants (Survey 1 and Survey 2, Appendix A) and a control group; and a manual was developed to convey many easy but effective ways to make a house more energy efficient (see Residential Manual, Appendix B). Implementing methods of energy efficiency will help reduce this country`s dependence on foreign energy sources and will also reduce the amount of money that is lost on inefficient energy use. Because Cornell Cooperative Extension operates as a component of the land-grant university system throughout the US, the results of this research project have been used to develop a program that can be implemented by the Cooperative Extension Service nationwide. The specific goals and objectives for this project will be outlined, the population and sample for the research will be described, and the instruments utilized for the survey will be explained. A description of the workshop and manual will also be discussed. This report will end with a summary of the results from this project and any observed changes and/or recommendations for future surveys pertaining to energy efficiency.

  2. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  3. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  4. Modular Energy Management System Applicable to Residential Microgrids

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises

    2016-01-01

    In this paper, an energy management system is defined as a flexible architecture. This proposal can be applied to home and residential areas when they include generation units. The system has been integrated and tested in a grid-connected microgrid prototype, where optimal power generation profiles...

  5. Application of Energy Performance Indicators for Residential Building Stocks

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Kragh, Jesper; Diefenbach, Nikolaus

    2016-01-01

    Energy performance indicators of residential building stocks can either describe existing empirical data of a building stock or the input and outcome of building stock modelling. In EPISCOPE both types of quantities are clearly separated by distinguishing monitoring indicators and scenario indica...

  6. 75 FR 25228 - Energy Conservation Program for Consumer Products: Decision and Order Denying a Waiver to PB Heat...

    Science.gov (United States)

    2010-05-07

    ... and Order Denying a Waiver to PB Heat, LLC From the Department of Energy Residential Furnace and.... WAV-0140, which denies a waiver to PB Heat, LLC (PB) from the existing DOE residential furnace and.... Decision and Order In the Matter of: PB Heat, LLC (PB) (Case No. WAV-0140). Authority Title III of the...

  7. Behaviour : Seeing heat saves energy

    NARCIS (Netherlands)

    Steg, Linda

    2016-01-01

    Household energy conservation can help to significantly lower energy consumption. Visual cues provided by thermal imaging of heat loss in buildings are now shown to increase energy conserving behaviours and implementations among homeowners more effectively than just performing carbon footprint

  8. ENERGY STAR Certified Residential Clothes Washers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 8.0 ENERGY STAR Program Requirements for Clothes Washers that are effective as of...

  9. ENERGY STAR Certified Residential Clothes Dryers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.1 ENERGY STAR Program Requirements for Clothes Dryers that are effective as of January...

  10. Residential Energy Efficiency Potential: New York

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by New York single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  11. Residential Energy Efficiency Potential: South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by South Carolina single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. Residential Energy Efficiency Potential: New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by New Hampshire single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Residential Energy Efficiency Potential: New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by New Jersey single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Residential Energy Efficiency Potential: North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by North Carolina single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Residential Energy Efficiency Potential: New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by New Mexico single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  16. Residential Energy Efficiency Potential: North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by North Dakota single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by West Virginia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: Rhode Island

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Rhode Island single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Residential Energy Efficiency Potential: South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by South Dakota single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Dynamic integration of residential building design and green energies : the Bireth approach : building integrated renewable energy total harvest approach

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, K.P. [Hong Kong Univ., Hong Kong (China). Dept. of Architecture; Luk, C.L.P. [Chu Hai College of Higher Education, Hong Kong (China). Dept. of Architecture; Wong, S.T. [Hong Kong Univ., Hong Kong (China). Div. of Arts and Humanities, SPACE; Chung, S.L.; Fung, K.S.; Leung, M.F. [Hong Kong Inst. of Vocational Education, Hong Kong (China)

    2006-07-01

    Renewable energy sources that are commonly used in buildings include solar energy, wind energy and rainwater collection. High quality environmentally responsive residential buildings are designed to provide good insulation in winter and solar shading in summer. However, this study demonstrated that the green energy design in residential buildings is not usually well integrated. For example, windows with clear double or triple glazed glass, allow good penetration of sunlight during the day in winter, but are not further dynamically insulated for when the sun goes down to avoid heat loss from the building. Additionally, good solar static shading devices often block much needed daylight on cloudy winter days. These examples emphasize the lack of an integrated approach to gain the best advantage of green energies and to minimize energy costs in residential buildings. This study addressed issues facing the integrated approach with particular reference to the design of a small residential building in rural Beijing. The design included a new approach for interpreting a traditional Beijing court yard house in the modern Beijing rural context, while integrating multi-responding innovative green energy applications derived from first principles. This paper also presented a proposal for a village house in Hong Kong to harvest as much renewable energies as possible, primarily wind energy and solar energy, that come into contact with the building. The purpose was to work towards a renewable energy approach for buildings, namely the Bireth approach, which will benefit practically all houses by making them zero energy houses. The paper described the feasibility of integrating renewable energies in buildings to fulfill performance requirements such improving ventilation, providing warm interiors, drying clothes, or storing solar and wind energies into power batteries. The challenges facing the development of a proposed micro solar hot air turbine were also presented. 15 refs., 6

  1. Simulation Study of the Energy Performance of Different Space Heating Methods in Plus-energy Housing

    DEFF Research Database (Denmark)

    Schøtt, Jacob; Andersen, Mads E.; Kazanci, Ongun Berk

    2016-01-01

    cases the heat source was a natural gas fired condensing boiler, and for the floor heating cases also an air-to-water heat pump was used to compare two heat sources. The systems were also compared in terms of auxiliary energy use for pumps and fans. The results show that the investigated floor heating...... from the low temperature heating potential since an increased floor covering requires higher average water temperatures in the floor loops and decreases the COP of the heat pump. The water-based heating systems required significantly less auxiliary energy input compared to the air-based heating system......Due to a shortage of energy resources, the focus on indoor environment and energy use in buildings is increasing which sets higher standards for the performance of HVAC systems in buildings. The variety of available heating systems for both residential buildings and office buildings is therefore...

  2. Energy and exergy analysis of low temperature district heating network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand......Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network....... The space heating demand is supplied through floor heating in the bathroom and low temperature radiators in the rest of rooms. The network thermal and hydraulic conditions are simulated under steady state. A district heating network design and simulation code is developed to incorporate the network...

  3. Energy Impacts of Effective Range Hood Use for all U.S. Residential Cooking

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M; Singer, Brett

    2014-06-01

    Range hood use during residential cooking is essential to maintaining good indoor air quality. However, widespread use will impact the energy demand of the U.S. housing stock. This paper describes a modeling study to determine site energy, source energy, and consumer costs for comprehensive range hood use. To estimate the energy impacts for all 113 million homes in the U.S., we extrapolated from the simulation of a representative weighted sample of 50,000 virtual homes developed from the 2009 Residential Energy Consumption Survey database. A physics-based simulation model that considered fan energy, energy to condition additional incoming air, and the effect on home heating and cooling due to exhausting the heat from cooking was applied to each home. Hoods performing at a level common to hoods currently in U.S. homes would require 19?33 TWh [69?120 PJ] of site energy, 31?53 TWh [110-190 PJ] of source energy; and would cost consumers $1.2?2.1 billion (U.S.$2010) annually in the U.S. housing stock. The average household would spend less than $15 annually. Reducing required airflow, e.g. with designs that promote better pollutant capture has more energy saving potential, on average, than improving fan efficiency.

  4. Proton exchange membrane fuel cell for cooperating households: A convenient combined heat and power solution for residential applications

    International Nuclear Information System (INIS)

    Cappa, Francesco; Facci, Andrea Luigi; Ubertini, Stefano

    2015-01-01

    In this paper we compare the technical and economical performances of a high temperature proton exchange membrane fuel cell with those of an internal combustion engine for a 10 kW combined heat and power residential application. In a view of social innovation, this solution will create new partnerships of cooperating families aiming to reduce the energy consumption and costs. The energy system is simulated through a lumped model. We compare, in the Italian context, the total daily operating cost and energy savings of each system with respect to the separate purchase of electricity from the grid and production of the thermal energy through a standard boiler. The analysis is carried out with the energy systems operating with both the standard thermal tracking and an optimized management. The latter is retrieved through an optimization methodology based on the graph theory. We show that the internal combustion engine is much more affected by the choice of the operating strategy with respect to the fuel cell, in terms long term profitability. Then we conduct a net present value analysis with the aim of evidencing the convenience of using a high temperature proton exchange membrane fuel cell for cogeneration in residential applications. - Highlights: • Fuel cells are a feasible and economically convenient solution for residential CHP. • Control strategy is fundamental for the economical performance of a residential CHP. • Flexibility is a major strength of the fuel cell CHP.

  5. Preliminary design package for residential heating/cooling system: Rankine air conditioner redesign

    Science.gov (United States)

    1978-01-01

    A summary of the preliminary redesign and development of a marketable single family heating and cooling system is presented. The interim design and schedule status of the residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities were discussed. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  6. Preliminary design package for residential heating/cooling system--Rankine air conditioner redesign

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report contains a summary of the preliminary redesign and development of a marketable single-family heating and cooling system. The objectives discussed are the interim design and schedule status of the Residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  7. Analyzing Residential End-Use Energy Consumption Data to Inform Residential Consumer Decisions and Enable Energy Efficiency Improvements

    Science.gov (United States)

    Carlson, Derrick R.

    While renewable energy is in the process of maturing, energy efficiency improvements may provide an opportunity to reduce energy consumption and consequent greenhouse gas emissions to bridge the gap between current emissions and the reductions necessary to prevent serious effects of climate change and will continue to be an integral part of greenhouse gas emissions policy moving forward. Residential energy is a largely untapped source of energy reductions as consumers, who wish to reduce energy consumption for monetary, environmental, and other reasons, face barriers. One such barrier is a lack of knowledge or understanding of how energy is consumed in a home and how to reduce this consumption effectively through behavioral and technological changes. One way to improve understanding of residential energy consumption is through the creation of a model to predict which appliances and electronics will be present and significantly contribute to the electricity consumption of a home on the basis of various characteristics of that home. The basis of this model is publically available survey data from the Residential Energy Consumption Survey (RECS). By predicting how households are likely to consume energy, homeowners, policy makers, and other stakeholders have access to valuable data that enables reductions in energy consumption in the residential sector. This model can be used to select homes that may be ripe for energy reductions and to predict the appliances that are the basis of these potential reductions. This work suggests that most homes in the U.S. have about eight appliances that are responsible for about 80% of the electricity consumption in that home. Characteristics such as census region, floor space, income, and total electricity consumption affect which appliances are likely to be in a home, however the number of appliances is generally around 8. Generally it takes around 4 appliances to reach the 50% threshold and 12 appliances to reach 90% of electricity

  8. Role of Solar Water Heating in Multifamily Zero Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Williamson, James [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2016-04-01

    With support from the U.S. Department of Energy Building America Program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in the spring of 2014, and CARB has been monitoring the performance of the water-heating systems since May 2014.

  9. Future Residential Water Heating Prospects in Brazil: A Scenario Building Ground Analysis

    Directory of Open Access Journals (Sweden)

    Felipe de Albuquerque Sgarbi

    2014-12-01

    Full Text Available In Brazil, electricity is the prime energy carrier for bath shower heating purposes. However, since analyses indicate that expansion of the country´s electricity generation capacity shall spruce from an increased non-renewable sources’ stake in detriment to that of hydroelectricity, high electricity consumption rates that spring from home end uses of the kind have drawn the attention of those who are involved with local energy planning. Furthermore, massive use of electric showers in a short timeframe largely drive electricity demands to culminate in peak loads. For water heating purposes, this context has favoured an alternative to electricity, deemed feasible from both an efficiency and energy infrastructure standpoint: promote fuel gas consumption (liquefied petroleum gas and natural gas in particular. A scenario methodology is herein employed to map electric shower use related variables and players and assess the future behaviour of the core elements that condition resorting to this technology. Thereafter, strategies and opportunities to promote the rational consumption of the country´s power sources ground on the increased use of fuel gases for residential water heating purposes are discussed.

  10. Energy and economic evaluation of the single-family residential building energy performance standards

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, D.L.; Jones, J.L.

    1981-11-01

    The Energy Production and Conservation Act (EPCA) of 1976 mandated the setting of building energy performance standards (BEPS) for all newly constructed buildings. One of the classes of buildings included in EPCA is single-family residences. These standards cover the energy used for space heating, air conditioning, and water heating. This report describes the evaluation of direct energy and economic impacts of three proposed levels of single-family BEPS: lenient, mid, and strict. The lenient level is the least stringent in requiring improvements in eneryperformance of residence while the strict is the most stringent. Each of the levels and the method of developing them are also described. The ORNL residential energy model is used to calculate energy savings and economic impacts of BEPS to the nation. The model is also used to estimate the sensitivity of the results to several exogenous variables: projected fuel prices, baseline energy codes, capital csts, short-run price elasticities, and discount rates. The Net Present Value (NPV) and cumulative energy savings from 1980 to 2020 are the two measures used to compare the standards. Both the lenient and mid level standards provide a positive economic benefit to the country of 1.24 and 2.58 billion dollars, respectively. Even though the strict standard has the largest energy savings, it has a negative economic cost of 1.5 billion dollars to the nation. The cumulative energy savings of the lenient, mid, and strict level standards are 4.2, 10.2, and 20.1 EJ, respectively.

  11. Estimation of Residential Heat Pump Consumption for Flexibility Market Applications

    DEFF Research Database (Denmark)

    Kouzelis, Konstantinos; Tan, Zheng-Hua; Bak-Jensen, Birgitte

    2015-01-01

    load of a flexible device, namely a Heat Pump (HP), out of the aggregated energy consumption of a house. The main idea for accomplishing this, is a comparison of the flexible consumer with electrically similar non-flexible consumers. The methodology is based on machine learning techniques, probability...... theory and statistics. After presenting this methodology, the general trend of the HP consumption is estimated and an hour-ahead forecast is conducted by employing Seasonal Autoregressive Integrated Moving Average modeling. In this manner, the flexible consumption is predicted, establishing the basis...

  12. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    Directory of Open Access Journals (Sweden)

    Korniyenko Sergey

    2018-01-01

    Full Text Available Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects. Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  13. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    Science.gov (United States)

    Korniyenko, Sergey

    2018-03-01

    Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects). Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  14. Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration

    International Nuclear Information System (INIS)

    Darcovich, K.; Henquin, E.R.; Kenney, B.; Davidson, I.J.; Saldanha, N.; Beausoleil-Morrison, I.

    2013-01-01

    Highlights: • Characterized two novel high capacity electrode materials for Li-ion batteries. • A numerical discharge model was run to characterize Li-ion cell behavior. • Engineering model of Li-ion battery pack developed from cell fundamentals. • ESP-r model integrated micro-cogeneration and high capacity Li-ion storage. • Higher capacity batteries shown to improve micro-cogeneration systems. - Abstract: Combined heat and power on a residential scale, also known as micro-cogeneration, is currently gaining traction as an energy savings practice. The configuration of micro-cogeneration systems is highly variable, as local climate, energy supply, energy market and the feasibility of including renewable type components such as wind turbines or photovoltaic panels are all factors. Large-scale lithium ion batteries for electrical storage in this context can provide cost savings, operational flexibility, and reduced stress on the distribution grid as well as a degree of contingency for installations relying upon unsteady renewables. Concurrently, significant advances in component materials used to make lithium ion cells offer performance improvements in terms of power output, energy capacity, robustness and longevity, thereby enhancing their prospective utility in residential micro-cogeneration installations. The present study evaluates annual residential energy use for a typical Canadian home connected to the electrical grid, equipped with a micro-cogeneration system consisting of a Stirling engine for supplying heat and power, coupled with a nominal 2 kW/6 kW h lithium ion battery. Two novel battery cathode chemistries, one a new Li–NCA material, the other a high voltage Ni-doped lithium manganate, are compared in the residential micro-cogeneration context with a system equipped with the presently conventional LiMn 2 O 4 spinel-type battery

  15. The Price Elasticity of Residential Energy Use,

    Science.gov (United States)

    household energy- consumption behavior : The difference between the own-price elasticity of total consumption and that of saturation is a measure of the responsiveness of ’conservation’ to price....estimates of the own-price elasticities of total consumption but almost surely will produce erroneous estimates of the cross-price elasticities. As regards

  16. Solar powered absorption cycle heat pump using phase change materials for energy storage

    Science.gov (United States)

    Middleton, R. L.

    1972-01-01

    Solar powered heating and cooling system with possible application to residential homes is described. Operating principles of system are defined and illustration of typical energy storage and exchange system is provided.

  17. BASECALC - software for residential basement and slab-on-grade heat-loss analysis

    Energy Technology Data Exchange (ETDEWEB)

    Beausoleil-Morrison, I. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency

    1999-11-01

    BASECALC models heat losses from residential building basements and slabs-on-grade by calculating heat loss based on thermal and physical properties of individual construction, insulation type and location, ground properties and weather. BASECALC provides bilingual software and numerical, graphical and parametric output. It can model above-grade and below-grade heat losses and include the effects of thermal bridging between the basement and the main-floor envelope. This is then validated against the National Research Council of Canada`s Mitalas method. The software can calculate insulation configurations with code implications and carry out batch processing for multiple runs. It includes libraries of common insulation and construction materials. BASECALC has the potential in other applications to develop more accurate basement algorithms for building simulation programs, establish building and energy code requirements for basement and slab-on-grade insulation, assess and demonstrate the performance of new products and novel insulation placements, and validate and calibrate basement heat-loss predictions from building simulation programs.

  18. Possibility of heat recovery from gray water in residential building

    Science.gov (United States)

    Mazur, Aleksandra; Słyś, Daniel

    2017-12-01

    Recovery of waste heat from gray water can be an interesting alternative to other energy saving systems in a building, including alternative energy sources. Mainly, due to a number of advantages including independence from weather conditions, small investment outlay, lack of user support, or a slight interference with the installation system. The purpose of this article is to present the financial effectiveness of installations which provide hot, usable water to a detached house, using a Drain Water Heat Recovery (DWHR) system depending on the number of system users and the various combinations of bathing time in the shower, which has an influence on the daily warm water demand in each of the considered options. The economic analysis of the adopted installation variants is based on the Life Cycle Cost (LCC) method, which is characterized by the fact that it also includes the operating costs in addition to the capital expenditure during the entire analysis period. For each case, the necessary devices were selected and the cost of their installation was estimated.

  19. Possibility of heat recovery from gray water in residential building

    Directory of Open Access Journals (Sweden)

    Mazur Aleksandra

    2017-12-01

    Full Text Available Recovery of waste heat from gray water can be an interesting alternative to other energy saving systems in a building, including alternative energy sources. Mainly, due to a number of advantages including independence from weather conditions, small investment outlay, lack of user support, or a slight interference with the installation system. The purpose of this article is to present the financial effectiveness of installations which provide hot, usable water to a detached house, using a Drain Water Heat Recovery (DWHR system depending on the number of system users and the various combinations of bathing time in the shower, which has an influence on the daily warm water demand in each of the considered options. The economic analysis of the adopted installation variants is based on the Life Cycle Cost (LCC method, which is characterized by the fact that it also includes the operating costs in addition to the capital expenditure during the entire analysis period. For each case, the necessary devices were selected and the cost of their installation was estimated.

  20. Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs

    International Nuclear Information System (INIS)

    Zvingilaite, Erika; Klinge Jacobsen, Henrik

    2015-01-01

    The trade-off between investing in energy savings and investing in individual heating technologies with high investment and low variable costs in single family houses is modelled for a number of building and consumer categories in Denmark. For each group the private economic cost of providing heating comfort is minimised. The private solution may deviate from the socio-economical optimal solution and we suggest changes to policy to incentivise the individuals to make choices more in line with the socio-economic optimal mix of energy savings and technologies. The households can combine their primary heating source with secondary heating e.g. a woodstove. This choice results in increased indoor air pollution with fine particles causing health effects. We integrate health cost due to use of woodstoves into household optimisation of heating expenditures. The results show that due to a combination of low costs of primary fuel and low environmental performance of woodstoves today, included health costs lead to decreased use of secondary heating. Overall the interdependence of heat generation technology- and heat saving-choice is significant. The total optimal level of heat savings for private consumers decrease by 66% when all have the option to shift to the technology with lowest variable costs. - Highlights: • Heat saving investment and heat technology choice are interdependent. • Health damage costs should be included in private heating choice optimisation. • Flexibility in heating technology choice reduce the optimal level of saving investments. • Models of private and socioeconomic optimal heating produce different technology mix. • Rebound effects are moderate but varies greatly among consumer categories

  1. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  2. Residential energy consumption in urban China: A decomposition analysis

    International Nuclear Information System (INIS)

    Zhao Xiaoli; Li Na; Ma, Chunbo

    2012-01-01

    Residential energy consumption (REC) is the second largest energy use category (10%) in China and urban residents account for 63% of the REC. Understanding the underlying drivers of variations of urban REC thus helps to identify challenges and opportunities and provide advices for future policy measures. This paper applies the LMDI method to a decomposition of China's urban REC during the period of 1998–2007 at disaggregated product/activity level using data collected from a wide range of sources. Our results have shown an extensive structure change towards a more energy-intensive household consumption structure as well as an intensive structure change towards high-quality and cleaner energy such as electricity, oil, and natural gas, which reflects a changing lifestyle and consumption mode in pursuit of a higher level of comfort, convenience and environmental protection. We have also found that China's price reforms in the energy sector have contributed to a reduction of REC while scale factors including increased urban population and income levels have played a key role in the rapid growth of REC. We suggest that further deregulation in energy prices and regulatory as well as voluntary energy efficiency and conservation policies in the residential sector should be promoted. - Highlights: ► We examine china's residential energy consumption (REC) at detailed product level. ► Results show significant extensive and intensive structure changed. ► Price deregulation in the energy sector has contributed a reduction of REC. ► Growth of population and income played a key role in REC rapid growth. ► We provide policy suggestions to promote REC saving.

  3. Performance of a residential heat pump operating in the cooling mode with single faults imposed

    International Nuclear Information System (INIS)

    Kim, Minsung; Payne, W. Vance; Domanski, Piotr A.; Yoon, Seok Ho; Hermes, Christian J.L.

    2009-01-01

    The system behavior of a R410A residential unitary split heat pump operating in the cooling mode was investigated. Seven artificial faults were implemented: compressor/reversing valve leakage, improper outdoor air flow, improper indoor air flow, liquid line restriction, refrigerant undercharge, refrigerant overcharge, and presence of non-condensable gas in the refrigerant. This study monitored eight fault detection features and identified the most sensitive features for each fault. The effect of the various fault levels on energy efficiency ratio (EER) was also estimated. Since the studied system employed a thermostatic expansion valve (TXV) as an expansion device, it could adapt to some faults making the fault less detectable. The distinctiveness of the fault depended on the TXV status (fully open or not)

  4. US residential energy demand and energy efficiency: A stochastic demand frontier approach

    International Nuclear Information System (INIS)

    Filippini, Massimo; Hunt, Lester C.

    2012-01-01

    This paper estimates a US frontier residential aggregate energy demand function using panel data for 48 ‘states’ over the period 1995 to 2007 using stochastic frontier analysis (SFA). Utilizing an econometric energy demand model, the (in)efficiency of each state is modeled and it is argued that this represents a measure of the inefficient use of residential energy in each state (i.e. ‘waste energy’). This underlying efficiency for the US is therefore observed for each state as well as the relative efficiency across the states. Moreover, the analysis suggests that energy intensity is not necessarily a good indicator of energy efficiency, whereas by controlling for a range of economic and other factors, the measure of energy efficiency obtained via this approach is. This is a novel approach to model residential energy demand and efficiency and it is arguably particularly relevant given current US energy policy discussions related to energy efficiency.

  5. Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Klinge Jacobsen, Henrik

    2015-01-01

    their primary heating source with secondary heating e.g. a woodstove. This choice results in increased indoor air pollution with fine particles causing health effects. We integrate health cost due to use of woodstoves into household optimisation of heating expenditures. The results show that due...... heating comfort is minimised. The private solution may deviate from the socio-economical optimal solution and we suggest changes to policy to incentivise the individuals to make choices more in line with the socio-economic optimal mix of energy savings and technologies. The households can combine...

  6. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently re-emerged on the U.S. market, and they have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine the actual energy consumption of a HPWH in different U.S. regions, annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the United States. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  7. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently reemerged on the U.S. market. These units have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine what actual in use energy consumption of a HPWH may be in different regions of the U.S., annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the U.S. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  8. Method for Determining Optimal Residential Energy Efficiency Retrofit Packages

    Energy Technology Data Exchange (ETDEWEB)

    Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

    2011-04-01

    Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.

  9. Assessing cooling energy performance of windows for residential buildings in the Mediterranean zone

    International Nuclear Information System (INIS)

    Tsikaloudaki, K.; Theodosiou, Th.; Laskos, K.; Bikas, D.

    2012-01-01

    Highlights: ► Cooling energy performance of residential windows in warm climates is studied. ► It is primarily determined by the window’s solar transmittance g and orientation. ► Advanced windows perform worse when compared to conventional ones with the same g. ► Shading contributes notably in decreasing the cooling loads attributed to the window. ► Equations for predicting the cooling energy performance of windows were developed. - Abstract: Heat transfer through windows accounts for a significant proportion of energy used in the building sector for covering both heating and cooling needs, since the optical and the thermal characteristics of conventional fenestration products constitute them more “vulnerable” in energy flows when compared to opaque building elements. In this study, an approach for evaluating the cooling energy performance of residential windows is presented. It is based on a parametric study, which aims at highlighting the impact of the window configuration on its energy behavior in terms of geometrical characteristics, thermophysical and optical properties, as well as orientation and shading levels. The results underlined the magnitude of the relationship between the thermal and optical properties of the transparent elements with respect to their orientation; especially for residential buildings, the solar transmittance determines at a considerable extent the cooling energy performance of fenestration, at least in the warmest part of Europe. Furthermore, the statistical analysis of the derived data provided mathematical expressions, which can be used in praxis for predicting the cooling energy performance of windows with respect to their thermal and optical characteristics.

  10. Economics of residential solar hot water heating systems in Malaysia

    International Nuclear Information System (INIS)

    Abdulmula, Ahmed Mohamed Omer; Sopian, Kamaruzzaman; Haj Othman, Mohd Yosof

    2006-01-01

    Malaysia has favorable climatic conditions for the development of solar energy due to the abundant sunshine and is considered good for harnessing energy from the sun. This is because solar hot water can represent the large energy consumer in Malaysian households but, because of the high initial cost of Solar Water Heating Systems (SWHSs) and easily to install and relatively inexpensive to purchase electric water heaters, many Malyaysian families are still using Electric Water Heaters to hot their water needs. This paper is presented the comparing of techno-economic feasibility of some models of SWHS from Malaysian's market with the Electric Water Heaters )EWH) by study the annual cost of operation for both systems. The result shows that the annual cost of the electrical water heater becomes greater than than the annual cost of the SWHS for all models in long-team run so it is advantageous for the family to use the solar water heater, at least after 4 years. In addition with installation SWHS the families can get long-term economical benefits, environment friendly and also can doing its part to reduce this country's dependence on foreign oil that is price increase day after day.(Author)

  11. Monitored performance of residential geothermal heat pumps in central Texas and Southern Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, W.N.

    1997-11-01

    This report summarizes measured performance of residential geothermal heat pumps (GHP`s) that were installed in family housing units at Ft. Hood, Texas and at Selfridge Air National Guard base in Michigan. These units were built as part of a joint Department of Defense/Department of Energy program to evaluate the energy savings potential of GHP`s installed at military facilities. At the Ft. Hood site, the GHP performance was compared to conventional forced air electric air conditioning and natural gas heating. At Selfridge, the homes under test were originally equipped with electric baseboard heat and no air conditioning. Installation of the GHP systems at both sites was straightforward but more problems and costs were incurred at Selfridge because of the need to install ductwork in the homes. The GHP`s at both sites produced impressive energy savings. These savings approached 40% for most of the homes tested. The low cost of energy on these bases relative to the incremental cost of the GHP conversions precludes rapid payback of the GHP`s from energy savings alone. Estimates based on simple payback (no inflation and no interest on capital) indicated payback times from 15 to 20 years at both sites. These payback times may be reduced by considering the additional savings possible due to reduced maintenance costs. Results are summarized in terms of 15 minute, hourly, monthly, and annual performance parameters. The results indicate that all the systems were working properly but several design shortcomings were identified. Recommendations are made for improvements in future installations at both sites.

  12. Energy impacts of recycling disassembly material in residential buildings

    International Nuclear Information System (INIS)

    Gao, Weijun; Ariyama, Takahiro; Ojima, Toshio; Meier, Alan

    2000-01-01

    In order to stop the global warmth due to the CO2 concentration, the energy use should be decreased. The investment of building construction industry in Japan is about 20 percent of GDP. This fraction is much higher than in most developed countries. That results the Japanese building construction industry including residential use consumes about one third of all energy and resources of the entire industrial sectors. In order to save energy as well as resource, the recycle of the building materials should be urgent to be carried out. In this paper, we focus on the potential energy savings with a simple calculated method when the building materials or products are manufactured from recycled materials. We examined three kinds of residential buildings with different construction techniques and estimated the decreased amount of energy consumption and resources resulting from use of recycled materials. The results have shown for most building materials, the energy consumption needed to remake housing materials from recycled materials is lower than that to make new housing materials. The energy consumption of building materials in all case-study housing can be saved by at least 10 percent. At the same time, the resource, measured by mass of building materials (kg) can be decreased by over 50 percent

  13. Study on the optimum PCM melting temperature for energy savings in residential buildings worldwide

    Science.gov (United States)

    Saffari, M.; de Gracia, A.; Fernández, C.; Zsembinszki, G.; Cabeza, L. F.

    2017-10-01

    To maintain comfort conditions in residential buildings along a full year period, the use of active systems is generally required to either supply heating or cooling. The heating and cooling demands strongly depend on the climatic conditions, type of building and occupants’ behaviour. The overall annual energy consumption of the building can be reduced by the use of renewable energy sources and/or passive systems. The use of phase change materials (PCM) as passive systems in buildings enhances the thermal mass of the envelope, and reduces the indoor temperature fluctuations. As a consequence, the overall energy consumption of the building is generally lower as compared to the case when no PCM systems are used. The selection of the PCM melting temperature is a key issue to reduce the energy consumption of the buildings. The main focus of this study is to determine the optimum PCM melting temperature for passive heating and cooling according to different weather conditions. To achieve that, numerical simulations were carried out using EnergyPlus v8.4 coupled with GenOpt® v3.1.1 (a generic optimization software). A multi-family residential apartment was selected from ASHRAE Standard 90.1- 2013 prototype building model, and different climate conditions were considered to determine the optimum melting temperature (in the range from 20ºC to 26ºC) of the PCM contained in gypsum panels. The results confirm that the optimum melting temperature of the PCM strongly depends on the climatic conditions. In general, in cooling dominant climates the optimum PCM temperature is around 26ºC, while in heating dominant climates it is around 20ºC. Furthermore, the results show that an adequate selection of the PCM as passive system in building envelope can provide important energy savings for both heating dominant and cooling dominant regions.

  14. Modelling long term energy consumption of French residential sector - improving behavioral realism and simulating ambitious scenarios

    International Nuclear Information System (INIS)

    Allibe, Benoit

    2012-01-01

    This thesis aims to integrate components of an economic model of the behaviors of households in a technological model of French residential sector energy consumption dynamics and to analyze the consequences of this integration on the results of long-term residential energy consumption simulations (2030-2050). The results of this work highlight significant differences between the actual household space heating energy consumptions and those estimated by engineering models. These differences are largely due to the elasticity of thermal comfort demand to thermal comfort price. Our improved model makes it possible to conjointly integrate the concepts of price elasticity and rebound effect (the increase in energy service level following an improvement in energy performance of the equipment providing the service) in a daily behavior model. Regarding space heating consumption, the consequences of this behavioral adaptation - combined with some technical defects - are a significant reduction of the technical and behavioral energy saving potentials (while effective daily use of energy is generally lower than predicted by engineering models) at a national level. This implies that mid and long-term national energy policy targets (a 38% drop in primary energy consumption by 2020 and a reduction in greenhouse gas emissions by a factor of 4 by 2050 compared to the 1990 level) will be harder to reach than previously expected for the residential sector. These results also imply that a strong reduction in carbon emissions cannot be achieved solely through the diffusion of efficient technologies and energy conservation behavior but also requires to significantly lower the average carbon content of residential space heating energy through the generalized use of wood energy. The second issue addressed in this thesis is the influence of the resolution of a techno-economic model (i.e. its ability to represent the various values that a variable can have within the modeled system) on its

  15. Influence of simulation assumptions and input parameters on energy balance calculations of residential buildings

    International Nuclear Information System (INIS)

    Dodoo, Ambrose; Tettey, Uniben Yao Ayikoe; Gustavsson, Leif

    2017-01-01

    In this study, we modelled the influence of different simulation assumptions on energy balances of two variants of a residential building, comprising the building in its existing state and with energy-efficient improvements. We explored how selected parameter combinations and variations affect the energy balances of the building configurations. The selected parameters encompass outdoor microclimate, building thermal envelope and household electrical equipment including technical installations. Our modelling takes into account hourly as well as seasonal profiles of different internal heat gains. The results suggest that the impact of parameter interactions on calculated space heating of buildings is somewhat small and relatively more noticeable for an energy-efficient building in contrast to a conventional building. We find that the influence of parameters combinations is more apparent as more individual parameters are varied. The simulations show that a building's calculated space heating demand is significantly influenced by how heat gains from electrical equipment are modelled. For the analyzed building versions, calculated final energy for space heating differs by 9–14 kWh/m 2 depending on the assumed energy efficiency level for electrical equipment. The influence of electrical equipment on calculated final space heating is proportionally more significant for an energy-efficient building compared to a conventional building. This study shows the influence of different simulation assumptions and parameter combinations when varied simultaneously. - Highlights: • Energy balances are modelled for conventional and efficient variants of a building. • Influence of assumptions and parameter combinations and variations are explored. • Parameter interactions influence is apparent as more single parameters are varied. • Calculated space heating demand is notably affected by how heat gains are modelled.

  16. Evaluation of energy performance indicators and financial aspects of energy saving techniques in residential real estate

    NARCIS (Netherlands)

    Entrop, Alexis Gerardus; Brouwers, Jos; Reinders, Angelina H.M.E.

    2010-01-01

    The energy consumption in the existing residential building stock accounts for about 40% of the total energy consumption in the built environment. Different types of energy performance indicators to assess the energy consumption of buildings were and still are internationally under development. In

  17. Autonomous Hybrid Priority Queueing for Scheduling Residential Energy Demands

    Science.gov (United States)

    Kalimullah, I. Q.; Shamroukh, M.; Sahar, N.; Shetty, S.

    2017-05-01

    The advent of smart grid technologies has opened up opportunities to manage the energy consumption of the users within a residential smart grid system. Demand response management is particularly being employed to reduce the overall load on an electricity network which could in turn reduce outages and electricity costs. The objective of this paper is to develop an intelligible scheduler to optimize the energy available to a micro grid through hybrid queueing algorithm centered around the consumers’ energy demands. This is achieved by shifting certain schedulable load appliances to light load hours. Various factors such as the type of demand, grid load, consumers’ energy usage patterns and preferences are considered while formulating the logical constraints required for the algorithm. The algorithm thus obtained is then implemented in MATLAB workspace to simulate its execution by an Energy Consumption Scheduler (ECS) found within smart meters, which automatically finds the optimal energy consumption schedule tailor made to fit each consumer within the micro grid network.

  18. Study on reduction of consumption and peak demand of electric power used in residential houses with solar heating and PV systems; Solar house no fuka heijunka to energy sakugen koka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Udagawa, M.; Endo, T. [Kogakuin University, Tokyo (Japan)

    1994-12-08

    A model house was simulated to reduce the consumption and peak demand for the photovoltaic power generation system, and solar heat air heating and hot water supply system in the solar house. As a type of construction, both wooden construction and reinforced concrete (RC) construction were selected with a total floor area of 125m{sup 2}. All the rooms were equipped with an air conditioner by heat pump from the air thermal source. A solar heat floor heater was simultaneously installed on the first floor. The hot water supply load was 4.8MWh per year. A commercial grid-connected on-site system was applied to the photovoltaic power generation with a 20m{sup 2} wide monocrystalline Si solar cell panel. As for the fluctuation in power load, the peak at the time of rising is more reduced in the RC house than in the wooden house, because the former is smaller in temperature fluctuation than the latter during the intermittence of air conditioning (as per the specified operational schedule). Therefore, the power is more leveled off in the former than in the latter. Between both, difference was hardly made in energy consumption per year. The ratio of dependency was 47% upon the photovoltaic power generation system, while it was 50% and 77%, under the air heating power load and hot water supply power load, respectively, upon the solar heat air heating and hot water supply system, so that both systems were considerably effective in saving the energy. 5 refs., 7 figs., 1 tab.

  19. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, BG

    2004-08-04

    This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other

  20. Field Measurement and Evaluation of the Passive and Active Solar Heating Systems for Residential Building Based on the Qinghai-Tibetan Plateau Case

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2017-10-01

    Full Text Available Passive and active solar heating systems have drawn much attention and are widely used in residence buildings in the Qinghai-Tibetan plateau due to its high radiation intensity. In fact, there is still lack of quantitative evaluation of the passive and active heating effect, especially for residential building in the Qinghai-Tibetan plateau areas. In this study, three kinds of heating strategies, including reference condition, passive solar heating condition and active solar heating condition, were tested in one demonstration residential building. The hourly air temperatures of each room under different conditions were obtained and analyzed. The results show the indoor air temperature in the living room and bedrooms (core zones was much higher than that of other rooms under both passive and active solar heating conditions. In addition, the heating effect with different strategies for core zones of the building was evaluated by the ratio of indoor and outdoor degree hour, which indicates that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment. The passive solar heating could undertake 49.8% degree hours for heating under an evaluation criterion of 14 °C and the active solar heating could undertake 75% degree hours for heating under evaluation criterion of 18 °C, which indicated that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment in this area. These findings could provide reference for the design and application of solar heating in similar climate areas.

  1. Conceptual provisions of the implementation of energy saving measures in the residential facilities

    Directory of Open Access Journals (Sweden)

    Meshcheryakova Tatiana

    2017-01-01

    Full Text Available Research purpose is identification of sales problems of energy saving actions for residential sector of economy, including with use of the power service contract. The choice of the object of the study is related to the general issues on energy saving of residential facilities and increasing the number of unresolved problems. Unfortunately, the efficiency of energy consumption of housing stock is extremely low that directly leads to an increase in citizens’ payments for public utilities (housing and communal services. There are many problems associated with the aging of fixed assets: it becomes especially evident in winter seasons. The level of quality of delivery, distribution and consumption of expensive heat resources that has the greatest impact on a residence comfort and sometimes human life and health, is very low. Our population faces to year overheating or freezing, to leakages through worn pipes and the subsequent disconnection of water and heat. Despite the public declaration of the of the active processes of modernization of the housing municipal economy in the Russian Federation, the implementation of the necessary energy-saving elements in the housing sector is evolving very slowly. The article presents conceptual positions, which will bring the issues related to energy saving and efficiency to a new level.

  2. Residential on site solar heating systems: a project evaluation using the capital asset pricing model

    Energy Technology Data Exchange (ETDEWEB)

    Schutz, S.R.

    1978-12-01

    An energy source ready for immediate use on a commercial scale is solar energy in the form of On Site Solar Heating (OSSH) systems. These systems collect solar energy with rooftop panels, store excess energy in water storage tanks and can, in certain circumstances, provide 100% of the space heating and hot water required by the occupants of the residential or commercial structure on which the system is located. Such systems would take advantage of a free and inexhaustible energy source--sunlight. The principal drawback of such systems is the high initial capital cost. The solution would normally be a carefully worked out corporate financing plan. However, at the moment it is individual homeowners and not corporations who are attempting to finance these systems. As a result, the terms of finance are excessively stringent and constitute the main obstacle to the large scale market penetration of OSSH. This study analyzes the feasibility of OSSH as a private utility investment. Such systems would be installed and owned by private utilities and would displace other investment projects, principally electric generating plants. The return on OSSH is calculated on the basis of the cost to the consumer of the equivalent amount of electrical energy that is displaced by the OSSH system. The hurdle rate for investment in OSSH is calculated using the Sharpe--Lintner Capital Asset Pricing Model. The results of this study indicate that OSSH is a low risk investment having an appropriate hurdle rate of 7.9%. At this rate, OSSH investment appears marginally acceptable in northern California and unambiguously acceptable in southern California. The results also suggest that utility investment in OSSH should lead to a higher degree of financial leverage for utility companies without a concurrent deterioration in the risk class of utility equity.

  3. Computer program for sizing residential energy recovery ventilator

    International Nuclear Information System (INIS)

    Koontz, M.D.; Lee, S.M.; Spears, J.W.; Kesselring, J.P.

    1991-01-01

    Energy recovery ventilators offer the prospect of tighter control over residential ventilation rates than manual methods, such as opening windows, with a lesser energy penalty. However, the appropriate size of such a ventilator is not readily apparent in most situations. Sizing of energy recovery ventilation software was developed to calculate the size of ventilator necessary to satisfy ASHRAE Standard 62-1989, Ventilation for Acceptable Air Quality, or a user-specified air exchange rate. Inputs to the software include house location, structural characteristics, house operations and energy costs, ventilation characteristics, and HVAC system COP/efficiency. Based on these inputs, the program estimates the existing air exchange rate for the house, the ventilation rate required to meet the ASHRAE standard or user-specified air exchange rate, the size of the ventilator needed to meet the requirement, and the expected changes in indoor air quality and energy consumption. In this paper an illustrative application of the software is provided

  4. The importance of engaging residential energy customers' hearts and minds

    International Nuclear Information System (INIS)

    Olaniyan, Monisola J.; Evans, Joanne

    2014-01-01

    In an attempt to reduce the contribution of residential greenhouse gas emissions the EU has implemented a variety of policy measures. The focus has been to promote domestic energy efficiency and ultimately a reduction in residential energy demand. In this study we estimate residential energy demand using Underlying Energy Demand Trend (UEDT) and Asymmetric Price Responses for 14 European OECD countries between 1978 and 2008. Our results support the conclusion that policies to reduce residential energy consumption and the consequent emissions need to account for behavioural, lifestyle and cultural factors in order to be effective. - Highlights: • Residential energy demand is estimated for 14 European OECD countries between 1978 and 2008. • Investigate the relative contributions of Underlying Energy Demand Trend (UEDT) which captures exogenous technical progress. • The most effective policies target behavioural, lifestyle and cultural factors to reduce residential energy consumption

  5. Methodology and assumptions for evaluating heating and cooling energy requirements in new single-family residential buildings: Technical support document for the PEAR (Program for Energy Analysis of Residences) microcomputer program

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.J.; Ritschard, R.; Bull, J.; Byrne, S.; Turiel, I.; Wilson, D.; Hsui, C.; Foley, D.

    1987-01-01

    This report provides technical documentation for a software package called PEAR (Program for Energy Analysis of Residences) developed by LBL. PEAR offers an easy-to-use and accurate method of estimating the energy savings associated with various energy conservation measures used in site-built, single-family homes. This program was designed for use by non-technical groups such as home builders, home buyers or others in the buildings industry, and developed as an integral part of a set of voluntary guidelines entitled Affordable Housing Through Energy Conservation: A Guide to Designing and Constructing Energy Efficient Homes. These guidelines provide a method for selecting and evaluating cost-effective energy conservation measures based on the energy savings estimated by PEAR. This work is part of a Department of Energy program aimed at conducting research that will improve the energy efficiency of the nation's stock of conventionally-built and manufactured homes, and presenting the results to the public in a simplified format.

  6. The residential dual-energy program of Hydro-Quebec: An economic analysis

    International Nuclear Information System (INIS)

    Bergeron, C.; Bernard, J.-T.

    1991-01-01

    Higher than expected electricity consumption in recent years and increasing objections to capacity expansion on environmental grounds have led Quebec's government-owned electric utility, Hydro-Quebec, to launch an innovative program to reduce peak period residential electric heating demand. When the outside temperature drops below -12 degree C, customers who have opted for the program are charged 10 cents/kWh for their electricity (substantially above the 4.46 cents/kWh paid by normal residential customers) and they are automatically switched to a non-electric heating source, whereas above -12 degree C they pay 2.75 cents/kWh for all uses. A cost benefit analysis of this dual energy program finds that if, as Hydro-Quebec forecasts, 150,000 residential customers were to opt for this program, they would benefit by $19.0 million per year, while the utility and the government would lose $21.6 million and $1.6 million respectively, with a total net loss to Quebec society of $4.25 million a year. 12 refs., 4 figs., 6 tabs

  7. Profitability of Residential Battery Energy Storage Combined with Solar Photovoltaics

    Directory of Open Access Journals (Sweden)

    Christoph Goebel

    2017-07-01

    Full Text Available Lithium-ion (Li-Ion batteries are increasingly being considered as bulk energy storage in grid applications. One such application is residential energy storage combined with solar photovoltaic (PV panels to enable higher self-consumption rates, which has become financially more attractive recently due to decreasing feed-in subsidies. Although residential energy storage solutions are commercially mature, it remains unclear which system configurations and circumstances, including aggregator-based applications such as the provision of ancillary services, lead to profitable consumer investments. Therefore, we conduct an extensive simulation study that is able to jointly capture these aspects. Our results show that, at current battery module prices, even optimal system configurations still do not lead to profitable investments into Li-Ion batteries if they are merely used as a buffer for solar energy. The first settings in which they will become profitable, as prices are further declining, will be larger households at locations with higher average levels of solar irradiance. If the batteries can be remote-controlled by an aggregator to provide overnight negative reserve, their profitability increases significantly.

  8. Possibilities of heat energy recovery from greywater systems

    Science.gov (United States)

    Niewitecka, Kaja

    2018-02-01

    Waste water contains a large amount of heat energy which is irretrievably lost, so it is worth thinking about the possibilities of its recovery. It is estimated that in a residential building with full sanitary fittings, about 70% of the total tap water supplied is discharged as greywater and could be reused. The subject of the work is the opportunity to reuse waste water as an alternative source of heat for buildings. For this purpose, the design of heat exchangers used in the process of greywater heat recovery in indoor sewage systems, public buildings as well as in industrial plants has been reviewed. The possibility of recovering heat from waste water transported in outdoor sewage systems was also taken into consideration. An exemplary waste water heat recovery system was proposed, and the amount of heat that could be obtained using a greywater heat recovery system in a residential building was presented. The work shows that greywater heat recovery systems allow for significant savings in preheating hot tap water, and the rate of cost reimbursement depends on the purpose of the building and the type of installation. At the same time, the work shows that one should adjust the construction solutions of heat exchangers and indoor installations in buildings to the quality of the medium flowing, which is greywater.

  9. Possibilities of heat energy recovery from greywater systems

    Directory of Open Access Journals (Sweden)

    Niewitecka Kaja

    2018-01-01

    Full Text Available Waste water contains a large amount of heat energy which is irretrievably lost, so it is worth thinking about the possibilities of its recovery. It is estimated that in a residential building with full sanitary fittings, about 70% of the total tap water supplied is discharged as greywater and could be reused. The subject of the work is the opportunity to reuse waste water as an alternative source of heat for buildings. For this purpose, the design of heat exchangers used in the process of greywater heat recovery in indoor sewage systems, public buildings as well as in industrial plants has been reviewed. The possibility of recovering heat from waste water transported in outdoor sewage systems was also taken into consideration. An exemplary waste water heat recovery system was proposed, and the amount of heat that could be obtained using a greywater heat recovery system in a residential building was presented. The work shows that greywater heat recovery systems allow for significant savings in preheating hot tap water, and the rate of cost reimbursement depends on the purpose of the building and the type of installation. At the same time, the work shows that one should adjust the construction solutions of heat exchangers and indoor installations in buildings to the quality of the medium flowing, which is greywater.

  10. Technology diffusion of energy-related products in residential markets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, L.J.; Bruneau, C.L.

    1987-05-01

    Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.

  11. Pacific Northwest residential energy survey. Volume 4. Pacific Northwest cross-tabulations

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    Responses for the Pacific Northwest to fifty questions asked during the survey (plus four variables computed from responses to several other questions) cross-tabulated against responses to nine questions which represent key explanatory characteristics of residential energy use are presented. The nine key questions are: means of payment for housing; type of dwelling; year dwelling built; total square-footage of living space; type of fuel for main heating system; combined 1978 income; unit cost of electricity; annual electricity consumption; and annual natural gas consumption. The fifty questions and four computed variables which were cross-tabulated against the above fall into six categories: dwelling characteristics; heating and air-conditioning systems; water heating; appliances; demographic and dwelling characteristics; and insulation. The survey was conducted throughout the states of Washington, Oregon, Idaho, and Montana with a total of 4030 households sampled. Information on the 54 tables is explained. (MCW)

  12. An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study

    International Nuclear Information System (INIS)

    Wouters, Carmen; Fraga, Eric S.; James, Adrian M.

    2015-01-01

    The integration of distributed generation units and microgrids in the current grid infrastructure requires an efficient and cost effective local energy system design. A mixed-integer linear programming model is presented to identify such optimal design. The electricity as well as the space heating and cooling demands of a small residential neighbourhood are satisfied through the consideration and combined use of distributed generation technologies, thermal units and energy storage with an optional interconnection with the central grid. Moreover, energy integration is allowed in the form of both optimised pipeline networks and microgrid operation. The objective is to minimise the total annualised cost of the system to meet its yearly energy demand. The model integrates the operational characteristics and constraints of the different technologies for several scenarios in a South Australian setting and is implemented in GAMS. The impact of energy integration is analysed, leading to the identification of key components for residential energy systems. Additionally, a multi-microgrid concept is introduced to allow for local clustering of households within neighbourhoods. The robustness of the model is shown through sensitivity analysis, up-scaling and an effort to address the variability of solar irradiation. - Highlights: • Distributed energy system planning is employed on a small residential scale. • Full energy integration is employed based on microgrid operation and tri-generation. • An MILP for local clustering of households in multi-microgrids is developed. • Micro combined heat and power units are key components for residential microgrids

  13. Sample design for the residential energy consumption survey

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    The purpose of this report is to provide detailed information about the multistage area-probability sample design used for the Residential Energy Consumption Survey (RECS). It is intended as a technical report, for use by statisticians, to better understand the theory and procedures followed in the creation of the RECS sample frame. For a more cursory overview of the RECS sample design, refer to the appendix entitled ``How the Survey was Conducted,`` which is included in the statistical reports produced for each RECS survey year.

  14. Energy and exergy analysis of low temperature district heating network

    International Nuclear Information System (INIS)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand. The space heating demand is supplied through floor heating in the bathroom and low temperature radiators in the rest of rooms. The network thermal and hydraulic conditions are simulated under steady state. A district heating network design and simulation code is developed to incorporate the network optimization procedure and the network simultaneous factor. Through the simulation, the overall system energy and exergy efficiencies are calculated and the exergy losses for the major district heating system components are identified. Based on the results, suggestions are given to further reduce the system energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply. -- Highlights: ► Exergy and energy analysis for low and medium temperature district heating systems. ► Different district heating network dimensioning methods are analyzed. ► Major exergy losses are identified in the district heating network and the in-house substations. ► Advantages to apply low temperature district heating are highlighted through exergy analysis. ► The influence of thermal by-pass on system exergy/energy performance is analyzed.

  15. Effect of Ducted HPWH on Space-Conditioning and Water Heating Energy Use -- Central Florida Lab Home

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Carlos [Florida Solar Energy Center, Cocoa, FL (United States); Martin, Eric [Florida Solar Energy Center, Cocoa, FL (United States); Parker, Danny [Florida Solar Energy Center, Cocoa, FL (United States)

    2016-11-01

    The purpose of this research is to investigate the impact of ducted heat pump water heaters (HPWH's) on space conditioning and water heating energy use in residential applications. Two identical HPWH's, each of 60 gallon capacity were tested side by side at the Flexible Residential Test facility (FRTF) laboratories of the Florida Solar Energy Center (FSEC) campus in Cocoa, Florida. The water heating experiments were run in each test house from July 2014 until February 2015.

  16. Effect of Ducted HPWH on Space-Conditioning and Water Heating Energy Use -- Central Florida Lab Home

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Carlos [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Martin, Eric [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Parker, Danny [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2016-11-01

    The purpose of this research is to investigate the impact of ducted heat pump water heaters (HPWHs) on space conditioning and water heating energy use in residential applications. Two identical HPWHs, each of 60 gallon capacity were tested side by side at the Flexible Residential Test facility (FRTF) laboratories of the Florida Solar Energy Center (FSEC) campus in Cocoa, Florida. The water heating experiments were run in each test house from July 2014 until February 2015.

  17. Renewable Energy and Energy Efficiency Technologies in Residential Building Codes: June 15, 1998 to September 15, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Wortman, D.; Echo-Hawk, L.

    2005-02-01

    This report is an attempt to describe the building code requirements and impediments to the application of EE and RE technologies in residential buildings. Several modern model building codes were reviewed. These are representative of the codes that will be adopted by most locations in the coming years. The codes reviewed for this report include: International Residential Code, First Draft, April 1998; International Energy Conservation Code, 1998; International Mechanical Code, 1998; International Plumbing Code, 1997; International Fuel Gas Code, 1997; National Electrical Code, 1996. These codes were reviewed as to their application to (1) PV systems in buildings and building-integrated PV systems and (2) active solar domestic hot water and space-heating systems. A discussion of general code issues that impact these technologies is also included. Examples of this are solar access and sustainability.

  18. The indicators of energy security of decentralized heating

    Directory of Open Access Journals (Sweden)

    Elena Vitalyevna Bykova

    2013-06-01

    Full Text Available In the paper, the new additional indicators of energy security with the purpose to include decentralized heating sector is developed in the work. The structure of the housing stock of the country is analyzed, which includes different types of central heating boilers and CHP, individual gas or electric heating and stove heating.The analysis of the existing thermal supply (per unit area and per capita living for each sector is carried out. It is found that heat consumed in the residential sector with central heating from CHP and boilers is significantly higher of heat consumed in other sectors. The missing amount of heat energy, which can be produced in two ways, is calculated. Part of the deficit heat can be produced at existing sources that are not loaded enough to the nominal parameters at the moment. The second part can be obtained from small new sources (for inhabited localities that do not have a centralized heat supply infrastructure. New indicators complement the system of indicators to be used to analyze and monitoring the level of Moldova's energy security. They allowed including decentralized heat supply sector, which is not reflected in the official statistics. At the same, the calculation methodology has been improved and the overall integral indicator of the energy security level, which was even more crisis than previously thought.

  19. Main physical environmental drivers of occupant behaviour with regard to space heating energy demand

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano Paolo

    2012-01-01

    real building energy requirements . The paper focuses on the particular topics of space heating energy demand related to the occupants habits of adjusting heating set-points. The parameters influencing the user interaction with the heating control system are analyzed in literature for residential......) environmental conditions and the occupants’ heating set-point preferences. The paper aims at providing a reliable basis for a more accurate description of control action models in performance simulation applications....

  20. Role of fuel upgrading for industry and residential heating

    Energy Technology Data Exchange (ETDEWEB)

    Merriam, N.W. [Western Research Inst., Laramie, WY (United States); Gentile, R.H. [KFx Atlantic Partners, Arlington, VA (United States)

    1995-12-01

    The Koppleman Series C Process is presently being used in pilot plant tests with Wyoming coal to upgrade the Powder River Basin coal containing 30 wt% moisture and having a heating value of 8100 Btu/lb to a product containing less than 1 wt% moisture and having a heating value of 12,200 Btu/lb. This process is described.

  1. Public participation GIS for improving wood burning emissions from residential heating and urban environmental management.

    Science.gov (United States)

    López-Aparicio, Susana; Vogt, Matthias; Schneider, Philipp; Kahila-Tani, Maarit; Broberg, Anna

    2017-04-15

    A crowdsourcing study supported by a public participation GIS tool was designed and carried out in two Norwegian regions. The aim was to improve the knowledge about emissions from wood burning for residential heating in urban areas based on the collection of citizens' localized insights. We focus on three main issues: 1) type of dwelling and residential heating source; 2) wood consumption and type of wood appliances; and 3) citizens' perception of the urban environment. Our study shows the importance of wood burning for residential heating, and of the resulted particle emissions, in Norwegian urban areas. Citizens' localized insights on environmental perception highlight the areas in the city that require particular attention as part of clean air strategies. Information about environmental perception is combined with existing environmental data showing certain correlation. The results support the urban environmental management based on co-benefit approaches, achieving several outcomes from a single policy measure. Measures to reduce urban air pollution will have a positive impact on the citizens' environmental perception, and therefore on their quality of life, in addition to reducing the negative consequences of air pollution on human health. The characterization of residential heating by fuelwood is still a challenging activity. Our study shows the potential of a crowdsourcing method as means for bottom-up approaches designed to increase our knowledge on human activities at urban scale that result on emissions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Residential fuelwood assessment, state of Minnesota, 2007-2008 heating season

    Science.gov (United States)

    Mimi Barzen; Ronald Piva; Chun Yi Wy; Rich. Dahlman

    2009-01-01

    During the spring and summer of 2008, the cooperating partners conducted a survey to determine the volume of residential fuelwood burned during the 2007-2008 heating season. Similar surveys were conducted for the 1960, 1969-1970, 1979-1980, 1984-1985, 1988-1989, 1995-1996, and 2002-2003 heating seasons. These surveys are part of a long-term effort to monitor trends in...

  3. Building heating and cooling applications thermal energy storage program overview

    Science.gov (United States)

    Eissenberg, D. M.

    1980-01-01

    Thermal energy storage technology and development of building heating and cooling applications in the residential and commercial sectors is outlined. Three elements are identified to undergo an applications assessment, technology development, and demonstration. Emphasis is given to utility load management thermal energy system application where the stress is on the 'customer side of the meter'. Thermal storage subsystems for space conditioning and conservation means of increased thermal mass within the building envelope and by means of low-grade waste heat recovery are covered.

  4. A statistical method to investigate national energy consumption in the residential building sector of China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuqin; Li, Nianping; Guan, Jun; Xie, Yanqun; Sun, Fengmei; Ni, Ji [Civil Engineering College, Hunan University, Changsha, Hunan 410082 (China)

    2008-07-01

    The purpose of this research is to found a national statistical system of energy consumption in the residential building sector of China, so as to look into the actuality of residential energy consumption, and to provide data support for building energy efficiency work in China. The frame of a national statistical system of residential energy consumption is presented in this paper, according to current status of the climate, social and historic conditions, and energy consumption characteristics in the five architecture climate divisions in China. The statistical index system of residential energy consumption is constituted which refers to housing unit characteristics, household characteristics, possession and utilization of energy consuming equipment, and residential energy consumption quantities. This index system suits for all the different utilization structures of residential energy consumption in different architecture climate divisions. On this base, a complete set of statistical reports is worked out to measure the energy consumption of cities, provinces and the country stage by stage. Finally the statistical method above is applied to measure residential energy consumption by case studies, in order to validate the feasibility of this method. The research in this paper covers the first step of the elaboration of the statistical method to investigate energy consumption in China, and more work will be done in future to further impel national statistics of residential energy consumption. (author)

  5. 78 FR 151 - Energy Conservation Program: Test Procedures for Residential Clothes Dryers

    Science.gov (United States)

    2013-01-02

    ... (NRDC), Alliance to Save Energy (ASE), Alliance for Water Efficiency (AWE), Northwest Power and... in the docket of the residential dishwasher, dehumidifier, and conventional cooking products test...

  6. Energy use and environmental impact of new residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Adalberth, Karin

    2000-01-01

    The objective of this thesis is to investigate the energy use and environmental impact of residential buildings. Seven authentic buildings built in the 1990s in Sweden are investigated. They are analysed according to energy use and environmental impact during their life cycle: manufacture of building materials, transport of building materials and components to the building site, erection to a building, occupancy, maintenance and renovation, and finally demolition and removal of debris. Results show that approx. 85 % of the total estimated energy use during the life cycle is used during the occupation phase. The energy used to manufacture building and installation materials constitutes approx. 15 % of the total energy use. 70-90 % of the total environmental impact arises during the occupation phase, while the manufacture of construction and installation materials constitutes 10-20 %. In conclusion, the energy use and environmental impact during the occupation phase make up a majority of the total. At the end of the thesis, a tool is presented which helps designers and clients predict the energy use during the occupation phase for a future multi-family building before any constructional or installation drawings are made. In this way, different thermal properties may be elaborated in order to receive an energy-efficient and environmentally adapted dwelling.

  7. Keys to the House: Unlocking Residential Savings With Program Models for Home Energy Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Grevatt, Jim [Energy Futures Group (United States); Hoffman, Ian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoffmeyer, Dale [US Department of Energy, Washington, DC (United States)

    2017-07-05

    After more than 40 years of effort, energy efficiency program administrators and associated contractors still find it challenging to penetrate the home retrofit market, especially at levels commensurate with state and federal goals for energy savings and emissions reductions. Residential retrofit programs further have not coalesced around a reliably successful model. They still vary in design, implementation and performance, and they remain among the more difficult and costly options for acquiring savings in the residential sector. If programs are to contribute fully to meeting resource and policy objectives, administrators need to understand what program elements are key to acquiring residential savings as cost effectively as possible. To that end, the U.S. Department of Energy (DOE) sponsored a comprehensive review and analysis of home energy upgrade programs with proven track records, focusing on those with robustly verified savings and constituting good examples for replication. The study team reviewed evaluations for the period 2010 to 2014 for 134 programs that are funded by customers of investor-owned utilities. All are programs that promote multi-measure retrofits or major system upgrades. We paid particular attention to useful design and implementation features, costs, and savings for nearly 30 programs with rigorous evaluations of performance. This meta-analysis describes program models and implementation strategies for (1) direct install retrofits; (2) heating, ventilating and air-conditioning (HVAC) replacement and early retirement; and (3) comprehensive, whole-home retrofits. We analyze costs and impacts of these program models, in terms of both energy savings and emissions avoided. These program models can be useful guides as states consider expanding their strategies for acquiring energy savings as a resource and for emissions reductions. We also discuss the challenges of using evaluations to create program models that can be confidently applied in

  8. Pilot Evaluation of Energy Savings from Residential Energy Demand Feedback Devices

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Danny S. [Florida Solar Energy Center, Cocoa, FL (United States); Hoak, David [Florida Solar Energy Center, Cocoa, FL (United States); Cummings, Jamie [Florida Solar Energy Center, Cocoa, FL (United States)

    2008-01-01

    This report discusses instantaneous feedback on household electrical demand has shown promise to reduce energy consumption. This report reviews past research and describes a two year pilot evaluation of a low cost residential energy feedback system installed in twenty case study homes in FL.

  9. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-08-01

    This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

  10. 2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-01

    This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

  11. An Interactive Energy System with Grid, Heating and Transportation Systems

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker

    , flexibility definition and quantification, stochastic impact assessment of LV networks and control of the demand response in LV networks. In a first stage, different residential and non-residential loads are modelled with system analysis purposes. The active loads considered can be categorized as...... of this research work the control of the demand response in LV networks is tackled. The hierarchical structure presented aims to control the operation of heat pumps and plug-in electric vehicles to satisfy technical and commercial aspects of LV grids. This strategy allows system operators to perform their energy......The environmental consciousness and the fact of achieving greater energy independency have led many countries to apply important changes in their energy systems. The intensive renewable energy growth of the last decades represents the most notorious example at this moment. However, this is not only...

  12. Investigation of Energy and Environmental Potentials of a Renewable Trigeneration System in a Residential Application

    Directory of Open Access Journals (Sweden)

    Eun-Chul Kang

    2016-09-01

    Full Text Available Micro polygeneration utilizing renewable energy is a suitable approach to reduce energy consumption and carbon emission by offering high-efficiency performance, offsetting the need for centrally-generated grid electricity and avoiding transmission/distribution losses associated with it. This paper investigates the energy and environmental potential of a renewable trigeneration system in a residential application under Incheon (Korea and Ottawa (Canada weather conditions. The trigeneration system consists of a ground-to-air heat exchanger (GAHX, photovoltaic thermal (PVT panels and an air-to-water heat pump (AWHP. The study is performed by simulations in TRNSYS (Version 17.02 environment. The performance of the trigeneration system is compared to a reference conventional system that utilizes a boiler for space and domestic hot water heating and a chiller for space cooling. Simulation results showed substantial annual primary energy savings from the renewable trigeneration system in comparison to the reference system—45% for Incheon and 42% for Ottawa. The CO2eq emission reduction from the renewable trigeneration system is also significant, standing at 43% for Incheon and 82% for Ottawa. Furthermore, trigeneration systems’ capability to generate electricity and thermal energy at the point of use is considered as an attractive option for inclusion in the future smart energy network applications.

  13. Exergy and Energy Analysis of Low Temperature District Heating Network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    Low temperature district heating (LTDH) with reduced network supply and return temperature provides better match of the low quality building thermal demand and the low quality waste heat supply. In this paper, an exemplary LTDH network was designed for 30 low energy demand residential houses, which...... is in line with a pilot project that is carrying out in Denmark with network supply/return temperature at 55oC/25 oC. The consumer domestic hot water (DHW) demand is supplied with a special designed district heating (DH) storage tank. The space heating (SH) demand is supplied with a low temperature radiator....... The network thermal and hydraulic conditions were simulated under steady state with an in-house district heating network design and simulation code. Through simulation, the overall system energetic and exergetic efficiencies were calculated and the exergy losses for the major district heating system...

  14. INTERNATIONAL COMPARISON OF RESIDENTIAL ENERGY USE: INDICATORS OF RESIDENTIAL ENERGY USE AND EFFICIENCY PART ONE: THE DATA BASE

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Ketoff, A.; Meyers, S.

    1981-05-01

    This summary report presents information on the end-uses of energy in the residential sector of seven major OECD countries over the period 1960-1978. Much of the information contained herein has never been published before. We present data on energy consumption by energy type and end-use for three to five different years for each country. Each year table is complemented by a set of indicators, which are assembled for the entire 20-year period at the end of each country listing. Finally, a set of key indicators from each country is displayed together in a table, allowing comparison for three periods: early (1960-63), pre-embargo (1970-73), and recent (1975-78). Analysis of these results, smoothing and interpolation of the data, addition of further data, and analytical comparison of in-country and cross-country trends will follow in the next phase of our work.

  15. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at

  16. Summary of Workshop: Barriers to Energy Efficient Residential Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max; Sherman, Max

    2008-01-10

    The objectives for this workshop were to bring together those with different viewpoints on the implementation of energy efficient ventilation in homes to share their perspectives. The primary benefit of the workshop is to allow the participants to get a broader understanding of the issues involved and thereby make themselves more able to achieve their own goals in this area. In order to achieve this objective each participant was asked to address four objectives from their point of view: (1) Drivers for energy efficient residential ventilation: Why is this an important issue? Who cares about it? Where is the demand: occupants, utilities, regulation, programs, etc? What does sustainability mean in this context? (2) Markets & Technologies: What products, services and systems are out there? What kinds of things are in the pipeline? What is being installed now? Are there regional or other trends? What are the technology interactions with other equipment and the envelope? (3) Barriers to Implementation: What is stopping decision makers from implementing energy-efficient residential ventilation systems? What kind of barriers are there: technological, cost, informational, structural, etc. What is the critical path? (4) Solutions: What can be done to overcome the barriers and how can/should we do it? What is the role of public vs. private institutions? Where can investments be made to save energy while improving the indoor environment? Ten participants prepared presentations for the workshop. Those presentations are included in sections at the end of this workshop report. These presentations provided the principal context for the discussions that happened during the workshop. Critical path issues were raised and potential solutions discussed during the workshop. As a secondary objective they have listed key issues and some potential consensus items which resulted from the discussions.

  17. Solar Adoption and Energy Consumption in the Residential Sector

    Science.gov (United States)

    McAllister, Joseph Andrew

    This dissertation analyzes the energy consumption behavior of residential adopters of solar photovoltaic systems (solar-PV). Based on large data sets from the San Diego region that have been assembled or otherwise acquired by the author, the dissertation quantifies changes in energy consumption after solar-PV installation and determines whether certain household characteristics are correlated with such changes. In doing so, it seeks to answer two related questions: First, "Do residential solar adopters increase or decrease their electricity consumption after they install a solar-PV system?" Assuming that certain categories of residential adopters increase and others decrease, the second question is "Which residential adopters increase and which decrease their consumption and why?" The database that was used to conduct this analysis includes information about 5,243 residential systems in San Diego Gas & Electric's (SDG&E) service territory installed between January 2007 and December 2010. San Diego is a national leader in the installation of small-scale solar-electric systems, with over 12,000 systems in the region installed as of January 2012, or around 14% of the total number installed in California. The author performed detailed characterization of a significant subset of the solar installations in the San Diego region. Assembled data included technical and economic characteristics of the systems themselves; the solar companies that sold and installed them; individual customer electric utility billing data; metered PV production data for a subgroup of these solar systems; and data about the properties where the systems are located. Primarily, the author was able to conduct an electricity consumption analysis at the individual household level for 2,410 PV systems installed in SDG&E service territory between January 2007 and December 2010. This analysis was designed to detect changes in electricity consumption from the pre-solar to the post-installation period. To

  18. Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system

    International Nuclear Information System (INIS)

    Jiang, Yibo; Xu, Jian; Sun, Yuanzhang; Wei, Congying; Wang, Jing; Ke, Deping; Li, Xiong; Yang, Jun; Peng, Xiaotao; Tang, Bowen

    2017-01-01

    Highlights: • Improving the utilization of wind power by the demand response of residential hybrid energy system. • An optimal scheduling of home energy management system integrating micro-CHP. • The scattered response capability of consumers is aggregated by demand bidding curve. • A stochastic day-ahead economic dispatch model considering demand response and wind power. - Abstract: As the installed capacity of wind power is growing, the stochastic variability of wind power leads to the mismatch of demand and generated power. Employing the regulating capability of demand to improve the utilization of wind power has become a new research direction. Meanwhile, the micro combined heat and power (micro-CHP) allows residential consumers to choose whether generating electricity by themselves or purchasing from the utility company, which forms a residential hybrid energy system. However, the impact of the demand response with hybrid energy system contained micro-CHP on the large-scale wind power utilization has not been analyzed quantitatively. This paper proposes an operation optimization model of the residential hybrid energy system based on price response, integrating micro-CHP and smart appliances intelligently. Moreover, a novel load aggregation method is adopted to centralize scattered response capability of residential load. At the power grid level, a day-ahead stochastic economic dispatch model considering demand response and wind power is constructed. Furthermore, simulation is conducted respectively on the modified 6-bus system and IEEE 118-bus system. The results show that with the method proposed, the wind power curtailment of the system decreases by 78% in 6-bus system. In the meantime, the energy costs of residential consumers and the operating costs of the power system reduced by 10.7% and 11.7% in 118-bus system, respectively.

  19. The 1992 Pacific Northwest Residential Energy Survey: Phase 1 : Book 1 : Getting Started.

    Energy Technology Data Exchange (ETDEWEB)

    Applied Management & Planning Group (firm); United States. Bonneville Power Administration. End-Use Research Section.

    1993-08-01

    This Executive Summary outlines the general processes employed in and the major findings from the conduct of Phase I of the Pacific Northwest Residential Energy Survey (PNWRES92-I) during the last quarter of 1992. This study was Bonneville`s third comprehensive residential survey of the region, conducted to provide data on energy usage, conservation awareness and behaviors, and associated consumer characteristics for use in forecasting and planning. The summary is divided into four sections: Background sets the stage with respect to the need for the survey, relates it to previous work, outlines the implementation processes, and summarizes the data products. Profiling the respondents summarizes the survey results under these six categories: Demographics; Housing Units; Room Inventory; Appliance Inventory; Air-Conditioning/Heating; Water-Heating; and Opinion. Reports and cross-tabulations describes the various individual documents. Bonneville Power Plus provides a short description of an Excel-spreadsheet-based software program that contains all of the tabulated material in a format that encourages browsing among the tables and charts, with special feature that they can be copied directly into other Windows-based documents.

  20. Building and occupant characteristics as determinants of residential energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Nieves, A.L.

    1981-10-01

    The major goals of the research are to gain insight into the probable effects of building energy performance standards on energy consumption; to obtain observations of actual residential energy consumption that could affirm or disaffirm comsumption estimates of the DOE 2.0A simulation model; and to investigate home owner's conservation investments and home purchase decisions. The first chapter covers the investigation of determinants of household energy consumption. The presentation begins with the underlying economic theory and its implications, and continues with a description of the data collection procedures, the formulation of variables, and then of data analysis and findings. In the second chapter the assumptions and limitations of the energy use projections generated by the DOE 2.0A model are discussed. Actual electricity data for the houses are then compared with results of the simulation. The third chapter contains information regarding households' willingness to make energy conserving investments and their ranking of various conservation features. In the final chapter conclusions and recommendations are presented with an emphasis on the policy implications of this study. (MCW)

  1. Facade Refurbishment Toolbox. Supporting the Design of Residential Energy Upgrades

    Directory of Open Access Journals (Sweden)

    Thaleia Konstantinou

    2014-07-01

    Full Text Available The starting point of the research is the need to refurbish existing residential building stock, in order to reduce its energy demand, which accounts for over one fourth of the energy consumption in the European Union. Refurbishment is a necessary step to reach the ambitious energy and decarbonisation targets for 2020 and 2050 that require an eventual reduction up to 90% in CO2 emissions. In this context, the rate and depth of refurbishment need to grow. The number of building to be renovated every year should increase, while the energy savings in renovated buildings should be over 60% reduction to current energy demand. To achieve that, not only is it necessary to find politics and incentives, but also to enable the building industry to design and construct effective refurbishment strategies. This research focuses on refurbishment of the building envelope, as it is very influential with regard to energy reduction. The early design phases are particularly important, as decisions taken during this stage can determine the success or failure of the design. Even though the design decisions made earlier can have bigger impact with lower cost and effort, most existing tools focus on post-design evaluation. The integration of all aspects during the early design phases is complex, particularly as far as energy efficient design is concerned. At this stage, architects are in search for a design direction to make an informed decision. If the designer is provided with an indication of how efficient refurbishment options are, it is possible to apply them as part of an integrated strategy rather than trying to add measures at later stages, after the strategy has been developed. Therefore, taking into account the need to refurbish residential buildings and the importance of integrated design of façade refurbishment strategies, the thesis aims at answering the following question. How can the energy upgrade potential of residential façade refurbishment

  2. Solar Heating and Cooling of Residential Buildings: Design of Systems.

    Science.gov (United States)

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This is the second of two training courses designed to develop the capability of practitioners in the home building industry to design solar heating and cooling systems. The course is organized in 23 modules to separate selected topics and to facilitate learning. Although a compact schedule of one week is shown, a variety of formats can be…

  3. Energy efficiency standards for residential and commercial equipment: Additional opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

    2004-08-02

    Energy efficiency standards set minimum levels of energy efficiency that must be met by new products. Depending on the dynamics of the market and the level of the standard, the effect on the market for a given product may be small, moderate, or large. Energy efficiency standards address a number of market failures that exist in the buildings sector. Decisions about efficiency levels often are made by people who will not be responsible for the energy bill, such as landlords or developers of commercial buildings. Many buildings are occupied for their entire lives by very temporary owners or renters, each unwilling to make long-term investments that would mostly reward subsequent users. And sometimes what looks like apathy about efficiency merely reflects inadequate information or time invested to evaluate it. In addition to these sector-specific market failures, energy efficiency standards address the endemic failure of energy prices to incorporate externalities. In the U.S., energy efficiency standards for consumer products were first implemented in California in 1977. National standards became effective starting in 1988. By the end of 2001, national standards were in effect for over a dozen residential appliances, as well as for a number of commercial sector products. Updated standards will take effect in the next few years for several products. Outside the U.S., over 30 countries have adopted minimum energy performance standards. Technologies and markets are dynamic, and additional opportunities to improve energy efficiency exist. There are two main avenues for extending energy efficiency standards. One is upgrading standards that already exist for specific products. The other is adopting standards for products that are not covered by existing standards. In the absence of new and upgraded energy efficiency standards, it is likely that many new products will enter the stock with lower levels of energy efficiency than would otherwise be the case. Once in the stock

  4. The performance of a residential heat pump operating with a nonazeotropic binary refrigerant mixture

    Science.gov (United States)

    Didion, D.; Mulroy, W.

    Results of laboratory measurement of the performance change of a substantially unmodified residential heat pump designed for 222 when charged with a non azeotropic, binary mixture of R1381 and R152a is presented. Results are presented for various sizes of fixed expansion devices. The effect of gliding temperature in the saturation zone was found to be small. The effect of compositions shift by flash distillation in the accumulator was found to measurably improve low temperature heating performance. It was further observed that some system modification (such as the addition of a receiver) could have further enhanced this low temperature heating performance improvement.

  5. 76 FR 56339 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnaces and...

    Science.gov (United States)

    2011-09-13

    ...-Conditioning and Warm Air Heating Equipment and Commercial and Industrial Refrigeration Equipment Manufacturing... Refrigeration Institute (AHRI) recommended that to avoid unnecessary burden, the existing test procedure..., and Refrigeration Institute's Directory of Certified Product Performance for Residential Furnaces and...

  6. Residential building energy estimation method based on the application of artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, S.; Kajl, S.

    1999-07-01

    The energy requirements of a residential building five to twenty-five stories high can be measured using a newly proposed analytical method based on artificial intelligence. The method is fast and provides a wide range of results such as total energy consumption values, power surges, and heating or cooling consumption values. A series of database were created to take into account the particularities which influence the energy consumption of a building. In this study, DOE-2 software was created for use in 8 apartment models. A total of 27 neural networks were used, 3 for the estimation of energy consumption in the corridor, and 24 for inside the apartments. Three user interfaces were created to facilitate the estimation of energy consumption. These were named the Energy Estimation Assistance System (EEAS) interfaces and are only accessible using MATLAB software. The input parameters for EEAS are: climatic region, exterior wall resistance, roofing resistance, type of windows, infiltration, number of storeys, and corridor ventilation system operating schedule. By changing the parameters, the EEAS can determine annual heating, cooling and basic energy consumption levels for apartments and corridors. 2 tabs., 2 figs.

  7. Efficient Energy Management for a Grid-Tied Residential Microgrid

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In this paper, an effective energy management system (EMS) for application in integrated building and microgrid system is introduced and implemented as a multi-objective optimization problem. The proposed architecture covers different key modelling aspects such as distributed heat and electricity...... consumption costs accordingly, but also to satisfy user’s comfort level through optimal scheduling and operation management of both demand and supply sides.......In this paper, an effective energy management system (EMS) for application in integrated building and microgrid system is introduced and implemented as a multi-objective optimization problem. The proposed architecture covers different key modelling aspects such as distributed heat and electricity...

  8. Simulation study on reduction of peak power demand and energy consumption in residential houses with solar thermal and PV systems; Taiyo energy riyo jutaku no fuka heijunka oyobi energy sakugen koka no simulation ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Endo, T. [Yokohama City Office, Yokohama (Japan); Udagawa, M. [Kogakuin Univ., Tokyo (Japan). Faculty of Engineering

    1995-11-20

    In this study, taking the all factors involved in the energy consumption in residential houses as subjects, the effectiveness of the solar PV system and solar thermal utilizing system in residential houses has been studied by simulating a model residential house considering the improvement of the residual environment in the future. Therefore, a model residual house is assumed, 18 kinds of combinations of construction style, cooling and heating type and solar energy utilizing form are assumed and year round simulation is carried out. The conclusions obtained by the simulation are as follows. The energy consumption in residential houses may decrease greatly by using a solar hot water supplying system. If combined with a solar PV system, the energy consumption in one year is about 8.7 to 9.7 MWh. The combined use of a solar thermal utilizing system and a PV system is more effective to reduce the second-time energy in comparison with the PV system only. 36% of the space heating energy consumption may be decreased by using the solar space heating system, but the decrease effect of the energy consumption of the solar space heating system is smaller than the solar hot water supplying system. 12 refs., 26 figs., 3 tabs.

  9. Changes in the Seoul Metropolitan Area Urban Heat Environment with Residential Redevelopment

    Science.gov (United States)

    Hong, Je-Woo; Hong, Jinkyu

    2016-04-01

    Since the industrial revolution, the geographical extent of cities has increased around the world. In particular, following three decades of rapid regional economic growth, many Asian megacities have emerged and continue to expand. Short-term urban redevelopment is, therefore, inevitable. However, in this region the microclimatic impacts of urban redevelopment have not been extensively investigated using long-term in-situ observations. In this study, changes in surface sensible heat exchange, heat storage, and anthropogenic heat emissions due to urban residential redevelopment were quantified and analyzed based on a three-year micrometeorological record from the Seoul metropolitan area. The results show that following urban redevelopment of compact high-rise residential buildings, 1) the daily minimum air temperature near the ground surface increased by ˜0.6 K; 2) the ratio between surface sensible heat and net radiation increased by ˜ 9% (summer) to 31% (winter), anthropogenic heat emissions increased by 12 Wm-2 (spring) to 26 Wm-2 (summer), and daily maximum heat storage ranged by 35 Wm-2 (spring) to 55 Wm-2 (summer), and; 3) there was a transition of local circulation with changes in the surface properties of heat sources and roughness.

  10. Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

    1980-05-01

    A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

  11. Next-generation heat pump systems in residential buildings and commercial premises; Naesta generations vaermepumpssystem i bostaeder och lokaler

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Lindahl, Markus; Alsbjer, Markus; Nordman, Roger; Rolfsman, Lennart; Axell, Monica

    2009-07-01

    Summarising, the following conclusions can be drawn from this work. - Installation of a heat pump system is a very efficient way of reducing a building's energy demand without making any greater changes to the building's climate screen, and can therefore assist Sweden's achievement of its energy efficiency improvement targets. - A new generation of cost-effective smaller heat pumps is needed for installation in new detached houses or those being renovated and upgraded. - There also seems to be an excellent market potential for heat pumps that are larger than has previously been common: there should be good prospects for selling them for use in apartment buildings and in commercial or similar premises. - Heat pump installations are particularly competitive in applications where there are simultaneous heating and cooling demands in the property, and also in those cases where heating is required for most of the year and cooling for some other part of the year. If these suggested system arrangements are to be fully realised, there will be a need for further research in certain cases. Particularly, there is a need for research and development of more efficient pumps, fans and speed-controlled compressors in order to get such products on to the market. Performance measurements and follow-up of real systems are needed in order to obtain a clear picture of the efficiency of both present-day and proposed systems. This knowledge is essential for further development of systems, not only for residential buildings but also, even more importantly, for commercial and similar premises. Actual heating and cooling requirements in different types of non-residential premises need to be known more accurately in order to decide how systems should be controlled in order to minimise total energy use. Much indicates that future detached houses will be more energy-efficient, which could have the undesirable result of greater use of direct electric heating, as the investment

  12. Residential sector dossier. Energy savings as target; Dossier residentiel. Les economies d'energie en point de mire

    Energy Technology Data Exchange (ETDEWEB)

    Sappa, F.

    2004-05-01

    With the 2003 heat wave in Europe, the sales of air conditioning split systems have reached records with a progress of about 40%. Beside these data, it is a new perception of these devices that is progressively gaining the consumers mind, in particular in the residential sector which has been considered as 'very promising' by air conditioning professionals, but which has never reached its expected development in France, so far. Manufacturers are more and more looking towards this sector with the energy savings and the environment protection as main arguments. The French scientific and technical committee of air conditioning industries (Costic) is carrying out several actions in parallel which aim at giving help to professionals for the realisation of quality air conditioning installations. This dossier takes stock of the technical and regulatory aspects of residential air conditioning (choice of appliances, evacuation of condensates, air flow, abatement of energy consumptions and noise pollution, Vivrelec offer of Electricite de France (EdF), improvement of esthetics and efficiency..). Some examples of innovative realizations illustrate this dossier: high environmental quality house with 77% of space heating savings, combination of ventilation and radiant ceiling. (J.S.)

  13. A District Approach to Building Renovation for the Integral Energy Redevelopment of Existing Residential Areas

    Directory of Open Access Journals (Sweden)

    Mira Conci

    2017-05-01

    Full Text Available Building energy renovation quotas are not currently being met due to unfavorable conditions such as complex building regulations, limited investment incentives, historical preservation priorities, and technical limitations. The traditional strategy has been to incrementally lower the energy consumption of the building stock, instead of raising the efficiency of the energy supply through a broader use of renewable sources. This strategy requires an integral redefinition of the approach to energy building renovations. The joint project SWIVT elaborates on a district redevelopment strategy that combines a reduction in the energy demand of existing buildings and their physical interconnection within a local micro-grid and heating network. The district is equipped with energy generation and distribution technologies as well as hybrid thermal and electrical energy storage systems, steered by an optimizing energy management controller. This strategy is explored through three scenarios designed for an existing residential area in Darmstadt, Germany, and benchmarked against measured data. Presented findings show that a total primary energy balance at least 30% lower than that of a standard building renovation can be achieved by a cluster of buildings with different thermal qualities and connected energy generation, conversion, and storage systems, with only minimal physical intervention to existing buildings.

  14. Performance Assessment of a Hybrid Solar-Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis

    Directory of Open Access Journals (Sweden)

    Yasser Abbasi

    2016-01-01

    Full Text Available This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground source heat exchanger, rooftop photovoltaic panels, and a heat pump cycle. Exergetic efficiency of the solar-geothermal heat pump system does not exceed 10 percent, and most exergy destruction takes place in photovoltaic panel, condenser, and evaporator. Although SI of PV system remains constant during a year, SI of GSHP varies depending on cooling and heating mode. The results also show that utilization of this hybrid system can reduce CO2 emissions by almost 70 tons per year.

  15. Building and household X-factors and energy consumption at the residential sector

    International Nuclear Information System (INIS)

    Estiri, Hossein

    2014-01-01

    Energy use in residential buildings is one of the major sources of greenhouse gas emission production from cities. Using microdata from the 2009 Residential Energy Consumption Survey (RECS), this study applies structural equation modeling to analyze the direct, indirect, and total impacts of household and building characteristics on residential energy consumption. Results demonstrate that the direct impact of household characteristics on residential energy consumption is significantly smaller than the corresponding impact from the buildings. However, accounting for the indirect impact of household characteristics on energy consumption, through choice of the housing unit characteristics, the total impact of households on energy consumption is just slightly smaller than that of buildings. Outcomes of this paper call for smart policies to incorporate housing choice processes in managing residential energy consumption. - Highlights: • Households indirectly influence residential energy use through housing choice. • Households' total impact on energy use is comparable to that of buildings. • Understanding households' indirect impact will enhance residential energy policy. • Smart energy policies are needed to target both direct and indirect effects

  16. A Reflection on Low Energy Renovation of Residential Complexes in Southern Europe

    Directory of Open Access Journals (Sweden)

    Helena Corvacho

    2016-09-01

    Full Text Available The transformation of European existing building stock towards very low energy buildings requires a new approach. In this context, it seems reasonable to think that buildings should no longer be renovated individually but as part of a global energy system. Focusing on larger urban units may present some scale advantages and may constitute an opportunity to change the urban environment in a smart energy way. Specificities of Southern European countries are addressed. Due either to the climate or the life style, there are large differences in energy consumption per dwelling among southern and northern European countries. How much heating energy will be saved by over-insulating building envelopes if people do not feel the need to heat their houses in the first place? In addition, real energy use in buildings frequently shows major differences with respect to the predicted consumption. The definition of realistic solutions demands the availability of realistic predictions. A case of a residential complex in Portugal is used to illustrate the main questions and to conclude that moving from a building to a group of buildings scale may be an interesting challenge for policy makers to look closer in the near future.

  17. Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Cassard, H.; Denholm, P.; Ong, S.

    2011-02-01

    This paper examines the break-even cost for residential rooftop solar water heating (SWH) technology, defined as the point where the cost of the energy saved with a SWH system equals the cost of a conventional heating fuel purchased from the grid (either electricity or natural gas). We examine the break-even cost for the largest 1,000 electric and natural gas utilities serving residential customers in the United States as of 2008. Currently, the break-even cost of SWH in the United States varies by more than a factor of five for both electricity and natural gas, despite a much smaller variation in the amount of energy saved by the systems (a factor of approximately one and a half). The break-even price for natural gas is lower than that for electricity due to a lower fuel cost. We also consider the relationship between SWH price and solar fraction and examine the key drivers behind break-even costs. Overall, the key drivers of the break-even cost of SWH are a combination of fuel price, local incentives, and technical factors including the solar resource location, system size, and hot water draw.

  18. Residential energy use in Mexico: Structure, evolution, environmental impacts, and savings potential

    Energy Technology Data Exchange (ETDEWEB)

    Masera, O.; Friedmann, R.; deBuen, O.

    1993-05-01

    This article examines the characteristics of residential energy use in Mexico, its environmental impacts, and the savings potential of the major end-uses. The main options and barriers to increase the efficiency of energy use are discussed. The energy analysis is based on a disaggregation of residential energy use by end-uses. The dynamics of the evolution of the residential energy sector during the past 20 years are also addressed when the information is available. Major areas for research and for innovative decision-making are identified and prioritized.

  19. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  20. Residential bioenergy heating: A study of consumer perceptions of improved woodstoves

    International Nuclear Information System (INIS)

    Nyrud, Anders Q.; Roos, Anders; Sande, Jon Bingen

    2008-01-01

    Consumers' choices play a key role for the development of biomass heating in the residential sector. The city of Oslo has granted subsidies to households who change to new, improved low-emission woodstoves. The purpose of this study is to expand the knowledge about users' experiences and attitudes to residential biomass heating. An adapted model of the Theory of Planned Behavior was used to model households' inclination to continue using their woodstoves for heating. More than 800 questionnaires were collected from households that recently had invested in an improved woodstove. The respondents were satisfied with the new woodstoves. The respondents also considered themselves competent to use and maintain the stove and few had problems acquiring fuelwood. Further analyses showed that the intention to continue to use the new woodstove depends on economic benefits, heating performance, perceived time and effort to operate the stove, environmental effects of heating as well as perceived subjective norm. The results imply that when marketing a modern technology for bioenergy heating, both public authorities and producers should consider issues related to the users' perception of subjective norm, such as perceived status of using bioenergy or environmental concerns, when designing campaigns to promote the use of woodstoves

  1. Exploring efficacy of residential energy efficiency programs in Florida

    Science.gov (United States)

    Taylor, Nicholas Wade

    Electric utilities, government agencies, and private interests in the U.S. have committed and continue to invest substantial resources in the pursuit of energy efficiency and conservation through demand-side management (DSM) programs. Program investments, and the demand for impact evaluations that accompany them, are projected to grow in coming years due to increased pressure from state-level energy regulation, costs and challenges of building additional production capacity, fuel costs and potential carbon or renewable energy regulation. This dissertation provides detailed analyses of ex-post energy savings from energy efficiency programs in three key sectors of residential buildings: new, single-family, detached homes; retrofits to existing single-family, detached homes; and retrofits to existing multifamily housing units. Each of the energy efficiency programs analyzed resulted in statistically significant energy savings at the full program group level, yet savings for individual participants and participant subgroups were highly variable. Even though savings estimates were statistically greater than zero, those energy savings did not always meet expectations. Results also show that high variability in energy savings among participant groups or subgroups can negatively impact overall program performance and can undermine marketing efforts for future participation. Design, implementation, and continued support of conservation programs based solely on deemed or projected savings is inherently counter to the pursuit of meaningful energy conservation and reductions in greenhouse gas emissions. To fully understand and optimize program impacts, consistent and robust measurement and verification protocols must be instituted in the design phase and maintained over time. Furthermore, marketing for program participation must target those who have the greatest opportunity for savings. In most utility territories it is not possible to gain access to the type of large scale

  2. Reaching people with energy conservation information: four statewide residential case studies

    Energy Technology Data Exchange (ETDEWEB)

    Peelle, E.; Braid, R.B.; Jones, D.W.; Reed, J.H.

    1983-09-01

    Four state residential energy conservation programs are reviewed in terms of their origins, evolutions, purposes and goals, administration, organization, and outcomes. The four programs chosen were selected from among 30 nominated by state energy offices and regional Department of Energy personnel as being illustrative in terms of organization and/or outcomes. While intended primarily for state-level program managers and staff, the profiles of programs, conclusions, and recommendations should be useful to anyone interested in developing viable, action-oriented conservation programs. The four case studies included Oregon's Master Conserver program, Oklahoma's energy education project for low-income and elderly families, Virginia's workshops for heating dealers service and contractors, and Maine's three energy education projects - the Energy Bus, Energy Conservation Month, and the Home Energy Check-up. All four programs utilized Energy Extension Service (EES) funds from the federal government, and three were directly managed through the state EES organization. The findings of the study indicate that these programs (1) had flexibility to experiment, iterate, and reorganize as a result of their initial experiences, (2) made extensive use of networking to involve local groups in program delivery, (3) employed a large variety of delivery methods, and (4) made substantial efforts to tailor literature and handouts to the target audiences.

  3. Phase Change Materials as a solution to improve energy efficiency in Portuguese residential buildings

    Science.gov (United States)

    Araújo, C.; Pinheiro, A.; Castro, M. F.; Bragança, L.

    2017-10-01

    The buildings sector contributes to 30% of annual greenhouse gas emissions and consumes about 40% of energy. However, this consumption can be reduced by between 30% and 80% through commercially available technologies. The consumption of energy in the dwellings is mostly associated with the heating and cooling of the interior environment. One solution to reduce these consumptions is the implementation of technologies and Phase Change Materials (PCMs) for Thermal Energy Storage (TES). So, the aim of this work is to analyse the advantages, in terms of decreasing energy consumption, associated with the application of PCMs in Portuguese residential buildings. For this, eight PCMs with different melting ranges were analysed. These materials were analysed through a dynamic simulation performed with EnergyPlus software. The results achieved, showed that the materials studied allow to reduce up to 13% of the heating needs and up to 92% of the cooling needs of a building located in the North of Portugal, at an altitude higher than 100m.

  4. Intelligent demand side management of residential building energy systems

    Science.gov (United States)

    Sinha, Maruti N.

    Advent of modern sensing technologies, data processing capabilities and rising cost of energy are driving the implementation of intelligent systems in buildings and houses which constitute 41% of total energy consumption. The primary motivation has been to provide a framework for demand-side management and to improve overall reliability. The entire formulation is to be implemented on NILM (Non-Intrusive Load Monitoring System), a smart meter. This is going to play a vital role in the future of demand side management. Utilities have started deploying smart meters throughout the world which will essentially help to establish communication between utility and consumers. This research is focused on investigation of a suitable thermal model of residential house, building up control system and developing diagnostic and energy usage forecast tool. The present work has considered measurement based approach to pursue. Identification of building thermal parameters is the very first step towards developing performance measurement and controls. The proposed identification technique is PEM (Prediction Error Method) based, discrete state-space model. The two different models have been devised. First model is focused toward energy usage forecast and diagnostics. Here one of the novel idea has been investigated which takes integral of thermal capacity to identify thermal model of house. The purpose of second identification is to build up a model for control strategy. The controller should be able to take into account the weather forecast information, deal with the operating point constraints and at the same time minimize the energy consumption. To design an optimal controller, MPC (Model Predictive Control) scheme has been implemented instead of present thermostatic/hysteretic control. This is a receding horizon approach. Capability of the proposed schemes has also been investigated.

  5. IEA Solar Heating and Cooling Task 37: Solar facade for residential buildings - Refurbishment with extremely low energy consumption; IEA SHC Task 37: Solarfassade fuer Wohnbau - Erneuerungen mit tiefstem Energieverbrauch - die bauphysikalischen, energetischen und architektonischen Potentiale - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.; Fent, G.

    2009-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at solar facades and discusses their structural-physical, energetic and architectural potentials. The insulation of a building's envelope is the key issue discussed in this paper. Traditional insulation methods (mineral wool or wood fibre) can produce walls 50 to 60 cm thick, making the renovation of old buildings to high standards a lot more difficult. The 'Lucido' solar facade is described. This is a highly efficient insulation system which absorbs the solar radiation and stores it as heat in the outer layer of the facade, thus reducing the amount of conventional insulation needed. The basic components - protective, transparent glazing with an air gap and a solid wood absorber followed by a layer of regular insulation - are described. During the summer the lamellae act as a shading device reducing the impact of the sun thus preventing overheating, while in the winter the lamellae enhance the absorption of solar radiation. The report discusses the simulation of the system's dynamic insulation properties and ecological factors and presents examples of the system's use in refurbishment projects.

  6. Estimation of the Relationship Between Remotely Sensed Anthropogenic Heat Discharge and Building Energy Use

    Science.gov (United States)

    Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei

    2012-01-01

    This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. The anthropogenic heat discharge was estimated with a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. The building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/Energy Information Administration survey data, the Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data. The spatial patterns of anthropogenic heat discharge and energy use from residential and commercial buildings were analyzed and compared. Quantitative relationships were evaluated across multiple scales from pixel aggregation to census block. The results indicate that anthropogenic heat discharge is consistent with building energy use in terms of the spatial pattern, and that building energy use accounts for a significant fraction of anthropogenic heat discharge. The research also implies that the relationship between anthropogenic heat discharge and building energy use is scale-dependent. The simultaneous estimation of anthropogenic heat discharge and building energy use via two independent methods improves the understanding of the surface energy balance in an urban landscape. The anthropogenic heat discharge derived from remote sensing and meteorological data may be able to serve as a spatial distribution proxy for spatially-resolved building energy use, and even for fossil-fuel CO2 emissions if additional factors are considered.

  7. Characterizing Synergistic Water and Energy Efficiency at the Residential Scale Using a Cost Abatement Curve Approach

    Science.gov (United States)

    Stillwell, A. S.; Chini, C. M.; Schreiber, K. L.; Barker, Z. A.

    2015-12-01

    Energy and water are two increasingly correlated resources. Electricity generation at thermoelectric power plants requires cooling such that large water withdrawal and consumption rates are associated with electricity consumption. Drinking water and wastewater treatment require significant electricity inputs to clean, disinfect, and pump water. Due to this energy-water nexus, energy efficiency measures might be a cost-effective approach to reducing water use and water efficiency measures might support energy savings as well. This research characterizes the cost-effectiveness of different efficiency approaches in households by quantifying the direct and indirect water and energy savings that could be realized through efficiency measures, such as low-flow fixtures, energy and water efficient appliances, distributed generation, and solar water heating. Potential energy and water savings from these efficiency measures was analyzed in a product-lifetime adjusted economic model comparing efficiency measures to conventional counterparts. Results were displayed as cost abatement curves indicating the most economical measures to implement for a target reduction in water and/or energy consumption. These cost abatement curves are useful in supporting market innovation and investment in residential-scale efficiency.

  8. How might residential PV change the energy demand curve in Poland

    Directory of Open Access Journals (Sweden)

    Jurasz Jakub

    2016-01-01

    Full Text Available Photovoltaics (PV in terms of installed capacity play a minor role in the portfolio of renewable energy sources (RES in Poland. However current market tendencies indicate that residential PV installations are gaining on popularity and may in future significantly contribute to covering national energy demand. This study investigates the potential impact of numerous residential PV installations on the shape and statistical properties of the polish energy demand curve. Analysis employed statistical data on mean household energy consumption in different districts, typical energy demand patterns and hourly values of irradiation for the year 2012. Obtained results indicate that there is a possibility to integrate in total as much as 300 000 residential PV installations (0.9 GW from which generated energy will be utilized by households within given district. Further analysis has shown that to some extent increasing number of residential PV decreases the value of energy demand coefficient of variation.

  9. Pilot Residential Deep Energy Retrofits and the PNNL Lab Homes

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Chandra, Subrato; Parker, Graham B.; Sande, Susan; Blanchard, Jeremy; Stroer, Dennis; McIlvaine, Janet; Chasar, David; Beal, David; Sutherland, Karen

    2012-01-01

    manufactured homes procured with minimal energy-efficiency specifications typical of existing homes in the region, and sited on the PNNL campus. The Lab Homes serve as a flexible test facility (the first of its kind in the Pacific Northwest) to rapidly evaluate energy-efficient and grid-smart technologies that are applicable to residential construction.

  10. Renewable energy production support schemes for residential-scale solar photovoltaic systems in Nordic conditions

    International Nuclear Information System (INIS)

    Hirvonen, Janne; Kayo, Genku; Cao, Sunliang; Hasan, Ala; Sirén, Kai

    2015-01-01

    The objective of this study was to examine the effect of production-based support schemes on the economic feasibility of residential-scale PV systems (1–10 kW) in Finland. This was done by calculating the payback time for various sizes of newly installed PV systems for a Finnish detached house with district heating. Three types of economic support schemes (guaranteed selling price, fixed premiums and self-consumption incentives) were tested in an hourly simulation. The load of the building was based on real-life measurements, while PV output was simulated with TRNSYS software. The energy results were post-processed with economic data in MATLAB to find the payback time. Hourly electricity prices from the Nordic energy market were used with PV system prices from Finnish companies. Unsubsidised residential PV systems in Finland had payback times of more than 40 years. The production-based support for PV generation needs to be two to three times the buying price of electricity, to make it possible to pay back the initial investment in 20 years. Low capacity systems with more than 50% self-consumption (under 3 kW) were favoured by self-consumption incentives, while high capacity systems with less than 40% self-consumption (over 5 kW) were favoured by the FIT-type support schemes. - Highlights: • Unsubsidised residential PV is uneconomical in Finland. • Support rate must be 2 times the electricity price for reasonable payback time. • Even using all electricity on-site is not profitable enough without support. • Assumed real interest rate had great influence on payback time. • Hourly electricity prices are much lower than average values from Finnish statistics

  11. SOME SPECIFIC FEATURES OF ENERGY CONSUMPTION IN MODERN RESIDENTIAL BUILDINGS

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2018-01-01

    Full Text Available Over the past 20 years there have been significant changes in the customer requirements for housing in the countries of the former USSR. Besides, new materials and construction products, such as the ones for sealed windows and balcony doors have appeared in the market. The number of vacant flats with the heating off in the winter significantly increased that may cause condensation on the surfaces of interroom partitions and the formation of mold. Meanwhile, the requirements for lower energy consumption are constantly increasing, that is especially pronouncedly manifested in the growth of normative values of thermal resistance of enclosing structures of buildings and in the increased interest in the use of secondary energy resources extracted from the air and effluent wastewater. The present article describes the method to prevent moisture condensation on the fencing of adjacent premises with different temperatures containing heating systems and the use of waste heat removed from the room exhaust air. For quick emergency switching of in-house systems of heat and gas supply to outdoor mobile sources of heat and gas it is recommended to install special taps with connectors insulated in special niches in the walls or other parts of buildings considering the possibility of placing them close to the outer mobile sources of heat and gas. In the case of heating the building with the aid of a roof gas boiler or by doorto-door heaters fueled by gas, a single pipeline (collector, equipped with an additional device for the connection of emergency gas supply is being put along the wall. In order to reduce specific heat consumption for heating of buildings it is recommended to increase the net enclosure volume of buildings and to improve their form in various ways, including by combining two or more adjacent low-rise buildings in one secondary building with increasing height and with the broadening of either or each side for modernization and reconstruction

  12. Evaluating Cool Impervious Surfaces: Application to an Energy-Efficient Residential Roof and to City Pavements

    Science.gov (United States)

    Rosado, Pablo Javier

    heating savings of 4% and electric heating savings of 3%. The slightly positive fractional annual heating energy savings likely resulted from the tile roof's high thermal capacitance, which increased the overnight temperature of the attic air. Thus cool tile roofs should be perceived as a technology that provides energy and environmental benefits during the cooling season as well as the heating season. The second topic investigates the direct and indirect effects of cool pavements on the energy use of California's building stock. First, a simple urban canyon model was developed to calculate the canyon albedo after the user provides the solar position, canyon orientation, and dimensions of the canyon walls, road, and setbacks. Next, a method is presented to correct the values of temperature changes obtained from previous urban climate models to values that would be obtained from canyon geometries that distinguish between road and setbacks (e.g. sidewalk, front yard). The new canyon model is used to scale the temperature changes obtained from a recent urban climate model that simulated the climatological impact of cool pavements on various California cities. The adjusted temperature changes are then combined with building energy simulations to investigate the effect of cool pavements on the cooling, heating, and lighting energy uses of buildings as well as the environmental impact related to these energy uses. Net (direct + indirect) conditioning (cooling + heating) energy savings and environmental savings from cool pavements were smaller in residential buildings than in commercial buildings. Additionally, residential buildings strongly dominate the building stock in all of the evaluated cities. Therefore, even though most cities yielded conditioning energy and environmental savings, they were small due to the minuscule savings from the residential buildings. When increasing the albedo by 0.20 of all public pavements in different California cities, Los Angeles was the city

  13. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season

    International Nuclear Information System (INIS)

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys

  14. Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems

    International Nuclear Information System (INIS)

    Pearce, J.M.

    2009-01-01

    The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV + CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV-generated electricity and CHP-generated heat. A method to determine the maximum percent of PV-generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV + CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five. (author)

  15. Next Step Toward Widespread Residential Deep Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    McIlvaine, J.; Saunders, S.; Bordelon, E.; Baden, S.; Elam, L.; Martin, E.

    2013-07-01

    The complexity of deep energy retrofits warrants additional training to successfully manage multiple improvements that will change whole house air, heat, and moisture flow dynamics. The home performance contracting industry has responded to these challenges by aggregating skilled labor for assessment of and implementation under one umbrella. Two emerging business models are profiled that seek to resolve many of the challenges, weaknesses, opportunities, and threats described for the conventional business models.

  16. The Next Step Toward Widespread Residential Deep Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    McIlvaine, J. [Building American Partnership for Residential Construction (BA-PIRC), Cocoa, FL (United States); Martin, E. [Building American Partnership for Residential Construction (BA-PIRC), Cocoa, FL (United States); Saunders, S. [Building American Partnership for Residential Construction (BA-PIRC), Cocoa, FL (United States); Bordelon, E. [Building American Partnership for Residential Construction (BA-PIRC), Cocoa, FL (United States); Baden, S. [Building American Partnership for Residential Construction (BA-PIRC), Cocoa, FL (United States); Elam, L. [Building American Partnership for Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2013-07-01

    The complexity of deep energy retrofits warrants additional training to successfully manage multiple improvements that will change whole house air, heat, and moisture flow dynamics. The home performance contracting industry has responded to these challenges by aggregating skilled labor for assessment of and implementation under one umbrella. Two emerging business models are profiled that seek to resolve many of the challenges, weaknesses, opportunities, and threats described for the conventional business models.

  17. Effect of heat recovery water heater system on the performance of residential split air conditioner using hydrocarbon refrigerant (HCR22)

    Science.gov (United States)

    Aziz, A.; Thalal; Amri, I.; Herisiswanto; Mainil, A. K.

    2017-09-01

    This This paper presents the performance of residential split air conditioner (RSAC) using hydrocarbon refrigerant (HCR22) as the effect on the use of heat recovery water heater system (HRWHS). In this study, RSAC was modified with addition of dummy condenser (trombone coil type) as heat recovery water heater system (HRWHS). This HRWHS is installed between a compressor and a condenser by absorbing a part of condenser waste heat. The results show that RSAC with HRWHS is adequate to generate hot water with the temperature range about 46.58˚C - 48.81˚C when compared to without HRWHS and the use of dummy condenser does not give significant effect to the split air conditioner performance. When the use of HRWHS, the refrigerant charge has increase about 19.05%, the compressor power consumption has slightly increase about 1.42% where cooling capacity almost the same with slightly different about 0.39%. The condenser heat rejection is lower about 2.68% and the COP has slightly increased about 1.05% when compared to without HRWHS. The use of HRWHS provide free hot water, it means there is energy saving for heating water without negative impact to the system performance of RSAC.

  18. Pacific Northwest residential energy survey. Volume 9. Climate Zone 1 cross-tabulations

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Responses for Climate Zone 1 to fifty questions asked during the survey (plus four variables computed from responses to several other questions) are presented. Climate Zone 1, defined according to the sum of heating and cooling degree days, amounts to less than 6000. The fifty questions were cross-tabulated against responses to nine questions which represent key explanatory characteristics of residential energy use. The nine key questions are: means of payment for housing; type of dwelling; year dwelling built; total square-footage of living space; type of fuel for main heating system; combined 1978 income; unit cost of electricity; annual electricity consumption; and annual natural gas consumption. The fifty questions and four computed variables which were cross-tabulated against the above fall into six categories; dwelling characteristics; heating and air-conditioning systems; water heating; appliances; demographic and dwelling characteristics; and insulation. The survey was conducted throughout the states of Washington, Oregon, Idaho, and Montana, with a total of 4030 households sampled; 1873 households were sampled in Climate Zone 1. Information in 54 tables is explained. (MCW)

  19. Pacific Northwest residential energy survey. Volume 11. Climate Zone 3 cross-tabulations

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Responses for Climate Zone 3 to fifty questions asked during the survey (plus four variables computed from responses to several other questions) are presented. Climate Zone 3 is defined according to the sum of heating and cooling degree days, and amounts to 7000 to 7999. A map outlines these four zones. The fifty questions were cross-tabulated against responses to nine questions which represent key explanatory characteristics of residential energy use. The nine key questions are: means of payment for housing; type of dwelling; year dwelling built; total square-footage of living space; type of fuel for main heating system; combined 1978 income; unit cost of electricity; annual electricity consumption; and annual natural gas consumption. The fifty questions and four computed variables which were cross-tabulated against the above fall into six categories: dwelling characteristics; heating and air-conditioning systems; water heating; appliances; demographic and dwelling characteristics; and insulation. The survey was conducted throughout the states of Washington, Oregon, Idaho, and Montana, with a total of 4030 households sampled. 480 households were sampled in Climate Zone 3. Information on 54 tables is explained. (MCW)

  20. Using Radio Irregularity for Increasing Residential Energy Awareness

    Directory of Open Access Journals (Sweden)

    A. Miljković

    2012-06-01

    Full Text Available Radio irregularity phenomenon is often considered as a shortcoming of wireless networks. In this paper, the method of using radio irregularity as an efficient human presence detection sensor in smart homes is presented. The method is mainly based on monitoring variations of the received signal strength indicator (RSSI within the messages used for the communication between wireless smart power outlets. The radio signals used for the inter-outlets communication can be absorbed, diffracted or reflected by objects in their propagation paths. When a human enters the existing radio communication field, the variation of the signal strength at the receiver is even more expressed. Based on the detected changes and compared to the initial thresholds set during the initialization phase, the system detects human presence. The proposed solution increases user awareness and automates the power control in households, with the primary goal to contribute in residential energy savings. Compared to conventional sensor networks, this approach preserves the sensorial intelligence, simplicity and low installation costs, without the need for additional sensors integration.

  1. Residential energy contracts and the 28 day rule

    International Nuclear Information System (INIS)

    Littlechild, Stephen

    2006-01-01

    What measures are needed to protect customers when a utility market is first opened to competition? In the UK, residential (domestic) customers must be able to terminate energy contracts at 28 days' notice. This rule was introduced as a transitional protection for customers and for competition. However, the regulatory justification for the rule seems to have evolved over time. Removing the rule could have a number of advantages, including the development of fixed-price fixed-term contracts. The advantages of retaining the rule are questionable. In other retail sectors there is no regulatory concern or requirement of this kind. UK electricity suppliers have begun to offer capped prices for specified periods of time, suggesting that there is a growing customer demand for this. Fixed-price fixed-term contracts are a common form of competition in Scandinavia. The 28 day rule no longer seems necessary to protect customers and is more likely to distort than to protect competition. In retrospect, it would have been preferable not to introduce the rule in the first place. (author)

  2. Consistent cost curves for identification of optimal energy savings across industry and residential sectors

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik; Baldini, Mattia

    with constructing and applying the cost curves in modelling: • Cost curves do not have the same cost interpretation across economic subsectors and end-use technologies (investment cost for equipment varies – including/excluding installation – adaptation costs – indirect production costs) • The time issue of when...... the costs are incurred and savings (difference in discount rates both private and social) • The issue of marginal investment in a case of replacement anyway or a full investment in the energy saving technology • Implementation costs (and probability of investment) differs across sectors • Cost saving......, the difference between marginal investment costs in residential heating of a more efficient building element (windows) in a larger renovation project compared to the costs of just replacing the windows. This is done based on some of the results from Zvingilaite & Klinge Jacobsen 2016. We compare to the results...

  3. Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Hockett, S.

    2010-06-01

    This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

  4. New Hampshire Carbon Challenge: Reducing Residential Energy Use and Greenhouse Gas Emissions

    Science.gov (United States)

    Schloss, A. L.; Bartlett, D.; Blaha, D.; Skoglund, C.; Dundorf, J.; Froburg, E.; Pasinella, B.

    2007-12-01

    The New Hampshire Carbon Challenge is an initiative of the Institute for the Study of Earth, Oceans and Space at the University of New Hampshire. Our goal is to educate New Hampshire residents about climate change and also encourage them to reduce their household greenhouse gas emissions by 10,000 pounds. The Northeast region is undergoing climate changes consistent with those expected due to increasing levels of CO2 in the atmosphere, while also contributing to climate change as the world's seventh largest source of CO2 emissions. In the USA, approximately 40 percent of CO2 emissions from fossil fuel combustion come from residential energy consumption for space heating, electricity usage, and transportation. Homeowners typically are not aware that modest energy reductions can result in significant carbon savings. Most campaigns that raise awareness of climate change and residential energy usage disseminate information to consumers through newspaper articles, brochures, websites, or other traditional means of communication. These information-only campaigns have not been very effective in changing residential energy consumption. Bombarded with information in their daily lives, the public has become quite adept at tuning most of it out. When much of the information they receive about climate change is confusing and contradictory, residents have even less incentive to change their behavior. The Challenge is unique in that it couples accurate information about climate change with concrete actions homeowners can take to reduce their carbon emissions. Our strategy is to utilize the tools of Community Based Social Marketing, which has been shown to be effective in changing behavior, and also to leverage existing networks including the NH Department of Environmental Services, UNH Cooperative Extension, faith-based communities, municipal energy committees and Climate Project volunteers, to effectively reach residents throughout the state. The response to our program has

  5. Impact of conservation measures on Pacific Northwest residential energy consumption. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Moe, R.J.; Owzarski, S.L.; Streit, L.P.

    1983-04-01

    The objective of this study was to estimate the relationship between residential space conditioning energy use and building conservation programs in the Pacific Northwest. The study was divided into two primary tasks. In the first, the thermal relationship between space conditioning energy consumption under controlled conditions and the physical characteristics of the residence was estimated. In this task, behavioral characteristics such as occupant schedules and thermostat settings were controlled in order to isolate the physical relationships. In the second task, work from the first task was used to calculate the thermal efficiency of a residence's shell. Thermal efficiency was defined as the ability of a shell to prevent escapement of heat generated within a building. The relationship between actual space conditioning energy consumption and the shell thermal efficiency was then estimated. Separate thermal equations for mobile homes, single-family residences, and multi-family residences are presented. Estimates of the relationship between winter electricity consumption for heating and the building's thermal shell efficiency are presented for each of the three building categories.

  6. Use of residential wood heating in a context of climate change: a population survey in Québec (Canada

    Directory of Open Access Journals (Sweden)

    Valois Pierre

    2008-05-01

    Full Text Available Abstract Background Wood heating is recommended in several countries as a climate change (CC adaptation measure, mainly to increase the autonomy of households during power outages due to extreme climatic events. The aim of this study was to examine various perceptions and individual characteristics associated with wood heating through a survey about CC adaptations. Methods A telephone survey (n = 2,545 of adults living in the southern part of the province of Québec (Canada was conducted in the early fall season of 2005. The questionnaire used closed questions and measured the respondents' beliefs and current adaptations about CC. Calibration weighting was used to adjust the data analysis for the respondent's age and language under stratified sampling based on health regions. Results More than three out of four respondents had access to a single source of energy at home, which was mainly electricity; 22.2% combined two sources or more; 18.5% heated with wood occasionally or daily during the winter. The prevalence of wood heating was higher in the peripheral regions than in the more urban regions, where there was a higher proportion of respondents living in apartments. The prevalence was also higher with participants completely disagreeing (38.5% with the eventual prohibition of wood heating when there is smog in winter, compared to respondents somewhat disagreeing (24.2% or agreeing (somewhat: 17.5%; completely: 10.4% with the adoption of this strategy. It appears that the perception of living in a region susceptible to winter smog, smog warnings in the media, or the belief in the human contribution to CC, did not influence significantly wood heating practices. Conclusion Increased residential wood heating could very well become a maladaptation to climate change, given its known consequences on winter smog and respiratory health. It would thus be appropriate to implement a long-term national program on improved and controlled residential wood

  7. Greenhouse gas abatement cost curves of the residential heating market. A microeconomic approach

    International Nuclear Information System (INIS)

    Dieckhoener, Caroline; Hecking, Harald

    2012-01-01

    In this paper, we develop a microeconomic approach to deduce greenhouse gas abatement cost curves of the residential heating sector. By accounting for household behavior, we find that welfare-based abatement costs are generally higher than pure technical equipment costs. Our results are based on a microsimulation of private households' investment decision for heating systems until 2030. The households' investment behavior in the simulation is derived from a discrete choice estimation which allows investigating the welfare costs of different abatement policies in terms of the compensating variation and the excess burden. We simulate greenhouse gas abatements and welfare costs of carbon taxes and subsidies on heating system investments until 2030 to deduce abatement curves. Given utility maximizing households, our results suggest a carbon tax to be the welfare efficient policy. Assuming behavioral misperceptions instead, a subsidy on investments might have lower marginal greenhouse gas abatement costs than a carbon tax.

  8. A three-dimensional model of residential energy consumer archetypes for local energy policy design in the UK

    International Nuclear Information System (INIS)

    Zhang Tao; Siebers, Peer-Olaf; Aickelin, Uwe

    2012-01-01

    This paper reviews major studies in three traditional lines of research in residential energy consumption in the UK, i.e., economic/infrastructure, behaviour, and load profiling. Based on the review the paper proposes a three-dimensional model for archetyping residential energy consumers in the UK by considering property energy efficiency levels, the greenness of household behaviour of using energy, and the duration of property daytime occupancy. With the proposed model, eight archetypes of residential energy consumers in the UK have been identified. They are: pioneer greens, follower greens, concerned greens, home stayers, unconscientious wasters, regular wasters, daytime wasters, and disengaged wasters. Using a case study, these archetypes of residential energy consumers demonstrate the robustness of the 3-D model in aiding local energy policy/intervention design in the UK. - Highlights: ► This paper reviews the three traditional lines of research in residential energy consumption in the UK. ► Based on the literature review, the paper proposes a 3-D conceptual model for archetyping UK residential energy consumers. ► The 3-D archetype model can aid local energy policy/intervention design in the UK.

  9. Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage

    International Nuclear Information System (INIS)

    Fiorentini, Massimo; Wall, Josh; Ma, Zhenjun; Braslavsky, Julio H.; Cooper, Paul

    2017-01-01

    Highlights: • A comprehensive approach to managing thermal energy in residential buildings. • Solar-assisted HVAC system with on-site energy generation and storage. • Mixed logic-dynamical building model identified using experimental data. • Design and implementation of a logic-dynamical model predictive control strategy. • MPC applied to the Net-Zero Energy house winner of the Solar Decathlon China 2013. - Abstract: This paper describes the development, implementation and experimental investigation of a Hybrid Model Predictive Control (HMPC) strategy to control solar-assisted heating, ventilation and air-conditioning (HVAC) systems with on-site thermal energy generation and storage. A comprehensive approach to the thermal energy management of a residential building is presented to optimise the scheduling of the available thermal energy resources to meet a comfort objective. The system has a hybrid nature with both continuous variables and discrete, logic-driven operating modes. The proposed control strategy is organized in two hierarchical levels. At the high-level, an HMPC controller with a 24-h prediction horizon and a 1-h control step is used to select the operating mode of the HVAC system. At the low-level, each operating mode is optimised using a 1-h rolling prediction horizon with a 5-min control step. The proposed control strategy has been practically implemented on the Building Management and Control System (BMCS) of a Net Zero-Energy Solar Decathlon house. This house features a sophisticated HVAC system comprising of an air-based photovoltaic thermal (PVT) collector and a phase change material (PCM) thermal storage integrated with the air-handling unit (AHU) of a ducted reverse-cycle heat pump system. The simulation and experimental results demonstrated the high performance achievable using an HMPC approach to optimising complex multimode HVAC systems in residential buildings, illustrating efficient selection of the appropriate operating modes

  10. Building America Case Study: Effect of Ducted HPWH on Space Conditioning and Water Heating Energy Use - Central Florida Lab Home, Cocoa, Florida

    Energy Technology Data Exchange (ETDEWEB)

    C. Colon, E. Martin, and D. Parker

    2017-04-01

    The purpose of this research is to investigate the impact of ducted heat pump water heaters (HPWH's) on space conditioning and water heating energy use in residential applications. Two identical HPWH's, each of 60 gallon capacity were tested side by side at the Flexible Residential Test facility (FRTF) laboratories of the Florida Solar Energy Center (FSEC) campus in Cocoa, Florida. The water heating experiments were run in each test house from July 2014 until February 2015.

  11. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Sutherland, Timothy [Navigant Consulting, Inc., Burlington, MA (United States); Reis, Callie [Navigant Consulting, Inc., Burlington, MA (United States)

    2013-12-04

    This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies. After analyzing the technical savings potential offered by motor upgrades and variable speed technologies, recommended actions are presented.

  12. Chapter 4: Small Commercial and Residential Unitary and Split System HVAC Heating and Cooling Equipment-Efficiency Upgrade Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jacobson, David [Jacobson Energy Research, Providence, RI (United States); Metoyer, Jarred [DNV GL, Madison, WI (United States)

    2017-11-02

    The specific measure described here involves improving the overall efficiency in air-conditioning systems as a whole (compressor, evaporator, condenser, and supply fan). The efficiency rating is expressed as the energy efficiency ratio (EER), seasonal energy efficiency ratio (SEER), and integrated energy efficiency ratio (IEER). The higher the EER, SEER or IEER, the more efficient the unit is.

  13. Analysis of Installed Measures and Energy Savings for Single-Family Residential Better Buildings Projects

    Energy Technology Data Exchange (ETDEWEB)

    Heaney, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Polly, B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-04-30

    This report presents an analysis of data for residential single-family projects reported by 37 organizations that were awarded federal financial assistance (cooperative agreements or grants) by the U.S. Department of Energy’s Better Buildings Neighborhood Program.1 The report characterizes the energy-efficiency measures installed for single-family residential projects and analyzes energy savings and savings prediction accuracy for measures installed in a subset of those projects.

  14. Energy sustainable development through energy efficient heating devices and buildings

    International Nuclear Information System (INIS)

    Bojic, M.

    2006-01-01

    Energy devices and buildings are sustainable if, when they operate, they use sustainable (renewable and refuse) energy and generate nega-energy. This paper covers three research examples of this type of sustainability: (1) use of air-to-earth heat exchangers, (2) computer control of heating and cooling of the building (via heat pumps and heat-recovery devices), and (3) design control of energy consumption in a house. (author)

  15. Empirical assessment of the Hellenic non-residential building stock, energy consumption, emissions and potential energy savings

    International Nuclear Information System (INIS)

    Gaglia, Athina G.; Balaras, Constantinos A.; Mirasgedis, Sevastianos; Georgopoulou, Elena; Sarafidis, Yiannis; Lalas, Dimitris P.

    2007-01-01

    Comprehensive information and detailed data for the non-residential (NR) building stock is rather limited, although it is the fastest growing energy demand sector. This paper elaborates the approach used to determine the potential energy conservation in the Hellenic NR building stock. A major obstacle that had to be overcome was the need to make suitable assumptions for missing detailed primary data. A qualitative and quantitative assessment of scattered national data resulted in a realistic assessment of the existing NR building stock and energy consumption. Different energy conservation scenarios and their impact on the reduction of CO 2 emissions were evaluated. Accordingly, the most effective energy conservation measures are: addition of thermal insulation of exposed external walls, primarily in hotels and hospitals; installation of energy efficient lamps; installation of solar collectors for sanitary hot water production, primarily in hotels and health care; installation of building management systems in office/commercial and hotel buildings; replacement of old inefficient boilers; and regular maintenance of central heating boilers

  16. Modeling and analysis of long term energy demands in residential sector of pakistan

    International Nuclear Information System (INIS)

    Rashid, T.; Sahir, M.H.

    2015-01-01

    Residential sector is the core among the energy demand sectors in Pakistan. Currently, various techniques are being used worldwide to assess future energy demands including integrated system modeling (ISM). Therefore, the current study is focused on implementation of ISM approach for future energy demand analysis of Pakistan's residential sector in terms of increase in population, rapid urbanization, household size and type, and increase/decrease in GDP. A detailed business-as-usual (BAU) model is formulated in TIMES energy modeling framework using different factors like growth in future energy services, end-use technology characterization, and restricted fuel supplies. Additionally, the developed model is capable to compare the projected energy demand under different scenarios e.g. strong economy, weak economy and energy efficiency. The implementation of ISM proved a viable approach to predict the future energy demands of Pakistan's residential sector. Furthermore, the analysis shows that the energy consumption in the residential sector would be 46.5 Mtoe (Million Ton of Oil Equivalent) in 2040 compared to 23 Mtoe of the base year (2007) along with 600% increase in electricity demands. The study further maps the potential residential energy policies to congregate the future demands. (author)

  17. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  18. Hot Topics! Heat Pumps and Geothermal Energy

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The recent rapid rises in the cost of energy has significantly increased interest in alternative energy sources. The author discusses the underlying principles of heat pumps and geothermal energy. Related activities for technology education students are included.

  19. A comparison of fuel savings in the residential and commercial sectors generated by the installation of solar heating and cooling systems under three tax credit scenarios

    Science.gov (United States)

    Moden, R.

    An analysis of expected energy savings between 1977 and 1980 under three different solar tax credit scenarios is presented. The results were obtained through the solar heating and cooling of buildings (SHACOB) commercialization model. This simulation provides projected savings of conventional fuels through the installation of solar heating and cooling systems on buildings in the residential and commercial sectors. The three scenarios analyzed considered the tax credits contained in the Windfall Profits Tax of April 1980, the National Tax Act of November 1978, and a case where no tax credit is in effect.

  20. Estimation of the relationship between remotely sensed anthropogenic heat discharge and building energy use

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei

    2012-01-01

    This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. Anthropogenic heat discharge was estimated based on a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. Building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/ Energy Information Administration survey data, Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data.

  1. Multiobjective optimisation of energy systems and building envelope retrofit in a residential community

    International Nuclear Information System (INIS)

    Wu, Raphael; Mavromatidis, Georgios; Orehounig, Kristina; Carmeliet, Jan

    2017-01-01

    Highlights: • Simultaneous optimisation of building envelope retrofit and energy systems. • Retrofit and energy systems change interact and should be considered simultaneously. • Case study quantifies cost-GHG emission tradeoffs for different retrofit options. - Abstract: In this paper, a method for a multi-objective and simultaneous optimisation of building energy systems and retrofit is presented. Tailored to be suitable for the diverse range of existing buildings in terms of age, size, and use, it combines dynamic energy demand simulation to explore individual retrofit scenarios with an energy hub optimisation. Implemented as an epsilon-constrained mixed integer linear program (MILP), the optimisation matches envelope retrofit with renewable and high efficiency energy supply technologies such as biomass boilers, heat pumps, photovoltaic and solar thermal panels to minimise life cycle cost and greenhouse gas (GHG) emissions. Due to its multi-objective, integrated assessment of building transformation options and its ability to capture both individual building characteristics and trends within a neighbourhood, this method is aimed to provide developers, neighbourhood and town policy makers with the necessary information to make adequate decisions. Our method is deployed in a case study of typical residential buildings in the Swiss village of Zernez, simulating energy demands in EnergyPlus and solving the optimisation problem with CPLEX. Although common trade-offs in energy system and retrofit choice can be observed, optimisation results suggest that the diversity in building age and size leads to optimal strategies for retrofitting and building system solutions, which are specific to different categories. With this method, GHG emissions of the entire community can be reduced by up to 76% at a cost increase of 3% compared to the current emission levels, if an optimised solution is selected for each building category.

  2. Estimating energy impacts of residential and commercial building development. A manual for the Pacific Northwest and Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-22

    This energy-impact manual presents information on energy implications of new building design and operation, providing a reasonably accurate means of assessing the total energy impact of new construction in the commercial and residential sectors. While developed specifically for the states of Alaska, Idaho, Oregon, and Washington, much of the data used are national averages; the procedures described are applicable to other regions of the nation, with appropriate adjustments for climatic differences. The manual is organized into three parts, each covering one aspect of the energy impacts of building development. Part I addresses the energy impact of erecting the building(s). This includes the energy cost of grading and excavating and other site preparation. It also takes into account the energy embodied in the fabrication of materials used in building construction, as well as the energy cost of transporting materials to the site and assembling them. Part II focuses on the end use of energy during normal building operation, i.e., the energy consumed for space heating, cooling, lighting, water heating, etc. A simplified calculation sequence is provided which allows the user to estimate the consumption of most combinations of building orientation, characteristics, and operating conditions. Part III examines the relationship of land use to energy consumption, principally the transportation energy impact of various land-development patterns, the embodied energy impacts of infrastructure requirements, and the impacts of various orientation and siting schemes. (MCW)

  3. Modeling of an Air Conditioning System with Geothermal Heat Pump for a Residential Building

    Directory of Open Access Journals (Sweden)

    Silvia Cocchi

    2013-01-01

    Full Text Available The need to address climate change caused by greenhouse gas emissions attaches great importance to research aimed at using renewable energy. Geothermal energy is an interesting alternative concerning the production of energy for air conditioning of buildings (heating and cooling, through the use of geothermal heat pumps. In this work a model has been developed in order to simulate an air conditioning system with geothermal heat pump. A ground source heat pump (GSHP uses the shallow ground as a source of heat, thus taking advantage of its seasonally moderate temperatures. GSHP must be coupled with geothermal exchangers. The model leads to design optimization of geothermal heat exchangers and to verify the operation of the geothermal plant.

  4. Managing customer loyalty in liberalized residential energy markets: the impact of energy branding

    International Nuclear Information System (INIS)

    Hartmann, P.; Ibanez, V.A.

    2007-01-01

    In numerous recently deregulated energy markets, utilities previously operating in monopolistic environments are now focusing on customer satisfaction and loyalty. In this study, a conceptual framework is proposed that analyses the effects of brand associations and perceived switching costs on customer satisfaction and loyalty in residential energy markets. Several brand associations relevant to energy branding are identified: perceived technical service quality and service process quality, perception of value-added services, environmental and social commitment of the company, brand trust, price perceptions and brand associations related to the corporate attributes 'innovative and dynamic'. Subsequently, the proposed model is tested in the scope of a representative survey of Spanish residential energy customers. Results indicate that customer satisfaction, brand trust and perceived switching costs are positively related to customer loyalty and that brand trust exerts a stronger influence on customer loyalty than satisfaction and switching costs. Findings also show significant effects of the perception of service process quality and environmental and social commitment on loyalty via customer satisfaction. Implications for energy brand managers and regulators are discussed. [Author

  5. Managing customer loyalty in liberalized residential energy markets: The impact of energy branding

    International Nuclear Information System (INIS)

    Hartmann, Patrick; Apaolaza Ibanez, Vanessa

    2007-01-01

    In numerous recently deregulated energy markets, utilities previously operating in monopolistic environments are now focusing on customer satisfaction and loyalty. In this study, a conceptual framework is proposed that analyses the effects of brand associations and perceived switching costs on customer satisfaction and loyalty in residential energy markets. Several brand associations relevant to energy branding are identified: perceived technical service quality and service process quality, perception of value-added services, environmental and social commitment of the company, brand trust, price perceptions and brand associations related to the corporate attributes 'innovative and dynamic'. Subsequently, the proposed model is tested in the scope of a representative survey of Spanish residential energy customers. Results indicate that customer satisfaction, brand trust and perceived switching costs are positively related to customer loyalty and that brand trust exerts a stronger influence on customer loyalty than satisfaction and switching costs. Findings also show significant effects of the perception of service process quality and environmental and social commitment on loyalty via customer satisfaction. Implications for energy brand managers and regulators are discussed

  6. Managing customer loyalty in liberalized residential energy markets: the impact of energy branding

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, P.; Ibanez, V.A. [University of the Basque Country, Bilbao (Spain). Facultad de Ciencias Economicas y Empresariales

    2007-04-15

    In numerous recently deregulated energy markets, utilities previously operating in monopolistic environments are now focusing on customer satisfaction and loyalty. In this study, a conceptual framework is proposed that analyses the effects of brand associations and perceived switching costs on customer satisfaction and loyalty in residential energy markets. Several brand associations relevant to energy branding are identified: perceived technical service quality and service process quality, perception of value-added services, environmental and social commitment of the company, brand trust, price perceptions and brand associations related to the corporate attributes 'innovative and dynamic'. Subsequently, the proposed model is tested in the scope of a representative survey of Spanish residential energy customers. Results indicate that customer satisfaction, brand trust and perceived switching costs are positively related to customer loyalty and that brand trust exerts a stronger influence on customer loyalty than satisfaction and switching costs. Findings also show significant effects of the perception of service process quality and environmental and social commitment on loyalty via customer satisfaction. Implications for energy brand managers and regulators are discussed. [Author].

  7. Design, development and testing of a solar-powered multi-family residential size prototype turbocompressor heat pump

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-03-01

    A program described to design, fabricate, and conduct preliminary testing of a prototype solar-powered Rankine cycle turbocompressor heat pump module for a multi-family residential building is presented. A solar system designed to use the turbocompressor heat pump module including all of the subsystems required and the various system operating modes is described in Section I. Section II includes the preliminary design analyses conducted to select the heat pump module components and operating features, working fluid, configuration, size and performance goals, and estimated performance levels in the cooling and heating modes. Section III provides a detailed description of the other subsystems and components required for a complete solar installation. Using realistic performance and cost characteristics for all subsystems, the seasonal performance of the UTC heat pump is described in various US locations. In addition, the estimated energy savings and an assessment of the economic viability of the solar system is presented in Section III. The detailed design of the heat pump module and the arrangement of components and controls selected to conduct the laboratory performance tests are described in Section IV. Section V provides a description of the special laboratory test facility, including the subsystems to simulate the collectors and storage tanks for building load and ambient conditions and the instrumentation, monitoring, and data acquisition equipment. The test results and sample computer analyses and comparisons with predicted performance levels are presented in Section VI. Various appendices provide supplementary and background information concerning working fluid selection (A), configuration selection (B), capacity control concepts (C), building models (D), computer programs used to determine component and system performance and total system economics (E), and weather data (F).

  8. Does energy labelling on residential housing cause energy savings? Working paper

    Energy Technology Data Exchange (ETDEWEB)

    Kjaerbye, V.H.

    2008-12-15

    More than 80% of energy used in households is dedicated to space heating. Large potential energy savings have been identified in the existing housing stock. Energy labelling of single-family houses is seen as an important instrument to provide new house owners with information on efficient energy saving investments that can be made on the house. This paper evaluates the effects of the Danish Energy Labelling Scheme on energy consumption in existing single-family houses with propensity score matching using actual consumption of energy and register data describing the houses and households. We do not find significant energy savings due to the Danish Energy Labelling Scheme. (Author)

  9. 75 FR 54131 - Updating State Residential Building Energy Efficiency Codes

    Science.gov (United States)

    2010-09-03

    ... fraction of all new residential construction. The Wall Street Journal Online (June 3, 2003) reports three... correspond to those already in the code for steel walls. Another example is the relocation of the 51 pages of... and cooled zone. Additionally, new walls, doors or windows between the sunroom and the house must meet...

  10. Optimization scheduling in intelligent Energy Management System for the DC residential distribution system

    DEFF Research Database (Denmark)

    Yue, Jingpeng; Hu, Zhijian; Li, Chendan

    2017-01-01

    (EMS) with aid of the wireless communication and the smart meter is imperative in achieving ADR for DC residential community. This paper presents a framework of centralized management system integration and the key process of ADR in DC residential distribution system. The propose framework and methods......Smart DC residential distribution system(RDS) consisted by DC living homes will be a significant integral part in the future green transmission with demand flexibility. Meanwhile, the distributed generations will play an important role in the active demand response (DR). Energy Management System...

  11. Contribution of price/expenditure factors of residential energy consumption in China from 1993 to 2011: A decomposition analysis

    International Nuclear Information System (INIS)

    Liu, Zengming; Zhao, Tao

    2015-01-01

    Highlights: • Analysis about energy prices and the residential expenditure on energy in China. • Though the prices of energy declined, the price effect was negative. • The effect of price was the strongest restraining contribution. • Discussion on the proportion of energy expenditure in residential incomes. - Abstract: Since the establishment of the market economy in 1993, the residential consumption of commodities, including energy, has been highly influenced by prices in China. However, the contribution of the factors related to prices in residential energy consumption is relatively unexplored. This paper extends the KAYA identity with price and expenditure factors and then applies the LMDI method to a decomposition of residential energy consumption in China from 1993 to 2011. Our results show the following: (1) Though the prices of a majority of residential energy sources in China declined, the effect of energy prices restrained residential energy consumption because the expenditure structure changed during the period. (2) During the research period, the urban energy expenditure proportion experienced two progresses of rising and falling, and the rural proportion, which was stable before 2002, sharply increased. (3) The energy consumption intensity effect, which is the negative of the average energy price effect, contributed to most of the decrease in energy consumption, whereas residential income played a key role in the growth of consumption. According to the conclusions, we suggest further marketization and deregulation of energy prices, the promotion of advanced energy types and guidance for better energy consumption patterns

  12. The evolution of the energy demand in France in the industrial, residential and transportation sectors

    International Nuclear Information System (INIS)

    2006-01-01

    This document provides information, from 1970 to 2005, on the evolution of the energy intensity (ratio between the primary energy consumption and the gross domestic product in volume) and the actions of energy control for the industrial, residential and transportation sectors. (A.L.B.)

  13. Game-Theoretic Energy Management for Residential Users with Dischargeable Plug-in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Bingtuan Gao

    2014-11-01

    Full Text Available The plug-in electric vehicle (PEV has attracted more and more attention because of the energy crisis and environmental pollution, which is also the main shiftable load of the residential users’ demand side management (DSM system in the future smart grid (SG. In this paper, we employ game theory to provide an autonomous energy management system among residential users considering selling energy back to the utility company by discharging the PEV’s battery. By assuming all users are equipped with smart meters to execute automatic energy consumption scheduling (ECS and the energy company can adopt adequate pricing tariffs relating to time and level of energy usage, we formulate an energy management game, where the players are the residential users and the strategies are their daily schedules of household appliance use. We will show that the Nash equilibrium of the formulated energy management game can guarantee the global optimization in terms of minimizing the energy costs, where the depreciation cost of PEV’s battery because of discharging and selling energy back is also considered. Simulation results verify that the proposed game-theoretic approach can reduce the total energy cost and individual daily electricity payment. Moreover, since plug-in electric bicycles (PEBs are currently widely used in China, simulation results of residential users owing household appliances and bidirectional energy trading of PEBs are also provided and discussed.

  14. 77 FR 65941 - Energy Conservation Program: Test Procedures for Residential Dishwashers, Dehumidifiers, and...

    Science.gov (United States)

    2012-10-31

    ... designed to improve energy efficiency. (All references to EPCA refer to the statute as amended through the... cooking products,'' as used in this notice, refers to residential electric and gas kitchen ovens, ranges... section shall be reasonably designed to produce test results which measure energy efficiency, energy use...

  15. Implementation and Control of a Residential Electrothermal Microgrid Based on Renewable Energies, a Hybrid Storage System and Demand Side Management

    Directory of Open Access Journals (Sweden)

    Julio Pascual

    2014-01-01

    Full Text Available This paper proposes an energy management strategy for a residential electrothermal microgrid, based on renewable energy sources. While grid connected, it makes use of a hybrid electrothermal storage system, formed by a battery and a hot water tank along with an electrical water heater as a controllable load, which make possible the energy management within the microgrid. The microgrid emulates the operation of a single family home with domestic hot water (DHW consumption, a heating, ventilation and air conditioning (HVAC system as well as the typical electric loads. An energy management strategy has been designed which optimizes the power exchanged with the grid profile in terms of peaks and fluctuations, in applications with high penetration levels of renewables. The proposed energy management strategy has been evaluated and validated experimentally in a full scale residential microgrid built in our Renewable Energy Laboratory, by means of continuous operation under real conditions. The results show that the combination of electric and thermal storage systems with controllable loads is a promising technology that could maximize the penetration level of renewable energies in the electric system.

  16. Generation of a Tropically Adapted Energy Performance Certificate for Residential Buildings

    Directory of Open Access Journals (Sweden)

    Karl Wagner

    2014-11-01

    Full Text Available Since the 1990s, national green building certification indices have emerged around the globe as promising measurement tools for environmental-friendly housing. Since 2008, tools for countries in the Northern “colder” hemisphere have been adapted to tropical countries. In contrast, the Tropically Adapted Energy Performance Certificate (TEPC, established in 2012, translates the United Nations’ triple bottom line principle into green building sustainability (planet, thermal comfort (people and affordability (profit. The tool has been especially developed and revamped for affordable green building assessment helping to reduce global warming. Hence, by the comparably simple and transparent energy audit it provides, the TEPC examines buildings for their: (1 contribution to reduce CO2; (2 transmission rate in shielding a building’s envelope against the effects of the tropical heat; (3 generation of thermal comfort and (4 referring total cost of ownership to green the building further. All four dimensions are measured in the rainbow colour scale in compliance with national energy regulations. Accordingly, this research examines the tool’s implementation in tropical countries. Exemplified tropical case studies in residential areas seek to demonstrate the practicability of the approach and to derive a holistic certification by an internationally accredited certification board.

  17. An International Project on Indoor Air Quality Design and Control in Low Energy Residential Buildings

    DEFF Research Database (Denmark)

    Rode, Carsten; Abadie, Marc; Qin, Menghao

    2016-01-01

    focal points to limiting energy consumption for thermally conditioning the indoor environment will be to possibly reducing the ventilation rate, or making it in a new way demand controlled. However, this must be done such that it does not have adverse effects on indoor air quality (IAQ). Annex 68......, Indoor Air Quality Design and Control in Low Energy Residential Buildings, is a project under IEA’s Energy Conservation in Buildings and Communities Program (EBC), which will endeavor to investigate how future residential buildings are able to have very high energy performance whilst providing...... studies. A flagship outcome of the project will be a guidebook on design and operation of ventilation in residential buildings to achieve high IAQ with least possible energy consumption. The paper illustrates the working program of each of these activities....

  18. Energy engenderment: An industrialized perspective assessing the importance of engaging women in residential energy consumption management

    International Nuclear Information System (INIS)

    Elnakat, Afamia; Gomez, Juan D.

    2015-01-01

    This study assesses gender role and participation in energy utilization at the residential household level in an advanced industrial country setting. Two hundred and twenty one (221) standardized surveys of single-family residential households in San Antonio, Texas – the seventh largest city in the United States of America – are collected and used as a test case. The objective is to highlight the role of women in improving household energy efficiency. By coupling the behavioral and analytical sciences, studies such as this one provide better insight for the effective deployment of targeted energy efficiency programs that can benefit both households and municipalities while reducing impact on environmental resources. Study conclusions highlight 80% higher per capita consumption in female dominant households versus male dominant households (p=0.000) driven by approximately double the gas consumption in female-headed households (p=0.002), and 54% more electric usage (p=0.004). The higher use in female dominant homes is examined through the socio-demographic impacts of education, income, vintage of home occupied and size of home occupied. The theoretical framework and test case presented in this study promote the need for market segmented energy efficiency initiatives that better engage women in energy demand-side management in industrialized populated cities. -- Highlights: •Role of women in energy consumption is understudied in industrial settings. •There is a significant impact from women on energy consumption in test case. •Higher per capita, per square foot, and gas consumption are indicated for women. •Women’s intrinsic role at household level can allow for better energy efficiency

  19. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.

    2009-12-01

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of

  20. Energy Performance of Three Residential College Buildings in University of Malaya Campus, Kuala Lumpur

    Directory of Open Access Journals (Sweden)

    Adi Ainurzaman Jamaludin

    2011-12-01

    Full Text Available Three residential colleges located in Kuala Lumpur, Malaysia, were selected for energy performance analysis in regards to its implementation of bioclimatic design strategies. Specifically, passive design strategies on daylighting and natural ventilation were examined. In Malaysia, the residential college or hostel is a multi-residential building providing accommodation to university students. The three residential colleges in this study, namely C1, C2 and C3, were built in different years with different designs and forms, particularly with regards to enclosure and facade design, solar control devices, passive daylight concepts, and natural ventilation strategies. The building designs were carefully studied and an electric consumption analysis was carried out in each residential college. This study revealed that the wide-scale implementation of bioclimatic design strategies in college C2 help reduced the annual energy consumption. The building bioclimatic design features that are accountable to reduce energy consumption are the internal courtyard and balconies on each unit of floor area, as shown in C3.Results from this study highly recommend internal courtyard and balcony building combination for multi residential building design, especially in tropical urban regions.

  1. Potency of energy saving and emission reduction from lighting system in residential sector of Indonesia

    Science.gov (United States)

    Ambarita, H.

    2018-03-01

    The Government of Indonesia (GoI) has a strong commitment to the target of decreasing energy intensity and reducing Greenhouse gas emissions. One of the significant solutions to reach the target is increasing energy efficiency in the lighting system in the residential sector. The objective of this paper is twofold, to estimate the potency of energy saving and emission reduction from lighting in the residential sector. Literature related to the lighting system in Indonesia has been reviewed to provide sufficient data for the estimation of the energy saving and emission reduction. The results show that the in the year 2016, a total of 95.33 TWh of nationally produced electricity is used in the residential sector. This is equal to 44% of total produced electricity. The number of costumers is 64.78 million houses. The average number of lamps and average wattage of lamps used in Indonesia are 8.35 points and 13.8 W, respectively. The number of lighting and percentage of electricity used for lighting in the residential sector in Indonesia are 20.03 TWh (21.02 %) and 497 million lamps, respectively. The projection shows that in the year 2026 the total energy for lighting and number of lamps in the residential sector are 25.05 TWh and 619 million, respectively. By promoting the present technology of high efficient lamps (LED), the potency of energy saving and emission reduction in 2026 are 2.6 TWh and 2.1 million tons CO2eq, respectively.

  2. Integration of biomass into urban energy systems for heat and power. Part I: An MILP based spatial optimization methodology

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

    2014-01-01

    Highlights: • MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of multi-biomass supply chains and biomass to biofuel processing technologies. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents a mixed integer linear programming (MILP) approach to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the representation of the relationships between the biomass processing and biofuel energy conversion steps, and on the trade-offs between centralized district heating plants and local heat generation systems. After a description of state of the art and research trends in urban energy systems and bioenergy modelling, an application of the methodology to a generic case study is proposed. With the assumed techno-economic parameters, biomass based thermal energy generation results competitive with natural gas, while district heating network results the main option for urban areas with high thermal energy demand density. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  3. Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, John J [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL); Gehl, Anthony C [ORNL

    2012-09-01

    Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the

  4. Estimation of Energy Consumption and Greenhouse Gas Emissions considering Aging and Climate Change in Residential Sector

    Science.gov (United States)

    Lee, M.; Park, C.; Park, J. H.; Jung, T. Y.; Lee, D. K.

    2015-12-01

    The impacts of climate change, particularly that of rising temperatures, are being observed across the globe and are expected to further increase. To counter this phenomenon, numerous nations are focusing on the reduction of greenhouse gas (GHG) emissions. Because energy demand management is considered as a key factor in emissions reduction, it is necessary to estimate energy consumption and GHG emissions in relation to climate change. Further, because South Korea is the world's fastest nation to become aged, demographics have also become instrumental in the accurate estimation of energy demands and emissions. Therefore, the purpose of this study is to estimate energy consumption and GHG emissions in the residential sectors of South Korea with regard to climate change and aging to build more accurate strategies for energy demand management and emissions reduction goals. This study, which was stablished with 2010 and 2050 as the base and target years, respectively, was divided into a two-step process. The first step evaluated the effects of aging and climate change on energy demand, and the second estimated future energy use and GHG emissions through projected scenarios. First, aging characteristics and climate change factors were analyzed by using the logarithmic mean divisia index (LMDI) decomposition analysis and the application of historical data. In the analysis of changes in energy use, the effects of activity, structure, and intensity were considered; the degrees of contribution were derived from each effect in addition to their relations to energy demand. Second, two types of scenarios were stablished based on this analysis. The aging scenarios are business as usual and future characteristics scenarios, and were used in combination with Representative Concentration Pathway (RCP) 2.6 and 8.5. Finally, energy consumption and GHG emissions were estimated by using a combination of scenarios. The results of these scenarios show an increase in energy consumption

  5. The Energy Impacts of Solar Heating.

    Science.gov (United States)

    Whipple, Chris

    1980-01-01

    The energy required to build and install solar space- and water-heating equipment is compared to the energy saved under two solar growth paths corresponding to high and low rates of solar technology implementation. (Author/RE)

  6. ENERGY STAR Certified Geothermal Heat Pumps

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of...

  7. Model documentation report: Residential sector demand module of the national energy modeling system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This reference document provides a detailed description for energy analysts, other users, and the public. The NEMS Residential Sector Demand Module is currently used for mid-term forecasting purposes and energy policy analysis over the forecast horizon of 1993 through 2020. The model generates forecasts of energy demand for the residential sector by service, fuel, and Census Division. Policy impacts resulting from new technologies, market incentives, and regulatory changes can be estimated using the module. 26 refs., 6 figs., 5 tabs.

  8. Exploring residential energy consumers' willingness to accept and pay to offset their CO2-emission

    DEFF Research Database (Denmark)

    Yang, Yingkui; Solgaard, Hans Stubbe

    2015-01-01

    Purpose Voluntary carbon offsets have the potential to contribute to reduce carbon emission and thereby meet the national and international target of carbon emission. The public support for such scheme in the energy sector is unclear. We invested whether and why residential energy consumers...... to pay for carbon offset. Finally, the ordered logit model is used in modelling willing to pay for carbon offset. Findings The results show that there is significant support from residential energy consumer to offset their CO2 emission from electricity consumption. The WTP is motivated by consumers......’ perceptions towards carbon offset, moral obligation and individual’s social-demographic backgrounds. Originality/value This paper contributes a new insight on whether and why residential energy consumers would be willing to pay to offset carbon emission from electricity consumption....

  9. Real-Time Energy Management System for a Hybrid AC/DC Residential Microgrid

    DEFF Research Database (Denmark)

    Diaz, Enrique Rodriguez; Palacios-Garcia, Emilio J.; Anvari-Moghaddam, Amjad

    2017-01-01

    This paper proposes real-time Energy Management System (EMS) for a residential hybrid ac/dc microgrid. The residential microgrid is organized in two different distribution systems. A dc distribution bus which interconnect the renewable energy sources (RES), energy storage systems (ESS......) and the building’s common facilities; while the apartments are supplied by an ac distribution system connected to the grid. This architecture avoids any modifications in the electrical installation that supplies energy to the apartments. A pure dc voltage supply is not yet a feasible approach for residential...... setup. The results shown how the operational costs of the system are effectively decreased by 28%, even with non-accurate estimation of the RES generation or building parameters....

  10. The energy impacts of solar heating.

    Science.gov (United States)

    Whipple, C

    1980-04-18

    The energy required to build and install solar space- and water-heating equipment is compared to the energy it saves under two solar growth paths corresponding to high and low rates of implementation projected by the Domestic Policy Review of Solar Energy. For the rapid growth case, the cumulative energy invested to the year 2000 is calculated to be (1/2) to 1(1/2) times the amount saved. An impact of rapid solar heating implementation is to shift energy demand from premium heating fuels (natural gas and oil) to coal and nuclear power use in the industries that provide materials for solar equipment.

  11. Energy Efficient Clothes Dryer with IR Heating and Electrostatic Precipitator

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Stanton [GE Global Research, Niskayuna, NY (United States)

    2017-12-12

    The project goal was to develop a revolutionary energy saving technology for residential clothes drying. The team developed an IR (infrared) heating system and NESP (Nebulizer and Electro-Static Precipitator) for integration into a ventless clothes dryer. The proposed technology addresses two of the major inefficiencies in current electric vented dryers by providing effective energy transfer for the removal of the water and recapture of the vapor latent heat. The IR heaters operating in the mid wave (2.5-10um) are very efficient as they target the 3-micron peak absorption of the water molecule. This allows direct energy absorption, unlike conventional element heaters where heat is transferred by convection. The low power NESP removes water vapor from the exhausted stream and recaptures the latent heat in the ESP (Electro-Static Precipitator) exchanger section. This allows the warm dry air to be recirculated back into the drum for additional efficiency savings. The remaining majority of the dryer hardware stays the same. Summing the efficiency gain from the two subcomponents we anticipated the EF (Efficiency Factor) to exceed the goal of 4.04. EF is obtained by dividing the weight (lbs) of water removed by the energy (kWhr) used, where the test load size is 8.45 lbs of bone dry clothing wetted to 57.5% or 4.8lbs of water, and dried to a remaining moisture content of 2.5-5%. Additional benefits include not having to recondition (heat or cool) the large amounts of make-up air to replace the air exhausted by a vented dryer. It was anticipated that the NESP/heat exchanger would be the most challenging and highest risk element in the program. Therefore, the team focused their efforts during Phase 1 of the program on the design, construction, testing, and optimization of the NESP/heat exchanger. At the end Phase 1, the team compared the performance of the NESP/heat exchanger with the system level requirements and made a Go/No-Go decision on proceeding with the second

  12. Statistical evaluation of Pacific Northwest Residential Energy Consumption Survey weather data

    Energy Technology Data Exchange (ETDEWEB)

    Tawil, J.J.

    1986-02-01

    This report addresses an issue relating to energy consumption and conservation in the residential sector. BPA has obtained two meteorological data bases for use with its 1983 Pacific Northwest Residential Energy Survey (PNWRES). One data base consists of temperature data from weather stations; these have been aggregated to form a second data base that covers the National Oceanographic and Atmospheric Administration (NOAA) climatic divisions. At BPA's request, Pacific Northwest Laboratory has produced a household energy use model for both electricity and natural gas in order to determine whether the statistically estimated parameters of the model significantly differ when the two different meteorological data bases are used.

  13. Second life battery energy storage system for residential demand response service

    DEFF Research Database (Denmark)

    Saez-de-Ibarra, Andoni; Martinez-Laserna, Egoitz; Koch-Ciobotaru, Cosmin

    2015-01-01

    The integration of renewable energies and the usage of battery energy storage systems (BESS) into the residential buildings opens the possibility for minimizing the electricity bill for the end-user. This paper proposes the use of batteries that have already been aged while powering electric...... vehicles, during their main first life application, for providing residential demand response service. The paper considers the decayed characteristics of these batteries and optimizes the rating of such a second life battery energy storage system (SLBESS) for maximizing the economic benefits of the user...

  14. Comparison of Clustering Techniques for Residential Energy Behavior using Smart Meter Data

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ling; Lee, Doris; Sim, Alex; Borgeson, Sam; Wu, Kesheng; Spurlock, C. Anna; Todd, Annika

    2017-03-21

    Current practice in whole time series clustering of residential meter data focuses on aggregated or subsampled load data at the customer level, which ignores day-to-day differences within customers. This information is critical to determine each customer’s suitability to various demand side management strategies that support intelligent power grids and smart energy management. Clustering daily load shapes provides fine-grained information on customer attributes and sources of variation for subsequent models and customer segmentation. In this paper, we apply 11 clustering methods to daily residential meter data. We evaluate their parameter settings and suitability based on 6 generic performance metrics and post-checking of resulting clusters. Finally, we recommend suitable techniques and parameters based on the goal of discovering diverse daily load patterns among residential customers. To the authors’ knowledge, this paper is the first robust comparative review of clustering techniques applied to daily residential load shape time series in the power systems’ literature.

  15. Assessment of the impact of energy-efficient household appliances on the electricity consumption in the residential sector of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Claudia; Ghisi, Enedir

    2010-09-15

    In many countries the residential sector accounts for about 20.0% of the electricity consumption, which increases the concern about energy savings. The main objective of this paper is to assess the impact of energy-efficient household appliances on the electricity consumption of the Brazilian residential sector by using electricity end-use data. The consumption of each appliance is obtained based on official data from existing studies, being estimated for a dwelling and for the whole residential sector. Results indicate that the potential for energy savings by replacing existing appliances with energy-efficient household appliances would be 29.5% in the residential sector of Brazil.

  16. Cluster analysis of residential heat load profiles and the role of technical and household characteristics

    DEFF Research Database (Denmark)

    Carmo, Carolina; Christensen, Toke Haunstrup

    2016-01-01

    of the temporality of the energy demand is needed. This paper contributes to this by focusing on the daily load profiles of energy demand for heating of Danish dwellings with heat pumps. Based on hourly recordings from 139 dwellings and employing cluster and regression analysis, the paper explores patterns...... (typologies) in daily heating load profiles and how these relate to socio-economic and technical characteristics of the included households. The study shows that the load profiles vary according to the external load conditions. Two main clusters were identified for both weekdays and weekends and across load...

  17. Design and operation of a solar heating and cooling system for a residential size building

    Science.gov (United States)

    Littles, J. W.; Humphries, W. R.; Cody, J. C.

    1978-01-01

    The first year of operation of solar house is discussed. Selected design information, together with a brief system description is included. The house was equipped with an integrated solar heating and cooling system which uses fully automated state-of-the art. Evaluation of the data indicate that the solar house heating and cooling system is capable of supplying nearly 100 percent of the thermal energy required for heating and approximately 50 percent of the thermal energy required to operate the absorption cycle air conditioner.

  18. Solar energy for industrial process heat

    Science.gov (United States)

    Barbieri, R. H.; Pivirotto, D. L.

    1979-01-01

    Findings of study of potential use for solar energy utilization by California dairy industry, prove that applicable solar energy system furnish much of heat needed for milk processing with large savings in expenditures for oil and gas and ensurance of adequate readily available sources of process heat.

  19. Cognitive Simulation Driven Domestic Heating Energy Management

    NARCIS (Netherlands)

    Thilakarathne, D.J.; Treur, J.

    2016-01-01

    Energy management for domestic heating is a non trivial research challenge, especially given the dynamics associated to indoor and outdoor air temperatures, required comfortable temperature set points over time, parameters of the heating source and system, and energy loss rate and capacity of a

  20. Heat Energy Markets: Trends of Spatial Organization

    Directory of Open Access Journals (Sweden)

    Olga Valeryevna Dyomina

    2016-12-01

    Full Text Available The author reviews competing forms of heat supply. It is shown that in Finland, Denmark, China and Russia the dominant form of heat supply is district heating system; in the United States and Canada the dominant form of heat supply is individual one. Using the countries’ data the author allocates 4 models of heat energy markets. The analysis is based on combinations of the following characteristics: the type of market, the orientation of market, the stage of market development, forms of state support of district heating systems and the approach to pricing. The results identified the failure of the current model of heat energy market in Russia (noncompetitive, manufacturer-oriented and evolved market with massive state support of its district heating system. The ‘target’ model of heat energy market in Russia is a model of noncompetitive, customer-oriented and evolved market with no state support of its district heating system. However, the ‘target’ model takes into account spatial heterogeneity of local heat energy markets in Russia only technically

  1. Residential energy use and conservation in Venezuela: Results and implications of a household survey in Caracas

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, M.J.; Ketoff, A.; Masera, O.

    1992-10-01

    This document presents the final report of a study of residential energy use in Caracas, the capital of Venezuela. It contains the findings of a household energy-use survey held in Caracas in 1988 and examines options for introducing energy conservation measures in the Venezuelan residential sector. Oil exports form the backbone of the Venezuelan economy. Improving energy efficiency in Venezuela will help free domestic oil resources that can be sold to the rest of the world. Energy conservation will also contribute to a faster recovery of the economy by reducing the need for major investments in new energy facilities, allowing the Venezuelan government to direct its financial investments towards other areas of development. Local environmental benefits will constitute an important additional by-product of implementing energy-efficiency policies in Venezuela. Caracas`s residential sector shows great potential for energy conservation. The sector is characterized by high saturation levels of major appliances, inefficiency of appliances available in the market, and by careless patterns of energy use. Household energy use per capita average 6.5 GJ/per year which is higher than most cities in developing countries; most of this energy is used for cooking. Electricity accounts for 41% of all energy use, while LPG and natural gas constitute the remainder. Specific options for inducing energy conservation and energy efficiency in Caracas`s residential sector include energy-pricing policies, fuel switching, particularly from electricity to gas, improving the energy performance of new appliances and customer information. To ensure the accomplishment of an energy-efficiency strategy, a concerted effort by energy users, manufacturers, utility companies, government agencies, and research institutions will be needed.

  2. Energy absorber for sodium-heated heat exchanger

    Science.gov (United States)

    Essebaggers, J.

    1975-12-01

    A heat exchanger is described in which water-carrying tubes are heated by liquid sodium and in which the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes is minimized. An energy absorbing chamber contains a compressible gas and is connected to the body of flowing sodium by a channel so that, in the event of a sodium-water reaction, products of the reaction will partially fill the energy absorbing chamber to attenuate the rise in pressure within the heat exchanger.

  3. Exploring utility organization electricity generation, residential electricity consumption, and energy efficiency: A climatic approach

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Feng, Song

    2017-01-01

    Highlights: • Study examined impact of electricity fuel sources and consumption on emissions. • 97.2% of variability in emissions explained by coal and residential electricity use. • Increasing cooling degree days significantly related to increased electricity use. • Effectiveness of state-level energy efficiency programs showed mixed results. - Abstract: This study examined the impact of electricity generation by fuel source type and electricity consumption on carbon emissions to assess the role of climatic variability and energy efficiency (EE) in the United States. Despite high levels of greenhouse gas emissions, residential electricity consumption continues to increase in the United States and fossil fuels are the primary fuel source of electricity generation. 97.2% of the variability in carbon emissions in the electricity industry was explained by electricity generation from coal and residential electricity consumption. The relationships between residential electricity consumption, short-term climatic variability, long-term climatic trends, short-term reduction in electricity from EE programs, and long-term trends in EE programs was examined. This is the first study of its nature to examine these relationships across the 48 contiguous United States. Inter-year and long-term trends in cooling degree days, or days above a baseline temperature, were the primary climatic drivers of residential electricity consumption. Cooling degree days increased across the majority of the United States during the study period, and shared a positive relationship with residential electricity consumption when findings were significant. The majority of electricity reduction from EE programs was negatively related to residential electricity consumption where findings were significant. However, the trend across the majority of states was a decrease in electricity reduction from EE while residential electricity consumption increased. States that successfully reduced consumption

  4. High Energy Antimatter Telescope (HEAT) Balloon Experiment

    Science.gov (United States)

    Beatty, J. J.

    1995-01-01

    This grant supported our work on the High Energy Antimatter Telescope(HEAT) balloon experiment. The HEAT payload is designed to perform a series of experiments focusing on the cosmic ray positron, electron, and antiprotons. Thus far two flights of the HEAT -e+/- configuration have taken place. During the period of this grant major accomplishments included the following: (1) Publication of the first results of the 1994 HEAT-e+/- flight in Physical Review Letters; (2) Successful reflight of the HEAT-e+/- payload from Lynn Lake in August 1995; (3) Repair and refurbishment of the elements of the HEAT payload damaged during the landing following the 1995 flight; and (4) Upgrade of the ground support equipment for future flights of the HEAT payload.

  5. Hierarchical predictive control scheme for distributed energy storage integrated with residential demand and photovoltaic generation

    NARCIS (Netherlands)

    Lampropoulos, I.; Garoufalis, P.; van den Bosch, P.P.J.; Kling, W.L.

    2015-01-01

    A hierarchical control scheme is defined for the energy management of a battery energy storage system which is integrated in a low-voltage distribution grid with residential customers and photovoltaic installations. The scope is the economic optimisation of the integrated system by employing

  6. 78 FR 19606 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnace Fans

    Science.gov (United States)

    2013-04-02

    ... Procedures for Residential Furnace Fans AGENCY: Office of Energy Efficiency and Renewable Energy, Department... referred to as ``furnace fans.'' DOE proposes a test procedure that would be applicable to furnace fans..., even though DOE interprets its authority as encompassing more than just circulation fans used in...

  7. Occupant behaviour related to energy use in the residential sector : results from the Ecommon monitoring campaign

    NARCIS (Netherlands)

    Ioannou, A.; Itard, L.C.M.; Kornaat, Wim; Heiselberg, Per Kvols

    2016-01-01

    Buildings in Europe are the largest end use sector and especially residential buildings account for two thirds of this energy use. Despite the fact that building characteristics play a major role in a dwelling’s energy consumption, occupant characteristics and behaviour significantly affect this

  8. Residential Cold Climate Heat Pump (CCHP) w/Variable Speed Technology

    Energy Technology Data Exchange (ETDEWEB)

    Messmer, Craig S. [Unico, Inc., Arnold, MO (United States)

    2016-09-30

    This report summarizes the results of a three year program awarded to Unico, Inc. to commercialize a residential cold climate heat pump. Several designs were investigated. Compressors were selected using analysis from Oakridge National Laboratories followed by prototype construction and lab testing in a specially built environmental chamber capable of reaching -30°F. The initial design utilized two variable speed compressors in series with very good capacity results and acceptable efficiency at very cold temperatures. The design was then modified to reduce cost and complexity by redesigning the system using three dual-stage compressors: two in parallel followed by one in series. Extensive testing found significant challenge with oil management, reliability, weight and cost which prevented the system from being fully commercialized. Further analysis of other conceptual designs indicated that these challenges could be overcome in the future.

  9. Analysis of heat-conducting inclusions in exterior walls of residential building

    Science.gov (United States)

    Larionov, Arkady; Minnullina, Anna

    2017-10-01

    The study is aimed at detecting the zones of major heat losses in exterior walls of residential buildings and developing recommendations on their elimination. The “ELCUT” software program calculated the temperature fields of the external wall under the design temperature of the outside air. The calculation was carried out for three options: the thermal characteristics of the materials of the layers of the outer wall correspond to the design parameters; thermal characteristics of the materials of the layers of the outer wall correspond to the actual measured values; Thermal technical characteristics of the materials of the layers of the outer wall correspond to the actual indicators and additional insulation is made. It is established that with additional insulation, the irregularity of the temperature field on the external surface of the wall is eliminated and normalized thermal resistance complies with the requirements.

  10. 78 FR 12969 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential...

    Science.gov (United States)

    2013-02-26

    ... option for their members who do not have access to natural gas, as it allows them to heat water using...) that vary based on the rated storage volume of the water heater, the type of energy it uses (i.e., gas... Energy factor as of Product class January 20, 2004 April 16, 2015 Gas-fired Water Heater...... 0.67 - (0...

  11. Energy performance of building fabric - Comparing two types of vernacular residential houses

    Science.gov (United States)

    Draganova, Vanya Y.; Matsumoto, Hiroshi; Tsuzuki, Kazuyo

    2017-10-01

    Notwithstanding apparent differences, Japanese and Bulgarian traditional residential houses share a lot of common features - building materials, building techniques, even layout design. Despite the similarities, these two types of houses have not been compared so far. The study initiates such comparison. The focus is on houses in areas with similar climate in both countries. Current legislation requirements are compared, as well as the criteria for thermal comfort of people. Achieving high energy performance results from a dynamic system of 4 main key factors - thermal comfort range, heating/cooling source, building envelope and climatic conditions. A change in any single one of them can affect the final energy performance. However, it can be expected that a combination of changes in more than one factor usually occurs. The aim of this study is to evaluate the correlation between the thermal performance of building envelope designed under current regulations and a traditional one, having in mind the different thermal comfort range in the two countries. A sample building model is calculated in Scenario 1 - Japanese traditional building fabric, Scenario 2 - Bulgarian traditional building fabric and Scenario 3 - meeting the requirements of the more demanding current regulations. The energy modelling is conducted using EnergyPlus through OpenStudio cross-platform of software tools. The 3D geometry for the simulation is created using OpenStudio SketchUp Plug-in. Equal number of inhabitants, electricity consumption and natural ventilation is assumed. The results show that overall low energy consumption can be achieved using traditional building fabric as well, when paired with a wider thermal comfort range. Under these conditions traditional building design is still viable today. This knowledge can reestablish the use of traditional building fabric in contemporary design, stimulate preservation of local culture, building traditions and community identity.

  12. Impacts of global warming on residential heating and cooling degree-days in the United States.

    Science.gov (United States)

    Petri, Yana; Caldeira, Ken

    2015-08-04

    Climate change is expected to decrease heating demand and increase cooling demand for buildings and affect outdoor thermal comfort. Here, we project changes in residential heating degree-days (HDD) and cooling degree-days (CDD) for the historical (1981-2010) and future (2080-2099) periods in the United States using median results from the Climate Model Intercomparison Project phase 5 (CMIP5) simulations under the Representation Concentration Pathway 8.5 (RCP8.5) scenario. We project future HDD and CDD values by adding CMIP5 projected changes to values based on historical observations of US climate. The sum HDD + CDD is an indicator of locations that are thermally comfortable, with low heating and cooling demand. By the end of the century, station median HDD + CDD will be reduced in the contiguous US, decreasing in the North and increasing in the South. Under the unmitigated RCP8.5 scenario, by the end of this century, in terms of HDD and CDD values considered separately, future New York, NY, is anticipated to become more like present Oklahoma City, OK; Denver, CO, becomes more like Raleigh, NC, and Seattle, WA, becomes more like San Jose, CA. These results serve as an indicator of projected climate change and can help inform decision-making.

  13. Energy conservation and CO2-emission abatement potential in the Greek residential services sector

    International Nuclear Information System (INIS)

    A policy for CO 2 -emission abatement will have to allow for the sectoral energy-conservation potential. The present paper outlines the energy-analysis method applied to the Greek residential and services sectors. The trends in energy requirements for 1990-2000 are forecast and energy-conservation and CO 2 -abatement measures are proposed. A Maximum Action Scenario (MAS) and a Realistic Scenario (RS) are compared with a No-Action Scenario (NAS). (Author)

  14. Survey of available technology for the improvement of gas-fired residential heating equipment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, A.A.; Talbert, S.G.; Vergara, R.D.; Levy, A.; DeWerth, D.W.; Norris, T.R.

    1979-08-01

    Available technology was surveyed as to possible application to more efficient gas-fired comfort heating and water heating in residences. Objectives were (1) to evaluate energy saving modifications and design approaches, including both retrofit and new systems, and (2) to identify RD and D required to bring to the marketplace those concepts that have a reasonable payback period. Over 60 concepts, including both retrofit devices and new designs, were identified on the basis of the study of the technical literature and discussions with various segments of industry. After evaluating each concept on the basis of expected initial cost, energy consumption, and operating cost, those concepts with a reasonably short payback period were considered from the point of view of RD and D needs. A principal recommendation covering several specific concepts was the study of condensing heat-exchanger systems. RD and D was recommended on both mechanical and aerodynamically valved pulse combustors, radiant burners, catalytic systems, heat pipe systems, self-powered heating units, and gas-fired heat pumps. Relative to retrofit concepts, recommendations covered the effects of derating on furnace corrosion and the methodology for predicting savings in individual homes. Need was also indicated for a methodology to optimize sizing of heating units and for data on energy demand requirements for integrated appliances. General recommendations related to systems control analysis, minimum venting requirements, and combustion air requirements in tight homes.

  15. Role of Solar Water Heating in Multifamily Zero Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Williamson, James [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-04-08

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: 1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads; 2) Because of better scale, SDHW systems in multifamily buildings cost significantly less per dwelling than in single-family homes; 3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating; and 4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support from the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.

  16. A methodology for energy performance classification of residential building stock of Hamirpur

    Directory of Open Access Journals (Sweden)

    Aniket Sharma

    2017-12-01

    Full Text Available In India, there are various codes, standards, guidelines and rating systems launched to make energy intensive and large sized buildings energy efficient whereas independent residential buildings are not covered even though they exist most in numbers of total housing stock. This paper presents a case study methodology for energy performance assessment of existing residential stock of Hamirpur that can be used to develop suitable energy efficiency regulations. The paper discusses the trend of residential development in Hamirpur followed by classification based on usage, condition, predominant material use, ownership size and number of rooms, source of lighting, assets available, number of storey and plot sizes using primary and secondary data. It results in identification of predominant materials used and other characteristics in each of urban and rural area. Further cradle to site embodied energy index of various dominant building materials and their market available alternative materials is calculated from secondary literature and by calculating transportation energy. One representative existing building is selected in each of urban and rural area and their energy performance is evaluated for material embodied energy and operational energy using simulation. Further alternatives are developed based on other dominant materials in each area and evaluated for change in embodied and operational energy. This paper identifies the energy performance of representative houses for both areas and in no way advocates the preference of one type over another. The paper demonstrates a methodology by which energy performance assessment of houses shall be done and also highlights further research.

  17. Energy-Independent Architectural Models for Residential Complex Plans through Solar Energy in Daegu Metropolitan City, South Korea

    Directory of Open Access Journals (Sweden)

    Sung-Yul Kim

    2018-02-01

    Full Text Available This study suggests energy-independent architectural models for residential complexes through the production of solar-energy-based renewable energy. Daegu Metropolitan City, South Korea, was selected as the target area for the residential complex. An optimal location in the area was selected to maximize the production of solar-energy-based renewable energy. Then, several architectural design models were developed. Next, after analyzing the energy-use patterns of each design model, economic analyses were conducted considering the profits generated from renewable-energy use. In this way, the optimum residential building model was identified. For this site, optimal solar power generation efficiency was obtained when solar panels were installed at 25° angles. Thus, the sloped roof angles were set to 25°, and the average height of the internal space of the highest floor was set to 1.8 m. Based on this model, analyses were performed regarding energy self-sufficiency improvement and economics. It was verified that connecting solar power generation capacity from a zero-energy perspective considering the consumer’s amount of power consumption was more effective than connecting maximum solar power generation capacity according to building structure. Moreover, it was verified that selecting a subsidizable solar power generation capacity according to the residential solar power facility connection can maximize operational benefits.

  18. Life-cycle energy implications of different residential settings: Recognizing buildings, travel, and public infrastructure

    International Nuclear Information System (INIS)

    Nichols, Brice G.; Kockelman, Kara M.

    2014-01-01

    The built environment can be used to influence travel demand, but very few studies consider the relative energy savings of such policies in context of a complex urban system. This analysis quantifies the day-to-day and embodied energy consumption of four different neighborhoods in Austin, Texas, to examine how built environment variations influence various sources of urban energy consumption. A microsimulation combines models for petroleum use (from driving) and residential and commercial power and natural gas use with rigorously measured building stock and infrastructure materials quantities (to arrive at embodied energy). Results indicate that the more suburban neighborhoods, with mostly detached single-family homes, consume up to 320% more embodied energy, 150% more operational energy, and about 160% more total life-cycle energy (per capita) than a densely developed neighborhood with mostly low-rise-apartments and duplexes. Across all neighborhoods, operational energy use comprised 83 to 92% of total energy use, and transportation sources (including personal vehicles and transit, plus street, parking structure, and sidewalk infrastructure) made up 44 to 47% of the life-cycle energy demands tallied. Energy elasticity calculations across the neighborhoods suggest that increased population density and reduced residential unit size offer greatest life-cycle energy savings per capita, by reducing both operational demands from driving and home energy use, and from less embodied energy from construction. These results provide measurable metrics for comparing different neighborhood styles and develop a framework to anticipate energy-savings from changes in the built environment versus household energy efficiency. - Highlights: • Total energy demands (operational and embodied) of 5 Austin settings were studied here. • Suburban settings consume much more energy than densely developed neighborhoods. • Transportation sources make up 44 to 47% of the total energy

  19. An application of energy and exergy analysis in residential sector of Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Masjuki, H.H.; Jamaluddin, M.Y.

    2007-01-01

    In this paper, the useful concept of energy and exergy utilization is defined, analyzed and applied to the residential sector of Malaysia by taking into account the energy and exergy flows for a period of 8 years from the year 1997 to 2004. The energy and exergy efficiencies are determined for the devices used in this sector and found to be 70% and 28%, respectively. Energy and exergy flow diagrams for the overall efficiencies of Malaysian residential sector are also illustrated in this paper. It is found that the current methodology applied in Saudi Arabia is suitable to analyze energy and exergy use in Malaysian residential sector. It has been found that the exergy efficiency of the Malaysian residential sector appears to be much lower than its corresponding energy efficiency. It has been observed that about 21% of total exergy losses are caused by refrigerator-freezer and 12% of total loss is caused by air conditioner. Washing machine, fan and rice cooker contribute about 11%, 10% and 8% of total exergy losses, respectively

  20. A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand

    Science.gov (United States)

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times. PMID:25807384

  1. Energy intervention in the residential sector in the south of Spain: Current challenges

    Directory of Open Access Journals (Sweden)

    Sendra, J. J.

    2013-12-01

    Full Text Available It can be estimated that approximately half of energy consumption in Spanish residential buildings derives from heating and air conditioning systems. It is therefore advisable to invest in retrofitting projects to reduce energy demand. However, although as a rule energy interventions are expected to bring about significant potential energy savings, it should be noted that this is often not so straightforward, particularly in southern Spain, where there are significant deviations from the expected energy scenario. Recent research shows that in many cases there is no direct relationship between energy demand and real energy use, and the low energy rate is combined with deficiencies in comfort conditions. In order to ensure the real cost-efficiency of the actions is essential, further research for defining these behaviours. The European EnergyTIC project is a continuation of the work already carried out in this context by the EFFICACIA and AMEC research projects.En los edificios de viviendas españoles podemos estimar que la mitad del consumo energético se debe a los sistemas de calefacción y refrigeración. En general, resulta aconsejable invertir en proyectos de rehabilitación para limitar su demanda energética, sin embargo, aunque las intervenciones energéticas puedan suponer un significativo potencial de ahorro de energía, habría que manifestar que en muchas situaciones, especialmente en el área sur, no siempre será así, con desviaciones importantes de los comportamientos energéticos esperados. Investigaciones recientes sobre edificios de viviendas protegidas en el Sur de España señalan que no existe habitualmente una relación directa entre demanda de energía y uso real de la misma, asociado el bajo consumo a una carencia de prestaciones de confort. Para rentabilizar las actuaciones es fundamental profundizar en investigación y caracterización de estos comportamientos. En este contexto, se han desarrollado los proyectos de

  2. Major models and data sources for residential and commercial sector energy conservation analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

  3. Drain water heat recovery storage-type unit for residential housing

    OpenAIRE

    Torras Ortiz, Santiago; Oliet Casasayas, Carles; Rigola Serrano, Joaquim; Oliva Llena, Asensio

    2016-01-01

    © 2016. This version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ The drain water heat recovery (DWHR) system is an interesting household technology to reduce energy costs and environmental impact. The objective of the utilisation of these devices is the recovery of the waste heat from domestic warm drain water, and transferring it to cold water entering the house. A drain water heat recovery unit has been built in this work. The aut...

  4. Energy efficient ammonia heat pump. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Claus; Pijnenburg, B.; Schumann Grindorf, H. [Danish Technological Institute, Aarhus (Denmark); Christensen, Rolf [Alfa Laval, Lund (Sweden); Rasmussen, Bjarne D. [Grundfos, Bjerringbro (Denmark); Gram, S.; Fredborg Jakobsen, D. [Svedan Industri Koeleanlaeg, Greve (Denmark)

    2013-09-15

    The report describes the development of a highly effective ammonia heat pump. Heat pumps play an increasingly important role in the search for more effective use of energy in our society. Highly efficient heat pumps can contribute to reduced energy consumption and improved economy of the systems which they are a part of. An ammonia heat pump with high pressure reciprocating compressor and a novel split condenser was developed to prove potential for efficiency optimization. The split of the condenser in two parts can be utilized to obtain smaller temperature approaches and, thereby, improved heat pump efficiency at an equal heat exchanger area, when compared to the traditional solution with separate condenser and de-superheater. The split condenser design can also be exploited for heating a significant share of the total heating capacity to a temperature far above the condensing temperature. Furthermore, the prototype heat pump was equipped with a plate type evaporator combined with a U-turn separator with a minimum liquid height and a liquid pump with the purpose of creating optimum liquid circulation ratio for the highest possible heat transfer coefficients at the lowest possible pressure drop. The test results successfully confirmed the highest possible efficiency; a COP of 4.3 was obtained when heating water from 40 deg. C to 80 deg. C while operating with evaporating/condensing temperatures of +20 deg C/+73 deg C. (Author)

  5. Energy and behavioral impacts of integrative retrofits for residential buildings: What is at stake for building energy policy reforms in northern China?

    International Nuclear Information System (INIS)

    Xu, Peng; Xu, Tengfang; Shen, Pengyuan

    2013-01-01

    Based upon the results from extensive building monitoring and surveys on occupant’s behaviors in a representative nine-story apartment building in northern China, building energy simulations were performed to evaluate the impacts of integrative retrofits implemented. Integrative retrofits required by the newer building energy standard produced significant heating-energy savings (i.e., 53%) when compared with baseline buildings commonly built in early 1980s. Taking into account district-heating-system upgrades as part of integrative retrofit measures, a representative apartment building was 66% more efficient than the baseline building. Contrary to expectation, little behavioral change was found in response to the provisions of monetary incentive, billing-method reform, or metering of heating energy use in individual apartment units. Yet this paper identified sizable energy savings potential if occupants’ behavioral changes were to actually happen. This indicates that provisions of financial incentives or individual metering were insufficient for triggering substantial behavioral changes leading toward more energy savings in the current buildings. It is recommended that innovative energy policies, technology upgrades, and education would be needed to promote behavioral changes toward additional energy savings. Finally, measures and strategies to further enhance thermal integrity criteria (e.g., insulations of roof and balcony) are recommended in China’s future building energy policy reforms. - Highlights: ► Integrative retrofits significantly reduce residential heating energy in north China. ► Energy effects of retrofits, incentive, billing and behavioral changes were studied. ► Monetary incentive, control or metering technologies did not lead to behavior change. ► Potential energy savings due to occupants’ behavioral changes are sizable. ► Thermal integrity needs to be enhanced in future building standards and policies.

  6. Distributed multi-agent algorithm for residential energy management in smart grids

    OpenAIRE

    Mets, Kevin; Strobbe, Matthias; Verschueren, Tom; Roelens, Thomas; De Turck, Filip; Develder, Chris

    2012-01-01

    Distributed renewable power generators, such as solar cells and wind turbines are difficult to predict, making the demand-supply problem more complex than in the traditional energy production scenario. They also introduce bidirectional energy flows in the low-voltage power grid, possibly causing voltage violations and grid instabilities. In this article we describe a distributed algorithm for residential energy management in smart power grids. This algorithm consists of a market-oriented mult...

  7. Application analysis of solar total energy systems to the residential sector. Volume III, conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    The objective of the work described in this volume was to conceptualize suitable designs for solar total energy systems for the following residential market segments: single-family detached homes, single-family attached units (townhouses), low-rise apartments, and high-rise apartments. Conceptual designs for the total energy systems are based on parabolic trough collectors in conjunction with a 100 kWe organic Rankine cycle heat engine or a flat-plate, water-cooled photovoltaic array. The ORC-based systems are designed to operate as either independent (stand alone) systems that burn fossil fuel for backup electricity or as systems that purchase electricity from a utility grid for electrical backup. The ORC designs are classified as (1) a high temperature system designed to operate at 600/sup 0/F and (2) a low temperature system designed to operate at 300/sup 0/F. The 600/sup 0/F ORC system that purchases grid electricity as backup utilizes the thermal tracking principle and the 300/sup 0/F ORC system tracks the combined thermal and electrical loads. Reject heat from the condenser supplies thermal energy for heating and cooling. All of the ORC systems utilize fossil fuel boilers to supply backup thermal energy to both the primary (electrical generating) cycle and the secondary (thermal) cycle. Space heating is supplied by a central hot water (hydronic) system and a central absorption chiller supplies the space cooling loads. A central hot water system supplies domestic hot water. The photovoltaic system uses a central electrical vapor compression air conditioning system for space cooling, with space heating and domestic hot water provided by reject heat from the water-cooled array. All of the systems incorporate low temperature thermal storage (based on water as the storage medium) and lead--acid battery storage for electricity; in addition, the 600/sup 0/F ORC system uses a therminol-rock high temperature storage for the primary cycle. (WHK)

  8. Development of a new energy efficiency rating system for existing residential buildings

    International Nuclear Information System (INIS)

    Koo, Choongwan; Hong, Taehoon; Lee, Minhyun; Seon Park, Hyo

    2014-01-01

    Building energy efficiency rating systems have been established worldwide to systematically manage the energy consumption of existing buildings. This study aimed to develop a new energy efficiency rating system for existing residential buildings from two perspectives: (i) establishment of reasonable and fair criteria for the building energy efficiency rating system; and (ii) establishment of comparative incentive and penalty programs to encourage the voluntary participation of all residents in the energy saving campaign. Based on the analysis of the conventional energy efficiency rating system for existing residential buildings, this study was conducted in five steps: (i) data collection and analysis; (ii) correlation analysis between the household size and the CO 2 emission density (i.e., CO 2 emission per unit area); (iii) cluster formation based on results of the correlation analysis using a decision tree; (iv) establishment of a new energy efficiency rating system for existing buildings; and (v) establishment of incentive and penalty programs using advanced case-based reasoning. The proposed system can allow a policymaker to establish a reasonable and fair energy efficiency rating system for existing residential buildings and can encourage the voluntary participation of all residents in the energy saving campaign. - Highlights: • A new energy efficiency rating system for the residential building was developed. • The incentive and penalty programs were established using an advanced CBR model. • The new system was established using reasonable and fair standards. • It allows all residents to voluntarily participate in the energy saving campaign. • It can be applied to any country or sector in the global environment

  9. Gas-heating alternatives to the residential electric heat pump. Gas Appliance Technology Center 1987 program. Topical report for Work Area 1.1, October 1989-March 1990

    International Nuclear Information System (INIS)

    Haas, C.

    1990-05-01

    The characteristics of electric heat pumps are described. Options are defined and assessed for utilizing gas heating in conjunction with existing residential electric heat pumps. These options include gas heat introduced into the refrigeration circuit, a flue gas-heated tube bank in the air supply duct, and a hot-water-to-air coil in the supply duct. Economics are presented for conversion of a residence's total space and water heating from electric to gas in New York City and Atlanta. Potential marketing strategies are discussed, and potential gas sales volumes from conversions are estimated. The study concludes that the use of gas water heating coupled with a hydronic coil in the supply ductwork from the air handler is the most advantageous option for the gas industry

  10. Potential Energy Flexibility for a Hot-Water Based Heating System in Smart Buildings Via Economic Model Predictive Control

    DEFF Research Database (Denmark)

    Ahmed, Awadelrahman M. A.; Zong, Yi; Mihet-Popa, Lucian

    2017-01-01

    water tank as active thermal energy storage, where two optimization problems are integrated together to optimize both the heat pump electricity consumption and the building heating consumption. A sensitivity analysis for the system flexibility is examined. The results revealed that the proposed......This paper studies the potential of shifting the heating energy consumption in a residential building to low price periods based on varying electricity price signals suing Economic Model Predictive Control strategy. The investigated heating system consists of a heat pump incorporated with a hot...

  11. Air Source Heat Pump a Key Role in the Development of Smart Buildings in Future Energy Systems

    DEFF Research Database (Denmark)

    Craciun, Vasile S.; Trifa, Viorel; Bojesen, Carsten

    2012-01-01

    , and water heating. ASHP does not have a constant temperature for the primary source like: soil, ground water, or surface water heat pumps but still have a majority in usage. As result, laboratory experiments and tests are faced by the problem of having to handle a wide range of conditions under which...... of energy is used for space heating, space cooling, and domestic hot water production which are provided to residential and commercial buildings. Air source heat pumps (ASHP) are widely used conversion technologies all over the world for providing building thermal energy services as: cooling, heating...

  12. Residential-commercial energy input estimation based on genetic algorithm (GA) approaches: an application of Turkey

    International Nuclear Information System (INIS)

    Ozturk, H.K.; Canyurt, O.E.; Hepbasli, A.; Utlu, Z.

    2004-01-01

    The main objective of the present study is to develop the energy input estimation equations for the residential-commercial sector (RCS) in order to estimate the future projections based on genetic algorithm (GA) notion and to examine the effect of the design parameters on the energy input of the sector. For this purpose, the Turkish RCS is given as an example. The GA Energy Input Estimation Model (GAEIEM) is used to estimate Turkey's future residential-commercial energy input demand based on gross domestic product (GDP), population, import, export, house production, cement production and basic house appliances consumption figures. It may be concluded that the three various forms of models proposed here can be used as an alternative solution and estimation techniques to available estimation techniques. It is also expected that this study will be helpful in developing highly applicable and productive planning for energy policies. (author)

  13. Recommendations for energy conservation standards for new residential buildings: Volume 1: Text of the standard

    Energy Technology Data Exchange (ETDEWEB)

    1989-05-01

    The purpose of this Standard is to provide for the development of requirements for new residential buildings that promote the efficient use of energy within economic constraints and without compromising the comfort and safety of the occupants. 1 fig., 8 tabs.

  14. Energy efficiency and household behavior : The rebound effect in the residential sector

    NARCIS (Netherlands)

    Aydin, Erdal; Kok, N.; Brounen, Dirk

    Over the years, various efficiency policies have been designed and implemented to reduce residential energy consumption. However, it is very common that the policy expectations that are based upon engineering calculations do not come true. The widely accepted explanation for the gap between

  15. Biomass energy utilization in the Pacific Northwest: impacts associated with residential use of solid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Petty, P.; Hopp, W.; Chockie, A.

    1981-05-01

    The Pacific Northwest Region, including Washington, Oregon, and Idaho, is the geographic area for which an impact assessment of the residential use of solid fuels is performed. Increased use of solid fuels in the residential sector has led to a marked decline in per household use of other forms of energy. An estimate of the potential energy contained in the fuelwood burned annually and an estimate of the mean conversion efficiency of the regional capital stock of woodburning appliances leads to a reasoned assessment of the contribution of wood energy to the residential energy use in the region. The use of solid fuels has been associated with an increase in the incidence of residential fires nationally. This is also true of the Pacific Northwest Region. An estimate is made of the economic costs attributable to this source of fire incidence. An additional area of concern relates to the harvesting practices of hundreds of individuals, cutting fuelwood for their own use. Statistics describing injuries and deaths per Btu in the commercial logging industry are used as a basis for an estimate of injuries and deaths resulting from the increased collection of forest residues and fuelwood by private woodcutters. This analysis indicates that the private harvest of fuelwood may be extremely costly in terms of injuries and deaths suffered by private woodcutters in the region.

  16. Comparison of adsorption systems using natural gas fired fuel cell as heat source, for residential air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Clausse, M.; Meunier, F. [LGP2ES, Cnam-IFFI (EA21), case 331, 292 rue Saint-Martin, 75141 Paris Cedex 03 (France); Coulie, J.; Herail, E. [N-GHY, Site Industriel Saint Antoine, ZI Montplaisir, 51 rue Isaac Newton, 81000 Albi (France)

    2009-06-15

    This article aims to evaluate the performances of an adsorption system driven thanks to the heat rejected by the post-combustion exhaust gases of a reformer/fuel cell system for residential air-conditioning application. Three adsorption pairs were compared: activated carbon/methanol, silica gel/water and zeolite/water. Taking into account both cooling power and sensitivity to performances of the heat rejection and recovery exchangers, it appears that zeolite 13X/water is the adsorption pair giving the best performance for this application. Nevertheless, a more detailed model would be of interest to better quantify the heat transfer impact on performance. (author)

  17. Prioritizing investment in residential energy efficiency and renewable energy-A case study for the U.S. Midwest

    International Nuclear Information System (INIS)

    Brecha, R.J.; Mitchell, A.; Hallinan, K.; Kissock, K.

    2011-01-01

    Residential building energy use is an important contributor to greenhouse gas emissions and in the United States represents about 20% of total energy consumption. A number of previous macro-scale studies of residential energy consumption and energy-efficiency improvements are mainly concerned with national or international aggregate potential savings. In this paper we look into the details of how a collection of specific homes in one region might reduce energy consumption and carbon emissions, with particular attention given to some practical limits to what can be achieved by upgrading the existing residential building stock. Using a simple model of residential, single-family home construction characteristics, estimates are made for the efficacy of (i) changes to behavioral patterns that do not involve building shell modifications; (ii) straightforward air-infiltration mitigation measures, and (iii) insulation measures. We derive estimates of net lifetime savings resulting from these measures, in terms of energy, carbon emissions and dollars. This study points out explicitly the importance of local and regional patterns in decision-making about what fraction of necessary regional or national emissions reduction might be accomplished through energy-efficiency measures and how much might need to concentrate more heavily on renewable or other carbon-free sources of energy. - Highlights: → Macro-scale estimates of building energy efficiency measures are not adequate for implementing policy decisions. → Measures taken to implement building energy efficiency upgrades will likely encounter practical limits given the existing building stock. → Energy efficiency measures combined with increases in renewable energy use will be necessary for climate change mitigation. → Regional and local variations in building energy use must be taken into account in energy and climate policy.

  18. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy

  19. Essays in economics of energy efficiency in residential buildings - An empirical analysis[Dissertation 17157

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, M.

    2007-07-01

    for policy priority setting and design, for inputs in energy models, and for building owners, developers and builders as decision support elements. Scope of the research was the sector of new and existing residential buildings in Switzerland. Based on price and technical data of additional insulation, improved window, ventilation and heating systems, and architectural concepts, it was found that the marginal and average costs of energy efficiency are to a large extent below or in the range of the marginal costs of energy (heat) generation, especially from a societal perspective. Many energy efficiency investments are economically viable also from a private perspective; particularly if best practice is applied and if long-term considerations are being made. The flat character of the curve of annualized capital and energy costs as a function of increasing energy efficiency levels implies that advanced energy efficiency levels are as cost-effective as low ones, having the advantage of a decreased energy price risk exposure. (...) The analysis of the total benefits of energy efficiency attributes from the building user perspective such as increased thermal comfort, constantly high indoor air quality, protection from external noise nuisance, property value and energy price risk hedging, revealed a considerable willingness-to-pay of a relevant proportion of home-purchasers and tenants for these benefits, making such investments also attractive for multi-family house owners due to potentially increased rental revenues. The willingness-to-pay, which was estimated by a choice experiment based on stated preferences, is generally higher than the costs of implementing these attributes. Particularly, this applies also to housing ventilation systems which makes them economically interesting although their costs cannot be covered by energy cost savings alone. The low-cost energy efficiency potentials and the considerable valuation of their benefits by a large proportion of the

  20. Energy performance strategies for the large scale introduction of geothermal energy in residential and industrial buildings: The GEO.POWER project

    International Nuclear Information System (INIS)

    Giambastiani, B.M.S.; Tinti, F.; Mendrinos, D.; Mastrocicco, M.

    2014-01-01

    Use of shallow geothermal energy, in terms of ground coupled heat pumps (GCHP) for heating and cooling purposes, is an environmentally-friendly and cost-effective alternative with potential to replace fossil fuels and help mitigate global warming. Focusing on the recent results of the GEO.POWER project, this paper aims at examining the energy performance strategies and the future regional and national financial instruments for large scale introduction of geothermal energy and GCHP systems in both residential and industrial buildings. After a transferability assessment to evaluate the reproducibility of some outstanding examples of systems currently existing in Europe for the utilisation of shallow geothermal energy, a set of regulatory, economic and technical actions is proposed to encourage the GCHP market development and support geothermal energy investments in the frame of the existing European normative platforms. This analysis shows that many European markets are changing from a new GCHP market to growth market. However some interventions are still required, such as incentives, regulatory framework, certification schemes and training activities in order to accelerate the market uptake and achieve the main European energy and climate targets. - Highlights: • Potentiality of geothermal applications for heating and cooling in buildings. • Description of the GEO.POWER project and its results. • Local strategies for the large scale introduction of GCHPs

  1. Turbulent energy losses during orchard heating

    Energy Technology Data Exchange (ETDEWEB)

    Bland, W.L.

    1979-01-01

    Two rapid-response drag anemometers and low time constant thermocouples, all at 4 m above a heated orchard floor, sampled wind component in the vertical direction and temperature at 30 Hz. The turbulent heat flux calculated revealed not more than 10% of the heat lost from the orchard was via turbulent transort. The observations failed to support previous estimates that at least a third of the energy applied was lost through turbulent transport. Underestimation of heat loss due to mean flow and a newly revealed flux due to spatial variations in the mean flow may explain the unaccounted for loss.

  2. APPLICATION OF DOE-2 TO RESIDENTIAL BUILDING ENERGY PERFORMANCE STANDARDS

    Energy Technology Data Exchange (ETDEWEB)

    Lokmanhekim, M.; Goldstein, D. B.; Levine, M. D.; Rosenfield, A. H.

    1980-10-01

    One important requirement emerging from national and international efforts to shift from our present energy-intensive way of life to an energy conservation mode is the development of standards for assessing and regulating energy use and performance in buildings. This paper describes a life-cycle-cost approach to Building Energy Performance Standards (BEPS) calculated by using DOE-2: The Energy Use Analysis of Buildings Computer Program. The procedure outlined raises important questions that must be answered before the energy budgets devised from this approach can be reliably used as a policy tool, The DOE-2 program was used to calculate the energy consumption in prototype buildings and in their modified versions in which energy conservation measures were effected. The energy use of a modified building with lowest life-cycle-cost determines the energy budget for all buildings of that type. These calculations were based on a number of assumptions that may be controversial. These assumptions regard accuracy of the model, comparison of the DOE-2 program with other programs, stability of the energy budget, and sensitivity of the results to variations in the building parameters.

  3. Integration of a wood pellet burner and a Stirling engine to produce residential heat and power

    International Nuclear Information System (INIS)

    Cardozo, Evelyn; Erlich, Catharina; Malmquist, Anders; Alejo, Lucio

    2014-01-01

    The integration a Stirling engine with a pellet burner is a promising alternative to produce heat and power for residential use. In this context, this study is focused on the experimental evaluation of the integration of a 20 kW th wood pellet burner and a 1 kW e Stirling engine. The thermal power not absorbed by the engine is used to produce hot water. The evaluation highlights the effects of pellet type, combustion chamber length and cycling operation on the Stirling engine temperatures and thermal power absorbed. The results show that the position of the Stirling engine is highly relevant in order to utilize as much as possible of the radiative heat from the burner. Within this study, only a 5 cm distance change between the Stirling engine and the pellet burner could result in an increase of almost 100 °C in the hot side of the engine. However, at a larger distance, the temperature of the hot side is almost unchanged suggesting dominating convective heat transfer from the hot flue gas. Ash accumulation decreases the temperature of the hot side of the engine after some cycles of operation when a commercial pellet burner is integrated. The temperature ratio, which is the relation between the minimum and maximum temperatures of the engine, decreases when using Ø8 mm wood pellets in comparison to Ø6 mm pellets due to higher measured temperatures on the hot side of the engine. Therefore, the amount of heat supplied to the engine is increased for Ø8 mm wood pellets. The effectiveness of the engine regenerator is increased at higher pressures. The relation between temperature of the hot side end and thermal power absorbed by the Stirling engine is nearly linear between 500 °C and 660 °C. Higher pressure inside the Stirling engine has a positive effect on the thermal power output. Both the chemical and thermal losses increase somewhat when integrating a Stirling engine in comparison to a stand-alone boiler for only heat production. The overall efficiency

  4. Diffusion of environmentally-friendly energy technologies: buy versus lease differences in residential PV markets

    Science.gov (United States)

    Rai, Varun; Sigrin, Benjamin

    2013-03-01

    Diffusion of microgeneration technologies, particularly rooftop photovoltaic (PV), represents a key option in reducing emissions in the residential sector. We use a uniquely rich dataset from the burgeoning residential PV market in Texas to study the nature of the consumer’s decision-making process in the adoption of these technologies. In particular, focusing on the financial metrics and the information decision-makers use to base their decisions upon, we study how the leasing and buying models affect individual choices and, thereby, the adoption of capital-intensive energy technologies. Overall, our findings suggest that the leasing model more effectively addresses consumers’ informational requirements and that, contrary to some other studies, buyers and lessees of PV do not necessarily differ significantly along socio-demographic variables. Instead, we find that the leasing model has opened up the residential PV market to a new, and potentially very large, consumer segment—those with a tight cash-flow situation.

  5. A Canadian loan fund for residential energy efficiency and renewable energy

    International Nuclear Information System (INIS)

    Tampier, M.

    2008-01-01

    Financing is a major need in the residential sector. Only a few programs in Canada provide low-interest financing for renewable energy. This presentation discussed the leveraging of cheap capital that could be used to enable public and private offers. With financial incentives, the renewable energy market was expected to at least double. A financial incentive fund could be one of several tools to achieve net zero energy housing, and address fuel poverty. A business plan is also required to move closer towards realization. The presentation described a report that outlines similar programs within and outside Canada, and presented estimates on future market size. Key data that was provided in the presentation included market potential; start-up capital for the fund; and average loan size to intermediaries. Next steps were also discussed with particular reference to lobbying the federal government to pick up this idea; having provincial governments and utilities join in this effort; and involvement of industry associations who have a tangible product. 1 fig

  6. Residential Energy Efficiency Research Planning Meeting Summary Report: Washington, D.C. - October 27-28, 2011

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-01

    This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Residential Energy Efficiency Research Planning meeting, held on October 28-29, 2011, in Washington, D.C.

  7. Public participation in energy saving retrofitting of residential buildings in China

    International Nuclear Information System (INIS)

    Liu, Wenling; Zhang, Jinyun; Bluemling, Bettina; Mol, Arthur P.J.; Wang, Can

    2015-01-01

    Highlights: • We compare public participation in three early cases of residential retrofitting in Beijing. • Residents’ involvement in pre-retrofit activities as well as in the choice and use of technologies varied. • More involvement of residents during retrofitting improves energy saving performance. • Taking into account motives and energy use practices of residents improves energy saving through retrofitting. - Abstract: Retrofitting existing residential buildings has been claimed as one crucial way to reduce energy consumption and greenhouse gas emissions within the Chinese residential sector. In China’s government-dominated retrofitting projects, the participation of residents is often neglected. The objective of this paper is to assess the influence level of public participation (before, during and after retrofit) on energy saving by comparing three Beijing neighborhoods with different retrofitting models: a central government-led model, a local government-led model, and an old neighborhood retrofit model. In the three cases data were collected through interviews with neighborhood workers and residents. The results show that residents’ involvement in pre-retrofit activities, in technology selection and in the use of technology differs greatly among the three cases. This study concludes that in order to improve the effectiveness of energy saving interventions, the motives, intentions and living habits of residents need to be given more consideration when designing and implementing retrofitting. By highlighting the importance of public participation this paper contributes to energy saving policy development in China

  8. Market influence on the low carbon energy refurbishment of existing multi-residential buildings

    International Nuclear Information System (INIS)

    Atkinson, Jonathan G.B.; Jackson, Tim; Mullings-Smith, Elizabeth

    2009-01-01

    This paper explores the relationship between the energy market; the political and regulatory context; and energy design decisions for existing multi-residential buildings, to determine what form the energy market landscape would take if tailored to encourage low carbon solutions. The links between market dynamics, Government strategies, and building designs are mapped to understand the steps that achieve carbon reduction from building operation. This is achieved using a model that takes financial and energy components with market and design variables to provide net present cost and annual carbon outputs. The financial component applies discounted cash flow analysis over the building lifespan, with discount rates reflecting contractual characteristics; the carbon component uses Standard Assessment Procedure (SAP) 2005. A scenario approach is adopted to test alternative strategies selected to encourage low carbon solutions in two residential and two office designs. The results show that the forward assumption of energy price escalation is the most influential factor on energy investment, together with the expected differentiation between the escalation of gas and electricity prices. Using this, and other influencing factors, the research reveals trends and strategies that will achieve mainstream application of energy efficiency and microgeneration technologies, and reduce carbon emissions in the existing multi-residential sector.

  9. Main physical environmental drivers of occupant behaviour with regard to space heating energy demand

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano Paolo

    2012-01-01

    real building energy requirements . The paper focuses on the particular topics of space heating energy demand related to the occupants habits of adjusting heating set-points. The parameters influencing the user interaction with the heating control system are analyzed in literature for residential......Several studies have highlighted the significant gap between the predicted energy performance of buildings and their measured actual performance. Uncertainties regarding behaviour of building occupants are one of the key factors limiting the ability of energy simulation tools to accurately predict......) environmental conditions and the occupants’ heating set-point preferences. The paper aims at providing a reliable basis for a more accurate description of control action models in performance simulation applications....

  10. Residential versus Communal Combination of Photovoltaic and Battery in Smart Energy Systems

    DEFF Research Database (Denmark)

    Marczinkowski, Hannah Mareike; Østergaard, Poul Alberg

    2017-01-01

    This paper presents an analysis of small consumers’ involvement in smart island energy systems with a focus on the technical feasibility of photovoltaic (PV) systems in combination with batter-ies. Two approaches may be observed in the literature: the optimization on a household level with the aim...... of being self-reliant versus coordinated and collective technologies with increased inte-gration across sectors and energy carriers. Thus, for household systems, the placement of a battery – whether aggregated or residential – creates the basis for this investigation. The study is based on the case...... of the Danish island Samsø for which the two battery approaches are simulated using the energy system simulation model EnergyPLAN. Results indicate a tendency towards aggre-gated batteries being more favourable from a systems perspective – while on the other hand, resi-dential batteries are more motivating...

  11. District heating with SLOWPOKE energy systems

    International Nuclear Information System (INIS)

    Lynch, G.F.

    1988-03-01

    The SLOWPOKE Energy System, a benign nuclear heat source designed to supply 10 thermal megawatts in the form of hot water for local heating systems in buildings and institutions, is at the forefront of these developments. A demonstration unit has been constructed in Canada and is currently undergoing an extensive test program. Because the nuclear heat source is small, operates at atmospheric pressure, and produces hot water below 100 degrees Celcius, intrinsic safety features will permit minimum operator attention and allow the heat source to be located close to the load and hence to people. In this way, a SLOWPOKE Energy System can be considered much like the oil- or coal-fired furnace it is designed to replace. The low capital investment requirements, coupled with a high degree of localization, even for the first unit, are seen as attractive features for the implementation of SLOWPOKE Energy Systems in many countries

  12. Impact of Demand-Side Management on Thermal Comfort and Energy Costs in a Residential nZEB

    Directory of Open Access Journals (Sweden)

    Thibault Q. Péan

    2017-05-01

    Full Text Available In this study, simulation work has been carried out to investigate the impact of a demand-side management control strategy in a residential nZEB. A refurbished apartment within a multi-family dwelling representative of Mediterranean building habits was chosen as a study case and modelled within a simulation framework. A flexibility strategy based on set-point modulation depending on the energy price was applied to the building. The impact of the control strategy on thermal comfort was studied in detail with several methods retrieved from the standards or other literature, differentiating the effects on day and night living zones. It revealed a slight decrease of comfort when implementing flexibility, although this was not prejudicial. In addition, the applied strategy caused a simultaneous increase of the electricity used for heating by up to 7% and a reduction of the corresponding energy costs by up to around 20%. The proposed control thereby constitutes a promising solution for shifting heating loads towards periods of lower prices and is able to provide benefits for both the user and the grid sides. Beyond that, the activation of energy flexibility in buildings (nZEB in the present case will participate in a more successful integration of renewable energy sources (RES in the energy mix.

  13. The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States

    International Nuclear Information System (INIS)

    Upton, Brad; Miner, Reid; Spinney, Mike; Heath, Linda S.

    2008-01-01

    Data developed by the Consortium for Research on Renewable Industrial Materials were used to estimate savings of greenhouse gas emissions and energy consumption associated with use of wood-based building materials in residential construction in the United States. Results indicate that houses with wood-based wall systems require 15-16% less total energy for non-heating/cooling purposes than thermally comparable houses employing alternative steel- or concrete-based building systems. Results for non-renewable energy consumption are essentially the same as those for total energy, reflecting the fact that most of the displaced energy is in fossil fuels. Over a 100-year period, net greenhouse gas emissions associated with wood-based houses are 20-50% lower than emissions associated with thermally comparable houses employing steel- or concrete-based building systems. Assuming 1.5 million single-family housing starts per year, the difference between wood and non-wood building systems represents about 9.6 Mt of CO 2 equivalents per year. The corresponding energy benefit associated with wood-based building materials is approximately 132 PJ year -1 . These estimates represent about 22% of embodied energy and 27% of embodied greenhouse gas emissions in the residential sector of the US economy. The results of the analysis are very sensitive to assumptions and uncertainties regarding the fate of forestland that is taken out of wood production due to reduced demand for wood, the continued production of co-products where demand for wood products is reduced, and the rate at which carbon accumulates in forests

  14. Energy consumption and indoor climate in a residential building before and after comprehensive energy retrofitting

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Rose, Jørgen; Christen Mørck, Ove

    2016-01-01

    including new facades, new windows, additional insulation, mechanical ventilation with heat recovery and a photovoltaic installation on the roof. The measured energy consumption for heating and domestic hot water before and after renovation was 139.1 kWh/m2/year and 95.6 kWh/m2/year respectively...... before and after the retrofit. In three of the flats in Traneparken measurements of ventilation conditions were performed using passive tracer gas technique together with continuous registration of the room air temperature, the relative humidity and the CO2-concentration using programmable data loggers....

  15. Passive Residential Houses with the Accumulation Properties of Ground as a Heat Storage Medium

    Science.gov (United States)

    Ochab, Piotr; Kokoszka, Wanda; Kogut, Janusz; Skrzypczak, Izabela; Szyszka, Jerzy; Starakiewicz, Aleksander

    2017-12-01

    Solar radiation is the primary source of life energy on Earth. The irradiance of the upper atmosphere is about 1360 W/m2, and it is estimated that about 1000 W/m2 reaches the ground. Long-term storage of heat energy is related to the use of a suitable thermal energy carrier. It may be either artificial or natural water tank, or artificial gravel-water tank, or aquifer or soil. It is justified to store the generated energy in large heating systems due to the nature of solar thermal energy. Typically, in such a solution storage space is a large solar collector farm. The reason for this is the proportionally small unit profits, which only in the case of large number of units provides sufficient energy that can be accumulated. It should be noted that Poland, a country located in a temperate and less harsh climate such as Scandinavia and Canada, has a relatively high potential for solar revenue. In the last decade, it has caused mainly small and individual heating installations. However, much of the municipal and industrial economy continues to rely on energy from non-renewable resources. This is due not only to the lack of a high-efficiency alternative to non-renewable energy resources, but also to the thermal state of buildings throughout the country, where old buildings require thermomodernization. This has the effect of both polluting the environment and the occurrence of smog, as well as pollutants in water and soil. This directly affects the occurrence of civilization diseases and other societal health problems. Therefore, the surplus of thermal clean energy that occurs during the spring and summer period should not only be used on a regular basis, but also stored for later winter use. The paper presents the concept of housing estate, which consists of 32 twin housing units. The solid character of buildings consistently refers to passive construction, and the materials meet the requirements for the passive buildings.

  16. Understanding the spectrum of residential energy-saving behaviours: French evidence using disaggregated data

    International Nuclear Information System (INIS)

    Belaïd, Fateh; Garcia, Thomas

    2016-01-01

    Analysing household energy-saving behaviours is crucial to improve energy consumption predictions and energy policy making. How should we quantitatively measure them? What are their determinants? This study explores the main factors influencing residential energy-saving behaviours based on a bottom-up multivariate statistical approach using data from the recent French PHEBUS survey. Firstly, we assess energy-saving behaviours on a one-dimension scale using IRT. Secondly, we use linear regression with an innovative variable selection method via adaptive lasso to tease out the effects of both macro and micro factors on the behavioural score. The results highlight the impact of five main attributes incentivizing energy-saving behaviours based on cross-variable analyses: energy price, household income, education level, age of head of household and dwelling energy performance. In addition, our results suggest that the analysis of the inverted U-shape impact of age enables the expansion of the energy consumption life cycle theory to energy-saving behaviours. - Highlights: • We examine the main factors influencing residential energy-saving behaviours. • We use data from the recent French PHEBUS survey. • We use IRT to assess energy-saving behaviours on a one-dimension scale. • We use linear regression with an innovative variable selection method via adaptive lasso. • We highlight the impact of five main attributes incentivizing energy-saving behaviours.

  17. Economic and environmental impacts of community-based residential building energy efficiency investment

    International Nuclear Information System (INIS)

    Choi, Jun-Ki; Morrison, Drew; Hallinan, Kevin P.; Brecha, Robert J.

    2014-01-01

    A systematic framework for evaluating the local economic and environmental impacts of investment in building energy efficiency is developed. Historical residential building energy data, community-wide economic input–output data, and emission intensity data are utilized. The aim of this study is to show the comprehensive insights and connection among achieving variable target reductions for a residential building energy use, economic and environmental impacts. Central to this approach for the building energy reduction goal is the creation of individual energy models for each building based upon historical energy data and available building data. From these models, savings estimates and cost implications can be estimated for various conservation measures. A ‘worst to first’ (WF) energy efficient investment strategy is adopted to optimize the level of various direct, indirect, and induced economic impacts on the local community. This evaluation helps to illumine opportunities to establish specific energy reduction targets having greatest economic impact in the community. From an environmental perspective, short term economy-wide CO 2 emissions increase because of the increased community-wide economic activities spurred by the production and installation of energy efficiency measures, however the resulting energy savings provide continuous CO 2 reduction for various target savings. - Highlights: • WF energy efficient strategy helps to optimize various level of economic impacts. • Greatest community benefits are achieved from specific energy reduction targets. • Community-wide economic impacts vary for different energy conservation measures

  18. Renewable energy and conservation measures for non-residential buildings

    Science.gov (United States)

    Grossman, Andrew James

    The energy demand in most countries is growing at an alarming rate and identifying economically feasible building retrofit solutions to decrease the need for fossil fuels so as to mitigate their environmental and societal impacts has become imperative. Two approaches are available for identifying feasible retrofit solutions: 1) the implementation of energy conservation measures; and 2) the production of energy from renewable sources. This thesis focuses on the development of retrofit software planning tools for the implementation of solar photovoltaic systems, and lighting system retrofits for mid-Michigan institutional buildings. The solar planning tool exploits the existing blueprint of a building's rooftop, and via image processing, the layouts of the solar photovoltaic arrays are developed based on the building's geographical location and typical weather patterns. The resulting energy generation of a PV system is estimated and is utilized to determine levelized energy costs. The lighting system retrofit analysis starts by a current utilization assessment of a building to determine the amount of energy used by the lighting system. Several LED lighting options are evaluated on the basis of color correlation temperature, color rendering index, energy consumption, and financial feasibility, to determine a retrofit solution. Solar photovoltaic installations in mid-Michigan are not yet financially feasible, but with the anticipated growth and dynamic complexity of the solar photovoltaic market, this solar planning tool is able to assist building proprietors make executive decisions regarding their energy usage. Additionally, a lighting system retrofit is shown to have significant financial and health benefits.

  19. Towards Nearly Zero Energy Buildings in Europe: A Focus on Retrofit in Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    Delia D’Agostino

    2017-01-01

    Full Text Available Buildings are the focus of European (EU policies aimed at a sustainable and competitive low-carbon economy by 2020. Reducing energy consumption of existing buildings and achieving nearly zero energy buildings (NZEBs are the core of the Energy Efficiency Directive (EED and the recast of the Energy Performance of Building Directive (EPBD. To comply with these requirements, Member States have to adopt actions to exploit energy savings from the building sector. This paper describes the differences between deep, major and NZEB renovation and then it provides an overview of best practice policies and measures to target retrofit and investment related to non-residential buildings. Energy requirements defined by Member States for NZEB levels are reported comparing both new and existing residential and non-residential buildings. The paper shows how the attention given to refurbishment of NZEBs increased over the last decade, but the achievement of a comprehensive implementation of retrofit remains one of main challenges that Europe is facing.

  20. Energy Impacts of Envelope Tightening and Mechanical Ventilation for the U.S. Residential Sector

    Energy Technology Data Exchange (ETDEWEB)

    Logue, J. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, M. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, I. S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, B. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-01

    Effective residential envelope air sealing reduces infiltration and associated energy costs for thermal conditioning, yet often creates a need for mechanical ventilation to protect indoor air quality. This study estimated the potential energy savings of implementing airtightness improvements or absolute standards along with mechanical ventilation throughout the U.S. housing stock. We used a physics-based modeling framework to simulate the impact of envelope tightening, providing mechanical ventilation as needed. There are 113 million homes in the US. We calculated the change in energy demand for each home in a nationally representative sample of 50,000 virtual homes developed from the 2009 Residential Energy Consumption Survey. Ventilation was provided as required by 2010 and proposed 2013 versions of ASHRAE Standard 62.2. Ensuring that all current homes comply with 62.2-2010 would increase residential site energy demand by 0.07 quads (0.07 exajoules (EJ)) annually. Improving airtightness of all homes at current average retrofit performance levels would decrease demand by 0.7 quads (0.74 EJ) annually and upgrading all homes to be as airtight as the top 10% of similar homes would double the savings, leading to roughly $22 billion in annual savings in energy bills. We also analyzed the potential benefits of bringing the entire stock to airtightness specifications of IECC 2012, Canada's R2000, and Passive House standards.

  1. Distributed demand-side management optimisation for multi-residential users with energy production and storage strategies

    Directory of Open Access Journals (Sweden)

    Emmanuel Chifuel Manasseh

    2014-12-01

    Full Text Available This study considers load control in a multi-residential setup where energy scheduler (ES devices installed in smart meters are employed for demand-side management (DSM. Several residential end-users share the same energy source and each residential user has non-adjustable loads and adjustable loads. In addition, residential users may have storage devices and renewable energy sources such as wind turbines or solar as well as dispatchable generators. The ES devices exchange information automatically by executing an iterative distributed algorithm to locate the optimal energy schedule for each end-user. This will reduce the total energy cost and the peak-to-average ratio (PAR in energy demand in the electric power distribution. Users possessing storage devices and dispatchable generators strategically utilise their resources to minimise the total energy cost together with the PAR. Simulation results are provided to evaluate the performance of the proposed game theoretic-based distributed DSM technique.

  2. District Heating Systems Performance Analyses. Heat Energy Tariff

    Science.gov (United States)

    Ziemele, Jelena; Vigants, Girts; Vitolins, Valdis; Blumberga, Dagnija; Veidenbergs, Ivars

    2014-12-01

    The paper addresses an important element of the European energy sector: the evaluation of district heating (DH) system operations from the standpoint of increasing energy efficiency and increasing the use of renewable energy resources. This has been done by developing a new methodology for the evaluation of the heat tariff. The paper presents an algorithm of this methodology, which includes not only a data base and calculation equation systems, but also an integrated multi-criteria analysis module using MADM/MCDM (Multi-Attribute Decision Making / Multi-Criteria Decision Making) based on TOPSIS (Technique for Order Performance by Similarity to Ideal Solution). The results of the multi-criteria analysis are used to set the tariff benchmarks. The evaluation methodology has been tested for Latvian heat tariffs, and the obtained results show that only half of heating companies reach a benchmark value equal to 0.5 for the efficiency closeness to the ideal solution indicator. This means that the proposed evaluation methodology would not only allow companies to determine how they perform with regard to the proposed benchmark, but also to identify their need to restructure so that they may reach the level of a low-carbon business.

  3. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

    2009-03-31

    The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

  4. Energy Efficiency Trends in Residential and Commercial Buildings - August 2010

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-08-01

    This report overviews trends in the construction industry, including profiles of buildings and the resulting impacts on energy consumption. It begins with an executive summary of the key findings found in the body of the report, so some of the data and charts are replicated in this section. Its intent is to provide in a concise place key data points and conclusions. The remainder of the report provides a specific profile of the construction industry and patterns of energy use followed by sections providing product and market insights and information on policy efforts, such as taxes and regulations, which are intended to influence building energy use. Information on voluntary programs is also offered.

  5. Influence of occupant's heating set-point preferences on indoor environmental quality and heating demand in residential buildings

    DEFF Research Database (Denmark)

    Fabi, Valentina; Corgnati, Stefano Paolo; Andersen, Rune Korsholm

    2013-01-01

    The aim of this study was to switch from a deterministic approach of building energy simulation toward a probabilistic one that takes into account the occupants interactions with the building controls. A probabilistic approach is proposed and applied to simulate occupant behavior realistically...... of energy consumption. The aim was to compare the obtained results with a traditional deterministic use of the simulation program. Based on heating set-point behavior of 13 Danish dwellings, logistic regression was used to infer the probability of adjusting the set-point of thermostatic radiator valves...

  6. Life cycle assessment of energy and CO2 emissions for residential buildings in Jakarta, Indonesia

    Science.gov (United States)

    Surahman, U.; Kubota, T.; Wijaya, A.

    2016-04-01

    In order to develop low energy and low carbon residential buildings, it is important to understand their detailed energy profiles. This study provides the results of life cycle assessment of energy and CO2 emissions for residential buildings in Jakarta, Indonesia. A survey was conducted in the city in 2012 to obtain both material inventory and household energy consumption data within the selected residential buildings (n=300), which are classified into three categories, namely simple, medium and luxurious houses. The results showed that the average embodied energy of simple, medium and luxurious houses was 58.5, 201.0, and 559.5 GJ, respectively. It was found that total embodied energy of each house can be explained by its total floor area alone with high accuracy in respective house categories. Meanwhile, it was seen that operational energy usage patterns varied largely among house categories as well as households especially in the simple and medium houses. The energy consumption for cooling was found to be the most significant factor of the increase in operational energy from simple to luxurious houses. Further, in the life cycle energy, the operational energy accounted for much larger proportions of about 86-92% than embodied energy regardless of the house categories. The life cycle CO2 emissions for medium and luxurious houses were larger than that of simple houses by 2 and 6 times on average. In the simple houses, cooking was the largest contributor to the CO2 emissions (25%), while the emissions caused by cooling increased largely with the house category and became the largest contributors in the medium (26%) and luxurious houses (41%).

  7. Energy security of residential buildings as an aspect of managerial activity in the modern concept of globalization

    Science.gov (United States)

    Chumakova, Olga

    2017-10-01

    The paper shows the management aspects of ensuring the safety of residential buildings. The article presents an analytical review of the state of the existing heat supply systems in the Russian Federation, assesses their energy security, highlights the results of research into the causes of accidents in engineering systems in water-bearing communications, and provides methods and comparative calculations of failures of these systems. It is indicated that according to the results of the All-Russian Census of 2010, the total population of the Russian Federation at the time of the survey was 142 million 857 thousand people living in more than 1100 settlements that have the status of the city (subject to their identification by population, administrative and national economic significance and the nature of the building), as well as in almost 160,000 rural settlements. It should be noted that in accordance with the classification of settlements in the Russian Federation, there are five main categories, namely: The above classification of settlements has formed the basis for the analysis of the existing processes of functioning of the heat supply systems of the Russian Federation at the objects of housing, social and industrial development from the point of view of energy security. Thus, for example, it turned out that in large cities with multi-storey buildings the centralized heat supply system is dominated by a system consisting of one or several sources of heat, heat networks having different diameter of pipelines, their number and length, and also serving various types of heat consumers) from cogeneration plants (CHP) of public use, or industrial enterprises. As for the welterweight and small towns, including urban-type settlements with a multi-storey building of the post-war period, they, as a rule, have the majority of IGFs, fed from the city or district boiler houses.

  8. Design and Development of an Intelligent Energy Controller for Home Energy Saving in Heating/Cooling System

    Science.gov (United States)

    Abaalkhail, Rana

    Energy is consumed every day at home as we perform simple tasks, such as watching television, washing dishes and heating/cooling home spaces during season of extreme weather conditions, using appliances, or turning on lights. Most often, the energy resources used in residential systems are obtained from natural gas, coal and oil. Moreover, climate change has increased awareness of a need for expendable, energy resources. As a result, carbon dioxide emissions are increasing and creating a negative effect on our environment and on our health. In fact, growing energy demands and limited natural resource might have negative impacts on our future. Therefore, saving energy is becoming an important issue in our society and it is receiving more attention from the research community. This thesis introduces a intelligent energy controller algorithm based on software agent approach that reduce the energy consumption at home for both heating and cooling spaces by considering the user's occupancy, outdoor temperature and user's preferences as input to the system. Thus the proposed approach takes into consideration the occupant's preferred temperature, the occupied and unoccupied spaces, as well as the time spent in each area of the home. A Java based simulator has been implemented to simulate the algorithm for saving energy in heating and cooling systems. The results from the simulator are compared to the results of using HOT2000, which is Canada's leading residential energy analysis and rating software developed by CanmetENERGY's Housing, Buildings, Communities and Simulation (HBCS) group. We have calculated how much energy a home modelled will use under emulated conditions. The results showed that the implementation of the proposed energy controller algorithm can save up to 50% in energy consumption in homes dedicated to heating and cooling systems compared to the results obtained by using HOT2000.

  9. Heating up the energy debate

    International Nuclear Information System (INIS)

    Latimer, Cole; Mobbs, Emily

    2010-01-01

    With the high levels of coal in Australia, weaning the nation from an easily extracted fossil fuel source to a renewable, greener one is difficult. The current governmental impasse on the possibility of an emissions trading scheme and carbon tax has not helped further the growth of the renewable energy industry. The very nature of generating electricity via geothermal sources is also not well known within Australia. A number of geothermal exploration and engineering firms have highlighted the current aura of uncertainty caused by the deferment of the emissions trading scheme and not defining carbon taxes as the major stumbling block for the development of geothermal energy in Australia. Despite a Geothermal Drilling Program grant, the high initial cost of geothermal exploration and drilling has reduced the impact of this grant. The real issue is the ability to supply the energy base load currently serviced by the much cheaper coal fuel and Australia's position as the top global exporter of coal.

  10. Cycle of waste heat energy transformation

    Science.gov (United States)

    Bormann, H.; Voneynatten, C.; Krause, R.; Rudolph, W.; Gneuss, G.; Groesche, F.

    1983-08-01

    Transformation of industrial waste heat with temperatures up to 300 C into mechanical or electrical energy using organic Rankine cycles technique is considered. Behavior of working fluid was studied and plant components were optimized. A pilot plant (generated power 30 kW) was installed under industrial operating conditions. The working fluid is a fluorochlorohydrocarbon; the expansion machine is a piston type steam engine. The results of the pilot plant were used for the planning and building of a prototype plant (120 kW) with an additional power heat coupling for preheating the boiler heat water. The waste heat source is a calciner process. The predicted results are obtained although full working load is not reached due to reduced available waste heat of the calciner process.

  11. Understanding change and continuity in residential energy consumption

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten

    2011-01-01

    Practice theory has recently emerged within consumer studies as a promising approach that shifts focus from the individual consumer towards the collective aspects of consumption and from spectacular and conspicuous dimensions of consumption towards routine and mundane aspects of consumption...... of material consumer goods in practice theory. Case studies on household energy consumption are used as an empirical basis for these discussions. Looking at household energy consumption through the theoretical lens of practice theory necessitates discussion on whether energy consumption should be viewed....... Practice theory is, however, not a commonly agreed upon theory but more like an approach or a turn within contemporary social theory. When using practice theory in consumer studies, there are thus several conditions that need further clarification. The focus in this article is on how change and continuity...

  12. Forecasting jobs in the supply chain for investments in residential energy efficiency retrofits in Florida

    Science.gov (United States)

    Fobair, Richard C., II

    This research presents a model for forecasting the numbers of jobs created in the energy efficiency retrofit (EER) supply chain resulting from an investment in upgrading residential buildings in Florida. This investigation examined material supply chains stretching from mining to project installation for three product types: insulation, windows/doors, and heating, ventilating, and air conditioning (HVAC) systems. Outputs from the model are provided for the project, sales, manufacturing, and mining level. The model utilizes reverse-estimation to forecast the numbers of jobs that result from an investment. Reverse-estimation is a process that deconstructs a total investment into its constituent parts. In this research, an investment is deconstructed into profit, overhead, and hard costs for each level of the supply chain and over multiple iterations of inter-industry exchanges. The model processes an investment amount, the type of work and method of contracting into a prediction of the number of jobs created. The deconstruction process utilizes data from the U.S. Economic Census. At each supply chain level, the cost of labor is reconfigured into full-time equivalent (FTE) jobs (i.e. equivalent to 40 hours per week for 52 weeks) utilizing loaded labor rates and a typical employee mix. The model is sensitive to adjustable variables, such as percentage of work performed per type of product, allocation of worker time per skill level, annual hours for FTE calculations, wage rate, and benefits. This research provides several new insights into job creation. First, it provides definitions that can be used for future research on jobs in supply chains related to energy efficiency. Second, it provides a methodology for future investigators to calculate jobs in a supply chain resulting from an investment in energy efficiency upgrades to a building. The methodology used in this research is unique because it examines gross employment at the sub-industry level for specific

  13. Geothermal energy. Ground source heat pumps

    International Nuclear Information System (INIS)

    2009-01-01

    Geothermal energy can be harnessed in 2 different ways: electricity or heat generation. The combined net electrical geothermal power of the European Union countries reached 719.3 MWe in 2008 (4.8 MW up on 2007) for 868.1 MWe of installed capacity. Gross electrical production contracted slightly in 2008 (down 1% on the 2007 level) and stood at 5809.5 GWh in 2008. Italy has a overwhelming position with a production of 5520.3 GWh. Geothermal heat production concerning aquifers whose temperature is 30-150 C. degrees generally at a depth of 1-3 km is called low- and medium-enthalpy energy. 18 of the 27 EU members use low- and medium-enthalpy energy totaling 2560.0 MWth of installed capacity that yielded 689.2 ktoe in 2008 and 3 countries Hungary, Italy and France totaling 480.3 ktoe. Very low-enthalpy energy concerns the exploitation of shallow geothermal resources using geothermal heat pumps. In 2008, 114452 ground heat pumps were sold in Europe. At the end of 2008, the installed capacity was 8955.4 MWth (16.5% up on 2007 level, it represented 785206 pumps. Over one million ground heat pumps are expected to be operating in 2010 in Europe. (A.C.)

  14. Trends in Residential Energy Consumption in Saudi Arabia with Particular Reference to the Eastern Province

    Directory of Open Access Journals (Sweden)

    Farajallah Alrashed

    2014-12-01

    Full Text Available Residential buildings are vital in the energy scenario of Saudi Arabia as they account for 52% of the total electricity consumption. The Eastern Province, due to its harsh weather conditions, is one of the most challenging areas in Saudi Arabia in terms of residential energy consumption. The province is vital also because of its large land area, accounting for almost one third of the entire country. This article investigates some of the important factors related to the residential energy consumption i.e. weather conditions, types of dwellings, building envelops, air-conditioning (A/C systems and domestic appliances especially cooking ovens. The work is based upon an analysis of the actual monthly electricity consumption for 115 dwellings in Dhahran for the year 2012. The investigated buildings include 62 apartments, 28 villas, and 25 traditional houses. The annual average electricity consumption for the surveyed dwellings was found to be 176.5 kWh/m2, a value higher than international energy-efficiency benchmarks. It is found that the use of mini-split A/C systems, thermal insulation and double-glazed windows can help reduce the electricity consumption by over 30%.

  15. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan; Burch, Gabriel

    2011-10-13

    An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the ‘direct-DC house’ with respect to today’s typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly

  16. Turkey’s Strategic Energy Efficiency Plan – An ex ante impact assessment of the residential sector

    International Nuclear Information System (INIS)

    Elsland, Rainer; Divrak, Can; Fleiter, Tobias; Wietschel, Martin

    2014-01-01

    Turkey’s energy demand has been growing by 4.5% per year over the last decade. As a reaction to this, the Turkish government has implemented the Strategic Energy Efficiency Plan (SEEP), which provides a guideline for energy efficiency policies in all sectors. The aim of this study is to analyse the potential of the SEEP on final energy demand in the Turkish residential sector until 2030. Three scenarios are developed based on a detailed bottom-up modelling approach using a vintage stock model to simulate the energy demand of heating systems and appliances. The results show a decreasing final energy demand in the reference scenario from about 944 PJ in 2008 to 843 PJ in 2030. This reflects a structural break, which is mainly caused by a high building demolition rate and low efficiency in the existing building stock. The SEEP achieves additional savings of around 111 PJ until 2030, while a scenario with even higher efficiency shows further savings of 91 PJ. Electricity demand increases in all scenarios – mainly due to growing ownership rates of appliances. The SEEP will achieve around 10 TWh of electricity savings in 2030 compared to the reference scenario, mainly through more ambitious end-use standards

  17. Energy refurbishment of the Italian residential building stock: energy and cost analysis through the application of the building typology

    International Nuclear Information System (INIS)

    Ballarini, Ilaria; Corrado, Vincenzo; Madonna, Francesco; Paduos, Simona; Ravasio, Franco

    2017-01-01

    The European residential building stock is largely composed of buildings with poor energy performance, therefore basic retrofit actions could lead to significant energy savings. However, energy refurbishment measures should be identified in accurate way, taking into account the technical viability and aiming both to increase the building energy performance and to restrain the costs. The present article investigates the effects of different measures applied to the Italian residential building stock by using the building typology, which consists of 120 building types, representative of six construction ages, four building sizes and five climatic zones. A quasi-steady state model has been used to calculate the energy performance; the economic evaluation has been carried out as specified in the EU cost-optimal comparative methodology (Directive 2010/31/EU). The most effective measures and packages of measures, in terms of energy saving and global cost reduction, are identified and discussed. The results are addressed to important purposes for energy policy, as for instance: (a) to provide political authorities with the most effective energy efficiency measures as to encourage retrofit processes through the allocation of financial incentives, (b) to offer a knowledge-base for developing energy refurbishment scenarios of residential building stocks and forecasting future energy resource demand. - Highlights: • Investigation of energy savings and cost effectiveness of the Italian housing stock refurbishments. • Application of the building typology approach of the IEE-TABULA project. • Knowledge-base for bottom-up models of the building stock energy performance. • Supporting the political authorities to promote effective refurbishment measures.

  18. The effects of landscaping on the residential cooling energy

    Science.gov (United States)

    Misni, A.

    2018-02-01

    This paper examines the effectiveness of landscaping on the air-conditioning energy saving of houses in a tropical environment. This case study involved looking at the construction and landscaping of three single-family houses in three sections of Shah Alam, Selangor, Malaysia. The houses ranged in age from 5 to 30 years old, which provided different examples of construction and maturity levels of the surrounding landscaping. Landscaping affects the thermal performance as well as on the air-conditioning energy of houses, in how it provides shade, channels wind, and evapotranspiration. While the construction of the three houses was similar, they were different in size and design, including their landscape design. These houses were chosen because they are representative of single-family tropical houses and landscaping styles in Malaysia since 30 years ago. Three houses were chosen; the 30-year-old house, the 10-year-old house, and the 5-year-old house. In a tropical country, landscaping is used to reduce the effects of the hot and humid climate. The houses spent 15-45% of the electricity cost on cooling. These results were influenced by human factors and the surrounding landscaping. Every type of vegetation, such as trees, grass, shrubs, groundcover, and turf, contributes to reducing air temperatures near the house and providing evaporative cooling.

  19. The Marriage of Residential Energy Codes and Rating Systems: Conflict Resolution or Just Conflict?

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Zachary T.; Mendon, Vrushali V.

    2014-08-21

    After three decades of coexistence at a distance, model residential energy codes and residential energy rating systems have come together in the 2015 International Energy Conservation Code. At the October, 2013, International Code Council’s Public Comment Hearing, a new compliance path based on an Energy Rating Index was added to the IECC. Although not specifically named in the code, RESNET’s HERS rating system is the likely candidate Index for most jurisdictions. While HERS has been a mainstay in various beyond-code programs for many years, its direct incorporation into the most popular model energy code raises questions about the equivalence of a HERS-based compliance path and the traditional IECC performance compliance path, especially because the two approaches use different efficiency metrics, are governed by different simulation rules, and have different scopes with regard to energy impacting house features. A detailed simulation analysis of more than 15,000 house configurations reveals a very large range of HERS Index values that achieve equivalence with the IECC’s performance path. This paper summarizes the results of that analysis and evaluates those results against the specific Energy Rating Index values required by the 2015 IECC. Based on the home characteristics most likely to result in disparities between HERS-based compliance and performance path compliance, potential impacts on the compliance process, state and local adoption of the new code, energy efficiency in the next generation of homes subject to this new code, and future evolution of model code formats are discussed.

  20. Inter-model, analytical, and experimental validation of a heat balance based residential cooling load calculation procedure

    Science.gov (United States)

    Xiao, Dongyi

    Scope and method of study. A systematic validation of the ASHRAE heat balance based residential cooling load calculation procedure (RHB) has been performed with inter-model comparison, analytical verification and experimental validation. The inter-model validation was performed using ESP-r as the reference model. The testing process was automated through parametric generation and simulation of large sets of test cases for both RHB and ESP-r. The house prototypes covered include a simple Shoebox prototype and a real 4-bedroom house prototype. An analytical verification test suite for building fabric models of whole building energy simulation programs has been developed. The test suite consists of a series of sixteen tests covering convection, conduction, solar irradiation, long-wave radiation, infiltration and ground-coupled floors. Using the test suite, a total of twelve analytical tests have been done with the RHB procedure. The experimental validation has been conducted using experimental data collected from a Cardinal Project house located in Fort Wayne, Indiana. During the diagnostic process of the experimental validation, comparisons have also been made between ESP-r simulation results and experimental data. Findings and conclusions. It is concluded RHB is acceptable as a design tool on a typical North American house. Analytical tests confirmed the underlying mechanisms for modeling basic heat transfer phenomena in building fabric. The inter-model comparison showed that the differences found between RHB and ESP-r can be traced to the differences in sub-models used by RHB and ESP-r. It also showed that the RHB-designed systems can meet the design criteria and that the RHB temperature swing option is helpful in reducing system over-sizing. The experimental validation demonstrated that the systems designed with the method will have adequate size to meet the room temperatures specified in the design, whether or not swing is utilized. However, actual system