WorldWideScience

Sample records for residential heat comfort

  1. Comfort air temperature influence on heating and cooling loads of a residential building

    Science.gov (United States)

    Stanciu, C.; Șoriga, I.; Gheorghian, A. T.; Stanciu, D.

    2016-08-01

    The paper presents the thermal behavior and energy loads of a two-level residential building designed for a family of four, two adults and two students, for different inside comfort levels reflected by the interior air temperature. Results are intended to emphasize the different thermal behavior of building elements and their contribution to the building's external load. The most important contributors to the building thermal loss are determined. Daily heating and cooling loads are computed for 12 months simulation in Bucharest (44.25°N latitude) in clear sky conditions. The most important aspects regarding sizing of thermal energy systems are emphasized, such as the reference months for maximum cooling and heating loads and these loads’ values. Annual maximum loads are encountered in February and August, respectively, so these months should be taken as reference for sizing thermal building systems, in Bucharest, under clear sky conditions.

  2. Hybrid heating systems optimization of residential environment to have thermal comfort conditions by numerical simulation.

    Science.gov (United States)

    Jahantigh, Nabi; Keshavarz, Ali; Mirzaei, Masoud

    2015-01-01

    The aim of this study is to determine optimum hybrid heating systems parameters, such as temperature, surface area of a radiant heater and vent area to have thermal comfort conditions. DOE, Factorial design method is used to determine the optimum values for input parameters. A 3D model of a virtual standing thermal manikin with real dimensions is considered in this study. Continuity, momentum, energy, species equations for turbulent flow and physiological equation for thermal comfort are numerically solved to study heat, moisture and flow field. K - ɛRNG Model is used for turbulence modeling and DO method is used for radiation effects. Numerical results have a good agreement with the experimental data reported in the literature. The effect of various combinations of inlet parameters on thermal comfort is considered. According to Pareto graph, some of these combinations that have significant effect on the thermal comfort require no more energy can be used as useful tools. A better symmetrical velocity distribution around the manikin is also presented in the hybrid system.

  3. Floor heating maximizes residents` comfort

    Energy Technology Data Exchange (ETDEWEB)

    Tirkkanen, P.; Wikstroem, T.

    1996-11-01

    Storing heat in floors by using economical night-time electricity does not increase the specific consumption of heating. According to studies done by IVO, the optimum housing comfort is achieved if the room is heated mainly by means of floor heating that is evened out by window or ceiling heating, or by a combination of all three forms of heating. (orig.)

  4. Human Thermal Comfort In Residential House Buildings Of Jimma Town Southwest Ethiopia.

    Directory of Open Access Journals (Sweden)

    Chali Yadeta

    2015-08-01

    Full Text Available Indoor human thermal comfort is an important factor in indoor air quality assessment. Thermal comfort affects human health work efficiency and overall wellbeing. Thermal discomfort in indoors lowers the emotional and physical health of the occupants. This paper targets to explore human thermal comfort in residential house buildings of Jimma town and state some possible mechanisms to improve the existing thermal discomfort in large number the houses. For the study 303 structured questionnaires were distributed to the residential houses in thirteen places of the town based on predetermined criteria. The study reveals that human thermal discomfort in residential houses Jimma town are mainly from poor architectural design and improper use of heat generating appliances in indoors. The uses architectural design that suites the present climatic conditions and use of materials that facilitates ventilations will enhance the realization of the required human thermal comfort in residential houses of the study area.

  5. Thermal comfort in residential buildings by the millions

    DEFF Research Database (Denmark)

    Østergård, Torben; Maagaard, Steffen; Jensen, Rasmus Lund

    2016-01-01

    In Danish building code and many design briefings, criteria regarding thermal comfort are defined for “critical” rooms in residential buildings. Identifying the critical room is both difficult and time-consuming for large, multistory buildings. To reduce costs and time, such requirement often...

  6. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, Leen; D' haeseleer, William [Division of Applied Mechanics and Energy Conversion, University of Leuven (K.U.Leuven), Celestijnenlaan 300 A, B-3001 Leuven (Belgium); Dear, Richard de [Division of Environmental and Life Sciences, Macquarie University, Sydney (Australia); Hensen, Jan [Faculty of Architecture, Building and Planning, Technische Universiteit Eindhoven, Vertigo 6.18, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2009-05-15

    Building Energy Simulation (BES) programmes often use conventional thermal comfort theories to make decisions, whilst recent research in the field of thermal comfort clearly shows that important effects are not incorporated. The conventional theories of thermal comfort were set up based on steady state laboratory experiments. This, however, is not representing the real situation in buildings, especially not when focusing on residential buildings. Therefore, in present analysis, recent reviews and adaptations are considered to extract acceptable temperature ranges and comfort scales. They will be defined in an algorithm, easily implementable in any BES code. The focus is on comfortable temperature levels in the room, more than on the detailed temperature distribution within that room. (author)

  7. In-situ real time measurements of thermal comfort and comparison with the adaptive comfort theory in Dutch residential dwellings

    NARCIS (Netherlands)

    Ioannou, A.; Itard, L.C.M.; Agarwal, Tushar

    2018-01-01

    Indoor thermal comfort is generally assessed using the PMV or the adaptive model. This research presents the results obtained by in-situ real time measurements of thermal comfort and thermal comfort perception in 17 residential dwellings in the Netherlands. The study demonstrates the new

  8. Residential solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  9. Heat comfort and practice theory

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten

    2008-01-01

      This paper has both a theoretical and a practical idea and content. The theoretical aim is to use and develop practice theory from Schatzki, Reckwitz and Warde to be more applicable in understanding everyday routines. The theoretical development will focus on how routines exist in close...... of ventilating and regulating the heat. Analysis in this paper builds on qualitative interviews with households living in identical houses, where those using the least energy for heating use one third of those using the most do. Focus is on describing similarities and differences in practices as well...

  10. Influence of duration of thermal comfort provision on heating behavior of buildings

    International Nuclear Information System (INIS)

    Bojic, Milorad; Despotovic, Milan

    2007-01-01

    Because of the permanent dilemma whether residential buildings using district heating should be heated continually or discontinuously, we evaluated how the yearly heating load and the peak heating load of a small building in Serbia depend on the duration of thermal comfort provision. Using HTB2 software, a product of the Welsh School of Architecture, it was found that an increase in the duration of thermal comfort provision in the building from 16 h to 24 h increases the yearly heating load by 20%, reduces the peak heating load by up to 40% and may increase the number of new customers served with the same heating plant by up to 40%

  11. Selecting HVAC Systems to Achieve Comfortable and Cost-effective Residential Net-Zero Energy Buildings.

    Science.gov (United States)

    Wu, Wei; Skye, Harrison M; Domanski, Piotr A

    2018-02-15

    HVAC is responsible for the largest share of energy use in residential buildings and plays an important role in broader implementation of net-zero energy building (NZEB). This study investigated the energy, comfort and economic performance of commercially-available HVAC technologies for a residential NZEB. An experimentally-validated model was used to evaluate ventilation, dehumidification, and heat pump options for the NZEB in the mixed-humid climate zone. Ventilation options were compared to mechanical ventilation without recovery; a heat recovery ventilator (HRV) and energy recovery ventilator (ERV) respectively reduced the HVAC energy by 13.5 % and 17.4 % and reduced the building energy by 7.5 % and 9.7 %. There was no significant difference in thermal comfort between the ventilation options. Dehumidification options were compared to an air-source heat pump (ASHP) with a separate dehumidifier; the ASHP with dedicated dehumidification reduced the HVAC energy by 7.3 % and the building energy by 3.9 %. The ASHP-only option (without dedicated dehumidification) reduced the initial investment but provided the worst comfort due to high humidity levels. Finally, ground-source heat pump (GSHP) alternatives were compared to the ASHP; the GSHP with two and three boreholes reduced the HVAC energy by 26.0 % and 29.2 % and the building energy by 13.1 % and 14.7 %. The economics of each HVAC configuration was analyzed using installation cost data and two electricity price structures. The GSHPs with the ERV and dedicated dehumidification provided the highest energy savings and good comfort, but were the most expensive. The ASHP with dedicated dehumidification and the ERV (or HRV) provided reasonable payback periods.

  12. Discover the benefits of residential wood heating

    International Nuclear Information System (INIS)

    2003-01-01

    This publication described how residential wood-heating systems are being used to reduce energy costs and increase home comfort. Biomass energy refers to all forms are renewable energy that is derived from plant materials. The source of fuel may include sawmills, woodworking shops, forest operations and farms. The combustion of biomass is also considered to be carbon dioxide neutral, and is not considered to be a major producer of greenhouse gases (GHG) linked to global climate change. Wood burning does, however, release air pollutants, particularly if they are incompletely burned. Incomplete combustion of wood results in dense smoke consisting of toxic gases. Natural Resources Canada helped create new safety standards and the development of the Wood Energy Technical Training Program to ensure that all types of wood-burning appliances are installed correctly and safely to reduce the risk of fire and for effective wood heating. In Canada, more than 3 million families heat with wood as a primary or secondary heating source in homes and cottages. Wood heating offers security from energy price fluctuations and electrical power failures. This paper described the benefits of fireplace inserts that can transform old fireplaces into modern heating systems. It also demonstrated how an add-on wood furnace can be installed next to oil furnaces to convert an oil-only heating system to a wood-oil combination system, thereby saving thousands of dollars in heating costs. Wood pellet stoves are another wood burning option. The fuel for the stoves is produced from dried, finely ground wood waste that is compressed into hard pellets that are loaded into a hopper. The stove can run automatically for up to 24 hours. New high-efficiency advanced fireplaces also offer an alternative heating system that can reduce heating costs while preserving Canada's limited supply of fossil fuels such as oil and gas. 13 figs

  13. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation

    NARCIS (Netherlands)

    Peeters, L.F.R.; Dear, de R.; Hensen, J.L.M.; D'Haeseleer, W.

    2009-01-01

    Building Energy Simulation (BES) programmes often use conventional thermal comfort theories to make decisions, whilst recent research in the field of thermal comfort clearly shows that important effects are not incorporated. The conventional theories of thermal comfort were set up based on steady

  14. The Impact of Greenspace on Thermal Comfort in a Residential Quarter of Beijing, China.

    Science.gov (United States)

    Wu, Zhifeng; Kong, Fanhua; Wang, Yening; Sun, Ranhao; Chen, Liding

    2016-12-08

    With the process of urbanization, a large number of residential quarters, which is the main dwelling form in the urban area of Beijing, have been developed in last three decades to accommodate the rising population. In the context of intensification of urban heat island (UHI), the potential degradation of the thermal environment of residential quarters can give rise to a variety of problems affecting inhabitants' health. This paper reports the results of a numerical study of the thermal conditions of a residential quarter on a typical summertime day under four greening modification scenarios, characterized by different leaf area density (LAD) profiles. The modelling results demonstrated that vegetation could evidently reduce near-surface air temperature, with the combination of grass and mature trees achieving as much as 1.5 °C of air temperature decrease compared with the non-green scenario. Vegetation can also lead to smaller air temperature fluctuations, which contribute to a more stable microclimate. The Universal Thermal Climate Index (UTCI) was then calculated to represent the variation of thermal environment of the study area. While grass is helpful in improving outdoor thermal comfort, trees are more effective in reducing the duration and expansion of suffering from severe heat stress. The results of this study showed that proper maintenance of vegetation, especially trees, is significant to improving the outdoor thermal environment in the summer season. In consideration of the deficiency of the current code in the management of greenspace in residential areas, we hope the results reported here will help promote the improvement of the code and related regulations for greenspace management.

  15. Fuzzy logic-based advanced on–off control for thermal comfort in residential buildings

    International Nuclear Information System (INIS)

    Kang, Chang-Soon; Hyun, Chang-Ho; Park, Mignon

    2015-01-01

    Highlights: • Fuzzy logic-based advanced on–off control is proposed. • An anticipative control mechanism is implemented by using fuzzy theory. • Novel thermal analysis program including solar irradiation as a factor is developed. • The proposed controller solves over-heating and under-heating thermal problems. • Solar energy compensation method is applied to compensate for the solar energy. - Abstract: In this paper, an advanced on–off control method based on fuzzy logic is proposed for maintaining thermal comfort in residential buildings. Due to the time-lag of the control systems and the late building thermal response, an anticipative control mechanism is required to reduce energy loss and thermal discomfort. The proposed controller is implemented based on an on–off controller combined with a fuzzy algorithm. On–off control was chosen over other conventional control methods because of its structural simplicity. However, because conventional on–off control has a fixed operating range and a limited ability for improvements in control performance, fuzzy theory can be applied to overcome these limitations. Furthermore, a fuzzy-based solar energy compensation algorithm can be applied to the proposed controller to compensate for the energy gained from solar radiation according to the time of day. Simulations were conducted to compare the proposed controller with a conventional on–off controller under identical external conditions such as outdoor temperature and solar energy; these simulations were carried out by using a previously reported thermal analysis program that was modified to consider such external conditions. In addition, experiments were conducted in a residential building called Green Home Plus, in which hydronic radiant floor heating is used; in these experiments, the proposed system performed better than a system employing conventional on–off control methods

  16. 24 CFR 3280.507 - Comfort heat gain.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Comfort heat gain. 3280.507 Section... gain. Information necessary to calculate the home cooling load shall be provided as specified in this part. (a) Transmission heat gains. Homes complying with this section shall meet the minimum heat loss...

  17. Electric heating provides a high level of home comfort - economically

    Energy Technology Data Exchange (ETDEWEB)

    Haapakoski, M.

    1997-11-01

    Research and development at IVO in the area of electric heating boasts a tradition going back almost thirty years. Research aimed at further progress is continuing. IVO and power companies launched the `Electrically heated houses of the century` project four years ago. The first results show that electric heating continues to be very competitive with other heating systems. It is an economical way of heating the home and it also increases the comfort of those living there

  18. Review of Residential Comfort Control Products and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Cheryn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Goyal, Siddharth [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baechler, Michael C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-12-15

    This paper begins by discussing the interaction of each major component in advanced sensor and control applications related to HVAC equipment. The paper also looks at the applications of these components to commissioning, maintenance and operations of the HVAC equipment in residential buildings. A summary of state-of-the-art product features is also provided. These products are categorized through their primary application type (commissioning/maintenance or operation) and the features are categorized by component type (sensors, data storage, human-in-the-loop, communication, and controls). A common theme that emerges from this study is the importance of the ability for various product categories to be connected to each other. There are many manufacturers of sensors and many manufacturers of controls, but the power to automate any commissioning, maintenance or operation application, requires connectivity.

  19. Integrated evaluation of radiative heating systems for residential buildings

    International Nuclear Information System (INIS)

    Anastaselos, Dimitrios; Theodoridou, Ifigeneia; Papadopoulos, Agis M.; Hegger, Manfred

    2011-01-01

    Based on the need to reduce CO 2 emissions and minimize energy dependency, the EU Member States have set ambitious energy policies goals and have developed respective, specific regulations, in order to improve the energy performance of the building sector. Thus, specific measures regarding the buildings' envelope, the use of efficient HVAC technologies and the integration of renewable energy systems are being constantly studied and promoted. The effective combination of these three main aspects will consequently result in maximum energy efficiency. Germany has played a key role in this development, with intensive work focusing in the improvement of the energy behaviour of the residential building stock. In this paper, the use of radiative heating systems placing special emphasis on infrared is being studied as part of the energy renovation of residential buildings from the 1970's. This is done by applying an integrated assessment model to evaluate specific interventions regarding the improvement of the energy behaviour of the buildings' envelope and the use of radiative heating systems, based on a thorough Life Cycle Analysis according to criteria of energy, economic and environmental performance, as well as thermal comfort. -- Highlights: → Assessment of energy, economic and environmental performance of heating systems. → Life Cycle Analysis in combination with the quality of thermal comfort. → Effectiveness of interventions in already partially insulated buildings.

  20. Heating great residential units with combustion-motor heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vossen, W

    1982-10-01

    Economic usage of combustion-motor heat pumps requires: reliable technology and delivery of the heat pump; design and operation. The heat pump must be integrated perfectly into the heating system. This contributions is based on a three-year operational experience with over 150 heat pumps used mainly in residential and administrative buildings (plus commercial buildings, swimming pools, sport centres etc.). These are heat pumps operating on the compression principle with natural gas, liquid gas, or fuel oil.

  1. Towards Cost and Comfort Based Hybrid Optimization for Residential Load Scheduling in a Smart Grid

    Directory of Open Access Journals (Sweden)

    Nadeem Javaid

    2017-10-01

    Full Text Available In a smart grid, several optimization techniques have been developed to schedule load in the residential area. Most of these techniques aim at minimizing the energy consumption cost and the comfort of electricity consumer. Conversely, maintaining a balance between two conflicting objectives: energy consumption cost and user comfort is still a challenging task. Therefore, in this paper, we aim to minimize the electricity cost and user discomfort while taking into account the peak energy consumption. In this regard, we implement and analyse the performance of a traditional dynamic programming (DP technique and two heuristic optimization techniques: genetic algorithm (GA and binary particle swarm optimization (BPSO for residential load management. Based on these techniques, we propose a hybrid scheme named GAPSO for residential load scheduling, so as to optimize the desired objective function. In order to alleviate the complexity of the problem, the multi dimensional knapsack is used to ensure that the load of electricity consumer will not escalate during peak hours. The proposed model is evaluated based on two pricing schemes: day-ahead and critical peak pricing for single and multiple days. Furthermore, feasible regions are calculated and analysed to develop a relationship between power consumption, electricity cost, and user discomfort. The simulation results are compared with GA, BPSO and DP, and validate that the proposed hybrid scheme reflects substantial savings in electricity bills with minimum user discomfort. Moreover, results also show a phenomenal reduction in peak power consumption.

  2. Impact of Demand-Side Management on Thermal Comfort and Energy Costs in a Residential nZEB

    Directory of Open Access Journals (Sweden)

    Thibault Q. Péan

    2017-05-01

    Full Text Available In this study, simulation work has been carried out to investigate the impact of a demand-side management control strategy in a residential nZEB. A refurbished apartment within a multi-family dwelling representative of Mediterranean building habits was chosen as a study case and modelled within a simulation framework. A flexibility strategy based on set-point modulation depending on the energy price was applied to the building. The impact of the control strategy on thermal comfort was studied in detail with several methods retrieved from the standards or other literature, differentiating the effects on day and night living zones. It revealed a slight decrease of comfort when implementing flexibility, although this was not prejudicial. In addition, the applied strategy caused a simultaneous increase of the electricity used for heating by up to 7% and a reduction of the corresponding energy costs by up to around 20%. The proposed control thereby constitutes a promising solution for shifting heating loads towards periods of lower prices and is able to provide benefits for both the user and the grid sides. Beyond that, the activation of energy flexibility in buildings (nZEB in the present case will participate in a more successful integration of renewable energy sources (RES in the energy mix.

  3. Analysis Thermal Comfort Condition in Complex Residential Building, Case Study: Chiangmai, Thailand

    Science.gov (United States)

    Juangjandee, Warangkana

    2017-10-01

    Due to the increasing need for complex residential buildings, it appears that people migrate into the high-density urban areas because the infrastructural facilities can be easily found in the modern metropolitan areas. Such rapid growth of urbanization creates congested residential buildings obstructing solar radiation and wind flow, whereas most urban residents spend 80-90% of their time indoor. Furthermore, the buildings were mostly built with average materials and construction detail. This causes high humidity condition for tenants that could promote mould growth. This study aims to analyse thermal comfort condition in complex residential building, Thailand for finding the passive solution to improve indoor air quality and respond to local conditions. The research methodology will be in two folds: 1) surveying on case study 2) analysis for finding the passive solution of reducing humidity indoor air The result of the survey indicated that the building need to find passive solution for solving humidity problem, that can be divided into two ways which raising ventilation and indoor temperature including increasing wind-flow ventilation and adjusting thermal temperature, for example; improving building design and stack driven ventilation. For raising indoor temperature or increasing mean radiant temperature, daylight can be passive solution for complex residential design for reducing humidity and enhance illumination indoor space simultaneous.

  4. Electric radiant heating: A hot item in home comfort

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, G. [Britech Corp., Toronto, ON (Canada)

    2003-12-01

    Electric radiant heating as a floor warming system and its growing popularity in home comfort are discussed. Price can be as low as $2.00 per square foot; cost of operation may be as little as 30 cents per square foot per year, depending on time of use and local hydro rates. The use of radiant cable heating is said to have surged in popularity; it provides the same warmth and comfort as more expensive hydronic systems. Radiant cable is simple and inexpensive to install since unlike hydronic systems, it requires no complicated mechanical system with boiler, heat exchanger, valves, pumps and extensive controls. Nevertheless, prospective end users are warned to make sure that the cable is sturdy, tough, has multiple layers of protection with a thick grounding system and conductor core. In addition to heating floors, electric heating cables can also be used for snow and ice control and for melting in driveways and gutters. In these type of installations heavy duty cables are used which are installed under asphalt, concrete or interlocking stones. Thirty watts per square foot per hour is the typical requirement for melting snow and ice. Based on average electricity prices in Ontario, melting snow on an 800 square foot driveway would cost about $2.20 per hour. Assuming five hours for the system to clear the driveway, installing a heating system under the driveway could be an economically viable solution for the home owner, providing freedom from ice, the inconvenience of shovelling snow, and saving time and money.

  5. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank

    2005-01-01

    The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both....... In Denmark and Norway the focus is on solar heating/natural gas systems, and in Sweden and Latvia the focus is on solar heating/pellet systems. Additionally, Lund Institute of Technology and University of Oslo are studying solar collectors of various types being integrated into the roof and facade......, are the universities: Technical University of Denmark, Dalarna University, University of Oslo, Riga Technical University and Lund Institute of Technology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S (Denmark), Solentek AB (Sweden) and SolarNor (Norway). The project consists of a number of Ph...

  6. Economic aspects of possible residential heating conservation

    Energy Technology Data Exchange (ETDEWEB)

    Hopkowicz, M.; Szul, A. [Technical Univ., Cracow (Poland)

    1995-12-31

    The paper presents methods of evaluation of energy and economy related effects of different actions aimed at conservation in residential buildings. It identifies also the method of selecting the most effective way of distribution funds assigned to weatherization as well as necessary improvements to be implemented within the heating node and the internal heating system of the building. The analysis of data gathered for four 11-stories high residential buildings of {open_quotes}Zeran{close_quotes} type being subject of the Conservation Demonstrative Project, included a differentiated scope of weatherization efforts and various actions aimed at system upgrading. Basing upon the discussion of the split of heat losses in a building as well as the established energy savings for numerous options of upgrading works, the main problem has been defined. It consists in optimal distribution of financial means for the discussed measures if the total amount of funds assigned for modifications is defined. The method based upon the principle of relative increments has been suggested. The economical and energy specifications of the building and its components, required for this method have also been elaborated. The application of this method allowed to define the suggested optimal scope of actions within the entire fund assigned for the comprehensive weatherization.

  7. Urban environment and vegetation: comfort and urban heat island mitigation

    Directory of Open Access Journals (Sweden)

    Adriano Magliocco

    2014-10-01

    Full Text Available This paper analyses the outcomes of an experimental simulation on the microclimatic effects and on thermal comfort of vegetation in urban environment, conducted by means of a three-dimensional microclimate model, ENVI- met 3.1. The simulation considers a wide range of hypothetical cases of typical city areas with different characteristics related to: building density, building height, vegetation type and density. The results of the study show how different combinations of amount and type of vegetation, density and height of buildings affect the urban heat island phenomenon in Mediterranean climate.

  8. Historical changes and recent energy saving potential of residential heating in Korea

    International Nuclear Information System (INIS)

    Yeo, M.-S.; Yang, I.-H.; Kim, K.-W.

    2003-01-01

    The residential heating method in Korea underwent various phases of development to reach the current system. The first phase was the traditional Ondol (the traditional under-floor heating system in Korea), where the floor was heated by the circulation of hot gas produced by a fire furnace (before the 1950s). The second phase involved the use of the modified anthracite coal Ondol, for which the fire furnace was modified for briquette use (from the early 1950s to the late 1970s). The third phase involved the use of hot water radiant floor heating with embedded tubes (from the late 1970s). This paper presents insights into the problem of current residential heating in Korea and the general aspects of heating energy savings by tracing the history of residential heating in Korea and analyzing related data. The results show that modern apartment buildings with hot water radiant floor heating (the third phase) yield less heat loss due to the tighter envelope, but also yield higher energy consumption than the traditional Ondol heating housing (the first phase). Because of an inefficient system and lack of thermal insulation of the traditional Ondol heating housing, Ondol heating was used to heat occupants sitting directly on the floor, keeping lower room temperature and higher floor surface temperature. So the range of comfortable floor temperature for Korean people is higher and this unique comfort sense is related to energy consumption in modern apartment housing. As a result, several energy saving methods were found such as reducing the total floor heating area or zoning the floor area, receiving continuous heat supply, and installing a delicate control system and metering devices. (author)

  9. Residential heat pumps in the future Danish energy system

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    for politically agreed targets which include: at least 50% of electricity consumption from wind power starting from 2020, fossil fuel free heat and power sector from 2035 and 100% renewable energy system starting from 2050. Residential heat pumps supply around 25% of total residential heating demand after 2035......Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...... temperature while installation of ground-source heat pumps is constrained by available ground area. In this study, TIMES-DK model is utilised to test the effects of improved modelling of residential heat pumps on the Danish energy system until 2050.The analysis of the Danish energy system was done...

  10. Engineering economic assessment of residential wood heating in NY

    Science.gov (United States)

    We provide insight into the recent resurgence in residential wood heating in New York by: (i) examining the lifetime costs of outdoor wood hydronic heaters (OWHHs) and other whole-house residential wood heat devices,(ii) comparing these lifetime costs with those of competing tech...

  11. Forecasting the adoption of residential ductless heat pumps

    International Nuclear Information System (INIS)

    Hlavinka, Alexander N.; Mjelde, James W.; Dharmasena, Senarath; Holland, Christine

    2016-01-01

    Energy-efficient technologies have the potential to provide savings to households and utilities, but consumers do not always adopt these innovations over traditional technologies. The ductless heat pump (DHP) is one such technology designed to increase energy efficiency and comfort in space conditioning. DHP adoption by single-family residences in the Pacific Northwest of the United States is investigated by quantifying the effects of utility-provided rebates and expenditures on activities such as advertising and installer training on the number of installations and forecasting installations through 2018. The number of installations is elastic with respect to net installation costs and inelastic with respect to expenditures. Given the proposed rebate budgets, doubling the current rebate is necessary to maximize installations through 2018. - Highlights: • The ductless heat pump (DHP) is an energy-efficient form of space conditioning. • Rebate and marketing programs designed to increase adoptions of DHPs are examined. • Residential adoption of DHPs is sensitive to rebates and tax credits. • Advertising and training have a smaller effect on adoption than rebates.

  12. The Study of Thermal Comfort in Transforming Residential Area in Bandung using ENVI-met Software. Case Study: Progo Street

    Science.gov (United States)

    Aziz Soelaiman, Tubagus M.; Soedarsono, Woerjantari K.; Donny Koerniawan, M.

    2018-05-01

    Bandung has a high potential in attracting tourists. This potential impact on building function near tourist attraction that can transform residential uses into commercial uses. Progo Street and its surrounding area used as the case study, which is close to Gedung Sate and Riau Street as tourist destinations in Bandung. Moreover, this transformation is also reinforced by the spatial planning policies in Bandung, known as RTRW and RDTR, said that this area will be fully non-residential area. This condition in some cases could affect thermal comfort. This paper provides the changes of thermal comfort phenomenon that occurs using EnviMet software. The study compares Predicted Mean Voted (PMV) as thermal comfort indicator between existing and Bandung detailed spatial plan (RDTR) condition. The result shows that the PMV value of current condition is higher than future planning, nonetheless the planned area will be changed into higher non-residential buildings and less greeneries. Some environmental factors that are used to calculate PMV such as air temperature, mean radiant temperature, humidity, and wind speed are also examined to find out what makes the plan more comfortable than the existing. Simulations using ENVI-met software could be considered in making more objective planning policy in the future.

  13. Experimental device for the residential heating with heat pipe and electric heat storage blocks

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Boldak, I M; Domorod, L S; Rabetsky, M I; Schirokov, E I [AN Belorusskoj SSR, Minsk (Belarus). Inst. Teplo- i Massoobmena

    1992-01-01

    Residential heating using electric heat storage blocks nowadays is an actual problem from the point of view of heat recovery and nature protection. In the Luikov Heat and Mass Transfer Institute a new residential electrical heater capable of heating chambers by controlling air temperature and heat output using heat pipes and an electric heat storage block was developed. This heater (BETA) is fed from the source of energy and during 7 h of night time accumulates energy sufficiently to heat 10 m{sup 3} during 24 h. Heating device BETA has a ceramic thermal storage block, electric heaters and a heat pipe with evaporator inside the ceramic block and constant temperature (65{sup o}C) finned condenser outside it. The condenser temperature could be controlled easily. BETA is compact, has high thermal response, accurate air temperature control and safe operation. Such types of residential heaters are necessary for heating residential and office building in the Mogilev and Gomel regions in Byelorussia which suffered after the Chernobyl catastrophe. (Author).

  14. Decomposing final energy use for heating in the residential sector in Austria

    International Nuclear Information System (INIS)

    Holzmann, Angela; Adensam, Heidelinde; Kratena, Kurt; Schmid, Erwin

    2013-01-01

    In Austria a considerable number of measures have been implemented to reduce final energy use for residential heating since the 1990s. The aim of this analysis is to investigate, why – despite these implemented measures – final energy use for heating has not decreased in the expected way. The impact of eight factors on final energy use for heating is quantified by applying the Logarithmic Mean Divisia Index (LMDI I) method. The dataset covers the sector of private households in Austria for the period from 1993 to 2009. The main findings of the analysis are: (1) while technical improvements reduce final energy use for heating significantly, rising comfort needs nearly outweigh these savings. (2) Consumer behaviour reduces calculated final energy use considerably. (3) The extent of this reduction is declining significantly in the period observed. (4) The growing share of single-family houses has increased energy demand for heating in the observed period, though a reversal of this trend is detected from 2007 onwards. (5) The impact of growing floor space per person is the major effect revealed by the analysis. (6) Weather conditions have a major impact on annual fluctuations of energy consumption. -- Highlights: •We did an Index decomposition analysis of the Austrian residential heating demand. •Eight impact factors on heating demand have been identified. •Rising comfort needs outweigh savings caused by technical improvements. •Consumer behaviour has a major impact on residential final energy use for heating. •Weather changes play a major role when analysing annual changes in energy use

  15. HUMAN COMFORT AND THE MICROCLIMATIC DRIVERS ...

    African Journals Online (AJOL)

    Osondu

    mean heat stress (poor human comfort), followed by high density residential areas. A major attribute ... Key words: Heat stress, human comfort, microclimate, land use, urban, vegetation. Introduction ... defined by the meteorological Glossary as the physical state of .... which is the focus of the study is characterized by. Human ...

  16. Residential Central Air Conditioning and Heat Pump Installation – Workshop Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States); Bargach, Youssef [Navigant Consulting, Burlington, MA (United States)

    2016-11-01

    DOE's Building Technologies Office works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption in residential and commercial buildings. This report aims to advance BTO’s energy savings, emissions reduction, and other program goals by identifying research and development (R&D), demonstration and deployment, and other non-regulatory initiatives for improving the design and installation of residential central air conditioners (CAC) and central heat pumps (CHP). Improving the adoption of CAC/CHP design and installation best practices has significant potential to reduce equipment costs, improve indoor air quality and comfort, improve system performance, and most importantly, reduce household energy consumption and costs for heating and cooling by addressing a variety of common installation issues.

  17. Thermal comfort in residential buildings - Failure to predict by Standard model

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R. [Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Rabin Building, Technion City, Haifa 32000 (Israel); Paciuk, M. [National Building Research Institute, Technion - IIT, Haifa 32000 (Israel)

    2009-05-15

    A field study, conducted in 189 dwellings in winter and 205 dwellings in summer, included measurement of hygro-thermal conditions and documentation of occupant responses and behavior patterns. Both samples included both passive and actively space-conditioned dwellings. Predicted mean votes (PMV) computed using Fanger's model yielded significantly lower-than-reported thermal sensation (TS) values, especially for the winter heated and summer air-conditioned groups. The basic model assumption of a proportional relationship between thermal response and thermal load proved to be inadequate, with actual thermal comfort achieved at substantially lower loads than predicted. Survey results also refuted the model's second assumption that symmetrical responses in the negative and positive directions of the scale represent similar comfort levels. Results showed that the model's curve of predicted percentage of dissatisfied (PPD) substantially overestimated the actual percentage of dissatisfied within the partial group of respondents who voted TS > 0 in winter as well as within the partial group of respondents who voted TS < 0 in summer. Analyses of sensitivity to possible survey-related inaccuracy factors (metabolic rate, clothing thermal resistance) did not explain the systematic discrepancies. These discrepancies highlight the role of contextual variables (local climate, expectations, available control) in thermal adaptation in actual settings. Collected data was analyzed statistically to establish baseline data for local standardized thermal and energy calculations. A 90% satisfaction criterion yielded 19.5 C and 26 C as limit values for passive winter and summer design conditions, respectively, while during active conditioning periods, set-point temperatures of 21.5 C and 23 C should be assumed for winter and summer, respectively. (author)

  18. Human thermal sensation and comfort in a non-uniform environment with personalized heating.

    Science.gov (United States)

    Deng, Qihong; Wang, Runhuai; Li, Yuguo; Miao, Yufeng; Zhao, Jinping

    2017-02-01

    Thermal comfort in traditionally uniform environment is apparent and can be improved by increasing energy expenses. To save energy, non-uniform environment implemented by personalized conditioning system attracts considerable attention, but human response in such environment is unclear. To investigate regional- and whole-body thermal sensation and comfort in a cool environment with personalized heating. In total 36 subjects (17 males and 19 females) including children, adults and the elderly, were involved in our experiment. Each subject was first asked to sit on a seat in an 18°C chamber (uniform environment) for 40min and then sit on a heating seat in a 16°C chamber (non-uniform environment) for another 40min after 10min break. Subjects' regional- and whole-body thermal sensation and comfort were surveyed by questionnaire and their skin temperatures were measured by wireless sensors. We statistically analyzed subjects' thermal sensation and comfort and their skin temperatures in different age and gender groups and compared them between the uniform and non-uniform environments. Overall thermal sensation and comfort votes were respectively neutral and just comfortable in 16°C chamber with personalized heating, which were significantly higher than those in 18°C chamber without heating (pthermal sensation and comfort was consistent in subjects of different age and gender. However, adults and the females were more sensitive to the effect of personalized heating and felt cooler and less comfort than children/elderly and the males respectively. Variations of the regional thermal sensation/comfort across human body were consistent with those of skin temperature. Personalized heating significantly improved human thermal sensation and comfort in non-uniform cooler environment, probably due to the fact that it increased skin temperature. However, the link between thermal sensation/comfort and variations of skin temperature is rather complex and warrant further

  19. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.

    Science.gov (United States)

    Tu, Y D; Wang, R Z; Ge, T S; Zheng, X

    2017-01-12

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  20. Using a Zonal Model To Assess the Effect of a Heated Floor on Thermal Comfort Quality

    International Nuclear Information System (INIS)

    Boukhris, Yosr; Gharbi, Leila; Ghrab-Morcos, Nadia

    2009-01-01

    People s perceptions of indoor air quality and thermal comfort are affected by air speed and temperature. We have extended the three-dimensional zonal model, ZAER, to be able to predict the temperature fields and the air distributions between and within rooms in the case of natural convection. This paper presents an application of the new zonal model dealing with the influence of a heated floor of one room upon the winter thermal comfort of an unconditioned Tunisian dwelling. Coupling ZAER with a thermal comfort model allows the assessment of the thermal quality of the dwelling through the prediction of a comfort indicator. The obtained results show that a heated floor can be a useful component to improve thermal comfort in the Tunisian context, even in another room

  1. Heat wave vulnerability classification of residential buildings

    NARCIS (Netherlands)

    Heijden, van der M.G.M.; Blocken, B.J.E.; Hensen, J.L.M.

    2012-01-01

    General circulation models of climate change predict that the intensity and frequency of heat waves will increase, which are a significant threat to public health (Luber and McGeehin 2008). The effect of heat waves on the public health became apparent during the 2003 heat wave in France, where

  2. Influence of the ventilation system on thermal comfort of the chilled panel system in heating mode

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhe; Ding, Yan; Wang, Shuo; Yin, Xinglei; Wang, Menglei [Tianjin University, Tianjin 300072 (China)

    2010-12-15

    In heating mode, fresh air is still essential for a chilled panel system in order to ensure the indoor air quality. In this paper, a chilled ceiling panel system was designed and built in a typical office room. The thermal environment and thermal comfort in the room were fully measured and evaluated by using the Fanger's PMV-PPD model and the standard of ISO 7730 respectively, when room was heated in two modes, one of which is the chilled panel heating mode and the other of which is the combined heating mode of chilled panel and supply air. The research results indicate that in the combined mode, ceiling ventilation improves the general thermal comfort and reduces the risk of local discomfort. Under the condition of same general thermal comfort, the heating supply upper limit of chilled panel can be increased by 12.3% because of air mixing effect caused by introduction of air ventilation. (author)

  3. TESTING OF REFRIGERANT MIXTURES IN RESIDENTIAL HEAT PUMPS

    Science.gov (United States)

    The report gives results of an investigation of four possibilities for replacing Hydrochlorofluorocarbon-22 (HCFC-22) with the non-ozone-depleting new refrigerants R-407D and R-407C in residential heat pumps. The first and simplest scenario was a retrofit with no hardware modific...

  4. Electric heat-pumps in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    Since the end of 1979 every other day an electrically operated heat-pump has started operation in Berlin (West). Pros and cons of heat-pumps are a much discussed subject. But what is the opinion of the user. As it is not known the BEWAG carried out a written customer inquiry in the summer 1982. The aim of the inquiry was to improve the advisory service by means of the answers obtained, to obtain information about the reliability or liability to defects of the heat pump, the mechanism they operate on and to know how big the oil substitution potential is. Customer satisfaction with the heat pumps was a further point of interest.

  5. Thermal Comfort and Ventilation Criteria for low Energy Residential Buildings in Building Codes

    DEFF Research Database (Denmark)

    Cao, Guangyu; Kurnitski, Jarek; Awbi, Hazim

    2012-01-01

    of the indoor air quality in such buildings. Currently, there are no global guidelines for specifying the indoor thermal environment in such low-energy buildings. The objective of this paper is to analyse the classification of indoor thermal comfort levels and recommended ventilation rates for different low...

  6. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available Thermal comfort is influenced by environmental parameters as well as other influences including asymmetric heating and cooling conditions. Additionally, some aspects of thermal comfort may be exploited so as to enable a building to operate within a...

  7. 75 FR 14368 - Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps: Public...

    Science.gov (United States)

    2010-03-25

    ... Conservation Standards for Residential Central Air Conditioners and Heat Pumps: Public Meeting and Availability... conservation standards for residential central air conditioners and heat pumps; the analytical framework..., Mailstop EE-2J, Public Meeting for Residential Central Air Conditioners and Heat Pumps, EERE-2008-BT- STD...

  8. Combining several thermal indices to generate a unique heat comfort assessment methodology

    Directory of Open Access Journals (Sweden)

    Wissam EL Hachem

    2015-11-01

    Full Text Available Purpose: The proposed methodology hopes to provide a systematic multi-disciplinary approach to assess the thermal environment while minimizing unneeded efforts. Design/methodology/approach: Different factors affect the perception of the human thermal experience: metabolic rate (biology, surrounding temperatures (heat balance and environmental factors and cognitive treatment (physiology.This paper proposes a combination of different multidisciplinary variables to generate a unique heat comfort assessment methodology. The variables at stake are physiological, biological, and environmental. Our own heat analysis is thoroughly presented and all relevant equations are described. Findings: Most companies are oblivious about potential dangers of heat stress accidents and thus about methods to monitor and prevent them. This methodology enables the company or the concerned individual to conduct a preliminary assessment with minimal wasted resources and time in unnecessary steps whilst providing a guideline for a detailed study with minimal error rates if needed. More so, thermal comfort is an integral part of sound ergonomics practices, which in turn are decisive for the success of any lean six sigma initiative. Research limitations/implications: This methodology requires several full implementations to finalize its design. Originality/value: Most used heat comfort models are inherently uncertain and tiresome to apply. An extensive literature review confirms the need for a uniform assessment methodology that combines the different thermal comfort models such as the Fanger comfort model (PMV, PPD and WGBT since high error rates coupled with tiresome calculations often hinder the thermal assessment process.

  9. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  10. ENERGY-EFFICIENT REGIMES FOR HEATING-SUPPLY OF THE RESIDENTIAL BUILDINGS

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2015-01-01

    Full Text Available Rise in comfort and inhabitation safety is one of the main requirements of the general maintenance, reconstruction of the old and construction of the new residential houses. One of the essential factors of it is substitution in the household hot-water preparing sources: from the individual domestic gas  water-heaters to  the common  entire-building hot-water supply at the expense of the centralized heat supply. Extremely erratic hot-water daily consumption by tenants leads to the necessity of sharp increase in central heat-supply level during a few hours of the day, which requires a significant increase of the source heat-power. On that score, the authors propose to direct a significant part (up to 50 % of the centralized heating and ventilation heat power-consumption to the hot water preparation during the period of short-term hot water consumption peak.Substitution  of  the  individual  domestic  gas  water-heaters  with  the  common  entirebuilding hot-water supply releases a huge amount of natural gas which can be utilized not only for production of the necessary heat power but as well for electric power producing. This substitution is especially advantageous if heat-power is delivered to the residential area from a НРС where significant part of heat especially in a relatively warm season of the year is thrown out into the air. The content of the article is based on several patents received earlier.

  11. Impacts of global warming on residential heating and cooling degree-days in the United States.

    Science.gov (United States)

    Petri, Yana; Caldeira, Ken

    2015-08-04

    Climate change is expected to decrease heating demand and increase cooling demand for buildings and affect outdoor thermal comfort. Here, we project changes in residential heating degree-days (HDD) and cooling degree-days (CDD) for the historical (1981-2010) and future (2080-2099) periods in the United States using median results from the Climate Model Intercomparison Project phase 5 (CMIP5) simulations under the Representation Concentration Pathway 8.5 (RCP8.5) scenario. We project future HDD and CDD values by adding CMIP5 projected changes to values based on historical observations of US climate. The sum HDD + CDD is an indicator of locations that are thermally comfortable, with low heating and cooling demand. By the end of the century, station median HDD + CDD will be reduced in the contiguous US, decreasing in the North and increasing in the South. Under the unmitigated RCP8.5 scenario, by the end of this century, in terms of HDD and CDD values considered separately, future New York, NY, is anticipated to become more like present Oklahoma City, OK; Denver, CO, becomes more like Raleigh, NC, and Seattle, WA, becomes more like San Jose, CA. These results serve as an indicator of projected climate change and can help inform decision-making.

  12. Impacts of global warming on residential heating and cooling degree-days in the United States

    Science.gov (United States)

    Petri, Yana; Caldeira, Ken

    2015-01-01

    Climate change is expected to decrease heating demand and increase cooling demand for buildings and affect outdoor thermal comfort. Here, we project changes in residential heating degree-days (HDD) and cooling degree-days (CDD) for the historical (1981–2010) and future (2080–2099) periods in the United States using median results from the Climate Model Intercomparison Project phase 5 (CMIP5) simulations under the Representation Concentration Pathway 8.5 (RCP8.5) scenario. We project future HDD and CDD values by adding CMIP5 projected changes to values based on historical observations of US climate. The sum HDD + CDD is an indicator of locations that are thermally comfortable, with low heating and cooling demand. By the end of the century, station median HDD + CDD will be reduced in the contiguous US, decreasing in the North and increasing in the South. Under the unmitigated RCP8.5 scenario, by the end of this century, in terms of HDD and CDD values considered separately, future New York, NY, is anticipated to become more like present Oklahoma City, OK; Denver, CO, becomes more like Raleigh, NC, and Seattle, WA, becomes more like San Jose, CA. These results serve as an indicator of projected climate change and can help inform decision-making. PMID:26238673

  13. Warm homes: Drivers of the demand for heating in the residential sector in New Zealand

    International Nuclear Information System (INIS)

    Howden-Chapman, Philippa; Viggers, Helen; Chapman, Ralph; O'Dea, Des; Free, Sarah; O'Sullivan, Kimberley

    2009-01-01

    New Zealand houses are large, often poorly constructed and heated, by OECD standards, and consequently are colder and damper indoors than recommended by the World Health Organisation. This affects both the energy consumption and the health of households. The traditional New Zealand household pattern of only heating one room of the house has been unchanged for decades, although there has been substantial market penetration of unflued gas heaters and more recently heat pumps. This paper describes the residential sector and the results of two community-based trials of housing and heating interventions that have been designed to measure the impact of (1) retrofitting insulation and (2) replacing unflued gas heaters and electric resistance heaters with heat pumps, wood pellet burners and flued gas heaters. The paper describes findings on the rebound effect or 'take-back'-the extent to which households take the gains from insulation and heating improvements as comfort (higher temperatures) rather than energy savings, and compares energy-saving patterns with those suggested by an earlier study. Findings on these aspects of household space heating are discussed in the context of the New Zealand government's policy drive for a more sustainable energy system, and the implications for climate change policy.

  14. Demand flexibility from residential heat pump

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2014-01-01

    Demand response (DR) is considered as a potentially effective tool to compensate generation intermittency imposed by renewable sources. Further, DR can instigate to offer optimum asset utilization and to avoid or delay the need for new infrastructure investment. Being a sizable load together...... with high thermal time constant, heat pumps (HP) can offer a great deal of flexibility in the future intelligent grids especially to compensate fluctuating generation. However, the HP flexibility is highly dependent on thermal demand profile, namely hot water and space heating demand. This paper proposes...... price based scheduling followed by a demand dispatch based central control and a local voltage based adaptive control, to realize HP demand flexibility. Two-step control architecture, namely local primary control encompassed by the central coordinative control, is proposed to implement...

  15. Human Thermal Comfort and Heat Stress in an Outdoor Urban Arid Environment: A Case Study

    Directory of Open Access Journals (Sweden)

    A. M. Abdel-Ghany

    2013-01-01

    Full Text Available To protect humans from heat stress risks, thermal comfort and heat stress potential were evaluated under arid environment, which had never been made for such climate. The thermal indices THI, WBGT, PET, and UTCI were used to evaluate thermal comfort and heat stress. RayMan software model was used to estimate the PET, and the UTCI calculator was used for UTCI. Dry and wet bulb temperatures (Td, Tw, natural wet bulb temperature (Tnw, and globe temperature (Tg were measured in a summer day to be used in the calculation. The results showed the following. (i The thermal sensation and heat stress levels can be evaluated by either the PET or UTCI scales, and both are valid for extremely high temperature in the arid environment. (ii In the comfort zone, around 75% of individuals would be satisfied with the surrounding environment and feel comfortable during the whole day. (iii Persons are exposed to strong heat stress and would feel uncomfortable most of the daytime in summer. (iv Heat fatigue is expected with prolonged exposure to sun light and activity. (v During the daytime, humans should schedule their activities according to the highest permissible values of the WBGT to avoid thermal shock.

  16. The Impacts of Elevated Carbondioxide (CO2 on Users’ Comfort in Residential Building at BawakSabo, Auchi, Nigeria

    Directory of Open Access Journals (Sweden)

    Clement Oluwole Folorunso

    2017-11-01

    Full Text Available This research work establishes the effects of CO2 on users’ comfort in residential building with specific residential neighborhood in Bawak Sabo as the study area. There is an existing complaint of sneezing, tiredness, sweating and headache at dawn from resident of this neighborhood documented in a medical report of a medical hospital within the community. The research is set to investigate the cause of these problems. The methodology adopted was the combination of experimental-field survey and review of existing literature. Measurement of CO2 concentration was conducted in a given 10% sample population (cases. Measurement was taken in tenement and bungalow accommodation of varied room sizes (9.0m 2 and 12.6 m 2 floor area, population (one to two occupants per room and window opening adjustment. Measurements were taken 8 hours day time and twilight with varied user activity and ventilation rate respectively. The results show that CO2 concentration was higher in rooms with larger numbers of persons. CO2 concentration was closely related to room size and density and increased rapidly when doors and windows were locked. Elevated carbondixoide was low in bungalow accommodation with more numbers of window openings in comparison with tenement accommodation. Differential levels of CO2 concentration have negative impacts on the users’ in ways such as shortness of breath, sneezing sweating and increased breath rate among others. It was concluded that CO2 concentration was responsible for the reported discomfort experienced by BawakSabo residents.

  17. Market Potential for Residential Biomass Heating Equipment: Stochastic and Econometric Assessments

    OpenAIRE

    Adee Athiyaman

    2015-01-01

    This paper provides estimates of market potential for biomass-residential-heating equipment in the US: that is, the greatest amount of biomass-residential-heating equipment that can be sold by the industry. The author's analysis is limited to biomass equipment used most to heat the housing unit. Assuming that households equipped with 10+ year old primary heating devices will replace rather than repair the devices he predicts that approximately 1.4 million units of residential home heating equ...

  18. Survey of residential heat pump owner experience in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Unsoy, J

    1985-11-11

    Heat pump owners in 7 Canadian cities were surveyed to establish installation costs, repair costs and frequencies, and customer satisfaction with heat pump systems as a function of region, installing contractor, manufacturer, model, year of installation and system type. The following summarizes the major findings of the study. Most Canadian heat pumps are retrofit installations in existing homes. The majority of these heat pumps have either supplemented or replaced an oil furnace. The average age of heat pumps is 2.5 years. The median size of heat pumps installed is 2.5 tons. The three most popular brands by order of prevalence are York, Carrier and General Electric. Only about one-fifth of heat pump owners have purchased service contracts. Two-thirds of the heat pumps have never needed repairs. Eighty-three percent of heat pump owners have never incurred any repair costs; and of those that have, about half spent $100 or less. The most frequent repair problems are refrigerant leaks followed by relays and controls. Corrective actions average about 0.3 per unit year. The owners' evaluation of comfort from their heat pump is generally favourable. About 12% of the owners find the outdoor unit noisy and 10% feel maintenance costs are at a disadvantage. Overall, only 7% of heat pump owners indicated that they would not install a heat pump in their next house. Most heat pump owners are satisfied with their heat pump brand and installer. Owners with systems installed in newer homes are more satisfied with their heat pumps than those who have installed heat pumps in older homes. 3 figs., 93 tabs.

  19. Impacts of Water Quality on Residential Water Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  20. Heat pump for comfort, with added energy savings

    NARCIS (Netherlands)

    Cauberg, H.; Van de Dobbelsteen, A.; Van der Spoel, W.; Van de Graaf, A.

    2005-01-01

    The high-efficiency central heating boiler is about to reach the limits of its potential, so innovative insulation and other energy efficiency solutions are required, even though energy consumption in the Netherlands per household has dropped by 70% since 1986. Now that houses and offices are being

  1. Optimisation of Heating Energy Demand and Thermal Comfort of a Courtyard-Atrium Dwelling

    NARCIS (Netherlands)

    Taleghani, M.; Tenpierik, M.; Dobbelsteen, A.

    2013-01-01

    In the light of energy reduction, transitional spaces are recognised as ways to receive natural light and fresh air. This paper analyses the effects of courtyard and atrium as two types of transitional spaces on heating demand and thermal comfort of a Dutch low-rise dwelling, at current and future

  2. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    Directory of Open Access Journals (Sweden)

    Sabanskis A.

    2016-04-01

    Full Text Available Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  3. Improved reliability of residential heat pumps; Foerbaettrad driftsaekerhet hos villavaermepumpar

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Larsson, Kristin; Jensen, Sara; Larsson, Johan; Berg, Johan; Lidbom, Peter; Rolfsman, Lennart

    2012-07-01

    Today, heat pump heating systems are common in Swedish single-family houses. Many owners are pleased with their installation, but statistics show that a certain number of heat pumps break every year, resulting in high costs for both insurance companies and owners. On behalf of Laensfoersaekringars Forskningsfond, SP Energy Technology has studied the cause of the most common failures for residential heat pumps. The objective of the study was to suggest what measures to be taken to reduce the number of failures, i.e. improving the reliability of heat pumps. The methods used were analysis of public failure statistics and sales statistics and interviews with heat pump manufacturers, installers, service representatives and assessors at Laensfoersaekringar. In addition, heat pump manuals have been examined and literature searches for various methods for durability tests have been performed. Based on the outcome from the interviews the most common failures were categorized by if they; 1. Could have been prevented by better operation and maintenance of the heat pump. 2. Caused by a poorly performed installation. 3. Could have been prevented if certain parameters had been measured, recorded and followed up. 4. Are due to poor quality of components or systems. However, the results show that many of the common failures fall into several different categories and therefore, different types of measures must be taken to improve the operational reliability of residential heat pumps. The interviews tell that failures often are caused by poor installation, neglected maintenance and surveillance, and poor quality of standard components or that components are used outside their declared operating range. The quality of the installations could be improved by increasing installers' knowledge about heat pumps and by requiring that an installation protocol shall be filled-in. It is also important that the owner of the heat pump performs the preventive maintenance recommended by the

  4. Improved reliability of residential heat pumps; Foerbaettrad driftsaekerhet hos villavaermepumpar

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Larsson, Kristin; Jensen, Sara; Larsson, Johan; Berg, Johan; Lidbom, Peter; Rolfsman, Lennart

    2012-07-01

    Today, heat pump heating systems are common in Swedish single-family houses. Many owners are pleased with their installation, but statistics show that a certain number of heat pumps break every year, resulting in high costs for both insurance companies and owners. On behalf of Laensfoersaekringars Forskningsfond, SP Energy Technology has studied the cause of the most common failures for residential heat pumps. The objective of the study was to suggest what measures to be taken to reduce the number of failures, i.e. improving the reliability of heat pumps. The methods used were analysis of public failure statistics and sales statistics and interviews with heat pump manufacturers, installers, service representatives and assessors at Laensfoersaekringar. In addition, heat pump manuals have been examined and literature searches for various methods for durability tests have been performed. Based on the outcome from the interviews the most common failures were categorized by if they; 1. Could have been prevented by better operation and maintenance of the heat pump. 2. Caused by a poorly performed installation. 3. Could have been prevented if certain parameters had been measured, recorded and followed up. 4. Are due to poor quality of components or systems. However, the results show that many of the common failures fall into several different categories and therefore, different types of measures must be taken to improve the operational reliability of residential heat pumps. The interviews tell that failures often are caused by poor installation, neglected maintenance and surveillance, and poor quality of standard components or that components are used outside their declared operating range. The quality of the installations could be improved by increasing installers' knowledge about heat pumps and by requiring that an installation protocol shall be filled-in. It is also important that the owner of the heat pump performs the preventive maintenance recommended by the

  5. Assessment of Thermal Comfort in a Building Heated with a Tiled Fireplace with the Function of Heat Accumulation

    Science.gov (United States)

    Telejko, Marek; Zender-Świercz, Ewa

    2017-10-01

    Thermal comfort determines the state of satisfaction of a person or group of people with thermal conditions of the environment in which the person or group of persons is staying. This state of satisfaction depends on the balance between the amount of heat generated by the body’s metabolism, and the dissipation of heat from the body to the surrounding environment. Due to differences in body build, metabolism, clothing etc. individuals may feel the parameters of the environment in which they are staying differently. Therefore, it is impossible to ensure the thermal comfort of all users of the room. However, properly designed building systems (heating, ventilation, air conditioning) allow for creating optimal thermal conditions that will evaluated positively by the vast majority of users. Due to the fact that currently we spend even 100% of the day indoors, the subject becomes extremely important. The article presents the evaluation of thermal comfort in rooms heated with a tiled fireplace with the function of accumulation of heat using the PMV (Predicted Mean Vote) and PPD (Predicted Percentage Dissatisfied) indices. It also presents the results of studies, on the quality of the micro-climate in such spaces. The system of heating premises described in the article is not a standard solution, but is now more and more commonly used as a supplement to the heating system, or even as a primary heating system in small objects, e.g. single-family houses, seasonal homes, etc. The studies comprised the measurements and analysis of typical internal micro-climate parameters: temperature, relative humidity and CO2 concentration. The results obtained did not raise any major reservations. In order to fully assess the conditions of use, the evaluation of thermal comfort of the analyzed rooms was made. Therefore, additionally the temperature of radiation of the surrounding areas, and the insulation of the users’ clothing was determined. Based on the data obtained, the PPD and PMV

  6. Future Services for District Heating Solutions in Residential Districts

    Directory of Open Access Journals (Sweden)

    Hannele Ahvenniemi

    2014-06-01

    Full Text Available The underlying assumption of this study is that in order to retain the competitiveness while reaching for the EU targets regarding low-energy construction, district heating companies need to develop new business and service models. How district heating companies could broaden their perspective and switch to a more service-oriented way of thinking is a key interest of our research. The used methods in our study are house builder interviews and a questionnaire. With the help of these methods we discussed the potential interest in heating related services acquiring a comprehensive understanding of the customer needs. The results indicate the importance of certain criteria when choosing the heating system in households: easiness, comfort and affordability seem to dominate the house builders’ preferences. Also environmental awareness seems to be for many an important factor when making a decision about the heating of the house. Altogether, based on the results of this study, we suggest that the prospects of district heating could benefit from highlighting certain aspects and strengths in the future. District heating companies need to increase flexibility, readiness to adopt new services, to invest in new marketing strategies and improving the communication skills.

  7. Simulation and optimisation of a ground source heat pump with different ground heat exchanger configurations for a single-family residential house

    DEFF Research Database (Denmark)

    Pavlov, Georgi Krasimiroy; Olesen, Bjarne W.

    2012-01-01

    In the future there will be an increased demand for energy efficient cooling of residential buildings. Therefore it is essential to develop cooling concepts that are passive and/or using very little primary energy. A possible solution is a ground source heat pump combined with a low-temperature h....... For the studied geographical location, passive cooling by bypassing the heat pump and using only the ground heat exchanger can provide acceptable room temperatures.......In the future there will be an increased demand for energy efficient cooling of residential buildings. Therefore it is essential to develop cooling concepts that are passive and/or using very little primary energy. A possible solution is a ground source heat pump combined with a low......-temperature heating and high-temperature cooling system. The present work evaluates the performance in relation to thermal comfort and energy consumption of a GSHP with different GHE concepts. The different configurations are analyzed being part of the energy supply system of a low-energy residential house...

  8. Meeting residential space heating demand with wind-generated electricity

    International Nuclear Information System (INIS)

    Hughes, Larry

    2010-01-01

    Worldwide, many electricity suppliers are faced with the challenge of trying to integrate intermittent renewables, notably wind, into their energy mix to meet the needs of those services that require a continuous supply of electricity. Solutions to intermittency include the use of rapid-response backup generation and chemical or mechanical storage of electricity. Meanwhile, in many jurisdictions with lengthy heating seasons, finding secure and preferably environmentally benign supplies of energy for space heating is also becoming a significant challenge because of volatile energy markets. Most, if not all, electricity suppliers treat these twin challenges as separate issues: supply (integrating intermittent renewables) and demand (electric space heating). However, if space heating demand can be met from an intermittent supply of electricity, then both of these issues can be addressed simultaneously. One such approach is to use off-the-shelf electric thermal storage systems. This paper examines the potential of this approach by applying the output from a 5.15 MW wind farm to the residential heating demands of detached households in the Canadian province of Prince Edward Island. The paper shows that for the heating season considered, up to 500 households could have over 95 percent of their space heating demand met from the wind farm in question. The benefits as well as the limitations of the approach are discussed in detail. (author)

  9. Annual Energy Savings and Thermal Comfort of Autonomously Heated and Cooled Office Chairs

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booten, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robertson, Joseph [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chin, Justin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, Dane [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Jacquelyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Doug [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Energy use in offices buildings is largely driven by air conditioning demands. But the optimal temperature is not the same for all building occupants, leading to the infamous thermostat war. And many occupants have independently overcome building comfort weaknesses with their own space heaters or fans. NREL tested is a customized office chair that automatically heats and cools the occupant along the seat and chair back according to the occupants' personal preferences. This product is shown to deliver markedly better comfort at room temperatures well above typical office cooling setpoints. Experimental subjects reported satisfaction in these elevated air temperatures, partly because the chair's cooling effect was tuned to their own individual needs. Simulation of the chair in office buildings around the U.S. shows that energy can be saved everywhere, with impacts varying due to the climate. Total building HVAC energy savings exceeded 10% in hot-dry climate zones. Due to high product cost, simple payback for the chair we studied is beyond the expected chair life. We then understood the need to establish cost-performance targets for comfort delivery packages. NREL derived several hypothetical energy/cost/comfort targets for personal comfort product systems. In some climate regions around the U.S., these show the potential for office building HVAC energy savings in excess of 20%. This report documents this research, providing an overview of the research team's methods and results while also identifying areas for future research building upon the findings.

  10. Stochastic analysis of residential micro combined heat and power system

    DEFF Research Database (Denmark)

    Karami, H.; Sanjari, M. J.; Gooi, H. B.

    2017-01-01

    In this paper the combined heat and power functionality of a fuel-cell in a residential hybrid energy system, including a battery, is studied. The demand uncertainties are modeled by investigating the stochastic load behavior by applying Monte Carlo simulation. The colonial competitive algorithm...... algorithm. The optimized scheduling of different energy resources is listed in an efficient look-up table for all time intervals. The effects of time of use and the battery efficiency and its size are investigated on the operating cost of the hybrid energy system. The results of this paper are expected...

  11. Solar Heating and Cooling of Residential Buildings: Sizing, Installation and Operation of Systems.

    Science.gov (United States)

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This training course and a companion course titled "Design of Systems for Solar Heating and Cooling of Residential Buildings," are designed to train home designers and builders in the fundamentals of solar hydronic and air systems for space heating and cooling and domestic hot water heating for residential buildings. Each course, organized in 22…

  12. An investigation of thermal comfort inside a bus during heating period within a climatic chamber.

    Science.gov (United States)

    Pala, Uzeyir; Oz, H Ridvan

    2015-05-01

    By this study, it was aimed to define a testing and calculation model for thermal comfort assessment of a bus HVAC design and to compare effects of changing parameters on passenger's thermal comfort. For this purpose, a combined theoretical and experimental work during heating period inside a coach was carried out. The bus was left under 20 °C for more than 7 h within a climatic chamber and all heat sources were started at the beginning of a standard test. To investigate effects of fast transient conditions on passengers' physiology and thermal comfort, temperatures, air humidity and air velocities were measured. Human body was considered as one complete piece composed of core and skin compartments and the Transient Energy Balance Model developed by Gagge et al. in 1971 was used to calculate changes in thermal parameters between passenger bodies and bus interior environment. Depending on the given initial and environmental conditions, the graphs of passengers Thermal Sensation and Thermal Discomfort Level were found. At the end, a general mathematical model supported with a related experimental procedure was developed for the use of automotive HVAC engineers and scientists working on thermal comfort as a human dimension. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. Association between human and animal thermal comfort indices and physiological heat stress indicators in dairy calves.

    Science.gov (United States)

    Kovács, L; Kézér, F L; Ruff, F; Szenci, O; Jurkovich, V

    2018-06-06

    Warm summer episodes have a significant effect on the overall health and well-being of young cattle; however, it is not known which temperature measure should be used for estimating heat stress in dairy calves. In this study, generalized linear mixed-effects models were used to estimate the relationships between thermal comfort indices and animal-based heat stress indicators in sixteen Holstein bull calves that were housed in individual calf hutches. Data were collected under continental weather characteristics over a 5-day period: day 1 (lower-temperature day), days 2 and 3 (heat stress days), and a 2-day post-stress period. Relative humidity, ambient temperature, the heat index, the humidex and five different temperature-humidity indices (THI) were used as thermal indices. Physiological variables monitored included respiratory rate, rectal temperature, ear skin temperature and heart rate. The heat index and the humidex measuring human thermal comfort were more closely associated with physiological measures than were the ambient temperature or the THIs (in case of heat index: R 2 = 0.87 for respiratory rate, R 2 = 0.63 for rectal temperature, R 2 = 0.70 for ear skin temperature, and R 2 = 0.78 for heart rate, respectively; in case of humidex: R 2 = 0.85 for respiratory rate, R 2 = 0.60 for rectal temperature, R 2 = 0.68 for ear skin temperature, and R 2 = 0.75 for heart rate, respectively). Based on our results, parameters of human outdoor comfort seem better to estimate heat stress in dairy calves in a continental region than those of THIs or ambient temperature. Copyright © 2018. Published by Elsevier Inc.

  14. Motivational factors influencing the homeowners’ decisions between residential heating systems: An empirical analysis for Germany

    International Nuclear Information System (INIS)

    Michelsen, Carl Christian; Madlener, Reinhard

    2013-01-01

    Heating demand accounts for a large fraction of the overall energy demand of private households in Germany. A better understanding of the adoption and diffusion of energy-efficient and renewables-based residential heating systems (RHS) is of high policy relevance, particularly against the background of climate change, security of energy supply and increasing energy prices. In this paper, we explore the multi-dimensionality of the homeowners’ motivation to decide between competing RHS. A questionnaire survey (N=2440) conducted in 2010 among homeowners who had recently installed a RHS provides the empirical foundation. Principal component analysis shows that 25 items capturing different adoption motivations can be grouped around six dimensions: (1) cost aspects, (2) general attitude towards the RHS, (3) government grant, (4) reactions to external threats (i.e., environmental or energy supply security considerations), (5) comfort considerations, and (6) influence of peers. Moreover, a cluster analysis with the identified motivational factors as segmentation variables reveals three adopter types: (1) the convenience-oriented, (2) the consequences-aware, and (3) the multilaterally-motivated RHS adopter. Finally, we show that the influence of the motivational factors on the adoption decision also differs by certain characteristics of the homeowner and features of the home. - Highlights: ► Study of the multi-dimensionality of the motivation to adopt residential heating systems (RHS). ► Principal component and cluster analysis are applied to representative survey data for Germany. ► Motivation has six dimensions, including rational decision-making and emotional factors. ► Adoption motivation differs by certain characteristics of the homeowner and of the home. ► Many adopters are driven by existing habits and perceptions about the convenience of the RHS

  15. A new 'bio-comfort' perspective for Melbourne based on heat stress, air pollution and pollen.

    Science.gov (United States)

    Jacobs, Stephanie J; Pezza, Alexandre B; Barras, Vaughan; Bye, John

    2014-03-01

    Humans are at risk from exposure to extremes in their environment, yet there is no consistent way to fully quantify and understand the risk when considering more than just meteorological variables. An outdoor 'bio-comfort' threshold is defined for Melbourne, Australia using a combination of heat stress, air particulate concentration and grass pollen count, where comfortable conditions imply an ideal range of temperature, humidity and wind speed, acceptable levels of air particulates and a low pollen count. This is a new approach to defining the comfort of human populations. While other works have looked into the separate impacts of different variables, this is the first time that a unified bio-comfort threshold is suggested. Composite maps of surface pressure are used to illustrate the genesis and evolution of the atmospheric structures conducive to an uncomfortable day. When there is an uncomfortable day due to heat stress conditions in Melbourne, there is a high pressure anomaly to the east bringing warm air from the northern interior of Australia. This anomaly is part of a slow moving blocking high originating over the Indian Ocean. Uncomfortable days due to high particulate levels have an approaching cold front. However, for air particulate cases during the cold season there are stable atmospheric conditions enhanced by a blocking high emanating from Australia and linking with the Antarctic continent. Finally, when grass pollen levels are high, there are northerly winds carrying the pollen from rural grass lands to Melbourne, due to a stationary trough of low pressure inland. Analysis into days with multiple types of stress revealed that the atmospheric signals associated with each type of discomfort are present regardless of whether the day is uncomfortable due to one or multiple variables. Therefore, these bio-comfort results are significant because they offer a degree of predictability for future uncomfortable days in Melbourne.

  16. A new `bio-comfort' perspective for Melbourne based on heat stress, air pollution and pollen

    Science.gov (United States)

    Jacobs, Stephanie J.; Pezza, Alexandre B.; Barras, Vaughan; Bye, John

    2014-03-01

    Humans are at risk from exposure to extremes in their environment, yet there is no consistent way to fully quantify and understand the risk when considering more than just meteorological variables. An outdoor `bio-comfort' threshold is defined for Melbourne, Australia using a combination of heat stress, air particulate concentration and grass pollen count, where comfortable conditions imply an ideal range of temperature, humidity and wind speed, acceptable levels of air particulates and a low pollen count. This is a new approach to defining the comfort of human populations. While other works have looked into the separate impacts of different variables, this is the first time that a unified bio-comfort threshold is suggested. Composite maps of surface pressure are used to illustrate the genesis and evolution of the atmospheric structures conducive to an uncomfortable day. When there is an uncomfortable day due to heat stress conditions in Melbourne, there is a high pressure anomaly to the east bringing warm air from the northern interior of Australia. This anomaly is part of a slow moving blocking high originating over the Indian Ocean. Uncomfortable days due to high particulate levels have an approaching cold front. However, for air particulate cases during the cold season there are stable atmospheric conditions enhanced by a blocking high emanating from Australia and linking with the Antarctic continent. Finally, when grass pollen levels are high, there are northerly winds carrying the pollen from rural grass lands to Melbourne, due to a stationary trough of low pressure inland. Analysis into days with multiple types of stress revealed that the atmospheric signals associated with each type of discomfort are present regardless of whether the day is uncomfortable due to one or multiple variables. Therefore, these bio-comfort results are significant because they offer a degree of predictability for future uncomfortable days in Melbourne.

  17. Heat transfer capability of solar radiation in colored roof and influence on room thermal comfort

    Science.gov (United States)

    Syuhada, Ahmad; Maulana, Muhammad Ilham

    2018-02-01

    Colored zinc is the most widely used by people in Indonesia as the roof of the building. Each color has different heat absorption capability, the higher the absorption capacity of a roof will cause high room temperature. A high temperature in the room will cause the room is not thermally comfortable for activity. Lack of public knowledge about the ability of each color to absorb heat can cause errors in choosing the color of the roof of the building so that it becomes uncomfortable regarding thermal comfort. This study examined how big the ability of each color in influencing the heat absorption on the roof of the zinc. The purpose of this study is to examine which colors are the lowest to absorb radiation heat. This research used theexperimental method. Data collected by measuring the temperature of the environment above and below the colored tin roof, starting at 11:00 am until 15:00 pm. The zinc roofs tested in this study are zinc black, red zinc, green zinc, blue zinc, brown zinc, maroon zinc, orange zinc, zinc gray, zinc color chrome and zinc white color. The study results show that black and blackish colors will absorb more heat than other colors. While the color white or close to whitish color will absorb a slight heat.

  18. An investigation into thermal comfort and residential thermal environment in an intertropical sub-Saharan Africa region: Field study report during the Harmattan season in Cameroon

    International Nuclear Information System (INIS)

    Djongyang, Noel; Tchinda, Rene

    2010-01-01

    Investigations on thermal comfort have attracted authors for years throughout the world and the most important findings are now the basis of international thermal comfort standards. There is little information available concerning occupant comfort and residential thermal environment in the intertropical sub-Saharan Africa. Thus the purpose for this study is to conduct a field study on comfort and residential thermal environments in a typical intertropical climatic region. A field survey has been conducted during the Harmattan season in two cities from the two climatic regions of Cameroon concerned by that wind. Specific study objectives were to evaluate and characterize some thermal perceptions of occupants in their residence, compare observed and predicted percent of dissatisfied, and discern differences between the study area and other climate zones where similar studies have been performed. It was found that the thermoneutral temperatures in both climatic regions range from 24.69 deg. C to 27.32 deg. C and, in traditional living room, it differs from that of modern living room with approximately 1 deg. C.

  19. Building America Case Study: Occupant Comfort from a Mini-Split Heat Pump, San Antonio, Texas

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-03

    IBACOS worked with builder Imagine Homes to evaluate the performance of an occupied new construction test house following construction of the house in the hot, humid climate of San Antonio, Texas. The project measures the effectiveness of a space conditioning strategy using a multihead mini-split heat pump (MSHP) system in a reduced-load home to achieve acceptable comfort levels (temperature and humidity) and energy performance. IBACOS collected long-term data and analyzed the energy consumption and comfort conditions of the occupied house after one year of operation. Although measured results indicate that the test system provides comfort both inside and outside the ASHRAE Standard 55-2010 range, the occupants of the house claimed both adequate comfort and appreciation of the ease of use and flexibility of the installed MSHP system. IBACOS also assisted the builder to evaluate design and specification changes necessary to comply with Zero Energy Ready Home, but the builder chose to not move forward with it because of concerns about the 'solar ready' requirements of the program.

  20. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise.

    Science.gov (United States)

    Guéritée, Julien; Tipton, Michael J

    2015-02-01

    The aims of the present work were to investigate the relationships between radiant heat load, air velocity and body temperatures with or without coincidental exercise to determine the physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven male volunteers wearing swimming trunks in 18°C, 22°C or 26°C air were exposed to increasing air velocities up to 3 m s(-1) and self-adjusted the intensity of the direct radiant heat received on the front of the body to just maintain overall thermal comfort, at rest or when cycling (60 W, 60 rpm). During the 30 min of the experiments, skin and rectal temperatures were continuously recorded. We hypothesized that mean body temperature should be maintained stable and the intensity of the radiant heat and the mean skin temperatures would be lower when cycling. In all conditions, mean body temperature was lower when facing winds of 3 m s(-1) than during the first 5 min, without wind. When facing winds, in all but the 26°C air, the radiant heat was statistically higher at rest than when exercising. In 26°C air mean skin temperature was lower at rest than when exercising. No other significant difference was observed. In all air temperatures, high correlation coefficients were observed between the air velocity and the radiant heat load. Other factors that we did not measure may have contributed to the constant overall thermal comfort status despite dropping mean skin and body temperatures. It is suggested that the allowance to behaviourally adjust the thermal environment increases the tolerance of cold discomfort. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. The Effect of Thermal Mass on Annual Heat Load and Thermal Comfort in Cold Climate Construction

    DEFF Research Database (Denmark)

    Stevens, Vanessa; Kotol, Martin; Grunau, Bruno

    2016-01-01

    been shown to reduce the annual heating demand. However, few studies exist regarding the effects of thermal mass in cold climates. The purpose of this research is to determine the effect of high thermal mass on the annual heat demand and thermal comfort in a typical Alaskan residence using energy......Thermal mass in building construction refers to a building material's ability to absorb and release heat based on changing environmental conditions. In building design, materials with high thermal mass used in climates with a diurnal temperature swing around the interior set-point temperature have...... modeling software. The model simulations show that increased thermal mass can decrease the risk of summer overheating in Alaskan residences. They also show that increased thermal mass does not significantly decrease the annual heat load in residences located in cold climates. These results indicate...

  2. Stochastic analysis of residential micro combined heat and power system

    International Nuclear Information System (INIS)

    Karami, H.; Sanjari, M.J.; Gooi, H.B.; Gharehpetian, G.B.; Guerrero, J.M.

    2017-01-01

    Highlights: • Applying colonial competitive algorithm to the problem of optimal dispatching. • Economic modeling of the residential integrated energy system. • Investigating differences of stand-alone and system-connected modes of fuel cell operation. • Considering uncertainty on the electrical load. • The effects of battery capacity and its efficiency on the system is investigated. - Abstract: In this paper the combined heat and power functionality of a fuel-cell in a residential hybrid energy system, including a battery, is studied. The demand uncertainties are modeled by investigating the stochastic load behavior by applying Monte Carlo simulation. The colonial competitive algorithm is adopted to the hybrid energy system scheduling problem and different energy resources are optimally scheduled to have optimal operating cost of hybrid energy system. In order to show the effectiveness of the colonial competitive algorithm, the results are compared with the results of the harmony search algorithm. The optimized scheduling of different energy resources is listed in an efficient look-up table for all time intervals. The effects of time of use and the battery efficiency and its size are investigated on the operating cost of the hybrid energy system. The results of this paper are expected to be used effectively in a real hybrid energy system.

  3. Effect of thermal state and thermal comfort on cycling performance in the heat.

    Science.gov (United States)

    Schulze, Emiel; Daanen, Hein A M; Levels, Koen; Casadio, Julia R; Plews, Daniel J; Kilding, Andrew E; Siegel, Rodney; Laursen, Paul B

    2015-07-01

    To determine the effect of thermal state and thermal comfort on cycling performance in the heat. Seven well-trained male triathletes completed 3 performance trials consisting of 60 min cycling at a fixed rating of perceived exertion (14) followed immediately by a 20-km time trial in hot (30°C) and humid (80% relative humidity) conditions. In a randomized order, cyclists either drank ambient-temperature (30°C) fluid ad libitum during exercise (CON), drank ice slurry (-1°C) ad libitum during exercise (ICE), or precooled with iced towels and ice slurry ingestion (15 g/kg) before drinking ice slurry ad libitum during exercise (PC+ICE). Power output, rectal temperature, and ratings of thermal comfort were measured. Overall mean power output was possibly higher in ICE (+1.4%±1.8% [90% confidence limit]; 0.4> smallest worthwhile change [SWC]) and likely higher PC+ICE (+2.5%±1.9%; 1.5>SWC) than in CON; however, no substantial differences were shown between PC+ICE and ICE (unclear). Time-trial performance was likely enhanced in ICE compared with CON (+2.4%±2.7%; 1.4>SWC) and PC+ICE (+2.9%±3.2%; 1.9>SWC). Differences in mean rectal temperature during exercise were unclear between trials. Ratings of thermal comfort were likely and very likely lower during exercise in ICE and PC+ICE, respectively, than in CON. While PC+ICE had a stronger effect on mean power output compared with CON than ICE did, the ICE strategy enhanced late-stage time-trial performance the most. Findings suggest that thermal comfort may be as important as thermal state for maximizing performance in the heat.

  4. Michigan residential heating oil and propane price survey: 1995-1996 heating season. Final report

    International Nuclear Information System (INIS)

    Moriarty, C.

    1996-05-01

    This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan's Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy's (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply

  5. Flow patterns and thermal comfort in a room with panel, floor and wall heating

    Energy Technology Data Exchange (ETDEWEB)

    Myhren, Jonn Are; Holmberg, Sture [Fluid and Climate Technology, Department of Constructional Engineering and Design, KTH, School of Technology and Health, Marinens vaeg 30, SE-13640 Haninge-Stockholm (Sweden)

    2008-07-01

    Thermal comfort aspects in a room vary with different space heating methods. The main focus in this study was how different heating systems and their position affect the indoor climate in an exhaust-ventilated office under Swedish winter conditions. The heat emitters used were a high and a medium-high temperature radiator, a floor heating system and large wall heating surfaces at low temperature. Computational fluid dynamics (CFD) simulations were used to investigate possible cold draught problems, differences in vertical temperature gradients, air speed levels and energy consumption. Two office rooms with different ventilation systems and heating needs were evaluated. Both systems had high air exchange rates and cold infiltration air. The general conclusions from this study were that low temperature heating systems may improve indoor climate, giving lower air speeds and lower temperature differences in the room than a conventional high temperature radiator system. The disadvantage with low temperature systems is a weakness in counteracting cold down-flow from ventilation supply units. For that reason the location of heat emitters and the design of ventilation systems proved to be of particular importance. Measurements performed in a test chamber were used to validate the results from the CFD simulations. (author)

  6. Black Versus Gray T-Shirts: Comparison of Spectrophotometric and Other Biophysical Properties of Physical Fitness Uniforms and Modeled Heat Strain and Thermal Comfort

    Science.gov (United States)

    2016-09-01

    PROPERTIES OF PHYSICAL FITNESS UNIFORMS AND MODELED HEAT STRAIN AND THERMAL COMFORT DISCLAIMER The opinions or assertions contained herein are the...SHIRTS: COMPARISON OF SPECTROPHOTOMETRIC AND OTHER BIOPHYSICAL PROPERTIES OF PHYSICAL FITNESS UNIFORMS AND MODELED HEAT STRAIN AND THERMAL COMFORT ...the impact of the environment on the wearer. To model these impacts on human thermal sensation (e.g., thermal comfort ) and thermoregulatory

  7. Clustering-based analysis for residential district heating data

    DEFF Research Database (Denmark)

    Gianniou, Panagiota; Liu, Xiufeng; Heller, Alfred

    2018-01-01

    The wide use of smart meters enables collection of a large amount of fine-granular time series, which can be used to improve the understanding of consumption behavior and used for consumption optimization. This paper presents a clustering-based knowledge discovery in databases method to analyze r....... These findings will be valuable for district heating utilities and energy planners to optimize their operations, design demand-side management strategies, and develop targeting energy-efficiency programs or policies.......The wide use of smart meters enables collection of a large amount of fine-granular time series, which can be used to improve the understanding of consumption behavior and used for consumption optimization. This paper presents a clustering-based knowledge discovery in databases method to analyze...... residential heating consumption data and evaluate information included in national building databases. The proposed method uses the K-means algorithm to segment consumption groups based on consumption intensity and representative patterns and ranks the groups according to daily consumption. This paper also...

  8. Effect of age, gender, economic group and tenure on thermal comfort: A field study in residential buildings in hot and dry climate with seasonal variations

    Energy Technology Data Exchange (ETDEWEB)

    Indraganti, Madhavi; Rao, Kavita Daryani [Architecture Department, Jawaharlal Nehru Architecture and Fine Arts University, Hyderabad (India)

    2010-03-15

    Energy consumption in Indian residential buildings is one of the highest and is increasing phenomenally. Indian standards specify comfort temperatures between 23 and 26 C for all types of buildings across the nation. However, thermal comfort research in India is very limited. A field study in naturally ventilated apartments was done in 2008, during the summer and monsoon seasons in Hyderabad in composite climate. This survey involved over 100 subjects, giving 3962 datasets. They were analysed under different groups: age, gender, economic group and tenure. Age, gender and tenure correlated weakly with thermal comfort. However, thermal acceptance of women, older subjects and owner-subjects was higher. Economic level of the subjects showed significant effect on the thermal sensation, preference, acceptance and neutrality. The comfort band for lowest economic group was found to be 27.3-33.1 C with the neutral temperature at 30.2 C. This is way above the standard. This finding has far reaching energy implications on building and HVAC systems design and practice. Occupants' responses for other environmental parameters often depended on their thermal sensation, often resulting in a near normal distribution. The subjects displayed acoustic and olfactory obliviousness due to habituation, resulting in higher satisfaction and acceptance. (author)

  9. Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs

    International Nuclear Information System (INIS)

    Zvingilaite, Erika; Klinge Jacobsen, Henrik

    2015-01-01

    The trade-off between investing in energy savings and investing in individual heating technologies with high investment and low variable costs in single family houses is modelled for a number of building and consumer categories in Denmark. For each group the private economic cost of providing heating comfort is minimised. The private solution may deviate from the socio-economical optimal solution and we suggest changes to policy to incentivise the individuals to make choices more in line with the socio-economic optimal mix of energy savings and technologies. The households can combine their primary heating source with secondary heating e.g. a woodstove. This choice results in increased indoor air pollution with fine particles causing health effects. We integrate health cost due to use of woodstoves into household optimisation of heating expenditures. The results show that due to a combination of low costs of primary fuel and low environmental performance of woodstoves today, included health costs lead to decreased use of secondary heating. Overall the interdependence of heat generation technology- and heat saving-choice is significant. The total optimal level of heat savings for private consumers decrease by 66% when all have the option to shift to the technology with lowest variable costs. - Highlights: • Heat saving investment and heat technology choice are interdependent. • Health damage costs should be included in private heating choice optimisation. • Flexibility in heating technology choice reduce the optimal level of saving investments. • Models of private and socioeconomic optimal heating produce different technology mix. • Rebound effects are moderate but varies greatly among consumer categories

  10. Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective.

    Science.gov (United States)

    Gao, C; Kuklane, K; Wang, F; Holmér, I

    2012-12-01

    The impact of heat waves arising from climate change on human health is predicted to be profound. It is important to be prepared with various preventive measures for such impacts on society. The objective of this study was to investigate whether personal cooling with phase change materials (PCM) could improve thermal comfort in simulated office work at 34°C. Cooling vests with PCM were measured on a thermal manikin before studies on human subjects. Eight male subjects participated in the study in a climatic chamber (T(a) = 34°C, RH = 60%, and ν(a) = 0.4 m/s). Results showed that the cooling effect on the manikin torso was 29.1 W/m(2) in the isothermal condition. The results on the manikin using a constant heating power mode reflect directly the local cooling effect on subjects. The results on the subjects showed that the torso skin temperature decreased by about 2-3°C and remained at 33.3°C. Both whole body and torso thermal sensations were improved. The findings indicate that the personal cooling with PCM can be used as an option to improve thermal comfort for office workers without air conditioning and may be used for vulnerable groups, such as elderly people, when confronted with heat waves. Wearable personal cooling integrated with phase change materials has the advantage of cooling human body's micro-environment in contrast to stationary personalized cooling and entire room or building cooling, thus providing greater mobility and helping to save energy. In places where air conditioning is not usually used, this personal cooling method can be used as a preventive measure when confronted with heat waves for office workers, vulnerable populations such as the elderly and disabled people, people with chronic diseases, and for use at home. © 2012 John Wiley & Sons A/S.

  11. Monitoring results and analysis of thermal comfort conditions in experimental buildings for different heating systems and ventilation regimes during heating and cooling seasons

    Science.gov (United States)

    Gendelis, S.; Jakovičs, A.; Ratnieks, J.; Bandeniece, L.

    2017-10-01

    This paper focuses on the long-term monitoring of thermal comfort and discomfort parameters in five small test buildings equipped with different heating and cooling systems. Calculations of predicted percentage of dissatisfied people (PPD) index and discomfort factors are provided for the room in winter season running three different heating systems - electric heater, air-air heat pump and air-water heat pump, as well as for the summer cooling with split type air conditioning systems. It is shown that the type of heating/cooling system and its working regime has an important impact on thermal comfort conditions in observed room. Recommendations for the optimal operating regimes and choice of the heating system from the thermal comfort point of view are summarized.

  12. Effect of the Evaporative Cooling on the Human Thermal Comfort and Heat Stress in a Greenhouse under Arid Conditions

    Directory of Open Access Journals (Sweden)

    A. M. Abdel-Ghany

    2013-01-01

    Full Text Available Thermal sensation and heat stress were evaluated in a plastic greenhouse, with and without evaporative cooling, under arid climatic conditions in Riyadh, Saudi Arabia. Suitable thermal comfort and heat stress scales were selected for the evaluation. Experiments were conducted in hot sunny days to measure the required parameters (i.e., the dry and wet bulb temperatures, globe temperature, natural wet bulb temperature, and solar radiation flux in the greenhouse. The results showed that in the uncooled greenhouse, workers are exposed to strong heat stress and would feel very hot most of the day time; they are safe from heat stress risk and would feel comfortable during night. An efficient evaporative cooling is necessary during the day to reduce heat stress and to improve the comfort conditions and is not necessary at night. In the cooled greenhouse, workers can do any activity: except at around noon they should follow a proposed working schedule, in which the different types of work were scheduled along the daytimes based on the heat stress value. To avoid heat stress and to provide comfort conditions in the greenhouses, the optimum ranges of relative humidity and air temperature are 48–55% and 24–28°C, respectively.

  13. An engineering economic assessment of whole-house residential wood heating in New York

    Science.gov (United States)

    Wood devices are being selected increasingly for residential space heating by households in New York State. Motivations for their use include energy independence, mitigating climate change, stimulating local economic development, and reducing exposure to high and variable fuel c...

  14. Wood energy for residential heating in Alaska: current conditions, attitudes, and expected use

    Science.gov (United States)

    David L. Nicholls; Allen M. Brackley; Valerie. Barber

    2010-01-01

    This study considered three aspects of residential wood energy use in Alaska: current conditions and fuel consumption, knowledge and attitudes, and future use and conditions. We found that heating oil was the primary fuel for home heating in southeast and interior Alaska, whereas natural gas was used most often in south-central Alaska (Anchorage). Firewood heating...

  15. Preliminary design package for residential heating/cooling system: Rankine air conditioner redesign

    Science.gov (United States)

    1978-01-01

    A summary of the preliminary redesign and development of a marketable single family heating and cooling system is presented. The interim design and schedule status of the residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities were discussed. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  16. Preliminary design package for residential heating/cooling system--Rankine air conditioner redesign

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report contains a summary of the preliminary redesign and development of a marketable single-family heating and cooling system. The objectives discussed are the interim design and schedule status of the Residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  17. Micrometeorological simulations to predict the impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood

    Science.gov (United States)

    Taleghani, Mohammad; Sailor, David; Ban-Weiss, George A.

    2016-02-01

    The urban heat island impacts the thermal comfort of pedestrians in cities. In this paper, the effects of four heat mitigation strategies on micrometeorology and the thermal comfort of pedestrians were simulated for a neighborhood in eastern Los Angeles County. The strategies investigated include solar reflective ‘cool roofs’, vegetative ‘green roofs’, solar reflective ‘cool pavements’, and increased street-level trees. A series of micrometeorological simulations for an extreme heat day were carried out assuming widespread adoption of each mitigation strategy. Comparing each simulation to the control simulation assuming current land cover for the neighborhood showed that additional street-trees and cool pavements reduced 1.5 m air temperature, while cool and green roofs mostly provided cooling at heights above pedestrian level. However, cool pavements increased reflected sunlight from the ground to pedestrians at a set of unshaded receptor locations. This reflected radiation intensified the mean radiant temperature and consequently increased physiological equivalent temperature (PET) by 2.2 °C during the day, reducing the thermal comfort of pedestrians. At another set of receptor locations that were on average 5 m from roadways and underneath preexisting tree cover, cool pavements caused significant reductions in surface air temperatures and small changes in mean radiant temperature during the day, leading to decreases in PET of 1.1 °C, and consequent improvements in thermal comfort. For improving thermal comfort of pedestrians during the afternoon in unshaded locations, adding street trees was found to be the most effective strategy. However, afternoon thermal comfort improvements in already shaded locations adjacent to streets were most significant for cool pavements. Green and cool roofs showed the lowest impact on the thermal comfort of pedestrians since they modify the energy balance at roof level, above the height of pedestrians.

  18. Micrometeorological simulations to predict the impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood

    International Nuclear Information System (INIS)

    Taleghani, Mohammad; Ban-Weiss, George A; Sailor, David

    2016-01-01

    The urban heat island impacts the thermal comfort of pedestrians in cities. In this paper, the effects of four heat mitigation strategies on micrometeorology and the thermal comfort of pedestrians were simulated for a neighborhood in eastern Los Angeles County. The strategies investigated include solar reflective ‘cool roofs’, vegetative ‘green roofs’, solar reflective ‘cool pavements’, and increased street-level trees. A series of micrometeorological simulations for an extreme heat day were carried out assuming widespread adoption of each mitigation strategy. Comparing each simulation to the control simulation assuming current land cover for the neighborhood showed that additional street-trees and cool pavements reduced 1.5 m air temperature, while cool and green roofs mostly provided cooling at heights above pedestrian level. However, cool pavements increased reflected sunlight from the ground to pedestrians at a set of unshaded receptor locations. This reflected radiation intensified the mean radiant temperature and consequently increased physiological equivalent temperature (PET) by 2.2 °C during the day, reducing the thermal comfort of pedestrians. At another set of receptor locations that were on average 5 m from roadways and underneath preexisting tree cover, cool pavements caused significant reductions in surface air temperatures and small changes in mean radiant temperature during the day, leading to decreases in PET of 1.1 °C, and consequent improvements in thermal comfort. For improving thermal comfort of pedestrians during the afternoon in unshaded locations, adding street trees was found to be the most effective strategy. However, afternoon thermal comfort improvements in already shaded locations adjacent to streets were most significant for cool pavements. Green and cool roofs showed the lowest impact on the thermal comfort of pedestrians since they modify the energy balance at roof level, above the height of pedestrians. (letter)

  19. End-user comfort oriented day-ahead planning for responsive residential HVAC demand aggregation considering weather forecasts

    NARCIS (Netherlands)

    Erdinç, O.; Taşcikaraogυlu, A.; Paterakis, N.G.; Eren, Y.; Catalão, J.P.S.

    2017-01-01

    There is a remarkable potential for implementing demand response (DR) strategies for several purposes, such as peak load reduction, frequency regulation, etc., by using thermostatically controllable appliances. In this paper, an end-user comfort violation minimization oriented DR strategy for

  20. The demand function for residential heat through district heating system and its consumption benefits in Korea

    International Nuclear Information System (INIS)

    Lim, Seul-Ye; Kim, Hyo-Jin; Yoo, Seung-Hoon

    2016-01-01

    The demand for residential heat (RH) through a district heating system (DHS) has been and will be expanded in Korea due to its better performance in energy efficiency and the abatement of greenhouse gas emissions than decentralized boilers. The purposes of this paper are two-fold. The first is to obtain the demand function for DHS-based RH in Korea and investigate the price and income elasticities of the demand employing the quarterly data covering the period 1988–2013. The short-run price and income elasticities are estimated as −0.700 and 0.918, respectively. Moreover, the long-run elasticities are −1.253 and 1.642, respectively. The second purpose is to measure the consumption benefits of DHS-based-RH employing the economic theory that they are the sum of the actual payment and consumer surplus for the consumption. Considering that the average price and estimated consumer surplus of the DHS-based RH use in 2013 are computed to be KRW 87,870 (USD 84.1) and KRW 62,764 (USD 60.1) per Gcal, the consumption benefits of the DHS-based RH are calculated to be KRW 150,634 (USD 144.2) per Gcal. This information can be beneficially utilized to conduct an economic feasibility study for a new DHS project related to RH supply. - Highlights: • Demand for residential heat (RH) from district heating system (DHS) is expanding. • We estimate the demand function for and consumption benefits of DHS-based RH. • Short-run price and income elasticities are −0.700 and 0.918, respectively. • Long-run price and income elasticities are −1.253 and 1.642, respectively. • Consumption benefits of DHS-based RH are KRW 150,634 (USD 144.2) per Gcal.

  1. Supply of domestic hot Water at comfortable temperatures by low-temperature district heating without risk of Legionella

    DEFF Research Database (Denmark)

    Yang, Xiaochen

    disinfection efficacy for Legionella if supplied by LTDH, and inject no additives into the water. Thus, they can be considered as feasible sterilization solutions. In terms of the DHW system design methods, in addition to ensure the safe and hygiene DHW supply, the potential DHW systems should also...... temperature for space heating but lower than LTDH. Therefore, to meet the comfort and hygiene requirements for DHW supply, supplementary heating methods should be combined. However, one obstacle to realize the LTDH/ULTDH is the concern of the violation of the comfort and hygiene requirements of DHW supply....... According to the Danish standard, the supply for DHW should be able to reach 45 °C for the kitchen use and 40 °C for other uses for comfort. Regarding to the hygiene requirements, large DHW system with DHW storage tank and circulation has to use high temperature regime to get rid of Legionella. The storage...

  2. Use of a novel smart heating sleeping bag to improve wearers’ local thermal comfort in the feet

    Science.gov (United States)

    Song, W. F.; Zhang, C. J.; Lai, D. D.; Wang, F. M.; Kuklane, K.

    2016-01-01

    Previous studies have revealed that wearers had low skin temperatures and cold and pain sensations in the feet, when using sleeping bags under defined comfort and limit temperatures. To improve wearers’ local thermal comfort in the feet, a novel heating sleeping bag (i.e., MARHT) was developed by embedding two heating pads into the traditional sleeping bag (i.e., MARCON) in this region. Seven female and seven male volunteers underwent two tests on different days. Each test lasted for three hours and was performed in a climate chamber with a setting temperature deduced from EN 13537 (2012) (for females: comfort temperature of -0.4 °C, and for males: the limit temperature of -6.4 °C). MARHT was found to be effective in maintaining the toe and feet temperatures within the thermoneutral range for both sex groups compared to the linearly decreased temperatures in MARCON during the 3-hour exposure. In addition, wearing MARHT elevated the toe blood flow significantly for most females and all males. Thermal and comfort sensations showed a large improvement in feet and a small to moderate improvement in the whole body for both sex groups in MARHT. It was concluded that MARHT is effective in improving local thermal comfort in the feet.

  3. Use of a novel smart heating sleeping bag to improve wearers' local thermal comfort in the feet.

    Science.gov (United States)

    Song, W F; Zhang, C J; Lai, D D; Wang, F M; Kuklane, K

    2016-01-13

    Previous studies have revealed that wearers had low skin temperatures and cold and pain sensations in the feet, when using sleeping bags under defined comfort and limit temperatures. To improve wearers' local thermal comfort in the feet, a novel heating sleeping bag (i.e., MARHT) was developed by embedding two heating pads into the traditional sleeping bag (i.e., MARCON) in this region. Seven female and seven male volunteers underwent two tests on different days. Each test lasted for three hours and was performed in a climate chamber with a setting temperature deduced from EN 13537 (2012) (for females: comfort temperature of -0.4 °C, and for males: the limit temperature of -6.4 °C). MARHT was found to be effective in maintaining the toe and feet temperatures within the thermoneutral range for both sex groups compared to the linearly decreased temperatures in MARCON during the 3-hour exposure. In addition, wearing MARHT elevated the toe blood flow significantly for most females and all males. Thermal and comfort sensations showed a large improvement in feet and a small to moderate improvement in the whole body for both sex groups in MARHT. It was concluded that MARHT is effective in improving local thermal comfort in the feet.

  4. Assessing energy and thermal comfort of different low-energy cooling concepts for non-residential buildings

    International Nuclear Information System (INIS)

    Salvalai, Graziano; Pfafferott, Jens; Sesana, Marta Maria

    2013-01-01

    Highlights: • Impact of five cooling technologies are simulated in six European climate zones with Trnsys 17. • The ventilation strategies reduce the cooling energy need even in South Europe climate. • Constant ventilation controller can lead to a poor cooling performance. • Comparing radiant strategies with air conditioning scenario, the energy saving is predicted to within 5–35%. - Abstract: Energy consumption for cooling is growing dramatically. In the last years, electricity peak consumption grew significantly, switching from winter to summer in many EU countries. This is endangering the stability of electricity grids. This article outlines a comprehensive analysis of an office building performances in terms of energy consumption and thermal comfort (in accordance with static – ISO 7730:2005 – and adaptive thermal comfort criteria – EN 15251:2007 –) related to different cooling concepts in six different European climate zones. The work is based on a series of dynamic simulations carried out in the Trnsys 17 environment for a typical office building. The simulation study was accomplished for five cooling technologies: natural ventilation (NV), mechanical night ventilation (MV), fan-coils (FC), suspended ceiling panels (SCP), and concrete core conditioning (CCC) applied in Stockholm, Hamburg, Stuttgart, Milan, Rome, and Palermo. Under this premise, the authors propose a methodology for the evaluation of the cooling concepts taking into account both, thermal comfort and energy consumption

  5. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  6. Field study on behaviors and adaptation of elderly people and their thermal comfort requirements in residential environments.

    Science.gov (United States)

    Hwang, R-L; Chen, C-P

    2010-06-01

    This study investigated the thermal sensation of elderly people in Taiwan, older than 60 years, in indoor microclimate at home, and their requirements for establishing thermal comfort. The study was conducted using both a thermal sensation questionnaire and measurement of indoor climatic parameters underlying the thermal environment. Survey results were compared with those reported by Cheng and Hwang (2008, J. Tongji Univ., 38, 817-822) for non-elders to study the variation between different age groups in requirements of indoor thermal comfort. The results show that the predominant strategy of thermal adaptation for elders was window-opening in the summer and clothing adjustment in the winter. The temperature of thermal neutrality was 25.2 degrees C and 23.2 degrees C for the summer and the winter, respectively. Logistically regressed probit modeling on percentage of predicted dissatisfied (PPD) against mean thermal sensation vote revealed that the sensation votes corresponding to a PPD of 20% were +/- 0.75 for elders, about +/- 0.10 less than the levels projected by ISO 7730 model. The range of operative temperature for 80% thermal acceptability for elders in the summer was 23.2-27.1 degrees C, narrower than the range of 23.0-28.6 degrees C reported for non-elders. This is likely a result of a difference in the selection of adaptive strategies. Taiwan in the last decade has seen a rapid growth in the elderly population in its societal structure, and as such the quality of indoor thermal comfort increasingly concerns the elderly people. This study presents the results from field-surveying elders residing in major geographical areas of Taiwan, and discusses the requirements of these elders for indoor thermal comfort in different seasons. Through a comparison with the requirements by non-elders, this study demonstrates the unique sensitivity of elders toward indoor thermal quality and the selection of adaptive strategies that need to be considered when a thermal

  7. Experimental and numerical study of back-cooling car-seat system using embedded heat pipes to improve passenger’s comfort

    International Nuclear Information System (INIS)

    Hatoum, Omar; Ghaddar, Nesreen; Ghali, Kamel; Ismail, Nagham

    2017-01-01

    Graphical abstract: Heat pipe assembly (a) with the insulation layer (b) without the insulation layer; and (c) thermal manikin test on the heat pipe chair. - Highlights: • A new back cooling system for a car seat using embedded heat pipes was modeled numerically. • The heat-pipe seat model was experimentally validated using heated thermal manikin. • An integrated heat pipe model and bio-heat model was used to predict local thermal comfort. • The heat pipe system reduced the back skin temperature by 1 °C compared to seat without heat pipes. • The heat pipe system increased the overall thermal comfort of the passenger by 30%. - Abstract: This work develops a back-cooling system for a car seat using seat embedded heat pipes to improve passenger comfort. The heat pipe system utilizes the temperature difference between the passenger back and the car cabin air to remove heat from the human body and enhance the comfort state. The developed seat heat-pipe model was validated experimentally using a thermal manikin with controlled constant skin temperature mode in a climatic chamber. Good agreement was found between the measured and the numerically predicted values of base panel temperature. By integrating the validated heat pipe with a bio-heat model, the back segmental skin temperature as well as the overall thermal comfort was predicted and compared with the conventional seat case without the heat pipe system. The heat pipes were able to reduce the skin temperature by 1 °C and to increase the overall thermal comfort of the body by 30%. In addition, a parametric study was performed to determine the optimal number of heat pipes that ensure the thermal comfort of the passenger.

  8. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    Heating and cooling terminals can be classified in two main categories: convective terminals (e.g air conditioning, active chilled beam, fan coil) and radiant terminals. The two terminals have different modes of heat transfer: the first one is mainly based on convection, whereas the second one...... is based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam...... losses, and an air-based terminal might be more energy-efficient than a radiant terminal (in terms of delivered energy). Regarding comfort, a similar global level has been observed for the radiant and air-based terminals in both numerical and experimental investigations. But the different terminals did...

  9. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    is based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam...... losses, and an air-based terminal might be more energy-efficient than a radiant terminal (in terms of delivered energy). Regarding comfort, a similar global level has been observed for the radiant and air-based terminals in both numerical and experimental investigations. But the different terminals did...... not achieve the same uniformity in space. The active chilled beam theoretically achieves the most uniform comfort conditions (when disregarding the risk of draught), followed by the radiant ceiling. The least uniform conditions were obtained with the cooled floor due to large differences between the sitting...

  10. Materialities shape practices and notions of comfort in everyday life

    DEFF Research Database (Denmark)

    Madsen, Line Valdorff

    2018-01-01

    The development of residential energy technologies aims to ensure thermal comfort in an increasingly energy-efficient manner. This development influences everyday practices related to comfort in everyday life in dwellings. Therefore, an empirical analysis of interviews with residents in three types...... in heating systems between the housing types and shows how changes in technologies and material structures shape the practices of heating and airing. A shift in technology from radiators to underfloor heating was found to make a clear difference in both how houses are heated and thermal comfort is perceived...... of Danish detached houses, related to the building age, is used to understand how changes in technologies influence residents’ practices and notions of comfort. Detached houses are the most widespread type of housing in Denmark, constituting 44% of the housing stock. The analysis focuses on differences...

  11. Control characteristics and heating performance analysis of automatic thermostatic valves for radiant slab heating system in residential apartments

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byung-Cheon [Department of Building Equipment System Engineering, Kyungwon University, Seongnam City (Korea); Song, Jae-Yeob [Graduate School, Building Equipment System Engineering, Kyungwon University, Seongnam City (Korea)

    2010-04-15

    Computer simulations and experiments are carried out to research the control characteristics and heating performances for a radiant slab heating system with automatic thermostatic valves in residential apartments. An electrical equivalent R-C circuit is applied to analyze the unsteady heat transfer in the house. In addition, the radiant heat transfer between slabs, ceilings and walls in the room is evaluated by enclosure analysis method. Results of heating performance and control characteristics were determined from control methods such as automatic thermostatic valves, room air temperature-sensing method, water-temperature-sensing method, proportional control method, and On-Off control method. (author)

  12. Residential home heating: The potential for air source heat pump technologies as an alternative to solid and liquid fuels

    International Nuclear Information System (INIS)

    Kelly, J. Andrew; Fu, Miao; Clinch, J. Peter

    2016-01-01

    International commitments on greenhouse gases, renewables and air quality warrant consideration of alternative residential heating technologies. The residential sector in Ireland accounts for approximately 25% of primary energy demand with roughly half of primary home heating fuelled by oil and 11% by solid fuels. Displacing oil and solid fuel usage with air source heat pump (ASHP) technology could offer household cost savings, reductions in emissions, and reduced health impacts. An economic analysis estimates that 60% of homes using oil, have the potential to deliver savings in the region of €600 per annum when considering both running and annualised capital costs. Scenario analysis estimates that a grant of €2400 could increase the potential market uptake of oil users by up to 17% points, whilst a higher oil price, similar to 2013, could further increase uptake from heating oil users by 24% points. Under a combined oil-price and grant scenario, CO_2 emissions reduce by over 4 million tonnes per annum and residential PM_2_._5 and NO_X emissions from oil and peat reduce close to zero. Corresponding health and environmental benefits are estimated in the region of €100m per annum. Sensitivity analyses are presented assessing the impact of alternate discount rates and technology performance. This research confirms the potential for ASHP technology and identifies and informs policy design considerations with regard to oil price trends, access to capital, targeting of grants, and addressing transactions costs. - Highlights: • Air Source Heat Pumps can offer substantial savings over oil fired central heating. • Significant residential air and climate emission reductions are possible. • Associated health and environmental benefits are estimated up to €100m per annum. • Results can inform policy interventions in the residential market to support change.

  13. CFD Modeling of Thermal Manikin Heat Loss in a Comfort Evaluation Benchmark Test

    DEFF Research Database (Denmark)

    Nilsson, Håkan O.; Brohus, Henrik; Nielsen, Peter V.

    2007-01-01

    for comfort evaluation. The main idea is to focus on people. It is the comfort requirements of occupants that decide what thermal climate that will prevail. It is therefore important to use comfort simulation methods that originate from people, not just temperatures on surfaces and air.......Computer simulated persons (CSPs) today are different in many ways, reflecting various software possibilities and limitations as well as different research interest. Unfortunately, too few of the theories behind thermal manikin simulations are available in the public domain. Many researchers...

  14. Numerical analysis of a magnetocaloric heat pump implementation into a residential building

    DEFF Research Database (Denmark)

    Johra, Hicham

    of the magneto-caloric heat pump in a single hydronic loop coupling directly the heat source and the heat sink without additional heat exchangers. Moreover, several parameters can be controlled in order to perform efficient part load power generation. The objective of this work is to understand how to integrate...... a magneto-caloric heat pump into a residential building and establish a control strategy for such device. A numerical model of a single family house with water based under-floor heating and horizontal ground source heat exchanger is created. It is used to demonstrate the feasibility and the advantages...... of the integrated magneto-caloric heat pump system is compared with conventional heat pumps one....

  15. Selected cost considerations for geothermal district heating in existing single-family residential areas

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin

    1996-06-01

    In the past, district heating (geothermal or conventionally fueled) has not been widely applied to the single-family residential sector. Low-heat load density is the commonly cited reason for this. Although it's true that load density in these areas is much lower than for downtown business districts, other frequently overlooked factors may compensate for load density. In particular, costs for distribution system installation can be substantially lower in some residential areas due to a variety of factors. This reduced development cost may partially compensate for the reduced revenue resulting from low-load density. This report examines cost associated with the overall design of the system (direct or indirect system design), distribution piping installation, and customer branch lines. It concludes with a comparison of the costs for system development and the revenue from an example residential area.

  16. Green hypocrisy? Environmental attitudes and residential space heating expenditure

    OpenAIRE

    Traynor, Laura; Lange, Ian A.; Moro, Mirko

    2012-01-01

    In the UK, the largest proportion of household energy use is for space heating. Popular media make claims of a green hypocrisy: groups which have the strongest attitude towards the environment have the highest emissions. This study examines whether environmental attitudes and behaviours are associated with space heating energy use using data from the British Household Panel Survey. Results find that environmentally friendly attitudes generally do not lead to lower heating expenditures though ...

  17. Residential building envelope heat gain and cooling energy requirements

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Tsang, C.L.; Li, Danny H.W.; Cheung, S.O.

    2005-01-01

    We present the energy use situation in Hong Kong from 1979 to 2001. The primary energy requirement (PER) nearly tripled during the 23-year period, rising from 195,405 TJ to 572,684 TJ. Most of the PER was used for electricity generation, and the electricity use in residential buildings rose from 7556 TJ (2099 GWh) to 32,799 TJ (9111 GWh), an increase of 334%. Air-conditioning accounted for about 40% of the total residential sector electricity consumption. A total of 144 buildings completed in the month of June during 1992-2001 were surveyed. Energy performance of the building envelopes was investigated in terms of the overall thermal transfer value (OTTV). To develop the appropriated parameters used in OTTV calculation, long-term measured weather data such as ambient temperature (1960-2001), horizontal global solar radiation (1992-2001) and global solar radiation on vertical surfaces (1996-2001) were examined. The OTTV found varied from 27 to 44 W/m 2 with a mean value of 37.7 W/m 2 . Building energy simulation technique using DOE-2.1E was employed to determine the cooling requirements and hence electricity use for building envelope designs with different OTTVs. It was found that cooling loads and electricity use could be expressed in terms of a simple two-parameter linear regression equation involving OTTV

  18. Green hypocrisy? Environmental attitudes and residential space heating expenditure

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, Laura; Lange, Ian; Moro, Mirko [Stirling Univ. (United Kingdom). Division of Economics

    2012-06-15

    In the UK, the largest proportion of household energy use is for space heating. Popular media make claims of a green hypocrisy: groups which have the strongest attitude towards the environment have the highest emissions. This study examines whether environmental attitudes and behaviours are associated with space heating energy use using data from the British Household Panel Survey. Results find that environmentally friendly attitudes generally do not lead to lower heating expenditures though environmentally friendly behaviours are associated with lower heating expenditure. Also, the effect of these attitudes and behaviours do not change as income increase.

  19. Post-evaluation of a ground source heat pump system for residential space heating in Shanghai China

    Science.gov (United States)

    Lei, Y.; Tan, H. W.; Wang, L. Z.

    2017-11-01

    Residents of Southern China are increasingly concerned about the space heating in winter. The chief aim of the present work is to find a cost-effective way for residential space heating in Shanghai, one of the biggest city in south China. Economic and energy efficiency of three residential space heating ways, including ground source heat pump (GSHP), air source heat pump (ASHP) and wall-hung gas boiler (WHGB), are assessed based on Long-term measured data. The results show that the heat consumption of the building is 120 kWh/m2/y during the heating season, and the seasonal energy efficiency ratio (SEER) of the GSHP, ASHP and WHGB systems are 3.27, 2.30, 0.88 respectively. Compared to ASHP and WHGB, energy savings of GSHP during the heating season are 6.2 kgce/(m2.y) and 2.2 kgce/(m2.y), and the payback period of GSHP are 13.3 and 7.6 years respectively. The sensitivity analysis of various factors that affect the payback period is carried out, and the results suggest that SEER is the most critical factor affecting the feasibility of ground source heat pump application, followed by building load factor and energy price factor. These findings of the research have led the author to the conclusion that ground source heat pump for residential space heating in Shanghai is a good alternative, which can achieve significant energy saving benefits, and a good system design and operation management are key factors that can shorten the payback period.

  20. TRANSIENT AND STEADY STATE STUDY OF PURE AND MIXED REFRIGERANTS IN A RESIDENTIAL HEAT PUMP

    Science.gov (United States)

    The report gives results of an experimental and theoretical investigation of the transient and steady state performance of a residential air-conditioning/heat pump (AC/HP) operating with different refrigerants. (NOTE: The project was motivated by environmental concerns related to...

  1. 76 FR 63211 - Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating...

    Science.gov (United States)

    2011-10-12

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EERE-2011-BT-TP-0042] RIN 1904-AC53 Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for...

  2. Role of fuel upgrading for industry and residential heating

    Energy Technology Data Exchange (ETDEWEB)

    Merriam, N.W. [Western Research Inst., Laramie, WY (United States); Gentile, R.H. [KFx Atlantic Partners, Arlington, VA (United States)

    1995-12-01

    The Koppleman Series C Process is presently being used in pilot plant tests with Wyoming coal to upgrade the Powder River Basin coal containing 30 wt% moisture and having a heating value of 8100 Btu/lb to a product containing less than 1 wt% moisture and having a heating value of 12,200 Btu/lb. This process is described.

  3. Determinants of residential space heating expenditures in Great Britain

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Helena [Department of Economics, University of Hamburg, Von Melle Park 5, 20146 Hamburg (Germany); Rehdanz, Katrin [Department of Economics, University of Kiel, Olshausenstrasse 40, 24118 Kiel (Germany)

    2010-09-15

    In Great Britain, several policy measures have been implemented in order to increase energy efficiency and reduce carbon emissions. In the domestic sector, this could, for example, be achieved by improving space heating efficiency and thus decreasing heating expenditure. However, in order to efficiently design and implement such policy measures, a better understanding of the determinants affecting heating expenditure is needed. In this paper we examine the following determinants: socio-economic factors, building characteristics, heating technologies and weather conditions. In contrast to most other studies we use panel data to investigate household demand for heating in Great Britain. Our data sample is the result of an annual set of interviews with more than 5000 households, starting in 1991 and ending in 2005. The sample represents a total of 64,000 observations over the fifteen-year period. Our aim is to derive price and income elasticities both for Britain as a whole and for different types of household. Our results suggest that differences exist between owner-occupied and renter households. These households react differently to changes in income and prices. Our results also imply that a number of socio-economic criteria have a significant influence on heating expenditure, independently of the fuel used for heating. Understanding the impacts of different factors on heating expenditure and impact differences between types of household is helpful in designing target-oriented policy measures. (author)

  4. Heating and cooling distribution in residential and non-residential premises; Distribution av kyla och vaerme i bostaeder och lokaler

    Energy Technology Data Exchange (ETDEWEB)

    Jardeby, Aasa; Soleimani-Mohseni, Mohsen; Axell, Monica

    2009-08-15

    The building sector accounts for approximately 40% of energy use in Europe, and about the same ratio applies to Sweden. Distribution systems for heating and cooling are an important part of the building's heating and cooling systems. The desired indoor climate can not be achieved without a properly sized distribution system. The aim of this report is to highlight the opportunities for energy efficiency with a properly designed distribution system by identifying and comparing different system solutions for the distribution of heating and cooling in residential and non-residential premises. The report presents which affect various factors have on the system as a whole, such as media selection, sizing of the piping system, heat transfer surface and regulation and control strategies. It also gives a picture of the possibilities and limitations of different needs and requirements of indoor environment (such as requirements for the thermal environment, air quality, noise, space, etc.). By having a systems perspective at the heating and/or cooling, energy efficiency is achieved. There are possibilities of big gains with a systems approach, since the choices made in designing a distribution system, affects many other parts of the system and there is a risk of poor optimization. A first step in reducing the energy use is to reduce the cooling and heating loads in the building. A heating and cooling systems should be designed properly so as not to consume excessive energy. There are other strategies to reduce energy consumption, e.g. by allowing more variations in temperature. However, it is important that it is not at the expense of the needs and requirements of the building. If the building has a cooling requirement that can be covered by the air flow required for ventilation it is recommended to provide under tempered air. In addition, the air can be cooled by free cooling from outside over large parts of the year. If the building has greater cooling requirements

  5. Residential gas-fired sorption heat pumps. Test and technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    2008-12-15

    Heat pumps may be the next step in gas-fired residential space heating. Together with solar energy it is an option to combine natural gas and renewable energy. Heat pumps for residential space heating are likely to be based on the absorption or adsorption process, i.e. sorption heat pumps. Manufacturers claim that the efficiency could reach 140-160%. The annual efficiency will be lower but it is clear that gas-fired heat pumps can involve an efficiency and technology step equal to the transition from non-condensing gas boilers with atmospheric burners to condensing boilers. This report contains a review of the current sorption gas-fired heat pumps for residential space heating and also the visible development trends. A prototype heat pump has been laboratory tested. Field test results from Germany and the Netherlands are also used for a technology evaluation. The tested heat pump unit combines a small heat pump and a supplementary condensing gas boiler. Field tests show an average annual efficiency of 120% for this prototype design. The manufacturer abandoned the tested design during the project period and the current development concentrates on a heat pump design only comprising the heat pump, although larger. The heat pump development at three manufacturers in Germany indicates a commercial stage around 2010-2011. A fairly high electricity consumption compared to traditional condensing boilers was observed in the tested heat pump. Based on current prices for natural gas and electricity the cost savings were estimated to 12% and 27% for heat pumps with 120% and 150% annual efficiency respectively. There is currently no widespread performance testing procedure useful for annual efficiency calculations of gas-fired heat pumps. The situation seems to be clearer for electric compression heat pumps regarding proposed testing and calculation procedures. A German environmental label exists and gasfired sorption heat pumps are also slightly treated in the Eco-design work

  6. Heat pumps: Residential and commercial applications. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    The bibliography contains citations concerning the design and development of heat pumps for use in residential houses, apartments, and commercial installations. Energy exchange systems examined include air-to-air, ground-coupled, air-to-water, and water-to-water types. The citations cover costs and reliability of the heat pump systems, and studies of operations in differing climates and seasons. (Contains a minimum of 70 citations and includes a subject term index and title list.)

  7. Heat pumps: Residential and commercial applications. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The bibliography contains citations concerning the design and development of heat pumps for use in residential houses, apartments, and commercial installations. Energy exchange systems examined include air-to-air, ground-coupled, air-to-water, and water-to-water types. The citations cover costs and reliability of the heat pump systems, and studies of operations in differing climates and seasons. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  8. Residential fuelwood assessment, state of Minnesota, 2007-2008 heating season

    Science.gov (United States)

    Mimi Barzen; Ronald Piva; Chun Yi Wy; Rich. Dahlman

    2009-01-01

    During the spring and summer of 2008, the cooperating partners conducted a survey to determine the volume of residential fuelwood burned during the 2007-2008 heating season. Similar surveys were conducted for the 1960, 1969-1970, 1979-1980, 1984-1985, 1988-1989, 1995-1996, and 2002-2003 heating seasons. These surveys are part of a long-term effort to monitor trends in...

  9. The development of a solar residential heating and cooling system

    Science.gov (United States)

    1975-01-01

    The MSFC solar heating and cooling facility was assembled to demonstrate the engineering feasibility of utilizing solar energy for heating and cooling buildings, to provide an engineering evaluation of the total system and the key subsystems, and to investigate areas of possible improvement in design and efficiency. The basic solar heating and cooling system utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating, and an absorption cycle air conditioner for space cooling. A complete description of all systems is given. Development activities for this test system included assembly, checkout, operation, modification, and data analysis, all of which are discussed. Selected data analyses for the first 15 weeks of testing are included, findings associated with energy storage and the energy storage system are outlined, and conclusions resulting from test findings are provided. An evaluation of the data for summer operation indicates that the current system is capable of supplying an average of 50 percent of the thermal energy required to drive the air conditioner. Preliminary evaluation of data collected for operation in the heating mode during the winter indicates that nearly 100 percent of the thermal energy required for heating can be supplied by the system.

  10. SOME FEATURES OF THE POWER SUPPLY OF RESIDENTIAL BUILDINGS DURING THE HEATING SEASON

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2017-01-01

    Full Text Available A large proportion of consumption of different types of energy by the residential sector, especially in the heating period, makes the energy efficiency of buildings without considering the loss of fuel with a significant reduction in hourly load on the generators, especially at night, already insufficient for real energy savings. Therefore in Belarus, in order to attract the consumer, electricity tariff for heating at night hours (from 11 p.m. to 6.00 a.m. is three times cheaper than at any other time. Significant increase of the electricity consumption of at night could be achieved by using heat accumulators for heating and hot water supply to the residential sector. Particularly effective are water accumulators of heat and accumulators of underfloor heating that enable to use a coolant with a temperature of 40 оC and to increase the useful supply of heat. The use of heat accumulators for daily heating, ventilation and hot water supply of buildings significantly reduces the cost of creating the infrastructure of the territory under construction by eliminating the necessity of running the distribution network of heat or gas supply. The use of the heat accumulators is necessary due to the increase of the time-weighted average outdoor temperature. The mentioned increase in the City of Minsk in the heating season is of about 0.1 °C per year in average, and as for the last 20 years, the increase has led to a reduction of the required heat load on the premises by about 10 %. Research and project work on choosing the most effective options for the arrangement and use the heat accumulators in buildings of the various functions ought to be fulfilled in order to make the application of heat accumulators successful. In this respect civil and power engineers as well as operators should work together so to determine the chronological, technical and economic conditions of charging and use of heat accumulators.

  11. Smart electric storage heating and potential for residential demand response

    OpenAIRE

    Darby, S

    2017-01-01

    Low-carbon transition plans for temperate and sub-polar regions typically involve some electrification of space heating. This poses challenges to electricity system operation and market design, as it increases overall demand and alters the temporal patterns of that demand. One response to the challenge is to ‘smarten’ electrical heating, enabling it to respond to network conditions by storing energy at times of plentiful supply, releasing it in response to customer demands and offering rapid-...

  12. Energy-efficient and cost-effective use of district heating bypass for improving the thermal comfort in bathrooms in low-energy buildings

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Brand, Marek; Svendsen, Svend

    2012-01-01

    , in the example considered 10-35% lower than in the traditional “intermittent bypass” case; secondly, it can be used to increase the thermal comfort outside the heating-season in bathrooms through floor heating, without causing overheating. It is important that the building design foresees the use of shading......, the utilization of the bypass in bathroom floor heating is a cost-effective solution, both for the DH utilities (reduced heat loss from the DH network and higher revenues), the end-users (improved thermal comfort) and the society (reduction of greenhouse gas emissions)....... floor heating to increase the users’ comfort; its techno-economic analysis, including the modelling of the in-house space heating system; the effect of the bypass to the DH network. Some conclusions were derived. First, the “continuous bypass” guarantees low heat losses in the service pipe...

  13. Reducing urban heat island effects to improve urban comfort and balance energy consumption in Bucharest (Romania)

    Science.gov (United States)

    Constantinescu, Dan; Ochinciuc, Cristina Victoria; Cheval, Sorin; Comşa, Ionuţ; Sîrodoev, Igor; Andone, Radu; Caracaş, Gabriela; Crăciun, Cerasella; Dumitrescu, Alexandru; Georgescu, Mihaela; Ianoş, Ioan; Merciu, Cristina; Moraru, Dan; Opriş, Ana; Paraschiv, Mirela; Raeţchi, Sonia; Saghin, Irina; Schvab, Andrei; Tătui-Văidianu, Nataşa

    2017-04-01

    In the recent decades, extreme temperature events and derived hazards are frequent and trigger noteworthy impacts in Romania, especially over the large urban areas. The cities produce significant disturbances of many elements of the regional climate, and generates adverse effects such as Urban Heat Islands (UHI). This presentation condenses the outputs of an ongoing research project (REDBHI) developed through (2013-2017) focused on developing a methodology for monitoring and forecasting indoor climate and energy challenges related to the intensity of UHI of Bucharest (Romania), based on relevant urban climate zones (UCZs). Multi-criteria correlations between the UHI and architectural, urban and landscape variables were determined, and the vulnerability of buildings expressed in the form of transfer function between indoor micro-climate and outdoor urban environment. The vulnerability of civil buildings was determined in relation with the potential for amplifying the thermal hazards intensity through the anthropogenic influence. The project REDBHI aims at developing innovative and original products, with direct applicability, which can be used in any urban settlement and have market potential with regards to energy design and consulting. The concrete innovative outcomes consist of a) localization of the Bucharest UCZs according to the UHI intensity, identifying reference buildings and sub-zones according to urban anthropic factors and landscape pattern; b) typology of representative buildings with regards to energy consumption and CO2 emitted as a result of building exploitation; c) 3D modelling of the reference buildings and of the thermal/energy reaction to severe climatic conditions d) empirical validation of the dynamic thermal/energy analysis; d) development of an pilot virtual studio capable to simulate climate alerts, analyse scenarios and suggest measures to mitigate the UHI effects, and disseminate the outcomes for educational purposes; e) compendium of

  14. Natural gas, the comfort stamina; Le gaz nerf du confort

    Energy Technology Data Exchange (ETDEWEB)

    Le Bail, L. [Gaz de France (GDF), 75 - Paris (France)

    1997-09-01

    According to consumers and thermal engineers opinion, natural gas is the most performing and the less expensive energy source for domestic uses. In this optimistic context, the customers expectations for more performing, economical and aesthetic appliances and systems is growing up. This paper gives a general overview of the recent improvements of natural gas heating systems and appliances: high efficiency heating plants, mural and airtight central heating plants, condensation heating plants, heaters, mono- or dual-pipe heating installations, heating floors etc.. All these products have a significant effect on the thermal comfort of residential buildings and on the reduction of energy costs. (J.S.)

  15. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  16. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  17. Parametric analysis of geothermal residential heating and cooling application

    Energy Technology Data Exchange (ETDEWEB)

    Sagia, Zoi N.; Stegou, Athina B.; Rakopoulos, Constantinos D. [National Technical University of Athens, School of Mechanical Engineering, Department of Thermal Engineering, Heroon Polytechniou 9, 15780, Zografou, Attiki (Greece)

    2012-07-01

    A study is carried out to evaluate the efficiency of a Ground Source Heat Pump (GSHP) system with vertical heat exchangers applied to a three-storey terraced building, with total heated area 271.56 m2, standing on Hellinikon, Athens. The estimation of building loads is made with TRNSYS 16.1 using climatic data calculated by Meteonorm 6.1. The GSHP system is modeled with two other packages GLD 2009 and GLHEPRO 4.0. A comparison of the mean fluid temperature (fluid temperature in the borehole calculated as the average of exiting and entering fluid temperature), computed by above software, shows how close the results are. In addition, a parametric analysis is done to examine the influence of undisturbed ground temperature, ground heat exchanger (GHE) length and borehole separation distance to system’s operational characteristics so as to cover building loads. Finally, a 2D transient simulation is performed by means of COMSOL Multiphysics 4.0a. The carrier fluid in the borehole is modeled as a solid with extremely high thermal conductivity, extracting from and injecting to the ground the hourly load profile calculated by TRNSYS. The mean fluid temperature and the borehole wall temperature are computed for an entire year and compared with the values calculated by GLD.

  18. HEAT LOSS FROM HOT WATER SUPPLY LINE IN A RESIDENTIAL BUILDING

    OpenAIRE

    近藤, 修平; 鉾井, 修一

    2011-01-01

    In order to the evaluate heat loss from hot water supply lines in a residential building, hot water demand in a house in Chiba prefecture was measured and analyzed. The following results were obtained. 1. The heat loss of the hot water supply line was about 132kJ for the shower and 110kJ for the bathtub in winter. Since the temperature difference between the inlet and outlet of the hot water supply line is small, the measured heat loss from the hot water supply line sometimes becomes negative...

  19. The performance of a residential heat pump operating with a nonazeotropic binary refrigerant mixture

    Science.gov (United States)

    Didion, D.; Mulroy, W.

    Results of laboratory measurement of the performance change of a substantially unmodified residential heat pump designed for 222 when charged with a non azeotropic, binary mixture of R1381 and R152a is presented. Results are presented for various sizes of fixed expansion devices. The effect of gliding temperature in the saturation zone was found to be small. The effect of compositions shift by flash distillation in the accumulator was found to measurably improve low temperature heating performance. It was further observed that some system modification (such as the addition of a receiver) could have further enhanced this low temperature heating performance improvement.

  20. Development of a coal fired pulse combustor for residential space heating. Phase I, Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-04-01

    This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

  1. An analysis of representative heating load lines for residential HSPF ratings

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-01

    This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirement (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28

  2. Thermodynamic analysis of vapor compression heat pump cycle for tap water heating and development of CO_2 heat pump water heater for residential use

    International Nuclear Information System (INIS)

    Saikawa, Michiyuki; Koyama, Shigeru

    2016-01-01

    Highlights: • The ideal vapor compression cycle for tap water heating and its COP were defined. • It was verified theoretically that CO_2 achieves the highest COP for tap water heating. • The prototype of CO_2 heat pump water heater for residential use was developed. • Further COP improvement of CO_2 heat pump water heater was estimated. - Abstract: The ideal vapor compression cycle for tap water heating and its coefficient of performance (COP) have been studied theoretically at first. The ideal cycle is defined as the cycle whose high temperature heat source varies temperature with constant specific heat and other processes are same as the reverse Carnot cycle. The COP upper limit of single stage compression heat pump cycle for tap water heating with various refrigerants such as fluorocarbons and natural refrigerants was calculated. The refrigerant which achieves the highest COP for supplying hot water is CO_2. Next, the prototype of CO_2 heat pump water heater for residential use has been developed. Its outline and experimental results are described. Finally its further possibility of COP improvement has been studied. The COP considered a limit from a technical point of view was estimated about 6.0 at the Japanese shoulder season (spring and autumn) test condition of heating water from 17 °C to 65 °C at 16 °C heat source air temperature (dry bulb)/12 °C (wet bulb).

  3. Possibility of heat recovery from gray water in residential building

    Directory of Open Access Journals (Sweden)

    Mazur Aleksandra

    2017-12-01

    Full Text Available Recovery of waste heat from gray water can be an interesting alternative to other energy saving systems in a building, including alternative energy sources. Mainly, due to a number of advantages including independence from weather conditions, small investment outlay, lack of user support, or a slight interference with the installation system. The purpose of this article is to present the financial effectiveness of installations which provide hot, usable water to a detached house, using a Drain Water Heat Recovery (DWHR system depending on the number of system users and the various combinations of bathing time in the shower, which has an influence on the daily warm water demand in each of the considered options. The economic analysis of the adopted installation variants is based on the Life Cycle Cost (LCC method, which is characterized by the fact that it also includes the operating costs in addition to the capital expenditure during the entire analysis period. For each case, the necessary devices were selected and the cost of their installation was estimated.

  4. Possibility of heat recovery from gray water in residential building

    Science.gov (United States)

    Mazur, Aleksandra; Słyś, Daniel

    2017-12-01

    Recovery of waste heat from gray water can be an interesting alternative to other energy saving systems in a building, including alternative energy sources. Mainly, due to a number of advantages including independence from weather conditions, small investment outlay, lack of user support, or a slight interference with the installation system. The purpose of this article is to present the financial effectiveness of installations which provide hot, usable water to a detached house, using a Drain Water Heat Recovery (DWHR) system depending on the number of system users and the various combinations of bathing time in the shower, which has an influence on the daily warm water demand in each of the considered options. The economic analysis of the adopted installation variants is based on the Life Cycle Cost (LCC) method, which is characterized by the fact that it also includes the operating costs in addition to the capital expenditure during the entire analysis period. For each case, the necessary devices were selected and the cost of their installation was estimated.

  5. Assessment of infiltration heat recovery and its impact on energy consumption for residential buildings

    International Nuclear Information System (INIS)

    Solupe, Mikel; Krarti, Moncef

    2014-01-01

    Highlights: • Five steady-state air infiltration heat recovery or IHR models are described and compared. • IHR models are incorporated within whole-building simulation analysis tool. • IHR can reduce the thermal loads of residential buildings by 5–30%. - Abstract: Infiltration is a major contributor to the energy consumption of buildings, particularly in homes where it accounts for one-third of the heating and cooling loads. Traditionally, infiltration is calculated independent of the building envelope performance, however, it has been established that a thermal coupling exists between the infiltration and conduction heat transfer of the building envelope. This effect is known as infiltration heat recovery (IHR). Experiments have shown that infiltration heat recovery can typically reduce the infiltration thermal load by 10–20%. Currently, whole-building energy simulation tools do not account for the effect of infiltration heat recovery on heating and cooling loads. In this paper, five steady-state IHR models are described to account for the thermal interaction between infiltration air and building envelope components. In particular, inter-model and experimental comparisons are carried out to assess the prediction accuracy of five IHR models. In addition, the results from a series of sensitivity analyses are presented, including an evaluation of the predictions for heating energy use associated with four audited homes obtained from whole-building energy simulation analysis with implemented infiltration heat recovery models. Experimental comparison of the IHR models reveal that the predictions from all the five models are consistent and are within 2% when 1-D flow and heat transfer conditions are considered. When implementing IHR models to a whole-building simulation environment, a reduction of 5–30% in heating consumption is found for four audited residential homes

  6. Human Thermal Comfort and Heat Removal Efficiency for Ventilation Variants in Passenger Cars

    Directory of Open Access Journals (Sweden)

    Saboora Khatoon

    2017-10-01

    Full Text Available The realization of a comfortable thermal environment with low energy consumption and improved ventilation in a car has become the aim of manufacturers in recent decades. Novel ventilation concepts with more flexible cabin usage and layouts are appealing owing to their potential for improving passenger comfort and driving power. In this study, three variant ventilation concepts are investigated and their performance is compared with respect to energy efficiency and human comfort of the driver and passenger in front and a child in the rear compartment. FLUENT 16.0, a commercial three-dimensional (3D software, are used for the simulation. A surface-to-surface radiation model is applied under transient conditions for a car parked in summer conditions with its engine in the running condition. The results for the standard Fanger’s model and modified Fanger’s model are analyzed, discussed, and compared for the driver, passenger, and child. The modified Fanger’s model determines the thermal sensation on the basis of mean arterial pressure.

  7. Analysis of heat source selection for residential buildings in rural areas

    OpenAIRE

    Szul Tomasz

    2018-01-01

    The research aiming to check whether the output of currently installed boilers matches the use requirements together with estimation of their energy efficiency was carried out on a group of 84 single-family residential buildings located in rural areas. Heating and hot water energy needs were calculated for each building in order to determine the use requirements. This enabled verification whether the currently installed boilers match the actual use requirements in the buildings. Based on the ...

  8. Estimation of Residential Heat Pump Consumption for Flexibility Market Applications

    DEFF Research Database (Denmark)

    Kouzelis, Konstantinos; Tan, Zheng-Hua; Bak-Jensen, Birgitte

    2015-01-01

    load of a flexible device, namely a Heat Pump (HP), out of the aggregated energy consumption of a house. The main idea for accomplishing this, is a comparison of the flexible consumer with electrically similar non-flexible consumers. The methodology is based on machine learning techniques, probability...... theory and statistics. After presenting this methodology, the general trend of the HP consumption is estimated and an hour-ahead forecast is conducted by employing Seasonal Autoregressive Integrated Moving Average modeling. In this manner, the flexible consumption is predicted, establishing the basis......Recent technological advancements have facilitated the evolution of traditional distribution grids to smart grids. In a smart grid scenario, flexible devices are expected to aid the system in balancing the electric power in a technically and economically efficient way. To achieve this, the flexible...

  9. Residential bioenergy heating: A study of consumer perceptions of improved woodstoves

    International Nuclear Information System (INIS)

    Nyrud, Anders Q.; Roos, Anders; Sande, Jon Bingen

    2008-01-01

    Consumers' choices play a key role for the development of biomass heating in the residential sector. The city of Oslo has granted subsidies to households who change to new, improved low-emission woodstoves. The purpose of this study is to expand the knowledge about users' experiences and attitudes to residential biomass heating. An adapted model of the Theory of Planned Behavior was used to model households' inclination to continue using their woodstoves for heating. More than 800 questionnaires were collected from households that recently had invested in an improved woodstove. The respondents were satisfied with the new woodstoves. The respondents also considered themselves competent to use and maintain the stove and few had problems acquiring fuelwood. Further analyses showed that the intention to continue to use the new woodstove depends on economic benefits, heating performance, perceived time and effort to operate the stove, environmental effects of heating as well as perceived subjective norm. The results imply that when marketing a modern technology for bioenergy heating, both public authorities and producers should consider issues related to the users' perception of subjective norm, such as perceived status of using bioenergy or environmental concerns, when designing campaigns to promote the use of woodstoves

  10. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  11. Environmental and energy efficiency evaluation of residential gas and heat pump heating

    International Nuclear Information System (INIS)

    Ganji, A.R.

    1993-01-01

    Energy efficiency and source air pollutant emission factors of gas heaters, gas engine heat pumps, and electric heat pumps for domestic heating have been evaluated and compared. The analysis shows that with the present state of technology, gas engine heat pumps have the highest energy efficiency followed by electric heat pumps and then gas heaters. Electric heat pumps produce more than twice as much NO x , and comparable CO 2 and CO per unit of useful heating energy compared to natural gas heaters. CO production per unit of useful heating energy from gas engine heat pumps without any emission control is substantially higher than electric heat pumps and natural gas heaters. NO x production per unit of useful heating energy from natural gas engine heat pumps (using lean burn technology) without any emission control is about the same as effective NO x production from electric heat pumps. Gas engine heat pumps produce about one-half CO 2 compared to electric heat pumps

  12. Users of electric heating rewarded

    Energy Technology Data Exchange (ETDEWEB)

    Haapakoski, M. [ed.

    1998-07-01

    When the building industry plunged into the deep recession of the early 1990s this did not paralyse research and development work on electric heating. In fact, IVO and power companies launched the `Electrically Heated Homes in the New Millennium` project in 1992. Its purpose was to verify the efficiency, energy economy and residential comfort of model systems using state-of-the-art electric heating technology. The research project launched six years ago is now nearing completion. Its findings indicate that electricity brings ever more unparalleled benefits when it is used for heating. These benefits involve residential comfort, ease of use and economy

  13. Numerical analysis of air flow, heat transfer, moisture transport and thermal comfort in a room heated by two-panel radiators

    Energy Technology Data Exchange (ETDEWEB)

    Sevilgen, Goekhan; Kilic, Muhsin [Uludag University, Faculty of Engineering and Architecture, Department of Mechanical Engineering, TR-16059 Bursa (Turkey)

    2011-01-15

    A three-dimensional steady-state numerical analysis was performed in a room heated by two-panel radiators. A virtual sitting manikin with real dimensions and physiological shape was added to the model of the room, and it was assumed that the manikin surfaces were subjected to constant temperature. Two different heat transfer coefficients for the outer wall and for the window were considered. Heat interactions between the human body surfaces and the room environment, the air flow, the temperature, the humidity, and the local heat transfer characteristics of the manikin and the room surfaces were computed numerically under different environmental conditions. Comparisons of the results are presented and discussed. The results show that energy consumption can be significantly reduced while increasing the thermal comfort by using better-insulated outer wall materials and windows. (author)

  14. Economics of residential solar hot water heating systems in Malaysia

    International Nuclear Information System (INIS)

    Abdulmula, Ahmed Mohamed Omer; Sopian, Kamaruzzaman; Haj Othman, Mohd Yosof

    2006-01-01

    Malaysia has favorable climatic conditions for the development of solar energy due to the abundant sunshine and is considered good for harnessing energy from the sun. This is because solar hot water can represent the large energy consumer in Malaysian households but, because of the high initial cost of Solar Water Heating Systems (SWHSs) and easily to install and relatively inexpensive to purchase electric water heaters, many Malyaysian families are still using Electric Water Heaters to hot their water needs. This paper is presented the comparing of techno-economic feasibility of some models of SWHS from Malaysian's market with the Electric Water Heaters )EWH) by study the annual cost of operation for both systems. The result shows that the annual cost of the electrical water heater becomes greater than than the annual cost of the SWHS for all models in long-team run so it is advantageous for the family to use the solar water heater, at least after 4 years. In addition with installation SWHS the families can get long-term economical benefits, environment friendly and also can doing its part to reduce this country's dependence on foreign oil that is price increase day after day.(Author)

  15. Configuring a fuel cell based residential combined heat and power system

    Science.gov (United States)

    Ahmed, Shabbir; Papadias, Dionissios D.; Ahluwalia, Rajesh K.

    2013-11-01

    The design and performance of a fuel cell based residential combined heat and power (CHP) system operating on natural gas has been analyzed. The natural gas is first converted to a hydrogen-rich reformate in a steam reformer based fuel processor, and the hydrogen is then electrochemically oxidized in a low temperature polymer electrolyte fuel cell to generate electric power. The heat generated in the fuel cell and the available heat in the exhaust gas is recovered to meet residential needs for hot water and space heating. Two fuel processor configurations have been studied. One of the configurations was explored to quantify the effects of design and operating parameters, which include pressure, temperature, and steam-to-carbon ratio in the fuel processor, and fuel utilization in the fuel cell. The second configuration applied the lessons from the study of the first configuration to increase the CHP efficiency. Results from the two configurations allow a quantitative comparison of the design alternatives. The analyses showed that these systems can operate at electrical efficiencies of ∼46% and combined heat and power efficiencies of ∼90%.

  16. Reducing Urban Heat Island Effect with Thermal Comfort Housing and Honeycomb Townships

    DEFF Research Database (Denmark)

    Davis, Mohd. Peter; Reimann, Gregers Peter; Ghazali, Mazlin

    2005-01-01

    Putra Malaysia can achieve almost passive thermal comfort without air-conditioning, even on the hottest days of the year. ‘Honeycomb townships’, a recent architectural invention by one of the authors, is a new method of subdividing land which saves greatly on roads, thereby permitting larger gardens...... consequences of urbanisation and can be corrected in Malaysia and avoided by other developing countries with a sensible application of the technologies outlined in this paper which prevent the thermal mass of houses and roads from absorbing solar radiation. ‘Cool House’ technology, developed at Universiti...

  17. Efficiency Analysis of Independent and Centralized Heating Systems for Residential Buildings in Northern Italy

    Directory of Open Access Journals (Sweden)

    Fabio Rinaldi

    2011-11-01

    Full Text Available The primary energy consumption in residential buildings is determined by the envelope thermal characteristics, air change, outside climatic data, users’ behaviour and the adopted heating system and its control. The new Italian regulations strongly suggest the installation of centralized boilers in renovated buildings with more than four apartments. This work aims to investigate the differences in primary energy consumption and efficiency among several independent and centralized heating systems installed in Northern Italy. The analysis is carried out through the following approach: firstly building heating loads are evaluated using the software TRNSYS® and, then, heating system performances are estimated through a simplified model based on the European Standard EN 15316. Several heating systems have been analyzed, evaluating: independent and centralized configurations, condensing and traditional boilers, radiator and radiant floor emitters and solar plant integration. The heating systems are applied to four buildings dating back to 2010, 2006, 1960s and 1930s. All the combinations of heating systems and buildings are analyzed in detail, evaluating efficiency and primary energy consumption. In most of the cases the choice between centralized and independent heating systems has minor effects on primary energy consumption, less than 3%: the introduction of condensing technology and the integration with solar heating plant can reduce energy consumption by 11% and 29%, respectively.

  18. Regional analysis of residential water heating options: energy use and economics

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, D.; Carney, J.; Hirst, E.

    1978-10-01

    This report evaluates the energy and direct economic effects of introducing improved electric-water-heating systems to the residential market. These systems are: electric heat pumps offered in 1981, solar systems offered in 1977, and solar systems offered in 1977 with a Federal tax credit in effect from 1977 through 1984. The ORNL residential energy model is used to calculate energy savings by type of fuel for each system in each of the ten Federal regions and for the nation as a whole for each year between 1977 and 2000. Changes in annual fuel bills and capital costs for water heaters are also computed at the same level of detail. Model results suggest that heat-pump water heaters are likely to offer much larger energy and economic benefits than will solar systems, even with tax credits. This is because heat pumps provide about the same savings in electricity for water heating (about half) at a much lower capital cost ($700 to $2000) than do solar systems. However, these results are based on highly uncertain estimates of future performance and cost characteristics for both heat pump and solar systems. The cumulative national energy saving by the year 2000 due to commercialization of heat-pump water heaters in 1981 is estimated to be 1.5 QBtu. Solar-energy benefits are about half this much without tax credits and two-thirds as much with tax credits. The net economic benefit to households of heat-pump water heaters (present worth of fuel bill reductions less the present worth of extra costs for more-efficient systems) is estimated to be $640 million. Again, the solar benefits are much less.

  19. Market Assessment for Residential Refrigerator-Freezer with Novel Rotating Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen [CSRA International, Inc., Fairfax, VA (United States); Blackburn, Julia [CSRA International, Inc., Fairfax, VA (United States); Grubbs, Tyler [CSRA International, Inc., Fairfax, VA (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Momen, Ayyoub [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-01

    Despite a steady record of energy efficiency improvements in residential refrigerators and freezers over recent decades, these products still account for 4% of the site energy consumption for the average U.S. household. The Oak Ridge National Laboratory (ORNL) – along with partners Sandia National Laboratories (SNL) and the University of Maryland – are pursuing further efficiency improvements in this market sector by using a novel/prototype rotating heat exchanger (RHX) based on a Sandia Cooler technology as an evaporator in a residential refrigerator-freezer. The purpose of this study is to investigate the market potential of refrigerator-freezer products equipped with RHX evaporators in the United States, including projections of maximum annual market share and unit shipments and maximum direct and indirect job creation.

  20. Modernizing residential heating in Russia: End-use practices, legal developments, and future prospects

    International Nuclear Information System (INIS)

    Korppoo, Anna; Korobova, Nina

    2012-01-01

    This article explores the significance of modernization policies concerning Russia’s technically obsolete but socially important residential heating sector, focusing on the 2009 energy efficiency framework law and its prospects for implementation. Ownership and control structures are in flux throughout the heating sector chain. Inefficiencies, causing low service quality and rising prices, have already started eroding the market share of district heating, despite its potential benefits. End-use management practices – such as lack of metering, communal billing, and low prices that do not cover production costs – reduce consumer incentives to cut consumption. The diversity of end-users adds to the complexity of focused measures like energy-saving contracts. However, end-use sector reforms such as mandatory meter installation and increasing prices – even if socially acceptable and fully implemented – cannot alone provide the massive investments required. More appropriate is sector-wide reform with the government’s financial participation – especially if consumer efforts can yield better service quality. - Highlights: ► We analyze Russia’s energy efficiency policy on residential heating sector. ► Institutional structures and practices reduce incentives to cut consumption. ► Meter installation and increasing prices cannot deliver investments required. ► Government led sector-wide reform is required, linked to better service quality.

  1. Visitors' perception of thermal comfort during extreme heat events at the Royal Botanic Garden Melbourne

    Science.gov (United States)

    Lam, Cho Kwong Charlie; Loughnan, Margaret; Tapper, Nigel

    2018-01-01

    Outdoor thermal comfort studies have mainly examined the perception of local residents, and there has been little work on how those conditions are perceived differently by tourists, especially tourists of diverse origins. This issue is important because it will improve the application of thermal indices in predicting the thermal perception of tourists. This study aims to compare the differences in thermal perception and preferences between local and overseas visitors to the Royal Botanic Garden (RBG) in Melbourne during summer. An 8-day survey was conducted in February 2014 at four sites in the garden ( n = 2198), including 2 days with maximum temperature exceeding 40 °C. The survey results were compared with data from four weather stations adjacent to the survey locations. One survey location, `Fern Gully', has a misting system and visitors perceived the Fern Gully to be cooler than other survey locations. As the apparent temperature exceeded 32.4 °C, visitors perceived the environment as being `warm' or `hot'. At `hot' conditions, 36.8 % of European visitors voted for no change to the thermal conditions, which is considerably higher than the response from Australian visitors (12.2 %) and Chinese visitors (7.5 %). Study results suggest that overseas tourists have different comfort perception and preferences compared to local Australians in hot weather based at least in part on expectations. Understanding the differences in visitors' thermal perception is important to improve the garden design. It can also lead to better tour planning and marketing to potential visitors from different countries.

  2. Modeling hourly consumption of electricity and district heat in non-residential buildings

    International Nuclear Information System (INIS)

    Kipping, A.; Trømborg, E.

    2017-01-01

    Models for hourly consumption of heat and electricity in different consumer groups on a regional level can yield important data for energy system planning and management. In this study hourly meter data, combined with cross-sectional data derived from the Norwegian energy label database, is used to model hourly consumption of both district heat and electrical energy in office buildings and schools which either use direct electric heating (DEH) or non-electric hydronic heating (OHH). The results of the study show that modeled hourly total energy consumption in buildings with DEH and in buildings with OHH (supplied by district heat) exhibits differences, e.g. due to differences in heat distribution and control systems. In a normal year, in office buildings with OHH the main part of total modeled energy consumption is used for electric appliances, while in schools with OHH the main part is used for heating. In buildings with OHH the share of modeled annual heating energy is higher than in buildings with DEH. Although based on small samples our regression results indicate that the presented method can be used for modeling hourly energy consumption in non-residential buildings, but also that larger samples and additional cross-sectional information could yield improved models and more reliable results. - Highlights: • Schools with district heating (DH) tend to use less night-setback. • DH in office buildings tends to start earlier than direct electric heating (DEH). • In schools with DH the main part of annual energy consumption is used for heating. • In office buildings with DH the main part is used for electric appliances. • Buildings with DH use a larger share of energy for heating than buildings with DEH.

  3. Effect evaluation of a heated ambulance mattress-prototype on thermal comfort and patients' temperatures in prehospital emergency care - an intervention study.

    Science.gov (United States)

    Aléx, Jonas; Karlsson, Stig; Björnstig, Ulf; Saveman, Britt-Inger

    2015-01-01

    Background The ambulance milieu does not offer good thermal comfort to patients during the cold Swedish winters. Patients' exposure to cold temperatures combined with a cold ambulance mattress seems to be the major factor leading to an overall sensation of discomfort. There is little research on the effect of active heat delivered from underneath in ambulance care. Therefore, the aim of this study was to evaluate the effect of an electrically heated ambulance mattress-prototype on thermal comfort and patients' temperatures in the prehospital emergency care. Methods A quantitative intervention study on ambulance care was conducted in the north of Sweden. The ambulance used for the intervention group (n=30) was equipped with an electrically heated mattress on the regular ambulance stretcher whereas for the control group (n=30) no active heat was provided on the stretcher. Outcome variables were measured as thermal comfort on the Cold Discomfort Scale (CDS), subjective comments on cold experiences, and finger, ear and air temperatures. Results Thermal comfort, measured by CDS, improved during the ambulance transport to the emergency department in the intervention group (p=0.001) but decreased in the control group (p=0.014). A significant higher proportion (57%) of the control group rated the stretcher as cold to lie down compared to the intervention group (3%, pthermal comfort and may prevent the negative consequences of cold stress.

  4. Effect evaluation of a heated ambulance mattress-prototype on thermal comfort and patients' temperatures in prehospital emergency care--an intervention study.

    Science.gov (United States)

    Aléx, Jonas; Karlsson, Stig; Björnstig, Ulf; Saveman, Britt-Inger

    2015-01-01

    The ambulance milieu does not offer good thermal comfort to patients during the cold Swedish winters. Patients' exposure to cold temperatures combined with a cold ambulance mattress seems to be the major factor leading to an overall sensation of discomfort. There is little research on the effect of active heat delivered from underneath in ambulance care. Therefore, the aim of this study was to evaluate the effect of an electrically heated ambulance mattress-prototype on thermal comfort and patients' temperatures in the prehospital emergency care. A quantitative intervention study on ambulance care was conducted in the north of Sweden. The ambulance used for the intervention group (n=30) was equipped with an electrically heated mattress on the regular ambulance stretcher whereas for the control group (n=30) no active heat was provided on the stretcher. Outcome variables were measured as thermal comfort on the Cold Discomfort Scale (CDS), subjective comments on cold experiences, and finger, ear and air temperatures. Thermal comfort, measured by CDS, improved during the ambulance transport to the emergency department in the intervention group (p=0.001) but decreased in the control group (p=0.014). A significant higher proportion (57%) of the control group rated the stretcher as cold to lie down compared to the intervention group (3%, pthermal comfort and may prevent the negative consequences of cold stress.

  5. Greenhouse gas abatement cost curves of the residential heating market. A microeconomic approach

    International Nuclear Information System (INIS)

    Dieckhoener, Caroline; Hecking, Harald

    2012-01-01

    In this paper, we develop a microeconomic approach to deduce greenhouse gas abatement cost curves of the residential heating sector. By accounting for household behavior, we find that welfare-based abatement costs are generally higher than pure technical equipment costs. Our results are based on a microsimulation of private households' investment decision for heating systems until 2030. The households' investment behavior in the simulation is derived from a discrete choice estimation which allows investigating the welfare costs of different abatement policies in terms of the compensating variation and the excess burden. We simulate greenhouse gas abatements and welfare costs of carbon taxes and subsidies on heating system investments until 2030 to deduce abatement curves. Given utility maximizing households, our results suggest a carbon tax to be the welfare efficient policy. Assuming behavioral misperceptions instead, a subsidy on investments might have lower marginal greenhouse gas abatement costs than a carbon tax.

  6. An optimisation framework for thermal energy storage integration in a residential heat pump heating system

    International Nuclear Information System (INIS)

    Renaldi, R.; Kiprakis, A.; Friedrich, D.

    2017-01-01

    Highlights: • An integrated framework for the optimal design of low carbon heating systems. • Development of a synthetic heat demand model with occupancy profiles. • Linear model of a heat pump with thermal energy storage heating system. • Evaluation of domestic heating system from generally available input parameters. • The lower carbon heating system can be cost competitive with conventional systems. - Abstract: Domestic heating has a large share in the UK total energy consumption and significant contribution to the greenhouse gas emissions since it is mainly fulfilled by fossil fuels. Therefore, decarbonising the heating system is essential and an option to achieve this is by heating system electrification through heat pumps (HP) installation in combination with renewable power generation. A potential increase in performance and flexibility can be achieved by pairing HP with thermal energy storage (TES), which allows the shifting of heat demand to off peak periods or periods with surplus renewable electricity. We present a design and operational optimisation model which is able to assess the performance of HP–TES relative to conventional heating systems. The optimisation is performed on a synthetic heat demand model which requires only the annual heat demand, temperature and occupancy profiles. The results show that the equipment and operational cost of a HP system without TES are significantly higher than for a conventional system. However, the integration of TES and time-of-use tariffs reduce the operational cost of the HP systems and in combination with the Renewable Heating Incentive make the HP systems cost competitive with conventional systems. The presented demand model and optimisation procedure will enable the design of low carbon district heating systems which integrate the heating system with the variable renewable electricity supply.

  7. Energy in the residential building. Electricity, heat, e-mobility. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Schwarzburger, Heiko

    2017-01-01

    Photovoltaics, heat pumps and fuel cells offer enormous potential for sustainable energy supply in residential buildings. Solar thermal energy and wood-fired boilers also play an important role in refurbishment. Due to the wide range of possible combinations, the wishes of building owners and homeowners for an ecologically and economically individually adapted energy concept can be fulfilled accurately. This book provides you with a holistic approach to the residential building and its supply of electricity, heat and water. All processes that play a role in the house's energy consumption are examined in their entirety for their potentials and potential savings. The author analyses and describes in detail the resources of buildings and their surroundings - and how they can be used for a truly independent supply. The focus is on reducing energy consumption and costs, the generation and supply of energy from renewable sources and energy storage - considered in new construction and modernisation. The supply of water is also dealt with if it touches on energy issues. The author draws attention to standards and regulations and gives practical advice for planning and installation. The focus is on the so-called sector coupling: electricity from the sun, wind and hydrogen is used to supply electrical consumers in the home, charging technology for electric vehicles, hot water and heating. The time of the boilers and combustion engines has elapsed. Clean electricity and digital controls - power and intelligence - determine the regenerative building technology. [de

  8. Energy and exergy performance of residential heating systems with separate mechanical ventilation

    International Nuclear Information System (INIS)

    Zmeureanu, Radu; Yu Wu, Xin

    2007-01-01

    The paper brings new evidence on the impact of separate mechanical ventilation system on the annual energy and exergy performance of several design alternatives of residential heating systems, when they are designed for a house in Montreal. Mathematical models of residential heating, ventilation and domestic hot water (HVAC-DHW) systems, which are needed for this purpose, are developed and furthermore implemented in the Engineering Equation Solver (EES) environment. The Coefficient of Performance and the exergy efficiency are estimated as well as the entropy generation and exergy destruction of the overall system. The equivalent greenhouse gas emissions due to the on-site and off-site use of primary energy sources are also estimated. The addition of a mechanical ventilation system with heat recovery to any HVAC-DHW system discussed in the paper increases the energy efficiency; however, it decreases the exergy efficiency, which indicates a potential long-term damaging impact on the natural environment. Therefore, the use of a separate mechanical ventilation system in a house should be considered with caution, and recommended only when other means for controlling the indoor air quality cannot be applied

  9. Residential heating costs: A comparison of geothermal solar and conventional resources

    Science.gov (United States)

    Bloomster, C. H.; Garrett-Price, B. A.; Fassbender, L. L.

    1980-08-01

    The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location, being dependent on the local prices of conventional energy supplies, local solar insolation, climate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.

  10. Room air conditioner load control under summer comfort constraint

    OpenAIRE

    Da Silva , David; Brancaccio , M; Duplessis , Bruno; Adnot , J

    2010-01-01

    International audience; Load control options interest is growing because it can represent a response to future network investments and to congestion problems. In this frame, the present paper gives a methodology to quantify the value of load control for heat pumps (room air conditioners), in small tertiary and residential buildings, considering the occupant's comfort and the electrical grid needs for load shift. This methodology was applied to a small office building where simulations were ma...

  11. The trigger matters: The decision-making process for heating systems in the residential building sector

    International Nuclear Information System (INIS)

    Hecher, Maria; Hatzl, Stefanie; Knoeri, Christof; Posch, Alfred

    2017-01-01

    As heat demand of buildings accounts for a significant amount of final energy use and related carbon emissions, it’s important to gain insights into the homeowners’ decision-making processes and to identify factors determining the choice of heating systems. In this study, data was collected in an online survey carried out in 2015, from private homeowners of existing and newly built single and double-family houses in Austria who had invested in a new heating system within the last ten years (N=484). In contrast to previous studies, this study specifically investigates the triggers behind homeowner decisions to invest in a new heating system (e.g. problem, opportunity, or new building situation). Results of binary logistic regression analysis show that subsidies for heating system tabinvestments and infrastructural adjustments reveal to be most effective for homeowners in problem situations to foster alternative heating systems. For homeowners in opportunity situations (e.g. building refurbishment), in addition operational convenience appears to be important. For new buildings, the main barriers for alternative heating system adoption were found in the positive perception of fuel supply security and feasibility of fossil systems. Thus, the use of trigger-specific policy measures is proposed to foster alternative heating systems in the residential building sector. - Highlights: • Homeowners’ triggers determine heating system adoption decisions. • It is crucial to reach homeowners early enough to avoid problem situations. • For problem-triggered homeowners, subsidies are most effective. • Opportunity-triggered homeowners prefer alternative heating systems. • Opportunity-triggered homeowners need solid decision basis for technology comparison.

  12. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  13. Development of a gas fired Vuilleumier heat pump for residential heating

    DEFF Research Database (Denmark)

    Carlsen, Henrik

    1989-01-01

    A natural gas-driven heat pump based on the Vuilleumier principle has been developed for use in single-family houses. The pump has a heat output of 7.5 kW at a coefficient of performance of 1.62 based on the lower heat content of the gas fuel. The heat pump uses helium as working fluid at 20 MPa...... mean pressure, and it is designed as a semihermetic unit. A crank mechanism distinguished by very small loads on the piston rings was developed. The advantages and disadvantages of the Vuilleumier principle for heat-driven heat pumps are discussed. Results of the extensive experimental work...... are presented. A new 20 kW Vuilleumier heat pump is briefly described...

  14. Residential wood heating: The forest, the atmosphere and the public consciousness

    International Nuclear Information System (INIS)

    Gulland, J.F.; Hendrickson, O.Q.

    1993-01-01

    It is generally agreed by both energy and forestry scientists that, provided harvesting is conducted in a sustainable manner, the combustion of wood for energy production is essentially carbon dioxide neutral when the normal forest regeneration period is considered. When wood combustion replaces the consumption of fossil fuels, however, the net reduction in carbon dioxide release is almost immediate. In addition to the requirement of sustainable forestry practices, the maintenance of site biodiversity must also be considered. A preliminary review of the literature reveals that periodic selective harvesting can actually have a positive impact on the biodiversity of the forest. Despite the fact that the harvesting, processing and transportation of wood fuel invariably consumes fossil fuels, it has been shown in case studies that the energy return on investment can easily exceed a ratio of 25:1. Approximately 20 percent of the single family dwellings in Canada are heated to some extent with wood and the potential exists for an increasing contribution of wood fuel to residential energy requirements. However, there is evidence of confusion among the public regarding the environmental impact of woodburning, particularly as it relates to CO 2 emissions and carbon storage in forests. The confusion could impede the increased use of wood for residential heating because it calls into question the appropriateness of using wood for energy purposes. The forms of residential wood energy use that have evolved in rural North America provide important but neglected models of sustainable development. This could serve as the central theme of public information program to clarify the role of wood energy in the reduction of greenhouse gas emissions

  15. ComfortPower. Design, construction and evaluation of a combined fuel-cell and heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik (Catator AB, Lund (Sweden))

    2010-12-15

    Catator AB has constructed, commissioned and evaluated a combined fuel-cell and heat-pump system (ComfortPower). The basic idea behind the project was to demonstrate the possibility to achieve ultrahigh thermal efficiencies when combining fuel-cell technologies and heat pumps. Moreover, the system should provide a great flexibility with respect to the fuel mix and should in addition to heat provide surplus electricity and cooling. The system was built on a HT-PEM platform (high temperature polymer electrolyte fuel cell from Serenergy a/s), which was operated by Catators proprietary Optiformer technology. The power generator was combined with a heat pump module (F1145-5, 230 V), supplied by Nibe. The system was packaged into a cabinet (1.65 x 0.6 x 0.6 m) comprising the power module, the heat pump, all necessary balance-of-plant components and the control system. The power output from the fuel-cell system was around 1.35 kW, which enabled operation of the heat pump compressor. By utilizing surplus heat energy from the fuel cell it was possible to achieve a favourable operation point in the heat pump system, resulting in a high overall COP (coefficient of performance). The heat output from the system was as high as 10 kW whereas 6 kW cooling could be provided. The thermal efficiencies measured in experiments were normally around 200%, calculated on the lower heating value of the fuel. A number of fuels have been investigated in the fuel cell system, including both gaseous (natural gas/LPG) and liquid fuels (alcohols and kerosene). Indeed, the system has a wide fuel flexibility, which opens up for a variety of applications in campus villages and buildings. This study has demonstrated the possibility to reduce the carbon dioxide footprint by a factor of 2 over conventional boilers in heating applications. In addition the unit can be operated on a variety of fuels and can produce cooling and electricity in addition to heat. A fully working system has been designed

  16. Material Research on Salt Hydrates for Seasonal Heat Storage Application in a Residential Environment

    Energy Technology Data Exchange (ETDEWEB)

    Ferchaud, C.J.; Zondag, H.A.; De Boer, R. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-09-15

    Water vapor sorption in salt hydrates is a promising method to realize seasonal solar heat storage in the residential sector. Several materials already showed promising performance for this application. However, the stability of these materials needs to be improved for long-term (30 year) application in seasonal solar heat storages. The purpose of this article is to identify the influence of the material properties of the salt hydrates on the performance and the reaction kinetics of the sorption process. The experimental investigation presented in this article shows that the two salt hydrates Li2SO4.H2O and CuSO4.5H2O can store and release heat under the operating conditions of a seasonal solar heat storage in a fully reversible way. However, these two materials show differences in terms of energy density and reaction kinetics. Li2SO4.H2O can release heat with an energy density of around 0.80 GJ/m{sup 3} within 4 hours of rehydration at 25C, while CuSO4.5H2O needs around 130 hours at the same temperature to be fully rehydrated and reaches an energy density of 1.85 GJ/m{sup 3}. Since the two salts are dehydrated and hydrated under the same conditions, this difference in behavior is directly related to the intrinsic properties of the materials.

  17. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  18. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  19. Effects of heat and electricity saving measures in district-heated multistory residential buildings

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Dodoo, Ambrose; Gustavsson, Leif

    2014-01-01

    Highlights: • We analyzed the potential for energy savings in district heated buildings. • Measures that reduce more peak load production give higher primary energy savings. • Efficient appliances increase heat demand but give net primary energy savings. • Efficient appliances give the largest net primary energy savings. - Abstract: The effects of heat and electricity saving measures in district-heated buildings can be complex because these depend not only on how energy is used on the demand side but also on how energy is provided from the supply side. In this study, we analyze the effects of heat and electricity saving measures in multistory concrete-framed and wood-framed versions of an existing district-heated building and examine the impacts of the reduced energy demand on different district heat (DH) production configurations. The energy saving measures considered are for domestic hot water reduction, building thermal envelope improvement, ventilation heat recovery (VHR), and household electricity savings. Our analysis is based on a measured heat load profile of an existing DH production system in Växjö, Sweden. Based on the measured heat load profile, we model three minimum-cost DH production system using plausible environmental and socio-political scenarios. Then, we investigate the primary energy implications of the energy saving measures applied to the two versions of the existing building, taking into account the changed DH demand, changed cogenerated electricity, and changed electricity use due to heat and electricity saving measures. Our results show that the difference between the final and primary energy savings of the concrete-framed and wood-framed versions of the case-study building is minor. The primary energy efficiency of the energy saving measures depends on the type of measure and on the composition of the DH production system. Of the various energy saving measures explored, electricity savings give the highest primary energy savings

  20. Research highlights : study of the noise generated by heat pumps in residential areas

    International Nuclear Information System (INIS)

    Rousseau, J.

    2000-01-01

    Rising energy costs and aggressive marketing played a major role in the substantial increase in the number of domestic heat pumps installed. As a rule, heat pumps are connected to the heating and ventilation systems on the outside of the house. Whether the heat pump is equipped with an integrated compressor or not, it creates noise. The noise is generated by the powerful fan designed to cool all the coils, and also by the compressor itself and the circulation of the refrigerant gas. Some municipalities received so many complaints on this topic that they are considering adopting noise bylaws. The first objective of the research undertaken by Canada Mortgage and Housing Corporation on heat pumps in residential areas was to analyze the noise pollution mode of commonly used heat pumps. A study of a simple noise reduction device was performed, and the extent to which it should be used. Finally, there had to be no reduction of the thermal capacities of the pumps. Phase 1 of the study took place between May and August 1990, in the area of Quebec City. A total of 125 heat pumps were identified. The four major manufacturers were Trane, Carrier, York, and Lennox. Initial sound pressure levels measurements were made at one metre from the unit, for 80 such units, respecting the ratio by brands in the sample of 125. A detailed global noise measurement determined the sound power of each pump. A detailed muffler feasibility study was then conducted, using a Trane heat pump. The results of the study indicated that heat pumps were a major source of continuous noise in low and mid-density areas. It was discovered that a noise attenuation device could always be built around heat pumps, which needed to be installed as close as possible to the casing of the heat pump. It is not possible to design a device to fit each and every heat pump, the design is specific to the dimensions and characteristics of each model of heat pump. The thermal performance of the pumps will not be affected by

  1. Heat-accumulator increases the comfort in the passenger-compartment and the driving-safety. Latentwaermespeicher erhoeht den Fahrkomfort und die Fahrsicherheit

    Energy Technology Data Exchange (ETDEWEB)

    Blueher, P.

    1991-10-01

    The integration of a heat-accumulator into the coolant system can significantly increase the comfort in the passenger-compartment and contribute to an improvement of the driving-safety. The newly developed heat-accumulator provides the required amount of energy to allow for a rapid heating-up of the passenger-compartment after an engine-coldstart and to prevent misting of the windows, especially the windscreen. In developing the heat accumulator focus was especially pointed on the environmental protection by systematically using harmless and recycable materials. (orig.).

  2. Effect evaluation of a heated ambulance mattress-prototype on thermal comfort and patients’ temperatures in prehospital emergency care – an intervention study

    Directory of Open Access Journals (Sweden)

    Jonas Aléx

    2015-09-01

    Full Text Available Background: The ambulance milieu does not offer good thermal comfort to patients during the cold Swedish winters. Patients’ exposure to cold temperatures combined with a cold ambulance mattress seems to be the major factor leading to an overall sensation of discomfort. There is little research on the effect of active heat delivered from underneath in ambulance care. Therefore, the aim of this study was to evaluate the effect of an electrically heated ambulance mattress-prototype on thermal comfort and patients’ temperatures in the prehospital emergency care. Methods: A quantitative intervention study on ambulance care was conducted in the north of Sweden. The ambulance used for the intervention group (n=30 was equipped with an electrically heated mattress on the regular ambulance stretcher whereas for the control group (n=30 no active heat was provided on the stretcher. Outcome variables were measured as thermal comfort on the Cold Discomfort Scale (CDS, subjective comments on cold experiences, and finger, ear and air temperatures. Results: Thermal comfort, measured by CDS, improved during the ambulance transport to the emergency department in the intervention group (p=0.001 but decreased in the control group (p=0.014. A significant higher proportion (57% of the control group rated the stretcher as cold to lie down compared to the intervention group (3%, p<0.001. At arrival, finger, ear and compartment air temperature showed no statistical significant difference between groups. Mean transport time was approximately 15 minutes. Conclusions: The use of active heat from underneath increases the patients’ thermal comfort and may prevent the negative consequences of cold stress.

  3. Achievements and suggestions of heat metering and energy efficiency retrofit for existing residential buildings in northern heating regions of China

    International Nuclear Information System (INIS)

    Yan Ding; Zhe Tian; Yong Wu; Neng Zhu

    2011-01-01

    In order to promote energy efficiency and emission reduction, the importance of improving building energy efficiency received sufficient attention from Chinese Government. The heat metering and energy efficiency retrofit for existing residential buildings of 0.15 billion m 2 in northern heating regions of China was initiated in 2007 and completed successfully at the end of 2010. This article introduced the background and outline of the retrofit project during the period of 11th five-year plan. Numerous achievements that received by retrofit such as environmental protection effect, improvement of indoor environment, improvement of heating system, investment guidance effect, promotion of relevant industries and increasing chances of employment were concluded. Valuable experience that acquired from the retrofit project during the period of 11th five-year plan was also summarized in this article. By analyzing the main problems emerged in the past, pertinent suggestions were put forward to promote a larger scale and more efficient retrofit project in the period of 12th five-year plan. - Highlights: →Successful implementation of a retrofit project in China is introduced. → Significance of the project contributing to emission reduction is analyzed. →Achievements are summarized and future suggestions are put forward.

  4. Incentive mechanism design for the residential building energy efficiency improvement of heating zones in North China

    International Nuclear Information System (INIS)

    Zhong, Y.; Cai, W.G.; Wu, Y.; Ren, H.

    2009-01-01

    Starting with analyzing the investigation results by Ministry of Housing and Urban-Rural Development of China in 2005, more than half of the 10,236 participants are willing to improve the residential building energy efficiency and accept an additional cost of less than 10% of the total cost, the authors illustrate that incenting actions are necessary to improve building energy efficiency and build a central government-local government-market model. As a result of the model analysis, to pursue good execution effects brought by the incentive policies, the executors are required to distinguish the differences of incentive objects' economic activities and strongly respect the incenting on the energy conservation performance. A case study on the incentive policies of existing residential building energy efficiency improvement in heating zones in North China is given as well. Finally, it is strongly recommended to give the first priority to performance-based incentives so that to reduce the lazy behaviors of the incented objects and ensure the targets to be achieved.

  5. An emerging market in fuel cells? Residential combined heat and power in four countries

    International Nuclear Information System (INIS)

    Brown, J.E.; Hendry, C.N.; Harborne, P.

    2007-01-01

    Global concerns about fossil fuel stocks and security of supply have stimulated governments and industry to explore the development of alternative sources of energy. This has led to the emergence of liberalised markets for energy and the growth of de-centralised generation and distribution systems. Within this context, the use of a sustainable technology, such as fuel cells, as a generator of heat and electricity for the residential market, is a significant market opportunity. Using a set of framework conditions to explain the diffusion of renewable energy technologies, this paper analyses recent developments in four leading industrial countries, and concludes that Japan and Germany are competing to be the lead country for the introduction of this technology. In the process, we highlight the impact of government and the extent to which the development of a fuel cell industry is being driven by incumbent large firms acting independently or in collaboration with a range of other companies across the value chain. [Author

  6. An emerging market in fuel cells? Residential combined heat and power in four countries

    International Nuclear Information System (INIS)

    Brown, James E.; Hendry, Chris N.; Harborne, Paul

    2007-01-01

    Global concerns about fossil fuel stocks and security of supply have stimulated governments and industry to explore the development of alternative sources of energy. This has led to the emergence of liberalised markets for energy and the growth of de-centralised generation and distribution systems. Within this context, the use of a sustainable technology, such as fuel cells, as a generator of heat and electricity for the residential market, is a significant market opportunity. Using a set of framework conditions to explain the diffusion of renewable energy technologies, this paper analyses recent developments in four leading industrial countries, and concludes that Japan and Germany are competing to be the lead country for the introduction of this technology. In the process, we highlight the impact of government and the extent to which the development of a fuel cell industry is being driven by incumbent large firms acting independently or in collaboration with a range of other companies across the value chain

  7. Performance of a residential heat pump operating in the cooling mode with single faults imposed

    International Nuclear Information System (INIS)

    Kim, Minsung; Payne, W. Vance; Domanski, Piotr A.; Yoon, Seok Ho; Hermes, Christian J.L.

    2009-01-01

    The system behavior of a R410A residential unitary split heat pump operating in the cooling mode was investigated. Seven artificial faults were implemented: compressor/reversing valve leakage, improper outdoor air flow, improper indoor air flow, liquid line restriction, refrigerant undercharge, refrigerant overcharge, and presence of non-condensable gas in the refrigerant. This study monitored eight fault detection features and identified the most sensitive features for each fault. The effect of the various fault levels on energy efficiency ratio (EER) was also estimated. Since the studied system employed a thermostatic expansion valve (TXV) as an expansion device, it could adapt to some faults making the fault less detectable. The distinctiveness of the fault depended on the TXV status (fully open or not)

  8. Unleashing Flexibility from Electric Boilers and Heat Pumps in Danish Residential Distribution Network

    DEFF Research Database (Denmark)

    Sinha, Rakesh; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2018-01-01

    and thereby improving its techno-economic efficiency. The data used for the evaluation are also from the real household sites in Denmark provided by the district heating utility. Focus is on the low-voltage grid, and that’s very relevant since many doesn’t expect any flexibility from that voltage level. Study...... this model is compared to responses from an average model of the hot water storage tank to evaluate the benefit of the more detailed model. Finally, analysis on consumption patterns of electrical and thermal loads in residential buildings in Northern Jutland, Denmark, are used for analysis of the system...... and use of thermal units as flexible consumer loads in the low voltage (LV) distribution network grid. The models of EB and HP with storage tank are briefly discussed in relation to the actual control and flexibility based on grid condition and status of storage tank temperature or position...

  9. Residential Cold Climate Heat Pump (CCHP) w/Variable Speed Technology

    Energy Technology Data Exchange (ETDEWEB)

    Messmer, Craig S. [Unico, Inc., Arnold, MO (United States)

    2016-09-30

    This report summarizes the results of a three year program awarded to Unico, Inc. to commercialize a residential cold climate heat pump. Several designs were investigated. Compressors were selected using analysis from Oakridge National Laboratories followed by prototype construction and lab testing in a specially built environmental chamber capable of reaching -30°F. The initial design utilized two variable speed compressors in series with very good capacity results and acceptable efficiency at very cold temperatures. The design was then modified to reduce cost and complexity by redesigning the system using three dual-stage compressors: two in parallel followed by one in series. Extensive testing found significant challenge with oil management, reliability, weight and cost which prevented the system from being fully commercialized. Further analysis of other conceptual designs indicated that these challenges could be overcome in the future.

  10. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, BG

    2004-08-04

    This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other

  11. Combined heat and power and thermally insulating measures in residential housing stock; Kraft-Waerme-Kopplung und Daemmmassnahmen im Wohngebaeudebestand

    Energy Technology Data Exchange (ETDEWEB)

    Buller, Michael [Gas- und Waerme-Institut Essen e.V., Essen (Germany)

    2013-02-15

    The author of the contribution under consideration reports on the economic, ecologic and primary energetic potential of micro-combined heat and power (micro-CHP) in the residential housing stock under consideration of possible correlations between CHP and thermally insulating measures.

  12. Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Klinge Jacobsen, Henrik

    2015-01-01

    The trade-off between investing in energy savings and investing in individual heating technologies with high investment and low variable costs in single family houses is modelled for a number of building and consumer categories in Denmark. For each group the private economic cost of providing hea...... for private consumers decrease by 66% when all have the option to shift to the technology with lowest variable costs. © 2014 Elsevier Ltd. All Rights reserved......The trade-off between investing in energy savings and investing in individual heating technologies with high investment and low variable costs in single family houses is modelled for a number of building and consumer categories in Denmark. For each group the private economic cost of providing...

  13. Experiences with field tests: Ground coupled heat pumps in small residential buildings; Feldtesterfahrungen. Erdgekoppelte Waermepumpen in kleineren Wohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Wapler, Jeannette; Guenther, Danny; Miara, Marek [Fraunhofer-Institut fuer Solare Energiesysteme ISE/Thermal Systems and Buildings, Freiburg (Germany)

    2012-07-01

    In the context of two research projects, the Fraunhofer Institute for Solar Energy Systems (Freiburg, Federal Republic of Germany) has surveyed a large number of heat pumps in actual application. In particular, heat pumps in small residential buildings (single-family houses) were examined for new and existing buildings. In addition to the achieved performance factors the temperature profile of the heat sink and heat source was recorded. This temperature profile was evaluated separately for systems with geothermal collectors and systems with geothermal probes. The theoretical assumptions could be confirmed. Influences during the installation, commissioning and operation are identified.

  14. Thermal-hydraulic process for cooling, heating and power production with low-grade heat sources in residential sector

    International Nuclear Information System (INIS)

    Borgogno, R.; Mauran, S.; Stitou, D.; Marck, G.

    2017-01-01

    Highlights: • Assessment of solar thermal-hydraulic process for tri-generation application. • Choice of the most suitable working fluid pair (R1234yf/R1233zd). • Evaluation of the global annual performance in Mediterranean climate. • Global annual COP and heat amplification achieving 0.24 and 1.2 respectively. • Global annual performance achieving an electric efficiency of 3.7%. - Abstract: A new process based on thermal-hydraulic conversion actuated by low-grade thermal energy is investigated. Input thermal energy can be provided by the means of solar collectors, as well as other low temperature energy sources. In the following article, “thermo-hydraulic” term refers to a process involving an incompressible fluid used as an intermediate medium to transfer work hydraulically between different thermal operated components or sub-systems. The system aims at providing trigeneration energy features for the residential sector, that is providing heating, cooling and electrical power for meeting the energy needs of domestic houses. This innovative system is made of two dithermal processes (working at two different levels of temperatures) and featuring two different working fluids. The first process is able to directly supply either electrical energy generated by an hydraulic turbine or drives the second process thanks to the incompressible fluid, which is similar to a heat pump effect for heating or cooling purposes. The innovative aspect of this process relies on the use of an hydraulic transfer fluid to transfer the work between each sub-system and therefore simplifying the conversion chain. A model, assuming steady-state operation, is developed to assess the energy performances of different variants of this thermo-hydraulic process with various heat source temperatures (80–110 °C) or heat sinks (0–30 °C), as well as various pairs of working fluids. For instance, in the frame of a single-family home, located in the Mediterranean region, the working

  15. The Comfortable Home and Energy Consumption

    DEFF Research Database (Denmark)

    Madsen, Line Valdorff

    2017-01-01

    This paper investigates relations between notions of comfort and notions of home, aiming at a better understanding of residential comfort and the related energy consumption. Residential comfort is examined through a practice-theoretical lens and as something that appears in between the social...... and material structures of a home. The approach considers different elements of comfort in homemaking practices, such as the body, materials and social meanings. The paper examines how conceptions of comfort and homeliness interrelate through homemaking practices and thereby redefine comfort within a framework...... of the home and social practices. This implies focus on “the comfortable home” as made up of homemaking practices that include knowhow, sensations and social norms. The empirical basis comprises interviews and visual data from a field study on detached housing on the outskirts of a Danish city. The paper...

  16. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  17. Mitigation of Short-Lived Climate Pollutants from Residential Coal Heating and Combined Heating/Cooking Stoves: Impacts on the Cryosphere, Policy Options, and Co-benefits

    Science.gov (United States)

    Chafe, Z.; Anenberg, S.; Klimont, Z.; Kupiainen, K.; Lewis, J.; Metcalfe, J.; Pearson, P.

    2017-12-01

    Residential solid fuel combustion for cooking, heating, and other energy services contributes to indoor and outdoor air pollution, and creates impacts on the cryosphere. Solid fuel use often occurs in colder climates and at higher elevations, where a wide range of combustion emissions can reduce reflectivity of the snow- and ice-covered surfaces, causing climatic warming. Reducing short-lived climate pollutants (SLCPs), such as black carbon (BC), could have substantial climate and health co-benefits, especially in areas where emissions influence the cryosphere. A review of existing literature and emissions estimates, conducted as part of the Warsaw Summit on BC and Other Emissions from Residential Coal Heating Stoves and Combined Cooking/Heating Stoves, found little nationally-representative data on the fuels and technologies used for heating and combined cooking/heating. The GAINS model estimates that 24 million tonnes of coal equivalent were combusted by households for space heating globally in 2010, releasing 190 kilotons (kt) BC. Emissions from combined cooking/heating are virtually unknown. Policy instruments could mitigate cryosphere-relevant emissions of SLCPs from residential heating or cooking. These include indoor air quality guidelines, stove emission limits, bans on the use of specific fuels, regulatory codes that stipulate when burning can occur, stove changeout programs, and voluntary public education campaigns. These measures are being implemented in countries such as Chile (fuelwood moisture reduction campaign, energy efficiency, heating system improvements), Mongolia (stove renovation, fuel switching), Peru (improved stove programs), Poland (district heating, local fuel bans), United States (stove emission regulation) and throughout the European Community (Ecodesign Directive). Few, if any, of these regulations are likely to reduce emissions from combined cooking/heating. This research team found no global platform to create and share model

  18. Modeling and optimization of a heat-pump-assisted high temperature proton exchange membrane fuel cell micro-combined-heat-and-power system for residential applications

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Kær, Søren Knudsen; Nielsen, Mads Pagh

    2015-01-01

    In this study a micro-combined-heat-and-power (micro-CHP) system is coupled to a vapor-compression heat pump to fulfill the residential needs for heating (space heating and water heating) and electricity in detached single-family households in Denmark. Such a combination is assumed to be attractive...... for application, since both fuel cell technology and electric heat pumps are found to be two of the most efficient technologies for generation/conversion of useful energy. The micro-CHP system is fueled with natural gas and includes a fuel cell stack, a fuel processor and other auxiliary components. The micro......-CHP system assumes heat-led operation, to avoid dumping of heat and the use of complicated thermal energy storage. The overall system is grid-interconnected to allow importing and exporting of electricity as necessary. In this study emphasis is given on the operational characterization of the system...

  19. Technology line and case analysis of heat metering and energy efficiency retrofit of existing residential buildings in Northern heating areas of China

    International Nuclear Information System (INIS)

    Zhao Jing; Zhu Neng; Wu Yong

    2009-01-01

    The building area in northern heating areas accounting for 70% of the total land area in China is 6,500,000,000 m 2 . The average heating energy consumption in northern China is 100-200% times more than developed countries in the same latitude. This paper introduced firstly the heat metering and energy efficiency retrofit background of existing residential buildings in northern heating areas of China organized by mohurd and MOF, and then put forward the total principle and contents of retrofit. Through analyzing some retrofit cases in Germany, Poland and China, some technological experiences were summarized and finally a technology line suitable for heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of China which involved retrofit for heat metering and temperature regulation of heating systems, heat balance of heat source and network, and building envelope was described to provide a systematic, scientific, technological guide for the retrofit projects of 0.15 billion m 2 in 'the Eleventh Five-Year Plan' period.

  20. Comparative analysis of greenhouse gas emissions of various residential heating systems in the Canadian provinces

    International Nuclear Information System (INIS)

    Pare, D.

    2010-04-01

    The Kyoto Protocol compels signatory countries to reduce their greenhouse gas emissions by at least 5 percent by 2010 as compared to 1990 levels. In Canada, however, questions remain regarding the effects of greenhouse gases as they relate to the adoption of geoexchange systems in certain provinces because of the sources of electricity. This report presented a comprehensive analysis of the specific and strategic role of geoexchange technology, and ground source heat pumps in particular. The purpose was to compare, on a common basis, the greenhouse gas emissions of different residential heating systems utilized in the Canadian provinces. Comparisons were conducted from an environmental standpoint, and excluded the exergy and economic aspect, or other related issues. The report discussed the methodology and hypotheses of the study and presented the results for Canada, and for each province. It was concluded that according to the hypotheses employed for the purposes of this study, geoexchange systems offer a solution for greenhouse gas reduction and climatic change in all of the analyzed scenarios, with few exceptions and for a specific scenario. 32 refs., 37 tabs., 12 figs., 4 appendices.

  1. The impact of consumer behavior on residential energy demand for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Haas, R.; Auer, H.; Biermayr, P. [Vienna Univ. of Technology (Austria). Inst. of Energy Economics

    1998-04-01

    Besides technical parameters, consumer behavior is the most important issue with respect to energy consumption in households. In this paper, the results of a cross-section analysis of Austrian households are presented. The impact of the following parameters on residential energy demand for space heating have been investigated: (i) thermal quality of buildings; (ii) consumer behavior; (iii) heating degree days; (iv) building type (single- or multi-family dwellings). The result of this investigation provides evidence of a rebound-effect of about 15 to 30% due to building retrofit. This leads to the conclusion that energy savings achieved in practice (and straightforward the reduction in CO{sub 2} emissions) due to energy conservation measures will be lower than those calculated in engineering conservation studies. Straightforward, the most important conclusions for energy policy makers are: (i) Standards, building codes, respectively, are important tools to increase the thermal quality of new buildings; and (ii) Due to prevailing low energy prices, a triggering tool has to be implemented which may be rebates or loans. (orig.)

  2. ON REASONABLE ESTIMATE OF ENERGY PERFORMANCE OF THE RESIDENTIAL BUILDINGS SUSTENANCE WITH CENTRALIZED HEAT-SUPPLY SYSTEM

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2016-01-01

    Full Text Available As consisted with Directive No 3 of President of the Republic of Belarus of June, 14th 2007 ‘Economy and Husbandry – the Major Factors of Economic Security of the Republic of Belarus’, saving fuel-and-energy resources over the republic in 2010–2015 should amount to 7,1–8,9 MIO tons of fuel equivalent including 1,00–1,25 MIO tons of fuel equivalent at the expense of heat-supply optimization and 0,25–0,40 MIO tons of fuel equivalent at the expense of increasing enclosing structures heat resistance of the buildings, facilities and housing stock. It means, where it is expected to obtain around 18 % of general thermal resources economy in the process of heat-supply optimization, then by means of enhancing the cladding structure heat resistance of the buildings and constructions of various applications – only about 3–5 % and even a bit less so of the housing stock. Till 1994, in residential sector of the Republic of Belarus, the annual heat consumption of the heating and ventilation averaged more than 130 kW×h/(m2×year (~56 %, of the hot-water supply – around 100 kW×h/(m2×year (~44 %. In residential houses, built from 1994 to 2009, heat consumption of the heating and ventilation is already 90 kW×h/(m2×year, of the hot-water supply – around 70 kW×h/(m2×year. In buildings of modern mainstream construction, they expend 60 kW×h/(m2×year (~46 % on heating and ventilation and 70 kW×h/(m2×year (~54 % on hot-water supply. In some modern residential buildings with the exhausted warm air secondary energy resource utilization, the heating and ventilation takes around 30–40 kW×h/(m2×year of heat. Raising energy performance of the residential buildings by means of reducing heat expenses on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy performance process are producing heat and transporting it over the main lines and outside distribution networks. In

  3. The potential demand for bioenergy in residential heating applications (bio-heat) in the UK based on a market segment analysis

    International Nuclear Information System (INIS)

    Jablonski, S.; Pantaleo, A.; Bauen, A.; Pearson, P.; Panoutsou, C.; Slade, R.

    2008-01-01

    How large is the potential demand for bio-heat in the UK? Whilst most research has focused on the supply of biomass for energy production, an understanding of the potential demand is crucial to the uptake of heat from bioenergy. We have designed a systematic framework utilising market segmentation techniques to assess the potential demand for biomass heat in the UK. First, the heat market is divided into relevant segments, characterised in terms of their final energy consumption, technological and fuel supply options. Second, the key technical, economic and organisational factors that affect the uptake of bioenergy in each heat segment are identified, classified and then analysed to reveal which could be strong barriers, which could be surmounted easily, and for which bioenergy heat represents an improvement compared to alternatives. The defined framework is applied to the UK residential sector. We identify provisionally the most promising market segments for bioenergy heat, and their current levels of energy demand. We find that, depending on the assumptions, the present potential demand for bio-heat in the UK residential sector ranges between 3% (conservative estimate) and 31% (optimistic estimate) of the total energy consumed in the heat market. (author)

  4. Monitored performance of residential geothermal heat pumps in central Texas and Southern Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, W.N.

    1997-11-01

    This report summarizes measured performance of residential geothermal heat pumps (GHP`s) that were installed in family housing units at Ft. Hood, Texas and at Selfridge Air National Guard base in Michigan. These units were built as part of a joint Department of Defense/Department of Energy program to evaluate the energy savings potential of GHP`s installed at military facilities. At the Ft. Hood site, the GHP performance was compared to conventional forced air electric air conditioning and natural gas heating. At Selfridge, the homes under test were originally equipped with electric baseboard heat and no air conditioning. Installation of the GHP systems at both sites was straightforward but more problems and costs were incurred at Selfridge because of the need to install ductwork in the homes. The GHP`s at both sites produced impressive energy savings. These savings approached 40% for most of the homes tested. The low cost of energy on these bases relative to the incremental cost of the GHP conversions precludes rapid payback of the GHP`s from energy savings alone. Estimates based on simple payback (no inflation and no interest on capital) indicated payback times from 15 to 20 years at both sites. These payback times may be reduced by considering the additional savings possible due to reduced maintenance costs. Results are summarized in terms of 15 minute, hourly, monthly, and annual performance parameters. The results indicate that all the systems were working properly but several design shortcomings were identified. Recommendations are made for improvements in future installations at both sites.

  5. Gas-heating alternatives to the residential electric heat pump. Gas Appliance Technology Center 1987 program. Topical report for Work Area 1.1, October 1989-March 1990

    International Nuclear Information System (INIS)

    Haas, C.

    1990-05-01

    The characteristics of electric heat pumps are described. Options are defined and assessed for utilizing gas heating in conjunction with existing residential electric heat pumps. These options include gas heat introduced into the refrigeration circuit, a flue gas-heated tube bank in the air supply duct, and a hot-water-to-air coil in the supply duct. Economics are presented for conversion of a residence's total space and water heating from electric to gas in New York City and Atlanta. Potential marketing strategies are discussed, and potential gas sales volumes from conversions are estimated. The study concludes that the use of gas water heating coupled with a hydronic coil in the supply ductwork from the air handler is the most advantageous option for the gas industry

  6. Feasibility study of a hybrid renewable energy system with geothermal and solar heat sources for residential buildings in South Korea

    International Nuclear Information System (INIS)

    Kim, Young Ju; Woo, Nam Sub; Jang, Sung Cheol; Choi, Jeong Ju

    2013-01-01

    This study investigates the economic feasibility of a hybrid renewable energy system (HRES) that uses geothermal and solar heat sources for water heating, space heating, and space cooling in a residential building in Korea. A small-scale HRES consists of a geothermal heat pump for heating and cooling, solar collectors for hot water, a gas-fired backup boiler, and incidental facilities. To determine whether the Hares will produce any economic benefits for homeowners, an economic analysis is conducted to compare the Hares with conventional methods of space heating and cooling in Korea. The payback period of a small-scale Hares is predicted as a maximum of 9 yrs by life cycle costing based on a performance index compared with conventional systems. However, the payback period of large-scale HRES above 400 RT is 6 yrs to 7 yrs.

  7. Feasibility study of a hybrid renewable energy system with geothermal and solar heat sources for residential buildings in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ju; Woo, Nam Sub [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Jang, Sung Cheol [Mechatronics Department of the Korea Aviation Polytechnic College, Sacheon (Korea, Republic of); Choi, Jeong Ju [Dong-A University, Busan (Korea, Republic of)

    2013-08-15

    This study investigates the economic feasibility of a hybrid renewable energy system (HRES) that uses geothermal and solar heat sources for water heating, space heating, and space cooling in a residential building in Korea. A small-scale HRES consists of a geothermal heat pump for heating and cooling, solar collectors for hot water, a gas-fired backup boiler, and incidental facilities. To determine whether the Hares will produce any economic benefits for homeowners, an economic analysis is conducted to compare the Hares with conventional methods of space heating and cooling in Korea. The payback period of a small-scale Hares is predicted as a maximum of 9 yrs by life cycle costing based on a performance index compared with conventional systems. However, the payback period of large-scale HRES above 400 RT is 6 yrs to 7 yrs.

  8. Targeting energy justice: Exploring spatial, racial/ethnic and socioeconomic disparities in urban residential heating energy efficiency

    International Nuclear Information System (INIS)

    Reames, Tony Gerard

    2016-01-01

    Fuel poverty, the inability of households to afford adequate energy services, such as heating, is a major energy justice concern. Increasing residential energy efficiency is a strategic fuel poverty intervention. However, the absence of easily accessible household energy data impedes effective targeting of energy efficiency programs. This paper uses publicly available data, bottom-up modeling and small-area estimation techniques to predict the mean census block group residential heating energy use intensity (EUI), an energy efficiency proxy, in Kansas City, Missouri. Results mapped using geographic information systems (GIS) and statistical analysis, show disparities in the relationship between heating EUI and spatial, racial/ethnic, and socioeconomic block group characteristics. Block groups with lower median incomes, a greater percentage of households below poverty, a greater percentage of racial/ethnic minority headed-households, and a larger percentage of adults with less than a high school education were, on average, less energy efficient (higher EUIs). Results also imply that racial segregation, which continues to influence urban housing choices, exposes Black and Hispanic households to increased fuel poverty vulnerability. Lastly, the spatial concentration and demographics of vulnerable block groups suggest proactive, area- and community-based targeting of energy efficiency assistance programs may be more effective than existing self-referral approaches. - Highlights: • Develops statistical model to predict block group (BG) residential heating energy use intensity (EUI), an energy efficiency proxy. • Bivariate and multivariate analyses explore racial/ethnic and socioeconomic relationships with heating EUI. • BGs with more racial/ethnic minority households had higher heating EUI. • BGs with lower socioeconomics had higher heating EUI. • Mapping heating EUI can facilitate effective energy efficiency intervention targeting.

  9. Integration of a wood pellet burner and a Stirling engine to produce residential heat and power

    International Nuclear Information System (INIS)

    Cardozo, Evelyn; Erlich, Catharina; Malmquist, Anders; Alejo, Lucio

    2014-01-01

    The integration a Stirling engine with a pellet burner is a promising alternative to produce heat and power for residential use. In this context, this study is focused on the experimental evaluation of the integration of a 20 kW th wood pellet burner and a 1 kW e Stirling engine. The thermal power not absorbed by the engine is used to produce hot water. The evaluation highlights the effects of pellet type, combustion chamber length and cycling operation on the Stirling engine temperatures and thermal power absorbed. The results show that the position of the Stirling engine is highly relevant in order to utilize as much as possible of the radiative heat from the burner. Within this study, only a 5 cm distance change between the Stirling engine and the pellet burner could result in an increase of almost 100 °C in the hot side of the engine. However, at a larger distance, the temperature of the hot side is almost unchanged suggesting dominating convective heat transfer from the hot flue gas. Ash accumulation decreases the temperature of the hot side of the engine after some cycles of operation when a commercial pellet burner is integrated. The temperature ratio, which is the relation between the minimum and maximum temperatures of the engine, decreases when using Ø8 mm wood pellets in comparison to Ø6 mm pellets due to higher measured temperatures on the hot side of the engine. Therefore, the amount of heat supplied to the engine is increased for Ø8 mm wood pellets. The effectiveness of the engine regenerator is increased at higher pressures. The relation between temperature of the hot side end and thermal power absorbed by the Stirling engine is nearly linear between 500 °C and 660 °C. Higher pressure inside the Stirling engine has a positive effect on the thermal power output. Both the chemical and thermal losses increase somewhat when integrating a Stirling engine in comparison to a stand-alone boiler for only heat production. The overall efficiency

  10. Evaluating the energy and CO2 emissions impacts of shifts in residential water heating in the United States

    International Nuclear Information System (INIS)

    Sanders, Kelly T.; Webber, Michael E.

    2015-01-01

    Water heating represented nearly 13% of 2010 residential energy consumption making it an important target for energy conservation efforts. The objective of this work is to identify spatially-resolved strategies for energy conservation, since little analysis has been done to identify how regional characteristics affect the energy consumed for water heating. We present a first-order thermodynamic analysis, utilizing ab initio calculations and regression methods, to quantify primary energy consumption and CO 2 emissions with regional specificity by considering by considering local electricity mixes, heat rates, solar radiation profiles, heating degrees days, and water heating unit sales for 27 regions of the US. Results suggest that shifting from electric towards natural gas or solar water heating offered primary energy and CO 2 emission reductions in most US regions, but these reductions varied considerably according to regional electricity mix and solar resources. We find that regions that would benefit most from technology transitions, are often least likely to switch due to limited economic incentives. Our results suggest that federal energy factor metrics, which ignore upstream losses in power generation, are insufficient in informing consumers about the energy performance of residential end use appliances. - Highlights: • US energy factor ratings for water heaters ignore upstream losses. • Switching from electric storage water heating reduces CO 2 emissions in most US regions. • Regions with greatest potential for CO 2 avoidance are least likely to shift technologies. • Benefits vary significantly according to climate and regional electricity fuel mix

  11. Thermal comfort

    DEFF Research Database (Denmark)

    d’Ambrosio Alfano, Francesca Romana; Olesen, Bjarne W.; Palella, Boris Igor

    2014-01-01

    Thermal comfort is one of the most important aspects of the indoor environmental quality due to its effects on well-being, people's performance and building energy requirements. Its attainment is not an easy task requiring advanced design and operation of building and HVAC systems, taking...... into account all parameters involved. Even though thermal comfort fundamentals are consolidated topics for more than forty years, often designers seem to ignore or apply them in a wrong way. Design input values from standards are often considered as universal values rather than recommended values to be used...... under specific conditions. At operation level, only few variables are taken into account with unpredictable effects on the assessment of comfort indices. In this paper, the main criteria for the design and assessment of thermal comfort are discussed in order to help building and HVAC systems designers...

  12. Analysis of heat source selection for residential buildings in rural areas

    Directory of Open Access Journals (Sweden)

    Szul Tomasz

    2018-01-01

    Full Text Available The research aiming to check whether the output of currently installed boilers matches the use requirements together with estimation of their energy efficiency was carried out on a group of 84 single-family residential buildings located in rural areas. Heating and hot water energy needs were calculated for each building in order to determine the use requirements. This enabled verification whether the currently installed boilers match the actual use requirements in the buildings. Based on the calculations it was determined that the designed average boiler output in the group of buildings subject to analysis is 15.7 kW, whereas the mean rated output capacity of boilers installed therein is 25.4 kW. On average, the output capacity of the installed boilers exceeds the use requirements for the buildings by 60%. To calculate the energy efficiency of boilers, the mean annual boiler output capacity use coefficient was determined. For boilers selected on the basis of standard calculations, the mean coefficient is 0.47. For boilers currently in use it is 0.31, less than the above figure. The above calculations show that if boilers were correctly selected in compliance to the building needs, then the average estimated seasonal efficiency of 65% would be feasible. However, in the current state the achievable efficiency is approx. 55%.

  13. Field Surveys of Non-Residential Solar Water Heating Systems in Taiwan

    Directory of Open Access Journals (Sweden)

    Kung-Ming Chung

    2012-02-01

    Full Text Available To develop indigenous alternative and renewable energy resources, long-term subsidy programs (1986–1991 and 2000–present for solar water heaters have been enforced in Taiwan. By the end of 2010, the total installed area of solar collectors had exceeded 2 million square meters. However, over 98% of solar water heaters were used in residential systems for hot water production, with the areas of installed solar collector being less than 10 square meters. There were only 98 systems with area of solar collectors installed exceeding 100 square meters put into operation from 2001 to 2010. These systems were mainly installed for water heating in dormitories, swimming pools, restaurants, and manufacturing plants. In the present study, a comprehensive survey of these large-scale solar water heaters was conducted. The objectives of the survey were to assess the system performance and to collect feedback from individual users. It is found that lack of experience in system design and maintenance are the key factors affecting reliable operation of a system. Hourly, daily and long-term field measurements of a dormitory system were also examined to evaluate its thermal efficiencies. Results indicated that thermal efficiency of the system is associated with the daily solar radiation. Hot water use pattern and operation of auxiliary heater should be taken into account in system design.

  14. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently re-emerged on the U.S. market, and they have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine the actual energy consumption of a HPWH in different U.S. regions, annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the United States. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  15. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently reemerged on the U.S. market. These units have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine what actual in use energy consumption of a HPWH may be in different regions of the U.S., annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the U.S. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  16. Residential on site solar heating systems: a project evaluation using the capital asset pricing model

    Energy Technology Data Exchange (ETDEWEB)

    Schutz, S.R.

    1978-12-01

    An energy source ready for immediate use on a commercial scale is solar energy in the form of On Site Solar Heating (OSSH) systems. These systems collect solar energy with rooftop panels, store excess energy in water storage tanks and can, in certain circumstances, provide 100% of the space heating and hot water required by the occupants of the residential or commercial structure on which the system is located. Such systems would take advantage of a free and inexhaustible energy source--sunlight. The principal drawback of such systems is the high initial capital cost. The solution would normally be a carefully worked out corporate financing plan. However, at the moment it is individual homeowners and not corporations who are attempting to finance these systems. As a result, the terms of finance are excessively stringent and constitute the main obstacle to the large scale market penetration of OSSH. This study analyzes the feasibility of OSSH as a private utility investment. Such systems would be installed and owned by private utilities and would displace other investment projects, principally electric generating plants. The return on OSSH is calculated on the basis of the cost to the consumer of the equivalent amount of electrical energy that is displaced by the OSSH system. The hurdle rate for investment in OSSH is calculated using the Sharpe--Lintner Capital Asset Pricing Model. The results of this study indicate that OSSH is a low risk investment having an appropriate hurdle rate of 7.9%. At this rate, OSSH investment appears marginally acceptable in northern California and unambiguously acceptable in southern California. The results also suggest that utility investment in OSSH should lead to a higher degree of financial leverage for utility companies without a concurrent deterioration in the risk class of utility equity.

  17. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change

    International Nuclear Information System (INIS)

    Isaac, Morna; Vuuren, Detlef P. van

    2009-01-01

    In this article, we assess the potential development of energy use for future residential heating and air conditioning in the context of climate change. In a reference scenario, global energy demand for heating is projected to increase until 2030 and then stabilize. In contrast, energy demand for air conditioning is projected to increase rapidly over the whole 2000-2100 period, mostly driven by income growth. The associated CO 2 emissions for both heating and cooling increase from 0.8 Gt C in 2000 to 2.2 Gt C in 2100, i.e. about 12% of total CO 2 emissions from energy use (the strongest increase occurs in Asia). The net effect of climate change on global energy use and emissions is relatively small as decreases in heating are compensated for by increases in cooling. However, impacts on heating and cooling individually are considerable in this scenario, with heating energy demand decreased by 34% worldwide by 2100 as a result of climate change, and air-conditioning energy demand increased by 72%. At the regional scale considerable impacts can be seen, particularly in South Asia, where energy demand for residential air conditioning could increase by around 50% due to climate change, compared with the situation without climate change

  18. Outdoor thermal comfort.

    Science.gov (United States)

    Nikolopoulou, Marialena

    2011-06-01

    A review of the various approaches in understanding outdoor thermal comfort is presented. The emphasis on field surveys from around the world, particularly across Europe, enables us to understand thermal perception and evaluate outdoor thermal comfort conditions. The consistent low correlations between objective microclimatic variables, subjective thermal sensation and comfort outdoors, internationally, suggest that thermophysiology alone does not adequate describe these relationships. Focusing on the concept of adaptation, it tries to explain how this influences outdoor comfort, enabling us to inhabit and get satisfaction from outdoor spaces throughout the year. Beyond acclimatization and behavioral adaptation, through adjustments in clothing and changes to the metabolic heat, psychological adaptation plays a critical role to ensure thermal comfort and satisfaction with the outdoor environment. Such parameters include recent experiences and expectations; personal choice and perceived control, more important than whether that control is actually exercised; and the need for positive environmental stimulation suggesting that thermal neutrality is not a pre-requisite for thermal comfort. Ultimately, enhancing environmental diversity can influence thermal perception and experience of open spaces.

  19. Effect of Air Cleaning Technologies in Conjunction With the Use of Rotary Heat Exchangers in Residential Buildings

    DEFF Research Database (Denmark)

    Afshari, Alireza; Bergsøe, Niels Christian; Ekberg, Lars

    2013-01-01

    This study is part of a research project concerning the possibilities of applying efficient air cleaning technologies using rotary heat exchanger in residential buildings. The purpose of this project was to identify and adapt new air-cleaning technologies for implementation in HVAC systems...... with rotary air-to-air heat exchangers. For this purpose, a mechanical filter with low pressure drop and a 4 cm thick activated carbon filter were selected for testing in a laboratory environment. The measurements included testing of the filters, separately and combined, in a ductwork to study the efficiency...

  20. Investigation of Different Configurations of a Ventilated Window to Optimize Both Energy Efficiency and Thermal Comfort

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Heiselberg, Per; Larsen, Olena Kalyanova

    2017-01-01

    on thermal comfort. Hourly simulations of the heat balances of the windows are conducted on four days representing different typical weather conditions according to the method described in EN ISO 13790. Uand g values used in the calculation method are calculated in European software tool (WIS......) for the calculation of the thermal and solar properties of commercial and innovative window systems. Additionally, comfort performance is evaluated by inlet air temperature and internal surface temperature of the windows calculated by WIS software. The results of the study show the energy and comfort performance...... the energy consumption or optimizing the thermal comfort. The provided optimal window typologies can be used in residential and commercial buildings for both new constructions and renovations....

  1. Investigation of Different Configurations of a Ventilated Window to Optimize Both Energy Efficiency and Thermal Comfort

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Heiselberg, Per; Larsen, Olena Kalyanova

    2017-01-01

    on thermal comfort. Hourly simulations of the heat balances of the windows are conducted on four days representing different typical weather conditions according to the method described in EN ISO 13790. U and g values used in the calculation method are calculated in European software tool (WIS......) for the calculation of the thermal and solar properties of commercial and innovative window systems. Additionally, comfort performance is evaluated by inlet air temperature and internal surface temperature of the windows calculated by WIS software. The results of the study show the energy and comfort performance...... the energy consumption or optimizing the thermal comfort. The provided optimal window typologies can be used in residential and commercial buildings for both new constructions and renovations....

  2. Proton exchange membrane fuel cell for cooperating households: A convenient combined heat and power solution for residential applications

    International Nuclear Information System (INIS)

    Cappa, Francesco; Facci, Andrea Luigi; Ubertini, Stefano

    2015-01-01

    In this paper we compare the technical and economical performances of a high temperature proton exchange membrane fuel cell with those of an internal combustion engine for a 10 kW combined heat and power residential application. In a view of social innovation, this solution will create new partnerships of cooperating families aiming to reduce the energy consumption and costs. The energy system is simulated through a lumped model. We compare, in the Italian context, the total daily operating cost and energy savings of each system with respect to the separate purchase of electricity from the grid and production of the thermal energy through a standard boiler. The analysis is carried out with the energy systems operating with both the standard thermal tracking and an optimized management. The latter is retrieved through an optimization methodology based on the graph theory. We show that the internal combustion engine is much more affected by the choice of the operating strategy with respect to the fuel cell, in terms long term profitability. Then we conduct a net present value analysis with the aim of evidencing the convenience of using a high temperature proton exchange membrane fuel cell for cogeneration in residential applications. - Highlights: • Fuel cells are a feasible and economically convenient solution for residential CHP. • Control strategy is fundamental for the economical performance of a residential CHP. • Flexibility is a major strength of the fuel cell CHP.

  3. Heating and cooling energy demand and related emissions of the German residential building stock under climate change

    International Nuclear Information System (INIS)

    Olonscheck, Mady; Holsten, Anne; Kropp, Juergen P.

    2011-01-01

    The housing sector is a major consumer of energy. Studies on the future energy demand under climate change which also take into account future changes of the building stock, renovation measures and heating systems are still lacking. We provide the first analysis of the combined effect of these four influencing factors on the future energy demand for room conditioning of residential buildings and resulting greenhouse gas (GHG) emissions in Germany until 2060. We show that the heating energy demand will decrease substantially in the future. This shift will mainly depend on the number of renovated buildings and climate change scenarios and only slightly on demographic changes. The future cooling energy demand will remain low in the future unless the amount of air conditioners strongly increases. As a strong change in the German energy mix is not expected, the future GHG emissions caused by heating will mainly depend on the energy demand for future heating. - Highlights: → The future heating energy demand of German residential buildings strongly decreases. → Extent of these changes mainly depends on the number of renovated buildings. → Demographic changes will only play a minor role. → Cooling energy demand will remain low in future but with large insecurities. → Germany's 2050 emission targets for the building stock are ambitious.

  4. Solid oxide fuel cell systems for residential micro-combined heat and power in the UK: Key economic drivers

    Science.gov (United States)

    Hawkes, Adam; Leach, Matthew

    The ability of combined heat and power (CHP) to meet residential heat and power demands efficiently offers potentially significant financial and environmental advantages over centralised power generation and heat-provision through natural-gas fired boilers. A solid oxide fuel cell (SOFC) can operate at high overall efficiencies (heat and power) of 80-90%, offering an improvement over centralised generation, which is often unable to utilise waste heat. This paper applies an equivalent annual cost (EAC) minimisation model to a residential solid oxide fuel cell CHP system to determine what the driving factors are behind investment in this technology. We explore the performance of a hypothetical SOFC system—representing expectations of near to medium term technology development—under present UK market conditions. We find that households with small to average energy demands do not benefit from installation of a SOFC micro-CHP system, but larger energy demands do benefit under these conditions. However, this result is sensitive to a number of factors including stack capital cost, energy import and export prices, and plant lifetime. The results for small and average dwellings are shown to reverse under an observed change in energy import prices, an increase in electricity export price, a decrease in stack capital costs, or an improvement in stack lifetime.

  5. Dynamic model of counter flow air to air heat exchanger for comfort ventilation with condensation and frost formation

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Rose, Jørgen; Kragh, Jesper

    2009-01-01

    must be calculated under conditions with condensation and freezing. This article presents a dynamic model of a counter flow air to air heat exchanger taking into account condensation and freezing and melting of ice. The model is implemented in Simulink and results are compared to measurements......In cold climates heat recovery in the ventilation system is essential to reduce heating energy demand. Condensation and freezing occur often in efficient heat exchangers used in cold climates. To develop efficient heat exchangers and defrosting strategies for cold climates, heat and mass transfer...

  6. Passive annual heat storage principles in earth sheltered housing, a supplementary energy saving system in residential housing

    Energy Technology Data Exchange (ETDEWEB)

    Anselm, Akubue Jideofor [Green Architecture Department, School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2008-07-01

    This paper looks through the many benefits of earth not only as a building element in its natural form but as a building mass, energy pack and spatial enclosure which characterized by location, unique physical terrain and climatic factors can be utilized in developing housing units that will provide the needed benefits of comfort alongside the seasons. Firstly the study identifies existing sunken earth houses in the North-west of China together with identifying the characters that formed the ideas behind the choice of going below the ground. Secondly, the study examines the pattern of heat exchange, heat gains and losses as to identify the principles that makes building in earth significant as an energy conservation system. The objective of this, is to relate the ideas of sunken earth home design with such principles as the passive annual heat storage systems (PAHS) in producing houses that will serve as units used to collect free solar heat all summer and cools passively while heating the earth around it and also keeping warm in winter by retrieving heat from the soil while utilizing the free solar heat stored throughout the summer as a year-round natural thermal resource. (author)

  7. Study on thermal comfort, air quality and energy savings using bioenergy via gasification/combustion for space heating of a broiler house

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jadir Nogueira da; Zanatta, Fabio Luiz; Tinoco, Ilda de Fatima F.; Martin, Samuel [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola], E-mail: jadir@ufv.br; Scholz, Volkhard [Leibniz Institut fuer Agrartechnik- ATB, Potsdam (Germany)

    2008-07-01

    The annual production of chicken meat is increasing throughout the world and Brazil is the world leader regarding exportation, a prediction indicates about 2.7 millions tons to be exported in 2007. A key to this performance is the low production costs, however, the costs of space heating necessary during the first 3 weeks of the chick's life and is increasing significantly. For this reason, it is always necessary to search for most efficient systems for this purpose. In addition to that, the use of bioenergy is gaining importance since it is renewable and ecologically correct. A close coupled gasification/combustion system, using eucalyptus firewood (Eucalyptus grandis and/or Eucalyptus urophylla) as fuel, was tested with the objective of providing thermal comfort for the birds during their first 3 weeks after birth. An experiment was set up for this purpose in an industrial scale production facility. The results indicated that the gasification/combustion system is viable for space heating for chicks, does not alters significantly the air quality, regarding CO, CO{sub 2} and NH{sub 3} concentration inside poultry house, provides the best thermal comfort as compared to indirect fired furnaces and accounts for a 35% energy savings, leading to lower production costs. (author)

  8. Energy saving analysis on mine-water source heat pump in a residential district of Henan province, central China

    Science.gov (United States)

    Wang, Hong; Duan, Huanlin; Chen, Aidong

    2018-02-01

    In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.

  9. Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

    1980-05-01

    A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

  10. Residential heating contribution to level of air pollutants (PAHs, major, trace, and rare earth elements): a moss bag case study.

    Science.gov (United States)

    Vuković, Gordana; Aničić Urošević, Mira; Pergal, Miodrag; Janković, Milan; Goryainova, Zoya; Tomašević, Milica; Popović, Aleksandar

    2015-12-01

    In areas with moderate to continental climates, emissions from residential heating system lead to the winter air pollution peaks. The EU legislation requires only the monitoring of airborne concentrations of particulate matter, As, Cd, Hg, Ni, and B[a]P. Transition metals and rare earth elements (REEs) have also arisen questions about their detrimental health effects. In that sense, this study examined the level of extensive set of air pollutants: 16 polycyclic aromatic hydrocarbons (PAHs), and 41 major elements, trace elements, and REEs using Sphagnum girgensohnii moss bag technique. During the winter of 2013/2014, the moss bags were exposed across Belgrade (Serbia) to study the influence of residential heating system to the overall air quality. The study was set as an extension to our previous survey during the summer, i.e., non-heating season. Markedly higher concentrations of all PAHs, Sb, Cu, V, Ni, and Zn were observed in the exposed moss in comparison to the initial values. The patterns of the moss REE concentrations normalized to North American Shale Composite and Post-Archean Australian Shales were identical across the study area but enhanced by anthropogenic activities. The results clearly demonstrate the seasonal variations in the moss enrichment of the air pollutants. Moreover, the results point out a need for monitoring of air quality during the whole year, and also of various pollutants, not only those regulated by the EU Directive.

  11. An energy and cost analysis of residential heat pumps in northern climates

    Science.gov (United States)

    Martin, J. K.; Oneal, D. L.

    1980-04-01

    Lack of natural gas and high oil prices, combined with the large energy costs of electric resistance heat have forced renewed attention to the heat pump in colder climates. The diversity in heating energy use and cost effectiveness of forty-one currently retailed heat pumps in three northern cities, Boston, Denver, and Minneapolis, were examined. Heat pump heating energy use and annualized life cycle costs were compared with other forms of space heating equipment in those same cities.

  12. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States); Schmidt, Justin [Navigant Consulting, Inc., Burlington, MA (United States)

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  13. The Pacific Northwest residential consumer: Perceptions and preferences of home heating fuels, major appliances, and appliance fuels

    Energy Technology Data Exchange (ETDEWEB)

    Harkreader, S.A.; Hattrup, M.P.

    1988-09-01

    In 1983 the Bonneville Power Administration contracted with the Pacific Northwest Laboratory (PNL) to conduct an analysis of the marketing environment for Bonneville's conservation activities. Since this baseline residential study, PNL has conducted two follow up market research projects: Phase 2 in 1985, and Phase 3, in 1988. In this report the respondents' perceptions, preferences, and fuel switching possibilities of fuels for home heating and major appliances are examined. To aid in effective target marketing, the report identifies market segments according to consumers' demographics, life-cycle, attitudes, and opinions.

  14. Heat Release Rate of an Open Kitchen Fire of Small Residential Units in Tall Buildings

    OpenAIRE

    Chow, W.K.

    2014-01-01

    Many small units of area less than 30 m2 in residential buildings over 200 m tall are equipped with open kitchens in Asia, including Hong Kong. Fire safety provisions of these kitchens are determined by performance-based design (PBD). In most PBD projects, only the spread of smoke from the kitchen on fire to the outside was commonly studied. However, a fire load survey in Hong Kong indicated large quantities of combustibles are stored in residential units. Cooking oil was found to be ignited ...

  15. Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties

    International Nuclear Information System (INIS)

    Protopapadaki, Christina; Saelens, Dirk

    2017-01-01

    Highlights: • Comprehensive method includes variability in building and feeder characteristics. • Detailed, 10-min, Modelica-based simulation of buildings, heat pumps and networks. • Overloading and voltage issues appear from 30% heat pumps in rural Belgian feeders. • Analysis of load profiles reveals great impact of heat pump back-up heaters. • High correlation of building neighborhood properties with grid impact indicators. - Abstract: Heating electrification powered by distributed renewable energy generation is considered among potential solutions towards mitigation of greenhouse gas emissions. Roadmaps propose a wide deployment of heat pumps and photovoltaics in the residential sector. Since current distribution grids are not designed to accommodate these loads, potential benefits of such policies might be compromised. However, in large-scale analyses, often grid constraints are neglected. On the other hand, grid impact of heat pumps and photovoltaics has been investigated without considering the influence of building characteristics. This paper aims to assess and quantify in a probabilistic way the impact of these technologies on the low-voltage distribution grid, as a function of building and district properties. The Monte Carlo approach is used to simulate an assortment of Belgian residential feeders, with varying size, cable type, heat pump and PV penetration rates, and buildings of different geometry and insulation quality. Modelica-based models simulate the dynamic behavior of both buildings and heating systems, as well as three-phase unbalanced loading of the network. Additionally, stochastic occupant behavior is taken into account. Analysis of neighborhood load profiles puts into perspective the importance of demand diversity in terms of building characteristics and load simultaneity, highlighting the crucial role of back-up electrical loads. It is shown that air-source heat pumps have a greater impact on the studied feeders than PV, in terms

  16. Adaptive thermal comfort opportunities for dwellings: Providing thermal comfort only when and where needed in dwellings in the Netherlands

    Directory of Open Access Journals (Sweden)

    Noortje Alders

    2016-08-01

    Full Text Available The aim of the research presented in this thesis is to design the characteristics of an Adaptive Thermal Comfort System for Dwellings to achieve a significantly better energy performance whilst not compromising the thermal comfort perception of the occupants. An Adaptive Thermal Comfort System is defined as the whole of passive and active comfort components of the dwelling that dynamically adapts its settings to varying user comfort demands and weather conditions (seasonal, diurnal and hourly depending on the aspects adapted, thus providing comfort only where, when and at the level needed by the user, to improve possibilities of harvesting the environmental energy (e.g. solar gain and outdoor air when available and storing it when abundant. In order to be able to create an Adaptive Thermal Comfort System to save energy knowledge is needed as to where, when, what kind and how much energy is needed to provide the thermal comfort. Therefore, this research aimed to gain insight in the dynamic behaviour of the weather and the occupant and the opportunities to design the characteristics of an Adaptive Thermal Comfort System for Dwellings to achieve a significantly better energy performance whilst not compromising the thermal comfort perception of the occupants answering the main research question;  What are the most efficient strategies for delivering thermal comfort in the residential sector with respect to better energy performances and an increasing demand for flexibility in use and comfort conditions? To answer the main research question three steps were taken, which also represent the three parts of the research: 1. The dynamic information of the factors influencing the thermal heat balance of the dwelling was gathered in order to determine their opportunities for adaptivity. A multidisciplinary approach to Thermal Comfort Systems is followed taking into account the dynamic of occupancy profiles, weather, building physics, HVAC and controls. A

  17. Heat supply systems using natural gas in the residential sector: The case of the agglomeration of Seoul

    International Nuclear Information System (INIS)

    Park, Hi-Chun; Kim, Hoseok

    2008-01-01

    Combined heat and power (CHP) and district heating (DH) promotion policies are based on the assumption of high energy efficiencies. In the last two decades, however, there has been a big increase in energy efficiencies of combined-cycle gas power plants (CCs) including CHPs and gas-condensing boilers. This study tries to verify the validity of the assumption of high energy efficiency of DH. The experience in the agglomeration of Seoul shows that DH in combination with large modern CHPs is not more energy efficient but substantially more expensive compared to individual gas heating by efficient condensing boilers in combination with CCs. We argue that the Korean government should review its CHP/DH support programs and abandon the so-called heat supply monopoly for DH operators in newly developed residential areas. Such a policy intervention only distorts the space heating market and wastes valuable financial resources. Furthermore, the public should be properly informed on energy efficiency as well as energy- and system-related costs of various heat supply systems. In the light of the present improvements in the performance of gas-condensing boilers and CCs, the validity of the assumption of high energy efficiency of CHP/DH in other countries has to be reviewed

  18. Energy flexibility of residential buildings using short term heat storage in the thermal mass

    DEFF Research Database (Denmark)

    Dreau, Jerome Le; Heiselberg, Per Kvols

    2016-01-01

    Highlights •Two residential buildings (80's and passive house) with two emitters (radiator, UH). •Different modulations of the set-point (upward/downward, duration, starting time). •Large differences between the 80s and the passive house, influence of the emitter. •Evaluation of the flexibility...

  19. Experimental analysis of an air-to-air heat recovery unit for balanced ventilation systems in residential buildings

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Diz, Ruben; Uhia, Francisco J.; Dopazo, Alberto; Ferro, Jose M.

    2011-01-01

    This paper deals with the experimental analysis of an air-to-air heat recovery unit equipped with a sensible polymer plate heat exchanger (PHE) for balanced ventilation systems in residential buildings. The PHE is arranged in parallel triangular ducts. An experimental facility was designed to reproduce the typical outdoor and exhaust air conditions with regard to temperature and humidity. The unit was tested under balanced operation conditions, as commonly used in practice. A set of tests was conducted under the reference operating conditions to evaluate the PHE performance. Afterwards, an experimental parametric analysis was conducted to investigate the influence of changing the operating conditions on the PHE performance. Experiments were carried out varying the inlet fresh air temperature, the exhaust air relative humidity and the air flow rate. The experimental results are shown and discussed in this paper.

  20. Fiscal and tax policy support for energy efficiency retrofit for existing residential buildings in China's northern heating region

    International Nuclear Information System (INIS)

    Li Dongyan

    2009-01-01

    Energy efficiency retrofit for existing residential buildings (EERERB) in China's northern heating region is an important component of the national energy strategy. The main content and related subject in EERERB performance is the basis of understanding and developing targeted policies. So, this paper designed the content system of EERERB. And then, provided a cost-benefit analysis on related subjects, assessed the government's function in EERERB, and come to the conclusion that the Chinese government should increase fiscal fund investment and implement more fiscal and tax incentive policies. Moreover, in view of China's current policy, which lacks long-term mechanism and flexibility, this paper proposed specific policy recommendations, including clarifying the government's corresponding responsibilities at all levels and increasing the intensity of the central government's transfer payments. It further proposed targeted financial and tax policies for supporting and encouraging heating enterprises and owners, as well as policies to cultivate energy-saving service markets and to support the ESCO.

  1. Pattern analysis and suggestion of energy efficiency retrofit for existing residential buildings in China's northern heating region

    International Nuclear Information System (INIS)

    Lv Shilei; Wu Yong; Sun Jinying

    2009-01-01

    In China, Energy Efficiency Retrofit for Existing Residential Buildings (EERFERB) is faced with a fast development status. The Central Government decided to prompt the retrofit of 1.5x10 8 m 2 existing residential buildings in China's northern heating region during the '11th Five-Years Plan'. But, at present, the relative incentive policies and measurements are very insufficient. Especially, on the aspect of the retrofit pattern about the organization, retrofit content, investing and financing mode, the policy and management and other factors, no existing successful one can be spreaded into the whole northern heating region. This research not only analyzed the foreign advanced methods, drew lessons from their retrofit in Germany and Poland, but contrasted and analyzed energy efficiency retrofit demonstrations from Harbin, Tianjin, Tangshan and Baotou in China to get our domestic successful patterns and experience. Finally, some recommended retrofit patterns are presented, which can be applied for the instruction and decision-making for the Chinese local governments.

  2. Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Cassard, H.; Denholm, P.; Ong, S.

    2011-02-01

    This paper examines the break-even cost for residential rooftop solar water heating (SWH) technology, defined as the point where the cost of the energy saved with a SWH system equals the cost of a conventional heating fuel purchased from the grid (either electricity or natural gas). We examine the break-even cost for the largest 1,000 electric and natural gas utilities serving residential customers in the United States as of 2008. Currently, the break-even cost of SWH in the United States varies by more than a factor of five for both electricity and natural gas, despite a much smaller variation in the amount of energy saved by the systems (a factor of approximately one and a half). The break-even price for natural gas is lower than that for electricity due to a lower fuel cost. We also consider the relationship between SWH price and solar fraction and examine the key drivers behind break-even costs. Overall, the key drivers of the break-even cost of SWH are a combination of fuel price, local incentives, and technical factors including the solar resource location, system size, and hot water draw.

  3. Next-generation heat pump systems in residential buildings and commercial premises; Naesta generations vaermepumpssystem i bostaeder och lokaler

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Lindahl, Markus; Alsbjer, Markus; Nordman, Roger; Rolfsman, Lennart; Axell, Monica

    2009-07-01

    Summarising, the following conclusions can be drawn from this work. - Installation of a heat pump system is a very efficient way of reducing a building's energy demand without making any greater changes to the building's climate screen, and can therefore assist Sweden's achievement of its energy efficiency improvement targets. - A new generation of cost-effective smaller heat pumps is needed for installation in new detached houses or those being renovated and upgraded. - There also seems to be an excellent market potential for heat pumps that are larger than has previously been common: there should be good prospects for selling them for use in apartment buildings and in commercial or similar premises. - Heat pump installations are particularly competitive in applications where there are simultaneous heating and cooling demands in the property, and also in those cases where heating is required for most of the year and cooling for some other part of the year. If these suggested system arrangements are to be fully realised, there will be a need for further research in certain cases. Particularly, there is a need for research and development of more efficient pumps, fans and speed-controlled compressors in order to get such products on to the market. Performance measurements and follow-up of real systems are needed in order to obtain a clear picture of the efficiency of both present-day and proposed systems. This knowledge is essential for further development of systems, not only for residential buildings but also, even more importantly, for commercial and similar premises. Actual heating and cooling requirements in different types of non-residential premises need to be known more accurately in order to decide how systems should be controlled in order to minimise total energy use. Much indicates that future detached houses will be more energy-efficient, which could have the undesirable result of greater use of direct electric heating, as the investment

  4. Use of residential wood heating in a context of climate change: a population survey in Québec (Canada

    Directory of Open Access Journals (Sweden)

    Valois Pierre

    2008-05-01

    Full Text Available Abstract Background Wood heating is recommended in several countries as a climate change (CC adaptation measure, mainly to increase the autonomy of households during power outages due to extreme climatic events. The aim of this study was to examine various perceptions and individual characteristics associated with wood heating through a survey about CC adaptations. Methods A telephone survey (n = 2,545 of adults living in the southern part of the province of Québec (Canada was conducted in the early fall season of 2005. The questionnaire used closed questions and measured the respondents' beliefs and current adaptations about CC. Calibration weighting was used to adjust the data analysis for the respondent's age and language under stratified sampling based on health regions. Results More than three out of four respondents had access to a single source of energy at home, which was mainly electricity; 22.2% combined two sources or more; 18.5% heated with wood occasionally or daily during the winter. The prevalence of wood heating was higher in the peripheral regions than in the more urban regions, where there was a higher proportion of respondents living in apartments. The prevalence was also higher with participants completely disagreeing (38.5% with the eventual prohibition of wood heating when there is smog in winter, compared to respondents somewhat disagreeing (24.2% or agreeing (somewhat: 17.5%; completely: 10.4% with the adoption of this strategy. It appears that the perception of living in a region susceptible to winter smog, smog warnings in the media, or the belief in the human contribution to CC, did not influence significantly wood heating practices. Conclusion Increased residential wood heating could very well become a maladaptation to climate change, given its known consequences on winter smog and respiratory health. It would thus be appropriate to implement a long-term national program on improved and controlled residential wood

  5. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China.

    Science.gov (United States)

    Zhen, Xiaofei; Li, Jinping; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin; Kang, Jian

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.

  6. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China

    Directory of Open Access Journals (Sweden)

    Xiaofei Zhen

    2018-01-01

    Full Text Available In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.

  7. Energy Analysis of a Complementary Heating System Combining Solar Energy and Coal for a Rural Residential Building in Northwest China

    Science.gov (United States)

    Zhen, Xiaofei; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin

    2018-01-01

    In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively. PMID:29651424

  8. Effect of heat recovery water heater system on the performance of residential split air conditioner using hydrocarbon refrigerant (HCR22)

    Science.gov (United States)

    Aziz, A.; Thalal; Amri, I.; Herisiswanto; Mainil, A. K.

    2017-09-01

    This This paper presents the performance of residential split air conditioner (RSAC) using hydrocarbon refrigerant (HCR22) as the effect on the use of heat recovery water heater system (HRWHS). In this study, RSAC was modified with addition of dummy condenser (trombone coil type) as heat recovery water heater system (HRWHS). This HRWHS is installed between a compressor and a condenser by absorbing a part of condenser waste heat. The results show that RSAC with HRWHS is adequate to generate hot water with the temperature range about 46.58˚C - 48.81˚C when compared to without HRWHS and the use of dummy condenser does not give significant effect to the split air conditioner performance. When the use of HRWHS, the refrigerant charge has increase about 19.05%, the compressor power consumption has slightly increase about 1.42% where cooling capacity almost the same with slightly different about 0.39%. The condenser heat rejection is lower about 2.68% and the COP has slightly increased about 1.05% when compared to without HRWHS. The use of HRWHS provide free hot water, it means there is energy saving for heating water without negative impact to the system performance of RSAC.

  9. Field Measurement and Evaluation of the Passive and Active Solar Heating Systems for Residential Building Based on the Qinghai-Tibetan Plateau Case

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2017-10-01

    Full Text Available Passive and active solar heating systems have drawn much attention and are widely used in residence buildings in the Qinghai-Tibetan plateau due to its high radiation intensity. In fact, there is still lack of quantitative evaluation of the passive and active heating effect, especially for residential building in the Qinghai-Tibetan plateau areas. In this study, three kinds of heating strategies, including reference condition, passive solar heating condition and active solar heating condition, were tested in one demonstration residential building. The hourly air temperatures of each room under different conditions were obtained and analyzed. The results show the indoor air temperature in the living room and bedrooms (core zones was much higher than that of other rooms under both passive and active solar heating conditions. In addition, the heating effect with different strategies for core zones of the building was evaluated by the ratio of indoor and outdoor degree hour, which indicates that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment. The passive solar heating could undertake 49.8% degree hours for heating under an evaluation criterion of 14 °C and the active solar heating could undertake 75% degree hours for heating under evaluation criterion of 18 °C, which indicated that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment in this area. These findings could provide reference for the design and application of solar heating in similar climate areas.

  10. Simulation of energy demand for heating and cooling of a 5-storey residential buildingand evaluation of thermal conditions based on pmv and ppd thermal comfort indices Моделирование энергетических затрат на отопление и охлаждение 5-этажного жилого дома и оценка температурных условий по индексам теплового комфорта pmv и ppd

    Directory of Open Access Journals (Sweden)

    Usmonov Shukhrat Zaurovich

    2013-09-01

    Full Text Available The energy demand of a 5-storey residential building (a 105 series design structure built in 1980, located in the city of Khujand, Tajikistan, was simulated at the Fraunhofer Institute of Building Physics in Germany using WUFI+ software. The purpose of the simulation was to reduce the energy demand for its heating and cooling, as well as to ensure thermal comfort inside the building in the course of its reconstruction and modernization. Reconstruction and modernization of this residential building includes the construction of POLYALPAN ventilated façade, application of mineral wool insulation sheets, aerated concrete blocks, and replacement of old windows by the sealed double glazing.The analysis of micro-climatic parameters of this residential building is performed in furtherance of Category II of EN 15251 "Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics", and it is based on the comprehensive assessment of the values of heat indexes PMV (Predicted Mean Vote and PPD (Predicted Percentage of Dissatisfied. The research is based on the modeling pattern limiting the air temperature values on the premises during the heating period and reducing the energy demand for its heating through the employment of a heat exchanger. The findings prove that the analysis of micro-climatic parameters of buildings would benefit from the comprehensive and integrated assessment of the values of thermal comfort indexes PMV and PPD and from the evaluation of thermal insulation properties of clothes. Moreover, the findings demonstrate the need for development of national standards of the microclimate inside residential buildings. The research was based on the data simulating the climatic conditions in the northern region of Tajikistan during an extremely hot summer season and the optimum indoor air temperature of +24,3 °C instead of 20—22

  11. Ceramics and healthy heating and cooling systems: thermal ceramic panels in buildings. Conditions of comfort and energy demand versus convective systems

    Directory of Open Access Journals (Sweden)

    V. Echarri Iribarren

    2016-12-01

    Full Text Available Porcelain stoneware is a widely used building material. In recent years, its range of uses has expanded to encompass a new spectrum of innovative and inventive applications in architecture. In this research, we analysed the patented Thermal Ceramic Panel. This consists of a thin porcelain stoneware panel that incorporates a capillary system of polypropylene tubes measuring 3.5 mm in diameter embedded in a conductive ceramic interface. The system works with hot or cold water, producing healthy heating and cooling by means of radiant surfaces. Following an initial prototype test in which panels were placed on the walls of an office, we conducted simulations at the University of Alicante Museum using wall, ceiling and baffle panels, having previously monitored the state of the building. Thermal behaviour parameters were analysed and compared with those of other standard finishing materials, obtaining results for thermal comfort and energy savings in comparison with all-air systems.

  12. Features of determining the nonmanufacturing premises comfort level by the integrated microclimate quality criteria

    Science.gov (United States)

    Buhmirov, V. V.; Prorokova, M. V.

    2015-01-01

    The method of determining a microclimate comfort level have been developed, taking into account the main parameters influencing the microclimate in residential, public and administration buildings, their mutual influence on the comfort level, and air quality.

  13. Features of determining the nonmanufacturing premises comfort level by the integrated microclimate quality criteria

    Directory of Open Access Journals (Sweden)

    Buhmirov V.V.

    2015-01-01

    Full Text Available The method of determining a microclimate comfort level have been developed, taking into account the main parameters influencing the microclimate in residential, public and administration buildings, their mutual influence on the comfort level, and air quality.

  14. Experimental characterization, modeling and simulation of a wood pellet micro-combined heat and power unit used as a heat source for a residential building

    Energy Technology Data Exchange (ETDEWEB)

    Thiers, Stephane; Aoun, Bernard; Peuportier, Bruno [MINES ParisTech, CEP - Centre Energetique et Procedes, 60 Boulevard St Michel, 75272 Paris Cedex 06 (France)

    2010-06-15

    Cogeneration provides heat and power in a more efficient way than separate production. Micro-cogeneration (micro-CHP) is an emerging solution for the improvement of energy and environmental assessments of residential buildings. A wood pellet Stirling engine micro-CHP unit has been studied in order to characterize its annual performance when integrated to a building. First, through a test bench experiment, both transient and steady state behaviors of the micro-CHP unit have been characterized and modeled. Then a more complete model representing a hot water and heating system including the micro-CHP unit and a stratified storage tank has been carried out. This model has been coupled to a building model. A sensitivity analysis by simulation shows that the dimensioning of different elements of the system strongly influences its global energy performance. (author)

  15. Dynamic Performance of a Residential Air-to-Air Heat Pump.

    Science.gov (United States)

    Kelly, George E.; Bean, John

    This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump's cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…

  16. Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems

    International Nuclear Information System (INIS)

    Pearce, J.M.

    2009-01-01

    The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV + CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV-generated electricity and CHP-generated heat. A method to determine the maximum percent of PV-generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV + CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five. (author)

  17. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season

    International Nuclear Information System (INIS)

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys

  18. Optimisation of a Swedish district heating system with reduced heat demand due to energy efficiency measures in residential buildings

    International Nuclear Information System (INIS)

    Åberg, M.; Henning, D.

    2011-01-01

    The development towards more energy efficient buildings, as well as the expansion of district heating (DH) networks, is generally considered to reduce environmental impact. But the combined effect of these two progressions is more controversial. A reduced heat demand (HD) due to higher energy efficiency in buildings might hamper co-production of electricity and DH. In Sweden, co-produced electricity is normally considered to displace electricity from less efficient European condensing power plants. In this study, a potential HD reduction due to energy efficiency measures in the existing building stock in the Swedish city Linköping is calculated. The impact of HD reduction on heat and electricity production in the Linköping DH system is investigated by using the energy system optimisation model MODEST. Energy efficiency measures in buildings reduce seasonal HD variations. Model results show that HD reductions primarily decrease heat-only production. The electricity-to-heat output ratio for the system is increased for HD reductions up to 30%. Local and global CO 2 emissions are reduced. If co-produced electricity replaces electricity from coal-fired condensing power plants, a 20% HD reduction is optimal for decreasing global CO 2 emissions in the analysed DH system. - Highlights: ► A MODEST optimisation model of the Linköping district heating system is used. ► The impact of heat demand reduction on heat and electricity production is examined. ► Model results show that heat demand reductions decrease heat-only production. ► Local and global CO 2 emissions are reduced. ► The system electricity-to-heat output increases for reduced heat demand up to 30%.

  19. Decreasing of energy consumption for space heating in existing residential buildings; Combined geothermal and gas district heating systems

    International Nuclear Information System (INIS)

    Rosca, Marcel

    2000-01-01

    The City of Oradea, Romania, has a population of about 230 000 inhabitants. Almost 70% of the total heat demand, including industrial, is supplied by a classical East European type district heating system. The heat is supplied by two low grade coal fired co-generation power plants. The oldest distribution networks and substitutions, as well as one power plant, are 35 years old and require renovation or even reconstruction. The geothermal reservoir located under the city supplies at present 2,2% of the total heat demand. By generalizing the reinjection, the production can be increased to supply about 8% of the total heat demand, without any significant reservoir pressure or temperature decline over 25 years. Another potential energy source is natural gas, a main transport pipeline running close to the city. Two possible scenarios are envisaged to replace the low grade coal by natural gas and geothermal energy as heat sources for Oradea. In one scenario, the geothermal energy supplies the heat for tap water heating and the base load for space heating in a limited number of substations, with peak load being produced by natural gas fired boilers. In the other scenario, the geothermal energy is only used for tap water heating. In both scenarios, all substations are converted into heat plants, natural gas being the main energy source. The technical, economic, and environmental assessment of the two proposed scenarios are compared with each other, as well as with the existing district heating system. Two other possible options, namely to renovate and convert the existing co-generation power plants to natural gas fired boilers or to gas turbines, are only briefly discussed, being considered unrealistic, at least for the short and medium term future. (Author)

  20. Decreasing of energy consumption for space heating in existing residential buildings

    International Nuclear Information System (INIS)

    Stamov, S.; Zlateva, M.; Gechkov, N.

    2000-01-01

    An analysis is for the technical possibilities for reducing the energy consumption in existing buildings by means of the heat control and measurement. The basic performances of the heat capacity control methods, of the hierarchy structure of the control and of the heat measurement technologies are presented. This paper also presents the results from the long-term investigation of energy consumption for heating. The results area consist of three typical and uniform buildings in the city of Kazanlak (Bulgaria). The outcome of the investigation provides a valuable basis for future decisions to be made concerning reconstruction of heating installations and enables the results to be transferred. (Authors)

  1. Vocal Ergonomics in the Workplace: Heating, Ventilation, and Air-Conditioning Method Influences on Vocal Comfort and Function

    Science.gov (United States)

    Sandage, Mary J.; Rahn, Keith A.; Smith, Audrey G.

    2017-01-01

    Purpose: The purpose of this study was to examine the influence of the heating, ventilation, and air-conditioning method on voice function following a voicing task using ecologically valid offices, one with radiant HVAC and one with forced air. Method: A total of 12 consented participants (6 women, 6 men) narrated a video in each of 4…

  2. Integration of a magnetocaloric heat pump in a low-energy residential building

    DEFF Research Database (Denmark)

    Johra, Hicham

    2018-01-01

    The EnovHeat project aims at developing an innovative heat pump system based on the magnetocaloric effect and active magnetic regenerator technology to provide for the heating needs of a single family house in Denmark. Unlike vapor-compression devices, magnetocaloric heat pumps use the reversible...... heat pump can deliver 2600 W of heating power with an appreciable average seasonal system COP of 3.93. On variable part-load operation with a simple fluid flow controller, it can heat up an entire house with an average seasonal system COP of 1.84....... magnetocaloric effect of a solid refrigerant to build a cooling/heating cycle. It has the potential for high coefficient of performance, more silent operation and efficient part-load control. After presenting the operation principles of the magnetocaloric device and the different models used in the current...... numerical study, this article demonstrates for the first time the possibility to utilize this novel heat pump in a building. This device can be integrated in a single hydronic loop including a ground source heat exchanger and a radiant under-floor heating system. At maximum capacity, this magnetocaloric...

  3. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Alan K.; Walker, Iain

    2008-03-02

    This report summarizes results of a literature review, a workshop, and many meetings with demand response and thermostat researchers and implementers. The information obtained from these resources was used to identify key issues of thermostat performance from both energy savings and peak demand perspectives. A research plan was developed to address these issues and activities have already begun to pursue the research agenda.

  4. Optimal Scheduling of Residential Microgrids Considering Virtual Energy Storage System

    Directory of Open Access Journals (Sweden)

    Weiliang Liu

    2018-04-01

    Full Text Available The increasingly complex residential microgrids (r-microgrid consisting of renewable generation, energy storage systems, and residential buildings require a more intelligent scheduling method. Firstly, aiming at the radiant floor heating/cooling system widely utilized in residential buildings, the mathematical relationship between the operative temperature and heating/cooling demand is established based on the equivalent thermodynamic parameters (ETP model, by which the thermal storage capacity is analyzed. Secondly, the radiant floor heating/cooling system is treated as virtual energy storage system (VESS, and an optimization model based on mixed-integer nonlinear programming (MINLP for r-microgrid scheduling is established which takes thermal comfort level and economy as the optimization objectives. Finally, the optimal scheduling results of two typical r-microgrids are analyzed. Case studies demonstrate that the proposed scheduling method can effectively employ the thermal storage capacity of radiant floor heating/cooling system, thus lowering the operating cost of the r-microgrid effectively while ensuring the thermal comfort level of users.

  5. Electric heating guidelines: power smart home; 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Guidelines, for use by B. C. Hydro, were established for proper planning and design of an electric heating system for residential buildings. The guidebook is divided into five sections: (1) comfort and electric heating systems, (2) contractors` guide to heat loss calculation, (3) imperial heat loss factors, (4) metric heat loss factors, and (5) installation guidelines for electric heating systems. Individual topics discussed include heat loss and the human body, heating systems and comfort, heat loss design, air leakage, and soil conductivity factors. Design considerations and equipment standards were described for the following electric heating systems: electric resistance baseboard systems, forced flow unitary heaters, electric radiant cable in-floor systems, radiant ceiling systems, forced warm air heating systems, furnaces, and heat pumps. 68 tabs., 29 figs.

  6. Modeling of an Air Conditioning System with Geothermal Heat Pump for a Residential Building

    Directory of Open Access Journals (Sweden)

    Silvia Cocchi

    2013-01-01

    Full Text Available The need to address climate change caused by greenhouse gas emissions attaches great importance to research aimed at using renewable energy. Geothermal energy is an interesting alternative concerning the production of energy for air conditioning of buildings (heating and cooling, through the use of geothermal heat pumps. In this work a model has been developed in order to simulate an air conditioning system with geothermal heat pump. A ground source heat pump (GSHP uses the shallow ground as a source of heat, thus taking advantage of its seasonally moderate temperatures. GSHP must be coupled with geothermal exchangers. The model leads to design optimization of geothermal heat exchangers and to verify the operation of the geothermal plant.

  7. Physical principle and engineering features of the deep pool reactor for residential heating

    International Nuclear Information System (INIS)

    Shi Gong; Zhao Zhaoyi; Guo Jingren; Tian Jiafu

    1999-01-01

    The use of nuclear energy for low temperature heating is confronted with challenges of safety and economy. The deep pool reactor, a low temperature heating reactor based on novel design principles, has been studied in detail. Results show that it has excellent safety and economic features, and is very suitable for low temperature heating purposes. The whole heating system including the nuclear reactor will be a simple and easy engineering system with the characteristics of reliability, safety and economy because the system and all its devices are based on low temperature and ordinary pressure

  8. Far-Infrared Emission Characteristics and Wear Comfort Property of ZrC-Imbedded Heat Storage Knitted Fabrics for Emotional Garments

    Directory of Open Access Journals (Sweden)

    Kim Hyun Ah

    2017-06-01

    Full Text Available This study examined the far-infrared emission characteristics and wear comfort properties of ZrC-imbedded heat storage knitted fabrics. For this purpose, ZrC-imbedded, heat storage PET (polyethylene terephthalate was spun from high-viscosity PET with imbedded ZrC powder on the core part and low-viscosity PET on the sheath part using a conjugated spinning method. ZrC-imbedded PET knitted fabric was also prepared and its physical properties were measured and compared with those of regular PET knitted fabric. In addition, ingredient analysis and the far-infrared emission characteristics of the ZrC-imbedded knitted fabrics were analyzed by energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. The thermal properties, moisture absorption, and drying properties of the ZrC-imbedded PET knitted fabric were measured and compared with those of the regular PET knitted fabric. The mechanical properties using the FAST (fabric assurance by simple testing system and the dye affinity of the ZrC-imbedded knitted fabric were also measured and compared with those of regular PET knitted fabric.

  9. Experimental performance of R432A to replace R22 in residential air-conditioners and heat pumps

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Shim, Yun-Bo; Jung, Dongsoo

    2009-01-01

    In this study, thermodynamic performance of R432A and HCFC22 is measured in a heat pump bench tester under both air-conditioning and heat pumping conditions. R432A has no ozone depletion potential and very low greenhouse warming potential of less than 5. R432A also offers a similar vapor pressure to HCFC22 for 'drop-in' replacement. Test results showed that the coefficient of performance and capacity of R432A are 8.5-8.7% and 1.9-6.4% higher than those of HCFC22 for both conditions. The compressor discharge temperature of R432A is 14.1-17.3 deg. C lower than that of HCFC22 while the amount of charge for R432A is 50% lower than that of HCFC22 due to its low density. Overall, R432A is a good long term 'drop-in' environmentally friendly alternative to replace HCFC22 in residential air-conditioners and heat pumps due to its excellent thermodynamic and environmental properties

  10. Performance of R433A for replacing HCFC22 used in residential air-conditioners and heat pumps

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Shim, Yun-Bo; Jung, Dongsoo

    2008-01-01

    In this study, thermodynamic performance of R433A and HCFC22 is measured in a heat pump bench tester under air-conditioning and heat pumping conditions. R433A has no ozone depletion potential and very low greenhouse warming potential of less than 5. R433A also offers a similar vapor pressure to HCFC22 for possible 'drop-in' replacement. Test results showed that the coefficient of performance of R433A is 4.9-7.6% higher than that of HCFC22 while the capacity of R433A is 1.0-5.5% lower than that of HCFC22 for both conditions. The compressor discharge temperature of R433A is 22.6-27.9 deg. C lower than that of HCFC22 while the amount of charge for R433A is 57.0-57.7% lower than that of HCFC22 due to its low density. Overall, R433A is a good long term environmentally friendly alternative to replace HCFC22 in residential air-conditioners and heat pumps due to its excellent thermodynamic and environmental properties with minor adjustments

  11. Switching from fossil fuel to renewables in residential heating systems: An empirical study of homeowners' decisions in Germany

    International Nuclear Information System (INIS)

    Michelsen, Carl Christian; Madlener, Reinhard

    2016-01-01

    The replacement of outdated and inefficient fossil fuel residential heating systems (RHS) by more efficient and less CO_2-intensive appliances primarily based on renewable energy sources is an important pillar for the transition to a cleaner and more sustainable energy system. This paper empirically investigates drivers and barriers behind homeowners' decisions to switch from a fossil fuel to a renewable RHS in Germany. For this purpose, we draw on data from a 2010 questionnaire survey among owners of existing single-family and duplex houses in Germany that had received a financial grant to install an RHS (i.e. condensing boiler with solar thermal support, heat pump or wood pellet boiler). We show that environmental protection, a lower dependency on fossil fuels, and a higher degree of RHS-related knowledge are key drivers. In contrast, the perceived difficulty of getting used to the system and a misunderstanding of its principal functioning are obstacles for the heat pump. For the wood pellet boiler, perceived barriers include the low usability, the labor-intensive operation, and the systems' fault liability. Hence, a higher replacement rate requires the willingness to relinquish old habits and perceptions of how an RHS works and operates. - Highlights: • Homeowners' decisions to switch from a fossil fuel to a renewable RHS. • Data from a questionnaire survey among owners of existing homes in Germany. • Environmental protection, lower dependency on fossil fuels, and knowledge as drivers. • Old habits and perceptions of how an RHS works and operates as principal barriers.

  12. Thermal storage in a heat pump heated living room floor for urban district power balancing - effects on thermal comfort, energy loss and costs for residents

    NARCIS (Netherlands)

    van Leeuwen, Richard Pieter; de Wit, J.B.; Fink, J.; Smit, Gerardus Johannes Maria

    2014-01-01

    For the Dutch smart grid demonstration project Meppelenergie, the effects of controlled thermal energy storage within the floor heating structure of a living room by a heat pump are investigated. Storage possibilities are constrained by room operative and floor temperatures. Simulations indicate

  13. Comparison of Advanced Residential Water Heating Technologies in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Fang, X.; Wilson, E.

    2013-05-01

    Gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the US installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many preexisting models were used, new models of condensing and heat pump water heaters were created specifically for this work.

  14. Dynamic Heat Production Modeling for Life Cycle Assessment of Insulation in Danish Residential Buildings

    DEFF Research Database (Denmark)

    Sohn, Joshua L.; Kalbar, Pradip; Birkved, Morten

    2017-01-01

    insulation in a Danish single-family detached home. This single family house, is based on averages of current Danish construction practices with building heat losses estimated using Be10. To simulate a changing district heating grid mix, heat supply fuel sources are modeled according to Danish energy mix...... for space heating without insulation over the lifespan of a building. When the energy sources for insulation production are similar to the energy mix that supplies heat, this logic is valid to very high level of insulation. However, in Denmark, as well as many other countries this assumption is becoming...... increasingly incorrect. Given the generally long service life of buildings, the significance of future energy mixes, which are expected/intended to have a smaller environmental impact, can be great. In this paper, a reference house is used to assess the life cycle environmental impacts of mineral wool...

  15. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    OpenAIRE

    Xiao Chen; Yongquan Wen; Nanyang Li

    2016-01-01

    With the urbanization process of the hot summer and cold winter (HSCW) zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE) and sustainability index based on exergy efficiency, are adopted t...

  16. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2016-09-01

    Full Text Available With the urbanization process of the hot summer and cold winter (HSCW zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE and sustainability index based on exergy efficiency, are adopted to perform the evaluation. Models for the energy and total exergy efficiencies of various space and water heating equipment/systems are developed. The evaluation results indicate that common uses of electricity for space and water heating are the most unsustainable ways of space and water heating. In terms of PEE and sustainability index, air-source heat pumps for space and water heating are suitable for the HSCW zone. The PEE and sustainability index of solar water heaters with auxiliary electric heaters are greatly influenced by local solar resources. Air-source heat pump assisted solar hot water systems are the most sustainable among all water heating equipment/systems investigated in this study. Our works suggest the key potential for improving the energy efficiency and the sustainability of space and water heating in urban residential buildings of the HSCW zone.

  17. The role of the design and operation of individual heating systems for the energy retrofits of residential buildings

    International Nuclear Information System (INIS)

    Terés-Zubiaga, J.; Campos-Celador, A.; González-Pino, I.; Diarce, G.

    2016-01-01

    Highlights: • Thermal renovation of buildings is analysed by dynamic simulation. • Different envelope and individual heating options are considered. • Temperature set point plays the most important role in the energy consumption. • Condensing boilers increase 10% the energy savings compared to regular ones. • The rebound effect can cause significant differences on energy consumption. - Abstract: The feasibility of individual natural gas fired boiler-based heating systems in the retrofitting of buildings constructed in the 50–60 s in Bilbao (northern Spain) is evaluated in this paper. A holistic approach through dynamic simulations using TRNSYS is employed for the purpose. An existing dwelling previously monitored and used to validate the model applied is selected as a case study. 54 different scenarios are evaluated, which arise from the combination of 3 different envelope options, 2 types of heat production units, 3 heat production temperatures and 3 comfort temperature set-points. The cases are evaluated in terms of energy results, economic aspects, and the influence of user behaviour. Regarding the latter, the influence of the potential rebound effect is also evaluated. The results show energy savings nearby 10% when condensing boilers are compared with high efficiency boilers. In relation to hot water production temperature, energy savings between 5 and 10% are found when the temperature is lowered from 60 to 50 °C. The greatest impact on energy consumption is related to the occupants’ behaviour: reductions up to 89% are achieved if the indoor temperature set-point is lowered 2 °C. This is reinforced with the results related to the rebound effect, which show significant differences on energy consumption values. These evidences demonstrate that the user behaviour is an essential feature to be considered in studies regarding buildings energy performance. As a consequence, the holistic approach herein employed emerges as a key tool to be applied in

  18. Cluster analysis of residential heat load profiles and the role of technical and household characteristics

    DEFF Research Database (Denmark)

    Carmo, Carolina; Christensen, Toke Haunstrup

    2016-01-01

    of the temporality of the energy demand is needed. This paper contributes to this by focusing on the daily load profiles of energy demand for heating of Danish dwellings with heat pumps. Based on hourly recordings from 139 dwellings and employing cluster and regression analysis, the paper explores patterns...... (typologies) in daily heating load profiles and how these relate to socio-economic and technical characteristics of the included households. The study shows that the load profiles vary according to the external load conditions. Two main clusters were identified for both weekdays and weekends and across load...

  19. Check and evaluation system on heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of china based on multi-index comprehensive evaluation method

    International Nuclear Information System (INIS)

    Zhao Jing; Wu Yong; Zhu Neng

    2009-01-01

    Heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of China is organized and implemented in a large scale by local government in 15 provinces of North China with the unified guidance and control of central government. Firstly, this paper introduced the target of energy-saving reformation of existing residential buildings in North China and the importance of check and evaluation on this target, then pointed out the necessity of building up an evaluation system for energy-saving retrofit. According to the analytical hierarchy process (AHP), three-grade evaluation system was built up for heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of China. Also, based on multi-index comprehensive evaluation method combined with life cycle assessment (LCA) theory, post-evaluation thought and successful degree evaluation method, a mathematical model was established. Finally, a set of scientific method for evaluating heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of China systematically, scientifically, comprehensively and objectively was created.

  20. Thermal comfort. Design criteria for heating and cooling load calculations; Thermische Behaglichkeit. Auslegungskriterien fuer Heiz- und Kuehllastberechnungen

    Energy Technology Data Exchange (ETDEWEB)

    Nadler, Norbert [CSE Nadler, Oranienburg (Germany)

    2010-07-01

    Due to the publication of the regulation DIN EN 15 251, the design criteria for the thermal indoor climate during the cooling load calculation and heating load calculation also are specified on European level. The regulation determines that the design values for the operational ambient temperature can be determined from the percentage of the dissatisfied values (PPD value according to DIN EN ISO 773). On national level, the exact definition is to take place for typical activities and thermal insulation values of the clothing. Alternatively, the direct use of the PPD value during the layout also is possible. It is shown that this method is to be preferred and that the most cooling load programs available at the market do not correspond to the generally accepted rules of the technology any longer.

  1. Vocal Ergonomics in the Workplace: Heating, Ventilation, and Air-Conditioning Method Influences on Vocal Comfort and Function.

    Science.gov (United States)

    Sandage, Mary J; Rahn, Keith A; Smith, Audrey G

    2017-02-01

    The purpose of this study was to examine the influence of the heating, ventilation, and air-conditioning method on voice function following a voicing task using ecologically valid offices, one with radiant HVAC and one with forced air. A total of 12 consented participants (6 women, 6 men) narrated a video in each of 4 environmental conditions in a within-between repeated-measures design. Acoustic data were collected with an ambulatory phonation monitor and perceived phonatory effort was determined following the voicing task. Data were analyzed using a within-between repeated-measures analysis of variance with significance set at α spaces despite significant acoustic findings. Future research should address longer exposure to environmental differences combined with a longer voicing task within ecologically valid work spaces as well as the recruitment of participants who have particular vulnerability to environmental perturbations.

  2. Field evaluation and assessment of thermal energy storage for residential space heating

    Science.gov (United States)

    Hersh, H. N.

    1982-02-01

    A data base was developed based on two heating seasons and 45 test and 30 control homes in Maine and Vermont. Based on first analysis of monitored temperatures and electrical energy used for space heating, fuel bills and reports of users and utilities, the technical performance of TES ceramic and hydronic systems is deemed to be technically satisfactory and there is a high degree of customer acceptance and positive attitudes towards TES. Analysis of house data shows a high degree of variability in electric heat energy demand for a given degree-day. An analysis is underway to investigate relative differences in the efficiency of electricity utilization of storage and direct heating devices. The much higher price of storge systems relative to direct systems is an impediment to market penetration. A changing picture of rate structures may encourage direct systems at the expense of storage systems.

  3. Energy Efficiency Modelling of Residential Air Source Heat Pump Water Heater

    Directory of Open Access Journals (Sweden)

    Cong Toan Tran

    2016-03-01

    Full Text Available The heat pump water heater is one of the most energy efficient technologies for heating water for household use. The present work proposes a simplified model of coefficient of performance and examines its predictive capability. The model is based on polynomial functions where the variables are temperatures and the coefficients are derived from the Australian standard test data, using regression technics. The model enables to estimate the coefficient of performance of the same heat pump water heater under other test standards (i.e. US, Japanese, European and Korean standards. The resulting estimations over a heat-up phase and a full test cycle including a draw off pattern are in close agreement with the measured data. Thus the model allows manufacturers to avoid the need to carry out physical tests for some standards and to reduce product cost. The limitations of the methodology proposed are also discussed.

  4. Design package for a complete residential solar space heating and hot water system

    Science.gov (United States)

    1978-01-01

    Information necessary to evaluate the design of a solar space heating and hot water system is reported. System performance specifications, the design data brochure, the system description, and other information pertaining to the design are included.

  5. Smart grid for comfort; Smart grid voor comfort

    Energy Technology Data Exchange (ETDEWEB)

    Zeiler, W.; Van der Velden, J.A.J. [Kropman, Rijswijk (Netherlands); Vissers, D.R.; Maaijen, H.N. [Faculteit Bouwkunde, Technische Universiteit Eindhoven TUE, Eindhoven (Netherlands); Kling, W.L. [Faculteit Electrical Engineering, Technische Universiteit Eindhoven TUE, Eindhoven (Netherlands); Larsen, J.P. [Sense Observation Systems, Rotterdam (Netherlands)

    2012-04-15

    A new control strategy was developed based on the application of wireless sensor network with the connection to a smart grid to investigate if it is possible to save energy on the level of the user under the condition of maintaining the same or even improved level of individual comfort. By using different scenarios, for individual comfort and energy consumption, agents provide the steering of the process control This forms the basis of a new approach to optimize the energy consumption, after which the effect of it can be used on the level of residential building to optimize the interaction with the electrical infrastructure, the smart grid. [Dutch] Er vindt onderzoek plaats naar een nieuwe regelstrategie gebaseerd op de toepassing van een draadloos sensor netwerk dat is gekoppeld aan het smart grid. Doel van deze regelstrategie is om op gebruikersniveau energie te kunnen besparen met behoud of zelfs verbetering van het individueel comfort. Er zijn verschillende scenario's voor individueel comfort en energiegebruik van apparatuur met behulp van agents die voor de aansturing kunnen zorgen. Zo wordt de kern van de energievraag geoptimaliseerd. De doorwerking hiervan tot op het niveau van woninggebouw en de koppeling met het externe elektriciteitsnet kan vervolgens worden geoptimaliseerd.

  6. Influence of occupant's heating set-point preferences on indoor environmental quality and heating demand in residential buildings

    DEFF Research Database (Denmark)

    Fabi, Valentina; Corgnati, Stefano Paolo; Andersen, Rune Korsholm

    2013-01-01

    of energy consumption. The aim was to compare the obtained results with a traditional deterministic use of the simulation program. Based on heating set-point behavior of 13 Danish dwellings, logistic regression was used to infer the probability of adjusting the set-point of thermostatic radiator valves...

  7. Impacts of residential heating intervention measures on air quality and progress towards targets in Christchurch and Timaru, New Zealand

    Science.gov (United States)

    Scott, Angelique J.; Scarrott, Carl

    2011-06-01

    Elevated wintertime particulate concentrations in the New Zealand cities of Christchurch and Timaru are mostly attributed to the burning of wood and coal for residential heating. A carrot-and-stick approach was adopted for managing air quality in Christchurch, where strict intervention measures were introduced together with a residential heater replacement programme to encourage householders to change to cleaner forms of heating. A similar approach was only recently implemented for Timaru. This paper presents the results of a partial accountability analysis, where the impact of these measures on the target source, PM 10 emissions, and PM 10 concentrations are quantified. A statistical model was developed to estimate trends in the concentrations, which were tested for significance after accounting for meteorological effects, and to estimate the probability of meeting air quality targets. Results for Christchurch and Timaru are compared to illustrate the impacts of differing levels of intervention on air quality. In Christchurch, approximately 34,000 (76%) open fires and old solid fuel burners were replaced with cleaner heating technology from 2002 to 2009, and total open fires and solid fuel burner numbers decreased by 45%. Over the same time period, estimated PM 10 emissions reduced by 71% and PM 10 concentrations by 52% (maxima), 36% (winter mean), 26% (winter median) and 41% (meteorology-adjusted winter means). In Timaru, just 3000 (50%) open fires and old solid fuel burners were replaced from 2001 to 2008, with total open fire and solid fuel burner numbers reduced by 24%. PM 10 emissions declined by 32%, with low reductions in the PM 10 concentrations (maxima decreased by 7%, winter means by 11% and winter medians by 3%). These findings, supported by the results of the meteorology corrected trend analysis for Christchurch, strongly indicate that the combination of stringent intervention measures and financial incentives has led to substantial air quality

  8. Augmenting natural ventilation using solar heat and free cool energy for residential buildings

    Directory of Open Access Journals (Sweden)

    N. B. Geetha

    2014-03-01

    Full Text Available In many urban buildings ventilation is not sufficient that will increase the temperature and also create unhealthy atmosphere inside the room. In such buildings artificially induced ventilation through freely available energy promote comfort conditions by reducing the temperature by 2 to 3°C and also creating good circulation of fresh air inside the room. In the present work the concept of improving the ventilation by excess hot energy available during summer days from the solar flat plate collector and by storing cool energy available during the early morning hour in the Phase Change Material (PCM based storage system is attempted. An experimental setup is made to study the effect of improvement in natural ventilation and the results are reported. A visible reduction in temperature is observed through circulation of air from the bottom side of the room to the roof of the house using the stored hot and cool energy. A CFD analysis is also carried out using ANSYS-CFX software to simulate and evaluate the mass flow of air at the inlet and at the selected RTD location by matching the transient temperature profile of the simulated result with the experimental results at the selected RTD location.

  9. Impact of Urban Heat Island under the Hanoi Master Plan 2030 on Cooling Loads in Residential Buildings

    Directory of Open Access Journals (Sweden)

    Tran Hoang Hai Nam

    2015-01-01

    Full Text Available This study aims to evaluate the influence of urban heat island (UHI under the Hanoi Master Plan 2030 on the energy consumption for space cooling in residential buildings. The weather conditions under the current and future status (master plan condition simulated in the previous study (Trihamdani et al., 2014 were used and cooling loads in all the residential buildings in Hanoi over the hottest month were estimated under the simulated current and future conditions by using the building simulation program, TRNSYS (v17. Three most typical housing types in the city were selected for the simulation. The cooling loads of respective housing types were obtained in each of the districts in Hanoi. The results show that the total cooling loads over June 2010 is approximately 683 Terajoule (TJ under the current status, but it is predicted to increase to 903 TJ under the master plan condition. The increment is largely due to the increase in number of households (203 TJ or 92%, but partially due to the increase in urban temperature, i.e. UHI effect (17 TJ or 8%. The increments in new built-up areas were found to be larger than those in existing built-up areas. The cooling load in apartment is approximately half of that in detached house, which is approximately half of that in row house. Moreover, it was seen that although sensible cooling loads increased with the increase in outdoor temperature, the latent cooling loads decreased due to the decrease in absolute humidity and the increase in air temperature.

  10. Analysis and proposal of implementation effects of heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of China in “the 11th Five-Year Plan” period

    International Nuclear Information System (INIS)

    Bao Lingling; Zhao Jing; Zhu Neng

    2012-01-01

    In China, northern heating region contains approximately 6.5 billion m 2 residential building areas accounting for 15% of the total residential living areas of urban and rural. About 70% of the urban residential buildings in north China are high energy consumption buildings. The task of heat metering and energy efficiency retrofit of 0.15 billion m 2 existing residential buildings in northern heating areas of China in “the 11th Five-Year Plan” period was proposed by the Ministry of Housing and Urban–Rural Development (MOHURD) in 2007 and completed in 2010. This paper introduced both central and local governments' efforts on organization, implementation and finance, etc. Then several retrofitting effects involving improving the people's livelihood, mobilizing the enthusiasm of residents for the retrofit and driving the development of relevant industries were presented. Finally, on the basis of analyzing the issues encountered in the progress of the retrofit in the past 4 years, the paper gave some policy proposals on organization system, financing models, reward mechanism, and heating system reformation to help to promote the energy efficiency retrofit in “the 12th Five-Year Plan” period. - Highlights: ► Specific approaches of heat metering and energy efficiency retrofit (HMEER) at central and local level are introduced. ► Main HMEER effects are presented. ► Analyzing several issues encountered in the progress of the HMEER. ► Corresponding proposals are provided.

  11. Hygrothermal response of a dwelling house. Thermal comfort criteria

    Directory of Open Access Journals (Sweden)

    Adrian IACOB

    2015-12-01

    Full Text Available The use of local natural materials in order to reduce the environmental negative impact of buildings has become common practice in recent years; such buildings are to be found in all regions of the planet. The high level of thermal protection provided by the envelope elements made from natural materials such as straw bale insulation, hemp insulation or sheep wool, and their lack of thermal massiveness require a more complex analysis on their ability to keep interior comfort without accentuated variations. This paper proposes a comparative analysis between different solutions for a residential building located near a Romanian city, Cluj-Napoca. The elements of the building envelope are designed in three alternative solutions, using as substitute to classical solutions (concrete and polystyrene, masonry and polystyrene, straw bales and rammed earth for enclosing elements. For this purpose there are conducted numerical simulations of heat and mass transfer, using a mathematical model that allows the analysis of indoor comfort, by comparing both objective factors (air temperature, operative temperature and relative humidity and subjective factors, which are needed to define interior thermal comfort indices PPD and PMV. Finally, a set of conclusions are presented and future research directions are drawn.

  12. Comparison of Advanced Residential Water Heating Technologies in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fang, Xia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-05-01

    In this study, gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the United States, installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many pre-existing models were used, new models of condensing and heat pump water heaters were created specifically for this work. In each case modeled, the whole house was simulated along with the water heater to capture any interactions between the water heater and the space conditioning equipment.

  13. North–South debate on district heating: Evidence from a household survey

    International Nuclear Information System (INIS)

    Guo, Jin; Huang, Ying; Wei, Chu

    2015-01-01

    There has been a long debate on whether South China should supply district heating for the residential sector, a system that is widely used in North China. The major concern is that it may further accelerate China's energy demand. Using a unique urban household level dataset, the China Residential Energy Consumption Survey (CRECS), we investigate residential energy consumption for heating and examine the energy intensity and energy cost of distributed heating in South China and district heating in North China during the 2012 heating season. Our results show that the total energy consumption for distributed heating system users in southern cities is significantly lower than for users of district heating systems in northern cities. However, when accounting for the heating area and heating season, the distributed heating households in the South consumed 32% more energy and paid 189% higher cost per unit area and per hour, but had lower comfort than district heating users in the North. These findings suggest promoting the district heating market in appropriate areas in South China. This not only can improve residential welfare, but also can indirectly reduce energy consumption and financial burdens. - Highlights: • The debate on whether Southern China apply district heating is present. • The household data in 2012 is used to compare the energy efficient and cost. • South resident use more energy and higher cost but less comfort than North. • Government should not prevent the district heating market.

  14. Hybrid renewable energy system application for electricity and heat supply of a residential building

    Directory of Open Access Journals (Sweden)

    Nakomčić-Smaragdakis Branka B.

    2016-01-01

    Full Text Available Renewable and distributed energy systems could provide a solution to the burning issue of reliable and clean supply of energy, having in mind current state and future predictions for population growth and fossil fuel scarcity. Hybrid renewable energy systems are novelty in Serbia and warrant further detailed research. The aim of this paper is to analyze the application of renewable energy sources(RES for electricity and heat supply of a typical household in Serbia, as well as the cost-effectiveness of the proposed system. The influence of feed-in tariff change on the value of the investment is analyzed. Small, grid-connected hybrid system (for energy supply of a standard household, consisting of geothermal heat pump for heating/cooling, solar photovoltaic panels and small wind turbine for power supply is analyzed as a case study. System analysis was conducted with the help of RETScreen software. Results of techno-economics analysis have shown that investing in geothermal heat pump and photovoltaic panels is cost-effective, while that is not the case with small wind turbine.

  15. Development of Innovative Heating and Cooling Systems Using Renewable Energy Sources for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    Cinzia Buratti

    2013-10-01

    Full Text Available Industrial and commercial areas are synonymous with high energy consumption, both for heating/cooling and electric power requirements, which are in general associated to a massive use of fossil fuels producing consequent greenhouse gas emissions. Two pilot systems, co-funded by the Italian Ministry for the Environment, have been created to upgrade the heating/cooling systems of two existing buildings on the largest industrial estate in Umbria, Italy. The upgrade was specifically designed to improve the system efficiency and to cover the overall energy which needs with renewable energy resources. In both cases a solar photovoltaic plant provides the required electric power. The first system features a geothermal heat pump with an innovative layout: a heat-storage water tank, buried just below ground level, allows a significant reduction of the geothermal unit size, hence requiring fewer and/or shorter boreholes (up to 60%–70%. In the other system a biomass boiler is coupled with an absorption chiller machine, controlling the indoor air temperature in both summer and winter. In this case, lower electricity consumption, if compared to an electric compression chiller, is obtained. The first results of the monitoring of summer cooling are presented and an evaluation of the performance of the two pilot systems is given.

  16. Integration of a magnetocaloric heat pump in a low-energy residential building

    DEFF Research Database (Denmark)

    Johra, Hicham; Filonenko, Konstantin; Heiselberg, Per

    2018-01-01

    magnetocaloric effect of a solid refrigerant to build a cooling/heating cycle. It has the potential for high coefficient of performance, more silent operation and efficient part-load control. After presenting the operation principles of the magnetocaloric device and the different models used in the current...

  17. Energy Requirement and Comfort of Gas- and Electric-powered Hot-water Systems

    International Nuclear Information System (INIS)

    Luedemann, B.; Schmitz, G.

    1999-01-01

    In view of the continuous reduction in the specific heating energy demand of new buildings the power demand for hot-water supply increasingly dominates the heating supply of residential buildings. Furthermore, the German energy-savings-regulation 2000 (ESVO) is intended to evaluate the techniques installed such as domestic heating or hot-water supply within an overall energetic view of the building. Planning advice for domestic heating, ventilation and hot-water systems in gas-heated, low-energy buildings has therefore been developed in a common research project of the Technical University of Hamburg Harburg (TUHH) and four energy supply companies. In this article different gas-or electricity-based hot-water systems in one family houses and multiple family houses are compared with one another with regard to the aspects of comfort and power requirements considering the user's behaviour. (author)

  18. Application of solar energy in heating and cooling of residential buildings under Central Asian conditions

    Directory of Open Access Journals (Sweden)

    Usmonov Shukhrat Zaurovich

    2014-04-01

    Full Text Available Solar radiation is the main source of thermal energy for almost all the processes developing in the atmosphere, hydrosphere, and biosphere. The total duration of sunshine in Tajikistan ranges from 2100 to 3170 hours per year. Solar collectors can be mounted on the roof of a house after its renovation and modernization. One square meter of surface area in Central Asia accounts for up to 1600 kW/h of solar energy gain, whilst the average gain is 1200 kW/h. Active solar thermal systems are able to collect both low- and high-temperature heat. Active systems require the use of special engineering equipment for the collection, storage, conversion and distribution of heat, while a low-grade system is based on the principle of using a flat solar collector. The collector is connected to the storage tank for storing the heated water, gas, etc. The water temperature is in the range 50-60 °C. For summer air conditioning in hot climates, absorption-based solar installations with open evaporating solution are recommended. The UltraSolar PRO system offers an opportunity to make a home independent of traditional electricity. Combining Schneider Electric power generation and innovative energy storage technology results in an independent power supply. Traditional power supply systems can be short-lived since they store energy in lead-acid batteries which have a negligible lifetime. Lead-acid batteries operate in a constant charge-discharge mode, require specific conditions for best performance and can fail suddenly. Sudden failure of lead acid batteries, especially in winter in the northern part of Tajikistan, completely disables the heating system of a building. Instead, it is recommended to use industrial lithium-ion batteries, which have a significantly longer life and reliability compared to lead-acid type. UltraSolar PRO are ideal and provide a complete package, low noise and compact lithium-ion power supply.

  19. Ten questions about radiant heating and cooling systems

    DEFF Research Database (Denmark)

    Rhee, Kyu-Nam; Olesen, Bjarne W.; Kim, Kwang Woo

    2017-01-01

    studies on RHC systems in terms of comfort, heat transfer analysis, energy simulation, control strategy, system configurations and so on. Many studies have demonstrated that the RHC system is a good solution to improve indoor environmental quality while reducing building energy consumption for heating......Radiant heating and cooling (RHC) systems are being increasingly applied not only in residential but also in non-residential buildings such as commercial buildings, education facilities, and even large scale buildings such as airport terminals. Furthermore, with the combined ventilation system used...

  20. State of Maine residential heating oil survey: 1995--1996 season summary

    International Nuclear Information System (INIS)

    Elder, B.

    1996-05-01

    In Maine the cash price is surveyed, as opposed to lthe retail or charge price, as it has been identified as the price most often paid by Maine consumers. As one can see from the chart in this report, the 1995-1996 cash prices for No. 2 heating oil can be characterized as having an upward trend and much more fluctuation than last years' relatively flat line. The 1995-96 heating season started at the closing price of the previous season and for the first few weeks prices were lower than most of the 1994-95 trendline. When the weather became cooler, however, prices were on a steady incline until well into the winter. Prices leveled off for most of the rest of the season with a dramatic surge on the last week of the survey. The average statewide cash price for No. 2 heating oil this year was .861 1 cents, approximately ten cents higher than the average for 1994-1995 which was .7661 cents per gallon. It has been the observation of the SPO that during most of the 1995-1996 season, Maine's prices showed a direct correspondence with New England rack or wholesale prices. It appeared that they never fluctuated more than 3-4 cents from each other

  1. Residential proximity to major roads and term low birth weight: the roles of air pollution, heat, noise, and road-adjacent trees.

    Science.gov (United States)

    Dadvand, Payam; Ostro, Bart; Figueras, Francesc; Foraster, Maria; Basagaña, Xavier; Valentín, Antònia; Martinez, David; Beelen, Rob; Cirach, Marta; Hoek, Gerard; Jerrett, Michael; Brunekreef, Bert; Nieuwenhuijsen, Mark J

    2014-07-01

    Maternal residential proximity to roads has been associated with adverse pregnancy outcomes. However, there is no study investigating mediators or buffering effects of road-adjacent trees on this association. We investigated the association between mothers' residential proximity to major roads and term low birth weight (LBW), while exploring possible mediating roles of air pollution (PM(2.5), PM(2.5-10), PM(10), PM(2.5) absorbance, nitrogen dioxide, and nitrogen oxides), heat, and noise and buffering effect of road-adjacent trees on this association. This cohort study was based on 6438 singleton term births in Barcelona, Spain (2001-2005). Road proximity was measured as both continuous distance to and living within 200 m from a major road. We assessed individual exposures to air pollution, noise, and heat using, respectively, temporally adjusted land-use regression models, annual averages of 24-hour noise levels across 50 m and 250 m, and average of satellite-derived land-surface temperature in a 50-m buffer around each residential address. We used vegetation continuous fields to abstract tree coverage in a 200-m buffer around major roads. Living within 200 m of major roads was associated with a 46% increase in term LBW risk; an interquartile range increase in heat exposure with an 18% increase; and third-trimester exposure to PM(2.5), PM(2.5-10), and PM10 with 24%, 25%, and 26% increases, respectively. Air pollution and heat exposures together explained about one-third of the association between residential proximity to major roads and term LBW. Our observations on the buffering of this association by road-adjacent trees were not consistent between our 2 measures of proximity to major roads. An increased risk of term LBW associated with proximity to major roads was partly mediated by air pollution and heat exposures.

  2. Passive Residential Houses with the Accumulation Properties of Ground as a Heat Storage Medium

    Science.gov (United States)

    Ochab, Piotr; Kokoszka, Wanda; Kogut, Janusz; Skrzypczak, Izabela; Szyszka, Jerzy; Starakiewicz, Aleksander

    2017-12-01

    Solar radiation is the primary source of life energy on Earth. The irradiance of the upper atmosphere is about 1360 W/m2, and it is estimated that about 1000 W/m2 reaches the ground. Long-term storage of heat energy is related to the use of a suitable thermal energy carrier. It may be either artificial or natural water tank, or artificial gravel-water tank, or aquifer or soil. It is justified to store the generated energy in large heating systems due to the nature of solar thermal energy. Typically, in such a solution storage space is a large solar collector farm. The reason for this is the proportionally small unit profits, which only in the case of large number of units provides sufficient energy that can be accumulated. It should be noted that Poland, a country located in a temperate and less harsh climate such as Scandinavia and Canada, has a relatively high potential for solar revenue. In the last decade, it has caused mainly small and individual heating installations. However, much of the municipal and industrial economy continues to rely on energy from non-renewable resources. This is due not only to the lack of a high-efficiency alternative to non-renewable energy resources, but also to the thermal state of buildings throughout the country, where old buildings require thermomodernization. This has the effect of both polluting the environment and the occurrence of smog, as well as pollutants in water and soil. This directly affects the occurrence of civilization diseases and other societal health problems. Therefore, the surplus of thermal clean energy that occurs during the spring and summer period should not only be used on a regular basis, but also stored for later winter use. The paper presents the concept of housing estate, which consists of 32 twin housing units. The solid character of buildings consistently refers to passive construction, and the materials meet the requirements for the passive buildings.

  3. Design, construction, and testing of a residential solar heating and cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Ward, D.S.; Loef, G.O.G.

    1976-06-01

    The NSF/CSU Solar House I solar heating and cooling system became operational on 1 July 1974. During the first months of operation the emphasis was placed on adjustment, ''tuning,'' and fault correction in the solar collection and the solar/fuel/cooling subsystems. Following this initial check out period, analysis and testing of the system utilizing a full year of data were accomplished. This report discusses the results of this analysis of the full year of operation. (WDM)

  4. A Heat Dynamic Model for Intelligent Heating of Buildings

    DEFF Research Database (Denmark)

    Thavlov, Anders; Bindner, Henrik W.

    2015-01-01

    This article presents a heat dynamic model for prediction of the indoor temperature in an office building. The model has been used in several flexible load applications, where the indoor temperature is allowed to vary around a given reference to provide power system services by shifting the heating...... of the building in time. This way the thermal mass of the building can be used to absorb energy from renewable energy source when available and postpone heating in periods with lack of renewable energy generation. The model is used in a model predictive controller to ensure the residential comfort over a given...

  5. Residential greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    1985-02-01

    The following report examines the technical and economic viability of residential greenhouse additions in Whitehorse, Yukon. The greenhouse was constructed using the south facing wall of an existing residence as a common wall. Total construction costs were $18,000, including labour. Annual fuel demand for the residence has been reduced by about 10 per cent for an annual saving of $425. In addition, produce to the value of $1,000 is grown annually in the greenhouse for domestic consumption and commercial resale. Typically the greenhouse operates for nine months each year. There is a net thermal loss during the months of November, December and January as a result of the large area of glazing. As well as supplementing the heating supply solar greenhouses can provide additional cash crops which can be used to offset the cost of construction. Humidity problems are minimal and can be dealt with by exhausting high humidity air. One system which has been considered for the greenhouse is to use a standard residential heat pump to remove excess moisture and to pump heat into the house. This would have a secondary benefit of excluding the need to circulate greenhouse air through the house. Thus any allergenic reactions to the greenhouse air would be prevented. 8 refs., 3 figs, 2 tabs.

  6. Life cycle cost analysis of solar heating and DHW systems in residential buildings

    International Nuclear Information System (INIS)

    Colombo, R.; Gilliaert, D.

    1992-01-01

    Economic Life Cycle Cost Analysis (ELCCA) is an easy and friendly computer program, IBM compatible for economic evaluation of solar energy system which involves comparison of the capital and operating costs of a conventional system. In this section we would like to suggest the ELCCA-PC program as a new tools using life cycle cost analysis for annual and cumulative cash flow methodology that take into account all future expenses. ELCCA-PC program considers fixed and changeable items that are involved in installing the equipment such as interest of money borrowed, property and income taxes, current energy cost for electricity operating system, maintenance, insurance and fuel costs and other economic operating expenses. Moreover fraction of annual heating load supplied from solar system is considered in this analysis. ECC-PC program determines the yearly outflow of money over the period of an economic analysis that can be converted to a series of equal payments in today's money

  7. Micro combined heat and power operating on renewable energy for residential building

    International Nuclear Information System (INIS)

    Aoun, Bernard

    2008-01-01

    The building sector consumes more than 43% of the total national energy consumption in France leading to more than 25% of CO 2 emissions associated to this energy consumption. A large number of options exist to limit CO 2 emissions and to improve the performance of buildings. One of these options is developed in this thesis, the use of renewable energies (solar and biomass) in combined production of heat and power. Conventional systems of combined heat and power production are briefly analyzed. The major part of this work has been focused on the development of a micro-CHP system based on an organic Rankine cycle operating on renewable energies intermittent and non-intermittent (solar and wood). The working fluids have been analyzed to allow reaching high thermodynamic performance. The different promising technologies, for each components of the system are identified, depending on the working fluid. A special test bench has been designed and realized to test and characterize an oil-free vapor scroll expander suitable for our application. The different components have been sized using computerized tools developed for the modeling of the Organic Rankine cycle. A dynamic simulation tool has been developed to simulate the annual performance of the micro-CHP system operating under different climate conditions and thermal loads. Results show that the micro-CHP system could save more than 40% of the primary energy consumption and up to 60% of CO 2 emissions. The Levelized electricity cost has been calculated using economic analysis; results show that the electricity cost (50 c-euros/kWhel) is still high compared to other technologies. (author)

  8. Understanding the adaptive approach to thermal comfort

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, M.A. [Oxford Univ. (United Kingdom). Centre for the Study of Christianity and Culture; Nicol, J.F. [Oxford Brookes Univ. (United Kingdom). School of Architecture

    1998-10-01

    This paper explains the adaptive approach to thermal comfort, and an adaptive model for thermal comfort is presented. The model is an example of a complex adaptive system (Casti 1996) whose equilibria are determined by the restrictions acting upon it. People`s adaptive actions are generally effective in securing comfort, which occurs at a wide variety of indoor temperatures. These comfort temperatures depend upon the circumstances in which people live, such as the climate and the heating or cooling regime. The temperatures may be estimated from the mean outdoor temperature and the availability of a heating or cooling plant. The evaluation of the parameters of the adaptive model requires cross-sectional surveys to establish current norms and sequential surveys (with and without intervention) to evaluate the rapidity of people`s adaptive actions. Standards for thermal comfort will need revision in the light of the adaptive approach. Implications of the adaptive model for the HVAC industry are noted.

  9. Reducing residential solid fuel combustion through electrified space heating leads to substantial air quality, health and climate benefits in China's Beijing-Tianjin-Hebei region

    Science.gov (United States)

    Yang, J.; Mauzerall, D. L.

    2017-12-01

    During periods of high pollution in winter, household space heating can contribute more than half of PM2.5 concentrations in China's Beijing-Tianjin-Hebei (BTH) region. The majority of rural households and some urban households in the region still heat with small stoves and solid fuels such as raw coal, coal briquettes and biomass. Thus, reducing emissions from residential space heating has become a top priority of the Chinese government's air pollution mitigation plan. Electrified space heating is a promising alternative to solid fuel. However, there is little analysis of the air quality and climate implications of choosing various electrified heating devices and utilizing different electricity sources. Here we conduct an integrated assessment of the air quality, human health and climate implications of various electrified heating scenarios in the BTH region using the Weather Research and Forecasting model with Chemistry. We use the Multi-resolution Emission Inventory for China for the year 2012 as our base case and design two electrification scenarios in which either direct resistance heaters or air source heat pumps are installed to replace all household heating stoves. We initially assume all electrified heating devices use electricity from supercritical coal-fired power plants. We find that installing air source heat pumps reduces CO2 emissions and premature deaths due to PM2.5 pollution more than resistance heaters, relative to the base case. The increased health and climate benefits of heat pumps occur because they have a higher heat conversion efficiency and thus require less electricity for space heating than resistance heaters. We also find that with the same heat pump installation, a hybrid electricity source (40% of the electricity generated from renewable sources and the rest from coal) further reduces both CO2 emissions and premature deaths than using electricity only from coal. Our study demonstrates the air pollution and CO2 mitigation potential and

  10. Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M.A.; D.A. Springer

    2008-06-18

    The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the

  11. Honeywell: Comfort and economy

    Energy Technology Data Exchange (ETDEWEB)

    Lukaszewski, J.

    1995-12-31

    The presentation of the Company starts with having it ranked among the ones operating on the customers` market or those acting on the professional market. But it is not so. Honeywell is beyond such simple criteria. We are a company supplying products, systems and services related with generally conceived automatic control engineering, yet the operational range does comprise so many apparently diversified fields, for instance automatic control in aeronautics, heavy power engineering, building of apartment buildings, detached houses, heat engineering and some others. Nevertheless, our targets are always the same: maximum increase in efficiency and reliability of the process lines controlled by our systems as well as securing the best comfort of work and rest for people who stay in the buildings controlled by our devices. Simultaneously, the utilization of energy sources and the natural environment resources must be as sensible as possible.

  12. A comparison of fuel savings in the residential and commercial sectors generated by the installation of solar heating and cooling systems under three tax credit scenarios

    Science.gov (United States)

    Moden, R.

    An analysis of expected energy savings between 1977 and 1980 under three different solar tax credit scenarios is presented. The results were obtained through the solar heating and cooling of buildings (SHACOB) commercialization model. This simulation provides projected savings of conventional fuels through the installation of solar heating and cooling systems on buildings in the residential and commercial sectors. The three scenarios analyzed considered the tax credits contained in the Windfall Profits Tax of April 1980, the National Tax Act of November 1978, and a case where no tax credit is in effect.

  13. Quantification of emissions from domestic heating in residential areas of İzmir, Turkey and assessment of the impact on local/regional air-quality

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Deniz, E-mail: deniz.sari@tubitak.gov.tr [TUBITAK Marmara Research Center, Environment and Cleaner Production Institute, 41470 Kocaeli (Turkey); Bayram, Abdurrahman [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Kaynaklar Campus, 35160 Buca, Izmir (Turkey)

    2014-08-01

    Air pollution in cities is a major environmental problem principally in the developing countries. The quantification of emissions is a basic requirement to assess the human influence to the atmosphere. The air quality generally shows decreases with the major contribution residential emissions and meteorology in the winter season in the big cities. Poor meteorological conditions especially inversion events for the efficient mixing of air pollutants occurred during the winter months in İzmir. With this work we quantify the amount of domestic heating emissions for particulate matter (PM10), sulfur dioxides (SO{sub 2}), nitrogen dioxides (NO{sub 2}), volatile organic compounds (VOC) and carbon monoxide (CO) together with greenhouse gases which are carbon dioxide (CO{sub 2}), nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) in İzmir for 2008–2009 winter season. The results showed that the most affected residential areas were central districts in the city center from domestic heating emissions due to meteorological condition and demographic reasons. Air quality modeling is a great tool for assisting policy makers how to decrease emissions and improve air quality. At the second part of the study, calculated emissions were modeled by using CALMET/CALPUFF dispersion modeling system and plotted in the form of air pollution maps by using geographical information system to determine the locations and estimate the effects of the new residential areas that will be established in the future in İzmir. - Highlights: • The air pollution in cities especially shows raises with the opening of winter season. • Air pollution has become a problem due to rapid urbanization in İzmir, Turkey. • The air quality shows decreases with the residential emissions in İzmir's winter. • With this work we quantify the amount of domestic heating emissions for pollutants. • The impact of emissions on local air-quality is determined by using dispersion model.

  14. Quantification of emissions from domestic heating in residential areas of İzmir, Turkey and assessment of the impact on local/regional air-quality

    International Nuclear Information System (INIS)

    Sari, Deniz; Bayram, Abdurrahman

    2014-01-01

    Air pollution in cities is a major environmental problem principally in the developing countries. The quantification of emissions is a basic requirement to assess the human influence to the atmosphere. The air quality generally shows decreases with the major contribution residential emissions and meteorology in the winter season in the big cities. Poor meteorological conditions especially inversion events for the efficient mixing of air pollutants occurred during the winter months in İzmir. With this work we quantify the amount of domestic heating emissions for particulate matter (PM10), sulfur dioxides (SO 2 ), nitrogen dioxides (NO 2 ), volatile organic compounds (VOC) and carbon monoxide (CO) together with greenhouse gases which are carbon dioxide (CO 2 ), nitrous oxide (N 2 O) and methane (CH 4 ) in İzmir for 2008–2009 winter season. The results showed that the most affected residential areas were central districts in the city center from domestic heating emissions due to meteorological condition and demographic reasons. Air quality modeling is a great tool for assisting policy makers how to decrease emissions and improve air quality. At the second part of the study, calculated emissions were modeled by using CALMET/CALPUFF dispersion modeling system and plotted in the form of air pollution maps by using geographical information system to determine the locations and estimate the effects of the new residential areas that will be established in the future in İzmir. - Highlights: • The air pollution in cities especially shows raises with the opening of winter season. • Air pollution has become a problem due to rapid urbanization in İzmir, Turkey. • The air quality shows decreases with the residential emissions in İzmir's winter. • With this work we quantify the amount of domestic heating emissions for pollutants. • The impact of emissions on local air-quality is determined by using dispersion model

  15. Leverage of Behavioural Patterns of Window Opening and Heating Set Point Adjustments on Energy Consumption and Thermal Comfort in Residential Buildings

    DEFF Research Database (Denmark)

    Corgnati, Stefano Paolo; D'Oca, Simona; Fabi, Valentina

    2014-01-01

    The current trend in reduction in energy use in buildings is oriented towards sustainable measures and techniques aimed to energy need restraint. Even so, studies have underlined large differences in energy consumption in similar buildings, suggesting strong influence of occupant behaviour...... through a better and more accurate prediction of energy use; however, they are still unable to replicate the actual dynamics that govern energy uses within buildings. Furthermore, occupant behaviour is currently described by static profiles, based on assumptions and average values of typical behaviour......, considering different behavioural patterns and preferences among indoor environmental quality, is arising. Final goal of this research is to simulate, in a more accurate way, the variation in actual energy consumption due to human interaction within buildings. In this effort, the study has highlighted which...

  16. Design of outdoor urban spaces for thermal comfort

    Science.gov (United States)

    Harriet J. Plumley

    1977-01-01

    Microclimates in outdoor urban spaces may be modified by controlling the wind and radiant environments in these spaces. Design guidelines were developed to specify how radiant environments may be selected or modified to provide conditions for thermal comfort. Fanger's human-thermal-comfort model was used to determine comfortable levels of radiant-heat exchange for...

  17. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    International Nuclear Information System (INIS)

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER

  18. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-10-10

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER.

  19. Understanding comfort and senses in social practices: Insights from a Danish field study

    DEFF Research Database (Denmark)

    Madsen, Line Valdorff; Gram-Hanssen, Kirsten

    2017-01-01

    Thermal comfort is central to energy consumption in housing and one of the main drivers behind worldwide GHG emissions. Research on residential energy consumption has therefore addressed comfort in relation to indoor temperatures. This paper argues that by widening the focus of comfort to include...... other aspects such as air, light and materials, more sustainable ideas of residential comfort might be developed. The paper takes a practice theoretical perspective but argues that the senses should be better incorporated into the approach to understand different aspects of comfort. The paper...... investigates how comfort can be understood as sensorial within theories of practice. This implies understanding how the senses are incorporated in embodied and routinised social practices, through which comfort is sensed and interpreted. Comfort is related to a range of everyday practices in the home...

  20. Experimental evaluation of air distribution in mechanically ventilated residential rooms

    DEFF Research Database (Denmark)

    Tomasi, R.; Krajčík, M.; Simone, A.

    2013-01-01

    The effect of low ventilation rates (1 or 0.5 air change per hour) on thermal comfort and ventilation effectiveness was experimentally studied in a simulated residential room equipped with radiant floor heating/cooling and mixing ventilation systems. The tests were performed for various positions...... of supply and extract air terminals and different winter and summer boundary conditions. Vertical air temperature, operative temperature and air velocity profiles were measured in different positions in the room, and equivalent temperatures were derived, in order to characterize thermal comfort. Contaminant...... with unconditioned outdoor air supply, i.e. at the supply air temperatures higher than the room air temperature. Moreover, low floor temperatures were needed to maintain the desired reference temperature in the stratified thermal environment. Mainly in cooling conditions the ventilation effectiveness depended...

  1. Combined heat and power generation with fuel cells in residential buildings in the future energy system; Kraft-Waerme-Kopplung mit Brennstoffzellen in Wohngebaeuden im zukuenftigen Energiesystem

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, C.H.

    2007-04-27

    Combined heat and power generation (CHP) is regarded as one of the cornerstones of a future sustainable energy system. The application of this approach can be substantially extended by employing fuel cell technologies in small units for supplying heat to residential buildings. This could create an additional market for combined heat and power generation corresponding to approx. 25% of the final energy demand in Germany today. In parallel, the extensive application of distributed fuel cell systems in residential buildings would have substantial effects on energy infrastructures, primary energy demand, the energy mix and greenhouse gas emissions. It is the aim of the present study to quantify these effects via scenario modelling of energy demand and supply for Germany up to the year 2050. Two scenarios, reference and ecological commitment, are set up, and the application and operation of fuel cell plants in the future stock of residential buildings is simulated by a bottom-up approach. A model of the building stock was developed for this purpose, consisting of 213 types of reference buildings, as well as detailed simulation models of the plant operation modes. The aim was, furthermore, to identify economically and ecologically optimised plant designs and operation modes for fuel cells in residential buildings. Under the assumed conditions of the energy economy, economically optimised plant sizes for typical one- or two-family homes are in the range of a generating capacity of a few hundred watts of electrical power. Plant sizes of 2 to 4.7 kW{sub el} as discussed today are only economically feasible in multifamily dwellings. The abolition of the CHP bonus reduces profitability, especially for larger plants operated by contractors. In future, special strategies for power generation and supply can be an economically useful addition for the heat-oriented operation mode of fuel cells. On the basis of the assumed conditions of the energy economy, a technical potential for

  2. Primary emissions and secondary aerosol production potential from woodstoves for residential heating: Influence of the stove technology and combustion efficiency

    Science.gov (United States)

    Bertrand, Amelie; Stefenelli, Giulia; Bruns, Emily A.; Pieber, Simone M.; Temime-Roussel, Brice; Slowik, Jay G.; Prévôt, André S. H.; Wortham, Henri; El Haddad, Imad; Marchand, Nicolas

    2017-11-01

    To reduce the influence of biomass burning on air quality, consumers are encouraged to replace their old woodstove with new and cleaner appliances. While their primary emissions have been extensively investigated, the impact of atmospheric aging on these emissions, including secondary organic aerosol (SOA) formation, remains unknown. Here, using an atmospheric smog chamber, we aim at understanding the chemical nature and quantify the emission factors of the primary organic aerosols (POA) from three types of appliances for residential heating, and to assess the influence of aging thereon. Two, old and modern, logwood stoves and one pellet burner were operated under typical conditions. Emissions from an entire burning cycle (past the start-up operation) were injected, including the smoldering and flaming phases, resulting in highly variable emission factors. The stoves emitted a significant fraction of POA (up to 80%) and black carbon. After ageing, the total mass concentration of organic aerosol (OA) increased on average by a factor of 5. For the pellet stove, flaming conditions were maintained throughout the combustion. The aerosol was dominated by black carbon (over 90% of the primary emission) and amounted to the same quantity of primary aerosol emitted by the old logwood stove. However, after ageing, the OA mass was increased by a factor of 1.7 only, thus rendering OA emissions by the pellet stove almost negligible compared to the other two stoves tested. Therefore, the pellet stove was the most reliable and least polluting appliance out of the three stoves tested. The spectral signatures of the POA and aged emissions by a High Resolution - Time of Flight - Aerosol Mass Spectrometer (Electron Ionization (EI) at 70 eV) were also investigated. The m/z 44 (CO2+) and high molecular weight fragments (m/z 115 (C9H7+), 137 (C8H9O2+), 167 (C9H11O3+) and 181 (C9H9O4+, C14H13+)) correlate with the modified combustion efficiency (MCE) allowing us to discriminate further

  3. Planning for a Low Carbon Future? Comparing Heat Pumps and Cogeneration as the Energy System Options for a New Residential Area

    Directory of Open Access Journals (Sweden)

    Jukka Heinonen

    2015-08-01

    Full Text Available The purpose of this paper is to compare, from an urban planning perspective, the choice between combined heat and power (CHP and a ground-source heat pump (HP as the energy systems of a new residential area in the light of the uncertainty related to the assessments. There has been a strong push globally for CHP due to its climate mitigation potential compared to separate production, and consequently it is often prioritized in planning without questioning. However, the uncertainties in assessing the emissions from CHP and alternative options in a certain planning situation make it very difficult to give robust decision guidelines. In addition, even the order of magnitude of the climate impact of a certain plan is actually difficult to assess robustly. With a case study of the new residential development of Härmälänranta in Tampere, Finland, we show how strongly the uncertainties related to (1 utilizing average or marginal electricity as the reference; (2 assigning emissions intensities for the production; and (3 allocating the emissions from CHP to heat and electricity affect the results and lead to varying decision guidelines. We also depict how a rather rarely utilized method in assigning the emissions from CHP is the most robust for planning support.

  4. An optimization methodology for the design of renewable energy systems for residential net zero energy buildings with on-site heat production

    DEFF Research Database (Denmark)

    Milan, Christian; Bojesen, Carsten; Nielsen, Mads Pagh

    2011-01-01

    The concept of net zero energy buildings (NZEB) has received increased attention throughout the last years. A well adapted and optimized design of the energy supply system is crucial for the performance of such buildings. This paper aims at developing a method for the optimal sizing of renewable...... energy supply systems for residential NZEB involving on-site production of heat and electricity in combination with electricity exchanged with the public grid. The model is based on linear programming and determines the optimal capacities for each relevant supply technology in terms of the overall system...

  5. Result of comparative experiment on environmental comfort in room using hot heat environment testing unit. Onnetsu kankyo shiken unit ni yoru shitsunai kankyo no kaitekisa no hikaku jikken kekka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T; Kawashima, K [The Hokkaido Electric Power Co. Inc., Sapporo (Japan)

    1991-11-20

    Measurements were carried out on three buildings having different heat insulation, airtightness and heat capacity for testing the hot heast enviroments (having a room size of about 4.6 m{times}3.7m{times}2.3 m) as to the temperature differences between the upper and lower parts of the room and the MRT (mean radiation temperature, representing the temperature of radiation from the wall face). These are compared according to types of heating appliance. The result is summarize as follows: The temperature difference in the upper and lower parts is affected largely by the airtightness of the building, the difference being capable of getting reduced by rasing the airtightness even in a buildings low in heat insulation. In a building with low airtightness, type of heating appliance and its installation location affect the temperature difference. The MRT is determined determined nearly completely by the heat insulation of the wall face in a room, but it tends to be affected easily by the specification and area of windows. A floor heating system increases the MRT and generates very little difference in temperatures in the upper and lower parts of the room. A comparison using a PMV (one of the indexes for enviromental comfort in a room) was also conducted. 12 figs., 7tabs.

  6. Simulation and optimization study on a solar space heating system combined with a low temperature ASHP for single family rural residential houses in Beijing

    DEFF Research Database (Denmark)

    Deng, Jie; Tian, Zhiyong; Fan, Jianhua

    2016-01-01

    A pilot project of the solar water heating system combined with a low temperature air source heat pump (ASHP) unit was established in 2014 in a detached residential house in the rural region of Beijing, in order to investigate the system application prospect for single family houses via system...... optimization design and economic analysis. The established system was comprised of the glass heat-pipe based evacuated tube solar collectors with a gross area of 18.8 m2 and an ASHP with a stated heating power of 8 kW for the space heating of a single family rural house of 81.4 m2. The dynamic thermal...... with good building insulation were undertaken to figure out the system economical efficiency in the rural regions of Beijing. The results show that the payback periods of the solar space heating system combined with the ASHP with the collector areas 15.04-22.56 m2 are 17.3-22.4 years for the established...

  7. Determining of the optimal design of a closed loop solar dual source heat pump system coupled with a residential building application

    International Nuclear Information System (INIS)

    Chargui, Ridha; Awani, Sami

    2017-01-01

    Graphical abstract: Operation of the system in heating mode. - Highlights: • We examine the control function in the level of heat pump and collector. • We examine the temporal evolution of the temperature and energy in the all components of the system. • A better system with a significant energy saving was achieved. • The system gives good results in all operating states. - Abstract: This work highlights the results on the coupling of a flat plate collector coupled with a dual source heat pump system and a heat exchanger for building application. The novelty point of this work is to integrate a heat exchanger in the floor and in the interstitial space of the residential house roof in order to minimize the consumed electric power. This technology defining the operational state of the system has been developed and adapted in the present investigation by adopting the Tunisian climate. The dimensioning of this installation for different component makes it possible to operate the hot water heating systems ecologically. Hence, our objective is to ameliorate the performance of the system using the solar radiation converted to the thermal energy in the level of the flat plate collector and the heat pump. A several experimental data have been added for realizing a numerical model based on TRNSYS software. From this point of view, a numerical model was improved in building application using a 150 m 2 as surface area of the building which consists of two floor zones. The dual source heat pump was coupled with a ground heat exchanger (GHE) with 0.2 m of depth. The distance between two consecutive tubes is 0.3 m and the surface area of the solar collector is 8 m 2 . The simulation results have been obtained for 48 h operation in January and all inputs data of the system have been predicted during 48 h and 6 months of heating in Tunisia. It was demonstrated that the COP of the dual source heat pump was enhanced with the increase of the solar radiation during the typical

  8. Thermal comfort following immersion.

    Science.gov (United States)

    Guéritée, Julien; Redortier, Bernard; House, James R; Tipton, Michael J

    2015-02-01

    Unlike thermal comfort in air, little research has been undertaken exploring thermal comfort around water sports. We investigated the impact of swimming and cooling in air after swimming on thermal comfort. After 10 min of swimming-and-resting cycles in 28°C water, volunteers wearing two types of garments or in swim briefs, faced winds in 24°C air, at rest or when stepping. Thermal comfort was significantly higher during swimming than resting. Post-immersion, following maximum discomfort, in 45 of 65 tests thermal comfort improved although mean skin temperature was still cooling (0.26 [SD 0.19] °C·min(-1) - max was 0.89°C·min(-1)). When thermal comfort was re-established mean skin temperature was lower than at maximal discomfort in 39 of 54 tests (0.81 [SD 0.58] °C - max difference was 2.68°C). The reduction in thermal discomfort in this scenario could be due to the adaptation of thermoreceptors, or to reductions in cooling rates to levels where discomfort was less stimulated. The relief from the recent discomfort may explain why, later, thermal comfort returned to initial levels in spite of poorer thermal profiles. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. PCMs for Residential Building Applications: A Short Review Focused on Disadvantages and Proposals for Future Development

    Directory of Open Access Journals (Sweden)

    Ashley Bland

    2017-08-01

    Full Text Available Phase change materials (PCMs offer great potential as a latent heat energy storage technique to provide energy efficient systems in new and existing residential buildings. Due to their unique characteristic of high storage densities and latent heat properties, PCMs provide opportunities for greater energy storage in many applications for residential buildings. These applications include, but are not limited to, solar water heating, space heating/cooling, and waste heat recovery. This study reviews PCM systems in residential building applications, with a focus on their major disadvantages and concludes with proposals for future development. Several disadvantages of PCM use in the given application have been identified and include; super cooling, low thermal conductivity, phase segregation, fire safety, and cost. The issues caused by super cooling and phase segregation lead to thermal cycling degradation, limiting the useful lifecycle of the material. These issues could limit their potential in building applications, which require systems of a long lifespan. Low thermal conductivities can slow down the rate at which heat is distributed or absorbed from the building, which affect the occupants comfort and as well as the efficiency of the system. Ideas based on the current research on ways to limit these disadvantages are included in the study. This study also identifies that further research is required on novel maintenance ways for the PCM systems after they have been installed.

  10. The human thermoneutral and thermal comfort zones: Thermal comfort in your own skin blood flow.

    Science.gov (United States)

    Schlader, Zachary J

    2015-01-01

    Human thermoregulation is achieved via autonomic and behavioral responses. Autonomic responses involve 2 synchronous 'components'. One counteracts large thermal perturbations, eliciting robust heat loss or gain (i.e., sweating or shivering). The other fends off smaller insults, relying solely on changes in sensible heat exchange (i.e., skin blood flow). This sensible component occurs within the thermoneutral zone [i.e., the ambient temperature range in which temperature regulation is achieved only by sensible heat transfer, without regulatory increases in metabolic heat production (e.g., shivering) or evaporative heat loss (e.g., sweating)].(1) The combination of behavior and sensible heat exchange permits a range of conditions that are deemed thermally comfortable, which is defined as the thermal comfort zone.(1) Notably, we spend the majority of our lives within the thermoneutral and thermal comfort zones. It is only when we are unable to stay within these zones that deleterious health and safety outcomes can occur (i.e., hypo- or hyperthermia). Oddly, although the thermoneutral zone and thermal preference (a concept similar to the thermal comfort zone) has been extensively studied in non-human animals, our understanding of human thermoregulation within the thermoneutral and thermal comfort zones remains rather crude.

  11. BETTER DUCT SYSTEMS FOR HOME HEATING AND COOLING.

    Energy Technology Data Exchange (ETDEWEB)

    ANDREWS,J.

    2001-01-01

    This is a series of six guides intended to provide a working knowledge of residential heating and cooling duct systems, an understanding of the major issues concerning efficiency, comfort, health, and safety, and practical tips on installation and repair of duct systems. These guides are intended for use by contractors, system designers, advanced technicians, and other HVAC professionals. The first two guides are also intended to be accessible to the general reader.

  12. An adopter-centric approach to analyze the diffusion patterns of innovative residential heating systems in Sweden

    International Nuclear Information System (INIS)

    Mahapatra, Krushna; Gustavsson, Leif

    2008-01-01

    Innovation and diffusion of renewable energy technologies play a major role in mitigation of climate change. In Sweden replacing electric and oil heating systems with innovative heating systems such as district heating, heat pumps and wood pellet boilers in detached homes is a significant mitigation option. Using an adopter-centric approach, we analyzed the influence of investment subsidy on conversion of resistance heaters and oil boilers, and the variation in diffusion pattern of district heating, heat pumps and pellet boilers in Swedish detached homes. Results from questionnaire surveys of 1500 randomly selected homeowners in September 2004 and January 2007 showed that more than 80% of the respondents did not intend to install a new heating system. Hence, about 37% of the homeowners still have electric and oil heating systems. The government investment subsidy was important for conversion from a resistance heater, but not from an oil boiler. This is because homeowners currently replacing their oil boilers are the laggards, while those replacing resistance heaters are the 'early adopters'. Economic aspects and functional reliability were the most important factors for the homeowners when considering a new heating system. There is a variation in the perceived advantages associated with each of the innovative heating systems and therefore, the diffusion patterns of such systems vary. Installers and interpersonal sources were the most important communication channels for information on heating systems

  13. An adopter-centric approach to analyze the diffusion patterns of innovative residential heating systems in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Gustavsson, Leif [Ecotechnology, Mid Sweden University, 831 25 Oestersund (Sweden)

    2008-02-15

    Innovation and diffusion of renewable energy technologies play a major role in mitigation of climate change. In Sweden replacing electric and oil heating systems with innovative heating systems such as district heating, heat pumps and wood pellet boilers in detached homes is a significant mitigation option. Using an adopter-centric approach, we analyzed the influence of investment subsidy on conversion of resistance heaters and oil boilers, and the variation in diffusion pattern of district heating, heat pumps and pellet boilers in Swedish detached homes. Results from questionnaire surveys of 1500 randomly selected homeowners in September 2004 and January 2007 showed that more than 80% of the respondents did not intend to install a new heating system. Hence, about 37% of the homeowners still have electric and oil heating systems. The government investment subsidy was important for conversion from a resistance heater, but not from an oil boiler. This is because homeowners currently replacing their oil boilers are the laggards, while those replacing resistance heaters are the 'early adopters'. Economic aspects and functional reliability were the most important factors for the homeowners when considering a new heating system. There is a variation in the perceived advantages associated with each of the innovative heating systems and therefore, the diffusion patterns of such systems vary. Installers and interpersonal sources were the most important communication channels for information on heating systems. (author)

  14. Robotic Comfort Zones

    National Research Council Canada - National Science Library

    Likhachev, Maxim; Arkin, Ronald C

    2006-01-01

    .... A review of the existing study of human comfort, especially regarding its presence in infants, is conducted with the goal being to determine the relevant characteristics for mapping it onto the robotics domain...

  15. General Motors LLC Final Project Report: Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bozeman, Jeffrey [General Motors LLC, Detroit, MI (United States); Chen, Kuo-Huey [General Motors LLC, Detroit, MI (United States)

    2014-12-09

    On November 3, 2009, General Motors (GM) accepted U.S. Department of Energy (DOE) Cooperative Agreement award number DE-EE0000014 from the National Energy Technology Laboratory (NETL). GM was selected to execute a three-year cost shared research and development project on Solid State Energy Conversion for Vehicular Heating, Ventilation & Air Conditioning (HVAC) and for Waste Heat Recovery.

  16. Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-01

    Historically thermal comfort in buildings has been controlled by simple dry bulb temperature settings. As we move into more sophisticated low energy building systems that make use of alternate systems such as natural ventilation, mixed mode system and radiant thermal conditioning strategies, a more complete understanding of human comfort is needed for both design and control. This guide will support building designers, owners, operators and other stakeholders in defining quantifiable thermal comfort parameters?these can be used to support design, energy analysis and the evaluation of the thermal comfort benefits of design strategies. This guide also contains information that building owners and operators will find helpful for understanding the core concepts of thermal comfort. Whether for one building, or for a portfolio of buildings, this guide will also assist owners and designers in how to identify the mechanisms of thermal comfort and space conditioning strategies most important for their building and climate, and provide guidance towards low energy design options and operations that can successfully address thermal comfort. An example of low energy design options for thermal comfort is presented in some detail for cooling, while the fundamentals to follow a similar approach for heating are presented.

  17. Target-oriented obstacle analysis by PESTEL modeling of energy efficiency retrofit for existing residential buildings in China's northern heating region

    Energy Technology Data Exchange (ETDEWEB)

    Shilei, Lv [School of Environment Science and Technology, Tianjin University, Tianjin 300072 (China); Yong, Wu [Department of Science and Technology, Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China)

    2009-06-15

    According to the 'Comprehensive Work Program of Energy Efficiency and Emission Reduction' of the Chinese government, during the period of the '11th Five-Year Plan', 1.5 x 10{sup 8} m{sup 2} of existing residential buildings in China's northern heating region are to be retrofitted for energy efficiency. However, at present, this 'Energy Efficiency Retrofit for Existing Residential Buildings' (EERFERB) faces many obstacles. Under the current working and market system, both the central and local governments and the energy supply companies can not push on this work smoothly. Using both the results of the annual national special inspection of building energy efficiency and some case analyses, this paper examines the necessity for energy efficiency retrofit, along with the relationships among the various Political, Economic, Social, Technological, Environmental and Legal (PESTEL) factors affecting it. Furthermore, organizational, financial and technical support systems are explored to promote the development of retrofit. Finally, some primary principles to be followed toward the implementation of EERFERB are suggested. (author)

  18. Target-oriented obstacle analysis by PESTEL modeling of energy efficiency retrofit for existing residential buildings in China's northern heating region

    International Nuclear Information System (INIS)

    Shilei, Lv; Wu Yong

    2009-01-01

    According to the 'Comprehensive Work Program of Energy Efficiency and Emission Reduction' of the Chinese government, during the period of the '11th Five-Year Plan', 1.5x10 8 m 2 of existing residential buildings in China's northern heating region are to be retrofitted for energy efficiency. However, at present, this 'Energy Efficiency Retrofit for Existing Residential Buildings' (EERFERB) faces many obstacles. Under the current working and market system, both the central and local governments and the energy supply companies can not push on this work smoothly. Using both the results of the annual national special inspection of building energy efficiency and some case analyses, this paper examines the necessity for energy efficiency retrofit, along with the relationships among the various Political, Economic, Social, Technological, Environmental and Legal (PESTEL) factors affecting it. Furthermore, organizational, financial and technical support systems are explored to promote the development of retrofit. Finally, some primary principles to be followed toward the implementation of EERFERB are suggested.

  19. Impact Analysis of Window-Wall Ratio on Heating and Cooling Energy Consumption of Residential Buildings in Hot Summer and Cold Winter Zone in China

    Directory of Open Access Journals (Sweden)

    Qiaoxia Yang

    2015-01-01

    Full Text Available In order to assess the optimal window-wall ratio and the proper glazing type in different air conditioning system operation modes of residential buildings for each orientation in three typical cities in hot summer and cold winter zone: Chongqing, Shanghai, and Wuhan simulation models were built and analyzed using Designer’s Simulation Toolkit (DeST. The study analyzed the variation of annual heating energy demand, annual cooling energy demand, and the annual total energy consumption in different conditions, including different orientations, patterns of utilization of air conditioning system, window-wall ratio, and types of windows. The results show that the total energy consumption increased when the window-wall ratio is also increased. It appears more obvious when the window orientation is east or west. Furthermore, in terms of energy efficiency, low-emissivity (Low-E glass performs better than hollow glass. From this study, it can be concluded that the influence and sensitivity of window-wall ratio on the total energy consumption are related to the operation mode of air conditioning system, the orientation of outside window, and the glazing types of window. The influence of the factors can be regarded as reference mode for the window-wall ratio when designing residential buildings.

  20. Development and application of artificial neural network models to estimate values of a complex human thermal comfort index associated with urban heat and cool island patterns using air temperature data from a standard meteorological station.

    Science.gov (United States)

    Moustris, Konstantinos; Tsiros, Ioannis X; Tseliou, Areti; Nastos, Panagiotis

    2018-04-11

    The present study deals with the development and application of artificial neural network models (ANNs) to estimate the values of a complex human thermal comfort-discomfort index associated with urban heat and cool island conditions inside various urban clusters using as only inputs air temperature data from a standard meteorological station. The index used in the study is the Physiologically Equivalent Temperature (PET) index which requires as inputs, among others, air temperature, relative humidity, wind speed, and radiation (short- and long-wave components). For the estimation of PET hourly values, ANN models were developed, appropriately trained, and tested. Model results are compared to values calculated by the PET index based on field monitoring data for various urban clusters (street, square, park, courtyard, and gallery) in the city of Athens (Greece) during an extreme hot weather summer period. For the evaluation of the predictive ability of the developed ANN models, several statistical evaluation indices were applied: the mean bias error, the root mean square error, the index of agreement, the coefficient of determination, the true predictive rate, the false alarm rate, and the Success Index. According to the results, it seems that ANNs present a remarkable ability to estimate hourly PET values within various urban clusters using only hourly values of air temperature. This is very important in cases where the human thermal comfort-discomfort conditions have to be analyzed and the only available parameter is air temperature.

  1. Development and application of artificial neural network models to estimate values of a complex human thermal comfort index associated with urban heat and cool island patterns using air temperature data from a standard meteorological station

    Science.gov (United States)

    Moustris, Konstantinos; Tsiros, Ioannis X.; Tseliou, Areti; Nastos, Panagiotis

    2018-04-01

    The present study deals with the development and application of artificial neural network models (ANNs) to estimate the values of a complex human thermal comfort-discomfort index associated with urban heat and cool island conditions inside various urban clusters using as only inputs air temperature data from a standard meteorological station. The index used in the study is the Physiologically Equivalent Temperature (PET) index which requires as inputs, among others, air temperature, relative humidity, wind speed, and radiation (short- and long-wave components). For the estimation of PET hourly values, ANN models were developed, appropriately trained, and tested. Model results are compared to values calculated by the PET index based on field monitoring data for various urban clusters (street, square, park, courtyard, and gallery) in the city of Athens (Greece) during an extreme hot weather summer period. For the evaluation of the predictive ability of the developed ANN models, several statistical evaluation indices were applied: the mean bias error, the root mean square error, the index of agreement, the coefficient of determination, the true predictive rate, the false alarm rate, and the Success Index. According to the results, it seems that ANNs present a remarkable ability to estimate hourly PET values within various urban clusters using only hourly values of air temperature. This is very important in cases where the human thermal comfort-discomfort conditions have to be analyzed and the only available parameter is air temperature.

  2. Study of the Thermal Behaviour of Water for Residential Use in Tanks of Concrete and Polyethylene in Humid Subtropical Climate

    Directory of Open Access Journals (Sweden)

    Diego-Ayala Ulises

    2015-09-01

    Full Text Available This article presents a comparative study of the thermal behavior of residential water tanks of polyethylene and concrete exposed to the sun over a year in the state of Yucatan. The energy for radiation and their corresponding temperatures in each system were measured. Daily patterns of elevation and reduction of temperature were identified and the amount of energy acquired during the day as well as the heat dissipated overnight were determined, aiming to determine the possibility of using residential water tanks as a source of hot water in residential homes in the Yucatan region. Based on this study it has been found that the periods of the day with hot water temperature for showering with comfort is limited and that, interestingly, both systems show similar temperatures at the bottom of the tanks throughout the year.

  3. Regional differences in temperature sensation and thermal comfort in humans.

    Science.gov (United States)

    Nakamura, Mayumi; Yoda, Tamae; Crawshaw, Larry I; Yasuhara, Saki; Saito, Yasuyo; Kasuga, Momoko; Nagashima, Kei; Kanosue, Kazuyuki

    2008-12-01

    Sensations evoked by thermal stimulation (temperature-related sensations) can be divided into two categories, "temperature sensation" and "thermal comfort." Although several studies have investigated regional differences in temperature sensation, less is known about the sensitivity differences in thermal comfort for the various body regions. In the present study, we examined regional differences in temperature-related sensations with special attention to thermal comfort. Healthy male subjects sitting in an environment of mild heat or cold were locally cooled or warmed with water-perfused stimulators. Areas stimulated were the face, chest, abdomen, and thigh. Temperature sensation and thermal comfort of the stimulated areas were reported by the subjects, as was whole body thermal comfort. During mild heat exposure, facial cooling was most comfortable and facial warming was most uncomfortable. On the other hand, during mild cold exposure, neither warming nor cooling of the face had a major effect. The chest and abdomen had characteristics opposite to those of the face. Local warming of the chest and abdomen did produce a strong comfort sensation during whole body cold exposure. The thermal comfort seen in this study suggests that if given the chance, humans would preferentially cool the head in the heat, and they would maintain the warmth of the trunk areas in the cold. The qualitative differences seen in thermal comfort for the various areas cannot be explained solely by the density or properties of the peripheral thermal receptors and thus must reflect processing mechanisms in the central nervous system.

  4. RESULTS OF A PILOT FIELD STUDY TO EVALUATE THE EFFECTIVENESS OF CLEANING RESIDENTIAL HEATING AND AIR-CONDITIONING SYSTEMS AND THE IMPACT ON INDOOR AIR QUALITY AND SYSTEM PERFORMANCE

    Science.gov (United States)

    The report discusses and gives results of a pilot field study to evaluate the effectiveness of air duct cleaning (ADC) as a source removal technique in residential heating and air-conditioning (HAC) systems and its impact on airborne particle, fiber, and bioaerosol concentrations...

  5. R&D of Thermochemical reactor concepts to enable seasonal heat storage of solar energy in residential houses

    NARCIS (Netherlands)

    Zondag, H.A.; Bakker, M.; Schuitema, R.; Bleijendaal, L.P.J.; Cot Gores, J.; Essen, van V.M.; Helden, van W.G.J.

    2009-01-01

    About 30% of the energy consumption in the Netherlands is taken up by residences and offices. Most of this energy is used for heating purposes. In order to reduce the consumption of fossil fuels, it is necessary to reduce this energy use as much as possible by means of insulation and heat recovery.

  6. Design and engineering of a gas-engine driven heat pump heating station including heat distribution system and utilization of waste heat from an ice rink for the residential area Dorsten - Maria Lindenhof. Planung eines Gasmotor-Waermepumpenheizwerkes mit angeschlossenem Waermeverteilungsnetz und Abwaermenutzung einer Eisenbahn fuer das zentralstaedtische Gebiet 'Maria-Lindenhof' in Dorsten

    Energy Technology Data Exchange (ETDEWEB)

    Huelsemann, R.

    1984-05-01

    A gas-engine driven heat pump heating station including the required heat destribution system and utilization of waste heat from an ice rink to be realized in the residential area Dorsten - Maria Lindenhof. The total heat capacity was to be reached in two stages, corresponding to the progress of the building and housing structure in this specific area: First stage of construction 5,6 MW, final stage of construction 7,6 MW. With regard to the final stage of construction only a relatively small part of the buildings is provided with heating systems designed for supply and return temperatures of 90/70/sup 0/C respectively. The old people's home built in 1980 was already equipped with low temperature heating systems and all buildings still to be built shall be provided with low-temperature systems. As far as old heating systems are concerned, the required measures must be taken to reduce the temperature in the return lines.

  7. Improving comfort and health with personalized ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2004-01-01

    The thermal environment and air quality in buildings affects occupants¿ health, comfort and performance. The heating, ventilating and air-conditioning (HVAC) of buildings today is designed to provide a uniform room environment. However, large individual differences exist between occupants in regard...... existing knowledge on performance of personalized ventilation (PV) and on human response to it. The airflow interaction in the vicinity of the human body is analysed and its impact on thermal comfort and inhaled air quality is discussed together with control strategies and the application of PV in practice...

  8. Residential space heating with wood burning stoves. Energy efficiency and indoor climate; Boligopvarmning ved braendefyring. Energieffektivitet og indeklima

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Ole Michael; Afshari, A.; Bergsoee, N.C.; Carvalho, R. [Miljoestyrelsen, Copenhagen (Denmark); Aalborg Univ.. Statens Byggeforskningsinstitut, Aalborg (Denmark))

    2012-11-01

    Two issues turn up concerning how to use wood-burning stoves in modern homes. The first is whether wood-burning stoves in future may still act as a genuine heat source, given that new and refurbished single-family houses retain the heat much better than older ones and therefore need less and less energy for space heating. The second issue is whether it will still be possible to use wood-burning stoves in modern houses where the air exchange is controlled by mechanical ventilation or possibly heat recovery. It is a question whether firing techniques can be developed that will work in airtight houses with mechanical ventilation and negative pressure, so that harmful particle emissions can be avoided. To illustrate the first issue, a field study was designed to look carefully at seven modern wood-burning stoves that were set up in six new houses and one older house and investigated, both in terms of firing and heat release. As a background for this part of the study, a heat balance calculation was made for each house. The question is, whether wood-burning stoves will also in the future have a role to play as a heating source. Modern houses grow ever tighter and only need to be supplied with a small quantity of heat. The new Danish Buildings Requirement, 2010 has resulted in a further reduction of 25 % of the energy demand, including the energy supply for heating. However, the new requirements imply that the heating season eventually become so short that a traditional central heating installation becomes superfluous. This means that by using the small amounts of wood cut in gardens and hedgerows of the neighbourhood, a wood-burning stove will, in principle, cover the heating demand. Therefore, the question is rather whether a wood-burning stove is manufactured that can successfully be adapted to new houses. As a consequence of this development, future stoves must be further scaled down in order to meet the heating demand of a modern low-energy house and the stoves must

  9. Evaluation of flow hood measurements for residential register flows; TOPICAL

    International Nuclear Information System (INIS)

    Walker, I.S.; Wray, C.P.; Dickerhoff, D.J.; Sherman, M.H.

    2001-01-01

    Flow measurement at residential registers using flow hoods is becoming more common. These measurements are used to determine if the HVAC system is providing adequate comfort, appropriate flow over heat exchangers and in estimates of system energy losses. These HVAC system performance metrics are determined by using register measurements to find out if individual rooms are getting the correct airflow, and in estimates of total air handler flow and duct air leakage. The work discussed in this paper shows that commercially available flow hoods are poor at measuring flows in residential systems. There is also evidence in this and other studies that flow hoods can have significant errors even when used on the non-residential systems they were originally developed for. The measurement uncertainties arise from poor calibrations and the sensitivity of exiting flow hoods to non-uniformity of flows entering the device. The errors are usually large-on the order of 20% of measured flow, which is unacceptably high for most applications. Active flow hoods that have flow measurement devices that are insensitive to the entering airflow pattern were found to be clearly superior to commercially available flow hoods. In addition, it is clear that current calibration procedures for flow hoods may not take into account any field application problems and a new flow hood measurement standard should be developed to address this issue

  10. In vitro toxicological characterization of particulate emissions from residential biomass heating systems based on old and new technologies

    Science.gov (United States)

    Jalava, Pasi I.; Happo, Mikko S.; Kelz, Joachim; Brunner, Thomas; Hakulinen, Pasi; Mäki-Paakkanen, Jorma; Hukkanen, Annika; Jokiniemi, Jorma; Obernberger, Ingwald; Hirvonen, Maija-Riitta

    2012-04-01

    Residential wood combustion causes major effects on the air quality on a global scale. The ambient particulate levels are known to be responsible for severe adverse health effects that include e.g. cardio-respiratory illnesses and cancer related effects, even mortality. It is known that biomass combustion derived emissions are affected by combustion technology, fuel being used and user-related practices. There are also indications that the health related toxicological effects are influenced by these parameters. This study we evaluated toxicological effects of particulate emissions (PM1) from seven different residential wood combusting furnaces. Two appliances i.e. log wood boiler and stove represented old batch combustion technology, whereas stove and tiled stove were designated as new batch combustion as three modern automated boilers were a log wood boiler, a woodchip boiler and a pellet boiler. The PM1 samples from the furnaces were collected in an experimental setup with a Dekati® gravimetric impactor on PTFE filters with the samples being weighed and extracted from the substrates and prior to toxicological analyses. The toxicological analyses were conducted after a 24-hour exposure of the mouse RAW 264.7 macrophage cell line to four doses of emission particle samples and analysis of levels of the proinflammatory cytokine TNFα, chemokine MIP-2, cytotoxicity with three different methods (MTT, PI, cell cycle analysis) and genotoxicity with the comet assay. In the correlation analysis all the toxicological results were compared with the chemical composition of the samples. All the samples induced dose-dependent increases in the studied parameters. Combustion technology greatly affected the emissions and the concomitant toxicological responses. The modern automated boilers were usually the least potent inducers of most of the parameters while emissions from the old technology log wood boiler were the most potent. In correlation analysis, the PAH and other organic

  11. Financial analysis on the proposed renewable heat incentive for residential houses in the United Kingdom: A case study on the solar thermal system

    International Nuclear Information System (INIS)

    Abu-Bakar, Siti Hawa; Muhammad-Sukki, Firdaus; Ramirez-Iniguez, Roberto; Munir, Abu Bakar; Mohd Yasin, Siti Hajar; Mallick, Tapas Kumar; McLennan, Campbell; Abdul Rahim, Ruzairi

    2014-01-01

    This short communication paper focuses on the renewable heat incentive (RHI) scheme in the United Kingdom (UK); and in particular, on its implication on domestic installations of solar thermal systems (STSs). First, a short review on the STS in the UK is provided. Then, a detailed description of the RHI is discussed. A financial analysis is presented afterwards, analysing the impact of the RHI scheme on the applicants, in terms of the net present value and the internal rate of return. From the financial analysis it has been found that the RHI scheme for domestic installations is only attractive if a longer period of RHI payment, i.e. 17 years, or a higher RHI rate i.e. £0.32 per kW h is implemented. The current proposal from the UK government is not financially viable, and as a result, it may hinder the penetration of domestic solar thermal systems in the residential sector in the UK. - Highlights: • A short review on solar thermal system (STS) is presented. • The renewable heat incentive (RHI) scheme is discussed. • A financial analysis is evaluated under the RHI scheme in the UK. • The analysis indicates the current proposal is not desirable to consumers

  12. Stacked heat pumps for the comfortable climate. An energetically fit wellness temple; Gestapelte Waermepumpen fuer das Wohlfuehlklima. Ein energetisch fitter Wellnesstempel

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Astrid

    2010-07-01

    Wellness temples have an economic development. The interest at fitness and relaxation has let to a development of a whole industry. In order to pass the competition successfully, companies such as Felicitas Buehrle (Rust, Federal Republic of Germany) must have good ideas for investments, and simultaneously pay attention to lower operating costs. A heat pump system can be such a solution, as the contribution under consideration shows.

  13. Smart grid voor comfort

    NARCIS (Netherlands)

    Zeiler, W.; Vissers, D.R.; Maaijen, H.N.; Kling, W.L.; Velden, van der J.A.J.; Larsen, J.P.

    2012-01-01

    Er vindt onderzoek plaats naar een nieuwe regelstrategie gebaseerd op de toepassing van een draadloos sensor netwerk dat is gekoppeld aan het smart grid. Doel van deze regelstrategie is om op gebruikersniveau energie te kunnen besparen met behoud of zelfs verbetering van het individueel comfort. Er

  14. Air humidity requirements for human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole

    1999-01-01

    level near 100% rh. For respiratory comfort are the requirements much more stringent and results in lower permissible indoor air humidities. Compared with the upper humidity limit specified in existing thermal comfort standards, e.g. ASHRAE Addendum 55a, the humidity limit based on skin humidity......Upper humidity limits for the comfort zone determined from two recently presented models for predicting discomfort due to skin humidity and insufficient respiratory cooling are proposed. The proposed limits are compared with the maximum permissible humidity level prescribed in existing standards...... for the thermal indoor environment. The skin humidity model predicts discomfort as a function of the relative humidity of the skin, which is determined by existing models for human heat and moisture transfer based on environmental parameters, clothing characteristics and activity level. The respiratory model...

  15. Residential Care

    Science.gov (United States)

    ... Kids For Teens For Parents & Teachers Resolving Family Conflicts The Holidays and Alzheimer's Glossary Virtual Library Online ... longer an option Costs Choosing a care setting Types of residential care A good long-term care ...

  16. Guidelines for residential commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to

  17. Lifecycle cost and CO2 emissions of residential heat and electricity prosumers in Finland and the Netherlands

    NARCIS (Netherlands)

    Manrique Delgado, B.; Kotireddy, R.R.; Cao, S.; Hasan, A.; Hoes, P.-J.; Hensen, J.L.M.; Sirén, K.

    2018-01-01

    The complexity of finding solutions to reach energy sustainability in the built environment poses a significant challenge. Therefore, there is interest in adequate management of the generation, conversion, storage, use and exchange of heat and electricity. The novelty of this study exists in

  18. IEA Project on Indoor Air Quality Design and Control in Low Energy Residential Buildings

    DEFF Research Database (Denmark)

    Rode, Carsten; Abadie, Marc; Qin, Menghao

    2016-01-01

    with heat recovery systems, one of the next focal points to limiting energy consumption for thermally conditioning the indoor environment will be to possibly reducing the ventilation rate, or to make it in a new way demand controlled. However, this must be done such that it has no have adverse effects...... on Indoor Air Quality (IAQ). Annex 68, Indoor Air Quality Design and Control in Low Energy Residential Buildings, is a project under IEA’s Energy Conservation in Buildings and Communities Program (EBC), which will endeavor to investigate how future residential buildings are able to have very high energy...... performance whilst providing comfortable and healthy indoor environments. New paradigms for demand control of ventilation will be investigated, which consider the pollution loads and occupancy in buildings. The thermal and moisture conditions of such will be considered because of interactions between...

  19. Thermal Performance of Typical Residential Building in Karachi with Different Materials for Construction

    Directory of Open Access Journals (Sweden)

    Nafeesa Shaheen

    2016-04-01

    Full Text Available This research work deals with a study of a residential building located in climatic context of Karachi with the objective of being the study of thermal performance based upon passive design techniques. The study helps in reducing the electricity consumption by improving indoor temperatures. The existing residential buildings in Karachi were studied with reference to their planning and design, analyzed and evaluated. Different construction?s compositions of buildings were identified, surveyed and analyzed in making of the effective building envelops. Autodesk® Ecotect, 2011 was used to determine indoor comfort conditions and HVAC (Heating, Ventilation, Air-Conditioning and Cooling loads. The result of the research depicted significant energy savings of 38.5% in HVAC loads with proposed building envelop of locally available materials and glazing.

  20. Comfort measures: a concept analysis.

    Science.gov (United States)

    Oliveira, Irene

    2013-01-01

    Reference to the concept of comfort measures is growing in the nursing and medical literature; however, the concept of comfort measures is rarely defined. For the comfort work of nurses to be recognized, nurses must be able to identify and delineate the key attributes of comfort measures. A concept analysis using Rodgers' evolutionary method (2000) was undertaken with the goal of identifying the core attributes of comfort measures and thereby clarifying this concept. Health care literature was accessed from the CINAHL and PubMed databases. No restrictions were placed on publication dates. Four main themes of attributes for comfort measures were identified during the analysis. Comfort measures involve an active, strategic process including elements of "stepping in" and "stepping back," are both simple and complex, move from a physical to a holistic perspective and are a part of supportive care. The antecedents to comfort measures are comfort needs and the most common consequence of comfort measures is enhanced comfort. Although the concept of comfort measures is often associated with end-of-life care, this analysis suggests that comfort measures are appropriate for nursing care in all settings and should be increasingly considered in the clinical management of patients who are living with multiple, chronic comorbidities.

  1. Post-Retrofit Residential Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, Ross; lutzenhiser, Loren; Moezzi, Mithra; Widder, Sarah H.; Chandra, Subrato; Baechler, Michael C.

    2012-04-30

    assessed but did not account for weather variation. From this statistical analysis, 18 study participants were selected and interviewed. The participants completed an in-home interview covering a range of topics, including changes in occupancy and additional changes to the homes that may have affected energy use. The goal of the interviews was to identify factors that may have contributed to unusual energy performance. These factors were identified by their frequency of occurrence in outperforming or underperforming homes, or simply by identifying factors that had the largest impact on overall savings. The motivations and levels of satisfaction with the outcomes of the upgrades were covered in detail, as well as extensive discussions of behaviors pertaining to thermal control, lighting, water, and appliance use. Most of cases studied achieved substantial energy savings, although it was more common for the projected savings to be greater than the demonstrated savings. Two factors that played a very large role in savings variation were 1) changes in occupancy and 2) fenestration improvements outside of the incentive programs. Motivation for pursuing the upgrades (e.g., environmental sustainability vs. comfort or cost savings) did not seem to play any role in achieving savings. Participants generally were more concerned with maintaining aesthetics through lighting than comfort through heating or cooling. They also seemed more likely to turn the lights off when leaving a room than to turn the heat off when leaving the home.

  2. Radiating comfort in prestigious condo units

    Energy Technology Data Exchange (ETDEWEB)

    Barber, R.

    2001-08-01

    Advantages of the type of electric floor heating installed in an exclusive condominium development in Whistler, a winter sports resort community in British Columbia, are discussed. Quality, comfort, strict limits on the amount of available electricity, and reduced maintenance, were the principal reasons for installing this type of heating system, according to the designer of the complex. Floor heating, being a radiant heating system, eliminates wasteful stratification of heat in a given heated space, thus helping to achieve comfortable ambient temperature at a lower level than would be required with conventional heating systems, reducing the power requirements by as much as 25 per cent. The system maintains a uniform temperature without any movement of air, dust and germs, providing occupants with a clean and pleasant atmosphere. The Flexterm system can be used under a variety of floor coverings -- natural stone, ceramic, marble, carpets, vinyl tiles, or wood flooring. It can be used selectively in different rooms of a housing unit, while other parts (in this instance the bedrooms), are heated by small electric baseboard heaters.

  3. Evaluation of Technical and Utility Programmatic Challenges With Residential Forced-Air Integrated Space/Water Heat Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, Tim [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Vadnal, Hillary [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Scott, Shawn [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Kalensky, Dave [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2016-12-01

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented ETPs.

  4. Energy and economic analysis of total energy systems for residential and commercial buildings. [utilizing waste heat recovery techniques

    Science.gov (United States)

    Maag, W. L.; Bollenbacher, G.

    1974-01-01

    Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.

  5. High Efficiency Water Heating Technology Development Final Report, Part II: CO2 and Absorption-Based Residential Heat Pump Water Heater Development

    Energy Technology Data Exchange (ETDEWEB)

    Gluesenkamp, Kyle R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patel, Viral K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mandel, Bracha T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.

  6. Everyday Comfort Practice

    DEFF Research Database (Denmark)

    Jaffari, Svenja

    engineering praxis only, in order to address these issues. The empirical work is based on a user-driven innovation project (Indoor Climate & Quality of Life), where engineers, designers, sociologists and anthropologists met in order to exchange their different perspectives and collaboratively form new ideas...... the outdoor. This can be seen, for instance, in 'tight' low-energy buildings that host indoor climate products, which are often controlled by automated systems, to deliver optimal comfort conditions (i.e. temperature, humidity, air quality, noise, and light) to occupants. Buildings' indoor climate is designed......, engineering scientists and practitioners still seem to struggle with the kinds of alternative processes and products that are needed to achieve sustainable comfort. This dissertation applies everyday practice-oriented design ethnography to a field that has traditionally been investigated by scientific...

  7. Potential application of a centralized solar water-heating system for a high-rise residential building in Hong Kong

    International Nuclear Information System (INIS)

    Chow, T.T.; Fong, K.F.; Chan, A.L.S.; Lin, Z.

    2006-01-01

    There is a growing, government-led trend of applying renewable energy in Hong Kong. One area of interest lies in the wider use of solar-energy systems. The worldwide fast development of building-integrated solar technology has prompted the design alternative of fixing the solar panels on the external facades of buildings. In Hong Kong, high-rise buildings are found everywhere in the urban districts. How to make full use of the vertical facades of these buildings to capture the most solar radiation can be an important area in the technology promotion. In this numerical study, the potential application of a centralized solar water-heating system in high-rise residence was evaluated. Arrays of solar thermal collectors, that occupied the top two-third of the south and west facades of a hypothetical high-rise residence, were proposed for supporting the domestic hot-water system. Based on typical meteorological data, it was found that the annual efficiency of the vertical solar collectors could reach 38.4% on average, giving a solar fraction of 53.4% and a payback period of 9.2 years. Since the solar collectors were able to reduce the heat transmission through the building envelope, the payback was in fact even shorter if the energy saving in air-conditioner operation was considered

  8. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by the scouts...... twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the source......, but such studies are very expensive if fair representation of both spatial and temporal variations should be obtained. In addition, onsite studies may affect the waste generation in the residence because of the increased focus on the issue. Residential waste is defined in different ways in different countries...

  9. Evaluation of Active Cooling Systems for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    M.A. Othuman Mydin

    2014-05-01

    Full Text Available Cooling systems are an essential element in many facets of modern society including cars, computers and buildings. Cooling systems are usually divided into two types: passive and active. Passive cooling transfers heat without using any additional energy while active cooling is a type of heat transfer that uses powered devices such as fans or pumps. This paper will focus on one particular type of passive cooling: air-conditioning systems. An air-conditioning system is defined as controlled air movement, temperature, humidity and cleanliness of a building area. Air conditioning consists of cooling and heating. Therefore, the air-conditioning system should be able to add and remove heat from the area. An air-conditioning system is defined as a control or treatment of air in a confined space. The process that occurs is the air-conditioning system absorbs heat and dust while, at the same time, cleaning the air breathed into a closed space. The purpose of air-conditioning is to maintain a comfortable atmosphere for human life and to meet user requirements. In this paper, air-conditioning systems for non-residential buildings will be presented and discussed.

  10. Acoustic comfort in eating establishments

    DEFF Research Database (Denmark)

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...

  11. A comfort-based, energy-aware HVAC agent and its applications in the smart grid

    OpenAIRE

    Auffenberg, Frederik

    2017-01-01

    In this thesis, we introduce a novel heating, ventilation and air conditioning (HVAC) agent that maintains a comfortable thermal environmant for its users while minimising energy consumption of the HVAC system and incorporating demand side management (DSM) signals to shift HVAC loads towards achieving more desirable overall load profiles. To do so, the agent needs to be able to accurately predict user comfort, for example by using a thermal comfort model. Existing thermal comfort models are u...

  12. The electric comfort; Le confort electrique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the framework of the public information on the electric power utilization in the household, Electricite De France presented on april-may at Paris Meeting, the possibilities and the advantages of the electric comfort. The concerned domains are: the electric cheating, the air-conditioning, the hot water, the lighting and the electric household appliances. Information on prices and statistical data on electric heating are also provided. (A.L.B.)

  13. 关于住宅建筑太阳能热水系统设计的探讨%Design of Solar Water Heating System in Residential Buildings

    Institute of Scientific and Technical Information of China (English)

    王彬

    2015-01-01

    太阳能系统建筑一体化设计,在住宅建筑实践中已被广泛应用,且收效良好。结合本刊刊发的某篇关于太阳能热水系统设计的论述,对其重点提出的“集中集热-分户使用的热水系统”加以再分析。本着严谨的技术适用性分析态度,现提出住宅建筑太阳能热水系统在一般条件下的首选方案,即采取独立分户系统;以及在不同建筑高度、建筑朝向、日照条件等情况下,综合利用建筑平、立面进行立体布局;特殊情况下,甚至可利用太阳能光伏系统进行补充,从而促进和鼓励系统使用效率,实现系统最大化节能减排作用。%Building integrated solar system has been widely used in residential construction with good effect. A paper was issued in this Journal about solar hot water system, and the related analysis on centralized heat water systems for household use is reviewed. In a rigorous analysis of the technical suitability, the preferred solution is proposed for the residential building’s solar hot water systems in general terms, which is the independent household system; three-dimensional layout of the facade shall be utilized in the case of different building heights, building orientation and sunshine conditions; the solar photovoltaic system even shall be supplemented in special circumstances, to promote system using efficiency and achieve the maximized energy efficiency and emission reduction effect.

  14. Optimal load scheduling in commercial and residential microgrids

    Science.gov (United States)

    Ganji Tanha, Mohammad Mahdi

    Residential and commercial electricity customers use more than two third of the total energy consumed in the United States, representing a significant resource of demand response. Price-based demand response, which is in response to changes in electricity prices, represents the adjustments in load through optimal load scheduling (OLS). In this study, an efficient model for OLS is developed for residential and commercial microgrids which include aggregated loads in single-units and communal loads. Single unit loads which include fixed, adjustable and shiftable loads are controllable by the unit occupants. Communal loads which include pool pumps, elevators and central heating/cooling systems are shared among the units. In order to optimally schedule residential and commercial loads, a community-based optimal load scheduling (CBOLS) is proposed in this thesis. The CBOLS schedule considers hourly market prices, occupants' comfort level, and microgrid operation constraints. The CBOLS' objective in residential and commercial microgrids is the constrained minimization of the total cost of supplying the aggregator load, defined as the microgrid load minus the microgrid generation. This problem is represented by a large-scale mixed-integer optimization for supplying single-unit and communal loads. The Lagrangian relaxation methodology is used to relax the linking communal load constraint and decompose the independent single-unit functions into subproblems which can be solved in parallel. The optimal solution is acceptable if the aggregator load limit and the duality gap are within the bounds. If any of the proposed criteria is not satisfied, the Lagrangian multiplier will be updated and a new optimal load schedule will be regenerated until both constraints are satisfied. The proposed method is applied to several case studies and the results are presented for the Galvin Center load on the 16th floor of the IIT Tower in Chicago.

  15. Residential Mechanical Precooling

    Energy Technology Data Exchange (ETDEWEB)

    German, Alea [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation (ARBI); Hoeschele, Marc [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation (ARBI)

    2014-12-01

    Residential air conditioning (AC) represents a challenging load for many electric utilities with poor load factors. Mechanical precooling improves the load factor by shifting cooling operation from on-peak to off-peak hours. This provides benefits to utilities and the electricity grid, as well as to occupants who can take advantage of time-of-use (TOU) electricity rates. Performance benefits stem from reduced compressor cycling, and shifting condensing unit operation to earlier periods of the day when outdoor temperatures are more favorable to operational efficiency. Finding solutions that save energy and reduce demand on the electricity grid is an important national objective and supports key Building America goals. The Alliance for Residential Building Innovation team evaluated mechanical AC precooling strategies in homes throughout the United States. EnergyPlus modeling was used to evaluate two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes. A successful off-peak AC strategy offers the potential for increased efficiency and improved occupant comfort, and promotes a more reliable and robust electricity grid. Demand response capabilities and further integration with photovoltaic TOU generation patterns provide additional opportunities to flatten loads and optimize grid impacts.

  16. Energy in the residential building. Electricity, heat, e-mobility. 2. rev. and enl. ed.; Energie im Wohngebaeude. Strom, Waerme, E-Mobilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzburger, Heiko

    2017-11-01

    Photovoltaics, heat pumps and fuel cells offer enormous potential for sustainable energy supply in residential buildings. Solar thermal energy and wood-fired boilers also play an important role in refurbishment. Due to the wide range of possible combinations, the wishes of building owners and homeowners for an ecologically and economically individually adapted energy concept can be fulfilled accurately. This book provides you with a holistic approach to the residential building and its supply of electricity, heat and water. All processes that play a role in the house's energy consumption are examined in their entirety for their potentials and potential savings. The author analyses and describes in detail the resources of buildings and their surroundings - and how they can be used for a truly independent supply. The focus is on reducing energy consumption and costs, the generation and supply of energy from renewable sources and energy storage - considered in new construction and modernisation. The supply of water is also dealt with if it touches on energy issues. The author draws attention to standards and regulations and gives practical advice for planning and installation. The focus is on the so-called sector coupling: electricity from the sun, wind and hydrogen is used to supply electrical consumers in the home, charging technology for electric vehicles, hot water and heating. The time of the boilers and combustion engines has elapsed. Clean electricity and digital controls - power and intelligence - determine the regenerative building technology. [German] Photovoltaik, Waermepumpen und Brennstoffzellen bieten enormes Potenzial, die Energieversorgung im Wohngebaeude nachhaltig zu gestalten. In der Sanierung spielen auch Solarthermie und Holzfeuerungen eine wichtige Rolle. Aufgrund der vielfaeltigen Kombinationsmoeglichkeiten lassen sich die Wuensche der Bauherren und Hausbesitzer nach einem oekologisch und oekonomisch individuell angepassten Energiekonzept

  17. Impact of measurable physical phenomena on contact thermal comfort

    Science.gov (United States)

    Fojtlín, Miloš; Pokorný, Jan; Fišer, Jan; Toma, Róbert; Tuhovčák, Ján

    Cabin HVAC (Heating Ventilation and Air-conditioning) systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.

  18. Impact of measurable physical phenomena on contact thermal comfort

    Directory of Open Access Journals (Sweden)

    Fojtlín Miloš

    2017-01-01

    Full Text Available Cabin HVAC (Heating Ventilation and Air-conditioning systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.

  19. The myth of comfort food.

    Science.gov (United States)

    Wagner, Heather Scherschel; Ahlstrom, Britt; Redden, Joseph P; Vickers, Zata; Mann, Traci

    2014-12-01

    People seek out their own idiosyncratic comfort foods when in negative moods, and they believe that these foods rapidly improve their mood. The purpose of these studies is to investigate whether comfort foods actually provide psychological benefits, and if so, whether they improve mood better than comparison foods or no food. Participants first completed an online questionnaire to indicate their comfort foods and a variety of comparison foods. During two lab sessions a week apart from each other (and at least a week after the online questionnaire, counterbalanced in order), participants watched films that induced negative affect. In one session, participants were then served their comfort food. In the other, participants were served an equally liked noncomfort food (Study 1), a neutral food (Study 2), or no food (Studies 3 and 4). Short-term mood changes were measured so that we could seek out psychological effects of these foods, rather than biochemical effects on mood from particular food components (e.g., sugars or vitamins). Comfort foods led to significant improvements in mood, but no more than other foods or no food. Although people believe that comfort foods provide them with mood benefits, comfort foods do not provide comfort beyond that of other foods (or no food). These results are likely not due to a floor effect because participants' moods did not return to baseline levels. Individuals may be giving comfort food "credit" for mood effects that would have occurred even in the absence of the comfort food.

  20. Dwelling on Courtyards. Exploring the energy efficiency and comfort potential of courtyards for dwellings in the Netherlands

    Directory of Open Access Journals (Sweden)

    Mohammad Taleghani

    2014-11-01

    Full Text Available The urban heat island (UHI phenomenon and the dependency of buildings on
fossil fuels were the two main issues that formed this dissertation. UHI results in higher air temperatures in dense urban areas compared with their suburbs and rural surroundings. This phenomenon affects human health through thermal discomfort. Furthermore, in the Netherlands, it is estimated that by 2050 the air temperature could be up to 2.3°C warmer as compared to the period of 1981-2010. Besides, the energy consumption of buildings is responsible for 30 to 45% of CO2 emissions. 31% of this consumption belongs to residential buildings. Residential buildings can play a major role in reducing the CO2 emissions caused by fossil fuel consumption. One of the passive architectural design solutions is the courtyard building form. Courtyards have been used for thousands of years in different climates in the world. In hot climates they provide shading, in humid climates they cause a stack effect helping ventilation, in cold climates they break cold winds and protect their microclimate. In temperate climates (such as of the Netherlands, the thermal behaviour of courtyards has been studied less. In this dissertation, low-rise residential courtyard buildings were therefore studied among (and along different urban block types in the Netherlands. As the first step, computer simulations were done as a parametric study for indoor and outdoor thermal comfort. Field measurements were done in actual urban courtyards and in dwellings alongside urban courtyards in the Netherlands (and in a similar temperate climate in the US. A scale model experiment later followed the simulations. Some of these field measurements were used to validate the simulation models. These efforts answered the two main research questions: 1 To what extent is a dwelling alongside an urban courtyard more efficient and thermally comfortable than other dwellings? 2 To what extent do people have a more comfortable

  1. A correct enthalpy relationship as thermal comfort index for livestock.

    Science.gov (United States)

    Rodrigues, Valéria Cristina; da Silva, Iran José Oliveira; Vieira, Frederico Márcio Corrêa; Nascimento, Sheila Tavares

    2011-05-01

    Researchers working with thermal comfort have been using enthalpy to measure thermal energy inside rural facilities, establishing indicator values for many situations of thermal comfort and heat stress. This variable turned out to be helpful in analyzing thermal exchange in livestock systems. The animals are exposed to an environment which is decisive for the thermoregulatory process, and, consequently, the reactions reflect states of thermal comfort or heat stress, the last being responsable for problems of sanity, behavior and productivity. There are researchers using enthalpy as a qualitative indicator of thermal environment of livestock such as poultry, cattle and hogs in tropical regions. This preliminary work intends to check different enthalpy equations using information from classical thermodynamics, and proposes a direct equation as thermal comfort index for livestock systems.

  2. Modeling and simulation of a phase change material system for improving summer comfort in domestic residence

    International Nuclear Information System (INIS)

    Borderon, Julien; Virgone, Joseph; Cantin, Richard

    2015-01-01

    Highlights: • Modeling of a PCM/air ventilation system. • Sizing of PCM system units. • Simulation in TRNSYS of the system connected to a house and enhancement of the summer comfort. - Abstract: In the current context of thermal improvement in the building sector, research of new solutions to integrate to the retrofitting process is an essential step in the way of saving energy. With the purpose of maintaining or improving the summer comfort after a retrofitting in a residential building, Phase Change Materials (PCM) could be used to bring enough inertia to use the freshness of night for cooling during the warmest hour in the day. Passive solutions of PCM integration have demonstrated their limited benefits. Using PCM in the way proposed in this article goes through the design of a PCM/air system able to store latent heat. This unit is coupled to the ventilation system to ensure that the heat transfers between the ventilated air and the PCM stock are forced convection and then higher than the ones with natural convection. The fusion and solidification temperature for the PCM needs to be carefully chosen to allow the latent heat storage. To analyze the behavior of such a system in a retrofitted house with the climate of 4 different French cities, simulations in different configurations have been carried out. According to these climates, we analyze the necessary conditions for the improvement of efficiency of PCM use. Also, the appropriate PCM melting temperature range is defined with corresponding existing PCM characteristics. After, optimal thickness is obtained considering the diurnal temperature evolutions. The TRNSYS software runs the modeled house, coupled with Matlab for the PCM/air system model. The number of units of such a system can be changed and adapted to the different climates. Results are expressed in terms of percentage of the time when the indoor operative temperature reaches a certain level. Comparisons are made with classical systems without

  3. Improving thermal comfort in office practice: biomimetic comfort profiles

    NARCIS (Netherlands)

    Zeiler, W.; Houten, van M.A.; Boxem, G.; Noom, P.; Velden, van der J.A.J.

    2009-01-01

    In the office building of Kropman in Utrecht a number of measurements were done, by means of NEN-EN-ISO 7726, to determine thermal comfort in the office building. Also two enquiries were held to determine the thermal comfort perception of the employees. The evaluation of the measurements and

  4. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    Directory of Open Access Journals (Sweden)

    Korniyenko Sergey

    2018-01-01

    Full Text Available Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects. Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  5. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    Science.gov (United States)

    Korniyenko, Sergey

    2018-03-01

    Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects). Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  6. Thermal Comfort and Optimum Humidity Part 1

    Directory of Open Access Journals (Sweden)

    M. V. Jokl

    2002-01-01

    Full Text Available The hydrothermal microclimate is the main component in indoor comfort. The optimum hydrothermal level can be ensured by suitable changes in the sources of heat and water vapor within the building, changes in the environment (the interior of the building and in the people exposed to the conditions inside the building. A change in the heat source and the source of water vapor involves improving the heat - insulating properties and the air permeability of the peripheral walls and especially of the windows. The change in the environment will bring human bodies into balance with the environment. This can be expressed in terms of an optimum or at least an acceptable globe temperature, an adequate proportion of radiant heat within the total amount of heat from the environment (defined by the difference between air and wall temperature, uniform cooling of the human body by the environment, defined a by the acceptable temperature difference between head and ankles, b by acceptable temperature variations during a shift (location unchanged, or during movement from one location to another without a change of clothing. Finally, a moisture balance between man and the environment is necessary (defined by acceptable relative air humidity. A change for human beings means a change of clothes which, of course, is limited by social acceptance in summer and by inconvenient heaviness in winter. The principles of optimum heating and cooling, humidification and dehumidification are presented in this paper.Hydrothermal comfort in an environment depends on heat and humidity flows (heat and water vapors, occurring in a given space in a building interior and affecting the total state of the human organism.

  7. Thermal Comfort and Optimum Humidity Part 2

    Directory of Open Access Journals (Sweden)

    M. V. Jokl

    2002-01-01

    Full Text Available The hydrothermal microclimate is the main component in indoor comfort. The optimum hydrothermal level can be ensured by suitable changes in the sources of heat and water vapor within the building, changes in the environment (the interior of the building and in the people exposed to the conditions inside the building. A change in the heat source and the source of water vapor involves improving the heat - insulating properties and the air permeability of the peripheral walls and especially of the windows. The change in the environment will bring human bodies into balance with the environment. This can be expressed in terms of an optimum or at least an acceptable globe temperature, an adequate proportion of radiant heat within the total amount of heat from the environment (defined by the difference between air and wall temperature, uniform cooling of the human body by the environment, defined a by the acceptable temperature difference between head and ankles, b by acceptable temperature variations during a shift (location unchanged, or during movement from one location to another without a change of clothing. Finally, a moisture balance between man and the environment is necessary (defined by acceptable relative air humidity. A change for human beings means a change of clothes which, of course, is limited by social acceptance in summer and by inconvenient heaviness in winter. The principles of optimum heating and cooling, humidification and dehumidification are presented in this paper.Hydrothermal comfort in an environment depends on heat and humidity flows (heat and water vapors, occurring in a given space in a building interior and affecting the total state of the human organism.

  8. Thermal comfort and older adults

    NARCIS (Netherlands)

    Hoof, van J.; Hensen, J.L.M.

    2006-01-01

    The majority of the increasing number of older adults wishes to age-in-place. Appropriate and comfortable housing is of great importance to facilitate this desire. One of the aspects of concern is thermal comfort. This is normally assessed using the model of Fanger, however, one might ask if this

  9. Thermal comfort: research and practice

    NARCIS (Netherlands)

    Hoof, van J.; Mazej, M.; Hensen, J.L.M.

    2010-01-01

    Thermal comfort -the state of mind, which expresses satisfaction with the thermal environment- is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half

  10. Improving the comfort of garments

    CSIR Research Space (South Africa)

    Hunter, L

    2014-11-01

    Full Text Available refers to the human body’s ability to maintain life. Psychological comfort refers to the mind’s ability to keep functioning satisfactorily without external help. Physical comfort refers to the effects of the external environment on the body’s...

  11. Effects on annual cost of solar/air-heat utilization system of carbon tax and interest rate for a residential house; Jutakuyo taiyo/taikinetsu riyo system no nenkan keihi ni oyobosu tansozei kinri no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Q; Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T [Shizuoka University, Shizuoka (Japan). Faculty of Engineering

    1996-10-27

    In recent years, a system has been proposed that utilizes river heat, air-heat, exhaust heat from a cooler, etc., in addition to natural energy for the heat pump. With the introduction of such system, the amount of energy used and that of CO2 exhaust will be greatly reduced, but annual expenses will be increased as it stands. In order to improve the cost efficiency of the system, a proposal has been made for the introduction of an economic policy such as the carbon tax and a low interest financing system. With these matters in the background, the subject study predicts the production of solar cells in the future and, on the basis of this production, determines the price, conversion efficiency and equipment energy of solar cells in the future. Using these values and taking into consideration the introduction of the carbon tax and the low interest financing system, the optimum area was determined for solar cells and heat concentrators in a future residential solar/air-heat energy system. The carbon tax, being imposed on all CO2 discharges, had a large effect. Moreover, as the tax increased, annual expenses decreased for the solar/air-heat system. 3 refs., 6 figs.

  12. Estimation of energy efficiency of residential buildings

    Directory of Open Access Journals (Sweden)

    Glushkov Sergey

    2017-01-01

    Full Text Available Increasing energy performance of the residential buildings by means of reducing heat consumption on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy saving process are heat producing and transportation over the main lines and outside distribution networks. In the period from 2006 to 2013. by means of the heat-supply schemes optimization and modernization of the heating systems. using expensive (200–300 $US per 1 m though hugely effective preliminary coated pipes. the economy reached 2.7 mln tons of fuel equivalent. Considering the multi-stage and multifactorial nature (electricity. heat and water supply of the residential sector energy saving. the reasonable estimate of the efficiency of the saving of residential buildings energy should be performed in tons of fuel equivalent per unit of time.

  13. Thermodynamical analysis of human thermal comfort

    International Nuclear Information System (INIS)

    Prek, Matjaz

    2006-01-01

    Traditional methods of human thermal comfort analysis are based on the first law of thermodynamics. These methods use an energy balance of the human body to determine heat transfer between the body and its environment. By contrast, the second law of thermodynamics introduces the useful concept of exergy. It enables the determination of the exergy consumption within the human body dependent on human and environmental factors. Human body exergy consumption varies with the combination of environmental (room) conditions. This process is related to human thermal comfort in connection with temperature, heat, and mass transfer. In this paper a thermodynamic analysis of human heat and mass transfer based on the 2nd law of thermodynamics in presented. It is shown that the human body's exergy consumption in relation to selected human parameters exhibits a minimal value at certain combinations of environmental parameters. The expected thermal sensation also shows that there is a correlation between exergy consumption and thermal sensation. Thus, our analysis represents an improvement in human thermal modelling and gives more information about the environmental impact on expected human thermal sensation

  14. Beyond the classic thermoneutral zone: Including thermal comfort.

    Science.gov (United States)

    Kingma, Boris Rm; Frijns, Arjan Jh; Schellen, Lisje; van Marken Lichtenbelt, Wouter D

    2014-01-01

    The thermoneutral zone is defined as the range of ambient temperatures where the body can maintain its core temperature solely through regulating dry heat loss, i.e., skin blood flow. A living body can only maintain its core temperature when heat production and heat loss are balanced. That means that heat transport from body core to skin must equal heat transport from skin to the environment. This study focuses on what combinations of core and skin temperature satisfy the biophysical requirements of being in the thermoneutral zone for humans. Moreover, consequences are considered of changes in insulation and adding restrictions such as thermal comfort (i.e. driver for thermal behavior). A biophysical model was developed that calculates heat transport within a body, taking into account metabolic heat production, tissue insulation, and heat distribution by blood flow and equates that to heat loss to the environment, considering skin temperature, ambient temperature and other physical parameters. The biophysical analysis shows that the steady-state ambient temperature range associated with the thermoneutral zone does not guarantee that the body is in thermal balance at basal metabolic rate per se. Instead, depending on the combination of core temperature, mean skin temperature and ambient temperature, the body may require significant increases in heat production or heat loss to maintain stable core temperature. Therefore, the definition of the thermoneutral zone might need to be reformulated. Furthermore, after adding restrictions on skin temperature for thermal comfort, the ambient temperature range associated with thermal comfort is smaller than the thermoneutral zone. This, assuming animals seek thermal comfort, suggests that thermal behavior may be initiated already before the boundaries of the thermoneutral zone are reached.

  15. Heading towards the nZEB through CHP+HP systems. A comparison between retrofit solutions able to increase the energy performance for the heating and domestic hot water production in residential buildings

    International Nuclear Information System (INIS)

    Salata, Ferdinando; Golasi, Iacopo; Domestico, Umberto; Banditelli, Matteo; Lo Basso, Gianluigi; Nastasi, Benedetto; Lieto Vollaro, Andrea de

    2017-01-01

    Highlights: • Energy optimization measures to increase the energy class of buildings. • Analysis of the demands related to the space-heating season and the production of annual DHW. • Case study related to a residential building of medium size located in Rome (Italy). • Improvements on building envelope and on systems (traditional technologies or CHP+HP). • Energy and economic analysis to achieve the performance of a nZEB. - Abstract: Optimizing consumptions in the field of civil construction led to define energy labels for residential buildings. To calculate the building energy demand the EPgl was determined, i.e. the annual consumption per m"2 of primary energy. This paper examines the technical solutions useful to optimize the energy demands for heating during space-heating season and domestic hot water production (thanks to energy analysis softwares as MC11300 and TRNSYS) and, at the same time, to take into account the financial issues those interventions implied. The total inside heated surface of the building case study is 1204.00 m"2, hence the inside heated volume is about 3250.80 m"3. Besides the more traditional interventions concerning the building envelope and its systems, the paper examined the performance of a system obtained through the combination of a cogenerator (CHP) and a heat pump (HP), thus, substituting the conventional boilers of the buildings. CHP+HP solution increases the most the energy label of the building (from a D class with EPgl = 59.62 kW h m"−"2 year"−"1, to an A class, with EPgl = 25.64 kW h m"−"2 year"−"1), determining an annual energy cost saving of 3,114 € year"−"1, allowing to amortize installation costs (54,560 €) in a reasonable payback period, i.e. 15.4 years. This innovative solution in the residential sector can be realized through retrofit interventions on existing buildings, hence it leads the current dwelling towards nZEB with a remarkable benefits for the environment.

  16. Creating high performance buildings: Lower energy, better comfort

    International Nuclear Information System (INIS)

    Brager, Gail; Arens, Edward

    2015-01-01

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. In contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building

  17. Load Shifting Control and Management of Domestic Microgeneration Systems for Improved Energy Efficiency and Comfort

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2015-01-01

    In this paper, an intelligent energy management system based on energy saving and user’s comfort is introduced and applied to a residential smart home as a case study. The proposed multi-objective mixed-integer nonlinear programming (MINLP)-based architecture takes the advantages of several key...

  18. The Role of Cellars in Reducing Energy Consumption in the Residential Architecture of Iran

    Directory of Open Access Journals (Sweden)

    Hossein Soltanzadeh

    2015-03-01

    Full Text Available According to research, between 15 to 20 percent of the total energy consumption of every country is used for residential spaces. This amount is explanatory of the high cost and will follow the destruction of natural resources and environmental demolition. The aim of this research is to recognize earth thermal ability and its usage in public buildings and especially in private buildings in order to reduce energy consumption which can lead to huge savings in natural resources. It is intended to pay attention to the role of cellars as underground spaces in reducing energy consumption in residential spaces in this research. Cellars which are one of the climatic elements were very useful in residential spaces in the past and underground spaces in cities and public spaces are using in the contemporary era. Native Iranian architecture has exclusive features in residential spaces. One of the reducing energy consumption techniques is using ground depth and underground spaces in private and public buildings. Pit gardens, Shovadan, aqueducts, lavers, cellars with natural abilities in coldness, warmness and support are examples of underground space uses (providing cooling, heating and storing food and goods in Iranian cities. The Main questions of this research are: what the role of undergrounds or cellars was in native Iranian architecture and how impressionable it was in reducing energy consumption. The theoretical framework of this study indicates that several factors had positive impacts on reducing energy consumption in cellars. To do this research, descriptive-analytical methods were uses and were analyzed according to case studies in Qazvin houses. The results of this study reveal that cellars had a main role in human thermal comfort and they caused reducing energy consumption in residential and even public spaces. Also, several factors such as the cellar's depth, height and dimensions had impacts on the reduction amount of energy consumption and the

  19. Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)

    Energy Technology Data Exchange (ETDEWEB)

    Starke, Michael R [ORNL; Onar, Omer C [ORNL; DeVault, Robert C [ORNL

    2011-09-01

    based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems

  20. Expressions of Prayer in Residential Care Homes.

    Science.gov (United States)

    Reimer-Kirkham, Sheryl; Sharma, Sonya; Smith, Brenda; Schutt, Kelly; Janzen, Kyla

    2018-01-01

    Although the value of spiritual care in the care of older adults is supported by research, few studies have focused specifically on prayer in residential care settings. This ethnographic study with fifteen chaplains and administrators in eleven residential care homes involved analyses of walking interviews and research diaries. Findings revealed the spaces in which prayer happens and the forms it takes. The identities of chaplains-their own spiritual practices, religious beliefs, and positioning within the facility-shaped their dis/comfort with prayer and how they located prayer within public and private spaces. Where organizational leadership endorsed the legitimacy of chaplaincy services, prayer was more likely to be offered. Even in these circumstances, however, religious diversity and questions about secularism left chaplains ambivalent about the appropriateness of prayer. The results demonstrate the relevance of religion and spirituality to residential care, and illustrate how prayer functions as an opportunity for connection and understanding.

  1. Averting comfortable lifestyle crises.

    Science.gov (United States)

    Bilton, Rod

    2013-01-01

    : alternative non-sugar sweeteners; toxic side-effects of aspartame. Stevia and xylitol as healthy sugar replacements; the role of food processing in dietary health; and beneficial effects of resistant starch in natural and processed foods. The rise of maize and soya-based vegetable oils have led to omega-6 fat overload and imbalance in the dietary ratio of omega-3 to omega-6 fats. This has led to toxicity studies with industrial trans fats; investigations on health risks associated with stress and comfort eating; and abdominal obesity. Other factors to consider are: diet, cholesterol and oxidative stress, as well as the new approaches to the chronology of eating and the health benefits of intermittent fasting.

  2. Thermal comfort: research and practice.

    Science.gov (United States)

    van Hoof, Joost; Mazej, Mitja; Hensen, Jan L M

    2010-01-01

    Thermal comfort--the state of mind, which expresses satisfaction with the thermal environment--is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half of the 1990s, and groups these developments around two main themes; (i) thermal comfort models and standards, and (ii) advances in computerization. Within the first theme, the PMV-model (Predicted Mean Vote), created by Fanger in the late 1960s is discussed in the light of the emergence of models of adaptive thermal comfort. The adaptive models are based on adaptive opportunities of occupants and are related to options of personal control of the indoor climate and psychology and performance. Both models have been considered in the latest round of thermal comfort standard revisions. The second theme focuses on the ever increasing role played by computerization in thermal comfort research and practice, including sophisticated multi-segmental modeling and building performance simulation, transient thermal conditions and interactions, thermal manikins.

  3. The issue of thermal comfort of medical clothing in the operating room

    OpenAIRE

    Abreu, Isabel; Ribeiro, Patrícia; Abreu, Maria José

    2017-01-01

    Abstract Medical clothes have the primary function of protection. However this function must be correlated with a good comfort experience to the user. The comfort is a very important issue, since professionals are exposed to stress situations that can influence, negatively, their performance work. More specific, thermal comfort plays a crucial role for the best performance of OR medical clothing, involving heat regulation and mass transfer between a clothed body and the environment, once clot...

  4. Life Cycle Assessment of Residential Heating and Cooling Systems in Minnesota A comprehensive analysis on life cycle greenhouse gas (GHG) emissions and cost-effectiveness of ground source heat pump (GSHP) systems compared to the conventional gas furnace and air conditioner system

    Science.gov (United States)

    Li, Mo

    Ground Source Heat Pump (GSHP) technologies for residential heating and cooling are often suggested as an effective means to curb energy consumption, reduce greenhouse gas (GHG) emissions and lower homeowners' heating and cooling costs. As such, numerous federal, state and utility-based incentives, most often in the forms of financial incentives, installation rebates, and loan programs, have been made available for these technologies. While GSHP technology for space heating and cooling is well understood, with widespread implementation across the U.S., research specific to the environmental and economic performance of these systems in cold climates, such as Minnesota, is limited. In this study, a comparative environmental life cycle assessment (LCA) is conducted of typical residential HVAC (Heating, Ventilation, and Air Conditioning) systems in Minnesota to investigate greenhouse gas (GHG) emissions for delivering 20 years of residential heating and cooling—maintaining indoor temperatures of 68°F (20°C) and 75°F (24°C) in Minnesota-specific heating and cooling seasons, respectively. Eight residential GSHP design scenarios (i.e. horizontal loop field, vertical loop field, high coefficient of performance, low coefficient of performance, hybrid natural gas heat back-up) and one conventional natural gas furnace and air conditioner system are assessed for GHG and life cycle economic costs. Life cycle GHG emissions were found to range between 1.09 × 105 kg CO2 eq. and 1.86 × 10 5 kg CO2 eq. Six of the eight GSHP technology scenarios had fewer carbon impacts than the conventional system. Only in cases of horizontal low-efficiency GSHP and hybrid, do results suggest increased GHGs. Life cycle costs and present value analyses suggest GSHP technologies can be cost competitive over their 20-year life, but that policy incentives may be required to reduce the high up-front capital costs of GSHPs and relatively long payback periods of more than 20 years. In addition

  5. Ground-Coupling with Water Source Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kavanaugh, S.

    0001-01-01

    Ground-coupled heat pumps (GCHPs) have been receiving increasing attention in recent years. In areas where the technology has been properly applied, they are the system of choice because of their reliability, high level of comfort, low demand, and low operating costs. Initially these systems were most popular in rural, residential applications where heating requirements were the primary consideration. However, recent improvements in heat pumps units and installation procedures have expanded the market to urban and commercial applications. This paper discusses some of the current activity in the commercial sector. The basic system and nomenclature are discussed. Several variations for commercial buildings are presented along with examples of systems in operation. Several advantages and disadvantages are listed. Operating and installation costs are briefly discussed. Finally, the GCHP is presented as an alternative that is able to counter much of the criticism leveled by the natural gas industry toward conventional heat pumps.

  6. Ground-Coupling with Water Source Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kavanaugh, S

    0000-12-30

    Ground-coupled heat pumps (GCHPs) have been receiving increasing attention in recent years. In areas where the technology has been properly applied, they are the system of choice because of their reliability, high level of comfort, low demand, and low operating costs. Initially these systems were most popular in rural, residential applications where heating requirements were the primary consideration. However, recent improvements in heat pumps units and installation procedures have expanded the market to urban and commercial applications. This paper discusses some of the current activity in the commercial sector. The basic system and nomenclature are discussed. Several variations for commercial buildings are presented along with examples of systems in operation. Several advantages and disadvantages are listed. Operating and installation costs are briefly discussed. Finally, the GCHP is presented as an alternative that is able to counter much of the criticism leveled by the natural gas industry toward conventional heat pumps.

  7. Strategies for Sustainable Comfort in Buildings

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    1997-01-01

    these goals include phasing out all use of electricity for space heating and for hot water supply. Furthermore building codes should require new buildings to be very well insulated, 30-40 cm mineral wool, for instance, and low energy windows. Similar codes, although not always as strict, should be applied......It is possible within some decades to achieve environmental sustainability in the building sector and at the same time provide a comfortable and healthy life for all Europeans as well as leaving that option open for other people in the world.Buildings are charcterized by having the longest lifetime...... of all capital in our societies, often more than a hundred years. For that reason they should never be designed on the bases of just present cheap energy supply and energy system, but with the long term outlook and risks in mind. New buildings can be designed to require essentially no space heating...

  8. Climate installations, comfort, health and productivity; Klimaatinstallaties, comfort, gezondheid en productiviteit

    Energy Technology Data Exchange (ETDEWEB)

    Boerstra, A.C.; Haans, L. [BBA Boerstra Binnenmilieu Advies, Rotterdam (Netherlands)

    2004-08-01

    Sometimes engineers lose sight of why both the private and business sectors are willing to spend so much money on heating and ventilation systems. The main drive for the average Dutch person's day-to-day investment in his or her indoor environment resides in the trinity of comfort, health and productivity. This article present an update on current ideas about the three unique selling points of HVAC systems. [Dutch] Soms wordt uit het oog verloren waarom zowel de particuliere als de zakelijke markt zoveel geld over heeft voor installaties. De grootste drijfveer die de gemiddelde Nederlander heeft voor zijn of haar dagelijkse binnenmilieu-investering, is te vinden in de drie-eenheid: comfort, gezondheid en productiviteit. In dit artikel wordt een overzicht gegeven van de laatste inzichten waar het deze drie aspecten van klimaatinstallaties betreft.

  9. Neural computing thermal comfort index for HVAC systems

    International Nuclear Information System (INIS)

    Atthajariyakul, S.; Leephakpreeda, T.

    2005-01-01

    The primary purpose of a heating, ventilating and air conditioning (HVAC) system within a building is to make occupants comfortable. Without real time determination of human thermal comfort, it is not feasible for the HVAC system to yield controlled conditions of the air for human comfort all the time. This paper presents a practical approach to determine human thermal comfort quantitatively via neural computing. The neural network model allows real time determination of the thermal comfort index, where it is not practical to compute the conventional predicted mean vote (PMV) index itself in real time. The feed forward neural network model is proposed as an explicit function of the relation of the PMV index to accessible variables, i.e. the air temperature, wet bulb temperature, globe temperature, air velocity, clothing insulation and human activity. An experiment in an air conditioned office room was done to demonstrate the effectiveness of the proposed methodology. The results show good agreement between the thermal comfort index calculated from the neural network model in real time and those calculated from the conventional PMV model

  10. Double face : Adjustable translucent system to improve thermal comfort

    NARCIS (Netherlands)

    Turrin, M.; Tenpierik, M.J.; De Ruiter, P.; Van der Spoel, W.H.; Chang Lara, C.; Heinzelmann, F.; Teuffel, P.; Van Bommel, W.

    2015-01-01

    The DoubleFace project aims at developing a new product that passively improves thermal comfort of indoor and semi-indoor spaces by means of lightweight materials for latent heat storage, while simultaneously allowing daylight to pass through as much as possible. Specifically, the project aims at

  11. Affordable comfort 95 - investing in our energy future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This report describes the topics from the conference on Affordable Comfort, held March 26-31, 1995. Topics are concerned with energy efficiency in homes, retrofitting, weatherization, and monitoring of appliances, heating, and air conditioning systems for performance, as well as topics on electric utilities.

  12. Economize while improving comfort. It's possible... with natural gas

    International Nuclear Information System (INIS)

    Prescott, G.

    1998-01-01

    Increasing the amount of exterior air coming into a building, combined with a natural gas heating source has proven to be profitable. A study in a residence for handicapped people showed that doubling the amount of exterior air coming into the building actually improved the comfort level for the occupants while reducing the total electric energy bill by 21 per cent

  13. Household preferences of hybrid home heating systems – A choice experiment application

    International Nuclear Information System (INIS)

    Ruokamo, Enni

    2016-01-01

    The residential heating sector presents considerable energy savings potential, as numerous heating solutions for reducing electricity consumption and utilizing renewable energy sources are available in the market. The aim of this paper is to examine determinants of household heating system choices and to use this information for policy planning purposes. This paper investigates residential homeowner attitudes regarding innovative hybrid home heating systems (HHHS) with choice experiment. Heating system scenarios are designed to represent the most relevant primary and supplementary heating alternatives currently available in Finland. The choice sets include six main heating alternatives (district heat, solid wood, wood pellet, electric storage heating, ground heat pump and exhaust air heat pump) that are described by five attributes (supplementary heating systems, investment costs, operating costs, comfort of use and environmental friendliness). The results imply that HHHSs generally appear to be accepted among households; however, several factors affect perceptions of these technologies. The results reveal differing household attitudes toward the main heating alternatives and show that such views are affected by socio-demographic characteristics (age, living environment, education, etc.). The results suggest that households view supplementary heating systems (especially solar-based) favorably. The other attributes studied also play a significant role in decision making. - Highlights: •Study of hybrid heating where supplementary and main heating systems are combined. •Choice experiment is applied to study the determinants of hybrid heating adoption. •Hybrid heating appears to be generally accepted among households. •Households exhibit differing attitudes toward hybrid heating. •Policy makers should not underestimate the potential of hybrid heating.

  14. Thermal comfort and building energy consumption implications – A review

    International Nuclear Information System (INIS)

    Yang, Liu; Yan, Haiyan; Lam, Joseph C.

    2014-01-01

    Highlights: • We review studies of thermal comfort and discuss building energy use implications. • Adaptive comfort models tend to have a wider comfort temperature range. • Higher indoor temperatures would lead to fewer cooling systems and less energy use. • Socio-economic study and post-occupancy evaluation of built environment is desirable. • Important to consider future climate scenarios in heating, cooling and power schemes. - Abstract: Buildings account for about 40% of the global energy consumption and contribute over 30% of the CO 2 emissions. A large proportion of this energy is used for thermal comfort in buildings. This paper reviews thermal comfort research work and discusses the implications for building energy efficiency. Predicted mean vote works well in air-conditioned spaces but not naturally ventilated buildings, whereas adaptive models tend to have a broader comfort temperature ranges. Higher indoor temperatures in summertime conditions would lead to less prevalence of cooling systems as well as less cooling requirements. Raising summer set point temperature has good energy saving potential, in that it can be applied to both new and existing buildings. Further research and development work conducive to a better understanding of thermal comfort and energy conservation in buildings have been identified and discussed. These include (i) social-economic and cultural studies in general and post-occupancy evaluation of the built environment and the corresponding energy use in particular, and (ii) consideration of future climate scenarios in the analysis of co- and tri-generation schemes for HVAC applications, fuel mix and the associated energy planning/distribution systems in response to the expected changes in heating and cooling requirements due to climate change

  15. Micro-CHP Systems for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Timothy DeValve; Benoit Olsommer

    2007-09-30

    Integrated micro-CHP (Cooling, Heating and Power) system solutions represent an opportunity to address all of the following requirements at once: conservation of scarce energy resources, moderation of pollutant release into our environment, and assured comfort for home-owners. The objective of this effort was to establish strategies for development, demonstration, and sustainable commercialization of cost-effective integrated CHP systems for residential applications. A unified approach to market and opportunity identification, technology assessment, specific system designs, adaptation to modular product platform component conceptual designs was employed. UTRC's recommendation to U.S. Department of Energy is to go ahead with the execution of the proposed product development and commercialization strategy plan under Phase II of this effort. Recent indicators show the emergence of micro-CHP. More than 12,000 micro-CHP systems have been sold worldwide so far, around 7,500 in 2004. Market projections predict a world-wide market growth over 35% per year. In 2004 the installations were mainly in Europe (73.5%) and in Japan (26.4%). The market in North-America is almost non-existent (0.1%). High energy consumption, high energy expenditure, large spark-spread (i.e., difference between electricity and fuel costs), big square footage, and high income are the key conditions for market acceptance. Today, these conditions are best found in the states of New York, Pennsylvania, New Jersey, Wisconsin, Illinois, Indiana, Michigan, Ohio, New England states. A multiple stage development plan is proposed to address risk mitigation. These stages include concept development and supplier engagement, component development, system integration, system demonstration, and field trials. A two stage commercialization strategy is suggested based on two product versions. The first version--a heat and power system named Micro-Cogen, provides the heat and essential electrical power to the

  16. 77 FR 74559 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2012-12-17

    ... Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters, Direct Heating... Energy (DOE) is amending its test procedures for residential water heaters, direct heating equipment (DHE... necessary for residential water heaters, because the existing test procedures for those products already...

  17. 76 FR 56347 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2011-09-13

    ... Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters, Direct Heating... proposed to amend, where appropriate, its test procedures for residential water heaters, direct heating... notes that the test procedure and metric for residential water heaters currently address and incorporate...

  18. Modeling and off-design performance of a 1 kWe HT-PEMFC (high temperature-proton exchange membrane fuel cell)-based residential micro-CHP (combined-heat-and-power) system for Danish single-family households

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2011-01-01

    A novel proposal for the modeling and operation of a micro-CHP (combined-heat-and-power) residential system based on HT-PEMFC (High Temperature-Proton Exchange Membrane Fuel Cell) technology is described and analyzed to investigate its commercialization prospects. An HT-PEMFC operates at elevated...... temperatures, as compared to Nafion-based PEMFCs and therefore can be a significant candidate for cogeneration residential systems. The proposed system can provide electric power, hot water, and space heating for a typical Danish single-family household. A complete fuel processing subsystem, with all necessary...

  19. Thermal Comfort: An Index for Hot, Humid Asia. Educational Building Digest 12.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    The sensation of thermal comfort is determined by a combination of air temperature, humidity of the air, rate of movement of the air, and radiant heat. This digest is intended to assist architects to design educational facilities that are as thermally comfortable as is possible without recourse to mechanical air conditioning. A nomogram is…

  20. Performance investigation on a multi-unit heat pump for simultaneous temperature and humidity control

    International Nuclear Information System (INIS)

    Fan, Hongming; Shao, Shuangquan; Tian, Changqing

    2014-01-01

    Highlights: • A multi-unit heat pump is proposed for simultaneous temperature and humidity control. • Condensation heat is non, partly or fully recovered for temperature regulation. • Highly integrated heat pump for residential cooling, dehumidification and heating. • High energy saving potential for all-year-round operation in wet and warm regions. - Abstract: A multi-unit heat pump is presented for simultaneous humidity and temperature control to improve the energy efficiency and the thermal comfort. Two parallel connected condensers are employed in the system, locating at the back of the indoor evaporator and the outdoor unit, respectively. The heat pump can operate in four modes, including heating, cooling and dehumidification without and/or with partial or total condensing heat recovery. The experimental investigation shows that the temperature control capacity is from 3.5 kW for cooling to 3.8 kW for heating with the cooling and heating efficiency higher than 3.5 kW kW −1 , and the dehumidification rate is about 2.0 kg h −1 with the efficiency about 2.0 kg h −1 kW −1 . The supply air temperature and humidity can be simultaneously regulated with high accuracy and high efficiency by adjusting the indoor and/or outdoor air volumes. It provides an integrated and effective solution for simultaneous indoor air temperature and humidity control for all-year-round operation in residential buildings

  1. Architectural design of passive solar residential building

    Directory of Open Access Journals (Sweden)

    Ma Jing

    2015-01-01

    Full Text Available This paper studies thermal environment of closed balconies that commonly exist in residential buildings, and designs a passive solar residential building. The design optimizes the architectural details of the house and passive utilization of solar energy to provide auxiliary heating for house in winter and cooling in summer. This design might provide a more sufficient and reasonable modification for microclimate in the house.

  2. Energy performance of building fabric - Comparing two types of vernacular residential houses

    Science.gov (United States)

    Draganova, Vanya Y.; Matsumoto, Hiroshi; Tsuzuki, Kazuyo

    2017-10-01

    Notwithstanding apparent differences, Japanese and Bulgarian traditional residential houses share a lot of common features - building materials, building techniques, even layout design. Despite the similarities, these two types of houses have not been compared so far. The study initiates such comparison. The focus is on houses in areas with similar climate in both countries. Current legislation requirements are compared, as well as the criteria for thermal comfort of people. Achieving high energy performance results from a dynamic system of 4 main key factors - thermal comfort range, heating/cooling source, building envelope and climatic conditions. A change in any single one of them can affect the final energy performance. However, it can be expected that a combination of changes in more than one factor usually occurs. The aim of this study is to evaluate the correlation between the thermal performance of building envelope designed under current regulations and a traditional one, having in mind the different thermal comfort range in the two countries. A sample building model is calculated in Scenario 1 - Japanese traditional building fabric, Scenario 2 - Bulgarian traditional building fabric and Scenario 3 - meeting the requirements of the more demanding current regulations. The energy modelling is conducted using EnergyPlus through OpenStudio cross-platform of software tools. The 3D geometry for the simulation is created using OpenStudio SketchUp Plug-in. Equal number of inhabitants, electricity consumption and natural ventilation is assumed. The results show that overall low energy consumption can be achieved using traditional building fabric as well, when paired with a wider thermal comfort range. Under these conditions traditional building design is still viable today. This knowledge can reestablish the use of traditional building fabric in contemporary design, stimulate preservation of local culture, building traditions and community identity.

  3. Conceptual provisions of the implementation of energy saving measures in the residential facilities

    Directory of Open Access Journals (Sweden)

    Meshcheryakova Tatiana

    2017-01-01

    Full Text Available Research purpose is identification of sales problems of energy saving actions for residential sector of economy, including with use of the power service contract. The choice of the object of the study is related to the general issues on energy saving of residential facilities and increasing the number of unresolved problems. Unfortunately, the efficiency of energy consumption of housing stock is extremely low that directly leads to an increase in citizens’ payments for public utilities (housing and communal services. There are many problems associated with the aging of fixed assets: it becomes especially evident in winter seasons. The level of quality of delivery, distribution and consumption of expensive heat resources that has the greatest impact on a residence comfort and sometimes human life and health, is very low. Our population faces to year overheating or freezing, to leakages through worn pipes and the subsequent disconnection of water and heat. Despite the public declaration of the of the active processes of modernization of the housing municipal economy in the Russian Federation, the implementation of the necessary energy-saving elements in the housing sector is evolving very slowly. The article presents conceptual positions, which will bring the issues related to energy saving and efficiency to a new level.

  4. 76 FR 37407 - Energy Conservation Program: Energy Conservation Standards for Residential Furnaces and...

    Science.gov (United States)

    2011-06-27

    .... Background 1. Current Standards a. Furnaces b. Central Air Conditioners and Heat Pumps 2. History of... Compliance Requirements a. Central Air Conditioning and Heat Pumps b. Residential Furnaces 3. Duplication... residential central air conditioners and central air conditioning heat pumps (air conditioners and heat pumps...

  5. Understanding and Evaluating Human Thermal Comfort at Tertiary Level Using a Computer-Based Laboratory Teaching Tool

    Science.gov (United States)

    Pellegrini, Marco

    2014-01-01

    Phase changes in water are experienced in everyday life but students often struggle to understand mechanisms that regulate them. Human thermal comfort is closely related to humidity, evaporative heat loss and heat transfer. The purpose of the present study is to assist students in the evaluation of human thermal comfort. Such a goal is achievable…

  6. Special Report - USNS Comfort Underway

    Science.gov (United States)

    region. The Navy hospital ship will provide medical, dental, veterinary and engineering assistance in medical clinic set up during Continuing Promise 2009. Story» Air Force Band Member Enjoys Audience Alexis arrived at a medical clinic set up by the crew of USNS Comfort wearing her Sunday best in

  7. FACT : forgiving agent comfort technology

    NARCIS (Netherlands)

    Zeiler, W.; Wortel, W.; Kamphuis, I.G.; Akkermans, Hans; Jelsma, J.; Bakker, L.

    2005-01-01

    To further reduce energy consumption of office buildings, a new control technology is needed in which the end-user behaviour is integrated. Improvement of the energy consumption is offered by agent-based systems for energy management in buildings, as well as possibilities for enhancing the comfort

  8. Beyond Comfort in Built Environments

    NARCIS (Netherlands)

    Bazley, C.M.

    2015-01-01

    Every person on the planet lives a significant portion of his or her life in a built indoor environment. Ideally, the built environment serves as protection from the extremes of the outdoor environment and is preferably comfortable. The first ‘built environment’ was a painted cave. The cave served

  9. Research on the evaluation system for heat metering and existing residential building retrofits in northern regions of China for the 12th five-year period

    International Nuclear Information System (INIS)

    Xin, Liu; Yan, Ding; Yujia, Tong; Neng, Zhu; Zhe, Tian

    2014-01-01

    On the basis of ERBR (existing residential building retrofit) work in the 11th five-year period, energy efficiency retrofits for old residential buildings have been further promoted in northern regions of China during the 12th five-year period. ERBR projects are capable of not only achieving energy conservation and emissions reductions but also providing warmer rooms for residents during cold winters. Therefore, this project should be continued in northern regions of China following a long-term management mode. With the aim of exploring methods and mechanisms for the evaluation of the retrofit effect, an evaluation method was established with the application of the multi-level expert evaluation method. The evaluation indexes cover the aspects of policy mechanisms, financing modes and technical measures. A rewards and punishment mechanism according to the evaluation system was also suggested. Such an evaluation system can be used as a valuable reference for future implementation of energy efficiency retrofit work. - Highlights: • With the AHPD method, the evaluation system of the ERBR was set up to complete. • There are 29 indicators, including policies, financings and technologies. • Rewards and punishment mechanisms are offered to the ERBR. • For weight value more than 0.06, long-term practice and accumulation are needed

  10. Design for thermal sensation and comfort states in vehicles cabins

    International Nuclear Information System (INIS)

    Alahmer, Ali; Abdelhamid, Mahmoud; Omar, Mohammed

    2012-01-01

    This manuscript investigates the analysis and modeling of vehicular thermal comfort parameters using a set of designed experiments aided by thermography measurements. The experiments are conducted using a full size climatic chamber to host the test vehicle, to accurately assess the transient and steady state temperature distributions of the test vehicle cabin. Further investigate the thermal sensation (overall and local) and the human comfort states under artificially created relative humidity scenarios. The thermal images are calibrated through a thermocouples network, while the outside temperature and relative humidity are manipulated through the climatic environmental chamber with controlled soaking periods to guarantee the steady state conditions for each test scenario. The relative humidity inside the passenger cabin is controlled using a Total Humidity Controller (THC). The simulation uses the experimentally extracted boundary conditions via a 3-D Berkeley model that is set to be fully transient to account for the interactions in the velocity and temperature fields in the passenger compartment, which included interactions from turbulent flow, thermal buoyancy and the three modes of heat transfer conduction, convection and radiation. The model investigates the human comfort by analyzing the effect of the in-cabin relative humidity from two specific perspectives; firstly its effect on the body temporal variation of temperature within the cabin. Secondly, the Local Sensation (LS) and Comfort (LC) are analyzed for the different body segments in addition to the Overall Sensation (OS) and the Overall Comfort (OC). Furthermore, the human sensation is computed using the Fanger model in terms of the Predicted Mean Value (PMV) and the Predicted Percentage Dissatisfied (PPD) indices. The experimental and simulation results show that controlling the RH levels during the heating and the cooling processes (winter and summer conditions respectively) aid the A/C system to

  11. Preliminary research on virtual thermal comfort of automobile occupants

    Science.gov (United States)

    Horobet, Tiberiu; Danca, Paul; Nastase, Ilinca; Bode, Florin

    2018-02-01

    Numerical simulation of climate conditions in automotive industry for the study of thermal comfort had become more and more prominent in the last years compared with the classical approach which consists in wind tunnel measurements and field testing, the main advantages being the reduction of vehicle development time and costs. The study presented in this paper is a part of a project intended to evaluate different strategies of cabin ventilation for improving the thermal comfort inside vehicles. A virtual thermal manikin consisting of 24 parts was introduced on the driver seat in a vehicle. A heat load calculated for summer condition in the city of Cluj-Napoca, Romania was imposed as boundary condition. The purpose of this study was to elaborate a virtual thermal manikin suitable for our research, introduction of the manikin inside the vehicle and to examine his influence inside the automobile. The thermal comfort of the virtual manikin was evaluated in terms of temperature and air velocity.

  12. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    Science.gov (United States)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  13. Empirical Platform Data Analysis to Investigate how Heat Pumps Operate in Real-Life Conditions

    DEFF Research Database (Denmark)

    Carmo, Carolina; Elmegaard, Brian; Nielsen, M. P.

    2015-01-01

    Heat pumps have been widely acknowledged, by academia and industry, as highly efficient thermal energy technologies, for space heating and domestic hot water production. However, there is a lack of information about real performance in residential single family houses with active participation...... of end-users. In this paper, an analysis based on data from 242 heat pump installations in Denmark gathered over a period up to 4 years (2010 until today) is performed. COP, operating temperatures and socio-demographic data are used as basis for comparing theoretical and actual performance. Six different...... heat pump configurations are considered depending on source (ground or air) and sink (radiators, floor heating and/or combined systems). This unique study intends to point out the benefits and limitations of such technologies in terms of energy efficiency and comfort delivery, as well as investigating...

  14. Study on the optimum PCM melting temperature for energy savings in residential buildings worldwide

    Science.gov (United States)

    Saffari, M.; de Gracia, A.; Fernández, C.; Zsembinszki, G.; Cabeza, L. F.

    2017-10-01

    To maintain comfort conditions in residential buildings along a full year period, the use of active systems is generally required to either supply heating or cooling. The heating and cooling demands strongly depend on the climatic conditions, type of building and occupants’ behaviour. The overall annual energy consumption of the building can be reduced by the use of renewable energy sources and/or passive systems. The use of phase change materials (PCM) as passive systems in buildings enhances the thermal mass of the envelope, and reduces the indoor temperature fluctuations. As a consequence, the overall energy consumption of the building is generally lower as compared to the case when no PCM systems are used. The selection of the PCM melting temperature is a key issue to reduce the energy consumption of the buildings. The main focus of this study is to determine the optimum PCM melting temperature for passive heating and cooling according to different weather conditions. To achieve that, numerical simulations were carried out using EnergyPlus v8.4 coupled with GenOpt® v3.1.1 (a generic optimization software). A multi-family residential apartment was selected from ASHRAE Standard 90.1- 2013 prototype building model, and different climate conditions were considered to determine the optimum melting temperature (in the range from 20ºC to 26ºC) of the PCM contained in gypsum panels. The results confirm that the optimum melting temperature of the PCM strongly depends on the climatic conditions. In general, in cooling dominant climates the optimum PCM temperature is around 26ºC, while in heating dominant climates it is around 20ºC. Furthermore, the results show that an adequate selection of the PCM as passive system in building envelope can provide important energy savings for both heating dominant and cooling dominant regions.

  15. Thermal comfort study of hospital workers in Malaysia.

    Science.gov (United States)

    Yau, Y H; Chew, B T

    2009-12-01

    This article presents findings of the thermal comfort study in hospitals. A field survey was conducted to investigate the temperature range for thermal comfort in hospitals in the tropics. Thermal acceptability assessment was conducted to examine whether the hospitals in the tropics met the ASHRAE Standard-55 80% acceptability criteria. A total of 114 occupants in four hospitals were involved in the study. The results of the field study revealed that only 44% of the examined locations met the comfort criteria specified in ASHRAE Standard 55. The survey also examined the predicted percentage of dissatisfied in the hospitals. The results showed that 49% of the occupants were satisfied with the thermal environments in the hospitals. The field survey analysis revealed that the neutral temperature for Malaysian hospitals was 26.4 degrees C. The comfort temperature range that satisfied 90% of the occupants in the space was in the range of 25.3-28.2 degrees C. The results from the field study suggested that a higher comfort temperature was required for Malaysians in hospital environments compared with the temperature criteria specified in ASHRAE Standard (2003). In addition, the significant deviation between actual mean vote and predicted mean vote (PMV) strongly implied that PMV could not be applied without errors in hospitals in the tropics. The new findings on thermal comfort temperature range in hospitals in the tropics could be used as an important guide for building services engineers and researchers who are intending to minimize energy usage in heating, ventilating and air conditioning systems in hospitals operating in the tropics with acceptable thermal comfort level and to improve the performance and well-being of its workers.

  16. Assessing Thermal Comfort Due to a Ventilated Double Window

    Science.gov (United States)

    Carlos, Jorge S.; Corvacho, Helena

    2017-10-01

    Building design and its components are the result of a complex process, which should provide pleasant conditions to its inhabitants. Therefore, indoor acceptable comfort is influenced by the architectural design. ISO and ASHRAE standards define thermal comfort as the condition of mind that expresses satisfaction with the thermal environment. The energy demand for heating, beside the building’s physical properties, also depend on human behaviour, like opening or closing windows. Generally, windows are the weakest façade element concerning to thermal performance. A lower thermal resistance allows higher thermal conduction through it. When a window is very hot or cold, and the occupant is very close to it, it may result in thermal discomfort. The functionality of a ventilated double window introduces new physical considerations to a traditional window. In consequence, it is necessary to study the local effect on human comfort in function of the boundary conditions. Wind, solar availability, air temperature and therefore heating and indoor air quality conditions will affect the relationship between this passive system and the indoor environment. In the present paper, the influence of thermal performance and ventilation on human comfort resulting from the construction and geometry solutions is shown, helping to choose the best solution. The presented approach shows that in order to save energy it is possible to reduce the air changes of a room to the minimum, without compromising air quality, enhancing simultaneously local thermal performance and comfort. The results of the study on the effect of two parallel windows with a ventilated channel in the same fenestration on comfort conditions for several different room dimensions, are also presented. As the room dimensions’ rate changes so does the window to floor rate; therefore, under the same climatic conditions and same construction solution, different results are obtained.

  17. Thermal comfort study of plastics manufacturing industry in converting process

    Directory of Open Access Journals (Sweden)

    Sugiono Sugiono

    2017-09-01

    Full Text Available Thermal comfort is one of ergonomics factors that can create a significant impact to workers performance. For a better thermal comfort, several environment factors (air temperature, wind speed and relative humidity should be considered in this research. The object of the study is a building for converting process of plastics manufacturing industry located in Malang, Indonesia. The maximum air temperature inside the building can reach as high as 36°C. The result of this study shows that heat stress is dominantly caused by heat source from machine and wall building. The computational fluid dynamics (CFD simulation is used to show the air characteristic through inside the building. By using the CFD simulation, some scenarios of solution are successfully presented. Employees thermal comfort was investigated based on predicted mean vote model (PMV and predicted percentage of dissatisfied model (PPD. Existing condition gives PMV in range from 1.83 to 2.82 and PPD in range from 68.9 to 98%. Meanwhile, modification of ventilation and replacing ceiling material from clear glass into reflective clear glass gave significant impact to reduce PMV into range from 1.63 to 2.18 and PPD into range from 58.2 to 84.2%. In sort, new design converting building process has more comfortable for workers.

  18. User-Preference-Driven Model Predictive Control of Residential Building Loads and Battery Storage for Demand Response: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baker, Kyri A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Dane T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Isley, Steven C. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-21

    This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility and reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.

  19. ComfortPower - System improvements and long-term evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik [Catator AB, Lund (Sweden)

    2011-11-15

    Catator has previously developed a novel heating system abbreviated ComfortPower in a RandD-programme supported by Catator, Swedish Gas Centre (SGC), Swedish Defence Materiel Administration (FMV), Skanska, Nibe and Alfa Laval. The ComfortPower unit comprises a multi fuel reformer system tied to a high-temperature polymer electrolyte fuel cell (HT-PEM) and a heat pump system. Since the residual heat from the fuel cell system can be utilized in a very effective way, it is possible to reach high thermal efficiencies. Indeed, the thermal efficiency in the unit has previously been shown to reach values as high as 175 - 200 % based on the lower heating value of the fuel. In addition to heat, ComfortPower can supply comfort cooling and surplus electricity. This project phase has focused on the following elements: 1. System improvements to further enhance the efficiency with existing fuel cell (HT-PEM). 2. System simplifications (e.g. DC-compressor system) to manage issues with start-up currents. 3. Tests with biogas qualities (various levels of CO{sub 2}) and biogas/air. 4. Long-term test with biogas quality (upgraded biogas). 5. Additional tests with liquid fuels (alcohols and diesel). 6. Map the need for cooling and heating in various applications. 7. Investigate how ComfortPower can reduce the primary energy consumption and reduce the environmental impact. 8. Study the possibility with a SOFC-based system with internal reforming. It was found that the Optiformer technology can be used to derive a suitable reformate gas for the HT-PEM unit from a wide range of fuels. Even if operation with fuel gases is the natural choice in most cases, it is possible also to use alcohols and other liquid fuels (e.g. in Campus applications). The heat pump system was equipped with a 24 V DC-compressor provided by Nibe. The compressor could be directly powered by the accumulator system and start-up currents, harmful to the inverter, could be avoided. Some improvements were made on the

  20. STAR Measurements and Modeling for Quantifying Air Quality and Climatic Impacts of Residential Biomass or Coal Combustion for Cooking, Heating and Lighting Kick-off Meeting

    Science.gov (United States)

    STAR grantees and EPA scientists will discuss progress on their projects which aim to quantify the extent to which interventions for cleaner cooking, heating, or lighting can impact air quality and climate, which in turn affect human health and welfare

  1. On the determination of the thermal comfort conditions of a metropolitan city underground railway.

    Science.gov (United States)

    Katavoutas, George; Assimakopoulos, Margarita N; Asimakopoulos, Dimosthenis N

    2016-10-01

    Although the indoor thermal comfort concept has received increasing research attention, the vast majority of published work has been focused on the building environment, such as offices, residential and non-residential buildings. The present study aims to investigate the thermal comfort conditions in the unique and complex underground railway environment. Field measurements of air temperature, air humidity, air velocity, globe temperature and the number of passengers were conducted in the modern underground railway of Athens, Greece. Environmental monitoring was performed in the interior of two types of trains (air-conditioned and forced air ventilation cabins) and on selected platforms during the summer period. The thermal comfort was estimated using the PMV (predicted mean vote) and the PPD (predicted percentage dissatisfied) scales. The results reveal that the recommended thermal comfort requirements, although at relatively low percentages are met only in air-conditioned cabins. It is found that only 33% of the PPD values in air-conditioned cabins can be classified in the less restrictive comfort class C, as proposed by ISO-7730. The thermal environment is "slightly warm" in air-conditioned cabins and "warm" in forced air ventilation cabins. In addition, differences of the thermal comfort conditions on the platforms are shown to be associated with the depth and the design characteristics of the stations. The average PMV at the station with small depth is 0.9 scale points higher than that of the station with great depth. The number of passengers who are waiting at the platforms during daytime reveals a U-shaped pattern for a deep level station and an inverted course of PMV for a small depth station. Further, preliminary observations are made on the distribution of air velocity on the platforms and on the impact of air velocity on the thermal comfort conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Analysis of the impact of Heat-to-Power Ratio for a SOFC-based mCHP system for residential application under different climate regions in Europe

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Brandon, Nigel

    2011-01-01

    In this paper, the ability of a micro combined heat and power (mCHP) system to cover the heat and electricity demand of a single-family residence is investigated. A solid oxide fuel cell based mCHP system coupled with a hot water storage tank is analyzed. The energy profiles of single-family hous......In this paper, the ability of a micro combined heat and power (mCHP) system to cover the heat and electricity demand of a single-family residence is investigated. A solid oxide fuel cell based mCHP system coupled with a hot water storage tank is analyzed. The energy profiles of single...... according to the summer energy demand. The winter energy demand shows a Heat-to-Power Ratio which cannot be covered by the mCHP unit alone. To ensure that the mCHP system meets both the thermal and electrical energy demand over the entire year, an auxiliary boiler and a hot water storage tank need...

  3. Energy-efficient and cost-effective in-house substations bypass for improving thermal and DHW (domestic hot water) comfort in bathrooms in low-energy buildings supplied by low-temperature district heating

    DEFF Research Database (Denmark)

    Brand, Marek; Dalla Rosa, Alessandro; Svendsen, Svend

    2014-01-01

    temperature and additional cooling of bypass water by 3.9 °C, reducing the heat loss from the DH network by 13% and covering 40% of the heat used in the bathroom FH. The use of the bypass flow in bathroom FH is a cost-effective solution exploiting the heat that would otherwise be lost in the DH network......Using a bypass to redirect a small flow through the in-house DH (district heating) substation directly to the return pipe is a commonly used but energy-inefficient solution to keep the DH network “warm” during non-heating seasons. Instead, this water can be redirected to the bathroom FH (floor...... heating) to cool down further and thus reduce the heat lost from bypass operation while tempering the bathroom floor and guaranteeing fast provision of DHW (domestic hot water). We used the commercial software IDA-ICE to model a reference building where we implemented various solutions for controlling...

  4. Predicting the Impact of Urban Green Areas on Microclimate Changes of Mashhad Residential Areas during the Hottest Period

    Directory of Open Access Journals (Sweden)

    zahra karimian

    2017-09-01

    Full Text Available Introduction: With regard to two adverse climatic phenomena of urban heat islands and global warming that has been leading to increase temperature in many cities in the world, providing human thermal comfort especially in large cities with hot and dry climates, during the hottest periods of the year is crucial. Mainly vegetation with three methods: shading, evapotranspiration and wind breaking can affect micro-climate. The aim of this study was to asses and simulate the impact of existing and proposed vegetation on the human thermal comfort and micro climate changes in some residential areas of Mashhad during the hottest periods of the year by using a modeling and computer simulation approach. Materials and Methods: This research was performed in the Ghasemabad residential area, Andisheh and Hesabi blocks, and in the hottest period of the year 2012 in Mashhad. Recorded data in the residential sites along with observed data from Mashhad weather station that included temperature, relative humidity, wind speed and direction. Soil data (soil temperature and humidity, soil\\ type, plant data (plant type, plant height, leaf area index and building data (inner temperature in the building, height and area buildings as input data were used in the ENVI-met model. Both two sites, Andishe and Hesabi residential blocks, with vegetation (different trees and bushes plants, for example Acacia, ash, sycamore, mulberry, chinaberry, barberry, boxwood and Cotoneaster that all of them are tolerant and semi-tolerant to drought about 20% were simulated. Regarding the area of simulating, 3 receptors were considered in per sites. Simulation was commenced from 6 AM and continued until 18 pm, but just data of 11-15 hours were analysed (the hours of peak traffic. Results and Discussion: Analysis of outputs data revealed that the temperature of two residential sites in all three receptors during the study were almost the same. In general, the maximum temperature difference

  5. Thermal Comfort-CFD maps for Architectural Interior Design

    DEFF Research Database (Denmark)

    Naboni, Emanuele; Lee, Daniel Sang-Hoon; Fabbri, Kristian

    2017-01-01

    opportunities of movable interior partitions (operated by the users) could be estimated, providing a new layer of information to the designer. The applicability of the thermal maps within an architectural design process is discussed adopting standard energy simulation comfort outputs as a reference......Within the context of nearly Zero-Energy Buildings, it is debated that the energy-centred notion of design, proposed by regulatory frames, needs to be combined with a further focus toward users’ comfort and delight. Accordingly, the underlying theory of the research is that designers should take...... responsibility for understanding the heat flows through the building parts and its spaces. A design, which is sensible to the micro-thermal conditions coexisting in a space, allows the inhabitants to control the building to their needs and desires: for instance, maximising the benefits of heat gain from the sun...

  6. Far ahead of the times. Measurements demonstrate: solar thermal heating systems save money at the highest level of domestic comfort; Der Zeit weit voraus. Messungen beweisen: solarthermische Heizsysteme sparen bares Geld bei hoechstem Wohnkomfort

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2012-12-15

    If someone wants to build or renovate its own home at present, is well advised to decide for a sustainable and cost saving energy concept. Already at the beginning of this year, the oil and gas prices amount to more than 90 cent per litre. Tendency: increasing. Many households look back on one of the most expensive heating periods of the past five years, although the winter 2011/2012 brought average temperatures statistically. If someone wants to become independent from the development of the energy prices, needs a building and heating concept which meets the heat requirement from renewable energy resources as wide-ranging as possible.

  7. Simulation of global warming effect on outdoor thermal comfort conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, G.R.; Ranjbar, F. [Univ. of Tehran (IR). Dept. of Physical Geography; Orosa, J.A. [Univ. of A Coruna (Spain). Dept. of Energy

    2010-07-01

    In the coming decades, global warming and increase in temperature, in different regions of the world, may change indoor and outdoor thermal comfort conditions and human health. The aim of this research was to study the effects of global warming on thermal comfort conditions in indoor ambiences in Iran. To study the increase in temperature, model for assessment of greenhouse-gas induced climate change scenario generator compound model has been used together with four scenarios and to estimate thermal comfort conditions, adaptive model of the American Society of Heating, Refrigerating and Air-Conditioning Engineers has been used. In this study, Iran was divided into 30 zones, outdoor conditions were obtained using meteorological data of 80 climatological stations and changes in neutral comfort conditions in 2025, 2050, 2075 and 2100 were predicted. In accordance with each scenario, findings from this study showed that temperature in the 30 zones will increase by 2100 to between 3.4 C and 5.6 C. In the coming decades and in the 30 studied zones, neutral comfort temperature will increase and be higher and more intense in the central and desert zones of Iran. The low increase in this temperature will be connected to the coastal areas of the Caspian and Oman Sea in southeast Iran. This increase in temperature will be followed by a change in thermal comfort and indoor energy consumption from 8.6 % to 13.1 % in air conditioning systems. As a result, passive methods as thermal inertia are proposed as a possible solution.

  8. The energy-related services are the major sales promotion. Customized electricity and district heat supply technology and services for the newly developed residential area Boerkhauser Feld at Solingen-Aufderhoehe; Die Dienstleistung bringt den (Verkaufs-)Erfolg. Strom- und Waermeversorgung fuer Wohngebiet Boerkhauser Feld in Solingen-Aufderhoehe

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-06-01

    The firm COMUNA-metall, Herford, is the contractor and service provider for installation and operation of the electricity and district heat supply systems based on a modular cogeneration plant (CHP system). The residential area will eventually encompass about 450 residential units, all buildings are low-energy houses. The article explains the systems and gives an initial performance report covering 100 existing residential units. (orig./CB) [German] Die Firma COMUNA-metall, Herford, hat als Dienstleister die Erstellung und den Betrieb einer Strom- und Nahwaermeversorgung mit Kraft-Waerme-Kopplung fuer das Wohngebiet uebernommen, das nach Fertigstellung ca. 450 Wohneinheiten in Niedrigenergiebauweise umfassen wird. Der Beitrag schildert die technischen Einrichtungen und eine erste Leistungsbilanz im Bauabschnitt mit 100 Wohneinheiten. (orig./CB)

  9. Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments

    International Nuclear Information System (INIS)

    Ahn, Jonghoon; Cho, Soolyeon

    2017-01-01

    Highlights: •Integrated energy control model improves thermal comfort and mitigates an increase of energy consumption. •Communication between heating and cooling, thermal comfort, and decision making models optimizes energy supply. •PMV model effectively rectifies set-point temperature to reduce thermal dissatisfaction in various conditions. •Five-step decision making model properly responds to abnormal situations derived from human anti-logic or common sense. •Integrated model can be extended for managing risks caused by fire or disasters. -- Abstract: In spite of the remarkable development of technology, most studies for building energy controls to evaluate or estimate the energy performance have not accurately reflected actual building’s energy consumption patterns. For this issue, several techniques, such as simulation and calibration, comprehensive survey system, smart metering, and commissioning, have been attempted. However, in most studies, some factors in thermal systems derived from occupant behavior were perceived as fixed objects, and the factors were converted into simple numbers as parts of inputs into simulation templates. There was lack of studies on considerations that unpredictable responses derived from human anti-logic or common sense could deteriorate energy efficiency in theoretical analyses even though the systems were properly operated. This research proposes integrated energy supply models based on artificial intelligence responding to anti-logic or common sense that can reduce machine’s energy saving effects. By use of design scenarios assuming some unusual situations, a decision making model determines the extent to which the cause of the abnormal situations are associated with the occupant behavior. After the five-step phases in the decision making model, the actual outputs of the energy supply model for the buildings are determined, and the reciprocal communication between the thermal and decision making models mitigates

  10. Exergy analysis of a two-stage ground source heat pump with a vertical bore for residential space conditioning under simulated occupancy

    International Nuclear Information System (INIS)

    Ally, Moonis R.; Munk, Jeffrey D.; Baxter, Van D.; Gehl, Anthony C.

    2015-01-01

    Highlights: • Exergy and energy analysis of a vertical-bore ground source heat pump over a 12-month period is presented. • The ground provided more than 75% of the heating energy. • Performance metrics are presented. • Sources of systemic inefficiency are identified and prioritized using Exergy analysis. • Understanding performance metrics is vital for judicial use of renewable energy. - Abstract: This twelve-month field study analyzes the performance of a 7.56 W (2.16-ton) water-to-air-ground source heat pump (WA-GSHP) to satisfy domestic space conditioning loads in a 253 m 2 house in a mixed-humid climate in the United States. The practical feasibility of using the ground as a source of renewable energy is clearly demonstrated. Better than 75% of the energy needed for space heating was extracted from the ground. The average monthly electricity consumption for space conditioning was only 40 kW h at summer and winter thermostat set points of 24.4 °C and 21.7 °C, respectively. The WA-GSHP shared the same 94.5 m vertical bore ground loop with a separate water-to-water ground-source heat pump (WW-GSHP) for meeting domestic hot water needs in the same house. Sources of systemic irreversibility, the main cause of lost work, are identified using Exergy and energy analysis. Quantifying the sources of Exergy and energy losses is essential for further systemic improvements. The research findings suggest that the WA-GSHPs are a practical and viable technology to reduce primary energy consumption and greenhouse gas emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 targets of using renewable energy resources

  11. Efficient Energy Management for a Grid-Tied Residential Microgrid

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    generation characteristics, heat transfer and thermal dynamics of sustainable residential buildings and load scheduling potentials of household appliances with associated constraints. Through various simulation studies under different working scenarios with real data, different system constraints and user...

  12. Modelling long term energy consumption of French residential sector - improving behavioral realism and simulating ambitious scenarios

    International Nuclear Information System (INIS)

    Allibe, Benoit

    2012-01-01

    This thesis aims to integrate components of an economic model of the behaviors of households in a technological model of French residential sector energy consumption dynamics and to analyze the consequences of this integration on the results of long-term residential energy consumption simulations (2030-2050). The results of this work highlight significant differences between the actual household space heating energy consumptions and those estimated by engineering models. These differences are largely due to the elasticity of thermal comfort demand to thermal comfort price. Our improved model makes it possible to conjointly integrate the concepts of price elasticity and rebound effect (the increase in energy service level following an improvement in energy performance of the equipment providing the service) in a daily behavior model. Regarding space heating consumption, the consequences of this behavioral adaptation - combined with some technical defects - are a significant reduction of the technical and behavioral energy saving potentials (while effective daily use of energy is generally lower than predicted by engineering models) at a national level. This implies that mid and long-term national energy policy targets (a 38% drop in primary energy consumption by 2020 and a reduction in greenhouse gas emissions by a factor of 4 by 2050 compared to the 1990 level) will be harder to reach than previously expected for the residential sector. These results also imply that a strong reduction in carbon emissions cannot be achieved solely through the diffusion of efficient technologies and energy conservation behavior but also requires to significantly lower the average carbon content of residential space heating energy through the generalized use of wood energy. The second issue addressed in this thesis is the influence of the resolution of a techno-economic model (i.e. its ability to represent the various values that a variable can have within the modeled system) on its

  13. Residential and Light Commercial HVAC. Teacher Edition.

    Science.gov (United States)

    Stephenson, David; Fulkerson, Dan, Ed.

    This curriculum guide contains 18 units of instruction for a competency-based course in residential and light commercial heating, ventilating, and air conditioning (HVAC). Introductory materials include a competency profile and an instructional/task analysis that correlates job training with related information for this course. Each instructional…

  14. Retailing residential electricity : A concept that makes sense?

    International Nuclear Information System (INIS)

    MacDonald, C.

    2003-07-01

    A heated debate centres around the deregulation of the electricity industry and the retailing of residential electricity. An assessment of the current situation in the industry was provided in this paper to provide a basis for discussion. The experience gained both in Alberta and Texas in residential retail was examined. The main issue of concern is whether residential customers will benefit from deregulation of the electricity sector. The Retail Energy Deregulation (RED) Index provides a benchmark for those jurisdictions considering the residential options. Deregulation has not led to significant benefits to residential customers in most jurisdictions. The electricity industry will always require a central dispatch/market process that will have to designed, governed, regulated, modified regularly. The benefits to residential consumers are not expected for a very long time. Standard market design is an issue that will require attention. refs., 7 figs

  15. AGA predicts winter jump in residential gas price

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The American Gas Association predicts the average heating bill for residential gas consumers could increase by as much as 18% this winter. AGA Pres. Mike Baly said, Last year's winter was warmer than normal. If the 1992-93 winter is similar, AGA projects that residential natural gas heating bills will go up about 6%. If we see a return to normal winter weather, our projection show the average bill could rise by almost 18%

  16. Thermal comfort assessment of buildings

    CERN Document Server

    Carlucci, Salvatore

    2013-01-01

    A number of metrics for assessing human thermal response to climatic conditions have been proposed in scientific literature over the last decades. They aim at describing human thermal perception of the thermal environment to which an individual or a group of people is exposed. More recently, a new type of “discomfort index” has been proposed for describing, in a synthetic way, long-term phenomena. Starting from a systematic review of a number of long-term global discomfort indices, they are then contrasted and compared on a reference case study in order to identify their similarities and differences and strengths and weaknesses. Based on this analysis, a new short-term local discomfort index is proposed for the American Adaptive comfort model. Finally, a new and reliable long-term general discomfort index is presented. It is delivered in three versions and each of them is suitable to be respectively coupled with the Fanger, the European Adaptive and the American Adaptive comfort models.

  17. Improving comfort levels in a traditional high altitude Nepali house

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, R.J. [School of Architecture and Building, Deakin University, Geelong, Vic. 3217 (Australia); Zahnd, A.; Thakuri, S. [Department of Mechanical Engineering, Kathmandu University and RIDS-Nepal (Nepal)

    2009-03-15

    Humla Province is a remote mountainous region of northwest Nepal. The climate is harsh and the local people are extremely poor. Most people endure a subsistence culture, living in traditional housing. Energy for cooking and heating comes from fuelwood, supplies of which are diminishing. In order to improve the indoor environment and reduce fuelwood use, smokeless stoves are being introduced to replace the open fire in Humli homes. There is some concern, however, that comfort levels may not be as acceptable with these stoves. The aim of this research was therefore to investigate ways in which the comfort levels in traditional Humli housing might be improved using simple and low cost strategies. Temperature data was recorded in four rooms of a traditional Humli home over a 12-day period and used with fuelwood data to validate a TRNSYS simulation model of the house. This model was then used to evaluate the impact on comfort levels in the house of various energy conservation strategies using PMV and PPD indicators. As a single strategy, it was found that reducing infiltration of outside air was likely to be more effective than increasing the insulation level in the ceilings. The most successful strategy, however, was the creation of sunspaces at the entrances to the living rooms. This strategy increased average internal temperatures by 1.7 and 2.3 C. In combination with increased insulation levels, the sunspaces reduced comfort dissatisfaction levels by over 50%. (author)

  18. Indoor Thermal Comfort: The Behavioral Component

    Directory of Open Access Journals (Sweden)

    Jack Barkenbus

    2013-04-01

    Full Text Available This is a study of how indoor temperature settings have changed over time in the United States based on data from the Energy Information Administration’s, Residential Energy Consumption Survey (RECS. It is shown that Americans have moderately raised indoor temperature settings during the heating season over the past thirty years. It is also shown that most Americans keep their homes relatively cool in the summertime and are generally averse to implementing temperature setbacks. It is revealed that occupants in lower-income homes tend to set their thermostats higher in winter than other income groups, but that the most intense cooling tends to take place in both low-income and high-income homes. As expected, renters tend to heat and cool more intensively than homeowners. Getting Americans to change their temperature settings in order to save energy is not easy even though it comes with the promise of financial savings. The use of programmable thermostats thus far has proved unsuccessful. Greater utilization of social marketing to achieve energy savings is suggested, as well as a renewed effort on the part of electricity suppliers to work more closely with homeowners as part of the rollout of the “smart grid”.

  19. Mining usage patterns in residential intranet of things

    OpenAIRE

    Poghosyan , Gevorg; Pefkianakis , Ioannis; Le Guyadec , Pascal; Christophides , Vassilis

    2016-01-01

    International audience; Ubiquitous smart technologies gradually transform modern homes into Intranet of Things, where a multitude of connected devices allow for novel home automation services (e.g., energy or bandwidth savings, comfort enhancement, etc.). Optimizing and enriching the Quality of Experience (QoE) of residential users emerges as a critical differentiator for Internet and Communication Service providers (ISPs and CSPs, respectively) and heavily relies on the analysis of various k...

  20. Indoor Thermal Environment in Tropical Climate Residential Building

    Directory of Open Access Journals (Sweden)

    Jamaludin Nazhatulzalkis

    2014-01-01

    Full Text Available Indoor thermal environment is one of the criteria in sustainable building. This criterion is important in ensuring a healthy indoor environment for the occupants. The consideration of environmental concerns at the early design stage would effectively integrate the sustainability of the building environment. Global climate changes such as global warming do affect human comfort since people spend most of their time and activities in the building. The increasing of urban population required additional housing for households, as well as places to shop, office and other facilities. Occupants are now more conscious the importance of sustainability for a better quality of life. Good thermal environment is essential for human wellness and comfort. A residential environment will influence residents’ health and safety. The global warming increase the earth’s temperature and greenhouse emission to the atmosphere cause adverse effects to the outdoor environment. Residential developments modify the materials, structure and energy balance in urban climate effects of human economic activities. As an indoor environment is influenced by the outdoor condition, the factors affecting indoor thermal environment are crucial in improving a comfortable and healthy environment in residential building. The microclimatic of a site such as temperature and relative humidity, and wind movement led to the variation of indoor thermal environment in the building.

  1. Thermal comfort assessment in civil aircraft cabins

    OpenAIRE

    Pang Liping; Qin Yue; Liu Dong; Liu Meng

    2014-01-01

    Aircraft passengers are more and demanding in terms of thermal comfort. But it is not yet easy for aircraft crew to control the environment control system (ECS) that satisfies the thermal comfort for most passengers due to a number of causes. This paper adopts a corrected predicted mean vote (PMV) model and an adaptive model to assess the thermal comfort conditions for 31 investigated flights and draws the conclusion that there does exist an uncomfortable thermal phenomenon in civil aircraft ...

  2. Best practices guide for residential HVAC Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.

    2003-08-11

    This best practices guide for residential HVAC system retrofits is aimed at contractors who want guidance on delivering energy efficient, cost effective and innovative products. It has been developed around the idea of having packages of changes to the building HVAC system and building envelope that are climate and house construction dependent. These packages include materials, procedures and equipment and are designed to remove some of the guesswork from a builder, contractor, installer or homeowner decisions about how best to carry out HVAC changes. The packages are not meant to be taken as rigid requirements--instead they are systems engineered guidelines that form the basis for energy efficient retrofits. Similar approaches have been taken previously for new construction to develop extremely energy efficient homes that are comfortable safe and durable, and often cost less than standard construction. This is best epitomized by the Building America program whose partners have built thousands of residences throughout the U.S. using these principles. The differences between retrofitting and new construction tend to limit the changes one can make to a building, so these packages rely on relatively simple and non-intrusive technologies and techniques. The retrofits also focus on changes to a building that will give many years of service to the occupants. Another key aspect of these best practices is that we need to know how a house is working so that we know what parts have the potential for improvement. To do this we have put together a set of diagnostic tools that combine physical measurements and checklists/questionnaires. The measured test results, observations and homeowner answers to questions are used to direct us towards the best retrofits applicable to each individual house. The retrofits will depend on the current condition of the building envelope and HVAC system, the local climate, the construction methods used for the house, and the presence of various

  3. Urban Physics: Effect of the micro-climate on comfort, health and energy demand

    OpenAIRE

    Moonen, Peter; Defraeye, Thijs; Dorer, Viktor; Blocken, Bert; Carmeliet, Jan

    2012-01-01

    The global trend towards urbanisation explains the growing interest in the study of the modification of the urban climate due to the heat island effect and global warming, and its impact on energy use of buildings. Also urban comfort, health and durability, referring respectively to pedestrian wind/thermal comfort, pollutant dispersion and wind-driven rain are of interest. Urban Physics is a well-established discipline, incorporating relevant branches of physics, environmental chemistry, aero...

  4. An experimental study on the thermal characteristics and heating effect of arc-fault from Cu core in residential electrical wiring fires.

    Science.gov (United States)

    Du, Jian-Hua; Tu, Ran; Zeng, Yi; Pan, Leng; Zhang, Ren-Cheng

    2017-01-01

    The characteristics of a series direct current (DC) arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc.

  5. An experimental study on the thermal characteristics and heating effect of arc-fault from Cu core in residential electrical wiring fires.

    Directory of Open Access Journals (Sweden)

    Jian-Hua Du

    Full Text Available The characteristics of a series direct current (DC arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc.

  6. Thermal comfort in urban transitional spaces

    Energy Technology Data Exchange (ETDEWEB)

    Chungyoon Chun [Yonsei University, Seoul (Korea). College of Human Ecology, Department of Housing and Interior Design; Tamura, A. [Yokohama National University (Japan). Department of Architecture and Building Science

    2005-05-15

    This paper deals with thermal comfort in urban transitional spaces. This topic investigates thermal comfort during walking activities through transitional spaces-urban corridors, shopping streets, and open-ended passageways. The study involves a field study and a laboratory study with a sequenced walk through an environmental control chamber. Subjects in both studies wore the same clothing ensembles, walked the same speed, and evaluated their thermal comfort at 20 designated point in the field and in specific rooms in the control chamber. Air temperature, relative humidity, and air velocity were measured concurrently as the thermal comfort votes completed. Findings revealed that the previously experienced temperatures determined thermal comfort at the following point in the sequence. Because thermal comfort at a point can be influenced widely by relative placement of temperatures in sequence, thermal comfort in transitional spaces can be adapted very widely compared to comfort inside of buildings. Thermal comfort along the experimental courses was evaluated by averaging the temperature of a course. (author)

  7. 77 FR 28519 - Test Procedure Guidance for Room Air Conditioners, Residential Dishwashers, and Residential...

    Science.gov (United States)

    2012-05-15

    ... Guidance for Room Air Conditioners, Residential Dishwashers, and Residential Clothes Washers: Public... procedures for room air conditioners, residential dishwashers, and residential clothes washers. DATES: DOE...'s existing test procedures for residential room air conditioners, residential dishwashers, and...

  8. Experimental investigation of radiation effect on human thermal comfort by Taguchi method

    International Nuclear Information System (INIS)

    Arslanoglu, Nurullah; Yigit, Abdulvahap

    2016-01-01

    Highlights: • Radiation heat flux from lighting lamps on human thermal comfort is studied. • The effect of posture position on thermal comfort is investigated. • The effect of clothing color on thermal comfort is examined. • Radiation heat flux from halogen reflector lamp increase skin temperature more. • Posture position effect on thermal comfort is less than the other parameters. - Abstract: In this study, the effect of radiation heat flux of lighting lamps on human thermal comfort was investigated by using Taguchi method. In addition, at indoor conditions, clothing color and posture position under the radiation effect on thermal comfort were also investigated. For this purpose, experiments were performed in an air conditioned laboratory room in summer and autumn seasons. The amount of temperature rise on the back was considered as performance parameter. An L8 orthogonal array was selected as an experimental plan for the third parameters mentioned above for summer and autumn seasons. The results were analyzed for the optimum conditions using signal-to-noise (S/N) ratio and ANOVA method. The optimum results were found to be clear halogen lamp as lighting lamp, white as t-shirt color, standing as posture position, in summer season. The optimum levels of the lighting lamp, t-shirt color and posture position were found to be clear halogen lamp, white, sitting in autumn season, respectively.

  9. Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems

    Science.gov (United States)

    Gibson, Marc; Sanzi, James; Locci, Ivan

    2013-01-01

    Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any household heat source (electric, gas, etc.), which would vaporize the internal working fluid and carry the heat to the condenser sections (walls and/or floors). The temperature could be easily controlled, providing a comfortable and affordable living environment. Investigating the appropriate materials and working fluids is needed to determine this application's potential success and usage.

  10. Adaptive principles for thermal comfort in dwellings: From comfort temperatures to avoiding discomfort

    OpenAIRE

    Alders, E.E.; Kurvers, S.R.; Van den Ham, E.R.

    2011-01-01

    Many theories on thermal comfort exist and there are many ways to deliver this in an energy efficient way. Both aspects are often studied in a static way and most of these studies only regard one of the aspects, seldom investigating what influence the way of delivering thermal comfort has on the actual perceived thermal comfort. This paper analyses the knowledge of the different disciplines and integrates it to get a holistic image of comfort and its delivery systems as well as opportunities ...

  11. Effect of warm air supplied facially on occupants' comfort

    DEFF Research Database (Denmark)

    Kaczmarczyk, J.; Melikov, Arsen Krikor; Sliva,, D.

    2010-01-01

    was supplied with a constant velocity of 0.4 m/s by means of personalized ventilation towards the face of the subjects. The airflow at 21 °C decreased the subjects' thermal sensation and increased draught discomfort, but improved slightly the perceived air quality. Heating of the supplied air by 6 K...... (temperature increase by 4 K at the target area) above the room air temperature decreased the draught discomfort, improved subjects' thermal comfort and only slightly decreased the perceived air quality. Elevated velocity and temperature of the localized airflow caused an increase of nose dryness intensity...... and number of eye irritation reports. Results suggest that increasing the temperature of the air locally supplied to the breathing zone by only a few degrees above the room air temperature will improve occupants' thermal comfort and will diminish draught discomfort. This strategy will extend...

  12. The 1986 residential occupant survey

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, D.L.; Alley, P.K.

    1987-04-01

    In 1986, Pacific Northwest Laboratory developed the Residential Occupant Survey-Spring '86, which was implemented. The overall purpose of the study was to collect demographic, attitudinal, and behavioral data related to the use and conservation of electricity in dwellings participating in the Bonneville Power Administration's End-Use Load and Conservation Assessment Program (ELCAP). Information was collected on the respondents' perceptions of the energy efficiency of their dwelling, temperature the dwelling was kept when people were at home and awake during the last heating season, which rooms, if any, were not heated during the last heating season, number of times the dwelling was unoccupied for at least one week, number of times pets were let out of the dwelling per day, attitudes toward energy use and conservation and several socio-demographic variables such as age, sex, and total household income. The results of the data analyses showed age to be an important factor for reported indoor temperature and perceived energy efficiency of the dwelling. The results also showed that almost 60% of the ELCAP occupants do not heat one or more rooms during the heating season, and almost 45% of the ELCAP dwellings were unoccupied for at least one week during the reporting period. In terms of the reported allocation of household income for household energy expenses, the results showed that the reported dollar amount spent for the expenses remained relatively constant over income levels.

  13. Retrofitted green roofs and walls and improvements in thermal comfort

    Science.gov (United States)

    Feitosa, Renato Castiglia; Wilkinson, Sara

    2017-06-01

    Increased urbanization has led to a worsening in the quality of life for many people living in large cities in respect of the urban heat island effect and increases of indoor temperatures in housing and other buildings. A solution may be to retrofit existing environments to their former conditions, with a combination of green infrastructures applied to existing walls and rooftops. Retrofitted green roofs may attenuate housing temperature. However, with tall buildings, facade areas are much larger compared to rooftop areas, the role of green walls in mitigating extreme temperatures is more pronounced. Thus, the combination of green roofs and green walls is expected to promote a better thermal performance in the building envelope. For this purpose, a modular vegetated system is adopted for covering both walls and rooftops. Rather than temperature itself, the heat index, which comprises the combined effect of temperature and relative humidity is used in the evaluation of thermal comfort in small scale experiments performed in Sydney - Australia, where identical timber framed structures prototypes (vegetated and non-vegetated) are compared. The results have shown a different understanding of thermal comfort improvement regarding heat index rather than temperature itself. The combination of green roof and walls has a valid role to play in heat index attenuation.

  14. Energy savings in Danish residential building stock

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2006-01-01

    a short account of the technical energy-saving possibilities that are present in existing dwellings and presents a financial methodology used for assessing energy-saving measures. In order to estimate the total savings potential detailed calculations have been performed in a case with two typical...... buildings representing the residential building stock and based on these calculations an assessment of the energy-saving potential is performed. A profitable savings potential of energy used for space heating of about 80% is identified over 45 years (until 2050) within the residential building stock......A large potential for energy savings exists in the Danish residential building stock due to the fact that 75% of the buildings were constructed before 1979 when the first important demands for energy performance of building were introduced. It is also a fact that many buildings in Denmark face...

  15. Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage

    International Nuclear Information System (INIS)

    Fiorentini, Massimo; Wall, Josh; Ma, Zhenjun; Braslavsky, Julio H.; Cooper, Paul

    2017-01-01

    Highlights: • A comprehensive approach to managing thermal energy in residential buildings. • Solar-assisted HVAC system with on-site energy generation and storage. • Mixed logic-dynamical building model identified using experimental data. • Design and implementation of a logic-dynamical model predictive control strategy. • MPC applied to the Net-Zero Energy house winner of the Solar Decathlon China 2013. - Abstract: This paper describes the development, implementation and experimental investigation of a Hybrid Model Predictive Control (HMPC) strategy to control solar-assisted heating, ventilation and air-conditioning (HVAC) systems with on-site thermal energy generation and storage. A comprehensive approach to the thermal energy management of a residential building is presented to optimise the scheduling of the available thermal energy resources to meet a comfort objective. The system has a hybrid nature with both continuous variables and discrete, logic-driven operating modes. The proposed control strategy is organized in two hierarchical levels. At the high-level, an HMPC controller with a 24-h prediction horizon and a 1-h control step is used to select the operating mode of the HVAC system. At the low-level, each operating mode is optimised using a 1-h rolling prediction horizon with a 5-min control step. The proposed control strategy has been practically implemented on the Building Management and Control System (BMCS) of a Net Zero-Energy Solar Decathlon house. This house features a sophisticated HVAC system comprising of an air-based photovoltaic thermal (PVT) collector and a phase change material (PCM) thermal storage integrated with the air-handling unit (AHU) of a ducted reverse-cycle heat pump system. The simulation and experimental results demonstrated the high performance achievable using an HMPC approach to optimising complex multimode HVAC systems in residential buildings, illustrating efficient selection of the appropriate operating modes

  16. Affect asymmetry and comfort food consumption.

    Science.gov (United States)

    Dubé, Laurette; LeBel, Jordan L; Lu, Ji

    2005-11-15

    It is proposed that the emotional triggers of comfort food consumption can reliably be predicted by factors tied to affect asymmetry whereby negative affects dominate one's experience, decision making and behaviors in some instances while positive emotions prevail in others. Specifically, we relate three of these factors (age, gender, and culture) to differences in the emotional triggers of comfort food consumption and we further explore the possibility that the type of food eaten during comfort-seeking episodes can also be tied to affect asymmetry. Two hundred and seventy-seven participants completed a web-based survey conducted to assess the emotional antecedents and consequences of comfort food consumption. Consistent with expectations, results indicate that men's comfort food consumption was motivated by positive emotions whereas women's consumption was triggered by negative affects. Consumption of comfort foods alleviated women's negative emotions but also produced guilt. Positive affect was a particularly powerful trigger of comfort food consumption for older participants and for participants with French cultural background. Younger participants and participants with English background reported more intense negative emotions prior to consuming comfort foods. Foods high in sugar and fat content were more efficient in alleviating negative affects whereas low-calorie foods were more efficient in increasing positive emotions.

  17. Thermal Comfort and Strategies for Energy Conservation.

    Science.gov (United States)

    Rohles, Frederick H., Jr.

    1981-01-01

    Discusses studies in thermal comfort which served as the basis for the comfort standard. Examines seven variables in the human response to the thermal environment in terms of the ways in which they can be modified to conserve energy. (Author/MK)

  18. Passivhaus: indoor comfort and energy dynamic analysis.

    Science.gov (United States)

    Guida, Antonella; Pagliuca, Antonello; Cardinale, Nicola; Rospi, Gianluca

    2013-04-01

    The research aims to verify the energy performance as well as the indoor comfort of an energy class A+ building, built so that the sum of the heat passive contributions of solar radiation, transmitted through the windows, and the heat generated inside the building, are adeguate to compensate for the envelope loss during the cold season. The building, located in Emilia Romagna (Italy), was built using a wooden structure, an envelope realized using a pinewood sandwich panels (transmittance U = 0.250 W/m2K) and, inside, a wool flax insulation layer and thermal window frame with low-emissivity glass (U = 0524 W/m2K). The building design and construction process has followed the guidelines set by "CasaClima". The building has been modeled in the code of dynamic calculation "Energy Plus" by the Design Builder application and divided it into homogenous thermal zones, characterized by winter indoor temperature set at 20 ° (+ / - 1 °) and summer indoor temperature set at 26 ° (+ / - 1 °). It has modeled: the envelope, as described above, the "free" heat contributions, the air conditioning system, the Mechanical Ventilation system as well as home automation solutions. The air conditioning system is an heat pump, able to guarantee an optimization of energy consumption (in fact, it uses the "free" heat offered by the external environment for conditioning indoor environment). As regards the air recirculation system, it has been used a mechanical ventilation system with internal heat cross-flow exchanger, with an efficiency equal to 50%. The domotic solutions, instead, regard a system for the control of windows external screening using reeds, adjustable as a function of incident solar radiation and a lighting management system adjusted automatically using a dimmer. A so realized building meets the requirement imposed from Italian standard UNI/TS 11300 1, UNI/TS 11300 2 and UNI/TS 11300 3. The analysis was performed according to two different configurations: in "spontaneous

  19. Flower garden trees' ability to absorb solar radiation heat for local heat reduction

    Science.gov (United States)

    Maulana, Muhammad Ilham; Syuhada, Ahmad; Hamdani

    2017-06-01

    Banda Aceh as an urban area tends to have a high air temperature than its rural surroundings. A simple way to cool Banda Aceh city is by planting urban vegetation such as home gardens or parks. In addition to aesthetics, urban vegetation plays an important role as a reducer of air pollution, oxygen producer, and reducer of the heat of the environment. To create an ideal combination of plants, knowledge about the ability of plants to absorb solar radiation heat is necessary. In this study, some types of flowers commonly grown by communities around the house, such as Michelia Champaka, Saraca Asoka, Oliander, Adenium, Codiaeum Variegatum, Jas Minum Sambac, Pisonia Alba, Variegata, Apium Graveolens, Elephantopus Scaber, Randia, Cordylin.Sp, Hibiscus Rosasinensis, Agave, Lili, Amarilis, and Sesamum Indicum, were examined. The expected benefit of this research is to provide information for people, especially in Banda Aceh, on the ability of each plant relationship in absorbing heat for thermal comfort in residential environments. The flower plant which absorbs most of the sun's heat energy is Hibiscus Rosasinensis (kembang sepatu) 6.2 Joule, Elephantopus Scaber.L (tapak leman) 4.l Joule. On the other hand, the lowest heat absorption is Oliander (sakura) 0.9 Joule.

  20. 75 FR 20111 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-16

    ... Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool... heating equipment and pool heaters. Table I.1--Amended Energy Conservation Standards for Residential Water... for national energy and water conservation; and 7. Other factors the Secretary of Energy (Secretary...

  1. 75 FR 12144 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential...

    Science.gov (United States)

    2010-03-15

    .... 1. Consensus Agreement On January 26, 2010, the Air-Conditioning, Heating and Refrigeration... subsections. B. History of the Standards Rulemaking for Residential Furnaces 1. Background Energy conservation... recommending minimum energy conservation standards for residential central air conditioners, heat pumps, and...

  2. Integration of fuel cells into residential buildings

    International Nuclear Information System (INIS)

    Bell, J.M.; Entchev, E.; Gusdorf, J.; Szadkowski, F.; Swinton, M.; Kalbfleisch, W.; Marchand, R.

    2004-01-01

    Integration of small combined heat and power systems (CHP) into residential buildings is challenging as the loads are small, the load diversity is limited and there are a number of unresolved issues concerning sizing, control, peak loads, emergency operation, grid connection and export, etc. Natural Resources Canada has undertaken an initiative to investigate and develop techniques for the integration of small CHP systems into residential buildings using a highly instrumented house modified to allow quick installation and thorough monitoring of CHP integration techniques as well determining the performance of the CHP systems themselves when operating in a house. The first CHP system installed was a Stirling engine residential CHP system. It was used to examine the completeness of the CHP modifications to the house, to evaluate various building integration techniques and to measure the performance of the CHP system itself. The testing demonstrated the modified house to be an excellent facility for the development of CHP building integration techniques and the testing of residential CHP systems. The Stirling engine CHP system was found to operate well and produce meaningful input to the house. A second system (residential fuel cell) is presently being installed and building integration techniques and the performance of the fuel cell will be tested over the coming year. (author)

  3. Global Warming Impacts on Heating and Cooling Degree-Days in the United States

    Science.gov (United States)

    Petri, Y.; Caldeira, K.

    2014-12-01

    Anthropogenic climate change is expected to significantly alter residential air conditioning and space heating requirements, which account for 41% of U.S. household energy expenditures. The degree-day method can be used for reliable estimation of weather related building energy consumption and costs, as well as outdoor climatic thermal comfort. Here, we use U.S. Climate Normals developed by NOAA based on weather station observations along with Climate Model Intercomparison Project phase 5 (CMIP5) multi-model ensemble simulations. We add the projected change in heating and cooling degree-days based on the climate models to the estimates based on the NOAA U.S. Climate Normals to project future heating and cooling degree-days. We find locations with the lowest and highest combined index of cooling (CDDs) and heating degree-days (HDDs) for the historical period (1981 - 2010) and future period (2080 - 2099) under the Representation Concentration Pathway 8.5 (RCP8.5) climate change scenario. Our results indicate that in both time frames and among the lower 48 states, coastal areas in the West and South California will have the smallest degree-day sum (CDD + HDD), and hence from a climatic perspective become the best candidates for residential real estate. The Rocky Mountains region in Wyoming, in addition to northern Minnesota and North Dakota, will have the greatest CDD + HDD. While global warming is projected to reduce the median heating and cooling demand (- 5%) at the end of the century, CDD + HDD will decrease in the North, with an opposite effect in the South. This work could be helpful in deciding where to live in the United States based on present and future thermal comfort, and could also provide a basis for estimates of changes in heating and cooling energy demand.

  4. Design of intelligent comfort control system with human learning and minimum power control strategies

    International Nuclear Information System (INIS)

    Liang, J.; Du, R.

    2008-01-01

    This paper presents the design of an intelligent comfort control system by combining the human learning and minimum power control strategies for the heating, ventilating and air conditioning (HVAC) system. In the system, the predicted mean vote (PMV) is adopted as the control objective to improve indoor comfort level by considering six comfort related variables, whilst a direct neural network controller is designed to overcome the nonlinear feature of the PMV calculation for better performance. To achieve the highest comfort level for the specific user, a human learning strategy is designed to tune the user's comfort zone, and then, a VAV and minimum power control strategy is proposed to minimize the energy consumption further. In order to validate the system design, a series of computer simulations are performed based on a derived HVAC and thermal space model. The simulation results confirm the design of the intelligent comfort control system. In comparison to the conventional temperature controller, this system can provide a higher comfort level and better system performance, so it has great potential for HVAC applications in the future

  5. Development of energy-efficient comfort ventilation plants with air quality controlled volume flow rate and continuous detection of the status of the windows aperture. Part 3. Final report with documentation of the field test; Entwicklung energieeffizienter Komfortlueftungsanlagen mit luftqualitaetsgefuehrter Volumenstromregelung und kontinuierlicher Erfassung des Fensteroeffnungszustandes. Teilbericht 3. Endbericht mit Dokumentation des Feldtests

    Energy Technology Data Exchange (ETDEWEB)

    Grossklos, Marc; Hacke, Ulrike [Institut Wohnen und Umwelt GmbH, Darmstadt (Germany)

    2012-10-25

    Residential ventilation systems with a heat recovery contribute to the improvement of the air quality and to the reduction of heat losses caused by ventilation. An additional opening of the windows in residential buildings results in a clearly increasing consumption of thermal heat because the thermal heat of the out coming air cannot be utilized furthermore. Continuous information on the energetic effects of the opening of windows is helpful. Under this aspect, the authors of the contribution under consideration report on the development of energy efficient comfort ventilation systems with an air quality controlled volume flow rate and continuous detection of the status of the windows aperture. The contribution under consideration is the third part of a project concerning to this theme. This part encompasses a field test with four single-family houses in which the air quality control as well as the detection of the status of the windows aperture is tested and optimized for a long period. This contribution also contains the results of the second part of the project. The second project investigate the technical implementation of a air quality regulation at prototypes and test facilities.

  6. DoubleFace: Adjustable translucent system to improve thermal comfort

    Directory of Open Access Journals (Sweden)

    Michela Turrin

    2014-11-01

    Full Text Available The DoubleFace project aims at developing a new product that passively improves thermal comfort of indoor and semi-indoor spaces by means of lightweight materials for latent heat storage, while simultaneously allowing daylight to pass through as much as possible. Specifically, the project aims at designing and prototyping an adjustable translucent modular system featuring thermal insulation and thermal absorption in a calibrated manner, which is adjustable according to different heat loads during summer- and wintertime. The output consists of a proof of concept, a series of performance simulations and measurement and a prototype of an adjustable thermal mass system based on lightweight and translucent materials: phase-changing materials (PCM for latent heat storage and translucent aerogel particles for thermal insulation.

  7. Modeling of the radiative field in complex geometries using computerized graphical tools. Application to comfort characterization in environments equipped with important radiative sources; Modelisation du champ radiatif dans des geometries complexes a l`aide d`outils infographiques. Application a la caracterisation du confort dans les ambiances munies de sources radiatives importantes

    Energy Technology Data Exchange (ETDEWEB)

    Manolescu, M; Sperandio, M; Allard, F [La Rochelle Universite, 17 - La Rochelle, LEPTAB (France)

    1997-12-31

    Bibliographic studies in the domain of radiant heat transfers in complex geometries demonstrate the impossibility of resolving such problems using classical analytical methods. The numerical analysis can theoretically be performed successfully but requires enormous computer means. The contribution of this study consists in using computerized graphical techniques to treat general problems of radiant heat transfers in complex geometries. This paper presents the model used, the calculation technique and the optimizations that allow to greatly reduce the computer memory required and the calculation time. The code developed uses evocative images for the synthetic presentation of results which facilitate the searcher`s and conceiver`s choices. Finally, an application to the characterization of thermal comfort in residential environments is developed to illustrate the potentialities of this method. (J.S.) 19 refs.

  8. Modeling of the radiative field in complex geometries using computerized graphical tools. Application to comfort characterization in environments equipped with important radiative sources; Modelisation du champ radiatif dans des geometries complexes a l`aide d`outils infographiques. Application a la caracterisation du confort dans les ambiances munies de sources radiatives importantes

    Energy Technology Data Exchange (ETDEWEB)

    Manolescu, M.; Sperandio, M.; Allard, F. [La Rochelle Universite, 17 - La Rochelle, LEPTAB (France)

    1996-12-31

    Bibliographic studies in the domain of radiant heat transfers in complex geometries demonstrate the impossibility of resolving such problems using classical analytical methods. The numerical analysis can theoretically be performed successfully but requires enormous computer means. The contribution of this study consists in using computerized graphical techniques to treat general problems of radiant heat transfers in complex geometries. This paper presents the model used, the calculation technique and the optimizations that allow to greatly reduce the computer memory required and the calculation time. The code developed uses evocative images for the synthetic presentation of results which facilitate the searcher`s and conceiver`s choices. Finally, an application to the characterization of thermal comfort in residential environments is developed to illustrate the potentialities of this method. (J.S.) 19 refs.

  9. VOLTTRON-Based System for Providing Ancillary Services with Residential Building Loads

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin

    2016-07-01

    Ancillary services entail controlled modulation of building equipment to maintain a stable balance of generation and load in the power system. Ancillary services include frequency regulation and contingency reserves, whose acting time ranges from several seconds to several minutes. Many pilot studies have been implemented to use industrial loads to provide ancillary services, and some have explored services from commercial building loads or electric vehicle charging loads. Residential loads, such as space conditioning and water heating, represent a largely untapped resource for providing ancillary services. The residential building sector accounts for a significant fraction of the total electricity use in the United States. Many loads in residential buildings are flexible and could potentially be curtailed or shifted at the request of the grid. However, there are many barriers that prevent residential loads being widely used for ancillary services. One of the major technical barriers is the lack of communication capabilities between end-use devices and the grid. End-use devices need to be able to receive the automatic generation control (AGC) signal from the grid operator and supply certain types of telemetry to verify response. With the advance of consumer electronics, communication-enabled, or 'connected,' residential equipment has emerged to overcome the communication barrier. However, these end-use devices have introduced a new interoperability challenge due to the existence of numerous standards and communication protocols among different end devices. In this paper, we present a VOLTTRON-based system that overcomes these technical challenges and provides ancillary services with residential loads. VOLTTRON is an open-source control and sensing platform for building energy management, facilitating interoperability solutions for end devices. We have developed drivers to communicate and control different types of end devices through standard

  10. Residents’ Experiences of Privacy and Comfort in Multi-Storey Apartment Dwellings in Subtropical Brisbane

    Directory of Open Access Journals (Sweden)

    Rosemary Kennedy

    2015-06-01

    Full Text Available Dwellings in multi-storey apartment buildings (MSAB are predicted to increase dramatically as a proportion of housing stock in subtropical cities over coming decades. The problem of designing comfortable and healthy high-density residential environments and minimising energy consumption must be addressed urgently in subtropical cities globally. This paper explores private residents’ experiences of privacy and comfort and their perceptions of how well their apartment dwelling modulated the external environment in subtropical conditions through analysis of 636 survey responses and 24 interviews with residents of MSAB in inner urban neighbourhoods of Brisbane, Australia. The findings show that the availability of natural ventilation and outdoor private living spaces play important roles in resident perceptions of liveability in the subtropics where the climate is conducive to year round “outdoor living”. Residents valued choice with regard to climate control methods in their apartments. They overwhelmingly preferred natural ventilation to manage thermal comfort, and turned to the air-conditioner for limited periods, particularly when external conditions were too noisy. These findings provide a unique evidence base for reducing the environmental impact of MSAB and increasing the acceptability of apartment living, through incorporating residential attributes positioned around climate-responsive architecture.

  11. Impact of Furniture Layout on Indoor Daylighting Performance in Existing Residential Buildings in Malaysia

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Mousavi

    2018-06-01

    Full Text Available Currently, home-based computing workspaces have developed substantially all over the world, especially in Malaysia. This growing trend attracts computer workers to run a business from their residential units. Hence, visual comfort needs to be considered in addition to thermal comfort for home workers in their residential working rooms. While such rooms are always occupied with furniture, the layout of the furniture may influence the indoor daylighting distribution. Several various furniture layouts can be arranged in a residential working room. However, to have better generalisation, this study focused on the impacts of mostly-used-furniture-layouts (MUFLs on indoor daylighting performance in residential working rooms. The field measurement was conducted in a typically furnished room under a tropical sky to validate the results of the simulation software under different sky conditions. Then, daylight ratio (DR, as a quantitative daylighting variable, and the illuminance uniformity ratio (IUR, CIE glare index (CGI, and Guth visual comfort probability (GVCP, as qualitative daylighting variables, were analysed through simulation experiments. In conclusion, by changing the furniture layout, daylight uniformity recorded the highest fluctuations in the case room among all variables. While various furniture layouts, in a residential working room in the tropics, may even slightly reduce the extreme indoor daylight quantity, they can worsen the indoor daylight quality compared to an unfurnished space. The paper shows that furniture as an interior design parameter cannot help to improve tropical daylighting performance in a building.

  12. Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level

    International Nuclear Information System (INIS)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric; Li, Hongwei; Li, Xiaopeng; Svendsen, Svend

    2016-01-01

    A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance with the actual heat demand. This results in 15–30% of the total supplied heat being lost. This paper proposes an integrated approach that aims to reduce the excess heat loss by introducing pre-set thermostatic radiator valves combined with automatic balancing valves. Those devices establish hydraulic balance, and stabilize indoor temperatures. The feasibility and the energy consumption reduction of this approach were verified by means of simulation and a field test. By moving the system from centrally planned heat delivery to demand-driven heat delivery, excess heat loss can be significantly reduced. Results show that once the hydraulic balance is achieved and indoor temperatures are controlled with this integrated approach, 17% heat savings and 42.8% pump electricity savings can be achieved. The energy savings will also have a positive environmental effect with seasonal reductions of 11 kg CO_2, 0.1 kg SO_2, and 0.03 kg NO_x per heating square meter for a typical case in Harbin. - Highlights: • Two real cases reflect the temperature and flow control situation of heating systems in China. • Pre-set radiator valves with automatic balancing valves create dynamic hydraulic balance. • IDA-ICE simulation shows 17% heat saving and 48% pump electricity saving. • This approach can improve the comfort level of multi-storey/high-rise residential buildings. • This approach can reduce excess heat supply and bring out positive environmental impacts.

  13. Evaluation of the thermal comfort of ceramic floor tiles

    Directory of Open Access Journals (Sweden)

    Carmeane Effting

    2007-09-01

    Full Text Available In places where people are bare feet, the thermal sensation of cold or hot depends on the environmental conditions and material properties including its microstructure and crustiness surface. The uncomforting can be characterized by heated floor surfaces in external environments which are exposed to sun radiation (swimming polls areas or by cold floor surfaces in internal environments (bed rooms, path rooms. The property named thermal effusivity which defines the interface temperature when two semi-infinite solids are putted in perfect contact. The introduction of the crustiness surface on the ceramic tiles interferes in the contact temperature and also it can be a strategy to obtain ceramic tiles more comfortable. Materials with low conductivities and densities can be obtained by porous inclusion are due particularly to the processing conditions usually employed. However, the presence of pores generally involves low mechanical strength. This work has the objective to evaluate the thermal comfort of ceramics floor obtained by incorporation of refractory raw materials (residue of the polishing of the porcelanato in industrial atomized ceramic powder, through the thermal and mechanical properties. The theoretical and experimental results show that the porosity and crustiness surface increases; there is sensitive improvement in the comfort by contact.

  14. Wearable Sweat Rate Sensors for Human Thermal Comfort Monitoring.

    Science.gov (United States)

    Sim, Jai Kyoung; Yoon, Sunghyun; Cho, Young-Ho

    2018-01-19

    We propose watch-type sweat rate sensors capable of automatic natural ventilation by integrating miniaturized thermo-pneumatic actuators, and experimentally verify their performances and applicability. Previous sensors using natural ventilation require manual ventilation process or high-power bulky thermo-pneumatic actuators to lift sweat rate detection chambers above skin for continuous measurement. The proposed watch-type sweat rate sensors reduce operation power by minimizing expansion fluid volume to 0.4 ml through heat circuit modeling. The proposed sensors reduce operation power to 12.8% and weight to 47.6% compared to previous portable sensors, operating for 4 hours at 6 V batteries. Human experiment for thermal comfort monitoring is performed by using the proposed sensors having sensitivity of 0.039 (pF/s)/(g/m 2 h) and linearity of 97.9% in human sweat rate range. Average sweat rate difference for each thermal status measured in three subjects shows (32.06 ± 27.19) g/m 2 h in thermal statuses including 'comfortable', 'slightly warm', 'warm', and 'hot'. The proposed sensors thereby can discriminate and compare four stages of thermal status. Sweat rate measurement error of the proposed sensors is less than 10% under air velocity of 1.5 m/s corresponding to human walking speed. The proposed sensors are applicable for wearable and portable use, having potentials for daily thermal comfort monitoring applications.

  15. Visual comfort evaluated by opponent colors

    Science.gov (United States)

    Sagawa, Ken

    2002-06-01

    This study aimed to evaluate psychological impression of visual comfort when we see an image of ordinary colored scene presented in a color display. Effects of opponent colors, i.e. red, green, yellow and blue component, on the subjective judgement on visual comfort to the image were investigated. Three kinds of psychological experiment were designed to see the effects and the results indicated that the red/green opponent color component was more affecting than the yellow-blue one, and red color in particular was the most affecting factor on visual comfort.

  16. Method of defining heating and cooling period for residential buildings in hot summer and cold winter zone%夏热冬冷地区采暖空调计算期确定方法

    Institute of Scientific and Technical Information of China (English)

    傅新; 钱晓倩; 钱匡亮; 董凯; 阮方

    2017-01-01

    基于1971