WorldWideScience

Sample records for resident liver macrophages

  1. Oval cell response is attenuated by depletion of liver resident macrophages in the 2-AAF/partial hepatectomy rat.

    Directory of Open Access Journals (Sweden)

    Shuai Xiang

    Full Text Available BACKGROUND/AIMS: Macrophages are known to play an important role in hepatocyte mediated liver regeneration by secreting inflammatory mediators. However, there is little information available on the role of resident macrophages in oval cell mediated liver regeneration. In the present study we aimed to investigate the role of macrophages in oval cell expansion induced by 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH in rats. METHODOLOGY/PRINCIPAL FINDINGS: We depleted macrophages in the liver of 2-AAF/PH treated rats by injecting liposome encapsulated clodronate 48 hours before PH. Regeneration of remnant liver mass, as well as proliferation and differentiation of oval cells were measured. We found that macrophage-depleted rats suffered higher mortality and liver transaminase levels. We also showed that depletion of macrophages yielded a significant decrease of EPCAM and PCK positive oval cells in immunohistochemical stained liver sections 9 days after PH. Meanwhile, oval cell differentiation was also attenuated as a result of macrophage depletion, as large foci of small basophilic hepatocytes were observed by day 9 following hepatectomy in control rats whereas they were almost absent in macrophage depleted rats. Accordingly, real-time polymerase chain reaction analysis showed lower expression of albumin mRNA in macrophage depleted livers. Then we assessed whether macrophage depletion may affect hepatic production of stimulating cytokines for liver regeneration. We showed that macrophage-depletion significantly inhibited hepatic expression of tumor necrosis factor-α and interleukin-6, along with a lack of signal transducer and activator of transcription 3 phosphorylation during the early period following hepatectomy. CONCLUSIONS: These data indicate that macrophages play an important role in oval cell mediated liver regeneration in the 2-AAF/PH model.

  2. Hyperglycemia Aggravates Hepatic Ischemia and Reperfusion Injury by Inhibiting Liver-Resident Macrophage M2 Polarization via C/EBP Homologous Protein-Mediated Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Zhuqing Rao

    2017-10-01

    Full Text Available Aggravated liver ischemia and reperfusion (IR injury has been observed in hyperglycemic hosts, but its underlying mechanism remains undefined. Liver-resident macrophages (Kupffer cells, KCs and endoplasmic reticulum (ER stress play crucial roles in the pathogenesis of liver IR injury. In this study, we evaluated the role of ER stress in regulating KC activation and liver IR injury in a streptozotocin-induced hyperglycemic/diabetic mouse model. Compared to the control group (CON group, hyperglycemic mice exhibited a significant increase in liver injury and intrahepatic inflammation following IR. KCs obtained from hyperglycemic mice secreted higher levels of the pro-inflammatory factors TNF-α and IL-6, while they secreted significantly lower levels of the anti-inflammatory factor IL-10. Furthermore, enhanced ER stress was revealed by increased C/EBP homologous protein (CHOP activation in both IR-stressed livers and KCs from hyperglycemic mice. Specific CHOP knockdown in KCs by siRNA resulted in a slight decrease in TNF-α and IL-6 secretion but dramatically enhanced anti-inflammatory IL-10 secretion in the hyperglycemic group, while no significant changes in cytokine production were observed in the CON group. We also analyzed the role of hyperglycemia in macrophage M1/M2 polarization. Interestingly, we found that hyperglycemia inhibited IL-10-secreting M2-like macrophage polarization, as revealed by decreased Arg1 and Mrc1 gene induction accompanied by a decrease in STAT3 and STAT6 signaling pathway activation. CHOP knockdown restored Arg1 and Mrc1 gene induction, STAT3 and STAT6 activation, and most importantly, IL-10 secretion in hyperglycemic KCs. Finally, in vivo CHOP knockdown in KCs enhanced intrahepatic anti-inflammatory IL-10 gene induction and protected the liver against IR injury in hyperglycemic mice but had no significant effects in control mice. Our results demonstrate that hyperglycemia induces hyper-inflammatory activation of KCs

  3. Novel Action of Carotenoids on Non-Alcoholic Fatty Liver Disease: Macrophage Polarization and Liver Homeostasis.

    Science.gov (United States)

    Ni, Yinhua; Zhuge, Fen; Nagashimada, Mayumi; Ota, Tsuguhito

    2016-06-24

    Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. It is characterized by a wide spectrum of hepatic changes, which may progress to non-alcoholic steatohepatitis (NASH) and cirrhosis. NAFLD is considered a hepatic manifestation of metabolic syndrome; however, mechanisms underlying the onset and progression of NAFLD are still unclear. Resident and recruited macrophages are key players in the homeostatic function of the liver and in the progression of NAFLD to NASH. Progress has been made in understanding the molecular mechanisms underlying the polarized activation of macrophages. New NAFLD therapies will likely involve modification of macrophage polarization by restraining M1 activation or driving M2 activation. Carotenoids are potent antioxidants and anti-inflammatory micronutrients that have been used to prevent and treat NAFLD. In addition to their antioxidative action, carotenoids can regulate macrophage polarization and thereby halt the progression of NASH. In this review, we summarize the molecular mechanisms of macrophage polarization and the function of liver macrophages/Kupffer cells in NAFLD. From our review, we propose that dietary carotenoids, such as β-cryptoxanthin and astaxanthin, be used to prevent or treat NAFLD through the regulation of macrophage polarization and liver homeostasis.

  4. Development and maintainance of resident macrophages

    Science.gov (United States)

    Perdiguero, Elisa Gomez; Geissmann, Frederic

    2016-01-01

    The molecular and cellular mechanisms that underlie the many roles of macrophages in health and disease states in vivo remain poorly understood. The purpose of this Review is to present and discuss current knowledge on the developmental biology of macrophages, as it underlies the concept of a layered myeloid system composed of ‘resident’ macrophages that mostly originate from yolk sac progenitors and of ‘passenger’ or ‘transitory’ myeloid cells that originate and renew from bone marrow hematopoietic stem cells, and to provide a framework to investigate the functions of macrophages in vivo. PMID:26681456

  5. A Liver Capsular Network of Monocyte-Derived Macrophages Restricts Hepatic Dissemination of Intraperitoneal Bacteria by Neutrophil Recruitment.

    Science.gov (United States)

    Sierro, Frederic; Evrard, Maximilien; Rizzetto, Simone; Melino, Michelle; Mitchell, Andrew J; Florido, Manuela; Beattie, Lynette; Walters, Shaun B; Tay, Szun Szun; Lu, Bo; Holz, Lauren E; Roediger, Ben; Wong, Yik Chun; Warren, Alessandra; Ritchie, William; McGuffog, Claire; Weninger, Wolfgang; Le Couteur, David G; Ginhoux, Florent; Britton, Warwick J; Heath, William R; Saunders, Bernadette M; McCaughan, Geoffrey W; Luciani, Fabio; MacDonald, Kelli P A; Ng, Lai Guan; Bowen, David G; Bertolino, Patrick

    2017-08-15

    The liver is positioned at the interface between two routes traversed by pathogens in disseminating infection. Whereas blood-borne pathogens are efficiently cleared in hepatic sinusoids by Kupffer cells (KCs), it is unknown how the liver prevents dissemination of peritoneal pathogens accessing its outer membrane. We report here that the hepatic capsule harbors a contiguous cellular network of liver-resident macrophages phenotypically distinct from KCs. These liver capsular macrophages (LCMs) were replenished in the steady state from blood monocytes, unlike KCs that are embryonically derived and self-renewing. LCM numbers increased after weaning in a microbiota-dependent process. LCMs sensed peritoneal bacteria and promoted neutrophil recruitment to the capsule, and their specific ablation resulted in decreased neutrophil recruitment and increased intrahepatic bacterial burden. Thus, the liver contains two separate and non-overlapping niches occupied by distinct resident macrophage populations mediating immunosurveillance at these two pathogen entry points to the liver. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Radionuclide study of the liver macrophage system in diabetes mellitus

    International Nuclear Information System (INIS)

    Slavnov, V.M.; Savich, O.A.; Markov, V.V.

    2002-01-01

    The functional state of the liver macrophage system (MS) in diabetes mellitus (DM) and to analyze the functional disturbances depending of the type of DM, presence of complications, duration of the disease and the age of the patients was studied. The obtained data suggest the necessity of radionuclide study of the liver MS with the purpose to reveal pre-clinical disturbances and administer timely treatment

  7. The use of radiocolloids for the evaluation of the liver macrophagic junction

    International Nuclear Information System (INIS)

    Silva, W.M.

    1980-01-01

    By using gelatin traced with 113m-In, the author shows in this monograph, through the scintigraphic method, the following: 1. the utility of radiocolloids on evaluating the liver macrophagic function; 2. the liver macrophagic function in some hepatic diseases and its degree of damage; 3. the mechanism of the abnormal scintigraphic aspect in the liver diseases. (Author) [pt

  8. Depletion of resident macrophages does not alter sensory regeneration in the avian cochlea.

    Directory of Open Access Journals (Sweden)

    Mark E Warchol

    Full Text Available Macrophages are the primary effector cells of the innate immune system and are also activated in response to tissue injury. The avian cochlea contains a population of resident macrophages, but the precise function of those cells is not known. The present study characterized the behavior of cochlear macrophages after aminoglycoside ototoxicity and also examined the possible role of macrophages in sensory regeneration. We found that the undamaged chick cochlea contains a large resting population of macrophages that reside in the hyaline cell region, immediately outside the abneural (inferior border of the sensory epithelium. Following ototoxic injury, macrophages appear to migrate out of the hyaline cell region and towards the basilar membrane, congregating immediately below the lesioned sensory epithelium. In order to determine whether recruited macrophages contribute to the regeneration of sensory receptors, we quantified supporting cell proliferation and hair cell recovery after the elimination of most resident macrophages via application of liposomally-encapsulated clodronate. Examination of macrophage-depleted specimens at two days following ototoxic injury revealed no deficits in hair cell clearance, when compared to normal controls. In addition, we found that elimination of macrophages did not affect either regenerative proliferation of supporting cells or the production of replacement hair cells. However, we did find that macrophage-depleted cochleae contained reduced numbers of proliferative mesothelial cells below the basilar membrane. Our data suggest that macrophages are not required for normal debris clearance and regeneration, but that they may play a role in the maintenance of the basilar membrane.

  9. Macrophages and dendritic cells emerge in the liver during intestinal inflammation and predispose the liver to inflammation.

    Directory of Open Access Journals (Sweden)

    Yohei Mikami

    Full Text Available The liver is a physiological site of immune tolerance, the breakdown of which induces immunity. Liver antigen-presenting cells may be involved in both immune tolerance and activation. Although inflammatory diseases of the liver are frequently associated with inflammatory bowel diseases, the underlying immunological mechanisms remain to be elucidated. Here we report two murine models of inflammatory bowel disease: RAG-2(-/- mice adoptively transferred with CD4(+CD45RB(high T cells; and IL-10(-/- mice, accompanied by the infiltration of mononuclear cells in the liver. Notably, CD11b(-CD11c(lowPDCA-1(+ plasmacytoid dendritic cells (DCs abundantly residing in the liver of normal wild-type mice disappeared in colitic CD4(+CD45RB(high T cell-transferred RAG-2(-/- mice and IL-10(-/- mice in parallel with the emergence of macrophages (Mφs and conventional DCs (cDCs. Furthermore, liver Mφ/cDCs emerging during intestinal inflammation not only promote the proliferation of naïve CD4(+ T cells, but also instruct them to differentiate into IFN-γ-producing Th1 cells in vitro. The emergence of pathological Mφ/cDCs in the liver also occurred in a model of acute dextran sulfate sodium (DSS-induced colitis under specific pathogen-free conditions, but was canceled in germ-free conditions. Last, the Mφ/cDCs that emerged in acute DSS colitis significantly exacerbated Fas-mediated hepatitis. Collectively, intestinal inflammation skews the composition of antigen-presenting cells in the liver through signaling from commensal bacteria and predisposes the liver to inflammation.

  10. Human Induced Pluripotent Stem Cell-Derived Macrophages Share Ontogeny with MYB-Independent Tissue-Resident Macrophages

    Directory of Open Access Journals (Sweden)

    Julian Buchrieser

    2017-02-01

    Full Text Available Tissue-resident macrophages, such as microglia, Kupffer cells, and Langerhans cells, derive from Myb-independent yolk sac (YS progenitors generated before the emergence of hematopoietic stem cells (HSCs. Myb-independent YS-derived resident macrophages self-renew locally, independently of circulating monocytes and HSCs. In contrast, adult blood monocytes, as well as infiltrating, gut, and dermal macrophages, derive from Myb-dependent HSCs. These findings are derived from the mouse, using gene knockouts and lineage tracing, but their applicability to human development has not been formally demonstrated. Here, we use human induced pluripotent stem cells (iPSCs as a tool to model human hematopoietic development. By using a CRISPR-Cas9 knockout strategy, we show that human iPSC-derived monocytes/macrophages develop in an MYB-independent, RUNX1-, and SPI1 (PU.1-dependent fashion. This result makes human iPSC-derived macrophages developmentally related to and a good model for MYB-independent tissue-resident macrophages, such as alveolar and kidney macrophages, microglia, Kupffer cells, and Langerhans cells.

  11. Resident Macrophages and Lymphocytes in the Canine Endometrium.

    Science.gov (United States)

    Pires, M A; Payan-Carreira, R

    2015-10-01

    Resident immune cells play a major role in endometrial immunity and in tissue homoeostasis. This study aimed to analyse the distribution of macrophages, B and T lymphocytes (respectively, Mø, B-Lym and T-Lym) in the canine endometrium throughout the oestrous cycle and in late involution (at the proestrus stage post-parturition). An immunohistochemistry technique was used on samples from 50 post-pubertal healthy female dogs, of which five in late post-partum. The distribution of resident immune cells was analysed in three endometrial layers (superficial, intermediate and basal areas). Mø, B-Lym and T-Lym were demonstrated to reside in the endometrium in all the stages of the canine cycle; their numbers being considerably higher during late involution. T-Lym were scattered in the stroma or amidst the glandular epithelium, constituting the predominant immune cell population in anestrus and proestrus, but decreased in number at all other stages. Endometrial B-Lym remained fairly constant during the canine cycle, although its numbers were higher in late involution. Mø counts were higher during anestrus compared to the other stages, the cells being displaced into the superficial endometrial layer. Mø demonstrated the highest level in late involution samples, forming small aggregates below the surface epithelium. The number of immune cells was not normally distributed, suggesting the influence of individual factors, such as age or parity, not explored herein due to limited sample availability. Still, this study provides important information for the interpretation of endometrial biopsies in dogs and for the understanding of the increased susceptibility to uterine infection during dioestrus found in the bitch. © 2015 Blackwell Verlag GmbH.

  12. MAINTENANCE OF TUMORICIDAL ACTIVITY AND SUSCEPTIBILITY TO REACTIVATION OF SUBPOPULATIONS OF RAT-LIVER MACROPHAGES

    NARCIS (Netherlands)

    DAEMEN, T; VENINGA, A; REGTS, J; SCHERPHOF, GL

    The liver macrophage population was fractionated according to cell size into three subpopulations by means of elutriation centrifugation. The total liver macrophage population and the three subpopulations were cultured and exposed to the immunomodulators muramyl dipeptide (MDP), in a free or

  13. Incorporation of resident macrophages in engineered tissues: Multiple cell type response to microenvironment controlled macrophage-laden gelatine hydrogels.

    Science.gov (United States)

    Dollinger, Camille; Ciftci, Sait; Knopf-Marques, Helena; Guner, Rabia; Ghaemmaghami, Amir M; Debry, Christian; Barthes, Julien; Vrana, Nihal Engin

    2018-02-01

    The success of tissue engineering strategy is strongly related to the inflammatory response, mainly through the activity of macrophages that are key cells in initial immune response to implants. For engineered tissues, the presence of resident macrophages can be beneficial for maintenance of homeostasis and healing. Thus, incorporation of macrophages in engineered tissues can facilitate the integration upon implantation. In this study, an in-vitro model of interaction was developed between encapsulated naive monocytes, macrophages induced with M1/M2 stimulation and incoming cells for immune assisted tissue engineering applications. To mimic the wound healing cascade, naive THP-1 monocytes, endothelial cells and fibroblasts were seeded on the gels as incoming cells. The interaction was first monitored in the absence of the gels. To mimic resident macrophages, THP-1 cells were encapsulated in the presence or absence of IL-4 to control their phenotype and then these hydrogels were seeded with incoming cells. Without encapsulation, activated macrophages induce apoptosis in endothelial cells. Once encapsulated no adverse effects were seen. Macrophage-laden hydrogels attracted more endothelial cells and fibroblasts compared to monocytes-laden hydrogels. The induction (M2 stimulation) of encapsulated macrophages did not change the overall number of attracted cells; but significantly affected their morphology. M1 stimulation by a defined media resulted in more secretion of both pro- and anti-inflammatory cytokines compared to M2 stimulation. It was demonstrated that there is a distinct effect of encapsulated macrophages on the behaviour of the incoming cells; this effect can be harnessed to establish a microenvironment more prone to regeneration upon implantation. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Macrophage activation markers predict mortality in patients with liver cirrhosis without or with acute-on-chronic liver failure (ACLF)

    DEFF Research Database (Denmark)

    Grønbæk, Henning; Rødgaard-Hansen, Sidsel; Aagaard, Niels Kristian

    2016-01-01

    BACKGROUND & AIMS: Activation of liver macrophages plays a key role in liver and systemic inflammation and may be involved in development and prognosis of acute-on-chronic liver failure (ACLF). We therefore measured the circulating macrophage activation markers soluble sCD163 and mannose receptor......-III, respectively. The patients' clinical course was registered and their MELD, CLIF-C Acute Decompensation (AD), and CLIF-C ACLF-scores computed at inclusion. RESULTS: We found a stepwise increase (p....80 (0.76-0.85)). CONCLUSIONS: The severity related increase in sCD163 and sMR and close association with mortality suggest a primary importance of inflammatory activation of liver macrophages in the emergence and course of ACLF. Accordingly, supplementation of the macrophage biomarkers to the platform...

  15. Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature.

    Science.gov (United States)

    Psaltis, Peter J; Puranik, Amrutesh S; Spoon, Daniel B; Chue, Colin D; Hoffman, Scott J; Witt, Tyra A; Delacroix, Sinny; Kleppe, Laurel S; Mueske, Cheryl S; Pan, Shuchong; Gulati, Rajiv; Simari, Robert D

    2014-07-18

    Macrophages regulate blood vessel structure and function in health and disease. The origins of tissue macrophages are diverse, with evidence for local production and circulatory renewal. We identified a vascular adventitial population containing macrophage progenitor cells and investigated their origins and fate. Single-cell disaggregates from adult C57BL/6 mice were prepared from different tissues and tested for their capacity to form hematopoietic colony-forming units. Aorta showed a unique predilection for generating macrophage colony-forming units. Aortic macrophage colony-forming unit progenitors coexpressed stem cell antigen-1 and CD45 and were adventitially located, where they were the predominant source of proliferating cells in the aortic wall. Aortic Sca-1(+)CD45(+) cells were transcriptionally and phenotypically distinct from neighboring cells lacking stem cell antigen-1 or CD45 and contained a proliferative (Ki67(+)) Lin(-)c-Kit(+)CD135(-)CD115(+)CX3CR1(+)Ly6C(+)CD11b(-) subpopulation, consistent with the immunophenotypic profile of macrophage progenitors. Adoptive transfer studies revealed that Sca-1(+)CD45(+) adventitial macrophage progenitor cells were not replenished via the circulation from bone marrow or spleen, nor was their prevalence diminished by depletion of monocytes or macrophages by liposomal clodronate treatment or genetic deficiency of macrophage colony-stimulating factor. Rather adventitial macrophage progenitor cells were upregulated in hyperlipidemic ApoE(-/-) and LDL-R(-/-) mice, with adventitial transfer experiments demonstrating their durable contribution to macrophage progeny particularly in the adventitia, and to a lesser extent the atheroma, of atherosclerotic carotid arteries. The discovery and characterization of resident vascular adventitial macrophage progenitor cells provides new insight into adventitial biology and its participation in atherosclerosis and provokes consideration of the broader existence of local macrophage

  16. Ionized calcium-binding adaptor molecule 1 positive macrophages and HO-1 up-regulation in intestinal muscularis resident macrophages

    DEFF Research Database (Denmark)

    Mikkelsen, Hanne B; Huizinga, Jan D; Larsen, Jytte O

    2017-01-01

    Small intestinal muscularis externa macrophages have been associated with interstitial cells of Cajal (ICC). They have been proposed to play various roles in motility disorders and to take part in a microbiota-driven regulation of gastrointestinal motility. Our objective was to understand...... the reaction of resident macrophages of the musculature to a pro-inflammatory stimulator, lipopolysaccharide (LPS). Mice were injected with LPS or saline and sacrificed after 6 hours. Whole mounts were stained with antibodies toward CD169, ionized calcium-binding adaptor molecule 1 (iba1) (microglial/macrophage...... marker) and heme oxygenase-1 (HO-1). Cell densities were measured using unbiased stereology. RESULTS: iba1(pos) cells showed an overall higher density than CD169(pos) and HO-1(pos) cells. Most HO-1(pos) and iba1(pos) cells were positive for CD 169 in serosa and at Auerbach's plexus (AP). At the deep...

  17. New Insights into the Role of Macrophages in Adipose Tissue Inflammation and Fatty Liver Disease: Modulation by Endogenous Omega-3 Fatty Acid-derived Lipid Mediators

    Directory of Open Access Journals (Sweden)

    Joan eClària

    2011-10-01

    Full Text Available Obesity is causally linked to a chronic state of low-grade inflammation in adipose tissue. Prolonged, unremitting inflammation in this tissue has a direct impact on insulin-sensitive tissues (i.e. liver and its timely resolution is a critical step toward reducing the prevalence of related co-morbidities such as insulin resistance and non-alcoholic fatty liver disease. This article describes the current state-of-the-art knowledge and novel insights into the role of macrophages in adipose tissue inflammation, with special emphasis on the progressive changes in macrophage polarization observed over the course of obesity. In addition, this article extends the discussion to the contribution of Kupffer cells, the liver resident macrophages, to metabolic liver disease. Special attention is given to the modulation of macrophage responses by omega-3-PUFAs, and more importantly by resolvins, which are potent anti-inflammatory and pro-resolving autacoids generated from docosahexaenoic and eicosapentaenoic acids. In fact, resolvins have been shown to work as endogenous stop signals in inflamed adipose tissue and to return this tissue to homeostasis by inducing a phenotypic switch in macrophage polarization toward a pro-resolving phenotype. Collectively, this article offers new views on the role of macrophages in metabolic disease and their modulation by endogenously-generated omega-3-PUFA-derived lipid mediators.

  18. Neutrophil Migration into the Infected Uroepithelium Is Regulated by the Crosstalk between Resident and Helper Macrophages

    Directory of Open Access Journals (Sweden)

    Kristina Zec

    2016-02-01

    Full Text Available The antibacterial defense against infections depends on the cooperation between distinct phagocytes of the innate immune system, namely macrophages and neutrophils. However, the mechanisms driving this cooperation are incompletely understood. In this study we describe the crosstalk between Ly6C+ and Ly6C− macrophage-subtypes and neutrophils in the context of urinary tract infection (UTI with uropathogenic E. coli (UPEC. Ly6C− macrophages acted as tissue resident sentinels and attracted circulating phagocytes by chemokines. Ly6C+ macrophages produced tumor necrosis factor (TNF that licensed Ly6C− macrophages to release preformed CXCL2, which in turn caused matrix metalloproteinases (MMP-9 secretion by neutrophils to enable transepithelial migration.

  19. Niacin reduces plasma CETP levels by diminishing liver macrophage content in CETP transgenic mice

    NARCIS (Netherlands)

    Li, Z.; Wang, Y.; Sluis, R.J. van der; Hoorn, J.W.A. van der; Princen, H.M.G.; Eck, M. van; Berkel, T.J.C. van; Rensen, P.C.N.; Hoekstra, M.

    2012-01-01

    The anti-dyslipidemic drug niacin has recently been shown to reduce the hepatic expression and plasma levels of CETP. Since liver macrophages contribute to hepatic CETP expression, we investigated the role of macrophages in the CETP-lowering effect of niacin in mice. In vitro studies showed that

  20. Inhibition of 5-Lipoxygenase Pathway Attenuates Acute Liver Failure by Inhibiting Macrophage Activation

    Directory of Open Access Journals (Sweden)

    Lu Li

    2014-01-01

    Full Text Available This study aimed to investigate the role of 5-lipoxygenase (5-LO in acute liver failure (ALF and changes in macrophage activation by blocking it. ALF was induced in rats by administration of D-galactosamine (D-GalN/lipopolysaccharide (LPS. Rats were injected intraperitoneally with AA-861 (a specific 5-LO inhibitor, 24 hr before D-GalN/LPS administration. After D-GalN/LPS injection, the liver tissue was collected for assessment of histology, macrophage microstructure, macrophage counts, 5-LO mRNA formation, protein expression, and concentration of leukotrienes. Serum was collected for detecting alanine aminotransferase (ALT, aspartate transaminase (AST, total bilirubin (Tbil, and tumor necrosis factor- (TNF-α. Twenty-four hours after injection, compared with controls, ALF rats were characterized by widespread hepatocyte necrosis and elevated ALT, AST, and Tbil, and 5-LO protein expression reached a peak. Liver leukotriene B4 was also significantly elevated. However, 5-LO mRNA reached a peak 8 hr after D-GalN/LPS injection. Simultaneously, the microstructure of macrophages was changed most significantly and macrophages counts were increased significantly. Moreover, serum TNF-α was also elevated. By contrast, AA-861 pretreatment significantly decreased liver necrosis as well as all of the parameters compared with the rats without pretreatment. Macrophages, via the 5-LO pathway, play a critical role in ALF, and 5-LO inhibitor significantly alleviates ALF, possibly related to macrophage inhibition.

  1. Microparticles from apoptotic platelets promote resident macrophage differentiation.

    Science.gov (United States)

    Vasina, E M; Cauwenberghs, S; Feijge, M A H; Heemskerk, J W M; Weber, C; Koenen, R R

    2011-09-29

    Platelets shed microparticles not only upon activation, but also upon ageing by an apoptosis-like process (apoptosis-induced platelet microparticles, PM(ap)). While the activation-induced microparticles have widely been studied, not much is known about the (patho)physiological consequences of PM(ap) formation. Flow cytometry and scanning electron microscopy demonstrated that PM(ap) display activated integrins and interact to form microparticle aggregates. PM(ap) were chemotactic for monocytic cells, bound to these cells, an furthermore stimulated cell adhesion and spreading on a fibronectin surface. After prolonged incubation, PM(ap) promoted cell differentiation, but inhibited proliferation. Monocyte membrane receptor analysis revealed increased expression levels of CD11b (integrin α(M)β(2)), CD14 and CD31 (platelet endothelial cell adhesion molecule-1), and the chemokine receptors CCR5 and CXCR4, but not of CCR2. This indicated that PM(ap) polarized the cells into resident M2 monocytes. Cells treated with PM(ap) actively consumed oxidized low-density lipoprotein (oxLDL), and released matrix metalloproteinases and hydrogen peroxide. Further confirmation for the differentiation towards resident professional phagocytes came from the finding that PM(ap) stimulated the expression of the (ox)LDL receptors, CD36 and CD68, and the production of proinflammatory and immunomodulating cytokines by monocytes. In conclusion, interaction of PM(ap) with monocytic cells has an immunomodulating potential. The apoptotic microparticles polarize the cells into a resident M2 subset, and induce differentiation to resident professional phagocytes.

  2. Cell Origin Dictates Programming of Resident versus Recruited Macrophages during Acute Lung Injury.

    Science.gov (United States)

    Mould, Kara J; Barthel, Lea; Mohning, Michael P; Thomas, Stacey M; McCubbrey, Alexandra L; Danhorn, Thomas; Leach, Sonia M; Fingerlin, Tasha E; O'Connor, Brian P; Reisz, Julie A; D'Alessandro, Angelo; Bratton, Donna L; Jakubzick, Claudia V; Janssen, William J

    2017-09-01

    Two populations of alveolar macrophages (AMs) coexist in the inflamed lung: resident AMs that arise during embryogenesis, and recruited AMs that originate postnatally from circulating monocytes. The objective of this study was to determine whether origin or environment dictates the transcriptional, metabolic, and functional programming of these two ontologically distinct populations over the time course of acute inflammation. RNA sequencing demonstrated marked transcriptional differences between resident and recruited AMs affecting three main areas: proliferation, inflammatory signaling, and metabolism. Functional assays and metabolomic studies confirmed these differences and demonstrated that resident AMs proliferate locally and are governed by increased tricarboxylic acid cycle and amino acid metabolism. Conversely, recruited AMs produce inflammatory cytokines in association with increased glycolytic and arginine metabolism. Collectively, the data show that even though they coexist in the same environment, inflammatory macrophage subsets have distinct immunometabolic programs and perform specialized functions during inflammation that are associated with their cellular origin.

  3. Functional role of monocytes and macrophages for the inflammatory response in acute liver injury

    Directory of Open Access Journals (Sweden)

    Henning W Zimmermann

    2012-10-01

    Full Text Available Different etiologies such as drug toxicity, acute viral hepatitis B or acetaminophen poisoning can cause acute liver injury (ALI or even acute liver failure (ALF. Excessive cell death of hepatocytes in the liver is known to result in a strong hepatic inflammation. Experimental murine models of liver injury highlighted the importance of hepatic macrophages, so-called Kupffer cells, for initiating and driving this inflammatory response by releasing proinflammatory cytokines and chemokines including tumor necrosis factor (TNF, interleukin-6 (IL-6, IL-1-beta or monocyte chemoattractant protein 1 (MCP-1, CCL2 as well as activating other non-parenchymal liver cells, e.g. endothelial or hepatic stellate cells (HSC. Many of these proinflammatory mediators can trigger hepatocytic cell death pathways, e.g. via caspase activation, but also activate protective signaling pathways, e.g. via nuclear factor kappa B (NF-kB. Recent studies in mice demonstrated that these macrophage actions largely depend on the recruitment of monocytes into the liver, namely of the inflammatory Ly6c+ (Gr1+ monocyte subset as precursors of tissue macrophages. The chemokine receptor CCR2 and its ligand MCP-1/CCL2 promote monocyte subset infiltration upon liver injury. In contrast, the chemokine receptor CX3CR1 and its ligand fractalkine (CX3CL1 are important negative regulators of monocyte infiltration by controlling their survival and differentiation into functionally diverse macrophage subsets upon injury. The recently identified cellular and molecular pathways for monocyte subset recruitment, macrophage differentiation and interactions with other hepatic cell types in the injured liver may therefore represent interesting novel targets for future therapeutic approaches in ALF.

  4. MerTK Cleavage on Resident Cardiac Macrophages Compromises Repair After Myocardial Ischemia Reperfusion Injury.

    Science.gov (United States)

    DeBerge, Matthew; Yeap, Xin Yi; Dehn, Shirley; Zhang, Shuang; Grigoryeva, Lubov; Misener, Sol; Procissi, Daniel; Zhou, Xin; Lee, Daniel C; Muller, William A; Luo, Xunrong; Rothlin, Carla; Tabas, Ira; Thorp, Edward B

    2017-09-29

    Clinical benefits of reperfusion after myocardial infarction are offset by maladaptive innate immune cell function, and therapeutic interventions are lacking. We sought to test the significance of phagocytic clearance by resident and recruited phagocytes after myocardial ischemia reperfusion. In humans, we discovered that clinical reperfusion after myocardial infarction led to significant elevation of the soluble form of MerTK (myeloid-epithelial-reproductive tyrosine kinase; ie, soluble MER), a critical biomarker of compromised phagocytosis by innate macrophages. In reperfused mice, macrophage Mertk deficiency led to decreased cardiac wound debridement, increased infarct size, and depressed cardiac function, newly implicating MerTK in cardiac repair after myocardial ischemia reperfusion. More notably, Mertk(CR ) mice, which are resistant to cleavage, showed significantly reduced infarct sizes and improved systolic function. In contrast to other cardiac phagocyte subsets, resident cardiac MHCII LO CCR2 - (major histocompatibility complex II/C-C motif chemokine receptor type 2) macrophages expressed higher levels of MerTK and, when exposed to apoptotic cells, secreted proreparative cytokines, including transforming growth factor-β. Mertk deficiency compromised the accumulation of MHCII LO phagocytes, and this was rescued in Mertk(CR ) mice. Interestingly, blockade of CCR2-dependent monocyte infiltration into the heart reduced soluble MER levels post-ischemia reperfusion. Our data implicate monocyte-induced MerTK cleavage on proreparative MHCII LO cardiac macrophages as a novel contributor and therapeutic target of reperfusion injury. © 2017 American Heart Association, Inc.

  5. Effect of Shark Liver Oil on Peritoneal Murine Macrophages in Responses to Killed-Candida albicans

    Directory of Open Access Journals (Sweden)

    Monire Hajimoradi

    2009-09-01

    Full Text Available Objective(sShark Liver Oil (SLO is an immunomodulator. Macrophages play a key role in host defense against pathogens like fungi. Candida albicans have mechanisms to escape immune system. We determined the effect of killed-Candida on the in vitro viability of macrophages and the effect of SLO on augmentation of this potency.Materials and MethodsPeritoneal macrophages were separated and cultured (3×105/well. At first, the effect of killed-Candida (200 cells/well on macrophage viability was evaluated, using MTT test. Then, MTT was performed on macrophages stimulated with killed-Candida in the presence of SLO. ResultsKilled-Candida suppressed the ability of MTT reduction and hence macrophages viability (P=0.026, but addition of SLO (100 mg/ml significantly enhanced cell viability (P=0.00. So, SLO could neutralize the inhibitory effect of Candida.ConclusionSimultaneous with cytotoxic effect of killed-Candida cells on macrophages viability, SLO augment macrophages viability. So, it can be applied in candidiasis as a complement.

  6. Histidine-rich glycoprotein promotes macrophage activation and inflammation in chronic liver disease

    NARCIS (Netherlands)

    Bartneck, M.; Fech, V.; Ehling, J.; Govaere, O.; Warzecha, K.T.; Hittatiya, K.; Vucur, M.; Gautheron, J.; Luedde, T.; Trautwein, C.; Lammers, Twan Gerardus Gertudis Maria; Roskams, T.; Jahnen-Dechent, W.; Tacke, F.

    2016-01-01

    Pathogen- and injury-related danger signals as well as cytokines released by immune cells influence the functional differentiation of macrophages in chronic inflammation. Recently, the liver-derived plasma protein, histidine-rich glycoprotein (HRG), was demonstrated, in mouse tumor models, to

  7. Myelopotentiating effect of curcumin in tumor-bearing host: Role of bone marrow resident macrophages

    International Nuclear Information System (INIS)

    Vishvakarma, Naveen Kumar; Kumar, Anjani; Kumar, Ajay; Kant, Shiva; Bharti, Alok Chandra; Singh, Sukh Mahendra

    2012-01-01

    The present investigation was undertaken to study if curcumin, which is recognized for its potential as an antineoplastic and immunopotentiating agent, can also influence the process of myelopoiesis in a tumor-bearing host. Administration of curcumin to tumor-bearing host augmented count of bone marrow cell (BMC) accompanied by an up-regulated BMC survival and a declined induction of apoptosis. Curcumin administration modulated expression of cell survival regulatory molecules: Bcl2, p53, caspase-activated DNase (CAD) and p53-upregulated modulator of apoptosis (PUMA) along with enhanced expression of genes of receptors for M-CSF and GM-CSF in BMC. The BMC harvested from curcumin-administered hosts showed an up-regulated colony forming ability with predominant differentiation into bone marrow-derived macrophages (BMDM), responsive for activation to tumoricidal state. The number of F4/80 positive bone marrow resident macrophages (BMM), showing an augmented expression of M-CSF, was also augmented in the bone marrow of curcumin-administered host. In vitro reconstitution experiments indicated that only BMM of curcumin-administered hosts, but not in vitro curcumin-exposed BMM, augmented BMC survival. It suggests that curcumin-dependent modulation of BMM is of indirect nature. Such prosurvival action of curcumin is associated with altered T H1 /T H2 cytokine balance in serum. Augmented level of serum-borne IFN-γ was found to mediate modulation of BMM to produce enhanced amount of monokines (IL-1, IL-6, TNF-α), which are suggested to augment the BMC survival. Taken together the present investigation indicates that curcumin can potentiate myelopoiesis in a tumor-bearing host, which may have implications in its therapeutic utility. Highlights: ► Curcumin augments myelopoiesis in tumor-bearing host. ► Bone marrow resident macrophages mediate curcumin-dependent augmented myelopoiesis. ► Serum borne cytokine are implicated in modulation of bone marrow resident

  8. Myelopotentiating effect of curcumin in tumor-bearing host: Role of bone marrow resident macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Vishvakarma, Naveen Kumar; Kumar, Anjani; Kumar, Ajay; Kant, Shiva [School of Biotechnology, Banaras Hindu University, Varanasi-221 005, U.P. (India); Bharti, Alok Chandra [Division of Molecular Oncology, Institute of Cytology and Preventive Oncology, Noida, UP (India); Singh, Sukh Mahendra, E-mail: sukhmahendrasingh@yahoo.com [School of Biotechnology, Banaras Hindu University, Varanasi-221 005, U.P. (India)

    2012-08-15

    The present investigation was undertaken to study if curcumin, which is recognized for its potential as an antineoplastic and immunopotentiating agent, can also influence the process of myelopoiesis in a tumor-bearing host. Administration of curcumin to tumor-bearing host augmented count of bone marrow cell (BMC) accompanied by an up-regulated BMC survival and a declined induction of apoptosis. Curcumin administration modulated expression of cell survival regulatory molecules: Bcl2, p53, caspase-activated DNase (CAD) and p53-upregulated modulator of apoptosis (PUMA) along with enhanced expression of genes of receptors for M-CSF and GM-CSF in BMC. The BMC harvested from curcumin-administered hosts showed an up-regulated colony forming ability with predominant differentiation into bone marrow-derived macrophages (BMDM), responsive for activation to tumoricidal state. The number of F4/80 positive bone marrow resident macrophages (BMM), showing an augmented expression of M-CSF, was also augmented in the bone marrow of curcumin-administered host. In vitro reconstitution experiments indicated that only BMM of curcumin-administered hosts, but not in vitro curcumin-exposed BMM, augmented BMC survival. It suggests that curcumin-dependent modulation of BMM is of indirect nature. Such prosurvival action of curcumin is associated with altered T{sub H1}/T{sub H2} cytokine balance in serum. Augmented level of serum-borne IFN-γ was found to mediate modulation of BMM to produce enhanced amount of monokines (IL-1, IL-6, TNF-α), which are suggested to augment the BMC survival. Taken together the present investigation indicates that curcumin can potentiate myelopoiesis in a tumor-bearing host, which may have implications in its therapeutic utility. Highlights: ► Curcumin augments myelopoiesis in tumor-bearing host. ► Bone marrow resident macrophages mediate curcumin-dependent augmented myelopoiesis. ► Serum borne cytokine are implicated in modulation of bone marrow resident

  9. Resident alveolar macrophages are susceptible to and permissive of Coxiella burnetii infection.

    Directory of Open Access Journals (Sweden)

    Matthew Calverley

    Full Text Available Coxiella burnetii, the causative agent of Q fever, is a zoonotic disease with potentially life-threatening complications in humans. Inhalation of low doses of Coxiella bacteria can result in infection of the host alveolar macrophage (AM. However, it is not known whether a subset of AMs within the heterogeneous population of macrophages in the infected lung is particularly susceptible to infection. We have found that lower doses of both phase I and phase II Nine Mile C. burnetii multiply and are less readily cleared from the lungs of mice compared to higher infectious doses. We have additionally identified AM resident within the lung prior to and shortly following infection, opposed to newly recruited monocytes entering the lung during infection, as being most susceptible to infection. These resident cells remain infected up to twelve days after the onset of infection, serving as a permissive niche for the maintenance of bacterial infection. A subset of infected resident AMs undergo a distinguishing phenotypic change during the progression of infection exhibiting an increase in surface integrin CD11b expression and continued expression of the surface integrin CD11c. The low rate of phase I and II Nine Mile C. burnetii growth in murine lungs may be a direct result of the limited size of the susceptible resident AM cell population.

  10. Involvement of Pro-Inflammatory Macrophages in Liver Pathology of Pirital Virus-Infected Syrian Hamsters

    Directory of Open Access Journals (Sweden)

    Corey L. Campbell

    2018-05-01

    Full Text Available New World arenaviruses cause fatal hemorrhagic disease in South America. Pirital virus (PIRV, a mammarenavirus hosted by Alston’s cotton rat (Sigmodon alstoni, causes a disease in Syrian golden hamsters (Mesocricetus auratus (biosafety level-3, BSL-3 that has many pathologic similarities to the South American hemorrhagic fevers (BSL-4 and, thus, is considered among the best small-animal models for human arenavirus disease. Here, we extend in greater detail previously described clinical and pathological findings in Syrian hamsters and provide evidence for a pro-inflammatory macrophage response during PIRV infection. The liver was the principal target organ of the disease, and signs of Kupffer cell involvement were identified in mortally infected hamster histopathology data. Differential expression analysis of liver mRNA revealed signatures of the pro-inflammatory response, hematologic dysregulation, interferon pathway and other host response pathways, including 17 key transcripts that were also reported in two non-human primate (NHP arenavirus liver-infection models, representing both Old and New World mammarenavirus infections. Although antigen presentation may differ among rodent and NHP species, key hemostatic and innate immune-response components showed expression parallels. Signatures of pro-inflammatory macrophage involvement in PIRV-infected livers included enrichment of Ifng, Nfkb2, Stat1, Irf1, Klf6, Il1b, Cxcl10, and Cxcl11 transcripts. Together, these data indicate that pro-inflammatory macrophage M1 responses likely contribute to the pathogenesis of acute PIRV infection.

  11. Myeloid PTEN deficiency protects livers from ischemia reperfusion injury by facilitating M2 macrophage differentiation.

    Science.gov (United States)

    Yue, Shi; Rao, Jianhua; Zhu, Jianjun; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Lu, Ling; Wang, Xuehao; Zhai, Yuan

    2014-06-01

    Although the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in regulating cell proliferation is well established, its function in immune responses remains to be fully appreciated. In the current study, we analyzed myeloid-specific PTEN function in regulating tissue inflammatory immune response in a murine liver partial warm ischemia model. Myeloid-specific PTEN knockout (KO) resulted in liver protection from ischemia reperfusion injury (IRI) by deviating the local innate immune response against ischemia reperfusion toward the regulatory type: expression of proinflammatory genes was selectively decreased and anti-inflammatory IL-10 was simultaneously increased in ischemia reperfusion livers of PTEN KO mice compared with those of wild-type (WT) mice. PI3K inhibitor and IL-10-neutralizing Abs, but not exogenous LPS, recreated liver IRI in these KO mice. At the cellular level, Kupffer cells and peritoneal macrophages isolated from KO mice expressed higher levels of M2 markers and produced lower TNF-α and higher IL-10 in response to TLR ligands than did their WT counterparts. They had enhanced Stat3- and Stat6-signaling pathway activation, but diminished Stat1-signaling pathway activation, in response to TLR4 stimulation. Inactivation of Kupffer cells by gadolinium chloride enhanced proinflammatory immune activation and increased IRI in livers of myeloid PTEN KO mice. Thus, myeloid PTEN deficiency protects livers from IRI by facilitating M2 macrophage differentiation. Copyright © 2014 by The American Association of Immunologists, Inc.

  12. Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques

    International Nuclear Information System (INIS)

    Ahsan, Muhammad H.; Gill, Amy F.; Alvarez, Xavier; Lackner, Andrew A.; Veazey, Ronald S.

    2013-01-01

    Since the liver drains antigens from the intestinal tract, and since the intestinal tract is a major site of viral replication, we examined the dynamics of liver macrophages (Kupffer cells) throughout SIV infection. Absolute numbers of Kupffer cells increased in the livers in acute infection, and in animals with AIDS. Significantly higher percentages of proliferating (BrdU+) Kupffer cells were detected in acute infection and in AIDS with similar trends in blood monocytes. Significantly higher percentages of apoptotic (AC3+) Kupffer cells were also found in acute and AIDS stages. However, productively infected cells were not detected in liver of 41/42 animals examined, despite abundant infected cells in gut and lymph nodes of all animals. Increased rates of Kupffer cell proliferation resulting in an increase in Kupffer cells without productive infection indicate SIV infection affects Kupffer cells, but the liver does not appear to be a major site of productive viral replication. - Highlights: • Kupffer cells increase in the liver of SIV-infected macaques. • Increased proliferation and apoptosis of Kupffer cells occurs in SIV infection. • Productively infected cells are rarely detected in the liver. • The liver is not a major site for SIV replication

  13. The Flavonoid Quercetin Ameliorates Liver Inflammation and Fibrosis by Regulating Hepatic Macrophages Activation and Polarization in Mice

    Directory of Open Access Journals (Sweden)

    Xi Li

    2018-02-01

    Full Text Available At present, there are no effective antifibrotic drugs for patients with chronic liver disease; hence, the development of antifibrotic therapies is urgently needed. Here, we performed an experimental and translational study to investigate the potential and underlying mechanism of quercetin treatment in liver fibrosis, mainly focusing on the impact of quercetin on macrophages activation and polarization. BALB/c mice were induced liver fibrosis by carbon tetrachloride (CCl4 for 8 weeks and concomitantly treated with quercetin (50 mg/kg or vehicle by daily gavage. Liver inflammation, fibrosis, and hepatic stellate cells (HSCs activation were examined. Moreover, massive macrophages accumulation, M1 macrophages and their related markers, such as tumor necrosis factor (TNF-α, interleukin (IL-1β, IL-6, and monocyte chemotactic protein-1 (MCP-1 in livers were analyzed. In vitro, we used Raw 264.7 cells to examine the effect of quercetin on M1-polarized macrophages activation. Our results showed that quercetin dramatically ameliorated liver inflammation, fibrosis, and inhibited HSCs activation. These results were attributed to the reductive recruitment of macrophages (F4/80+ and CD68+ into the liver in quercetin-treated fibrotic mice confirmed by immunostaining and expression levels of marker molecules. Importantly, quercetin strongly inhibited M1 polarization and M1-related inflammatory cytokines in fibrotic livers when compared with vehicle-treated mice. In vitro, studies further revealed that quercetin efficiently inhibited macrophages activation and M1 polarization, as well as decreased the mRNA expression of M1 macrophage markers such as TNF-α, IL-1β, IL-6, and nitric oxide synthase 2. Mechanistically, the inhibition of M1 macrophages by quercetin was associated with the decreased levels of Notch1 expression on macrophages both in vivo and in vitro. Taken together, our data indicated that quercetin attenuated CCl4-induced liver inflammation and

  14. Proteinase activated receptor 1 mediated fibrosis in a mouse model of liver injury: a role for bone marrow derived macrophages.

    Directory of Open Access Journals (Sweden)

    Yiannis N Kallis

    Full Text Available Liver fibrosis results from the co-ordinated actions of myofibroblasts and macrophages, a proportion of which are of bone marrow origin. The functional effect of such bone marrow-derived cells on liver fibrosis is unclear. We examine whether changing bone marrow genotype can down-regulate the liver's fibrotic response to injury and investigate mechanisms involved. Proteinase activated receptor 1 (PAR1 is up-regulated in fibrotic liver disease in humans, and deficiency of PAR1 is associated with reduced liver fibrosis in rodent models. In this study, recipient mice received bone marrow transplantation from PAR1-deficient or wild-type donors prior to carbon tetrachloride-induced liver fibrosis. Bone marrow transplantation alone from PAR1-deficient mice was able to confer significant reductions in hepatic collagen content and activated myofibroblast expansion on wild-type recipients. This effect was associated with a decrease in hepatic scar-associated macrophages and a reduction in macrophage recruitment from the bone marrow. In vitro, PAR1 signalling on bone marrow-derived macrophages directly induced their chemotaxis but did not stimulate proliferation. These data suggest that the bone marrow can modulate the fibrotic response of the liver to recurrent injury. PAR1 signalling can contribute to this response by mechanisms that include the regulation of macrophage recruitment.

  15. Nicotine attenuates activation of tissue resident macrophages in the mouse stomach through the β2 nicotinic acetylcholine receptor.

    Directory of Open Access Journals (Sweden)

    Andrea Nemethova

    Full Text Available BACKGROUND: The cholinergic anti-inflammatory pathway is an endogenous mechanism by which the autonomic nervous system attenuates macrophage activation via nicotinic acetylcholine receptors (nAChR. This concept has however not been demonstrated at a cellular level in intact tissue. To this end, we have studied the effect of nicotine on the activation of resident macrophages in a mouse stomach preparation by means of calcium imaging. METHODS: Calcium transients ([Ca(2+]i in resident macrophages were recorded in a mouse stomach preparation containing myenteric plexus and muscle layers by Fluo-4. Activation of macrophages was achieved by focal puff administration of ATP. The effects of nicotine on activation of macrophages were evaluated and the nAChR involved was pharmacologically characterized. The proximity of cholinergic nerves to macrophages was quantified by confocal microscopy. Expression of β2 and α7 nAChR was evaluated by β2 immunohistochemistry and fluorophore-tagged α-bungarotoxin. RESULTS: In 83% of macrophages cholinergic varicose nerve fibers were detected at distances <900 nm. The ATP induced [Ca(2+]i increase was significantly inhibited in 65% or 55% of macrophages by 100 µM or 10 µM nicotine, respectively. This inhibitory effect was reversed by the β2 nAChR preferring antagonist dihydro-β-eryhtroidine but not by hexamethonium (non-selective nAChR-antagonist, mecamylamine (α3β4 nAChR-preferring antagonist, α-bungarotoxin or methyllycaconitine (both α7 nAChR-preferring antagonist. Macrophages in the stomach express β2 but not α7 nAChR at protein level, while those in the intestine express both receptor subunits. CONCLUSION: This study is the first in situ demonstration of an inhibition of macrophage activation by nicotine suggesting functional signaling between cholinergic neurons and macrophages in the stomach. The data suggest that the β2 subunit of the nAChR is critically involved in the nicotine-induced inhibition

  16. Investigation of impairment of liver function in local residents of Miaofeng Village, Wushan County, China

    Directory of Open Access Journals (Sweden)

    YANG Zhongxia

    2015-06-01

    Full Text Available ObjectiveTo assess the impairment of liver function and investigate possible causes in local residents in Miaofeng Village, Mali Town, Wushan County, Gansu Province, China, and to provide a basis for the etiological study of idiopathic liver damage. MethodsThe residents in Miaofeng Village were screened for liver function and an epidemiological study was conducted. Serological testing was performed for those with abnormal screening results. Trace elements in drinking water and soil such as arsenic, chromium, and selenium were also tested. ResultsOf all residents, 23.8% and 10.7% showed abnormal levels of alanine aminotransferase and aspartate aminotransferase, respectively. Positivity of HBsAg was detected in 11 cases, fatty liver was identified in 3 cases, and absence of selenium in soil was also confirmed. ConclusionA proportion of local residents in Miaofeng Village have impaired liver function and the absence of selenium in soil may be a contributing factor to this phenomenon.

  17. Resident corneal c-fms(+) macrophages and dendritic cells mediate early cellular infiltration in adenovirus keratitis.

    Science.gov (United States)

    Ramke, Mirja; Zhou, Xiaohong; Materne, Emma Caroline; Rajaiya, Jaya; Chodosh, James

    2016-06-01

    The cornea contains a heterogeneous population of antigen-presenting cells with the capacity to contribute to immune responses. Adenovirus keratitis is a severe corneal infection with acute and chronic phases. The role of resident corneal antigen-presenting cells in adenovirus keratitis has not been studied. We utilized transgenic MaFIA mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, in a mouse model of adenovirus keratitis. Clinical keratitis and recruitment of myeloperoxidase and CD45(+) cells were diminished in c-fms depleted, adenovirus infected mice, as compared to controls, consistent with a role for myeloid-lineage cells in adenovirus keratitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Resident corneal c-fms+ macrophages and dendritic cells mediate early cellular infiltration in adenovirus keratitis

    Science.gov (United States)

    Ramke, Mirja; Zhou, Xiaohong; Materne, Emma Caroline; Rajaiya, Jaya; Chodosh, James

    2016-01-01

    The cornea contains a heterogeneous population of antigen-presenting cells with the capacity to contribute to immune responses. Adenovirus keratitis is a severe corneal infection with acute and chronic phases. The role of resident corneal antigen-presenting cells in adenovirus keratitis has not been studied. We utilized transgenic MaFIA mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, in a mouse model of adenovirus keratitis. Clinical keratitis and recruitment of myeloperoxidase and CD45+ cells were diminished in c-fms depleted, adenovirus infected mice, as compared to controls, consistent with a role for myeloid-lineage cells in adenovirus keratitis. PMID:27185163

  19. Macrophage Liver Kinase B1 Inhibits Foam Cell Formation and Atherosclerosis.

    Science.gov (United States)

    Liu, Zhaoyu; Zhu, Huaiping; Dai, Xiaoyan; Wang, Cheng; Ding, Ye; Song, Ping; Zou, Ming-Hui

    2017-10-13

    LKB1 (liver kinase B1) is a serine/threonine kinase and tumor suppressor, which regulates the homeostasis of hematopoietic cells and immune responses. Macrophages transform into foam cells upon taking-in lipids. No role for LKB1 in foam cell formation has previously been reported. We sought to establish the role of LKB1 in atherosclerotic foam cell formation. LKB1 expression was examined in human carotid atherosclerotic plaques and in western diet-fed atherosclerosis-prone Ldlr -/- and ApoE -/- mice. LKB1 expression was markedly reduced in human plaques when compared with nonatherosclerotic vessels. Consistently, time-dependent reduction of LKB1 levels occurred in atherosclerotic lesions in western diet-fed Ldlr -/- and ApoE -/- mice. Exposure of macrophages to oxidized low-density lipoprotein downregulated LKB1 in vitro. Furthermore, LKB1 deficiency in macrophages significantly increased the expression of SRA (scavenger receptor A), modified low-density lipoprotein uptake and foam cell formation, all of which were abolished by blocking SRA. Further, we found LKB1 phosphorylates SRA resulting in its lysosome degradation. To further investigate the role of macrophage LKB1 in vivo, ApoE -/- LKB1 fl/fl LysM cre and ApoE -/- LKB1 fl/fl mice were fed with western diet for 16 weeks. Compared with ApoE -/- LKB1 fl/fl wild-type control, ApoE -/- LKB1 fl/fl LysM cre mice developed more atherosclerotic lesions in whole aorta and aortic root area, with markedly increased SRA expression in aortic root lesions. We conclude that macrophage LKB1 reduction caused by oxidized low-density lipoprotein promotes foam cell formation and the progression of atherosclerosis. © 2017 American Heart Association, Inc.

  20. Placental Growth Factor Contributes to Liver Inflammation, Angiogenesis, Fibrosis in Mice by Promoting Hepatic Macrophage Recruitment and Activation

    Directory of Open Access Journals (Sweden)

    Xi Li

    2017-07-01

    Full Text Available Placental growth factor (PlGF, a member of the vascular endothelial growth factor (VEGF family, mediates wound healing and inflammatory responses, exerting an effect on liver fibrosis and angiogenesis; however, the precise mechanism remains unclear. The aims of this study are to identify the role of PlGF in liver inflammation and fibrosis induced by bile duct ligation (BDL in mice and to reveal the underlying molecular mechanism. PlGF small interfering RNA (siRNA or non-targeting control siRNA was injected by tail vein starting 2 days after BDL. Liver inflammation, fibrosis, angiogenesis, macrophage infiltration, and hepatic stellate cells (HSCs activation were examined. Our results showed that PlGF was highly expressed in fibrotic livers and mainly distributed in activated HSCs and macrophages. Furthermore, PlGF silencing strongly reduced the severity of liver inflammation and fibrosis, and inhibited the activation of HSCs. Remarkably, PlGF silencing also attenuated BDL-induced hepatic angiogenesis, as evidenced by attenuated liver endothelial cell markers CD31 and von Willebrand factor immunostaining and genes or protein expression. Interestingly, these pathological ameliorations by PlGF silencing were due to a marked reduction in the numbers of intrahepatic F4/80+, CD68+, and Ly6C+ cell populations, which were reflected by a lower expression of these macrophage marker molecules in fibrotic livers. In addition, knockdown of PlGF by siRNA inhibited macrophages activation and substantially suppressed the expression of pro-inflammatory cytokines and chemokines in fibrotic livers. Mechanistically, evaluation of cultured RAW 264.7 cells revealed that VEGF receptor 1 (VEGFR1 mainly involved in mediating the role of PlGF in macrophages recruitment and activation, since using VEGFR1 neutralizing antibody blocking PlGF/VEGFR1 signaling axis significantly inhibited macrophages migration and inflammatory responses. Together, these findings indicate

  1. Splenectomy attenuates murine liver fibrosis with hypersplenism stimulating hepatic accumulation of Ly-6C(lo) macrophages.

    Science.gov (United States)

    Yada, Akito; Iimuro, Yuji; Uyama, Naoki; Uda, Yugo; Okada, Toshihiro; Fujimoto, Jiro

    2015-10-01

    Splenectomy in cirrhotic patients has been reported to improve liver function; however the underlying mechanism remains obscure. In the present study, we investigated the mechanism using a murine model, which represents well the compensated liver cirrhosis. C57BL/6 male mice were allowed to drink water including thioacetamide (TAA: 300 mg/L) ad libitum for 32 weeks. After splenectomy at 32 weeks, mice were sacrificed on days one, seven, and 28, respectively, while TAA-administration was continued. Perioperative changes in peripheral blood and liver tissues were analyzed. TAA treatment of mice for 32 weeks reproducibly achieved advanced liver fibrosis with splenomegaly, thrombocytopenia, and leukocytopenia. After splenectomy, liver fibrosis was attenuated, and macrophages/monocytes were significantly increased in peripheral blood, as well as in the liver. Progenitor-like cells expressing CK-19, EpCAM, or CD-133 appeared in the liver after TAA treatment, and gradually disappeared after splenectomy. Macrophages/monocytes accumulated in the liver, most of which were negative for Ly-6C, were adjacent to the hepatic progenitor-like cells, and quantitative RT-PCR indicated increased canonical Wnt and decreased Notch signals. As a result, a significant amount of β-catenin accumulated in the progenitor-like cells. Moreover, relatively small Ki67-positive hepatic cells were significantly increased. Protein expression of MMP-9, to which Ly-6G-positive neutrophils contributed, was also increased in the liver after splenectomy. The hepatic accumulation of macrophages/monocytes, most of which are Ly-6C(lo), the reduction of fibrosis, and the gradual disappearance of hepatic progenitor-like cells possibly play significant roles in the tissue remodeling process in cirrhotic livers after splenectomy. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  2. A tissue phantom model for training residents in ultrasound-guided liver biopsy.

    Science.gov (United States)

    Sekhar, Aarti; Sun, Maryellen R; Siewert, Bettina

    2014-07-01

    The apprenticeship model for training of percutaneous liver biopsy has limitations, and costs of commercially available simulation models can be prohibitive. We created an inexpensive tissue phantom for liver biopsy simulation and evaluated the utility of this model for training radiology residents. A bovine-porcine tissue phantom was devised as a simulation model and consisted of bovine liver with a porcine rib layer and inserted pimento olives simulating target lesions. Training sessions (a 20-minute didactic lecture and a 90-minute practice session) were offered to all residents in a diagnostic radiology residency. Effect of training was assessed by questionnaire before and after training. Level of knowledge of topics covered in the didactic session, confidence in technical skills, and anxiety level were evaluated on a five-point scale (1, poor to 5, excellent). Thirty-five of 38 residents received training on the models (~$40). Mean reported value score for training was 4.88/5. Improvement was greatest for knowledge of technique (2.3-4.1/5, P Technical confidence increased (2.4-3.8/5, P < .001) and anxiety related to performing liver biopsy improved (2.7-3.7/5, P < .001). Residents with no prior experience in liver biopsy (n = 21) had significantly greater increases in all categories than residents with prior experience (n = 14), except for knowledge about obtaining informed consent and anxiety levels. Utilization of an inexpensively created bovine/porcine liver biopsy simulation model was well perceived by radiology residents and can be used as an educational tool during residency. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  3. Macrophage-derived Wnt opposes notch signaling to specify hepatic progenitor cell fate in chronic liver disease

    NARCIS (Netherlands)

    Boulter, L.; Govaere, O.; Bird, T.G.; Radulescu, S.; Ramachandran, P.; Pellicoro, A.; Ridgway, R.; Seo, S.S.; Spee, B.|info:eu-repo/dai/nl/304830925; van Rooijen, N.; Sansom, O.J.; Iredale, J.P.; Lowell, S.; Roskams, T.A.; Forbes, S.J.

    2012-01-01

    Nat Med. 2012 Mar 4;18(4):572-9. doi: 10.1038/nm.2667. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Boulter L, Govaere O, Bird TG, Radulescu S, Ramachandran P, Pellicoro A, Ridgway RA, Seo SS, Spee B, Van Rooijen N, Sansom OJ,

  4. Soluble CD163 from activated macrophages predicts mortality in acute liver failure

    DEFF Research Database (Denmark)

    Møller, Holger Jon; Grønbaek, Henning; Schiødt, Frank V

    2007-01-01

    BACKGROUND/AIMS: Soluble CD163 (sCD163) is a scavenger receptor shed in serum during inflammatory activation of macrophages. We investigated if sCD163 was increased and predicted outcome in acute liver failure (ALF). METHODS: Samples from 100 consecutive patients enrolled in the U.S. ALF Study.......65-5.6), pliver cirrhosis (9.8mg/l (3.6-16.9), p=0.0002). sCD163 on day 1 correlated significantly with ALT, AST, bilirubin, and creatinine. sCD163 concentrations on day 3 were elevated in patients with fatal outcome of disease compared to spontaneous survivors, 29.0mg/l (7...

  5. Macrophage activation marker soluble CD163 and non-alcoholic fatty liver disease in morbidly obese patients undergoing bariatric surgery

    DEFF Research Database (Denmark)

    Kazankov, Konstantin; Tordjman, Joan; Møller, Holger Jon

    2015-01-01

    BACKGROUND AND AIMS: Macrophages play an important role in non-alcoholic fatty liver disease (NAFLD). Soluble CD163 (sCD163) is a specific marker of macrophage activation. We aimed to measure sCD163 in morbidly obese patients with varying degrees of NAFLD before and after bariatric surgery (BS...... (NAS), Kleiner fibrosis score, and the fatty liver inhibition of progression (FLIP) algorithm. In a subset, CD163 immunohistochemistry and real-time quantitative polymerase chain reaction for CD163 mRNA were performed. RESULTS: sCD163 was higher in patients with NAS ≥ 5 compared with those with NAS ...). METHODS: Demographic, clinical, and biochemical data, and plasma sCD163 measured by enzyme-linked immunosorbent assay, of 196 patients were collected preoperatively and 3, 6, and 12 months after BS leading to significant weight loss. Peroperative liver biopsies were assessed for the NAFLD Activity Score...

  6. The pancreas anatomy conditions the origin and properties of resident macrophages.

    Science.gov (United States)

    Calderon, Boris; Carrero, Javier A; Ferris, Stephen T; Sojka, Dorothy K; Moore, Lindsay; Epelman, Slava; Murphy, Kenneth M; Yokoyama, Wayne M; Randolph, Gwendalyn J; Unanue, Emil R

    2015-09-21

    We examine the features, origin, turnover, and gene expression of pancreatic macrophages under steady state. The data distinguish macrophages within distinct intrapancreatic microenvironments and suggest how macrophage phenotype is imprinted by the local milieu. Macrophages in islets of Langerhans and in the interacinar stroma are distinct in origin and phenotypic properties. In islets, macrophages are the only myeloid cells: they derive from definitive hematopoiesis, exchange to a minimum with blood cells, have a low level of self-replication, and depend on CSF-1. They express Il1b and Tnfa transcripts, indicating classical activation, M1, under steady state. The interacinar stroma contains two macrophage subsets. One is derived from primitive hematopoiesis, with no interchange by blood cells and alternative, M2, activation profile, whereas the second is derived from definitive hematopoiesis and exchanges with circulating myeloid cells but also shows an alternative activation profile. Complete replacement of islet and stromal macrophages by donor stem cells occurred after lethal irradiation with identical profiles as observed under steady state. The extraordinary plasticity of macrophages within the pancreatic organ and the distinct features imprinted by their anatomical localization sets the base for examining these cells in pathological conditions. © 2015 Calderon et al.

  7. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Hankey, Pamela [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Mishin, Vladimir; Francis, Mary [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Yu, Shan [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup −/−} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup −/−} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup −/−} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup −/−} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup −/−} mice

  8. Liver-Resident Memory CD8+T Cells Form a Front-Line Defense against Malaria Liver-Stage Infection.

    Science.gov (United States)

    Fernandez-Ruiz, Daniel; Ng, Wei Yi; Holz, Lauren E; Ma, Joel Z; Zaid, Ali; Wong, Yik Chun; Lau, Lei Shong; Mollard, Vanessa; Cozijnsen, Anton; Collins, Nicholas; Li, Jessica; Davey, Gayle M; Kato, Yu; Devi, Sapna; Skandari, Roghieh; Pauley, Michael; Manton, Jonathan H; Godfrey, Dale I; Braun, Asolina; Tay, Szun Szun; Tan, Peck Szee; Bowen, David G; Koch-Nolte, Friedrich; Rissiek, Björn; Carbone, Francis R; Crabb, Brendan S; Lahoud, Mireille; Cockburn, Ian A; Mueller, Scott N; Bertolino, Patrick; McFadden, Geoffrey I; Caminschi, Irina; Heath, William R

    2016-10-18

    In recent years, various intervention strategies have reduced malaria morbidity and mortality, but further improvements probably depend upon development of a broadly protective vaccine. To better understand immune requirement for protection, we examined liver-stage immunity after vaccination with irradiated sporozoites, an effective though logistically difficult vaccine. We identified a population of memory CD8 + T cells that expressed the gene signature of tissue-resident memory T (Trm) cells and remained permanently within the liver, where they patrolled the sinusoids. Exploring the requirements for liver Trm cell induction, we showed that by combining dendritic cell-targeted priming with liver inflammation and antigen recognition on hepatocytes, high frequencies of Trm cells could be induced and these cells were essential for protection against malaria sporozoite challenge. Our study highlights the immune potential of liver Trm cells and provides approaches for their selective transfer, expansion, or depletion, which may be harnessed to control liver infections or autoimmunity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. T Cell Zone Resident Macrophages Silently Dispose of Apoptotic Cells in the Lymph Node.

    Science.gov (United States)

    Baratin, Myriam; Simon, Léa; Jorquera, Audrey; Ghigo, Clément; Dembele, Doulaye; Nowak, Jonathan; Gentek, Rebecca; Wienert, Stephan; Klauschen, Frederick; Malissen, Bernard; Dalod, Marc; Bajénoff, Marc

    2017-08-15

    In lymph nodes (LNs), dendritic cells (DCs) are thought to dispose of apoptotic cells, a function pertaining to macrophages in other tissues. We found that a population of CX3CR1 + MERTK + cells located in the T cell zone of LNs, previously identified as DCs, are efferocytic macrophages. Lineage-tracing experiments and shield chimeras indicated that these T zone macrophages (TZM) are long-lived macrophages seeded in utero and slowly replaced by blood monocytes after birth. Imaging the LNs of mice in which TZM and DCs express different fluorescent proteins revealed that TZM-and not DCs-act as the only professional scavengers, clearing apoptotic cells in the LN T cell zone in a CX3CR1-dependent manner. Furthermore, similar to other macrophages, TZM appear inefficient in priming CD4 T cells. Thus, efferocytosis and T cell activation in the LN are uncoupled processes designated to macrophages and DCs, respectively, with implications to the maintenance of immune homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Toll-like receptor 3-activated macrophages confer anti-HCV activity to hepatocytes through exosomes

    OpenAIRE

    Zhou, Yu; Wang, Xu; Sun, Li; Zhou, Li; Ma, Tong-Cui; Song, Li; Wu, Jian-Guo; Li, Jie-Liang; Ho, Wen-Zhe

    2016-01-01

    Exosomes are a class of cell-released small vesicles that mediate intercellular communication by delivering functional factors to recipient cells. During hepatitis C virus (HCV) infection, the interaction between liver resident macrophages and hepatocytes is a key component in liver innate immunity. In this study, we explored the role of exosomes in the delivery of innate anti-HCV factors to hepatocytes from macrophages. We showed that supernatant from TLR3-activated macrophage cultures could...

  11. Tiaozhi Tongmai Granules reduce atherogenesis and promote the expression of ATP-binding cassette transporter A1 in rabbit atherosclerotic plaque macrophages and the liver

    Directory of Open Access Journals (Sweden)

    Qing Sun

    2014-07-01

    Conclusions: Tiaozhi Tongmai Granules appear to have an anti-atherogenic effect that is most likely mediated by simultaneously upregulating the protein expression of ABCA1 in rabbit atherosclerotic plaque macrophages and in the liver.

  12. Macrophage colony-stimulating factor (CSF1) controls monocyte production and maturation and the steady-state size of the liver in pigs.

    Science.gov (United States)

    Sauter, Kristin A; Waddell, Lindsey A; Lisowski, Zofia M; Young, Rachel; Lefevre, Lucas; Davis, Gemma M; Clohisey, Sara M; McCulloch, Mary; Magowan, Elizabeth; Mabbott, Neil A; Summers, Kim M; Hume, David A

    2016-09-01

    Macrophage colony-stimulating factor (CSF1) is an essential growth and differentiation factor for cells of the macrophage lineage. To explore the role of CSF1 in steady-state control of monocyte production and differentiation and tissue repair, we previously developed a bioactive protein with a longer half-life in circulation by fusing pig CSF1 with the Fc region of pig IgG1a. CSF1-Fc administration to pigs expanded progenitor pools in the marrow and selectively increased monocyte numbers and their expression of the maturation marker CD163. There was a rapid increase in the size of the liver, and extensive proliferation of hepatocytes associated with increased macrophage infiltration. Despite the large influx of macrophages, there was no evidence of liver injury and no increase in circulating liver enzymes. Microarray expression profiling of livers identified increased expression of macrophage markers, i.e., cytokines such as TNF, IL1, and IL6 known to influence hepatocyte proliferation, alongside cell cycle genes. The analysis also revealed selective enrichment of genes associated with portal, as opposed to centrilobular regions, as seen in hepatic regeneration. Combined with earlier data from the mouse, this study supports the existence of a CSF1-dependent feedback loop, linking macrophages of the liver with bone marrow and blood monocytes, to mediate homeostatic control of the size of the liver. The results also provide evidence of safety and efficacy for possible clinical applications of CSF1-Fc. Copyright © 2016 the American Physiological Society.

  13. Alternate radiolabeled markers for detecting metabolic activity of Mycobacterium leprae residing in murine macrophages

    International Nuclear Information System (INIS)

    Prasad, H.K.; Hastings, R.C.

    1985-01-01

    This study demonstrated the utility of using 4% NaOH as a murine macrophage cell-solubilizing agent to discriminate between host macrophage metabolism and that of intracellular Mycobacterium leprae. A 4% concentration of NaOH had no deleterious effect on labeled mycobacteria. Thereby, alternate radiolabeled indicators of the metabolic activity of intracellular M. leprae could be experimented with. Significant incorporation of 14 C-amino acid mixture, [ 14 C]leucine, [ 14 C]uridine, and carrier-free 32 P was observed in cultures containing freshly extracted (''live'') strains of M. leprae as compared with control cultures containing autoclaved bacilli

  14. Thromboxane A{sub 2} receptor signaling promotes liver tissue repair after toxic injury through the enhancement of macrophage recruitment

    Energy Technology Data Exchange (ETDEWEB)

    Minamino, Tsutomu [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Ito, Yoshiya [Departments of Surgery, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Ohkubo, Hirotoki [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Departments of Surgery, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Hosono, Kanako; Suzuki, Tatsunori [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Sato, Takehito [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Ae, Takako; Shibuya, Akitaka [Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Sakagami, Hiroyuki [Departments of Anatomy, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Narumiya, Shuh [Department of Pharmacology, Kyoto University School of Medicine, Kyoto, 606-8315 (Japan); Koizumi, Wasaburo [Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Majima, Masataka, E-mail: mmajima@med.kitasato-u.ac.jp [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan)

    2012-02-15

    It is thought that thromboxane A{sub 2} (TxA{sub 2}) contributes to the progression of inflammation during acute hepatic injury; however, it is still unknown whether TxA{sub 2} is involved in liver repair. The objective of the present study was to examine the role of TxA{sub 2} receptor (TP) signaling in liver injury and repair in response to toxic injury. Carbon tetrachloride (CCl{sub 4}) was used to induce liver injury in TP knockout (TP{sup −/−}) mice and wild-type (WT) mice. In WT mice, serum levels of alanine aminotransferase (ALT) and the size of the necrotic area peaked at 24 and 48 h, respectively, and then declined. In TP{sup −/−} mice, the changes in ALT levels were similar to WT mice, but liver regeneration was impaired as evidenced by remained elevated levels of hepatic necrosis and by delayed hepatocyte proliferation, which was associated with the reduced expression of growth factors including interleukin-6 (IL-6), tumor necrosis factor alpha (TNFα), and hepatocyte growth factor (HGF). In TP{sup −/−} mice, the accumulation of hepatic CD11b{sup +}/F4/80{sup +} macrophages in injured livers was attenuated, and the hepatic expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and its receptor, the C―C chemokine receptor (CCR2), was reduced compared to WT. Additionally, the application of the TP receptor agonist, U-46619, enhanced the expression of MCP-1/CCL2 and CCR2 in peritoneal macrophages, which was associated with increased levels of IL-6, TNFα and HGF. These results suggested that TP receptor signaling facilitates liver recovery following CCl{sub 4}-induced hepatotoxicity by affecting the expression of hepatotrophic growth factors, and through the recruitment of macrophages mediated by MCP-1/CCL2-CCR2 expression. -- Highlights: ► TP enhances liver regeneration by CCl{sub 4}. ► TP accumulates macrophages. ► TP up-regulates MCP-1.

  15. Resident microglia, and not peripheral macrophages, are the main source of brain tumor mononuclear cells.

    Science.gov (United States)

    Müller, Annett; Brandenburg, Susan; Turkowski, Kati; Müller, Susanne; Vajkoczy, Peter

    2015-07-15

    Gliomas consist of multiple cell types, including an abundant number of microglia and macrophages, whereby their impact on tumor progression is controversially discussed. To understand their unique functions and consequently manipulate either microglia or macrophages in therapeutic approaches, it is essential to discriminate between both cell populations. Because of the lack of specific markers, generally total body irradiated chimeras with labeled bone marrow cells were used to identify infiltrated cells within the brain. However, total body irradiation (TBI) affects the blood-brain barrier integrity, which in turn potentially facilitates immune cell infiltration. In this study, changes on the blood-brain barrier were avoided using head-protected irradiation (HPI). Head protection and total body irradiated chimeras exhibited similar reconstitution levels of the myeloid cell lineage in the blood, enabling the comparable analyses of brain infiltrates. We demonstrate that the HPI model impeded a massive unspecific influx of donor-derived myeloid cells into naive as well as tumor-bearing brains. Moreover, experimental artifacts such as an enlarged distribution of infiltrated cells and fourfold increased tumor volumes are prevented in head-protected chimeras. In addition, our data evidenced for the first time that microglia are able to up-regulate CD45 and represent an inherent part of the CD45(high) population in the tumor context. All in all, HPI allowed for the unequivocal distinction between microglia and macrophages without alterations of tumor biology and consequently permits a detailed and realistic description of the myeloid cell composition in gliomas. © 2014 UICC.

  16. The elusive antifibrotic macrophage

    Directory of Open Access Journals (Sweden)

    Adhyatmika eAdhyatmika

    2015-11-01

    Full Text Available Fibrotic diseases, especially of the liver, the cardiovascular system, the kidneys, and the lungs account for approximately 45% of deaths in Western societies. Fibrosis is a serious complication associated with aging and/or chronic inflammation or injury and cannot be treated effectively yet. It is characterized by excessive deposition of extracellular matrix (ECM proteins by myofibroblasts and impaired degradation by macrophages. This ultimately destroys the normal structure of an organ, which leads to loss of function. Most efforts to develop drugs have focused on inhibiting ECM production by myofibroblasts and have not yielded many effective drugs yet. Another option is to stimulate the cells that are responsible for degradation and uptake of excess ECM, i.e. antifibrotic macrophages. However, macrophages are plastic cells that have many faces in fibrosis, including profibrotic behaviour stimulating ECM production. This can be dependent on their origin, as the different organs have tissue-resident macrophages with different origins and a various influx of incoming monocytes in steady-state conditions and during fibrosis. To be able to pharmacologically stimulate the right kind of behaviour in fibrosis, a thorough characterization of antifibrotic macrophages is necessary, as well as an understanding of the signals they need to degrade ECM. In this review we will summarize the current state of the art regarding the antifibrotic macrophage phenotype and the signals that stimulate its behaviour.

  17. Modulation of functional characteristics of resident and thioglycollate-elicited peritoneal murine macrophages by a recombinant banana lectin.

    Directory of Open Access Journals (Sweden)

    Emilija Marinkovic

    Full Text Available We demonstrated that a recombinant banana lectin (rBanLec, which structural characteristics and physiological impacts highly resemble those reported for its natural counterparts, binds murine peritoneal macrophages and specifically modulates their functional characteristics. By using rBanLec in concentrations ranging from 1 μg to 10 μg to stimulate resident (RMs and thioglycollate-elicited (TGMs peritoneal macrophages from BALB/c and C57BL/6 mice, we have shown that effects of rBanLec stimulation depend on its concentration but also on the functional status of macrophages and their genetic background. rBanLec, in a positive dose-dependent manner, promotes the proliferation of TGMs from both BALB/c and C57BL/6 mice, while its mitogenic influence on RMs is significantly lower (BALB/c mice or not detectable (C57BL/6 mice. In all peritoneal macrophages, irrespective of their type and genetic background, rBanLec, in a positive dose dependent manner, enhances the secretion of IL-10. rBanLec stimulation of RMs from both BALB/c and C57BL/6 resulted in a positive dose-dependent promotion of proinflammatory phenotype (enhancement of NO production and IL-12 and TNFα secretion, reduction of arginase activity. Positive dose-dependent skewing toward proinflammatory phenotype was also observed in TGMs from C57BL/6 mice. However, the enhancement of rBanLec stimulation promotes skewing of TGMs from BALB/c mice towards anti-inflammatory profile (reduction of NO production and IL-12 secretion, enhancement of arginase activity and TGFβ and IL-4 secretion. Moreover, we established that rBanLec binds oligosaccharide structures of TLR2 and CD14 and that blocking of signaling via these receptors significantly impairs the production of TNFα and NO in BALB/c macrophages. Since the outcome of rBanLec stimulation depends on rBanLec concentration as well as on the functional characteristics of its target cells and their genetic background, further studies are needed to

  18. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1

    Science.gov (United States)

    Ruckerl, Dominik; Thomas, Graham D.; Hewitson, James P.; Duncan, Sheelagh; Brombacher, Frank; Maizels, Rick M.; Hume, David A.; Allen, Judith E.

    2013-01-01

    Macrophages (MΦs) colonize tissues during inflammation in two distinct ways: recruitment of monocyte precursors and proliferation of resident cells. We recently revealed a major role for IL-4 in the proliferative expansion of resident MΦs during a Th2-biased tissue nematode infection. We now show that proliferation of MΦs during intestinal as well as tissue nematode infection is restricted to sites of IL-4 production and requires MΦ-intrinsic IL-4R signaling. However, both IL-4Rα–dependent and –independent mechanisms contributed to MΦ proliferation during nematode infections. IL-4R–independent proliferation was controlled by a rise in local CSF-1 levels, but IL-4Rα expression conferred a competitive advantage with higher and more sustained proliferation and increased accumulation of IL-4Rα+ compared with IL-4Rα− cells. Mechanistically, this occurred by conversion of IL-4Rα+ MΦs from a CSF-1–dependent to –independent program of proliferation. Thus, IL-4 increases the relative density of tissue MΦs by overcoming the constraints mediated by the availability of CSF-1. Finally, although both elevated CSF1R and IL-4Rα signaling triggered proliferation above homeostatic levels, only CSF-1 led to the recruitment of monocytes and neutrophils. Thus, the IL-4 pathway of proliferation may have developed as an alternative to CSF-1 to increase resident MΦ numbers without coincident monocyte recruitment. PMID:24101381

  19. Cre/lox Studies Identify Resident Macrophages as the Major Source of Circulating Coagulation Factor XIII-A.

    Science.gov (United States)

    Beckers, Cora M L; Simpson, Kingsley R; Griffin, Kathryn J; Brown, Jane M; Cheah, Lih T; Smith, Kerrie A; Vacher, Jean; Cordell, Paul A; Kearney, Mark T; Grant, Peter J; Pease, Richard J

    2017-08-01

    To establish the cellular source of plasma factor (F)XIII-A. A novel mouse floxed for the F13a1 gene, FXIII-A flox/flox (Flox), was crossed with myeloid- and platelet-cre-expressing mice, and cellular FXIII-A mRNA expression and plasma and platelet FXIII-A levels were measured. The platelet factor 4-cre.Flox cross abolished platelet FXIII-A and reduced plasma FXIII-A to 23±3% ( P cre on plasma FXIII-A was exerted outside of the megakaryocyte lineage because plasma FXIII-A was not reduced in the Mpl -/- mouse, despite marked thrombocytopenia. In support of this, platelet factor 4-cre depleted FXIII-A mRNA in brain, aorta, and heart of floxed mice, where FXIII-A pos cells were identified as macrophages as they costained with CD163. In the integrin αM-cre.Flox and the double copy lysozyme 2-cre.cre.Flox crosses, plasma FXIII-A was reduced to, respectively, 75±5% ( P =0.003) and 30±7% ( P <0.001), with no change in FXIII-A content per platelet, further consistent with a macrophage origin of plasma FXIII-A. The change in plasma FXIII-A levels across the various mouse genotypes mirrored the change in FXIII-A mRNA expression in aorta. Bone marrow transplantation of FXIII-A +/+ bone marrow into FXIII-A -/- mice both restored plasma FXIII-A to normal levels and replaced aortic and cardiac FXIII-A mRNA, while its transplantation into FXIII-A +/+ mice did not increase plasma FXIII-A levels, suggesting that a limited population of niches exists that support FXIII-A-releasing cells. This work suggests that resident macrophages maintain plasma FXIII-A and exclude the platelet lineage as a major contributor. © 2017 The Authors.

  20. In vivo transfer of intracellular labels from locally implanted bone marrow stromal cells to resident tissue macrophages.

    Directory of Open Access Journals (Sweden)

    Edyta Pawelczyk

    Full Text Available Intracellular labels such as dextran coated superparamagnetic iron oxide nanoparticles (SPION, bromodeoxyuridine (BrdU or green fluorescent protein (GFP are frequently used to study the fate of transplanted cells by in vivo magnetic resonance imaging or fluorescent microscopy. Bystander uptake of labeled cells by resident tissue macrophages (TM can confound the interpretation of the presence of intracellular labels especially during direct implantation of cells, which can result in more than 70% cell death. In this study we determined the percentages of TM that took up SPION, BrdU or GFP from labeled bone marrow stromal cells (BMSCs that were placed into areas of angiogenesis and inflammation in a mouse model known as Matrigel plaque perfusion assay. Cells recovered from digested plaques at various time points were analyzed by fluorescence microscopy and flow cytometry. The analysis of harvested plaques revealed 5% of BrdU(+, 5-10% of GFP(+ and 5-15% of dextran(+ macrophages. The transfer of the label was not dependent on cell dose or viability. Collectively, this study suggests that care should be taken to validate donor origin of cells using an independent marker by histology and to assess transplanted cells for TM markers prior to drawing conclusions about the in vivo behavior of transplanted cells.

  1. The combined effect of erythropoietin and granulocyte macrophage colony stimulating factor on liver regeneration after major hepatectomy in rats

    Directory of Open Access Journals (Sweden)

    Frangou Matrona

    2010-07-01

    Full Text Available Abstract Background The liver presents a remarkable capacity for regeneration after hepatectomy but the exact mechanisms and mediators involved are not yet fully clarified. Erythropoietin (EPO and Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF have been shown to promote liver regeneration after major hepatectomy. Aim of this experimental study is to compare the impact of exogenous administration of EPO, GM-CSF, as well as their combination on the promotion of liver regeneration after major hepatectomy. Methods Wistar rats were submitted to 70% major hepatectomy. The animals were assigned to 4 experimental groups: a control group (n = 21 that received normal saline, an EPO group (n = 21, that received EPO 500 IU/kg, a GM-CSF group (n = 21 that received 20 mcg/kg of GM-CSF and a EPO+GMCSF group (n = 21 which received a combination of the above. Seven animals of each group were killed on the 1st, 3rd and 7th postoperative day and their remnant liver was removed to evaluate liver regeneration by immunochemistry for PCNA and Ki 67. Results Our data suggest that EPO and GM-CSF increases liver regeneration following major hepatectomy when administered perioperatively. EPO has a more significant effect than GM-CSF (p Conclusion EPO, GM-CSF and their combination enhance liver regeneration after hepatectomy in rats when administered perioperatively. However their combination has a weaker effect on liver regeneration compared to EPO alone. Further investigation is needed to assess the exact mechanisms that mediate this finding.

  2. DMPD: Pathophysiological roles of interleukin-18 in inflammatory liver diseases. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10807517 Pathophysiological roles of interleukin-18 in inflammatory liver diseases....l) Show Pathophysiological roles of interleukin-18 in inflammatory liver diseases. PubmedID 10807517 Title Pathophysiological roles

  3. Pharmacological inhibition of the chemokine CXCL16 diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury.

    Directory of Open Access Journals (Sweden)

    Alexander Wehr

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is a major cause of morbidity and mortality in developed countries, resulting in steatohepatitis (NASH, fibrosis and eventually cirrhosis. Modulating inflammatory mediators such as chemokines may represent a novel therapeutic strategy for NAFLD. We recently demonstrated that the chemokine receptor CXCR6 promotes hepatic NKT cell accumulation, thereby controlling inflammation in experimental NAFLD. In this study, we first investigated human biopsies (n = 20, confirming that accumulation of inflammatory cells such as macrophages is a hallmark of progressive NAFLD. Moreover, CXCR6 gene expression correlated with the inflammatory activity (ALT levels in human NAFLD. We then tested the hypothesis that pharmacological inhibition of CXCL16 might hold therapeutic potential in NAFLD, using mouse models of acute carbon tetrachloride (CCl4- and chronic methionine-choline-deficient (MCD diet-induced hepatic injury. Neutralizing CXCL16 by i.p. injection of anti-CXCL16 antibody inhibited the early intrahepatic NKT cell accumulation upon acute toxic injury in vivo. Weekly therapeutic anti-CXCL16 administrations during the last 3 weeks of 6 weeks MCD diet significantly decreased the infiltration of inflammatory macrophages into the liver and intrahepatic levels of inflammatory cytokines like TNF or MCP-1. Importantly, anti-CXCL16 treatment significantly reduced fatty liver degeneration upon MCD diet, as assessed by hepatic triglyceride levels, histological steatosis scoring and quantification of lipid droplets. Moreover, injured hepatocytes up-regulated CXCL16 expression, indicating that scavenging functions of CXCL16 might be additionally involved in the pathogenesis of NAFLD. Targeting CXCL16 might therefore represent a promising novel therapeutic approach for liver inflammation and steatohepatitis.

  4. Impact of rural residence and health system structure on quality of liver care.

    Directory of Open Access Journals (Sweden)

    Catherine Rongey

    Full Text Available Specialist physician concentration in urban areas can affect access and quality of care for rural patients. As effective drug treatment for hepatitis C (HCV becomes increasingly available, the extent to which rural patients needing HCV specialists face access or quality deficits is unknown. We sought to determine the influence of rural residency on access to HCV specialists and quality of liver care.The study used a national cohort of 151,965 Veterans Health Administration (VHA patients with HCV starting in 2005 and followed to 2009. The VHA's constant national benefit structure reduces the impact of insurance as an explanation for observed disparities. Multivariate cox proportion regression models for each quality indicator were performed.Thirty percent of VHA patients with HCV reside in rural and highly rural areas. Compared to urban residents, highly rural (HR 0.70, CI 0.65-0.75 and rural (HR 0.96, CI 0.94-0.97 residents were significantly less likely to access HCV specialty care. The quality indicators were more mixed. While rural residents were less likely to receive HIV screening, there were no significant differences in hepatitis vaccinations, endoscopic variceal and hepatocellular carcinoma screening between the geographic subgroups. Of note, highly rural (HR 1.31, CI 1.14-1.50 and rural residents (HR 1.06, CI 1.02-1.10 were more likely to receive HCV therapy. Of those treated for HCV, a third received therapy from a non-specialist provider.Rural patients have less access to HCV specialists, but this does not necessarily translate to quality deficits. The VHA's efforts to improve specialty care access, rural patient behavior and decentralization of HCV therapy beyond specialty providers may explain this contradiction. Lessons learned within the VHA are critical for US healthcare systems restructuring into accountable care organizations that acquire features of integrated systems.

  5. Altered Polarization, Morphology, and Impaired Innate Immunity Germane to Resident Peritoneal Macrophages in Mice with Long-Term Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Hui-Fang Liu

    2012-01-01

    Full Text Available Type 2 diabetes (T2D is associated with perturbed innate immunity. Macrophages, bridging innate immunity and metabolic disturbances, play important roles in controlling immune homeostasis. However, the effect of long-term diabetic milieu (DM on the functions and phenotypes of macrophages is still not clear. In this study, we used resident peritoneal macrophages (RPMs from 5-month-old db/db mice to investigate the changes of macrophages. It was found that RPMs in db/db mice significantly reduced phagocytosis and adhesion capacity. After standardization with body weight, the number of F4/80+ RPMs markedly reduced in db/db mice, and, furthermore, the macrophages skewed to M2-polarizated macrophages. The results of morphology found that the RPMs shape of db/db mice was nearly round, but the RPMs shape of control mice was spindle-shaped and irregular. In this study, we found the cell numbers, morphology, and innate immunity functions of RPMs in 5-month-old type 2 diabetic mice (db/db mice obtained by abdominal cavity lavage were significantly altered. Importantly, we also found the remarkably increased M2-RPMs in diabetic mice for the first time.

  6. Glycoprotein Nonmetastatic Melanoma B (Gpnmb-Positive Macrophages Contribute to the Balance between Fibrosis and Fibrolysis during the Repair of Acute Liver Injury in Mice.

    Directory of Open Access Journals (Sweden)

    Kotaro Kumagai

    Full Text Available Glycoprotein nonmetastatic melanoma B (Gpnmb, a transmembrane glycoprotein that is expressed in macrophages, negatively regulates inflammation. We have reported that Gpnmb is strongly expressed in the livers of rats fed a choline-deficient, L-amino acid-defined (CDAA diet. However, the role of macrophage-expressed Gpnmb in liver injury is still unknown. This study aimed to clarify the characteristics of infiltrating macrophages that express Gpnmb, and the involvement of Gpnmb in the repair process in response to liver injury.C57BL/6J, DBA/2J [DBA] and DBA/2J-Gpnmb+ [DBA-g+] mice were treated with a single intraperitoneal injection of carbon tetrachloride (CCl4 at a dose of 1.0 mL/kg body weight. Mice were sacrificed at predetermined time points, followed by measurement of serum alanine aminotransferase (ALT levels and histological examination. Expression of Gpnmb, pro-/anti-inflammatory cytokines, and profibrotic/antifibrotic factors were examined by quantitative RT-PCR and/or Western blotting. Immunohistochemistry, fluorescent immunostaining and flow cytometry were used to determine the expression of Gpnmb, CD68, CD11b and α-SMA, phagocytic activity, and the presence of apoptotic bodies. We used quantitative RT-PCR and ELISA to examine TGF-β and MMP-13 expression and the concentrations and supernatants of isolated infiltrating hepatic macrophages transfected with siGpnmb.In C57BL/6J mice, serum ALT levels increased at two days after CCl4 injection and decreased at four days. Gpnmb expression in the liver was stimulated four days after CCl4 injection. Histological examination and flow cytometry showed that Gpnmb-positive cells were almost positive for CD68-positive macrophages, contained engulfed apoptotic bodies and exhibited enhanced phagocytic activity. Isolated infiltrating hepatic macrophages transfected with siGpnmb showed high MMP-13 secretion. There was no significant difference in the magnitude of CCl4-induced liver injury between DBA

  7. Distinct Hepatic Macrophage Populations in Lean and Obese Mice.

    Science.gov (United States)

    Mayoral Monibas, Rafael; Johnson, Andrew M F; Osborn, Olivia; Traves, Paqui G; Mahata, Sushil K

    2016-01-01

    Obesity is a complex metabolic disorder associated with the development of non-communicable diseases such as cirrhosis, non-alcoholic fatty liver disease, and type 2 diabetes. In humans and rodents, obesity promotes hepatic steatosis and inflammation, which leads to increased production of pro-inflammatory cytokines and acute-phase proteins. Liver macrophages (resident as well as recruited) play a significant role in hepatic inflammation and insulin resistance (IR). Interestingly, depletion of hepatic macrophages protects against the development of high-fat-induced steatosis, inflammation, and IR. Kupffer cells (KCs), liver-resident macrophages, are the first-line defense against invading pathogens, clear toxic or immunogenic molecules, and help to maintain the liver in a tolerogenic immune environment. During high fat diet feeding and steatosis, there is an increased number of recruited hepatic macrophages (RHMs) in the liver and activation of KCs to a more inflammatory or M1 state. In this review, we will focus on the role of liver macrophages (KCs and RHMs) during obesity.

  8. Distinct macrophage populations in lean and obese mice

    Directory of Open Access Journals (Sweden)

    Rafael Mayoral Monibas

    2016-12-01

    Full Text Available Obesity is a complex metabolic disorder associated with the development of non-communicable diseases such as cirrhosis, nonalcoholic fatty liver disease (NAFLD and type 2 diabetes (T2D. In humans and rodents, obesity promotes hepatic steatosis and inflammation, which leads to increased production of pro-inflammatory cytokines and acute-phase proteins. Liver macrophages (resident as well as recruited play a significant role in hepatic inflammation and insulin resistance (IR. Interestingly, depletion of hepatic macrophages protects against the development of high-fat-induced steatosis, inflammation and IR. Kupffer cells (KCs, liver resident macrophages, are the first-line defense against invading pathogens, clear toxic or immunogenic molecules and help to maintain the liver in a tolerogenic immune environment. During high fat diet (HFD feeding and steatosis, there is an increased number of recruited hepatic macrophages (RHMs in the liver and activation of KCs to a more inflammatory or M1 state. In this review we will focus on the role of liver macrophages (KCs and RHMs during obesity.

  9. Polyinosinic Acid Blocks Adeno-Associated Virus Macrophage Endocytosis In Vitro and Enhances Adeno-Associated Virus Liver-Directed Gene Therapy In Vivo

    NARCIS (Netherlands)

    van Dijk, Remco; Montenegro-Miranda, Paula S.; Riviere, Christel; Schilderink, Ronald; ten Bloemendaal, Lysbeth; van Gorp, Jacqueline; Duijst, Suzanne; de Waart, Dirk R.; Beuers, Ulrich; Haisma, Hidde J.; Bosma, Piter J.

    2013-01-01

    Adeno-associated virus serotype 8 (AAV8) has been demonstrated to be effective for liver-directed gene therapy in humans. Although hepatocytes are the main target cell for AAV8, there is a loss of the viral vector because of uptake by macrophages and Kupffer cells. Reducing this loss would increase

  10. Interleukin-10 increases reverse cholesterol transport in macrophages through its bidirectional interaction with liver X receptor α

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Bente, E-mail: Bente.Halvorsen@rr-research.no [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo (Norway); Holm, Sverre [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Yndestad, Arne [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo (Norway); Scholz, Hanne [Section for Transplantation, Institute for Surgical Research, Oslo University Hospital Rikshospitalet, Oslo (Norway); Sagen, Ellen Lund [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Nebb, Hilde [Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); Holven, Kirsten B. [Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo (Norway); Dahl, Tuva B. [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); Aukrust, Pål [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo (Norway)

    2014-08-08

    Highlights: • IL-10 promotes reverse cholesterol efflux from lipid loaded macrophages. • IL-10 increases the expression of ABCA-1 and ABCG-1. • IL-10 exhibits cross-talk with the nuclear receptor LXRα. - Abstract: Interleukin (IL)-10 is a prototypical anti-inflammatory cytokine that has been shown to attenuate atherosclerosis development. In addition to its anti-inflammatory properties, the anti-atherogenic effect of IL-10 has recently also been suggested to reflect a complex effect of IL-10 on lipid metabolism in macrophages. In the present study we examined the effects of IL-10 on cholesterol efflux mechanism in lipid-loaded THP-1 macrophages. Our main findings were: (i) IL-10 significantly enhanced cholesterol efflux induced by fetal-calf serum, high-density lipoprotein (HDL){sub 2} and apolipoprotein A-1. (ii) The IL-10-mediated effects on cholesterol efflux were accompanied by an increased IL-10-mediated expression of the ATP-binding cassette transporters ABCA1 and ABCG1, that was further enhanced when the cells were co-activated with the liver X receptor (LXR)α agonist (22R)-hydroxycholesterol. (iii) The effect of LXRα activation on the IL-10-mediated effects on the ATP-binding cassette transporters seems to include enhancing effects on the IL-10 receptor 1 (IL10R1) expression and interaction with STAT-3 signaling. (iv) These enhancing effects on ABCA1 and ABCG1 was not seen when the cells were stimulated with the IL-10 family members IL-22 and IL-24. This study suggests that the anti-atherogenic properties of IL-10 may include enhancing effects on cholesterol efflux mechanism that involves cross-talk with LXRα activation.

  11. Interleukin-10 increases reverse cholesterol transport in macrophages through its bidirectional interaction with liver X receptor α

    International Nuclear Information System (INIS)

    Halvorsen, Bente; Holm, Sverre; Yndestad, Arne; Scholz, Hanne; Sagen, Ellen Lund; Nebb, Hilde; Holven, Kirsten B.; Dahl, Tuva B.; Aukrust, Pål

    2014-01-01

    Highlights: • IL-10 promotes reverse cholesterol efflux from lipid loaded macrophages. • IL-10 increases the expression of ABCA-1 and ABCG-1. • IL-10 exhibits cross-talk with the nuclear receptor LXRα. - Abstract: Interleukin (IL)-10 is a prototypical anti-inflammatory cytokine that has been shown to attenuate atherosclerosis development. In addition to its anti-inflammatory properties, the anti-atherogenic effect of IL-10 has recently also been suggested to reflect a complex effect of IL-10 on lipid metabolism in macrophages. In the present study we examined the effects of IL-10 on cholesterol efflux mechanism in lipid-loaded THP-1 macrophages. Our main findings were: (i) IL-10 significantly enhanced cholesterol efflux induced by fetal-calf serum, high-density lipoprotein (HDL) 2 and apolipoprotein A-1. (ii) The IL-10-mediated effects on cholesterol efflux were accompanied by an increased IL-10-mediated expression of the ATP-binding cassette transporters ABCA1 and ABCG1, that was further enhanced when the cells were co-activated with the liver X receptor (LXR)α agonist (22R)-hydroxycholesterol. (iii) The effect of LXRα activation on the IL-10-mediated effects on the ATP-binding cassette transporters seems to include enhancing effects on the IL-10 receptor 1 (IL10R1) expression and interaction with STAT-3 signaling. (iv) These enhancing effects on ABCA1 and ABCG1 was not seen when the cells were stimulated with the IL-10 family members IL-22 and IL-24. This study suggests that the anti-atherogenic properties of IL-10 may include enhancing effects on cholesterol efflux mechanism that involves cross-talk with LXRα activation

  12. Macrophage Polarization in Obesity and Type 2 Diabetes: Weighing Down our Understanding of Macrophage Function?

    Directory of Open Access Journals (Sweden)

    Michael James Kraakman

    2014-09-01

    Full Text Available Obesity and type 2 diabetes are now recognized as chronic pro-inflammatory diseases. In the last decade, the role of the macrophage in particular has become increasingly implicated in their pathogenesis. Abundant literature now establishes that monocytes get recruited to peripheral tissues (ie pancreas, liver and adipose tissue to become resident macrophages and contribute to local inflammation, development of insulin resistance or even pancreatic dysfunction. Furthermore, an accumulation of evidence has established an important role for macrophage polarisation in the development of metabolic diseases. The general view in obesity is that there is an imbalance in the ratio of M1/M2 macrophages, with M1 pro-inflammatory macrophages being enhanced compared with M2 anti-inflammatory macrophages being down-regulated, leading to chronic inflammation and the propagation of metabolic dysfunction. However, there is emerging evidence revealing a more complex scenario with the spectrum of macrophage states exceeding well beyond the M1/M2 binary classification and confused further by human and animal models exhibiting different macrophage profiles. In this review we will discuss the recent findings regarding macrophage polarization in obesity and type 2 diabetes.

  13. Toxicological Profiling of Metal Oxide Nanoparticles in Liver Context Reveals Pyroptosis in Kupffer Cells and Macrophages versus Apoptosis in Hepatocytes.

    Science.gov (United States)

    Mirshafiee, Vahid; Sun, Bingbing; Chang, Chong Hyun; Liao, Yu-Pei; Jiang, Wen; Jiang, Jinhong; Liu, Xiangsheng; Wang, Xiang; Xia, Tian; Nel, André E

    2018-03-19

    The liver and the mononuclear phagocyte system are a frequent target for engineered nanomaterials, either as a result of particle uptake and spread from primary exposure sites or systemic administration of therapeutic and imaging nanoparticles. In this study, we performed a comparative analysis of the toxicological impact of 29 metal oxide nanoparticles (NPs), some commonly used in consumer products, in transformed or primary Kupffer cells (KCs) and hepatocytes. We not only observed differences between KCs and hepatocytes, but also differences in the toxicological profiles of transition-metal oxides (TMOs, e. g., Co 3 O 4 ) versus rare-earth oxide (REO) NPs ( e. g., Gd 2 O 3 ). While pro-oxidative TMOs induced the activation of caspases 3 and 7, resulting in apoptotic cell death in both cell types, REOs induced lysosomal damage, NLRP3 inflammasome activation, caspase 1 activation, and pyroptosis in KCs. Pyroptosis was accompanied by cell swelling, membrane blebbing, IL-1β release, and increased membrane permeability, which could be reversed by knockdown of the pore forming protein, gasdermin D. Though similar features were not seen in hepatocytes, the investigation of the cytotoxic effects of REO NPs could also be seen to affect macrophage cell lines such as J774A.1 and RAW 264.7 cells as well as bone marrow-derived macrophages. These phagocytic cell types also demonstrated features of pyroptosis and increased IL-1β production. Collectively, these findings demonstrate important mechanistic considerations that can be used for safety evaluation of metal oxides, including commercial products that are developed from these materials.

  14. Extracellular ATP does not induce P2X7 receptor-dependent responses in cultured renal- and liver-derived swine macrophages

    Directory of Open Access Journals (Sweden)

    Takato Takenouchi

    2014-01-01

    Full Text Available The P2X7 receptor (P2X7R is an ATP-gated cation channel that is abundantly expressed in monocytes/macrophages. P2X7R activation by ATP results in various cellular responses including Ca2+ influx, membrane pore formation, and cytokine secretion. Since P2X7R has low affinity for ATP, high concentrations of ATP (in the mM range are generally required to activate this receptor in vitro. Functional expression of P2X7R has been detected in monocytes/macrophages obtained from different animal species including humans, rodents, dogs, and bovines, but so far it has not been detected in swine (Sus scrofa. In this study, we investigated the expression and functions of P2X7R in swine macrophages, which were isolated from mixed primary cultures of swine kidney or liver tissue. The P2X7R mRNA and protein expression observed in the swine macrophages was comparable to that seen in a c-myc-immortalized mouse kidney-derived clonal macrophage cell line (KM-1. However, extracellular ATP did not induce P2X7R-dependent sustained Ca2+ influx, membrane pore formation, or the secretion of the bioactive cytokine interleukin-1β in the swine macrophages, whereas these responses were clearly observed in the mouse KM-1 cells after stimulation with millimolar concentrations of ATP as a positive control. These findings suggest that the ATP/P2X7R pathway is impaired in swine macrophages at least in the culture conditions used in the present study.

  15. Of macrophages and red blood cells; a complex love story.

    Directory of Open Access Journals (Sweden)

    Djuna Zoe de Back

    2014-01-01

    Full Text Available Macrophages tightly control the production and clearance of red blood cells (RBC. During steady state haematopoiesis, approximately 1010 red blood cells are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.

  16. The Impact of 27-Hydroxycholesterol, a Macrophage-Produced Estrogen Receptor and Liver X Receptor Agonist, on Breast Cancer Pathophysiology

    Science.gov (United States)

    2011-02-01

    manner. Macrophages secrete factors which alter the expression of known ER target genes, and we have confirmed that the products of CYP27A1 action are...macrophages derived from wild type mice ( CYP27A1 +/+) or from mice that lack the capacity to synthesize 27HC ( CYP27A1 -/-). Spent media from these...type macrophages, and to a lesser extent by media from CYP27A1 -/- macrophages (Figure 3). The ER responsive genes BRCA1, Ret, PS2, PR, SDK1, and

  17. Ontogeny and Polarization of Macrophages in Inflammation: Blood monocytes versus tissue macrophages.

    Directory of Open Access Journals (Sweden)

    Adwitia eDey

    2015-01-01

    Full Text Available The explosion of new information in recent years on the origin of macrophages in the steady-state and in the context of inflammation has opened up numerous new avenues of investigation and possibilities for therapeutic intervention. In contrast to the classical model of macrophage development, it is clear that tissue-resident macrophages can develop from yolk sac-derived erythromyeloid progenitors, fetal liver progenitors and bone marrow-derived monocytes. Under both homeostatic conditions and in response to pathophysiological insult, the contribution of these distinct sources of macrophages varies significantly between tissues. Furthermore, while all of these populations of macrophages appear to be capable of adopting the polarized M1/M2 phenotypes, their respective contribution to inflammation, resolution of inflammation and tissue repair remains poorly understood and is likely to be tissue- and disease-dependent. A better understanding of the ontology and polarization capacity of macrophages in homeostasis and disease will be essential for the development of novel therapies that target the inherent plasticity of macrophages in the treatment of acute and chronic inflammatory disease.

  18. Monocytes/Macrophages Upregulate the Hyaluronidase HYAL1 and Adapt Its Subcellular Trafficking to Promote Extracellular Residency upon Differentiation into Osteoclasts.

    Directory of Open Access Journals (Sweden)

    Emeline Puissant

    Full Text Available Osteoclasts are giant bone-resorbing cells originating from monocytes/macrophages. During their differentiation, they overexpress two lysosomal enzymes, cathepsin K and TRAP, which are secreted into the resorption lacuna, an acidified sealed area in contact with bone matrix where bone degradation takes place. Here we report that the acid hydrolase HYAL1, a hyaluronidase able to degrade the glycosaminoglycans hyaluronic acid (HA and chondroitin sulfate, is also upregulated upon osteoclastogenesis. The mRNA expression and protein level of HYAL1 are markedly increased in osteoclasts differentiated from RAW264.7 mouse macrophages or primary mouse bone marrow monocytes compared to these precursor cells. As a result, the HYAL1-mediated HA hydrolysis ability of osteoclasts is strongly enhanced. Using subcellular fractionation, we demonstrate that HYAL1 proteins are sorted to the osteoclast lysosomes even though, in contrast to cathepsin K and TRAP, HYAL1 is poorly mannose 6-phosphorylated. We reported previously that macrophages secrete HYAL1 proforms by constitutive secretion, and that these are recaptured by the cell surface mannose receptor, processed in endosomes and sorted to lysosomes. Present work highlights that osteoclasts secrete HYAL1 in two ways, through lysosomal exocytosis and constitutive secretion, and that these cells promote the extracellular residency of HYAL1 through downregulation of the mannose receptor. Interestingly, the expression of the other main hyaluronidase, HYAL2, and of lysosomal exoglycosidases involved in HA degradation, does not increase similarly to HYAL1 upon osteoclastogenesis. Taken together, these findings point out the predominant involvement of HYAL1 in bone HA metabolism and perhaps bone remodeling via the resorption lacuna.

  19. The macrophage activation marker sCD163 combined with markers of the Enhanced Liver Fibrosis (ELF) score predicts clinically significant portal hypertension in patients with cirrhosis

    DEFF Research Database (Denmark)

    Sandahl, T D; McGrail, R; Møller, H J

    2016-01-01

    analyses improved the AUROC to 0.91 in the estimation cohort and 0.90 in the validation cohort. Furthermore, a high value of the combined score was associated with a high short-term mortality. CONCLUSIONS: The combination of the macrophage activation marker sCD163 and the fibrosis markers predicted......BACKGROUND: Noninvasive identification of significant portal hypertension in patients with cirrhosis is needed in hepatology practice. AIM: To investigate whether the combination of sCD163 as a hepatic inflammation marker and the fibrosis markers of the Enhanced Liver Fibrosis score (ELF) can...

  20. Tissues Use Resident Dendritic Cells and Macrophages to Maintain Homeostasis and to Regain Homeostasis upon Tissue Injury: The Immunoregulatory Role of Changing Tissue Environments

    Directory of Open Access Journals (Sweden)

    Maciej Lech

    2012-01-01

    Full Text Available Most tissues harbor resident mononuclear phagocytes, that is, dendritic cells and macrophages. A classification that sufficiently covers their phenotypic heterogeneity and plasticity during homeostasis and disease does not yet exist because cell culture-based phenotypes often do not match those found in vivo. The plasticity of mononuclear phagocytes becomes obvious during dynamic or complex disease processes. Different data interpretation also originates from different conceptual perspectives. An immune-centric view assumes that a particular priming of phagocytes then causes a particular type of pathology in target tissues, conceptually similar to antigen-specific T-cell priming. A tissue-centric view assumes that changing tissue microenvironments shape the phenotypes of their resident and infiltrating mononuclear phagocytes to fulfill the tissue's need to maintain or regain homeostasis. Here we discuss the latter concept, for example, why different organs host different types of mononuclear phagocytes during homeostasis. We further discuss how injuries alter tissue environments and how this primes mononuclear phagocytes to enforce this particular environment, for example, to support host defense and pathogen clearance, to support the resolution of inflammation, to support epithelial and mesenchymal healing, and to support the resolution of fibrosis to the smallest possible scar. Thus, organ- and disease phase-specific microenvironments determine macrophage and dendritic cell heterogeneity in a temporal and spatial manner, which assures their support to maintain and regain homeostasis in whatever condition. Mononuclear phagocytes contributions to tissue pathologies relate to their central roles in orchestrating all stages of host defense and wound healing, which often become maladaptive processes, especially in sterile and/or diffuse tissue injuries.

  1. An epidemiological survey of prevalence and risk factors for fatty liver disease in adults residing in Yan′an, China

    Directory of Open Access Journals (Sweden)

    QIAO Li′na

    2015-01-01

    Full Text Available ObjectiveTo investigate the prevalence and major risk factors for fatty liver disease among adult residents in Yan’an, Shanxi Province, China.MethodsThe study enrolled healthy adults who had physical examination with complete clinical records in our hospital from February 2011 to March 2013. All participants underwent anthropometric measurement (height, weight, and blood pressure, biochemical and immunological tests (liver and renal function; blood glucose, lipids, and uric acid [UA]; viral markers, and ultrasound examination. Data analysis was performed using the t test, χ2 test, and logistic regression analysis. ResultsA total of 6236 adult residents participated in the survey, who accounted for approximately 3.76/1000 of the total population in Yan’an. There were 3532 males and 2704 females, with a mean age of 49.27±12.93 years. Fatty liver disease was detected with ultrasound examination in 1602 participants (2568%, among whom alcoholic, suspected alcoholic, and nonalcoholic forms accounted for 4.55%, 7.08%, and 88.37%, respectively. The fatty liver group had a significantly higher prevalence of obesity, hypertension, hyperuricemia, higher-than-normal fasting serum glucose (FSG level, diabetes mellitus, and dyslipidemia than the non-fatty-liver group (P<0.001. Multiple regression analysis showed that age, gender (male, drinking, waist circumference, body mass index, high-density lipoprotein cholesterol (HDL-C, low-density lipoprotein cholesterol (LDL-C, triglyceride (TG, UA, FSG, diabetes mellitus, and hypertension were influential factors for fatty liver disease, of which HDL-C was a protective factor. Compared with the normal FSG group, the impaired fasting glycaemia and diabetes groups were at an increased risk for fatty liver disease by 1.584-and 2.638-fold, respectively (P<0.001. The risk increased by1.627-, 1.796-, 9.544-fold, respectively, in the overweight, grade I obesity, and grade Ⅱ obesity groups versus the

  2. Antibody-Directed Glucocorticoid Targeting to CD163 in M2-type Macrophages Attenuates Fructose-Induced Liver Inflammatory Changes

    DEFF Research Database (Denmark)

    Svendsen, Pia; Graversen, Jonas H.; Etzerodt, Anders

    2017-01-01

    Increased consumption of high-caloric carbohydrates contributes substantially to endemic non-alcoholic fatty liver disease in humans, covering a histological spectrum from fatty liver to steatohepatitis. Hypercaloric intake and lipogenetic effects of fructose and endotoxin-driven activation...

  3. Characterisation of cyclooxygenase 1 and 2 expression in mouse resident peritoneal macrophages in vitro; interactions of non steroidal anti-inflammatory drugs with COX2.

    Science.gov (United States)

    Tordjman, C; Coge, F; Andre, N; Rique, H; Spedding, M; Bonnet, J

    1995-05-17

    Resident peritoneal macrophages exposed to inflammatory stimuli (zymosan, lipopolysaccharide (LPS)) represent a widely used model for studying arachidonic acid metabolism and for screening of prostaglandin (PG) synthesis inhibitors. In the present study, cyclooxygenase 1 (COX1) was shown constitutively expressed in mouse adherent and non-adherent macrophages whereas expression of COX2 was observed only in adherent cells, even when cultured in minimal conditions (Ca-, Mg- and serum-free medium). The COX2 expression was amplified by arachidonic acid cascade stimulating agents (Ca, Mg, zymosan) and by LPS in a time-dependant manner; PGE2 by itself amplified LPS-induced COX2 expression. In well-defined experimental conditions of COX2 expression (LPS-stimulated adherent macrophages), we studied specific interactions of some representative anti-inflammatory drugs with COX2 enzymatic activity and expression. By contrast with dexamethasone, which reduced PGE2 release together with a strong reduction of COX2 expression (protein and mRNA), non steroidal anti-inflammatory drugs (NSAIDs) reduced PGE2 synthesis without any effect at the COX2 mRNA level. This reduction of PGE2 production by NSAIDs resulted from either an exclusive enzymatic inhibition (aspirin, NS398, 6-Methoxy naphtyl acetic acid) or an enzymatic inhibition associated with a slight decrease of COX2 protein level (indomethacin). For paracetamol and salicylic acid, two weak inhibitors of COX enzymatic activity, reduction of PGE2 synthesis appeared to be related to reduced level of COX2. These findings show that the macrophage can be used as a cellular model to study specifically COX1 and COX2. In this cell type, COX2 expression is dependent on adhesion, enhanced by stimulation of arachidonic acid metabolism, and auto amplified by PGE2. Furthermore, the results indicate that known NSAIDs differ in their interaction with cyclooxygenase, being able to inhibit either COX2 enzymatic activity, and/or COX2 expression

  4. Macrophage-related serum biomarkers soluble CD163 (sCD163) and soluble mannose receptor (sMR) to differentiate mild liver fibrosis from cirrhosis in patients with chronic hepatitis C

    DEFF Research Database (Denmark)

    Andersen, E S; Rødgaard-Hansen, S; Moessner, B

    2014-01-01

    Macrophages regulate the fibrotic process in chronic liver disease. The aim of the present pilot study was to evaluate two new macrophage-specific serum biomarkers [soluble CD163 (sCD163) and soluble mannose receptor (sMR, sCD206)] as potential fibrosis markers in patients chronically infected...... is shed to serum by the same mechanism as sCD163 (r = 0.40, p macrophage-related markers sCD163 and sMR are significantly higher in patients chronically infected with HCV and with cirrhosis than in those with no/mild fibrosis. sCD163 is a promising new fibrosis marker...

  5. Toll-like receptor 3-activated macrophages confer anti-HCV activity to hepatocytes through exosomes.

    Science.gov (United States)

    Zhou, Yu; Wang, Xu; Sun, Li; Zhou, Li; Ma, Tong-Cui; Song, Li; Wu, Jian-Guo; Li, Jie-Liang; Ho, Wen-Zhe

    2016-12-01

    Exosomes are a class of cell-released small vesicles that mediate intercellular communication by delivering functional factors to recipient cells. During hepatitis C virus (HCV) infection, the interaction between liver resident macrophages and hepatocytes is a key component in liver innate immunity. In this study, we explored the role of exosomes in the delivery of innate anti-HCV factors to hepatocytes from macrophages. We showed that supernatant from TLR3-activated macrophage cultures could efficiently inhibit HCV replication in Huh7 cells. This macrophage-mediated anti-HCV activity was through exosomes because inhibiting exosomes could abrogate the action of macrophages. Further analyses demonstrated that TLR3-activated macrophages release exosomes that contain anti-HCV microRNA (miRNA)-29 family members. Inhibiting miRNA29 could restore HCV replication. These findings suggest a novel antiviral mechanism in liver innate immunity against HCV infection and provide insights to support further studies on developing exosome-based delivery system for disease treatment.-Zhou, Y., Wang, X., Sun, L., Zhou, L., Ma, T.-C., Song, L., Wu, J.-G., Li, J.-L., Ho, W.-Z. Toll-like receptor 3-activated macrophages confer anti-HCV activity to hepatocytes through exosomes. © FASEB.

  6. The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon cancer

    Directory of Open Access Journals (Sweden)

    Ding Ya

    2010-02-01

    Full Text Available Abstract Background Although an abundance of evidence has indicated that tumor-associated macrophages (TAMs are associated with a favorable prognosis in patients with colon cancer, it is still unknown how TAMs exert a protective effect. This study examined whether TAMs are involved in hepatic metastasis of colon cancer. Materials and methods One hundred and sixty cases of pathologically-confirmed specimens were obtained from colon carcinoma patients with TNM stage IIIB and IV between January 1997 and July 2004 at the Cancer Center of Sun Yat-Sen University. The density of macrophages in the invasive front (CD68TFHotspot was scored with an immunohistochemical assay. The relationship between the CD68TFHotspot and the clinicopathologic parameters, the potential of hepatic metastasis, and the 5-year survival rate were analyzed. Results TAMs were associated with the incidence of hepatic metastasis and the 5-year survival rate in patients with colon cancers. Both univariate and multivariate analyses revealed that the CD68TFHotspot was independently prognostic of survival. A higher 5-year survival rate among patients with stage IIIB after radical resection occurred in patients with a higher macrophage infiltration in the invasive front (81.0% than in those with a lower macrophage infiltration (48.6%. Most importantly, the CD68TFHotspot was associated with both the potential of hepatic metastasis and the interval between colon resection and the occurrence of hepatic metastasis. Conclusion This study showed evidence that TAMs infiltrated in the invasive front are associated with improvement in both hepatic metastasis and overall survival in colon cancer, implying that TAMs have protective potential in colon cancers and might serve as a novel therapeutic target.

  7. Nonspecific CD8+T Cells and Dendritic Cells/Macrophages Participate in Formation of CD8+T Cell-Mediated Clusters against Malaria Liver-Stage Infection.

    Science.gov (United States)

    Akbari, Masoud; Kimura, Kazumi; Bayarsaikhan, Ganchimeg; Kimura, Daisuke; Miyakoda, Mana; Juriasingani, Smriti; Yuda, Masao; Amino, Rogerio; Yui, Katsuyuki

    2018-04-01

    CD8 + T cells are the major effector cells that protect against malaria liver-stage infection, forming clusters around Plasmodium -infected hepatocytes and eliminating parasites after a prolonged interaction with these hepatocytes. We aimed to investigate the roles of specific and nonspecific CD8 + T cells in cluster formation and protective immunity. To this end, we used Plasmodium berghei ANKA expressing ovalbumin as well as CD8 + T cells from transgenic mice expressing a T cell receptor specific for ovalbumin (OT-I) and CD8 + T cells specific for an unrelated antigen, respectively. While antigen-specific CD8 + T cells were essential for cluster formation, both antigen-specific and nonspecific CD8 + T cells joined the clusters. However, nonspecific CD8 + T cells did not significantly contribute to protective immunity. In the livers of infected mice, specific CD8 + T cells expressed high levels of CD25, compatible with a local, activated effector phenotype. In vivo imaging of the liver revealed that specific CD8 + T cells interact with CD11c + cells around infected hepatocytes. The depletion of CD11c + cells virtually eliminated the clusters in the liver, leading to a significant decrease in protection. These experiments reveal an essential role of hepatic CD11c + dendritic cells and presumably macrophages in the formation of CD8 + T cell clusters around Plasmodium -infected hepatocytes. Once cluster formation is triggered by parasite-specific CD8 + T cells, specific and unrelated activated CD8 + T cells join the clusters in a chemokine- and dendritic cell-dependent manner. Nonspecific CD8 + T cells seem to play a limited role in protective immunity against Plasmodium parasites. Copyright © 2018 American Society for Microbiology.

  8. Wormhole Travel for Macrophages.

    Science.gov (United States)

    Okabe, Yasutaka; Medzhitov, Ruslan

    2016-04-21

    Leukocyte recruitment is generally achieved by rapid migration of inflammatory cells out of circulation, through modified blood vessels, and into affected tissues. Now, Wang and Kubes show that macrophages can be rapidly recruited from body cavities to the liver, via a non-vascular route, where they help to coordinate tissue repair. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Role of Osteal Macrophages in Bone Metabolism

    Directory of Open Access Journals (Sweden)

    Sun Wook Cho

    2015-03-01

    Full Text Available Macrophages have been shown to have pleiotropic functions in various pathophysiologies, especially in terms of anti-inflammatory and regenerative activity. Recently, the novel functions of bone marrow resident macrophages (called osteal macrophages were intensively studied in bone development, remodeling and tissue repair processes. This review discusses the current evidence for a role of osteal macrophages in bone modeling, remodeling, and fracture healing processes.

  10. CSF1 Restores Innate Immunity After Liver Injury in Mice and Serum Levels Indicate Outcomes of Patients With Acute Liver Failure

    Science.gov (United States)

    Stutchfield, Benjamin M.; Antoine, Daniel J.; Mackinnon, Alison C.; Gow, Deborah J.; Bain, Calum C.; Hawley, Catherine A.; Hughes, Michael J.; Francis, Benjamin; Wojtacha, Davina; Man, Tak Y.; Dear, James W.; Devey, Luke R.; Mowat, Alan M.; Pollard, Jeffrey W.; Park, B. Kevin; Jenkins, Stephen J.; Simpson, Kenneth J.; Hume, David A.; Wigmore, Stephen J.; Forbes, Stuart J.

    2015-01-01

    Background & Aims Liver regeneration requires functional liver macrophages, which provide an immune barrier that is compromised after liver injury. The numbers of liver macrophages are controlled by macrophage colony-stimulating factor (CSF1). We examined the prognostic significance of the serum level of CSF1 in patients with acute liver injury and studied its effects in mice. Methods We measured levels of CSF1 in serum samples collected from 55 patients who underwent partial hepatectomy at the Royal Infirmary Edinburgh between December 2012 and October 2013, as well as from 78 patients with acetaminophen-induced acute liver failure admitted to the Royal Infirmary Edinburgh or the University of Kansas Medical Centre. We studied the effects of increased levels of CSF1 in uninjured mice that express wild-type CSF1 receptor or a constitutive or inducible CSF1-receptor reporter, as well as in chemokine receptor 2 (Ccr2)-/- mice; we performed fate-tracing experiments using bone marrow chimeras. We administered CSF1-Fc (fragment, crystallizable) to mice after partial hepatectomy and acetaminophen intoxication, and measured regenerative parameters and innate immunity by clearance of fluorescent microbeads and bacterial particles. Results Serum levels of CSF1 increased in patients undergoing liver surgery in proportion to the extent of liver resected. In patients with acetaminophen-induced acute liver failure, a low serum level of CSF1 was associated with increased mortality. In mice, administration of CSF1-Fc promoted hepatic macrophage accumulation via proliferation of resident macrophages and recruitment of monocytes. CSF1-Fc also promoted transdifferentiation of infiltrating monocytes into cells with a hepatic macrophage phenotype. CSF1-Fc increased innate immunity in mice after partial hepatectomy or acetaminophen-induced injury, with resident hepatic macrophage as the main effector cells. Conclusions Serum CSF1 appears to be a prognostic marker for patients

  11. Action of the medicine Canova® on peritoneal resident macrophages infected with Trypanosoma cruzi = Ação do medicamento Canova® em macrófagos peritoniais residentes infectados por Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Vanessa Tagawa Cardoso de Oliveira

    2008-01-01

    Full Text Available Approximately 20 million of people are chronically infected withTrypanosoma cruzi in Latin America. The present work investigated the action of the homeopathic medicine Canova® on in vitro experimental infections with T. cruzi Y strain, using Swiss mice resident peritoneal macrophages. Our results demonstrated that Canova®induced a decrease in the production of H2O2 and TNF-a at 20 and 40% concentrations when compared to the control RPMI. However, when compared with this medicine excipient, a significant decrease in these mediators was observed with Canova® at 40% concentration only. The production of NO and phagocytic activity were not affected. TNF-a inhibits T. cruzi replication in peritoneal macrophages in vitro, becoming an important agent of infection control by this parasite. Within this context, Canova®, unlike what has been reported with other infections, would function as a stimulator of the infection, since it inhibited the production of TNF-α by peritoneal resident macrophages in vitro. Further studies should be carried out with elicited macrophages, in order to confirm the inhibitoryactivity of Canova® on the production of TNF-α and other mediators in macrophages infected by T. cruzi.Aproximadamente 20 milhões de pessoas são cronicamente infectadas pelo Trypanosoma cruzi na América Latina. O presente trabalhoinvestigou a ação do medicamento homeopático Canova® em infecções experimentais “in vitro” com Trypanosoma cruzi, cepa Y, usando macrófagos residentes peritoniais de camundongos Swiss. Os resultados indicaram que Canova® induz a diminuição significativa da produção de H2O2 e TNF-α em concentrações de 20 e 40%, quando comparado com ocontrole RPMI. Quando comparado com o excipiente do medicamento, observou-se diminuição na concentração destes mediadores apenas na concentração de 40%. A produção de NO e a atividade fagocítica não foram afetadas. TNF-α inibe a replicação do protozoário em

  12. Biology of Bony Fish Macrophages

    Directory of Open Access Journals (Sweden)

    Jordan W. Hodgkinson

    2015-11-01

    Full Text Available Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type, and resolution and repair functions (anti-inflammatory/regulatory, M2-type. The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and antimicrobial mechanisms of these cells have been extensively studied in various fish models. Intriguingly, both similarities and differences have been documented for the regulation of lower vertebrate macrophage antimicrobial defenses, as compared to what has been described in mammals. Advances in our understanding of the teleost macrophage M2 phenotypes likewise suggest functional conservation through similar and distinct regulatory strategies, compared to their mammalian counterparts. In this review, we discuss the current understanding of the molecular mechanisms governing teleost macrophage functional heterogeneity, including monopoetic development, classical macrophage inflammatory and antimicrobial responses as well as alternative macrophage polarization towards tissues repair and resolution of inflammation.

  13. Inhibitory effects of coumarin and acetylene constituents from the roots of Angelica furcijuga on D-galactosamine/lipopolysaccharide-induced liver injury in mice and on nitric oxide production in lipopolysaccharide-activated mouse peritoneal macrophages.

    Science.gov (United States)

    Yoshikawa, Masayuki; Nishida, Norihisa; Ninomiya, Kiyofumi; Ohgushi, Teruki; Kubo, Mizuho; Morikawa, Toshio; Matsuda, Hisashi

    2006-01-15

    The methanolic extract (200 mg/kg, p.o. and i.p.), principal coumarin constituents (isoepoxypteryxin, anomalin, and praeroside IV), and a polyacetylene constituent (falcarindiol) (25 mg/kg, i.p.) from the roots of Angelica furcijuga protected the liver injury induced by D-galactosamine (D-GalN)/lipopolysaccharide (LPS) in mice. In in vitro experiments, coumarin constituents (hyuganins A-D, anomalin, pteryxin, isopteryxin, and suksdorfin) and polyacetylene constituents [(-)-falcarinol and falcarindiol] substantially inhibited LPS-induced NO and/or TNF-alpha production in mouse peritoneal macrophages, and isoepoxypteryxin inhibited D-GalN-induced cytotoxicity in primary cultured rat hepatocytes. Furthermore, hyuganin A, anomalin, and isopteryxin inhibited the decrease in cell viability by TNF-alpha in L929 cells.

  14. Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids: the evidence for the involvement of alternatively activated macrophages

    Directory of Open Access Journals (Sweden)

    Papackova Zuzana

    2012-03-01

    Full Text Available Abstract Background Resident macrophages (Kupffer cells, KCs in the liver can undergo both pro- or anti-inflammatory activation pathway and exert either beneficiary or detrimental effects on liver metabolism. Until now, their role in the metabolically dysfunctional state of steatosis remains enigmatic. Aim of our study was to characterize the role of KCs in relation to the onset of hepatic insulin resistance induced by a high-fat (HF diet rich in monounsaturated fatty acids. Methods Male Wistar rats were fed either standard (SD or high-fat (HF diet for 4 weeks. Half of the animals were subjected to the acute GdCl3 treatment 24 and 72 hrs prior to the end of the experiment in order to induce the reduction of KCs population. We determined the effect of HF diet on activation status of liver macrophages and on the changes in hepatic insulin sensitivity and triacylglycerol metabolism imposed by acute KCs depletion by GdCl3. Results We found that a HF diet rich in MUFA itself triggers an alternative but not the classical activation program in KCs. In a steatotic, but not in normal liver, a reduction of the KCs population was associated with a decrease of alternative activation and with a shift towards the expression of pro-inflammatory activation markers, with the increased autophagy, elevated lysosomal lipolysis, increased formation of DAG, PKCε activation and marked exacerbation of HF diet-induced hepatic insulin resistance. Conclusions We propose that in the presence of a high MUFA content the population of alternatively activated resident liver macrophages may mediate beneficial effects on liver insulin sensitivity and alleviate the metabolic disturbances imposed by HF diet feeding and steatosis. Our data indicate that macrophage polarization towards an alternative state might be a useful strategy for treating type 2 diabetes.

  15. Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches.

    Science.gov (United States)

    Kaur, Simranpreet; Raggatt, Liza Jane; Batoon, Lena; Hume, David Arthur; Levesque, Jean-Pierre; Pettit, Allison Robyn

    2017-01-01

    Macrophages, named for their phagocytic ability, participate in homeostasis, tissue regeneration and inflammatory responses. Bone and adjacent marrow contain multiple functionally unique resident tissue macrophage subsets which maintain and regulate anatomically distinct niche environments within these interconnected tissues. Three subsets of bone-bone marrow resident tissue macrophages have been characterised; erythroblastic island macrophages, haematopoietic stem cell niche macrophages and osteal macrophages. The role of these macrophages in controlling homeostasis and repair in bone and bone marrow niches is reviewed in detail. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. DMPD: Functions of anaphylatoxin C5a in rat liver: direct and indirect actions onnonparenchymal and parenchymal cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available nnonparenchymal and parenchymal cells. Schieferdecker HL, Schlaf G, Jungermann K, Gotze O. Int Immunopharmac...31 Title Functions of anaphylatoxin C5a in rat liver: direct and indirect actions onnonparenchymal and paren...chymal cells. Authors Schieferdecker HL, Schlaf G, Jungermann K, Gotze O. Publication Int Immunopharmacol. 2

  17. A Natural CCR2 Antagonist Relieves Tumor-associated Macrophage-mediated Immunosuppression to Produce a Therapeutic Effect for Liver Cancer

    Directory of Open Access Journals (Sweden)

    Wenbo Yao

    2017-08-01

    Full Text Available Hepatocellular carcinoma (HCC is a common malignant tumor in the digestive tract with limited therapeutic choices. Although sorafenib, an orally administered multikinase inhibitor, has produced survival benefits for patients with advanced HCC, favorable clinical outcomes are limited due to individual differences and resistance. The application of immunotherapy, a promising approach for HCC is urgently needed. Macrophage infiltration, mediated by the CCL2/CCR2 axis, is a potential immunotherapeutic target. Here, we report that a natural product from Abies georgei, named 747 and related in structure to kaempferol, exhibits sensitivity and selectivity as a CCR2 antagonist. The specificity of 747 on CCR2 was demonstrated via calcium flux, the binding domain of CCR2 was identified in an extracellular loop by chimera binding assay, and in vivo antagonistic activity of 747 was confirmed through a thioglycollate-induced peritonitis model. In animals, 747 elevated the number of CD8+ T cells in tumors via blocking tumor-infiltrating macrophage-mediated immunosuppression and inhibited orthotopic and subcutaneous tumor growth in a CD8+ T cell-dependent manner. Further, 747 enhanced the therapeutic efficacy of low-dose sorafenib without obvious toxicity, through elevating the numbers of intra-tumoral CD8+ T cells and increasing death of tumor cells. Thus, we have discovered a natural CCR2 antagonist and have provided a new perspective on development of this antagonist for treatment of HCC. In mouse models of HCC, 747 enhanced the tumor immunosuppressive microenvironment and potentiated the therapeutic effect of sorafenib, indicating that the combination of an immunomodulator with a chemotherapeutic drug could be a new approach for treating HCC.

  18. Bone marrow macrophages support prostate cancer growth in bone.

    Science.gov (United States)

    Soki, Fabiana N; Cho, Sun Wook; Kim, Yeo Won; Jones, Jacqueline D; Park, Serk In; Koh, Amy J; Entezami, Payam; Daignault-Newton, Stephanie; Pienta, Kenneth J; Roca, Hernan; McCauley, Laurie K

    2015-11-03

    Resident macrophages in bone play important roles in bone remodeling, repair, and hematopoietic stem cell maintenance, yet their role in skeletal metastasis remains under investigated. The purpose of this study was to determine the role of macrophages in prostate cancer skeletal metastasis, using two in vivo mouse models of conditional macrophage depletion. RM-1 syngeneic tumor growth was analyzed in an inducible macrophage (CSF-1 receptor positive cells) ablation model (MAFIA mice). There was a significant reduction in tumor growth in the tibiae of macrophage-ablated mice, compared with control non-ablated mice. Similar results were observed when macrophage ablation was performed using liposome-encapsulated clodronate and human PC-3 prostate cancer cells where tumor-bearing long bones had increased numbers of tumor associated-macrophages. Although tumors were consistently smaller in macrophage-depleted mice, paradoxical results of macrophage depletion on bone were observed. Histomorphometric and micro-CT analyses demonstrated that clodronate-treated mice had increased bone volume, while MAFIA mice had reduced bone volume. These results suggest that the effect of macrophage depletion on tumor growth was independent of its effect on bone responses and that macrophages in bone may be more important to tumor growth than the bone itself. In conclusion, resident macrophages play a pivotal role in prostate cancer growth in bone.

  19. Modulation of monocyte/macrophage-derived cytokine and chemokine profile by persistent Hepatitis C virus (HCV infection leads to chronic inflammation

    Directory of Open Access Journals (Sweden)

    Penelope Mavromara

    2012-02-01

    Full Text Available HCV infection presents a major public health problem, with more than 170 million people infected worldwide. Chronicity and persistence of infection constitute the hallmark of the disease. Although HCV is a hepatotropic virus, subsets of immune cells have been found to be permissive to infection and viral replication. Peripheral blood monocytes, attracted to the site of infection and differentiated into macrophages, and resident hepatic macrophages, known as Kupffer cells, are important mediators of innate immunity, through production of several chemokines and cytokines in addition to their phagocytic activity. HCV proteins have been shown to modulate the cytokine and chemokine production profile of monocytes/macrophages, as it is suggested by both in vitro and clinical studies. This modified expression profile appears crucial for the establishment of aberrant inflammation that leads to liver cirrhosis and hepatocellular carcinoma.

  20. Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Eun-Min Kim

    2017-05-01

    Full Text Available Clonorchis sinensis infection elicits hepatic inflammation, which can lead to cholangitis, periductal hepatic fibrosis, liver cirrhosis, and even cholangiocarcinoma. Hepatic macrophages are an intrinsic element of both innate and acquired immunity. This study was conducted to demonstrate the dynamics of hepatic macrophage polarization during C. sinensis infection in mice and to identify factors regulating this polarization. Treatment of hepatic macrophages isolated from normal mice with C. sinensis excretory/secretory products (ESPs resulted in the preferential generation of classically activated hepatic macrophages (M1 macrophages and the production of pro-inflammatory cytokines. Additionally, cells stimulated with C. sinensis ESPs exhibited changes in cellular morphology. During the early stages of C. sinensis infection, hepatic macrophages preferentially differentiated into M1 macrophages; however, during the C. sinensis mature worm stage, when eggs are released, there were significant increases in the abundance of both M1 macrophages and alternatively activated hepatic macrophages (M2 macrophages. Moreover, there was a further increase in the M2 macrophage count during the fibrotic and cirrhotic stage of infection. Notably, this fibrotic and cirrhotic stage promoted a strong increase in the proportion of Arg-1-producing macrophages (M2 phenotype, which were associated with fibrosis and tissue repair in the liver. Our results suggest that the dynamic polarization of hepatic macrophages as C. sinensis infection progresses is related to the histological lesions present in liver tissue. Hepatic macrophages thus play an important role in local immunity during C. sinensis infection.

  1. Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo.

    Science.gov (United States)

    Kim, Eun-Min; Kwak, You Shine; Yi, Myung-Hee; Kim, Ju Yeong; Sohn, Woon-Mok; Yong, Tai-Soon

    2017-05-01

    Clonorchis sinensis infection elicits hepatic inflammation, which can lead to cholangitis, periductal hepatic fibrosis, liver cirrhosis, and even cholangiocarcinoma. Hepatic macrophages are an intrinsic element of both innate and acquired immunity. This study was conducted to demonstrate the dynamics of hepatic macrophage polarization during C. sinensis infection in mice and to identify factors regulating this polarization. Treatment of hepatic macrophages isolated from normal mice with C. sinensis excretory/secretory products (ESPs) resulted in the preferential generation of classically activated hepatic macrophages (M1 macrophages) and the production of pro-inflammatory cytokines. Additionally, cells stimulated with C. sinensis ESPs exhibited changes in cellular morphology. During the early stages of C. sinensis infection, hepatic macrophages preferentially differentiated into M1 macrophages; however, during the C. sinensis mature worm stage, when eggs are released, there were significant increases in the abundance of both M1 macrophages and alternatively activated hepatic macrophages (M2 macrophages). Moreover, there was a further increase in the M2 macrophage count during the fibrotic and cirrhotic stage of infection. Notably, this fibrotic and cirrhotic stage promoted a strong increase in the proportion of Arg-1-producing macrophages (M2 phenotype), which were associated with fibrosis and tissue repair in the liver. Our results suggest that the dynamic polarization of hepatic macrophages as C. sinensis infection progresses is related to the histological lesions present in liver tissue. Hepatic macrophages thus play an important role in local immunity during C. sinensis infection.

  2. Identification of the macrophage-specific promoter signature in FANTOM5 mouse embryo developmental time course data.

    Science.gov (United States)

    Summers, Kim M; Hume, David A

    2017-10-01

    The FANTOM5 consortium used cap analysis of gene expression (CAGE) to analyze the time course of gene expression over development from 11 days postcoitum (dpc) to adult in 16 developing organs and the whole body of the mouse. Every tissue in the body contains a large number of resident macrophages that initially infiltrate the embryo from the yolk sac. These cells contribute to organogenesis, and their functions diversify during development as they acquire tissue-specific adaptations. In each of the FANTOM5 time courses, the expression of known macrophage-specific genes, including CSF1 receptor ( Csf1r ), epidermal growth factor-like module-containing mucin-like hormone receptor-like 1 ( Emr1 ), and mer receptor tyrosine kinase ( Mertk ), was readily detectable and increased with time. We reasoned that genes expressed by macrophages would be strongly correlated in their expression with these known markers and might vary between tissues. We used the network analysis tool, Miru, to extract the sets of coexpressed genes from the time course and identified a core set of coexpressed genes attributable to embryonic macrophages, including some, such as dehydrogenase/reductase 3 ( Dhrs3 ), that may have unique functions in development. The FANTOM5 data also detected the appearance of tissue-specific macrophage-expressed genes, such as T cell Ig and mucin domain-containing 4 ( Timd4 ) and V-set and Ig domain-containing 4 ( Vsig4 ) in liver and sialic acid-binding Ig-like lectin 5 ( Siglec5 ) in lung, and confirmed that macrophage content increases with time in each organ as the proliferative phases end, and tissue-specific gene-expression increases. The FANTOM5 data are available on a comprehensive browser (http://fantom.gsc.riken.jp/zenbu/), which provides a resource for the study of macrophage transcriptional regulation and roles in mouse development. © Society for Leukocyte Biology.

  3. DNA Damage Signaling Instructs Polyploid Macrophage Fate in Granulomas

    DEFF Research Database (Denmark)

    Herrtwich, Laura; Nanda, Indrajit; Evangelou, Konstantinos

    2016-01-01

    granuloma-resident macrophages formed via modified cell divisions and mitotic defects and not, as previously thought, by cell-to-cell fusion. TLR2 signaling promoted macrophage polyploidy and suppressed genomic instability by regulating Myc and ATR. We propose that, in the presence of persistent...

  4. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction

    NARCIS (Netherlands)

    Heidt, Timo; Courties, Gabriel; Dutta, Partha; Sager, Hendrik B.; Sebas, Matt; Iwamoto, Yoshiko; Sun, Yuan; Da Silva, Nicolas; Panizzi, Peter; van der Lahn, Anja M.; Swirski, Filip K.; Weissleder, Ralph; Nahrendorf, Matthias

    2014-01-01

    Macrophages populate the steady-state myocardium. Previously, all macrophages were thought to arise from monocytes; however, it emerged that, in several organs, tissue-resident macrophages may self-maintain through local proliferation. Our aim was to study the contribution of monocytes to

  5. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  6. Th17 involvement in nonalcoholic fatty liver disease progression to non-alcoholic steatohepatitis.

    Science.gov (United States)

    Chackelevicius, Carla Melisa; Gambaro, Sabrina Eliana; Tiribelli, Claudio; Rosso, Natalia

    2016-11-07

    The nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. NAFLD encompasses a wide histological spectrum ranging from benign simple steatosis to non-alcoholic steatohepatitis (NASH). Sustained inflammation in the liver is critical in this process. Hepatic macrophages, including liver resident macropaghes (Kupffer cells), monocytes infiltrating the injured liver, as well as specific lymphocytes subsets play a pivotal role in the initiation and perpetuation of the inflammatory response, with a major deleterious impact on the progression of fatty liver to fibrosis. During the last years, Th17 cells have been involved in the development of inflammation not only in liver but also in other organs, such as adipose tissue or lung. Differentiation of a naïve T cell into a Th17 cell leads to pro-inflammatory cytokine and chemokine production with subsequent myeloid cell recruitment to the inflamed tissue. Th17 response can be mitigated by T regulatory cells that secrete anti-inflammatory cytokines. Both T cell subsets need TGF-β for their differentiation and a characteristic plasticity in their phenotype may render them new therapeutic targets. In this review, we discuss the role of the Th17 pathway in NAFLD progression to NASH and to liver fibrosis analyzing different animal models of liver injury and human studies.

  7. Functional modifications of macrophage activity after sublethal irradiation

    International Nuclear Information System (INIS)

    Swartz, R.P.

    1982-01-01

    The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytes exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin

  8. Macrophage origin limits functional plasticity in helminth-bacterial co-infection.

    Directory of Open Access Journals (Sweden)

    Dominik Rückerl

    2017-03-01

    Full Text Available Rapid reprogramming of the macrophage activation phenotype is considered important in the defense against consecutive infection with diverse infectious agents. However, in the setting of persistent, chronic infection the functional importance of macrophage-intrinsic adaptation to changing environments vs. recruitment of new macrophages remains unclear. Here we show that resident peritoneal macrophages expanded by infection with the nematode Heligmosomoides polygyrus bakeri altered their activation phenotype in response to infection with Salmonella enterica ser. Typhimurium in vitro and in vivo. The nematode-expanded resident F4/80high macrophages efficiently upregulated bacterial induced effector molecules (e.g. MHC-II, NOS2 similarly to newly recruited monocyte-derived macrophages. Nonetheless, recruitment of blood monocyte-derived macrophages to Salmonella infection occurred with equal magnitude in co-infected animals and caused displacement of the nematode-expanded, tissue resident-derived macrophages from the peritoneal cavity. Global gene expression analysis revealed that although nematode-expanded resident F4/80high macrophages made an anti-bacterial response, this was muted as compared to newly recruited F4/80low macrophages. However, the F4/80high macrophages adopted unique functional characteristics that included enhanced neutrophil-stimulating chemokine production. Thus, our data provide important evidence that plastic adaptation of MΦ activation does occur in vivo, but that cellular plasticity is outweighed by functional capabilities specific to the tissue origin of the cell.

  9. Origins and Hallmarks of Macrophages: Development, Homeostasis, and Disease

    Science.gov (United States)

    Wynn, Thomas A.; Chawla, Ajay; Pollard, Jeffrey W.

    2013-01-01

    Preface Macrophages the most plastic cells of the hematopoietic system are found in all tissues and exhibit great functional diversity. They have roles in development, homeostasis, tissue repair, and immunity. While anatomically distinct, resident tissue macrophages exhibit different transcriptional profiles, and functional capabilities, they are all required for the maintenance of homeostasis. However, these reparative and homeostatic functions can be subverted by chronic insults, resulting in a causal association of macrophages with disease states. In this review, we discuss how macrophages regulate normal physiology and development and provide several examples of their pathophysiologic roles in disease. We define the “hallmarks” of macrophages performing particular functions, taking into account novel insights into the diversity of their lineages, identity, and regulation. This diversity is essential to understand because macrophages have emerged as important therapeutic targets in many important human diseases. PMID:23619691

  10. Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation

    Directory of Open Access Journals (Sweden)

    Alexander R. Pinto

    2014-11-01

    Full Text Available Macrophages are an immune cell type found in every organ of the body. Classically, macrophages are recognised as housekeeping cells involved in the detection of foreign antigens and danger signatures, and the clearance of tissue debris. However, macrophages are increasingly recognised as a highly versatile cell type with a diverse range of functions that are important for tissue homeostasis and injury responses. Recent research findings suggest that macrophages contribute to tissue regeneration and may play a role in the activation and mobilisation of stem cells. This review describes recent advances in our understanding of the role played by macrophages in cardiac tissue maintenance and repair following injury. We examine the involvement of exogenous and resident tissue macrophages in cardiac inflammatory responses and their potential activity in regulating cardiac regeneration.

  11. Macrophages in intestinal homeostasis and inflammation

    Science.gov (United States)

    Bain, Calum C; Mowat, Allan McI

    2014-01-01

    The intestine contains the largest pool of macrophages in the body which are essential for maintaining mucosal homeostasis in the face of the microbiota and the constant need for epithelial renewal but are also important components of protective immunity and are involved in the pathology of inflammatory bowel disease (IBD). However, defining the biological roles of intestinal macrophages has been impeded by problems in defining the phenotype and origins of different populations of myeloid cells in the mucosa. Here, we discuss how multiple parameters can be used in combination to discriminate between functionally distinct myeloid cells and discuss the roles of macrophages during homeostasis and how these may change when inflammation ensues. We also discuss the evidence that intestinal macrophages do not fit the current paradigm that tissue-resident macrophages are derived from embryonic precursors that self-renew in situ, but require constant replenishment by blood monocytes. We describe our recent work demonstrating that classical monocytes constantly enter the intestinal mucosa and how the environment dictates their subsequent fate. We believe that understanding the factors that drive intestinal macrophage development in the steady state and how these may change in response to pathogens or inflammation could provide important insights into the treatment of IBD. PMID:24942685

  12. Macrophage Populations in Visceral Adipose Tissue from Pregnant Women: Potential Role of Obesity in Maternal Inflammation

    Directory of Open Access Journals (Sweden)

    Eyerahi Bravo-Flores

    2018-04-01

    Full Text Available Obesity is associated with inflammatory changes and accumulation and phenotype polarization of adipose tissue macrophages (ATMs. Obese pregnant women have alterations in adipose tissue composition, but a detailed description of macrophage population is not available. In this study, we characterized macrophage populations in visceral adipose tissue (VAT from pregnant women with normal, overweight, and obese pregestational weight. Immunophenotyping of macrophages from VAT biopsies was performed by flow cytometry using CD45 and CD14 as markers of hematopoietic and monocyte linage, respectively, while HLA-DR, CD11c, CD163, and CD206 were used as pro- and anti-inflammatory markers. Adipocyte number and size were evaluated by light microscopy. The results show that pregnant women that were overweight and obese during the pregestational period had adipocyte hypertrophy. Two different macrophage populations in VAT were identified: recruited macrophages (CD45+CD14+, and a novel population lacking CD45, which was considered to be a resident macrophages subset (CD45−CD14+. The number of resident HLA−DRlow/− macrophages showed a negative correlation with body mass index (BMI. Both resident and recruited macrophages from obese women expressed higher CD206 levels. CD11c expression was higher in resident HLA-DR+ macrophages from obese women. A strong correlation between CD206 and CD11c markers and BMI was observed. Our findings show that being overweight and obese in the pregestational period is associated with adipocyte hypertrophy and specific ATMs populations in VAT.

  13. Roles of Macrophage Subtypes in Bowel Anastomotic Healing and Anastomotic Leakage

    Directory of Open Access Journals (Sweden)

    Jinyao Shi

    2018-01-01

    Full Text Available Macrophages play an important role in host defense, in addition to the powerful ability to phagocytose pathogens or foreign matters. They fulfill a variety of roles in immune regulation, wound healing, and tissue homeostasis preservation. Macrophages are characterized by high heterogeneity, which can polarize into at least two major extremes, M1-type macrophages (classical activation which are normally derived from monocytes and M2-type macrophages (alternative activation which are mostly those tissue-resident macrophages. Based on the wound healing process in skin, the previous studies have documented how these different subtypes of macrophages participate in tissue repair and remodeling, while the mechanism of macrophages in bowel anastomotic healing has not yet been established. This review summarizes the currently available evidence regarding the different roles of polarized macrophages in the physiological course of anastomotic healing and their pathological roles in anastomotic leakage, the most dangerous complication after gastrointestinal surgery.

  14. Macrophages and bone inflammation

    Directory of Open Access Journals (Sweden)

    Qiaoli Gu

    2017-07-01

    Full Text Available Bone metabolism is tightly regulated by the immune system. Accelerated bone destruction is observed in many bone diseases, such as rheumatoid arthritis, fracture, and particle-induced osteolysis. These pathological conditions are associated with inflammatory responses, suggesting the contribution of inflammation to bone destruction. Macrophages are heterogeneous immune cells and are polarized into the proinflammatory M1 and antiinflammatory M2 phenotypes in different microenvironments. The cytokines produced by macrophages depend on the macrophage activation and polarization. Macrophages and macrophage-derived cytokines are important to bone loss in inflammatory bone disease. Recent studies have shown that macrophages can be detected in bone tissue and interact with bone cells. The interplay between macrophages and bone cells is critical to bone formation and repair. In this article, we focus on the role of macrophages in inflammatory bone diseases, as well as discuss the latest studies about macrophages and bone formation, which will provide new insights into the therapeutic strategy for bone disease.

  15. Resident resistance.

    Science.gov (United States)

    Price, J L; Cleary, B

    1999-01-01

    Clearly, faculty must work hard with residents to explore the nature of their resistance to a program's learning and growth opportunities. Initial steps to a deeper, more effective, and longer-lasting change process must be pursued. If resident resistance is mishandled or misunderstood, then learning and professional growth may be sidetracked and the purposes of residency training defeated. Listening to the whole person of the resident and avoiding the trap of getting caught up in merely responding to select resident behaviors that irritate us is critical. Every faculty member in the family practice residency program must recognize resistance as a form of defense that cannot immediately be torn down or taken away. Resident defenses have important purposes to play in stress reduction even if they are not always healthy. Residents, especially interns, use resistance to avoid a deeper and more truthful look at themselves as physicians. A family practice residency program that sees whole persons in their residents and that respects resident defenses will effectively manage the stress and disharmony inherent to the resistant resident.

  16. Macrophages Subvert Adaptive Immunity to Urinary Tract Infection.

    Science.gov (United States)

    Mora-Bau, Gabriela; Platt, Andrew M; van Rooijen, Nico; Randolph, Gwendalyn J; Albert, Matthew L; Ingersoll, Molly A

    2015-07-01

    Urinary tract infection (UTI) is one of the most common bacterial infections with frequent recurrence being a major medical challenge. Development of effective therapies has been impeded by the lack of knowledge of events leading to adaptive immunity. Here, we establish conclusive evidence that an adaptive immune response is generated during UTI, yet this response does not establish sterilizing immunity. To investigate the underlying deficiency, we delineated the naïve bladder immune cell compartment, identifying resident macrophages as the most populous immune cell. To evaluate their impact on the establishment of adaptive immune responses following infection, we measured bacterial clearance in mice depleted of either circulating monocytes, which give rise to macrophages, or bladder resident macrophages. Surprisingly, mice depleted of resident macrophages, prior to primary infection, exhibited a nearly 2-log reduction in bacterial burden following secondary challenge compared to untreated animals. This increased bacterial clearance, in the context of a challenge infection, was dependent on lymphocytes. Macrophages were the predominant antigen presenting cell to acquire bacteria post-infection and in their absence, bacterial uptake by dendritic cells was increased almost 2-fold. These data suggest that bacterial uptake by tissue macrophages impedes development of adaptive immune responses during UTI, revealing a novel target for enhancing host responses to bacterial infection of the bladder.

  17. Macrophages and vascular adhesion molecules in oral Kaposi's sarcoma.

    Science.gov (United States)

    MacPhail, L A; Dekker, N P; Regezi, J A

    1996-10-01

    Kaposi's sarcoma (KS) is a heterogeneous tumor where spindle cells are predominant and macrophages and factor XIIIa positive dendrocytes are abundant. The origin of the macrophages and dendrocytes is unclear, although their numbers suggest a critical role in KS pathogenesis. To determine if KS macrophages are recruited from the blood stream or proliferate on-site, we examined biopsy specimens 1) for expression and distribution of vascular adhesion molecules (PECAM-1, ELAM-1, ICAM-1, VCAM-1, P-selectin, L-selectin) and the macrophage-associated adhesion-molecule ligand, VLA-4; 2) for dual expression of proliferation (Ki-67) and lineage-associated markers (KP-1, CD34, factor XIIIa, LCA); and 3) for dual expression of macrophage (KP-1) and endothelial cell (CD34) associated markers. Avidinbiotin peroxidase techniques were used. Resident vessels were found to strongly express PECAM-1, ELAM-1, ICAM-1, P-selectin, and moderately express VCAM-1 and VLA-4. Tumor spindle cells showed less intense expression of ELAM-1, ICAM-1 and P-selectin. The most frequent double-stain combination was Ki-67 + CD34+. In contrast, the combinations of Ki-67 + KP-1+, Ki-67 + XIIIa+ and Ki-67 + LCA+ were rarely seen. The enhanced expression of adhesion molecules on resident vessels and the lack of evidence of macrophage proliferation suggest that the abundant macrophages in KS are recruited from the blood stream.

  18. Macrophage Area Content and Phenotype in Hepatic and Adipose Tissue in Patients with Obesity Undergoing Roux-en-Y Gastric Bypass

    DEFF Research Database (Denmark)

    Kristensen, Marianne D; Lund, Michael Taulo; Hansen, Merethe

    2017-01-01

    of macrophages in subcutaneous (SAT) and visceral (VAT) adipose tissue and the liver in obesity-induced impaired IS and improvements with weight loss. Macrophage markers (CD68, CD163, and CD206) in SAT, VAT, and the liver from patients with obesity were investigated. The same macrophage markers were investigated...... in SAT from 18 patients with obesity before and ∼18 months after a diet- and Roux-en-Y gastric bypass-induced weight loss. RESULTS: SAT macrophage markers did not decrease with weight loss, but macrophage concentration may have increased, concomitant with improved IS. Hepatic macrophage markers did...... not correlate to VAT mass or macrophage markers, but they were higher in patients with obesity compared with patients without obesity. Hepatic anti-inflammatory macrophage markers correlated positively with hepatic IS. VAT and SAT macrophage markers did not correlate. CONCLUSIONS: The results indicate...

  19. Liver metastases

    Science.gov (United States)

    ... Esophageal cancer - liver metastases; Lung cancer - liver metastases; Melanoma - liver metastases ... through the probe that causes ice crystals to form around the probe. The cancer cells are frozen ...

  20. Quantitative evaluation of macrophage aggregates in brook trout Salvelinus fontinalis and rainbow trout Oncorhynchus mykiss

    Science.gov (United States)

    Macrophage aggregates (MAs) occur in various organs of fishes, especially the kidney, liver and spleen, and contain melanin, ceroid/lipofuscin and hemosiderin pigments. They have been used as indicators of a number of natural and anthropogenic stressors. Macrophage aggregates occ...

  1. Macrophages are critical effectors of antibody therapies for cancer.

    Science.gov (United States)

    Weiskopf, Kipp; Weissman, Irving L

    2015-01-01

    Macrophages are innate immune cells that derive from circulating monocytes, reside in all tissues, and participate in many states of pathology. Macrophages play a dichotomous role in cancer, where they promote tumor growth but also serve as critical immune effectors of therapeutic antibodies. Macrophages express all classes of Fcγ receptors, and they have immense potential to destroy tumors via the process of antibody-dependent phagocytosis. A number of studies have demonstrated that macrophage phagocytosis is a major mechanism of action of many antibodies approved to treat cancer. Consequently, a number of approaches to augment macrophage responses to therapeutic antibodies are under investigation, including the exploration of new targets and development of antibodies with enhanced functions. For example, the interaction of CD47 with signal-regulatory protein α (SIRPα) serves as a myeloid-specific immune checkpoint that limits the response of macrophages to antibody therapies, and CD47-blocking agents overcome this barrier to augment phagocytosis. The response of macrophages to antibody therapies can also be enhanced with engineered Fc variants, bispecific antibodies, or antibody-drug conjugates. Macrophages have demonstrated success as effectors of cancer immunotherapy, and further investigation will unlock their full potential for the benefit of patients.

  2. Understanding macrophage activation in the adipose tissue: at the crossroads of immunology and metabolism

    NARCIS (Netherlands)

    Boutens, Lily

    2018-01-01

    Macrophages and their monocyte precursors continuously patrol the bloodstream and tissues, ready to eliminate unwelcome visitors such as pathogens or foreign particles. Tissue-resident macrophages are crucial during development and for maintaining tissue homeostasis as well. The engulfment of

  3. The role of perivascular and meningeal macrophages in experimental allergic encephalomyelitis

    NARCIS (Netherlands)

    Polfliet, Machteld M. J.; van de Veerdonk, F.; Döpp, Ed A.; van Kesteren-Hendrikx, Esther M. L.; van Rooijen, Nico; Dijkstra, Christine D.; van den Berg, Timo K.

    2002-01-01

    The perivascular (PVM) and meningeal (MM) macrophages constitute a major population of resident macrophages in the central nervous system (CNS). To investigate a possible role of PVM and MM during CNS inflammation, we have analysed PVM and MM during experimental allergic encephalomyelitis (EAE), an

  4. Involvement of Macrophages in the Pathogenesis of Familial Amyloid Polyneuropathy and Efficacy of Human iPS Cell-Derived Macrophages in Its Treatment.

    Directory of Open Access Journals (Sweden)

    Genki Suenaga

    Full Text Available We hypothesized that tissue-resident macrophages in familial amyloid polyneuropathy (FAP patients will exhibit qualitative or quantitative abnormalities, that may accelerate transthyretin (TTR-derived amyloid deposition. To evaluate this, we examined the number and subset of tissue-resident macrophages in heart tissue from amyloid-deposited FAP and control patients. In both FAP and control patients, tissue-resident macrophages in heart tissue were all Iba+/CD163+/CD206+ macrophages. However, the number of macrophages was significantly decreased in FAP patients compared with control patients. Furthermore, the proportion of intracellular TTR in CD14+ monocytes was reduced in peripheral blood compared with healthy donors. Based on these results, we next examined degradation and endocytosis of TTR in human induced pluripotent stem (iPS cell-derived myeloid lineage cells (MLs, which function like macrophages. iPS-MLs express CD163 and CD206, and belong to the inhibitory macrophage category. In addition, iPS-MLs degrade both native and aggregated TTR in a cell-dependent manner in vitro. Further, iPS-MLs endocytose aggregated, and especially polymerized, TTR. These results suggest that decreased tissue-localized macrophages disrupt clearance of TTR-derived amyloid deposits, leading to progression of a pathological condition in FAP patients. To improve this situation, clinical application of pluripotent stem cell-derived MLs may be useful as an approach for FAP therapy.

  5. Macrophage activation marker sCD163 correlates with accelerated lipolysis following LPS exposure: a human-randomised clinical trial

    DEFF Research Database (Denmark)

    Rittig, Nikolaj; Svart, Mads; Jessen, Niels

    2018-01-01

    BACKGROUND: Macrophage activation determined by levels of soluble sCD163 is associated with obesity, insulin resistance, diabetes mellitus type 2 (DM2) and non-alcoholic fatty liver disease (NAFLD). This suggests that macrophage activation is involved in the pathogenesis of conditions is characte......BACKGROUND: Macrophage activation determined by levels of soluble sCD163 is associated with obesity, insulin resistance, diabetes mellitus type 2 (DM2) and non-alcoholic fatty liver disease (NAFLD). This suggests that macrophage activation is involved in the pathogenesis of conditions...... in lipid metabolic adaptions under conditions such as obesity, DM2 and NAFLD....

  6. Degradation of parathyroid hormone in macrophage endosomes

    International Nuclear Information System (INIS)

    Diment, S.; Martin, K.J.; Stahl, P.D.

    1986-01-01

    Parathyroid hormone (PTH) is secreted as an 84 amino acid protein that is rapidly cleaved between amino acids 34 and 35 by Kupffer cells in liver. The resulting amino terminal peptide (1-34) is active at PTH target organs (kidney and bone). Cathepsin D can process PTH to 1-34 in vitro, and a cathepsin D-like protease, which may rapidly process proteins, is present in endosomes of alveolar macrophages. The authors set out to determine whether PTH is degraded to 1-34 in endosomes, and to elucidate the mechanism of hormone processing in vivo. Intracellular transport of 125 I-PTH was assessed by binding to alveolar macrophages at 4 0 C, followed by internalization at 37 0 C. Distribution of PTH among plasma membranes, endosomes and lysosomes was determined by subcellular fractionation. Degradation of the ligand to TCA-soluble fragments in each compartment was assayed at neutral and acid pH. 1-34 in supernatants was separated from undergraded PTH by gel filtration and detected by bioassay on kidney membranes. The authors data suggest that: 1) macrophages rapidly degrade PTH to TCA-soluble fragments. 2) macrophages do not secrete proteases that degrade extracellular PTH. 3) PTH is internalized into endocytic vesicles after 5 mins, but not delivered to lysosomes within 30 mins. 4) A bioactive peptide is released into the extracellular medium after 20 mins. 5) PTH is degraded in endosomes at acid pH by a pepstatin-sensitive protease

  7. Gallium arsenide differentially affects processing of phagolysosomal targeted antigen by macrophages.

    Science.gov (United States)

    Lewis, T A; Hartmann, C B; McCoy, K L

    1998-03-01

    Gallium arsenide, a semiconductor utilized in the electronics industry, causes immunosuppression in animals. The chemical's effect on macrophages to process antigen for activating pigeon cytochrome-specific helper T cell hybridoma was investigated. Mice were administered 200 mg/kg gallium arsenide or vehicle intraperitoneally. Five-day exposure suppressed processing by splenic macrophages but augmented processing by thioglycollate-elicited and resident peritoneal macrophages. Cytochrome coupled to latex beads was targeted to phagolysosomes to examine processing in lysosomes. Cytochrome beads required phagocytosis for processing and were located in phagolysosomes. Gallium arsenide did not alter the phagocytic ability of macrophages. Peritoneal macrophages normally processed the targeted antigen, indicating that gallium arsenide influenced compartment(s) preceding lysosomes. However, the processing efficiency of exposed splenic macrophages depended on the size of particulate cytochrome, suggesting that processing varied in phagolysosomes of different sizes. Gallium arsenide impacted different intracellular compartments in these macrophages, perhaps contributing to systemic immunotoxicity and local inflammation caused by exposure.

  8. Macrophage Stimulating Protein Enhances Hepatic Inflammation in a NASH Model

    NARCIS (Netherlands)

    Li, Jieyi; Chanda, Dipanjan; van Gorp, Patrick J.; Jeurissen, Mike L. J.; Houben, Tom; Walenbergh, Sofie M. A.; Debets, Jacques; Oligschlaeger, Yvonne; Gijbels, Marion J. J.; Neumann, Dietbert; Shiri-Sverdlov, Ronit

    2016-01-01

    Non-alcoholic steatohepatitis (NASH) is a common liver disease characterized by hepatic lipid accumulation (steatosis) and inflammation. Currently, therapeutic options are poor and the long-term burden to society is constantly increasing. Previously, macrophage stimulating protein (MSP)-a serum

  9. Intrinsic Gastrointestinal Macrophages: Their Phenotype and Role in Gastrointestinal MotilitySummary

    Directory of Open Access Journals (Sweden)

    Gianluca Cipriani

    2016-03-01

    Full Text Available There is an increasing awareness of the role of macrophages in the regulation and maintenance of gastrointestinal function in health and disease. This work has proceeded in the context of an increased understanding of the complex phenotypic variation in macrophages throughout the body and has shown previously unidentified roles for macrophages in diseases such as gastroparesis, postoperative ileus, and inflammatory bowel disease. Opportunities for exploiting the phenotypic modulation of tissue resident macrophages have been identified as possible therapies for some of these diseases. In addition, macrophages are an established component of the innate immune system and can respond to variations and changes in the intestinal microbiome and potentially mediate part of the impact of the microbiota on intestinal health. We reviewed the latest work on novel concepts in defining macrophage phenotype, discuss possible mechanisms of action for tissue-resident macrophages in the gut, address the significance of microbiome effects on macrophage phenotype, and review the known and possible roles of macrophages in motility disorders of the gastrointestinal tract. Keywords: Monocyte–Macrophage Precursor Cells, Gastrointestinal Motility, Enteric Nervous System, Interstitial Cells of Cajal

  10. Blood-borne LPS is rapidly eliminated by liver sinusoidal endothelial cells via HDL

    Science.gov (United States)

    Yao, Zhili; Mates, Jessica M.; Cheplowitz, Alana M.; Hammer, Lindsay P.; Maiseyeu, Andrei; Phillips, Gary S.; Wewers, Mark D.; Rajaram, Murugesan V.S.; Robinson, John M.; Anderson, Clark L.; Ganesan, Latha P.

    2016-01-01

    During Gram-negative bacterial infections, excessive lipopolysaccharide (LPS) induces inflammation and sepsis via action on immune cells. However, the bulk of LPS can be cleared from circulation by the liver. Liver clearance is thought to be a slow process mediated exclusively by phagocytic resident macrophages, Kupffer cells (KC). However, we discovered that LPS disappears rapidly from the circulation, with a half-life of 2–4 minutes in mice and liver eliminates about three quarters of LPS from blood circulation. Using microscopic techniques, we found that ~75% of fluor-tagged LPS in liver became associated with liver sinusoidal endothelial cells (LSEC) and only ~25% with KC. Notably, the ratio of LSEC-KC associated LPS remained unchanged 45 min after infusion, indicating that LSEC independently processes the LPS. Most interestingly, results of kinetic analysis of LPS bioactivity, using modified limulus amebocyte lysate assay, suggest that recombinant factor-C, an LPS binding protein, competitively inhibits HDL-mediated LPS association with LSEC early in the process. Supporting the previous notion 3 min post-infusion, 75% of infused fluorescently-tagged LPS-HDL complex associates with LSEC, suggesting that HDL facilitates LPS clearance. These results lead us to propose a new paradigm of LSEC and HDL in clearing LPS with a potential to avoid inflammation during sepsis. PMID:27534554

  11. Human Induced Pluripotent Stem Cell-Derived Macrophages for Unraveling Human Macrophage Biology.

    Science.gov (United States)

    Zhang, Hanrui; Reilly, Muredach P

    2017-11-01

    Despite a substantial appreciation for the critical role of macrophages in cardiometabolic diseases, understanding of human macrophage biology has been hampered by the lack of reliable and scalable models for cellular and genetic studies. Human induced pluripotent stem cell (iPSC)-derived macrophages (IPSDM), as an unlimited source of subject genotype-specific cells, will undoubtedly play an important role in advancing our understanding of the role of macrophages in human diseases. In this review, we summarize current literature in the differentiation and characterization of IPSDM at phenotypic, functional, and transcriptomic levels. We emphasize the progress in differentiating iPSC to tissue resident macrophages, and in understanding the ontogeny of in vitro differentiated IPSDM that resembles primitive hematopoiesis, rather than adult definitive hematopoiesis. We review the application of IPSDM in modeling both Mendelian genetic disorders and host-pathogen interactions. Finally, we highlighted the potential areas of research using IPSDM in functional validation of coronary artery disease loci in genome-wide association studies, functional genomic analyses, drug testing, and cell therapeutics in cardiovascular diseases. © 2017 American Heart Association, Inc.

  12. Blunted cardiac response to hemorrhage in cirrhotic rats is mediated by local macrophage-released endocannabinoids.

    Science.gov (United States)

    Gaskari, Seyed Ali; Liu, Hongqun; D'Mello, Charlotte; Kunos, George; Lee, Samuel S

    2015-06-01

    Cirrhosis is associated with blunted cardiovascular response to stimuli such as hemorrhage, but the mechanism remains unclear. We aimed to clarify the role of endocannabinoids in blunted hemorrhage response in cirrhotic rats. Cirrhosis was induced by bile duct ligation (BDL). Hemodynamics were measured. Cannabinoid receptor-1 (CB1) antagonist, AM251, and macrophage inhibitor gadolinium chloride (GdCl3) were administered. Myocardial levels of anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) were measured and resident monocytes and macrophages quantified by immunohistochemistry. Isolated cardiomyocyte contractility was measured before and after incubation with monocytes from BDL and sham controls. Hemorrhage significantly decreased arterial pressure and left ventricular dP/dT. After hemorrhage, these changes quickly reversed in controls, but were severely prolonged in BDL rats. Chronic AM251 treatment restored this impaired response. AEA and 2-AG levels were increased in BDL hearts and further increased after hemorrhage. Sham hearts showed virtually no monocytes or macrophages before or after hemorrhage, whereas BDL hearts had significantly more white blood cells which further increased after hemorrhage. GdCl3 treatment significantly reduced cardiac endocannabinoid levels both at baseline and after hemorrhage. This treatment also restored cardiovascular response to hemorrhage in BDL rats but did not affect sham controls. Monocytes isolated from BDL rats more potently inhibited cardiomyocyte contractility than sham control monocytes. The cirrhotic heart showed increased monocyte recruitment and endocannabinoid levels. CB1 blockade or GdCl3 treatment restored blunted cardiovascular response to hemorrhage. Endocannabinoids released by monocytes blunt cardiac response to hemorrhage. Preventing monocyte recruitment or blocking endocannabinoid signaling may improve cardiovascular homeostasis in cirrhosis. Copyright © 2015 European Association for the Study of the Liver

  13. Inflammatory Mediators and Insulin Resistance in Obesity: Role of Nuclear Receptor Signaling in Macrophages

    Directory of Open Access Journals (Sweden)

    Lucía Fuentes

    2010-01-01

    Full Text Available Visceral obesity is coupled to a general low-grade chronic inflammatory state characterized by macrophage activation and inflammatory cytokine production, leading to insulin resistance (IR. The balance between proinflammatory M1 and antiinflammatory M2 macrophage phenotypes within visceral adipose tissue appears to be crucially involved in the development of obesity-associated IR and consequent metabolic abnormalities. The ligand-dependent transcription factors peroxisome proliferator activated receptors (PPARs have recently been implicated in the determination of the M1/M2 phenotype. Liver X receptors (LXRs, which form another subgroup of the nuclear receptor superfamily, are also important regulators of proinflammatory cytokine production in macrophages. Disregulation of macrophage-mediated inflammation by PPARs and LXRs therefore underlies the development of IR. This review summarizes the role of PPAR and LXR signaling in macrophages and current knowledge about the impact of these actions in the manifestation of IR and obesity comorbidities such as liver steatosis and diabetic osteopenia.

  14. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    Science.gov (United States)

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  15. Liver Hemangioma

    Science.gov (United States)

    Liver hemangioma Overview A liver hemangioma (he-man-jee-O-muh) is a noncancerous (benign) mass in the liver. A liver hemangioma is made up of a tangle of blood vessels. Other terms for a liver hemangioma are hepatic hemangioma and cavernous hemangioma. Most ...

  16. MicroRNAs Control Macrophage Formation and Activation: The Inflammatory Link between Obesity and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Richard Cheng-An Chang

    2014-07-01

    Full Text Available Activation and recruitment of resident macrophages in tissues in response to physiological stress are crucial regulatory processes in promoting the development of obesity-associated metabolic disorders and cardiovascular diseases. Recent studies have provided compelling evidence that microRNAs play important roles in modulating monocyte formation, macrophage maturation, infiltration into tissues and activation. Macrophage-dependent systemic physiological and tissue-specific responses also involve cell-cell interactions between macrophages and host tissue niche cell components, including other tissue-resident immune cell lineages, adipocytes, vascular smooth muscle and others. In this review, we highlight the roles of microRNAs in regulating the development and function of macrophages in the context of obesity, which could provide insights into the pathogenesis of obesity-related metabolic syndrome and cardiovascular diseases.

  17. Heterogeneity of the radiosensitivity and origins of tissue macrophage colony-forming cells

    Energy Technology Data Exchange (ETDEWEB)

    Oghiso, Yoichi; Yamada, Yutaka (National Inst. of Radiological Sciences, Chiba (Japan))

    1992-12-01

    Previous studies suggest that the radiosensitivity and origin of tissue macrophage precursors differ from those of hemopoietic macrophage colony-forming units (CFU-Ms) committed to macrophage-lineage cells. We assessed the origins of tissue macrophage colony-forming cells (M-CFCs) in mice by comparing their kinetics and radiosensitivities in the normal steady state and under the conditions of bone marrow depletion by [sup 89]Sr-administration and/or splenectomy. The results indicate that the radiosensitive peritoneal M-CFCs elicited by thioglycollate are derived from bone marrow macrophage precursors; where as alveolar M-CFCs, which are radioresistant, are self-sustained locally and independent of hemopoietic macrophage precursors. In contrast, highly radiosensitive liver M-CFCs are probably derived from CFU-Ms that appear to be propagated in the spleen in association with hemopoietic responses. (author).

  18. Adipose tissue macrophages induce hepatic neutrophil recruitment and macrophage accumulation in mice.

    Science.gov (United States)

    Bijnen, Mitchell; Josefs, Tatjana; Cuijpers, Ilona; Maalsen, Constantijn J; van de Gaar, José; Vroomen, Maria; Wijnands, Erwin; Rensen, Sander S; Greve, Jan Willem M; Hofker, Marten H; Biessen, Erik A L; Stehouwer, Coen D A; Schalkwijk, Casper G; Wouters, Kristiaan

    2017-10-26

    Obesity is a risk factor for non-alcoholic steatohepatitis (NASH). This risk has been attributed to visceral adipose tissue (vAT) expansion associated with increased proinflammatory mediators. Accumulation of CD11c + proinflammatory adipose tissue macrophages (ATM) is an important driver of vAT inflammation. We investigated the role of ATMs in hepatic inflammation during NASH development. vAT isolated from lean, obese or ATM-depleted (using clodronate liposomes) obese mice was transplanted to lean ldlr -/- acceptor mice. Systemic and hepatic inflammation was assessed either after 2 weeks on standard chow or after 8 weeks on high cholesterol diet (HCD) to induce NASH. Transplanting donor vAT from obese mice increased HCD-induced hepatic macrophage content compared with lean-transplanted mice, worsening liver damage. ATM depletion prior to vAT transplantation reduced this increased hepatic macrophage accumulation. On chow, vAT transplantation induced a more pronounced increase in circulating and hepatic neutrophil numbers in obese-transplanted than lean-transplanted mice, while ATM depletion prior to vAT transplantation reversed this effect. Microarray analysis of fluorescence-activated cell sorting of CD11c + and CD11c - macrophages isolated from donor adipose tissue showed that obesity resulted in enhanced expression of neutrophil chemotaxis genes specifically in CD11c + ATMs. Involvement of the neutrophil chemotaxis proteins, CXCL14 and CXCL16, was confirmed by culturing vAT. In humans, CD11c expression in vAT of obese individuals correlated with vAT expression of neutrophil chemotactic genes and with hepatic expression of neutrophil and macrophage marker genes. ATMs from obese vAT induce hepatic macrophage accumulation during NASH development, possibly by enhancing neutrophil recruitment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise

  19. [Macrophages in asthma].

    Science.gov (United States)

    Medina Avalos, M A; Orea Solano, M

    1997-01-01

    Every time they exist more demonstrations of the paper than performs the line monocytes-macrophage in the patogenesis of the bronchial asthma. The mononuclear phagocytes cells, as the alveolar macrophages, also they can be activated during allergic methods. The monocytes macrophages are possible efficient inductors of the inflammation; this due to the fact that they can secrete inflammatory mediators, between those which are counted the pre-forming granules of peptides, metabolites of oxidation activation, activator of platelets activator and metabolites of the arachidonic acid. The identification of IL-1 in the liquidate of the bronchial ablution of sick asthmatic, as well as the identification of IL-1 in the I bronchioalveolar washing of places of allergens cutaneous prick, supports the activation concept mononuclear of phagocytic cells in allergic sufferings.

  20. Liver biopsy

    Science.gov (United States)

    Biopsy - liver; Percutaneous biopsy ... the biopsy needle to be inserted into the liver. This is often done by using ultrasound. The ... the chance of damage to the lung or liver. The needle is removed quickly. Pressure will be ...

  1. Permanent resident

    Directory of Open Access Journals (Sweden)

    John F. Fisher

    2016-05-01

    Full Text Available The training of physicians in the past century was based primarily on responsibility and the chain-of-command. Those with the bulk of that responsibility in the fields of pediatrics and internal medicine were residents. Residents trained the medical students and supervised them carefully in caring for patients. Most attending physicians supervised their teams at arm's length, primarily serving as teachers of the finer points of diagnosis and treatment during set periods of the day or week with a perfunctory signature on write-ups or progress notes. Residents endeavored to protect the attending physician from being heavily involved unless they were unsure about a clinical problem. Before contacting the attending physician, a more senior resident would be called. Responsibility was the ultimate teacher. The introduction of diagnosis-related groups by the federal government dramatically changed the health care delivery system, placing greater emphasis on attending physician visibility in the medical record, ultimately resulting in more attending physician involvement in day-to-day care of patients in academic institutions. Without specified content in attending notes, hospital revenues would decline. Although always in charge technically, attending physicians increasingly have assumed the role once dominated by the resident. Using biographical experiences of more than 40 years, the author acknowledges and praises the educational role of responsibility in his own training and laments its declining role in today's students and house staff.

  2. Permanent resident.

    Science.gov (United States)

    Fisher, John F

    2016-01-01

    The training of physicians in the past century was based primarily on responsibility and the chain-of-command. Those with the bulk of that responsibility in the fields of pediatrics and internal medicine were residents. Residents trained the medical students and supervised them carefully in caring for patients. Most attending physicians supervised their teams at arm's length, primarily serving as teachers of the finer points of diagnosis and treatment during set periods of the day or week with a perfunctory signature on write-ups or progress notes. Residents endeavored to protect the attending physician from being heavily involved unless they were unsure about a clinical problem. Before contacting the attending physician, a more senior resident would be called. Responsibility was the ultimate teacher. The introduction of diagnosis-related groups by the federal government dramatically changed the health care delivery system, placing greater emphasis on attending physician visibility in the medical record, ultimately resulting in more attending physician involvement in day-to-day care of patients in academic institutions. Without specified content in attending notes, hospital revenues would decline. Although always in charge technically, attending physicians increasingly have assumed the role once dominated by the resident. Using biographical experiences of more than 40 years, the author acknowledges and praises the educational role of responsibility in his own training and laments its declining role in today's students and house staff.

  3. IL-34 Suppresses Candida albicans Induced TNFα Production in M1 Macrophages by Downregulating Expression of Dectin-1 and TLR2

    Directory of Open Access Journals (Sweden)

    Rong Xu

    2015-01-01

    Full Text Available Candida albicans is a fungus that is an opportunistic pathogen of humans. Normally, C. albicans exists as a harmless commensal and does not trigger inflammatory responses by resident macrophages in skin mucosa, which may be caused by a tolerance of skin macrophage to C. albicans. IL-34 is a recently discovered cytokine, constitutively expressed by keratinocytes in the skin. IL-34 binds to the receptor of M-CSF, thereby stimulating tissue macrophage maturation and differentiation. Resident macrophages exhibit phenotypic plasticity and may transform into inflammatory M1 macrophages for immunity or anti-inflammatory M2 macrophages for tissue repair. M1 macrophages produce higher levels of inflammatory cytokines such as TNFα in response to C. albicans stimulation. In this study, it was demonstrated that IL-34 attenuated TNFα production by M1 macrophages challenged with heat killed Candida (HKC. The molecular mechanism of IL-34 mediated suppression of HKC induced TNFα production by M1 macrophages was by the inhibition of M1 macrophage expression of key C. albicans pattern recognition receptors (PPRs, namely, Toll-like receptor (TLR 2 and Dectin-1. The results of this study indicated that constitutive IL-34 expressed by skin keratinocytes might suppress resident macrophage responses to C. albicans colonisation by maintaining low levels TLR2 and Dectin-1 expression by macrophages.

  4. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong, E-mail: nzhang@fudan.edu.cn

    2013-11-15

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC.

  5. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    International Nuclear Information System (INIS)

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong

    2013-01-01

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC

  6. Rapid, radiolabeled-microculture method that uses macrophages for in vitro evaluation of Mycobacterium leprae viability and drug susceptibility.

    Science.gov (United States)

    Mittal, A; Sathish, M; Seshadri, P S; Nath, I

    1983-04-01

    This paper describes a microculture rapid assay using radiolabeling and mouse macrophages to determine the viability and the drug susceptibility or resistance of Mycobacterium leprae. Comparison of M. leprae resident macrophage cultures maintained in 96-well flat-bottomed plates showed results for viability and susceptibility or resistance to dapsone that were similar to results for concurrent cultures in Leighton tubes with greater numbers of bacilli and macrophages.

  7. Rapid, Radiolabeled-Microculture Method That Uses Macrophages for In Vitro Evaluation of Mycobacterium leprae Viability and Drug Susceptibility

    OpenAIRE

    Mittal, A.; Sathish, M.; Seshadri, P. S.; Nath, Indira

    1983-01-01

    This paper describes a microculture rapid assay using radiolabeling and mouse macrophages to determine the viability and the drug susceptibility or resistance of Mycobacterium leprae. Comparison of M. leprae resident macrophage cultures maintained in 96-well flat-bottomed plates showed results for viability and susceptibility or resistance to dapsone that were similar to results for concurrent cultures in Leighton tubes with greater numbers of bacilli and macrophages.

  8. Regenerative Capacity of Macrophages for Remyelination

    Directory of Open Access Journals (Sweden)

    Khalil eRawji

    2016-05-01

    Full Text Available White matter injury, consisting of loss of axons, myelin and oligodendrocytes, is common in many neurological disorders and is believed to underlie several motor and sensory deficits. Remyelination is the process in which the insulative myelin sheath is restored to axons, thereby facilitating recovery from functional loss. Remyelination proceeds with oligodendrocyte precursor cells that differentiate into oligodendrocytes to synthesize the new myelin sheath after demyelination. This process is influenced by several factors, including trophic factors, inhibitory molecules in the lesion microenvironment, age of the subject, as well as the inflammatory response. Currently studied strategies that enhance remyelination consist of pharmacological approaches that directly induce oligodendrocyte precursor cell differentiation or using agents to neutralize the inhibitory microenvironment. Another strategy is to harness a reparative inflammatory response. This response, coordinated by central nervous system resident microglia and peripherally-derived infiltrating macrophages, has been shown to be important in the remyelination process. These innate immune cells perform important functions in remyelination, including the proteolysis and phagocytosis of inhibitory molecules present in the lesion microenvironment, the provision of trophic and metabolic factors to oligodendrocyte precursor cells, in addition to iron handling capacity. Additionally, an initial pro-inflammatory phase followed by a regulatory/anti-inflammatory phase has been shown to be important for oligodendrocyte precursor cell proliferation and differentiation, respectively. This review will discuss the beneficial roles of macrophages/microglia in remyelination and discuss therapeutic strategies to obtain the optimal regenerative macrophage phenotype for enhanced remyelination.

  9. The macrophages in rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Laria A

    2016-02-01

    Full Text Available Antonella Laria, Alfredomaria Lurati , Mariagrazia Marrazza , Daniela Mazzocchi, Katia Angela Re, Magda Scarpellini Rheumatology Unit, Fornaroli Hospital, Magenta, Italy Abstract: Macrophages belong to the innate immune system giving us protection against pathogens. However it is known that they are also involved in rheumatic diseases. Activated macrophages have two different phenotypes related to different stimuli: M1 (classically activated and M2 (alternatively activated. M1 macrophages release high levels of pro-inflammatory cytokines, reactive nitrogen and oxygen intermediates killing microorganisms and tumor cells; while M2 macrophages are involved in resolution of inflammation through phagocytosis of apoptotic neutrophils, reduced production of pro-inflammatory cytokines, and increased synthesis of mediators important in tissue remodeling, angiogenesis, and wound repair. The role of macrophages in the different rheumatic diseases is different according to their M1/M2 macrophages phenotype. Keywords: macrophage, rheumatic diseases

  10. Endocannabinoids in Liver Disease

    Science.gov (United States)

    Tam, Joseph; Liu, Jie; Mukhopadhyay, Bani; Cinar, Resat; Godlewski, Grzegorz; Kunos, George

    2010-01-01

    Endocannabinoids are lipid mediators of the same cannabinoid (CB) receptors that mediate the effects of marijuana. The endocannabinoid system (ECS) consists of CB receptors, endocannabinoids, and the enzymes involved in their biosynthesis and degradation, and is present both in brain and peripheral tissues, including the liver. The hepatic ECS is activated in various liver diseases, which contributes to the underlying pathologies. In cirrhosis of various etiologies, activation of vascular and cardiac CB1 receptors by macrophage- and platelet-derived endocannabinoids contribute to the vasodilated state and cardiomyopathy, which can be reversed by CB1 blockade. In mouse models of liver fibrosis, activation of CB1 receptors on hepatic stellate cells is fibrogenic, and CB1 blockade slows the progression of fibrosis. Fatty liver induced by high-fat diets or chronic alcohol feeding depend on activation of peripheral, including hepatic CB1 receptors, which also contribute to insulin resistance and dyslipidemias. Although the documented therapeutic potential of CB1 blockade is limited by neuropsychiatric side effects, these may be mitigated by using novel, peripherally restricted CB1 antagonists. PMID:21254182

  11. Induced macrophage activation in live excised atherosclerotic plaque.

    Science.gov (United States)

    Prebble, Hannah; Cross, Sean; Marks, Edward; Healy, Joe; Searle, Emily; Aamir, Raja; Butler, Anthony; Roake, Justin; Hock, Barry; Anderson, Nigel; Gieseg, Steven P

    2018-03-23

    Atherosclerotic plaques are complex tissues containing many different cell types. Macrophages contribute to inflammation, formation of the necrotic core, and plaque rupture. We examined whether macrophages in plaque can be activated and compared this to monolayer cells. The volume of calcium in the plaque was compared to the level of macrophage activation measured by total neopterin output. Carotid plaque samples were cut into 3 mm sections and cultured for up to 96 h. Live sections were stimulated with interferon-γ, phytohaemagglutinin or phorbol 12-myristate 13-acetate. Macrophage activation and oxidative stress were monitored by total neopterin (oxidized and non-oxidized 7,8-dihydroneopterin) and neopterin levels every 24 h for up to 4 d. The calcium content of two plaques was investigated by spectral imaging. Direct stimulation of macrophages in plaque sections with interferon-γ caused a sustained increase in neopterin (p = .037) and total neopterin (p = .003). The addition of phorbol 12-myristate 13-acetate to plaque had no significant effect on total neopterin production (p = .073) but increased neopterin (p = .037) whereas phytohaemagglutinin caused a significant increase in both neopterin and total neopterin (p = .0279 and .0168). There was an inverse association (R 2  = 0.91) between the volume of calcium and macrophage activation as measured by total neopterin production in stimulated plaque tissue. Resident macrophages within excised carotid plaque activated either directly or indirectly generate the biomarkers 7,8-dihydroneopterin and neopterin. Macrophage activation rather than the oxidative environment is associated with plaque calcification. Copyright © 2018 Elsevier GmbH. All rights reserved.

  12. Update on macrophage clearance of inhaled micro- and nanoparticles.

    Science.gov (United States)

    Geiser, Marianne

    2010-08-01

    Lung macrophages, that is, the intravascular, interstitial, pleural, and surface macrophages, are part of the mononuclear phagocyte system. They are derived from the hematopoietic stem cell in the bone marrow with the monocytes as their putative precursors. Macrophages residing on the inner surfaces of the lungs and immersed within the lung lining layer, that is, the alveolar and the airway macrophages, are constantly exposed to the environment; it is those cells that are recognized as first line of cellular host defense. Phagocytic uptake of inhaled and deposited particles is the main mechanism to remove insoluble micrometer-sized particles from the lung surfaces, where mucociliary transport, cough, or sneezing fail or are absent. Phagocytosis requires an intact cytoskeleton and is most efficient when mediated by Fc-receptors, but complement and scavenger receptors like MARCO and CD206 are just as important. The main pathway for the clearance of macrophage-associated particles is by mucociliary transport; to a lesser degree and species specific, particle-containing macrophages may reenter into the interstitium and go from there to the lymphatics. Inhaled nanometer-sized particles that deposit along the entire respiratory tract, however, are not efficiently phagocytosed by surface macrophages. Uptake by spontaneous or stimulated (macro-) pinocytosis or electrokinetic's phenomena may become more important. In addition, translocation of nanometer-sized particles into the interstitium and to the blood circulation brings them into contact with other fluids; altered particle properties may influence particle uptake. Moreover, translocated particles may interact with lung macrophage populations that were previously not considered of great significance for the clearance of inhaled particles.

  13. Microparticles from apoptotic platelets promote resident macrophage differentiation

    OpenAIRE

    Vasina, E M; Cauwenberghs, S; Feijge, M A H; Heemskerk, J W M; Weber, C; Koenen, R R

    2011-01-01

    Platelets shed microparticles not only upon activation, but also upon ageing by an apoptosis-like process (apoptosis-induced platelet microparticles, PMap). While the activation-induced microparticles have widely been studied, not much is known about the (patho)physiological consequences of PMap formation. Flow cytometry and scanning electron microscopy demonstrated that PMap display activated integrins and interact to form microparticle aggregates. PMap were chemotactic for monocytic cells, ...

  14. Soluble macrophage-derived CD163 is a marker of disease activity and progression in early rheumatoid arthritis

    DEFF Research Database (Denmark)

    Greisen, Stinne Ravn; Moller, H J; Stengaard-Pedersen, Kristian

    2011-01-01

    To investigate the expression of the soluble form of the resident macrophage marker CD163 (sCD163) and its association with core parameters for disease activity, including radiographic progression in early rheumatoid arthritis (RA).......To investigate the expression of the soluble form of the resident macrophage marker CD163 (sCD163) and its association with core parameters for disease activity, including radiographic progression in early rheumatoid arthritis (RA)....

  15. Macrophages, PPARs, and Cancer

    Directory of Open Access Journals (Sweden)

    Jo A. Van Ginderachter

    2008-01-01

    Full Text Available Mononuclear phagocytes often function as control switches of the immune system, securing the balance between pro- and anti-inflammatory reactions. For this purpose and depending on the activating stimuli, these cells can develop into different subsets: proinflammatory classically activated (M1 or anti-inflammatory alternatively activated (M2 macrophages. The expression of the nuclear peroxisome proliferator-activated receptors (PPARs is regulated by M1- or M2-inducing stimuli, and these receptors are generally considered to counteract inflammatory M1 macrophages, while actively promoting M2 activation. This is of importance in a tumor context, where M1 are important initiators of inflammation-driven cancers. As a consequence, PPAR agonists are potentially usefull for inhibiting the early phases of tumorigenesis through their antagonistic effect on M1. In more established tumors, the macrophage phenotype is more diverse, making it more difficult to predict the outcome of PPAR agonism. Overall, in our view current knowledge provides a sound basis for the clinical evaluation of PPAR ligands as chemopreventive agents in chronic inflammation-associated cancer development, while cautioning against the unthoughtful application of these agents as cancer therapeutics.

  16. Langerhans Cells - The Macrophage in Dendritic Cell Clothing.

    Science.gov (United States)

    Doebel, Thomas; Voisin, Benjamin; Nagao, Keisuke

    2017-11-01

    Our assumptions on the identity and functions of Langerhans cells (LCs) of the epidermis have undergone considerable changes. Once thought to be prototypic representatives of the dendritic cell (DC) lineage, they are now considered to be a specialized subset of tissue-resident macrophages. Despite this, LCs display a remarkable mixture of properties. Like many tissue macrophages, they self-maintain locally. However, unlike tissue macrophages and similar to DCs, they homeostatically migrate to lymph nodes and present antigen to antigen-specific T cells. Current evidence indicates that the immune responses initiated by LCs are complex and dependent on antigenic properties and localization of the stimulus. This complexity is reflected in the recently demonstrated roles of LCs in type 17, regulatory, and humoral immune responses. Copyright © 2017. Published by Elsevier Ltd.

  17. Residency training program: Perceptions of residents

    African Journals Online (AJOL)

    Abstract. Background: There is a phobia among doctors for the residency training program, since the establishment of ... Materials and Methods: Structured questionnaires were administered to residents at 3 training institutions in Nigeria. Results: ... Keywords: Decentralization, motivation, perception, remuneration, residents.

  18. Liver Immunology

    Science.gov (United States)

    Bogdanos, Dimitrios P.; Gao, Bin; Gershwin, M. Eric

    2014-01-01

    The liver is the largest organ in the body and is generally regarded by non-immunologists as not having lymphoid function. However, such is far from accurate. This review highlights the importance of the liver as a lymphoid organ. Firstly, we discuss experimental data surrounding the role of liver as a lymphoid organ. The liver facilitates a tolerance rather than immunoreactivity, which protects the host from antigenic overload of dietary components and drugs derived from the gut and is also instrumental to fetal immune tolerance. Loss of liver tolerance leads to autoaggressive phenomena which if are not controlled by regulatory lymphoid populations may lead to the induction of autoimmune liver diseases. Liver-related lymphoid subpopulations also act as critical antigen-presenting cells. The study of the immunological properties of liver and delineation of the microenvironment of the intrahepatic milieu in normal and diseased livers provides a platform to understand the hierarchy of a series of detrimental events which lead to immune-mediated destruction of the liver and the rejection of liver allografts. The majority of emphasis within this review will be on the normal mononuclear cell composition of the liver. However, within this context, we will discus select, but not all, immune mediated liver disease and attempt to place these data in the context of human autoimmunity. PMID:23720323

  19. Macrophage immunoregulatory pathways in tuberculosis.

    Science.gov (United States)

    Rajaram, Murugesan V S; Ni, Bin; Dodd, Claire E; Schlesinger, Larry S

    2014-12-01

    Macrophages, the major host cells harboring Mycobacterium tuberculosis (M.tb), are a heterogeneous cell type depending on their tissue of origin and host they are derived from. Significant discord in macrophage responses to M.tb exists due to differences in M.tb strains and the various types of macrophages used to study tuberculosis (TB). This review will summarize current concepts regarding macrophage responses to M.tb infection, while pointing out relevant differences in experimental outcomes due to the use of divergent model systems. A brief description of the lung environment is included since there is increasing evidence that the alveolar macrophage (AM) has immunoregulatory properties that can delay optimal protective host immune responses. In this context, this review focuses on selected macrophage immunoregulatory pattern recognition receptors (PRRs), cytokines, negative regulators of inflammation, lipid mediators and microRNAs (miRNAs). Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Liver disease

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000205.htm Liver disease To use the sharing features on this page, please enable JavaScript. The term "liver disease" applies to many conditions that stop the ...

  1. Liver Diseases

    Science.gov (United States)

    Your liver is the largest organ inside your body. It helps your body digest food, store energy, and remove poisons. There are many kinds of liver diseases: Diseases caused by viruses, such as hepatitis ...

  2. Fatty Liver

    Science.gov (United States)

    ... Drug Interactions Pill Identifier Commonly searched drugs Aspirin Metformin Warfarin Tramadol Lactulose Ranitidine News & Commentary Recent News ... Rarely, fat accumulates in the liver during late pregnancy. This disorder, called fatty liver of pregnancy or ...

  3. Lanosterol Modulates TLR4-Mediated Innate Immune Responses in Macrophages

    Directory of Open Access Journals (Sweden)

    Elisa Araldi

    2017-06-01

    Full Text Available Macrophages perform critical functions in both innate immunity and cholesterol metabolism. Here, we report that activation of Toll-like receptor 4 (TLR4 in macrophages causes lanosterol, the first sterol intermediate in the cholesterol biosynthetic pathway, to accumulate. This effect is due to type I interferon (IFN-dependent histone deacetylase 1 (HDAC1 transcriptional repression of lanosterol-14α-demethylase, the gene product of Cyp51A1. Lanosterol accumulation in macrophages, because of either treatment with ketoconazole or induced conditional disruption of Cyp51A1 in mouse macrophages in vitro, decreases IFNβ-mediated signal transducer and activator of transcription (STAT1-STAT2 activation and IFNβ-stimulated gene expression. These effects translate into increased survival to endotoxemic shock by reducing cytokine secretion. In addition, lanosterol accumulation increases membrane fluidity and ROS production, thus potentiating phagocytosis and the ability to kill bacteria. This improves resistance of mice to Listeria monocytogenes infection by increasing bacterial clearance in the spleen and liver. Overall, our data indicate that lanosterol is an endogenous selective regulator of macrophage immunity.

  4. Nuclear receptor mediated mechanisms of macrophage cholesterol metabolism.

    Science.gov (United States)

    Nagy, Zsuzsanna S; Czimmerer, Zsolt; Nagy, Laszlo

    2013-04-10

    Macrophages comprise a family of multi-faceted phagocytic effector cells that differentiate "in situ" from circulating monocytes to exert various functions including clearance of foreign pathogens as well as debris derived from host cells. Macrophages also possess the ability to engulf and metabolize lipids and this way connect lipid metabolism and inflammation. The molecular link between these processes is provided by certain members of the nuclear receptor family. For instance, peroxisome proliferator activated receptors (PPAR) and liver X receptors (LXR) are able to sense the dynamically changing lipid environment and translate it to gene expression changes in order to modulate the cellular phenotype. Atherosclerosis embodies both sides of this coin: it is a disease in which macrophages with altered cholesterol metabolism keep the arteries in a chronically inflamed state. A large body of publications has accumulated during the past few decades describing the role of nuclear receptors in the regulation of macrophage cholesterol homeostasis, their contribution to the formation of atherosclerotic plaques and their crosstalk with inflammatory pathways. This review will summarize the most recent findings from this field narrowly focusing on the contribution of various nuclear receptors to macrophage cholesterol metabolism. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Chronic inflammation-elicited liver progenitor cell conversion to liver cancer stem cell with clinical significance.

    Science.gov (United States)

    Li, Xiao-Feng; Chen, Cheng; Xiang, Dai-Min; Qu, Le; Sun, Wen; Lu, Xin-Yuan; Zhou, Teng-Fei; Chen, Shu-Zhen; Ning, Bei-Fang; Cheng, Zhuo; Xia, Ming-Yang; Shen, Wei-Feng; Yang, Wen; Wen, Wen; Lee, Terence Kin Wah; Cong, Wen-Ming; Wang, Hong-Yang; Ding, Jin

    2017-12-01

    The substantial heterogeneity and hierarchical organization in liver cancer support the theory of liver cancer stem cells (LCSCs). However, the relationship between chronic hepatic inflammation and LCSC generation remains obscure. Here, we observed a close correlation between aggravated inflammation and liver progenitor cell (LPC) propagation in the cirrhotic liver of rats exposed to diethylnitrosamine. LPCs isolated from the rat cirrhotic liver initiated subcutaneous liver cancers in nonobese diabetic/severe combined immunodeficient mice, suggesting the malignant transformation of LPCs toward LCSCs. Interestingly, depletion of Kupffer cells in vivo attenuated the LCSC properties of transformed LPCs and suppressed cytokeratin 19/Oval cell 6-positive tumor occurrence. Conversely, LPCs cocultured with macrophages exhibited enhanced LCSC properties. We further demonstrated that macrophage-secreted tumor necrosis factor-α triggered chromosomal instability in LPCs through the deregulation of ubiquitin D and checkpoint kinase 2 and enhanced the self-renewal of LPCs through the tumor necrosis factor receptor 1/Src/signal transducer and activator of transcription 3 pathway, which synergistically contributed to the conversion of LPCs to LCSCs. Clinical investigation revealed that cytokeratin 19/Oval cell 6-positive liver cancer patients displayed a worse prognosis and exhibited superior response to sorafenib treatment. Our results not only clarify the cellular and molecular mechanisms underlying the inflammation-mediated LCSC generation but also provide a molecular classification for the individualized treatment of liver cancer. (Hepatology 2017;66:1934-1951). © 2017 by the American Association for the Study of Liver Diseases.

  6. Macrophages in Homeostatic Immune Function

    Directory of Open Access Journals (Sweden)

    Jonathan eJantsch

    2014-05-01

    Full Text Available Macrophages are not only involved in inflammatory and anti-infective processes, but also play an important role in maintaining tissue homeostasis. In this review, we summarize recent evidence investigating the role of macrophages in controlling angiogenesis, metabolism and salt and water balance. Particularly, we summarize the importance of macrophage tonicity enhancer binding protein (TonEBP, also termed nuclear factor of activated T-cells 5 [NFAT5] expression in the regulation of salt and water homeostasis. Further understanding of homeostatic macrophage function may lead to new therapeutic approaches to treat ischemia, hypertension and metabolic disorders.

  7. Macrophage JAK2 deficiency protects against high-fat diet-induced inflammation.

    Science.gov (United States)

    Desai, Harsh R; Sivasubramaniyam, Tharini; Revelo, Xavier S; Schroer, Stephanie A; Luk, Cynthia T; Rikkala, Prashanth R; Metherel, Adam H; Dodington, David W; Park, Yoo Jin; Kim, Min Jeong; Rapps, Joshua A; Besla, Rickvinder; Robbins, Clinton S; Wagner, Kay-Uwe; Bazinet, Richard P; Winer, Daniel A; Woo, Minna

    2017-08-09

    During obesity, macrophages can infiltrate metabolic tissues, and contribute to chronic low-grade inflammation, and mediate insulin resistance and diabetes. Recent studies have elucidated the metabolic role of JAK2, a key mediator downstream of various cytokines and growth factors. Our study addresses the essential role of macrophage JAK2 in the pathogenesis to obesity-associated inflammation and insulin resistance. During high-fat diet (HFD) feeding, macrophage-specific JAK2 knockout (M-JAK2 -/- ) mice gained less body weight compared to wildtype littermate control (M-JAK2 +/+ ) mice and were protected from HFD-induced systemic insulin resistance. Histological analysis revealed smaller adipocytes and qPCR analysis showed upregulated expression of some adipogenesis markers in visceral adipose tissue (VAT) of HFD-fed M-JAK2 -/- mice. There were decreased crown-like structures in VAT along with reduced mRNA expression of some macrophage markers and chemokines in liver and VAT of HFD-fed M-JAK2 -/- mice. Peritoneal macrophages from M-JAK2 -/- mice and Jak2 knockdown in macrophage cell line RAW 264.7 also showed lower levels of chemokine expression and reduced phosphorylated STAT3. However, leptin-dependent effects on augmenting chemokine expression in RAW 264.7 cells did not require JAK2. Collectively, our findings show that macrophage JAK2 deficiency improves systemic insulin sensitivity and reduces inflammation in VAT and liver in response to metabolic stress.

  8. Liver Biopsy

    Science.gov (United States)

    ... instrument called a cannula to remove the liver tissue sample. What is the liver and what does it do? ... who specializes in diagnosing diseases—looks at the tissue with a microscope and sends a report to the person's health care provider. What are the risks of liver biopsy? The risks ...

  9. Mycobacterial P-1-Type ATPases Mediate Resistance to Zinc Poisoning in Human Macrophages

    OpenAIRE

    Botella, Helene; Peyron, Pascale; Levillain, Florence; Poincloux, Renaud; Poquet, Yannick; Brandli, Irene; Wang, Chuan; Tailleux, Ludovic; Tilleul, Sylvain; Charriere, Guillaume M.; Waddell, Simon J.; Foti, Maria; Lugo-Villarino, Geanncarlo; Gao, Qian; Maridonneau-Parini, Isabelle

    2011-01-01

    Summary Mycobacterium tuberculosis thrives within macrophages by residing in phagosomes and preventing them from maturing and fusing with lysosomes. A?parallel transcriptional survey of intracellular mycobacteria and their host macrophages revealed signatures of heavy metal poisoning. In particular, mycobacterial genes encoding heavy metal efflux P-type ATPases CtpC, CtpG, and CtpV, and host cell metallothioneins and zinc exporter ZnT1, were induced during infection. Consistent with this patt...

  10. Interaction between polyalkylcyanoacrylate nanoparticles and peritoneal macrophages: MTT metabolism, NBT reduction, and NO production.

    Science.gov (United States)

    Cruz, T; Gaspar, R; Donato, A; Lopes, C

    1997-01-01

    The nature of interactions between macrophages and drug carriers is of primordial importance either in the design of more effective therapeutic strategies for macrophage-associated pathogenesis or in establishing new approaches for pharmacological action avoiding macrophages. Polyalkylcyanoacrylate nanoparticles (PMCA, PECA, PBCA and PIBCA nanoparticles) were assayed for their toxicity on peritoneal resident and thioglycolate-elicited macrophages. Cellular viability was assessed by MTT tetrazolium salt assay, oxidative burst by NBT reduction and NO production by nitrite evaluation. The nanoparticles tested led to cellular morphological modifications and induced toxicity in both types of macrophages in culture. The polyalkylcyanoacrylate nanoparticles uptake by peritoneal macrophages caused an increase in respiratory burst, as assessed by the NBT reduction assay, and induced the release of soluble toxic factors to the culture medium. The association of LPS with the PMCA nanoparticles significantly stimulated the production of nitric oxide (NO) by resident macrophages. In contrast, the association of PBCA nanoparticles with LPS does not increase the nitrite production as compared with LPS alone, which may be due to a different physico-chemical interaction between LPS and the two types of polymers. In cultured mice peritoneal macrophages, nanoparticles of PACA induce the production of oxygen reactive products, which cause changes in the cell metabolism of both resident and elicited macrophages. PMCA nanoparticles in association with LPS significantly increase the expression of the inducible isoform of nitric oxide synthase, leading to the release of large amount of NO, which may be highly cytotoxic to the cultured cells in the presence of peroxide generated from the oxidative burst.

  11. Macrophage Plasticity and the Role of Inflammation in Skeletal Muscle Repair

    Directory of Open Access Journals (Sweden)

    Yacine Kharraz

    2013-01-01

    Full Text Available Effective repair of damaged tissues and organs requires the coordinated action of several cell types, including infiltrating inflammatory cells and resident cells. Recent findings have uncovered a central role for macrophages in the repair of skeletal muscle after acute damage. If damage persists, as in skeletal muscle pathologies such as Duchenne muscular dystrophy (DMD, macrophage infiltration perpetuates and leads to progressive fibrosis, thus exacerbating disease severity. Here we discuss how dynamic changes in macrophage populations and activation states in the damaged muscle tissue contribute to its efficient regeneration. We describe how ordered changes in macrophage polarization, from M1 to M2 subtypes, can differently affect muscle stem cell (satellite cell functions. Finally, we also highlight some of the new mechanisms underlying macrophage plasticity and briefly discuss the emerging implications of lymphocytes and other inflammatory cell types in normal versus pathological muscle repair.

  12. Microglia: unique and common features with other tissue macrophages.

    Science.gov (United States)

    Prinz, Marco; Tay, Tuan Leng; Wolf, Yochai; Jung, Steffen

    2014-09-01

    Microglia are highly specialized tissue macrophages of the brain with dedicated functions in neuronal development, homeostasis and recovery from pathology Despite their unique localization in the central nervous system (CNS), microglia are ontogenetically and functionally related to their peripheral counterparts of the mononuclear phagocytic system in the body, namely tissue macrophages and circulating myeloid cells. Recent developments provided new insights into the myeloid system in the body with microglia emerging as intriguing unique archetypes. Similar to other tissue macrophages, microglia develop early during embryogenesis from immature yolk sac progenitors. But in contrast to most of their tissue relatives microglia persist throughout the entire life of the organism without any significant input from circulating blood cells due to their longevity and their capacity of self-renewal. Notably, microglia share some features with short-lived blood monocytes to limit CNS tissue damage in pathologies, but only bone marrow-derived cells display the ability to become permanently integrated in the parenchyma. This emphasizes the therapeutic potential of bone marrow-derived microglia-like cells. Further understanding of both fate and function of microglia during CNS pathologies and considering their uniqueness among other tissue macrophages will be pivotal for potential manipulation of immune cell function in the CNS, thereby reducing disease burden. Here, we discuss new aspects of myeloid cell biology in general with special emphasis on the brain-resident macrophages and microglia.

  13. Comparative analysis of the internalization of the macrophage receptor sialoadhesin in human and mouse primary macrophages and cell lines.

    Science.gov (United States)

    De Schryver, Marjorie; Leemans, Annelies; Pintelon, Isabel; Cappoen, Davie; Maes, Louis; Caljon, Guy; Cos, Paul; Delputte, Peter L

    2017-06-01

    Sialoadhesin (Sn) is a surface receptor expressed on resident macrophages with the ability to bind with sialic acids. During inflammation, an upregulation of Sn is observed. Upon binding of monoclonal antibodies to Sn, the receptor becomes internalized and this has been observed in multiple species. The latter characteristic, combined with the strong upregulation of Sn on inflammatory macrophages and the fact that Sn-positive macrophages contribute to certain inflammatory diseases, makes Sn an interesting entry portal for phenotype-modulating or cytotoxic drugs. Such drugs or toxins can be linked to Sn-specific antibodies which should enable their targeted uptake by macrophages. However, the activity of such drugs depends not only on their internalization but also on the intracellular trafficking and final fate in the endolysosomal system. Although information is available for porcine Sn, the detailed mechanisms of human and mouse Sn internalization and subsequent intracellular trafficking are currently unknown. To allow development of Sn-targeted therapies, differences across species and cellular background need to be characterized in more detail. In the current report, we show that internalization of human and mouse Sn is dynamin-dependent and clathrin-mediated, both in primary macrophages and CHO cell lines expressing a recombinant Sn. In primary macrophages, internalized Sn-specific F(ab') 2 fragments are located mostly in the early endosomes. With Fc containing Sn-specific antibodies, there is a slight shift towards lysosomal localization in mouse macrophages, possibly because of an interaction with Fc receptors. Surprisingly, in CHO cell lines expressing Sn, there is a predominant lysosomal localization. Our results show that the mechanism of Sn internalization and intracellular trafficking is concurrent in the tested species. The cellular background in which Sn is expressed and the type of antibody used can affect the intracellular fate, which in turn can

  14. SIV Infection of Lung Macrophages.

    Directory of Open Access Journals (Sweden)

    Yue Li

    Full Text Available HIV-1 depletes CD4+ T cells in the blood, lymphatic tissues, gut and lungs. Here we investigated the relationship between depletion and infection of CD4+ T cells in the lung parenchyma. The lungs of 38 Indian rhesus macaques in early to later stages of SIVmac251 infection were examined, and the numbers of CD4+ T cells and macrophages plus the frequency of SIV RNA+ cells were quantified. We showed that SIV infected macrophages in the lung parenchyma, but only in small numbers except in the setting of interstitial inflammation where large numbers of SIV RNA+ macrophages were detected. However, even in this setting, the number of macrophages was not decreased. By contrast, there were few infected CD4+ T cells in lung parenchyma, but CD4+ T cells were nonetheless depleted by unknown mechanisms. The CD4+ T cells in lung parenchyma were depleted even though they were not productively infected, whereas SIV can infect large numbers of macrophages in the setting of interstitial inflammation without depleting them. These observations point to the need for future investigations into mechanisms of CD4+ T cell depletion at this mucosal site, and into mechanisms by which macrophage populations are maintained despite high levels of infection. The large numbers of SIV RNA+ macrophages in lungs in the setting of interstitial inflammation indicates that lung macrophages can be an important source for SIV persistent infection.

  15. Epigenetic regulation of macrophage function

    NARCIS (Netherlands)

    Hoeksema, M.A.

    2016-01-01

    Atherosclerosis is a lipid-driven chronic inflammatory disorder with a key role for macrophages in all disease stages. Macrophages are involved as scavengers of lipids, regulate inflammation, attract other immune cells and contribute to the resolution of inflammation, fibrosis and plaque stability.

  16. EGFR Signaling in Liver Diseases

    Directory of Open Access Journals (Sweden)

    Karin Komposch

    2015-12-01

    Full Text Available The epidermal growth factor receptor (EGFR is a transmembrane receptor tyrosine kinase that is activated by several ligands leading to the activation of diverse signaling pathways controlling mainly proliferation, differentiation, and survival. The EGFR signaling axis has been shown to play a key role during liver regeneration following acute and chronic liver damage, as well as in cirrhosis and hepatocellular carcinoma (HCC highlighting the importance of the EGFR in the development of liver diseases. Despite the frequent overexpression of EGFR in human HCC, clinical studies with EGFR inhibitors have so far shown only modest results. Interestingly, a recent study has shown that in human HCC and in mouse HCC models the EGFR is upregulated in liver macrophages where it plays a tumor-promoting function. Thus, the role of EGFR in liver diseases appears to be more complex than what anticipated. Further studies are needed to improve the molecular understanding of the cell-specific signaling pathways that control disease development and progression to be able to develop better therapies targeting major components of the EGFR signaling network in selected cell types. In this review, we compiled the current knowledge of EGFR signaling in different models of liver damage and diseases, mainly derived from the analysis of HCC cell lines and genetically engineered mouse models (GEMMs.

  17. The macrophage scavenger receptor CD163

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Madsen, Mette; Møller, Holger J

    2006-01-01

    CD163 is the monocyte/macrophage-specific receptor for haptoglobin-hemoglobin (Hp-Hb) complexes. The cytoplasmic tail of human CD163 exists as a short tail variant and two long tail variants. Reverse transcriptase-polymerase chain reaction analysis indicated that all three CD163 variants...... are substantially expressed in blood, liver, and spleen, and the short tail variant is the predominant mRNA species. Using cell transfectants in which cDNA encoding the CD163 variants was inserted at the same site in the genome, we evaluated the expression and endocytic properties of the tail variants. Ligand...... uptake analysis showed that cells expressing the CD163 short tail variant exhibited a higher capacity for ligand endocytosis than cells expressing the CD163 long tail variants. The difference in endocytic activity was explained by confocal microscopic analysis, showing marked deviations in subcellular...

  18. Clinical science workshop: targeting the gut-liver-brain axis.

    Science.gov (United States)

    Patel, Vishal C; White, Helen; Støy, Sidsel; Bajaj, Jasmohan S; Shawcross, Debbie L

    2016-12-01

    A clinical science workshop was held at the ISHEN meeting in London on Friday 11th September 2014 with the aim of thrashing out how we might translate what we know about the central role of the gut-liver-brain axis into targets which we can use in the treatment of hepatic encephalopathy (HE). This review summarises the integral role that inter-organ ammonia metabolism plays in the pathogenesis of HE with specific discussion of the roles that the small and large intestine, liver, brain, kidney and muscle assume in ammonia and glutamine metabolism. Most recently, the salivary and gut microbiome have been shown to underpin the pathophysiological changes which culminate in HE and patients with advanced cirrhosis present with enteric dysbiosis with small bowel bacterial overgrowth and translocation of bacteria and their products across a leaky gut epithelial barrier. Resident macrophages within the liver are able to sense bacterial degradation products initiating a pro-inflammatory response within the hepatic parenchyma and release of cytokines such as tumour necrosis factor alpha (TNF-α) and interleukin-8 into the systemic circulation. The endotoxemia and systemic inflammatory response that are generated predispose both to the development of infection as well as the manifestation of covert and overt HE. Co-morbidities such as diabetes and insulin resistance, which commonly accompany cirrhosis, may promote slow gut transit, promote bacterial overgrowth and increase glutaminase activity and may need to be acknowledged in HE risk stratification assessments and therapeutic regimens. Therapies are discussed which target ammonia production, utilisation or excretion at an individual organ level, or which reduce systemic inflammation and endotoxemia which are known to exacerbate the cerebral effects of ammonia in HE. The ideal therapeutic strategy would be to use an agent that can reduce hyperammonemia and reduce systemic inflammation or perhaps to adopt a combination of

  19. Iron imaging reveals tumor and metastasis macrophage hemosiderin deposits in breast cancer.

    Science.gov (United States)

    Leftin, Avigdor; Ben-Chetrit, Nir; Klemm, Florian; Joyce, Johanna A; Koutcher, Jason A

    2017-01-01

    Iron-deposition is a metabolic biomarker of macrophages in both normal and pathological situations, but the presence of iron in tumor and metastasis-associated macrophages is not known. Here we mapped and quantified hemosiderin-laden macrophage (HLM) deposits in murine models of metastatic breast cancer using iron and macrophage histology, and in vivo MRI. Iron MRI detected high-iron pixel clusters in mammary tumors, lung metastasis, and brain metastasis as well as liver and spleen tissue known to contain the HLMs. Iron histology showed these regions to contain clustered macrophages identified by their common iron status and tissue-intrinsic association with other phenotypic macrophage markers. The in vivo MRI and ex vivo histological images were further processed to determine the frequencies and sizes of the iron deposits, and measure the number of HLMs in each deposit to estimate the in vivo MRI sensitivity for these cells. Hemosiderin accumulation is a macrophage biomarker and intrinsic contrast source for cellular MRI associated with the innate function of macrophages in iron metabolism systemically, and in metastatic cancer.

  20. Fatty Liver

    International Nuclear Information System (INIS)

    Filippone, A.; Digiovandomenico, V.; Digiovandomenico, E.; Genovesi, N.; Bonomo, L.

    1991-01-01

    The authors report their experience with the combined use of US and CT in the study of diffuse and subtotal fatty infiltration of the liver. An apparent disagreement was initially found between the two examinations in the study of fatty infiltration. Fifty-five patients were studied with US and CT of the upper abdomen, as suggested by clinics. US showed normal liver echogenicity in 30 patients and diffuse increased echogenicity (bright liver) in 25 cases. In 5 patients with bright liver, US demonstrated a solitary hypoechoic area, appearing as a 'skip area', in the quadrate lobe. In 2 patients with bright liver, the hypoechoic area was seen in the right lobe and exhibited no typical US features of 'Skip area'. Bright liver was quantified by measuring CT density of both liver and spleen. The relative attenuation values of spleen and liver were compared on plain and enhanced CT scans. In 5 cases with a hypoechoic area in the right lobe, CT findings were suggestive of hemangioma. A good correlation was found between broght liver and CT attenuation values, which decrease with increasing fat content of the liver. Moreover, CT attenuation values confirmed US findings in the study of typical 'skip area', by demonstrating normal density - which suggests that CT can characterize normal tissue in atypical 'skip area'

  1. Innate Immune Cells in Liver Inflammation

    Directory of Open Access Journals (Sweden)

    Evaggelia Liaskou

    2012-01-01

    Full Text Available Innate immune system is the first line of defence against invading pathogens that is critical for the overall survival of the host. Human liver is characterised by a dual blood supply, with 80% of blood entering through the portal vein carrying nutrients and bacterial endotoxin from the gastrointestinal tract. The liver is thus constantly exposed to antigenic loads. Therefore, pathogenic microorganism must be efficiently eliminated whilst harmless antigens derived from the gastrointestinal tract need to be tolerized in the liver. In order to achieve this, the liver innate immune system is equipped with multiple cellular components; monocytes, macrophages, granulocytes, natural killer cells, and dendritic cells which coordinate to exert tolerogenic environment at the same time detect, respond, and eliminate invading pathogens, infected or transformed self to mount immunity. This paper will discuss the innate immune cells that take part in human liver inflammation, and their roles in both resolution of inflammation and tissue repair.

  2. The liver in regulation of iron homeostasis.

    Science.gov (United States)

    Rishi, Gautam; Subramaniam, V Nathan

    2017-09-01

    The liver is one of the largest and most functionally diverse organs in the human body. In addition to roles in detoxification of xenobiotics, digestion, synthesis of important plasma proteins, gluconeogenesis, lipid metabolism, and storage, the liver also plays a significant role in iron homeostasis. Apart from being the storage site for excess body iron, it also plays a vital role in regulating the amount of iron released into the blood by enterocytes and macrophages. Since iron is essential for many important physiological and molecular processes, it increases the importance of liver in the proper functioning of the body's metabolism. This hepatic iron-regulatory function can be attributed to the expression of many liver-specific or liver-enriched proteins, all of which play an important role in the regulation of iron homeostasis. This review focuses on these proteins and their known roles in the regulation of body iron metabolism. Copyright © 2017 the American Physiological Society.

  3. Macrophage recruitment by fibrocystin-defective biliary epithelial cells promotes portal fibrosis in congenital hepatic fibrosis.

    Science.gov (United States)

    Locatelli, Luigi; Cadamuro, Massimiliano; Spirlì, Carlo; Fiorotto, Romina; Lecchi, Silvia; Morell, Carola Maria; Popov, Yury; Scirpo, Roberto; De Matteis, Maria; Amenduni, Mariangela; Pietrobattista, Andrea; Torre, Giuliano; Schuppan, Detlef; Fabris, Luca; Strazzabosco, Mario

    2016-03-01

    Congenital hepatic fibrosis (CHF) is a disease of the biliary epithelium characterized by bile duct changes resembling ductal plate malformations and by progressive peribiliary fibrosis, in the absence of overt necroinflammation. Progressive liver fibrosis leads to portal hypertension and liver failure; however, the mechanisms leading to fibrosis in CHF remain elusive. CHF is caused by mutations in PKHD1, a gene encoding for fibrocystin, a ciliary protein expressed in cholangiocytes. Using a fibrocystin-defective (Pkhd1(del4/del4)) mouse, which is orthologous of CHF, we show that Pkhd1(del4/del4) cholangiocytes are characterized by a β-catenin-dependent secretion of a range of chemokines, including chemokine (C-X-C motif) ligands 1, 10, and 12, which stimulate bone marrow-derived macrophage recruitment. We also show that Pkhd1(del4/del4) cholangiocytes, in turn, respond to proinflammatory cytokines released by macrophages by up-regulating αvβ6 integrin, an activator of latent local transforming growth factor-β1. While the macrophage infiltrate is initially dominated by the M1 phenotype, the profibrogenic M2 phenotype increases with disease progression, along with the number of portal myofibroblasts. Consistent with these findings, clodronate-induced macrophage depletion results in a significant reduction of portal fibrosis and portal hypertension as well as of liver cysts. Fibrosis can be initiated by an epithelial cell dysfunction, leading to low-grade inflammation, macrophage recruitment, and collagen deposition; these findings establish a new paradigm for biliary fibrosis and represent a model to understand the relationship between cell dysfunction, parainflammation, liver fibrosis, and macrophage polarization over time. © 2015 by the American Association for the Study of Liver Diseases.

  4. The roles of microglia/macrophages in tumor progression of brain cancer and metastatic disease.

    Science.gov (United States)

    Wu, Shih-Ying; Watabe, Kounosuke

    2017-06-01

    Malignant brain tumors and brain metastases are highly aggressive diseases that are often resistant to treatment. Consequently, the current prognosis of patients with brain tumors and metastases is dismal. Activated microglia and macrophages are often observed in close proximity to or within the malignant tumor masses, suggesting that microglia/macrophages play an important role in brain tumor progression. Microglia, being resident macrophages of the central nervous system, form a major component of the brain immune system. They exhibit anti-tumor functions by phagocytosis and the release of cytotoxic factors. However, these microglia/macrophages can be polarized into becoming tumor-supportive and immunosuppressive cells by certain tumor-derived soluble factors, thereby promoting tumor maintenance and progression. The activated microglia/macrophages also participate in the process of tumor angiogenesis, metastasis, dormancy, and relapse. In this review, we discuss the recent literature on the dual roles of microglia/macrophages in brain tumor progression. We have also reviewed the effect of several well-known microglia/macrophages-derived molecules and signals on brain tumor progression and further discussed the potential therapeutic strategies for targeting the pro-tumor and metastatic functions of microglia/macrophages.

  5. Phagocytosis and immune response studies of Macrophage-Nanodiamond Interactions in vitro and in vivo.

    Science.gov (United States)

    Huang, K-J; Lee, C-Y; Lin, Y-C; Lin, C-Y; Perevedentseva, E; Hung, S-F; Cheng, C-L

    2017-10-01

    The applications of nanodiamond as drug delivery and bio-imaging can require the relinquishing ND-drug conjugate via blood flow, where interaction with immune cells may occur. In this work, we investigated the ND penetration in macrophage and the immune response using the tissue-resident murine macrophages (RAW 264.7). Confocal fluorescence imaging, immunofluorescence analysis of nuclear translocation of interferon regulatory factor IRF-3 and transcriptional factor NF-κΒ, analysis of pro-inflammatory cytokines production IL-1β, IL-6 IL-10 with a reverse transcription-polymerase chain reaction technique were applied. The TNF-α factor production has been studied both in vitro at ND interaction with the macrophage and in vivo after ND injection in the mice blood system using immunoassay. The macrophage antibacterial function was estimated through E. coli bacterial colony formation. ND didn't stimulate the immune response and functionality of the macrophage was not altered. Using MTT test, ND was found negligibly cytotoxic to macrophages. Thus, ND can serve as a biocompatible platform for bio-medical applications. Left: Graphic representation of Nanodiamond internalization in macrophage. Right: (a) Fluorescence images of lysosomes, (b) nanodiamond and (c) merged image of nanodiamond internalization in macrophage. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:... potentialregulators of macrophage inflammatory activities. PubmedID 12472665 Title Macrophage-stimu

  7. Liver Transplant

    Science.gov (United States)

    ... Nutrition Clinical Trials Primary Biliary Cholangitis Definition & Facts Symptoms & Causes Diagnosis Treatment Eating, Diet, & Nutrition Clinical Trials Wilson Disease Liver Transplant View or Print All Sections Definition & ...

  8. Macrophages in the Human Cochlea: Saviors or Predators—A Study Using Super-Resolution Immunohistochemistry

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2018-02-01

    Full Text Available The human inner ear, which is segregated by a blood/labyrinth barrier, contains resident macrophages [CD163, ionized calcium-binding adaptor molecule 1 (IBA1-, and CD68-positive cells] within the connective tissue, neurons, and supporting cells. In the lateral wall of the cochlea, these cells frequently lie close to blood vessels as perivascular macrophages. Macrophages are also shown to be recruited from blood-borne monocytes to damaged and dying hair cells induced by noise, ototoxic drugs, aging, and diphtheria toxin-induced hair cell degeneration. Precise monitoring may be crucial to avoid self-targeting. Macrophage biology has recently shown that populations of resident tissue macrophages may be fundamentally different from circulating macrophages. We removed uniquely preserved human cochleae during surgery for treating petroclival meningioma compressing the brain stem, after ethical consent. Molecular and cellular characterization using immunofluorescence with antibodies against IBA1, TUJ1, CX3CL1, and type IV collagen, and super-resolution structured illumination microscopy (SR-SIM were made together with transmission electron microscopy. The super-resolution microscopy disclosed remarkable phenotypic variants of IBA1 cells closely associated with the spiral ganglion cells. Monitoring cells adhered to neurons with “synapse-like” specializations and protrusions. Active macrophages migrated occasionally nearby damaged hair cells. Results suggest that the human auditory nerve is under the surveillance and possible neurotrophic stimulation of a well-developed resident macrophage system. It may be alleviated by the non-myelinated nerve soma partly explaining why, in contrary to most mammals, the human’s auditory nerve is conserved following deafferentiation. It makes cochlear implantation possible, for the advantage of the profoundly deaf. The IBA1 cells may serve additional purposes such as immune modulation, waste disposal, and nerve

  9. Inhibition of sphingosine kinase 1 ameliorates acute liver failure by reducing high-mobility group box 1 cytoplasmic translocation in liver cells.

    Science.gov (United States)

    Lei, Yan-Chang; Yang, Ling-Ling; Li, Wen; Luo, Pan; Zheng, Pei-Fen

    2015-12-14

    To determine the therapeutic potential of sphingosine kinase 1 (Sphk1) inhibition and its underlying mechanism in a well-characterized mouse model of D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced acute liver failure (ALF). Balb/c mice were randomly assigned to different groups, with ALF induced by intraperitoneal injection of D-GaIN (600 mg/kg) and LPS (10 μg/kg). The Kaplan-Meier method was used for survival analysis. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels at different time points within one week were determined using a multi-parametric analyzer. Serum high-mobility group box 1 (HMGB1), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-10, and sphingosine-1-phosphate were detected by enzyme-linked immunosorbent assay. Hepatic morphological changes at 36 h after acute liver injury induction were assessed by hematoxylin and eosin staining. HMGB1 expression in hepatocytes and cytoplasmic translocation were detected by immunohistochemistry. Expression of Sphk1 in liver tissue and peripheral blood mononuclear cells (PBMCs) was analyzed by Western blot. The expression of Sphk1 in liver tissue and PBMCs was upregulated in GalN/LPS-induced ALF. Upregulated Sphk1 expression in liver tissue was mainly caused by Kupffer cells, the resident macrophages of the liver. The survival rates of mice in the N,N-dimethylsphingosine (DMS, a specific inhibitor of SphK1) treatment group were significantly higher than that of the control group (P < 0.001). DMS treatment significantly decreased the levels of serum ALT and AST at 6, 12, and 24 h compared with that of the control group (P < 0.01 for all). Serum HMGB1 levels at 6, 12, and 24 h, as well as serum TNF-α, IL-6, and IL-1β levels at 12 h, were significantly lower in the DMS treatment group than in the control group (P < 0.01 for all). Furthermore, hepatic inflammation, necrosis, and HMGB1 cytoplasm translocation in liver cells were significantly decreased in

  10. Metabolic reprogramming in macrophage polarization

    Directory of Open Access Journals (Sweden)

    Silvia eGalván-Peña

    2014-09-01

    Full Text Available Studying the metabolism of immune cells in recent years has emphasized the tight link existing between the metabolic state and the phenotype of these cells. Macrophages in particular are a good example of this phenomenon. Whether the macrophage obtains its energy through glycolysis or through oxidative metabolism can give rise to different phenotypes. Classically activated or M1 macrophages are key players of the first line of defense against bacterial infections and are known to obtain energy through glycolysis. Alternatively activated or M2 macrophages on the other hand, are involved in tissue repair and wound healing and use oxidative metabolism to fuel their longer-term functions. Metabolic intermediates however, are not just a source of energy but can be directly implicated in a particular macrophage phenotype. In M1 macrophages, the Krebs cycle intermediate succinate regulates HIF1α, which is responsible for driving the sustained production of the pro-inflammatory cytokine IL1β. In M2 macrophages, the sedoheptulose kinase CARKL is critical for regulating the pentose phosphate pathway. The potential to target these events and impact on disease is an exciting prospect.

  11. Macrophage heterogeneity in lymphoid tissues.

    Science.gov (United States)

    den Haan, Joke M M; Martinez-Pomares, Luisa

    2013-09-01

    Macrophages in lymphoid organs exhibit a wide variety of phenotypes and functions. These cells excel in the removal of apoptotic cells that arise during the generation of immune cells and are thereby essential for the prevention of auto-immune responses. In addition to this macrophages in the secondary lymphoid organs form an important barrier for spreading of infections by phagocytosis of pathogens and the activation of both innate and adaptive immune responses. Thus, the remarkable ability of macrophages to phagocytose and handle a wide range of self and non-self material and to produce immunomediators is effectively exploited within lymphoid organs to regulate immune activation.

  12. Neuron-macrophage crosstalk in the intestine: a ‘microglia’ perspective

    Directory of Open Access Journals (Sweden)

    Simon eVerheijden

    2015-10-01

    Full Text Available Intestinal macrophages are strategically located in different layers of the intestine, including the mucosa, submucosa and muscularis externa, where they perform complex tasks to maintain intestinal homeostasis. As the gastrointestinal tract is continuously challenged by foreign antigens, macrophage activation should be tightly controlled to prevent chronic inflammation and tissue damage. Unraveling the precise cellular and molecular mechanisms underlying the tissue-specific control of macrophage activation is crucial to get more insight into intestinal immune regulation. Two recent reports provide unanticipated evidence that the enteric nervous system acts as a critical regulator of macrophage function in the myenteric plexus. Both studies clearly illustrate that enteric neurons reciprocally interact with intestinal macrophages and are actively involved in shaping their phenotype. This concept has striking parallels with the central nervous system (CNS, where neuronal signals maintain microglia, the resident macrophages of the CNS, in a quiescent, anti-inflammatory state. This inevitably evokes the perception that the ENS and CNS share mechanisms of neuroimmune interaction. In line, intestinal macrophages, both in the muscularis externa and (submucosa, express high levels of CX3CR1, a feature that was once believed to be unique for microglia. CX3CR1 is the sole receptor of fractalkine (CX3CL1, a factor mainly produced by neurons in the CNS to facilitate neuron-microglia communication. The striking parallels between resident macrophages of the brain and intestine might provide a promising new line of thought to get more insight into cellular and molecular mechanisms controlling macrophage activation in the gut.

  13. Liver regeneration

    NARCIS (Netherlands)

    Chamuleau, R. A.; Bosman, D. K.

    1988-01-01

    Despite great advances in analysing hemodynamic, morphological and biochemical changes during the process of liver regeneration, the exact (patho)physiological mechanism is still unknown. A short survey of literature is given of the kinetics of liver regeneration and the significance of different

  14. The macrophage switch in obesity development

    Directory of Open Access Journals (Sweden)

    Angela eCastoldi

    2016-01-01

    Full Text Available Immune cell infiltration in (white adipose tissue during obesity is associated with the development of insulin resistance. In adipose tissue, the main population of leukocytes are macrophages. Macrophages can be classified into two major populations: M1, classically activated macrophages, and M2, alternatively activated macrophages, although recent studies have identified a broad range of macrophage subsets. During obesity, adipose tissue M1 macrophage numbers increase and correlate with adipose tissue inflammation and insulin resistance. Upon activation, pro-inflammatory M1 macrophages induce aerobic glycolysis. By contrast, in lean humans and mice, the number of M2 macrophages predominates. M2 macrophages secrete anti-inflammatory cytokines and utilize oxidative metabolism to maintain adipose tissue homeostasis. Here we review the immunologic and metabolic functions of adipose tissue macrophages and their different facets in obesity and the metabolic syndrome.

  15. Residency Allocation Database

    Data.gov (United States)

    Department of Veterans Affairs — The Residency Allocation Database is used to determine allocation of funds for residency programs offered by Veterans Affairs Medical Centers (VAMCs). Information...

  16. Macrophages in bone fracture healing: Their essential role in endochondral ossification.

    Science.gov (United States)

    Schlundt, Claudia; El Khassawna, Thaqif; Serra, Alessandro; Dienelt, Anke; Wendler, Sebastian; Schell, Hanna; van Rooijen, Nico; Radbruch, Andreas; Lucius, Richard; Hartmann, Susanne; Duda, Georg N; Schmidt-Bleek, Katharina

    2018-01-01

    In fracture healing, skeletal and immune system are closely interacting through common cell precursors and molecular mediators. It is thought that the initial inflammatory reaction, which involves migration of macrophages into the fracture area, has a major impact on the long term outcome of bone repair. Interestingly, macrophages reside during all stages of fracture healing. Thus, we hypothesized a critical role for macrophages in the subsequent phases of bone regeneration. This study examined the impact of in vivo induced macrophage reduction, using clodronate liposomes, on the different healing phases of bone repair in a murine model of a standard closed femoral fracture. A reduction in macrophages had no obvious effect on the early fracture healing phase, but resulted in a delayed hard callus formation, thus severely altering endochondral ossification. Clodronate treated animals clearly showed delayed bony consolidation of cartilage and enhanced periosteal bone formation. Therefore, we decided to backtrack macrophage distribution during fracture healing in non-treated mice, focusing on the identification of the M1 and M2 subsets. We observed that M2 macrophages were clearly prevalent during the ossification phase. Therefore enhancement of M2 phenotype in macrophages was investigated as a way to further bone healing. Induction of M2 macrophages through interleukin 4 and 13 significantly enhanced bone formation during the 3week investigation period. These cumulative data illustrate their so far unreported highly important role in endochondral ossification and the necessity of a fine balance in M1/M2 macrophage function, which appears mandatory to fracture healing and successful regeneration. Copyright © 2016. Published by Elsevier Inc.

  17. Expression and regulation of sterol 27-hydroxylase (CYP27A1) in human macrophages: a role for RXR and PPARγ ligands

    OpenAIRE

    Quinn, Carmel M.; Jessup, Wendy; Wong, Jenny; Kritharides, Leonard; Brown, Andrew J.

    2005-01-01

    CYP27A1 (sterol 27-hydroxylase) catalyses an important sterol elimination pathway in the human macrophage, and consequently may protect against atherosclerosis. We studied the expression and regulation of CYP27A1 in a human macrophage-like cell-line, THP-1, and primary HMDMs (human monocyte-derived macrophages). In both macrophage cell types, we found that CYP27A1 expression is independent of cellular cholesterol levels and of LXR (liver X receptor)-dependent control of transcription. However...

  18. Galactosylated LDL nanoparticles: a novel targeting delivery system to deliver antigen to macrophages and enhance antigen specific T cell responses.

    Science.gov (United States)

    Wu, Fang; Wuensch, Sherry A; Azadniv, Mitra; Ebrahimkhani, Mohammad R; Crispe, I Nicholas

    2009-01-01

    We aim to define the role of Kupffer cells in intrahepatic antigen presentation, using the selective delivery of antigen to Kupffer cells rather than other populations of liver antigen-presenting cells. To achieve this we developed a novel antigen delivery system that can target antigens to macrophages, based on a galactosylated low-density lipoprotein nanoscale platform. Antigen was delivered via the galactose particle receptor (GPr), internalized, degraded and presented to T cells. The conjugation of fluoresceinated ovalbumin (FLUO-OVA) and lactobionic acid with LDL resulted in a substantially increased uptake of FLUO-OVA by murine macrophage-like ANA1 cells in preference to NIH3T3 cells, and by primary peritoneal macrophages in preference to primary hepatic stellate cells. Such preferential uptake led to enhanced proliferation of OVA specific T cells, showing that the galactosylated LDL nanoscale platform is a successful antigen carrier, targeting antigen to macrophages but not to all categories of antigen presenting cells. This system will allow targeted delivery of antigen to macrophages in the liver and elsewhere, addressing the question of the role of Kupffer cells in liver immunology. It may also be an effective way of delivering drugs or vaccines directly at macrophages.

  19. Immunogenomics reveal molecular circuits of diclofenac induced liver injury in mice

    Science.gov (United States)

    Lee, Eun-Hee; Oh, Jung-Hwa; Selvaraj, Saravanakumar; Park, Se-Myo; Choi, Mi-Sun; Spanel, Reinhard

    2016-01-01

    Diclofenac is a non-steroidal anti-inflammatory drug and its use can be associated with severe adverse reactions, notably myocardial infarction, stroke and drug-induced liver injury (DILI). In pursue of immune-mediated DILI mechanisms an immunogenomic study was carried out. Diclofenac treatment of mice at 30 mg/kg for 3 days caused significant serum ALT and AST elevations, hepatomegaly and degenerative changes including hepatic glycogen depletion, hydropic swelling, cholesterolosis and eosinophilic hepatocytes with one animal presenting subsegmental infarction due to portal vein thrombosis. Furthermore, portal/periportal induction of the rate limiting enzyme in ammonia detoxification, i.e. carbamoyl phosphate synthetase 1 was observed. The performed microarray studies informed on > 600 differential expressed genes of which 35, 37 and 50 coded for inflammation, 51, 44 and 61 for immune and 116, 129 and 169 for stress response, respectively after single and repeated dosing for 3 and 14 days. Bioinformatic analysis defined molecular circuits of hepatic inflammation with the growth hormone (Ghr)− and leptin receptor, the protein-tyrosine-phosphatase, selectin and the suppressor-of-cytokine-signaling (Socs) to function as key nodes in gene regulatory networks. Western blotting confirmed induction of fibronectin and M-CSF to hallmark tissue repair and differentiation of monocytes and macrophages. Transcript expression of the macrophage receptor with collagenous structure increased > 7-fold and immunohistochemistry of CD68 evidenced activation of tissue-resident macrophages. Importantly, diclofenac treatment prompted strong expression of phosphorylated Stat3 amongst individual animals and the associated 8- and 4-fold Soc3 and Il-6 induction reinforced Ghr degradation as evidenced by immunoblotting. Moreover, immunohistochemistry confirmed regulation of master regulatory proteins of diclofenac treated mice to suggest complex pro-and anti-inflammatory reactions in immune

  20. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria

    NARCIS (Netherlands)

    Fabriek, Babs O.; van Bruggen, Robin; Deng, Dong Mei; Ligtenberg, Antoon J. M.; Nazmi, Kamran; Schornagel, Karin; Vloet, Rianka P. M.; Dijkstra, Christine D.; van den Berg, Timo K.

    2009-01-01

    The plasma membrane glycoprotein receptor CD163 is a member of the scavenger receptor cystein-rich (SRCR) superfamily class B that is highly expressed on resident tissue macrophages in vivo. Previously, the molecule has been shown to act as a receptor for hemoglobin-haptoglobin complexes and to

  1. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria

    NARCIS (Netherlands)

    Fabriek, B.O.; van Bruggen, R.; Deng, D.M.; Ligtenberg, A.J.M.; Nazmi, K.; Schornagel, K.; Vloet, R.P.M.; Dijkstra, C.D.; van den Berg, T.K.

    2009-01-01

    The plasma membrane glycoprotein re- ceptor CD163 is a member of the scaven- ger receptor cystein-rich (SRCR) super- family class B that is highly expressed on resident tissue macrophages in vivo. Pre- viously, the molecule has been shown to act as a receptor for hemoglobin- haptoglobin complexes

  2. Transcriptional immunoresponse of tissue-specific macrophages in swine after infection with African swine fever virus

    Directory of Open Access Journals (Sweden)

    Kowalczyk Andrzej

    2015-12-01

    Full Text Available Macrophages and cytokines are important in the control of inflammation and regulation of the immune response. However, they can also contribute to immunopathology in the host after viral infection and the regulatory network can be subverted by infectious agents, including viruses, some of which produce cytokine analogues or have mechanisms that inhibit cytokine function. African swine fever virus (ASFV encodes a number of proteins which modulate cytokine and chemokine induction, host transcription factor activation, stress responses, and apoptosis. The aim of this review is to elucidate the mechanisms of immune responses to ASFV in different subpopulations of porcine macrophages. A transcriptional immune response in different resident tissue macrophages following ASFV infection was presented in many publications. ASFV-susceptible porcine macrophages can be of several origins, such as peripheral blood, lungs, bone marrow, etc. blood monocytes, blood macrophages, and lung macrophages have demonstrated a modulation of phenotype. Monocyte-derived macrophages could express surface markers not found on their monocyte precursors. Moreover, they can undergo further differentiation after infection and during inflammation. When viruses infect such cells, immunological activity can be seriously impaired or modified.

  3. Nonpathogenic Lactobacillus rhamnosus activates the inflammasome and antiviral responses in human macrophages

    Science.gov (United States)

    Miettinen, Minja; Pietilä, Taija E.; Kekkonen, Riina A.; Kankainen, Matti; Latvala, Sinikka; Pirhonen, Jaana; Österlund, Pamela; Korpela, Riitta; Julkunen, Ilkka

    2012-01-01

    In this study, we have utilized global gene expression profiling to compare the responses of human primary macrophages to two closely related, well-characterized Lactobacillus rhamnosus strains GG and LC705, since our understanding of the responses elicited by nonpathogenic bacteria in human innate immune system is limited. Macrophages are phagocytic cells of the innate immune system that perform sentinel functions to initiate appropriate responses to surrounding stimuli. Macrophages that reside on gut mucosa encounter ingested and intestinal bacteria. Bacteria of Lactobacillus genus are nonpathogenic and used in food and as supplements with health-promoting probiotic potential. Our results demonstrate that live GG and LC705 induced quantitatively different gene expression profiles in macrophages. A gene ontology analysis revealed functional similarities and differences in responses to GG and LC705 that were reflected in host defense responses. Both GG and LC705 induced interleukin-1β production in macrophages that required caspase-1 activity. LC705, but not GG, induced type I interferon -dependent gene activation that correlated with its ability to prevent influenza A virus replication and production of viral proteins in macrophages. Our results indicate that nonpathogenic bacteria are able to activate the inflammasome. In addition, our results suggest that L. rhamnosus may prime the antiviral potential of human macrophages. PMID:22895087

  4. Cryptococcus neoformans-induced macrophage lysosome damage crucially contributes to fungal virulence.

    Science.gov (United States)

    Davis, Michael J; Eastman, Alison J; Qiu, Yafeng; Gregorka, Brian; Kozel, Thomas R; Osterholzer, John J; Curtis, Jeffrey L; Swanson, Joel A; Olszewski, Michal A

    2015-03-01

    Upon ingestion by macrophages, Cryptococcus neoformans can survive and replicate intracellularly unless the macrophages become classically activated. The mechanism enabling intracellular replication is not fully understood; neither are the mechanisms that allow classical activation to counteract replication. C. neoformans-induced lysosome damage was observed in infected murine bone marrow-derived macrophages, increased with time, and required yeast viability. To demonstrate lysosome damage in the infected host, we developed a novel flow cytometric method for measuring lysosome damage. Increased lysosome damage was found in C. neoformans-containing lung cells compared with C. neoformans-free cells. Among C. neoformans-containing myeloid cells, recently recruited cells displayed lower damage than resident cells, consistent with the protective role of recruited macrophages. The magnitude of lysosome damage correlated with increased C. neoformans replication. Experimental induction of lysosome damage increased C. neoformans replication. Activation of macrophages with IFN-γ abolished macrophage lysosome damage and enabled increased killing of C. neoformans. We conclude that induction of lysosome damage is an important C. neoformans survival strategy and that classical activation of host macrophages counters replication by preventing damage. Thus, therapeutic strategies that decrease lysosomal damage, or increase resistance to such damage, could be valuable in treating cryptococcal infections. Copyright © 2015 by The American Association of Immunologists, Inc.

  5. Depletion of spleen macrophages delays AA amyloid development: a study performed in the rapid mouse model of AA amyloidosis.

    Directory of Open Access Journals (Sweden)

    Katarzyna Lundmark

    Full Text Available AA amyloidosis is a systemic disease that develops secondary to chronic inflammatory diseases Macrophages are often found in the vicinity of amyloid deposits and considered to play a role in both formation and degradation of amyloid fibrils. In spleen reside at least three types of macrophages, red pulp macrophages (RPM, marginal zone macrophages (MZM, metallophilic marginal zone macrophages (MMZM. MMZM and MZM are located in the marginal zone and express a unique collection of scavenger receptors that are involved in the uptake of blood-born particles. The murine AA amyloid model that resembles the human form of the disease has been used to study amyloid effects on different macrophage populations. Amyloid was induced by intravenous injection of amyloid enhancing factor and subcutaneous injections of silver nitrate and macrophages were identified with specific antibodies. We show that MZMs are highly sensitive to amyloid and decrease in number progressively with increasing amyloid load. Total area of MMZMs is unaffected by amyloid but cells are activated and migrate into the white pulp. In a group of mice spleen macrophages were depleted by an intravenous injection of clodronate filled liposomes. Subsequent injections of AEF and silver nitrate showed a sustained amyloid development. RPMs that constitute the majority of macrophages in spleen, appear insensitive to amyloid and do not participate in amyloid formation.

  6. Plasma osteopontin in acute liver failure

    DEFF Research Database (Denmark)

    Srungaram, Praveen; Rule, Jody A; Yuan, He Jun

    2015-01-01

    BACKGROUND: Osteopontin (OPN) is a novel phosphoglycoprotein expressed in Kupffer cells that plays a pivotal role in activating natural killer cells, neutrophils and macrophages. Measuring plasma OPN levels in patients with acute liver failure (ALF) might provide insights into OPN function...... in the setting of massive hepatocyte injury. METHODS: OPN levels were measured using a Quantikine® ELISA assay on plasma from 105 consecutive ALF patients enrolled by the US Acute Liver Failure Study Group, as well as controls including 40 with rheumatoid arthritis (RA) and 35 healthy subjects both before, and 1...

  7. Liver transplant

    Science.gov (United States)

    ... a liver becomes available. Make sure that, no matter where you are going, you can be contacted ... ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get email updates Subscribe to RSS Follow ...

  8. Liver Transplant

    Science.gov (United States)

    ... Legacy Society Make Gifts of Stock Donate Your Car Personal Fundraising Partnership & Support Share Your Story Spread the Word Give While You Shop Contact Us Donate Now Liver Transplant Back In ...

  9. Enlarged Liver

    Science.gov (United States)

    ... of liver damage. Medicinal herbs. Certain herbs, including comfrey, ma huang and mistletoe, can increase your risk ... herbs to avoid include germander, chaparral, senna, mistletoe, comfrey, ma huang, valerian root, kava, celandine and green ...

  10. Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages.

    Science.gov (United States)

    Maler, Mareike D; Nielsen, Peter J; Stichling, Nicole; Cohen, Idan; Ruzsics, Zsolt; Wood, Connor; Engelhard, Peggy; Suomalainen, Maarit; Gyory, Ildiko; Huber, Michael; Müller-Quernheim, Joachim; Schamel, Wolfgang W A; Gordon, Siamon; Jakob, Thilo; Martin, Stefan F; Jahnen-Dechent, Willi; Greber, Urs F; Freudenberg, Marina A; Fejer, György

    2017-08-01

    The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs) and in AM-like primary macrophage lines (Max Planck Institute cells) than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6), alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors. IMPORTANCE Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages

  11. microRNA-150 inhibits the formation of macrophage foam cells through targeting adiponectin receptor 2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [Department of Geratory, Linzi District People’s Hospital of Zibo City, Zibo, Shandong (China); Zhang, Suhua, E-mail: drsuhuangzhang@qq.com [Department of HealthCare, Qilu Hospital of Shandong University (Qingdao), Qingdao City, Qingdao (China)

    2016-08-05

    Transformation of macrophages into foam cells plays a critical role in the pathogenesis of atherosclerosis. The aim of this study was to determine the expression and biological roles of microRNA (miR)-150 in the formation of macrophage foam cells and to identify its functional target(s). Exposure to 50 μg/ml oxidized low-density lipoprotein (oxLDL) led to a significant upregulation of miR-150 in THP-1 macrophages. Overexpression of miR-150 inhibited oxLDL-induced lipid accumulation in THP-1 macrophages, while knockdown of miR-150 enhanced lipid accumulation. apoA-I- and HDL-mediated cholesterol efflux was increased by 66% and 43%, respectively, in miR-150-overexpressing macrophages relative to control cells. In contrast, downregulation of miR-150 significantly reduced cholesterol efflux from oxLDL-laden macrophages. Bioinformatic analysis and luciferase reporter assay revealed adiponectin receptor 2 (AdipoR2) as a direct target of miR-150. Small interfering RNA-mediated downregulation of AdipoR2 phenocopied the effects of miR-150 overexpression, reducing lipid accumulation and facilitating cholesterol efflux in oxLDL-treated THP-1 macrophages. Knockdown of AdipoR2 induced the expression of proliferator-activated receptor gamma (PPARγ), liver X receptor alpha (LXRα), ABCA1, and ABCG1. Moreover, pharmacological inhibition of PPARγ or LXRα impaired AdipoR2 silencing-induced upregulation of ABCA1 and ABCG1. Taken together, our results indicate that miR-150 can attenuate oxLDL-induced lipid accumulation in macrophages via promotion of cholesterol efflux. The suppressive effects of miR-150 on macrophage foam cell formation are mediated through targeting of AdipoR2. Delivery of miR-150 may represent a potential approach to prevent macrophage foam cell formation in atherosclerosis. -- Highlights: •miR-150 inhibits macrophage foam cell formation. •miR-150 accelerates cholesterol efflux from oxLDL-laden macrophages. •miR-150 suppresses macrophage foam cell

  12. Macrophage Heterogeneity in Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Carian E. Boorsma

    2013-01-01

    Full Text Available Macrophages are among the most abundant cells in the respiratory tract, and they can have strikingly different phenotypes within this environment. Our knowledge of the different phenotypes and their functions in the lung is sketchy at best, but they appear to be linked to the protection of gas exchange against microbial threats and excessive tissue responses. Phenotypical changes of macrophages within the lung are found in many respiratory diseases including asthma, chronic obstructive pulmonary disease (COPD, and pulmonary fibrosis. This paper will give an overview of what macrophage phenotypes have been described, what their known functions are, what is known about their presence in the different obstructive and restrictive respiratory diseases (asthma, COPD, pulmonary fibrosis, and how they are thought to contribute to the etiology and resolution of these diseases.

  13. Macrophages play a dual role during pulmonary tuberculosis in mice

    NARCIS (Netherlands)

    Leemans, Jaklien C.; Thepen, Theo; Weijer, Sebastiaan; Florquin, Sandrine; van Rooijen, Nico; van de Winkel, Jan G.; van der Poll, Tom

    2005-01-01

    Pulmonary macrophages provide the preferred hiding and replication site of Mycobacterium tuberculosis but display antimicrobial functions. This raises questions regarding the role of macrophages during tuberculosis. We depleted lungs of activated macrophages (activated macrophage(-) mice) and

  14. Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity In Vitro.

    Directory of Open Access Journals (Sweden)

    Deborah G Nguyen

    Full Text Available Modeling clinically relevant tissue responses using cell models poses a significant challenge for drug development, in particular for drug induced liver injury (DILI. This is mainly because existing liver models lack longevity and tissue-level complexity which limits their utility in predictive toxicology. In this study, we established and characterized novel bioprinted human liver tissue mimetics comprised of patient-derived hepatocytes and non-parenchymal cells in a defined architecture. Scaffold-free assembly of different cell types in an in vivo-relevant architecture allowed for histologic analysis that revealed distinct intercellular hepatocyte junctions, CD31+ endothelial networks, and desmin positive, smooth muscle actin negative quiescent stellates. Unlike what was seen in 2D hepatocyte cultures, the tissues maintained levels of ATP, Albumin as well as expression and drug-induced enzyme activity of Cytochrome P450s over 4 weeks in culture. To assess the ability of the 3D liver cultures to model tissue-level DILI, dose responses of Trovafloxacin, a drug whose hepatotoxic potential could not be assessed by standard pre-clinical models, were compared to the structurally related non-toxic drug Levofloxacin. Trovafloxacin induced significant, dose-dependent toxicity at clinically relevant doses (≤ 4uM. Interestingly, Trovafloxacin toxicity was observed without lipopolysaccharide stimulation and in the absence of resident macrophages in contrast to earlier reports. Together, these results demonstrate that 3D bioprinted liver tissues can both effectively model DILI and distinguish between highly related compounds with differential profile. Thus, the combination of patient-derived primary cells with bioprinting technology here for the first time demonstrates superior performance in terms of mimicking human drug response in a known target organ at the tissue level.

  15. Residency training program: Perceptions of residents

    African Journals Online (AJOL)

    This study was carried out to ascertain the perception of the residency ... the time of the study. Analysis of the respondents showed similar findings for both senior and junior levels of training. Discussion. The introduction of the residency training program .... Overseas training/ attachment should be re-introduced. 12. (10.1).

  16. IAP survivin regulates atherosclerotic macrophage survival

    NARCIS (Netherlands)

    Blanc-Brude, Olivier P.; Teissier, Elisabeth; Castier, Yves; Lesèche, Guy; Bijnens, Ann-Pascal; Daemen, Mat; Staels, Bart; Mallat, Ziad; Tedgui, Alain

    2007-01-01

    Inflammatory macrophage apoptosis is critical to atherosclerotic plaque formation, but its mechanisms remain enigmatic. We hypothesized that inhibitor of apoptosis protein (IAP) survivin regulates macrophage death in atherosclerosis. Western blot analysis revealed discrete survivin expression in

  17. Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases.

    Science.gov (United States)

    Kholodenko, Irina V; Yarygin, Konstantin N

    2017-01-01

    The emerging field of regenerative medicine offers innovative methods of cell therapy and tissue/organ engineering as a novel approach to liver disease treatment. The ultimate scientific foundation of both cell therapy of liver diseases and liver tissue and organ engineering is delivered by the in-depth studies of the cellular and molecular mechanisms of liver regeneration. The cellular mechanisms of the homeostatic and injury-induced liver regeneration are unique. Restoration of the mass of liver parenchyma is achieved by compensatory hypertrophy and hyperplasia of the differentiated parenchymal cells, hepatocytes, while expansion and differentiation of the resident stem/progenitor cells play a minor or negligible role. Participation of blood-borne cells of the bone marrow origin in liver parenchyma regeneration has been proven but does not exceed 1-2% of newly formed hepatocytes. Liver regeneration is activated spontaneously after injury and can be further stimulated by cell therapy with hepatocytes, hematopoietic stem cells, or mesenchymal stem cells. Further studies aimed at improving the outcomes of cell therapy of liver diseases are underway. In case of liver failure, transplantation of engineered liver can become the best option in the foreseeable future. Engineering of a transplantable liver or its major part is an enormous challenge, but rapid progress in induced pluripotency, tissue engineering, and bioprinting research shows that it may be doable.

  18. Macrophage Heterogeneity and Plasticity: Impact of Macrophage Biomarkers on Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Joselyn Rojas

    2015-01-01

    Full Text Available Cardiovascular disease (CVD is a global epidemic, currently representing the worldwide leading cause of morbidity and mortality. Atherosclerosis is the fundamental pathophysiologic component of CVD, where the immune system plays an essential role. Monocytes and macrophages are key mediators in this aspect: due to their heterogeneity and plasticity, these cells may act as either pro- or anti-inflammatory mediators. Indeed, monocytes may develop heterogeneous functional phenotypes depending on the predominating pro- or anti-inflammatory microenvironment within the lesion, resulting in classic, intermediate, and non-classic monocytes, each with strikingly differing features. Similarly, macrophages may also adopt heterogeneous profiles being mainly M1 and M2, the former showing a proinflammatory profile while the latter demonstrates anti-inflammatory traits; they are further subdivided in several subtypes with more specialized functions. Furthermore, macrophages may display plasticity by dynamically shifting between phenotypes in response to specific signals. Each of these distinct cell profiles is associated with diverse biomarkers which may be exploited for therapeutic intervention, including IL-10, IL-13, PPAR-γ, LXR, NLRP3 inflammasomes, and microRNAs. Direct modulation of the molecular pathways concerning these potential macrophage-related targets represents a promising field for new therapeutic alternatives in atherosclerosis and CVD.

  19. Genetic deletion of low density lipoprotein receptor impairs sterol-induced mouse macrophage ABCA1 expression. A new SREBP1-dependent mechanism.

    Science.gov (United States)

    Zhou, Xiaoye; He, Wei; Huang, Zhiping; Gotto, Antonio M; Hajjar, David P; Han, Jihong

    2008-01-25

    Low density lipoprotein receptor (LDLR) mutations cause familial hypercholesterolemia and early atherosclerosis. ABCA1 facilitates free cholesterol efflux from peripheral tissues. We investigated the effects of LDLR deletion (LDLR(-/-)) on ABCA1 expression. LDLR(-/-) macrophages had reduced basal levels of ABCA1, ABCG1, and cholesterol efflux. A high fat diet increased cholesterol in LDLR(-/-) macrophages but not wild type cells. A liver X receptor (LXR) agonist induced expression of ABCA1, ABCG1, and cholesterol efflux in both LDLR(-/-) and wild type macrophages, whereas expression of LXRalpha or LXRbeta was similar. Interestingly, oxidized LDL induced more ABCA1 in wild type macrophages than LDLR(-/-) cells. LDL induced ABCA1 expression in wild type cells but inhibited it in LDLR(-/-) macrophages in a concentration-dependent manner. However, lipoproteins regulated ABCG1 expression similarly in LDLR(-/-) and wild type macrophages. Cholesterol or oxysterols induced ABCA1 expression in wild type macrophages but had little or inhibitory effects on ABCA1 expression in LDLR(-/-) macrophages. Active sterol regulatory element-binding protein 1a (SREBP1a) inhibited ABCA1 promoter activity in an LXRE-dependent manner and decreased both macrophage ABCA1 expression and cholesterol efflux. Expression of ABCA1 in animal tissues was inversely correlated to active SREBP1. Oxysterols inactivated SREBP1 in wild type macrophages but not in LDLR(-/-) cells. Oxysterol synergized with nonsteroid LXR ligand induced ABCA1 expression in wild type macrophages but blocked induction in LDLR(-/-) cells. Taken together, our studies suggest that LDLR is critical in the regulation of cholesterol efflux and ABCA1 expression in macrophage. Lack of the LDLR impairs sterol-induced macrophage ABCA1 expression by a sterol regulatory element-binding protein 1-dependent mechanism that can result in reduced cholesterol efflux and lipid accumulation in macrophages under hypercholesterolemic conditions.

  20. Heterogeneity of macrophage activation in fish

    NARCIS (Netherlands)

    Forlenza, M.; Fink, I.R.; Raes, G.; Wiegertjes, G.F.

    2011-01-01

    In this review, we focus on four different activation states of fish macrophages. In vitro, stimulation with microbial ligands induces the development of innate activated macrophages whereas classically activated macrophages can be induced by stimulation with LPS in combination with (recombinant)

  1. Characterization of macrophage adhesion molecule

    International Nuclear Information System (INIS)

    Remold-O'Donnell, E.; Savage, B.

    1988-01-01

    Macrophage adhesion molecule (MAM), an abundant surface molecule which functions in the adhesion and spreading of guinea pig macrophages on surfaces, is characterized as a heterodimer of the trypsin- and plasmin-sensitive glycopeptide gp160 (MAM-α) and the glycopeptide gp93 (MAM-β). The density of MAM molecules is estimated at 630,000 per macrophage on the basis of quantitative binding of 125 I-labeled monoclonal antibody. The glycopeptide subunits display microheterogeneity on isoelectrofocusing; the pI is 5.8-6.3 for gp160 (MAM-α) and 6.4-7.0 for gp93 (MAM-β). A neutrophil gp160, gp93 molecule was shown to be indistinguishable from macrophage MAM on the basis of electrophoresis, isoelectrofocusing, and reactivity with 10 monoclonal antibodies. A related heterodimer of gp93 associated with a larger, antigenically different glycopeptide (gp180, gp93)was identified on circulating lymphocytes. Cumulative properties indicate that MAM is the guinea pig analog of human Mo1 and mouse Mac-1

  2. HIV-1 and the macrophage

    NARCIS (Netherlands)

    Bol, Sebastiaan M.; Cobos-Jimenez, Viviana; Kootstra, Neeltje A.; van 't Wout, Angelique B.

    2011-01-01

    Macrophages and CD4(+) T cells are natural target cells for HIV-1, and both cell types contribute to the establishment of the viral reservoir that is responsible for continuous residual virus replication during antiretroviral therapy and viral load rebound upon treatment interruption. Scientific

  3. Resident Characteristics Report

    Data.gov (United States)

    Department of Housing and Urban Development — The Resident Characteristics Report summarizes general information about households who reside in Public Housing, or who receive Section 8 assistance. The report...

  4. Macrophage phenotypic subtypes diametrically regulate epithelial-mesenchymal plasticity in breast cancer cells

    International Nuclear Information System (INIS)

    Yang, Min; Ma, Bo; Shao, Hanshuang; Clark, Amanda M.; Wells, Alan

    2016-01-01

    Metastatic progression of breast cancer involves phenotypic plasticity of the carcinoma cells moving between epithelial and mesenchymal behaviors. During metastatic seeding and dormancy, even highly aggressive carcinoma cells take on an E-cadherin-positive epithelial phenotype that is absent from the emergent, lethal metastatic outgrowths. These phenotypes are linked to the metastatic microenvironment, though the specific cells and induction signals are still to be deciphered. Recent evidence suggests that macrophages impact tumor progression, and may alter the balance between cancer cell EMT and MErT in the metastatic microenvironment. Here we explore the role of M1/M2 macrophages in epithelial-mesenchymal plasticity of breast cancer cells by coculturing epithelial and mesenchymal cells lines with macrophages. We found that after polarizing the THP-1 human monocyte cell line, the M1 and M2-types were stable and maintained when co-cultured with breast cancer cells. Surprisingly, M2 macrophages may conferred a growth advantage to the epithelial MCF-7 cells, with these cells being driven to a partial mesenchymal phenotypic as indicated by spindle morphology. Notably, E-cadherin protein expression is significantly decreased in MCF-7 cells co-cultured with M2 macrophages. M0 and M1 macrophages had no effect on the MCF-7 epithelial phenotype. However, the M1 macrophages impacted the highly aggressive mesenchymal-like MDA-MB-231 breast cancer cells to take on a quiescent, epithelial phenotype with re-expression of E-cadherin. The M2 macrophages if anything exacerbated the mesenchymal phenotype of the MDA-MB-231 cells. Our findings demonstrate M2 macrophages might impart outgrowth and M1 macrophages may contribute to dormancy behaviors in metastatic breast cancer cells. Thus EMT and MErT are regulated by selected macrophage phenotype in the liver metastatic microenvironment. These results indicate macrophage could be a potential therapeutic target for limiting death due

  5. Establishment of self-renewable GM-CSF-dependent immature macrophages in vitro from murine bone marrow.

    Directory of Open Access Journals (Sweden)

    Sachiko Ito

    Full Text Available Macrophages play a key role in the innate immune system. Macrophages are thought to originate from hematopoietic precursors or the yolk sac. Here, we describe the in vitro establishment of self-renewable GM-CSF-dependent immature macrophages (GM-IMs from murine bone marrow (BM. GM-IMs grow continuously in vitro in conditioned medium containing GM-CSF. The immunophenotype of GM-IMs is F4/80(high CD11b(high CD11c(low Ly6C(low. By comparing gene expression in GM-IMs and BM dendritic cells, we found that GM-IMs expressed lower levels of chemokines, cytokines and their receptors. GM-IMs are round in shape, attach loosely to non-coated culture dishes and have a marked phagocytic capacity. These results indicate that GM-IMs are macrophage precursor cells. Following stimulation with LPS, monocyte-like GM-IMs converted to flat macrophage-like cells that tightly adhered to non-coated culture dishes and produced pro-inflammatory cytokines TNFα, IL-6 and IL-1β. These results indicated that GM-IMs differentiated to M1 pro-inflammatory macrophages. This was confirmed by stimulation of GM-IMs with IFNγ, an inducer of M1 markers. GM-IMs showed enhanced expression of M2 macrophage markers such as Arg1 and Retnla following stimulation by Th2 cytokines IL-4 and IL-13. When GM-IMs were injected into mice at sites of wounding, wound repair was enhanced. These results indicate that GM-IMs can differentiate to M2 macrophages. When GM-IMs were injected into clodronate-treated mice, they induced resident macrophage proliferation by producing M-CSF. In conclusion we have established self-renewable GM-CSF-dependent immature macrophages in vitro from murine BM, which differentiate to M1 or M2 macrophages.

  6. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  7. Liver cancer - hepatocellular carcinoma

    Science.gov (United States)

    Primary liver cell carcinoma; Tumor - liver; Cancer - liver; Hepatoma ... Hepatocellular carcinoma accounts for most liver cancers. This type of cancer occurs more often in men than women. It is usually diagnosed in people age 50 or ...

  8. Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal.

    Science.gov (United States)

    Baranska, Anna; Shawket, Alaa; Jouve, Mabel; Baratin, Myriam; Malosse, Camille; Voluzan, Odessa; Vu Manh, Thien-Phong; Fiore, Frédéric; Bajénoff, Marc; Benaroch, Philippe; Dalod, Marc; Malissen, Marie; Henri, Sandrine; Malissen, Bernard

    2018-04-02

    Here we describe a new mouse model that exploits the pattern of expression of the high-affinity IgG receptor (CD64) and allows diphtheria toxin (DT)-mediated ablation of tissue-resident macrophages and monocyte-derived cells. We found that the myeloid cells of the ear skin dermis are dominated by DT-sensitive, melanin-laden cells that have been missed in previous studies and correspond to macrophages that have ingested melanosomes from neighboring melanocytes. Those cells have been referred to as melanophages in humans. We also identified melanophages in melanocytic melanoma. Benefiting of our knowledge on melanophage dynamics, we determined the identity, origin, and dynamics of the skin myeloid cells that capture and retain tattoo pigment particles. We showed that they are exclusively made of dermal macrophages. Using the possibility to delete them, we further demonstrated that tattoo pigment particles can undergo successive cycles of capture-release-recapture without any tattoo vanishing. Therefore, congruent with dermal macrophage dynamics, long-term tattoo persistence likely relies on macrophage renewal rather than on macrophage longevity. © 2018 Baranska et al.

  9. Regulation of antioxidant enzyme activities in male and female rat macrophages by sex steroids

    Directory of Open Access Journals (Sweden)

    Azevedo R.B.

    2001-01-01

    Full Text Available Human and animal immune functions present sex dimorphism that seems to be mainly regulated by sex hormones. In the present study, the activities of the antioxidant enzymes total superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px were measured in intraperitoneal resident macrophages from adult male and female rats. In addition to comparing males and females, we also examined the regulation of these enzyme activities in macrophages by sex steroids. GSH-Px activity did not differ between male and female macrophages. However, both total SOD and CAT activities were markedly higher in females than in males (83 and 180%. Removal of the gonads in both males and females (comparison between castrated groups increased the difference in SOD activity from 83 to 138% and reduced the difference in CAT activity from 180 to 86%. Castration and testosterone administration did not significantly modify the activities of the antioxidant enzymes in male macrophages. Ovariectomy did not affect SOD or GSH-Px activity but markedly reduced (48% CAT activity. This latter change was fully reversed by estrogen administration, whereas progesterone had a smaller effect. These results led us to conclude that differences in the SOD and CAT activities may partially explain some of the differences in immune function reported for males and females. Also, estrogen is a potent regulator of CAT in macrophages and therefore this enzyme activity in macrophages may vary considerably during the menstrual cycle.

  10. Protracted elimination of gold nanoparticles from mouse liver

    DEFF Research Database (Denmark)

    Sadauskas, Evaldas; Wallin, Håkan; Stoltenberg, Meredin

    2009-01-01

    The present study aims at revealing the fate of 40-nm gold nanoparticles after intravenous injections. The gold nanoparticles were traced histochemically with light and transmission electron microscopy using autometallographic (AMG) staining, and the gold content in the liver was determined......% fall in the gold content over the observed 6 months, the AMG finding of a significant reduction in the stained area of the liver sections and number of macrophages loaded with gold nanoparticles reveals that over time an increasing part of the total amount of gold nanoparticles in the liver...

  11. Hyper-activated pro-inflammatory CD16 monocytes correlate with the severity of liver injury and fibrosis in patients with chronic hepatitis B.

    Directory of Open Access Journals (Sweden)

    Ji-Yuan Zhang

    Full Text Available BACKGROUND: Extensive mononuclear cell infiltration is strongly correlated with liver damage in patients with chronic hepatitis B virus (CHB infection. Macrophages and infiltrating monocytes also participate in the development of liver damage and fibrosis in animal models. However, little is known regarding the immunopathogenic role of peripheral blood monocytes and intrahepatic macrophages. METHODOLOGY/PRINCIPAL FINDINGS: The frequencies, phenotypes, and functions of peripheral blood and intrahepatic monocyte/macrophage subsets were analyzed in 110 HBeAg positive CHB patients, including 32 immune tolerant (IT carriers and 78 immune activated (IA patients. Liver biopsies from 20 IA patients undergoing diagnosis were collected for immunohistochemical analysis. IA patients displayed significant increases in peripheral blood monocytes and intrahepatic macrophages as well as CD16(+ subsets, which were closely associated with serum alanine aminotransferase (ALT levels and the liver histological activity index (HAI scores. In addition, the increased CD16(+ monocytes/macrophages expressed higher levels of the activation marker HLA-DR compared with CD16(- monocytes/macrophages. Furthermore, peripheral blood CD16(+ monocytes preferentially released inflammatory cytokines and hold higher potency in inducing the expansion of Th17 cells. Of note, hepatic neutrophils also positively correlated with HAI scores. CONCLUSIONS: These distinct properties of monocyte/macrophage subpopulations participate in fostering the inflammatory microenvironment and liver damage in CHB patients and further represent a collaborative scenario among different cell types contributing to the pathogenesis of HBV-induced liver disease.

  12. PPAR{gamma} regulates the expression of cholesterol metabolism genes in alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Anna D.; Malur, Anagha; Barna, Barbara P.; Kavuru, Mani S. [Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, East Carolina University (United States); Malur, Achut G. [Department of Microbiology and Immunology, East Carolina University (United States); Thomassen, Mary Jane, E-mail: thomassenm@ecu.edu [Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, East Carolina University (United States); Department of Microbiology and Immunology, East Carolina University (United States)

    2010-03-19

    Peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) is a nuclear transcription factor involved in lipid metabolism that is constitutively expressed in the alveolar macrophages of healthy individuals. PPAR{gamma} has recently been implicated in the catabolism of surfactant by alveolar macrophages, specifically the cholesterol component of surfactant while the mechanism remains unclear. Studies from other tissue macrophages have shown that PPAR{gamma} regulates cholesterol influx, efflux, and metabolism. PPAR{gamma} promotes cholesterol efflux through the liver X receptor-alpha (LXR{alpha}) and ATP-binding cassette G1 (ABCG1). We have recently shown that macrophage-specific PPAR{gamma} knockout (PPAR{gamma} KO) mice accumulate cholesterol-laden alveolar macrophages that exhibit decreased expression of LXR{alpha} and ABCG1 and reduced cholesterol efflux. We hypothesized that in addition to the dysregulation of these cholesterol efflux genes, the expression of genes involved in cholesterol synthesis and influx was also dysregulated and that replacement of PPAR{gamma} would restore regulation of these genes. To investigate this hypothesis, we have utilized a Lentivirus expression system (Lenti-PPAR{gamma}) to restore PPAR{gamma} expression in the alveolar macrophages of PPAR{gamma} KO mice. Our results show that the alveolar macrophages of PPAR{gamma} KO mice have decreased expression of key cholesterol synthesis genes and increased expression of cholesterol receptors CD36 and scavenger receptor A-I (SRA-I). The replacement of PPAR{gamma} (1) induced transcription of LXR{alpha} and ABCG1; (2) corrected suppressed expression of cholesterol synthesis genes; and (3) enhanced the expression of scavenger receptors CD36. These results suggest that PPAR{gamma} regulates cholesterol metabolism in alveolar macrophages.

  13. Systemic and Cardiac Depletion of M2 Macrophage through CSF-1R Signaling Inhibition Alters Cardiac Function Post Myocardial Infarction.

    Directory of Open Access Journals (Sweden)

    Anne-Laure Leblond

    Full Text Available The heart hosts tissue resident macrophages which are capable of modulating cardiac inflammation and function by multiple mechanisms. At present, the consequences of phenotypic diversity in macrophages in the heart are incompletely understood. The contribution of cardiac M2-polarized macrophages to the resolution of inflammation and repair response following myocardial infarction remains to be fully defined. In this study, the role of M2 macrophages was investigated utilising a specific CSF-1 receptor signalling inhibition strategy to achieve their depletion. In mice, oral administration of GW2580, a CSF-1R kinase inhibitor, induced significant decreases in Gr1lo and F4/80hi monocyte populations in the circulation and the spleen. GW2580 administration also induced a significant depletion of M2 macrophages in the heart after 1 week treatment as well as a reduction of cardiac arginase1 and CD206 gene expression indicative of M2 macrophage activity. In a murine myocardial infarction model, reduced M2 macrophage content was associated with increased M1-related gene expression (IL-6 and IL-1β, and decreased M2-related gene expression (Arginase1 and CD206 in the heart of GW2580-treated animals versus vehicle-treated controls. M2 depletion was also associated with a loss in left ventricular contractile function, infarct enlargement, decreased collagen staining and increased inflammatory cell infiltration into the infarct zone, specifically neutrophils and M1 macrophages. Taken together, these data indicate that CSF-1R signalling is critical for maintaining cardiac tissue resident M2-polarized macrophage population, which is required for the resolution of inflammation post myocardial infarction and, in turn, for preservation of ventricular function.

  14. Acute Liver Failure

    Science.gov (United States)

    ... begins in or spreads to your liver can cause your liver to fail. Shock. Overwhelming infection (sepsis) and shock can severely impair blood flow to the liver, causing liver failure. Many cases of acute liver failure have no apparent ... liver failure often causes complications, including: ...

  15. The phenotype of murine wound macrophages.

    Science.gov (United States)

    Daley, Jean M; Brancato, Samielle K; Thomay, Alan A; Reichner, Jonathan S; Albina, Jorge E

    2010-01-01

    The phenotype of wound macrophages has not been studied by direct examination of these cells, yet macrophages recruited to sites of injury are described as alternatively activated macrophages, requiring IL-4 or IL-13 for phenotypic expression. This study characterized wound macrophage phenotype in the PVA sponge wound model in mice. Eighty-five percent of wound macrophages isolated 1 day after injury expressed Gr-1, but only 20% of those isolated at 7 days expressed this antigen. Macrophages from 1-, 3-, and 7-day wounds expressed markers of alternative activation,including mannose receptor, dectin-1, arginase 1,and Ym1, but did not contain iNOS. Day 1 wound macrophages produced more TNF-alpha, more IL-6, and less TGF-beta than Day 7 wound macrophages. Wound macrophages did not produce IL-10. The cytokines considered necessary for alternative activation of macrophages,IL-4 and IL-13, were not detected in the wound environment and were not produced by wound cells.Wound macrophages did not contain PStat6. Wound fluids inhibited IL-13-dependent phosphorylation of Stat6 and contained IL-13Ralpha2, a soluble decoy receptor for IL-13. The phenotype of wound macrophages was not altered in mice lacking IL-4Ralpha, which is required for Stat6-dependent signaling of IL-4 and IL-13.Wound macrophages exhibit a complex phenotype,which includes traits associated with alternative and classical activation and changes as the wound matures.The wound macrophage phenotype does not require IL-4 or IL-13.

  16. PVA matches human liver in needle-tissue interaction

    NARCIS (Netherlands)

    de Jong, T.L.; Pluymen, L.H.; van Gerwen, D.J.; Kleinrensink, GJ; Dankelman, J.; van den Dobbelsteen, J.J.

    2017-01-01

    Medical phantoms can be used to study needle-tissue interaction and to train medical residents. The purpose of this research is to study the suitability of polyvinyl alcohol (PVA) as a liver tissue mimicking material in terms of needle-tissue interaction. Insertions into ex-vivo human livers were

  17. Immunology in the liver--from homeostasis to disease.

    Science.gov (United States)

    Heymann, Felix; Tacke, Frank

    2016-02-01

    The liver is a central immunological organ with a high exposure to circulating antigens and endotoxins from the gut microbiota, particularly enriched for innate immune cells (macrophages, innate lymphoid cells, mucosal-associated invariant T (MAIT) cells). In homeostasis, many mechanisms ensure suppression of immune responses, resulting in tolerance. Tolerance is also relevant for chronic persistence of hepatotropic viruses or allograft acceptance after liver transplantation. The liver can rapidly activate immunity in response to infections or tissue damage. Depending on the underlying liver disease, such as viral hepatitis, cholestasis or NASH, different triggers mediate immune-cell activation. Conserved mechanisms such as molecular danger patterns (alarmins), Toll-like receptor signalling or inflammasome activation initiate inflammatory responses in the liver. The inflammatory activation of hepatic stellate and Kupffer cells results in the chemokine-mediated infiltration of neutrophils, monocytes, natural killer (NK) and natural killer T (NKT) cells. The ultimate outcome of the intrahepatic immune response (for example, fibrosis or resolution) depends on the functional diversity of macrophages and dendritic cells, but also on the balance between pro-inflammatory and anti-inflammatory T-cell populations. As reviewed here, tremendous progress has helped to understand the fine-tuning of immune responses in the liver from homeostasis to disease, indicating promising targets for future therapies in acute and chronic liver diseases.

  18. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed.

    Science.gov (United States)

    Vainchtein, I D; Vinet, J; Brouwer, N; Brendecke, S; Biagini, G; Biber, K; Boddeke, H W G M; Eggen, B J L

    2014-10-01

    Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system (CNS) characterized by loss of myelin accompanied by infiltration of T-lymphocytes and monocytes. Although it has been shown that these infiltrates are important for the progression of MS, the role of microglia, the resident macrophages of the CNS, remains ambiguous. Therefore, we have compared the phenotypes of microglia and macrophages in a mouse model for MS, experimental autoimmune encephalomyelitis (EAE). In order to properly discriminate between these two cell types, microglia were defined as CD11b(pos) CD45(int) Ly-6C(neg) , and infiltrated macrophages as CD11b(pos) CD45(high) Ly-6C(pos) . During clinical EAE, microglia displayed a weakly immune-activated phenotype, based on the expression of MHCII, co-stimulatory molecules (CD80, CD86, and CD40) and proinflammatory genes [interleukin-1β (IL-1β) and tumour necrosis factor- α (TNF-α)]. In contrast, CD11b(pos) CD45(high) Ly-6C(pos) infiltrated macrophages were strongly activated and could be divided into two populations Ly-6C(int) and Ly-6C(high) , respectively. Ly-6C(high) macrophages contained less myelin than Ly-6C(int) macrophages and expression levels of the proinflammatory cytokines IL-1β and TNF-α were higher in Ly-6C(int) macrophages. Together, our data show that during clinical EAE, microglia are only weakly activated whereas infiltrated macrophages are highly immune reactive. © 2014 Wiley Periodicals, Inc.

  19. Storage xyloglucans: potent macrophages activators.

    Science.gov (United States)

    do Rosário, Marianna Maia Taulois; Kangussu-Marcolino, Mônica Mendes; do Amaral, Alex Evangelista; Noleto, Guilhermina Rodrigues; Petkowicz, Carmen Lúcia de Oliveira

    2011-01-15

    Storage xyloglucans from the seeds of Copaifera langsdorffii, Hymenaea courbaril and Tamarindus indica were obtained by aqueous extraction from the milled and defatted cotyledons, XGC, XGJ and XGT, respectively. The resulting fractions showed similar monosaccharide composition with Glc:Xyl:Gal molar ratios of 2.4:1.5:1.0, 3.8:1.5:1,0 and 3.6:2.4:1.0 for XGC, XGJ and XGT, respectively. High-performance size-exclusion chromatography of the polysaccharides showed unimodal profiles, and the average molar mass (M(w)) was obtained for XGC (9.6 × 10⁵ g/mol), XGJ (9.1 × 10⁵ g/mol) and XGT (7.3 × 10⁵ g/mol). The immunomodulatory effects of the xyloglucans on peritoneal macrophages were evaluated. Phagocytic activity was observed in macrophages treated with XGT. The effect of XGT was tested on the production of O₂(.-) and NO. At 25 μg/ml XGT caused a 100% increase in NO production when compared to the control group; however, it did not affect O₂(.-) production in the absence of PMA. The production of TNF-α, interleukins 1β and 6 by macrophages in the presence of the xyloglucans was evaluated. The polysaccharides affected the production of the cytokines by macrophages to different degrees. XGC caused an enhancement of IL-1β and TNF-α production, compared to the other xyloglucans. For IL-6 production, XGT gave greater stimulation than XGC and XGJ, reaching 87% at 50 μg/ml. XGJ promoted a statistically significant effect on all cytokine productions tested. The results indicate that the xyloglucans from C. langsdorffii, H. courbaril and T. indica can be classified as biological response modifiers (BRM). Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Evidence for particle transport between alveolar macrophages in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Nikula, K.J.; Guilmette, R.A.

    1995-12-01

    Recent studies at this Institute have focused on determining the role of alveolar macrophages (AMs) in the transport of particles within and form the lung. For those studies, AMs previously labeled using the nuclear stain Hoechst 33342 and polychromatic Fluoresbrite microspheres (1 {mu}m diameter, Polysciences, Inc., Warrington, PA) were instilled into lungs of recipient F344 rats. The fate of the donor particles and the doubly labeled AMs within recipient lungs was followed for 32 d. Within 2-4 d after instillation, the polychromatic microspheres were found in both donor and resident AMs, suggesting that particle transfer occurred between the donor and resident AMs. However, this may also have been an artifact resulting from phagocytosis of the microspheres form dead donor cells or from the fading or degradation of Hoechst 33342 within the donor cells leading to their misidentification as resident AMs. The results support the earlier findings that microspheres in donor AMs can be transferred to resident AMs within 2 d after instillation.

  1. Macrophage Activation and the Tumor Necrosis Factor Cascade in Hepatitis C Disease Progression Among HIV-Infected Women Participating in the Women's Interagency HIV Study.

    Science.gov (United States)

    French, Audrey L; Martin, Jonathan W; Evans, Charlesnika T; Peters, Marion; Kessaye, Seble G; Nowicki, Marek; Kuniholm, Mark; Golub, Elizabeth; Augenbraun, Michael; Desai, Seema N

    2017-12-01

    HIV/hepatitis C-coinfected persons experience more rapid liver disease progression than hepatitis C virus (HCV) monoinfected persons, even in the setting of potent antiretroviral therapy. We sought to articulate the role of macrophage activation and inflammation in liver disease progression by measuring serial soluble markers in HIV/HCV-coinfected women. We compared markers measured during retrospectively defined periods of rapid liver disease progression to periods where little or no liver disease progression occurred. Liver disease progression was defined by liver biopsy, liver-related death or the serum markers AST-to-platelet ratio index and FIB-4. Soluble CD14, sCD163, lipopolysaccharide (LPS), tumor necrosis factor (TNF) receptor II, interleukin-6, and chemokine ligand 2 (CCL 2) were measured at 3 time points over 5 years. One hundred six time intervals were included in the analysis: including 31 from liver disease progressors and 75 from nonprogressors. LPS, sCD14, interleukin-6, and CCL2 levels did not differ in slope or quantity over time between rapid liver disease progressors and nonprogressors. TNFRII and sCD163 were significantly higher in liver disease progressors at (P = 0.002 and liver fibrosis outcome in unadjusted models, with similar values when adjusted for HIV RNA and CD4 count. In women with HIV/HCV coinfection, higher sCD163 levels, a marker of macrophage activation, and TNFRII levels, implying activation of the TNF-α system, were associated with liver disease progression. Our results provide an addition to the growing body of evidence regarding the relationship between macrophage activation, inflammation, and liver disease progression in HIV/HCV coinfection.

  2. Effects of ischemia on lung macrophages.

    Directory of Open Access Journals (Sweden)

    Aigul Moldobaeva

    Full Text Available Angiogenesis after pulmonary ischemia is initiated by reactive O(2 species and is dependent on CXC chemokine growth factors, and its magnitude is correlated with the number of lavaged macrophages. After complete obstruction of the left pulmonary artery in mice, the left lung is isolated from the peripheral circulation until 5-7 days later, when a new systemic vasculature invades the lung parenchyma. Consequently, this model offers a unique opportunity to study the differentiation and/or proliferation of monocyte-derived cells within the lung. In this study, we questioned whether macrophage subpopulations were differentially expressed and which subset contributed to growth factor release. We characterized the change in number of all macrophages (MHCII(int, CD11C+, alveolar macrophages (MHCII(int, CD11C+, CD11B- and mature lung macrophages (MHCII(int, CD11C+, CD11B+ in left lungs from mice immediately (0 h or 24 h after left pulmonary artery ligation (LPAL. In left lung homogenates, only lung macrophages increased 24 h after LPAL (vs. 0 h; p<0.05. No changes in proliferation were seen in any subset by PCNA expression (0 h vs. 24 h lungs. When the number of monocytic cells was reduced with clodronate liposomes, systemic blood flow to the left lung 14 days after LPAL decreased by 42% (p<0.01 compared to vehicle controls. Furthermore, when alveolar macrophages and lung macrophages were sorted and studied in vitro, only lung macrophages secreted the chemokine MIP-2α (ELISA. These data suggest that ischemic stress within the lung contributes to the differentiation of immature monocytes to lung macrophages within the first 24 h after LPAL. Lung macrophages but not alveolar macrophages increase and secrete the proangiogenic chemokine MIP-2α. Overall, an increase in the number of lung macrophages appears to be critical for neovascularization in the lung, since clodronate treatment decreased their number and attenuated functional angiogenesis.

  3. Lipotoxicity in macrophages: evidence from diseases associated with the metabolic syndrome.

    Science.gov (United States)

    Prieur, Xavier; Roszer, Tamás; Ricote, Mercedes

    2010-03-01

    Accumulation of lipid metabolites within non-adipose tissues can induce chronic inflammation by promoting macrophage infiltration and activation. Oxidized and glycated lipoproteins, free fatty acids, free cholesterol, triacylglycerols, diacylglycerols and ceramides have long been known to induce cellular dysfunction through their pro-inflammatory and pro-apoptotic properties. Emerging evidence suggests that macrophage activation by lipid metabolites and further modulation by lipid signaling represents a common pathogenic mechanism underlying lipotoxicity in atherosclerosis, obesity-associated insulin resistance and inflammatory diseases related to metabolic syndrome such as liver steatosis and chronic kidney disease. In this review, we discuss the latest discoveries that support the role of lipids in modulating the macrophage phenotype in different metabolic diseases. We describe the common mechanisms by which lipid derivatives, through modulation of macrophage function, promote plaque instability in the arterial wall, impair insulin responsiveness and contribute to inflammatory liver, muscle and kidney disease. We discuss the molecular mechanism of lipid activation of pro-inflammatory pathways (JNK, NFkappaB) and the key roles played by the PPAR and LXR nuclear receptors-lipid sensors that link lipid metabolism and inflammation. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  4. T3 Regulates a Human Macrophage-Derived TSH-β Splice Variant: Implications for Human Bone Biology.

    Science.gov (United States)

    Baliram, R; Latif, R; Morshed, S A; Zaidi, M; Davies, T F

    2016-09-01

    TSH and thyroid hormones (T3 and T4) are intimately involved in bone biology. We have previously reported the presence of a murine TSH-β splice variant (TSH-βv) expressed specifically in bone marrow-derived macrophages and that exerted an osteoprotective effect by inducing osteoblastogenesis. To extend this observation and its relevance to human bone biology, we set out to identify and characterize a TSH-β variant in human macrophages. Real-time PCR analyses using human TSH-β-specific primers identified a 364-bp product in macrophages, bone marrow, and peripheral blood mononuclear cells that was sequence verified and was homologous to a human TSH-βv previously reported. We then examined TSH-βv regulation using the THP-1 human monocyte cell line matured into macrophages. After 4 days, 46.1% of the THP-1 cells expressed the macrophage markers CD-14 and macrophage colony-stimulating factor and exhibited typical morphological characteristics of macrophages. Real-time PCR analyses of these cells treated in a dose-dependent manner with T3 showed a 14-fold induction of human TSH-βv mRNA and variant protein. Furthermore, these human TSH-βv-positive cells, induced by T3 exposure, had categorized into both M1 and M2 macrophage phenotypes as evidenced by the expression of macrophage colony-stimulating factor for M1 and CCL-22 for M2. These data indicate that in hyperthyroidism, bone marrow resident macrophages have the potential to exert enhanced osteoprotective effects by oversecreting human TSH-βv, which may exert its local osteoprotective role via osteoblast and osteoclast TSH receptors.

  5. [Burnout in nursing residents].

    Science.gov (United States)

    Franco, Gianfábio Pimentel; de Barros, Alba Lúcia Bottura Leite; Nogueira-Martins, Luiz Antônio; Zeitoun, Sandra Salloum

    2011-03-01

    Nursing residents may experience physical and emotional exhaustion from the daily life of attending the Program. The aim of this study was to determine the Burnout incidence among Nursing Residents. An investigative, descriptive, analytical, longitudinal-prospective study was conducted with 16 Residents over two years. The Maslach Burnout Inventory was used, translated and validated for Brazil, as well as a sociodemographic/occupational data tool. Of all residents, 17.2% showed high rates in Emotional Exhaustion and Depersonalization; 18.8% showed impaired commitment in Personal Accomplishment, 75% of which belonged to specialty areas, such as Emergency Nursing, Adult and Pediatric Intensive Care. Age and specialty area were positively correlated with Personal Accomplishment. One of the Residents was identified with changes in three subscales of the Maslach Burnout Inventory, thus characterized as a Burnout Syndrome patient. Nursing Residents have profiles of disease. Knowing these factors can minimize health risks of these workers.

  6. NF-kappaB Activity in Macrophages Determines Metastatic Potential of Breast Tumor Cells

    Science.gov (United States)

    2011-08-01

    alpha: tumor necrosis factor alpha. Competing interests The authors declare that they have no competing interests. Authors’ contributions LC...with dox (2g/L) for 4 weeks and transgene expression was detected by RT- PCR in lung, liver, intestines (Int), and bone marrow (BM). D. IKFM and... neonatal period. The inducible cIKKb transgene allows macrophage activation at distinct stages of lung development, as compared with postnatal rodent

  7. Chemo-immunotherapy of liver metastases; the in vitro and in vivo effects of 5-Fluo-rouracil combi¬ned with liposome-encapsulated muramyl dipeptide.

    NARCIS (Netherlands)

    Daemen, Toos; Dontje, BHJ; Regts, Djoeke; Morselt, Henriette; Scherphof, Gerrit

    1994-01-01

    While investigating the effects of 5-fluorouracil (5FU) on the tumoricidal state of rat liver macrophages activated in vitro by means of liposome-encapsulated muramyl dipeptide (MDP), we observed that 5FU in combination with macrophages produced substantially higher extents of cytolytic activity on

  8. Wound Macrophages as Key Regulators of Repair

    Science.gov (United States)

    Brancato, Samielle K.; Albina, Jorge E.

    2011-01-01

    Recent results call for the reexamination of the phenotype of wound macrophages and their role in tissue repair. These results include the characterization of distinct circulating monocyte populations with temporally restricted capacities to migrate into wounds and the observation that the phenotype of macrophages isolated from murine wounds partially reflects those of their precursor monocytes, changes with time, and does not conform to current macrophage classifications. Moreover, findings in genetically modified mice lacking macrophages have confirmed that these cells are essential to normal wound healing because their depletion results in retarded and abnormal repair. This mini-review focuses on current knowledge of the phenotype of wound macrophages, their origin and fate, and the specific macrophage functions that underlie their reparative role in injured tissues, including the regulation of the cellular infiltration of the wound and the production of transforming growth factor-β and vascular endothelial growth factor. PMID:21224038

  9. Tumor-associated macrophages in glioblastoma multiforme-a suitable target for somatostatin receptor-based imaging and therapy?

    Directory of Open Access Journals (Sweden)

    Constantin Lapa

    Full Text Available Glioblastoma multiforme (GBM is the most common primary brain tumor in adults. Tumor-associated macrophages (TAM have been shown to promote malignant growth and to correlate with poor prognosis. [1,4,7,10-tetraazacyclododecane-NN',N″,N'″-tetraacetic acid]-d-Phe1,Tyr3-octreotate (DOTATATE labeled with Gallium-68 selectively binds to somatostatin receptor 2A (SSTR2A which is specifically expressed and up-regulated in activated macrophages. On the other hand, the role of SSTR2A expression on the cell surface of glioma cells has not been fully elucidated yet. The aim of this study was to non-invasively assess SSTR2A expression of both glioma cells as well as macrophages in GBM.15 samples of patient-derived GBM were stained immunohistochemically for macrophage infiltration (CD68, proliferative activity (Ki67 as well as expression of SSTR2A. Anti-CD45 staining was performed to distinguish between resident microglia and tumor-infiltrating macrophages. In a subcohort, positron emission tomography (PET imaging using 68Ga-DOTATATE was performed and the semiquantitatively evaluated tracer uptake was compared to the results of immunohistochemistry.The amount of microglia/macrophages ranged from 50% in the tumor samples with the vast majority being resident microglial cells. A strong SSTR2A immunostaining was observed in endothelial cells of proliferating vessels, in neurons and neuropile. Only faint immunostaining was identified on isolated microglial and tumor cells. Somatostatin receptor imaging revealed areas of increased tracer accumulation in every patient. However, retention of the tracer did not correlate with immunohistochemical staining patterns.SSTR2A seems not to be overexpressed in GBM samples tested, neither on the cell surface of resident microglia or infiltrating macrophages, nor on the surface of tumor cells. These data suggest that somatostatin receptor directed imaging and treatment strategies are less promising in GBM.

  10. The SMAC mimetic birinapant attenuates lipopolysaccharide-induced liver injury by inhibiting the tumor necrosis factor receptor-associated factor 3 degradation in Kupffer cells.

    Science.gov (United States)

    Liu, Hongxiang; Liao, Rui; He, Kun; Zhu, Xiwen; Li, Peizhi; Gong, Jianping

    2017-05-01

    It was demonstrated that second mitochondria-derived activator of caspases (SMAC) mimetic inhibites tumor necrosis factor receptor-associated factor 3 (TRAF3) degradation and the mitogen-activated protein kinase (MAPK) signaling pathway activation induced by lipopolysaccharide (LPS) in vitro. However, the effect of Smac mimetic in vivo is not clear. The present study was to investigate the role of Smac mimetic in LPS-induced liver injury in mice and its possible mechanism. An animal model of LPS-induced liver injury was established by intraperitoneally injecting mice with 10mg/kg LPS pretreatment with or without Smac mimetic birinapant (30mg/kg body weight). Birinapant significantly improved the survival rate of endotoxemic mice (P<0.05) and attenuated LPS-induced liver pathologic damage and inflammatory response. IL-1 and TNF-α levels in the serum were markedly decreased in birinapant pretreatment mice compared with control mice (P<0.05).The cellular inhibitor of apoptosis protein 1 (cIAP1) expression in liver resident macrophage (Kupffer cells, KCs) was significantly decreased in the Birinapant group compared to the Vehicle group (P<0.05). At the same time, total TRAF3 protein abundance in KCs rapidly declined after LPS stimulation in the Vehicle group. However, it remained constant in the Birinapant group. Moreover, K48-linked polyubiquitination of TRAF3 in KCs was markedly impressed in the birinapant group compared with the control group. At last, the JNK and p38 MAPK activation in KCs was significantly inhibited by birinapant pretreatment (P<0.05). These results suggested that birinapant attenuated liver injury and improved survival rates in endotoxemic mice by inhibited the expression of cIAP1, degradation of TRAF3 and aviation of MAPK signaling pathway. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  11. Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages

    Directory of Open Access Journals (Sweden)

    Mareike D. Maler

    2017-08-01

    Full Text Available The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo. Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs and in AM-like primary macrophage lines (Max Planck Institute cells than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6, alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors.

  12. High-resolution transcriptome of human macrophages.

    Directory of Open Access Journals (Sweden)

    Marc Beyer

    Full Text Available Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like and alternative (M2-like polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7 as well as M2-associated (CD1a, CD1b, CD93, CD226 cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease.

  13. Differential effects of chronic monocyte depletion on macrophage populations

    International Nuclear Information System (INIS)

    Volkman, A.; Chang, N.C.; Strausbauch, P.H.; Morahan, P.S.

    1983-01-01

    The administration of the bone-seeking isotope, 89 Sr, to mice results in severe monocytopenia without any apparent effect on the numbers of resident peritoneal macrophages (M luminal diameter). An explanation for this dichotomy was sought by determining whether the residual blood monocytes were still an effective source of M luminal diameter after 89 Sr treatment. Stem cell enumeration showed that a 90% fall in bone marrow macrophage colony-forming cells after 89 Sr was accompanied by a 10-fold rise in splenic M-CFC. Splenectomy performed before 89 Sr treatment, however, resulted in little additional monocytopenia and had no affect on the numbers of resident peritoneal M luminal diameter even when sampling was extended to 31 days, an interval beyond the accepted half-time for peritoneal M luminal diameter. Intraperitoneal injections of thioglycollate or Corynebacterium parvum elicited few or no monocyte-M luminal diameter during respective intervals of 4 and 7 days. Elicitation with thioglycollate was attempted in tritiated thymidine-labeled mice 26 days after 89 Sr. Four days later only a 2-fold increase in labeled peritoneal M luminal diameter was found in the 89 Sr-treated mice compared with a 150-fold increase in the controls. Studies of the ectoenzymes 5'-nucleotidase, alkaline phosphodiesterase I, and leucine aminopeptidase in such elicitation experiments suggested that the observed changes in activities reflected the direct stimulation of resident M luminal diameter rather than monocyte immigration. Overall, the results indicate that treatment with 89 Sr distinguishes two large populations of M luminal diameter on the basis of their dependence on bone marrow. M luminal diameter of inflammation reflect the monocytopenia and are severely and rapidly depleted by such treatment

  14. Quantitative GPCR and ion channel transcriptomics in primary alveolar macrophages and macrophage surrogates

    Directory of Open Access Journals (Sweden)

    Groot-Kormelink Paul J

    2012-10-01

    Full Text Available Abstract Background Alveolar macrophages are one of the first lines of defence against invading pathogens and play a central role in modulating both the innate and acquired immune systems. By responding to endogenous stimuli within the lung, alveolar macrophages contribute towards the regulation of the local inflammatory microenvironment, the initiation of wound healing and the pathogenesis of viral and bacterial infections. Despite the availability of protocols for isolating primary alveolar macrophages from the lung these cells remain recalcitrant to expansion in-vitro and therefore surrogate cell types, such as monocyte derived macrophages and phorbol ester-differentiated cell lines (e.g. U937, THP-1, HL60 are frequently used to model macrophage function. Methods The availability of high throughput gene expression technologies for accurate quantification of transcript levels enables the re-evaluation of these surrogate cell types for use as cellular models of the alveolar macrophage. Utilising high-throughput TaqMan arrays and focussing on dynamically regulated families of integral membrane proteins, we explore the similarities and differences in G-protein coupled receptor (GPCR and ion channel expression in alveolar macrophages and their widely used surrogates. Results The complete non-sensory GPCR and ion channel transcriptome is described for primary alveolar macrophages and macrophage surrogates. The expression of numerous GPCRs and ion channels whose expression were hitherto not described in human alveolar macrophages are compared across primary macrophages and commonly used macrophage cell models. Several membrane proteins known to have critical roles in regulating macrophage function, including CXCR6, CCR8 and TRPV4, were found to be highly expressed in macrophages but not expressed in PMA-differentiated surrogates. Conclusions The data described in this report provides insight into the appropriate choice of cell models for

  15. PET imaging detection of macrophages with a formyl peptide receptor antagonist

    International Nuclear Information System (INIS)

    Zhang, Yi; Kundu, Bijoy; Zhong, Min; Huang, Tao; Li, Jing; Chordia, Mahendra D.; Chen, Mei-Hua; Pan, Dongfeng; He, Jiang; Shi, Weibin

    2015-01-01

    Macrophages are a major inflammatory cell type involved in the development and progression of many important chronic inflammatory diseases. We previously found that apolipoprotein E-deficient (Apoe −/− ) mice with the C57BL/6 (B6) background develop type 2 diabetes mellitus (T2DM) and accelerated atherosclerosis when fed a Western diet and that there are increased macrophage infiltrations in pancreatic islets and aorta. The formyl peptide receptor 1 (FPR1) is abundantly expressed on the surface of macrophages. The purpose of this study was to evaluate the applicability of cinnamoyl-F-(D)L-F-(D)L-F (cFLFLF), a natural FPR1 antagonist, to detection of macrophages in the pancreatic islets and aorta. 64 Cu labeled cFLFLF and 18 F-fluorodeoxyglucose (FDG) were administered to mice with or without T2DM. Diabetic mice showed an increased 18 FDG uptake in the subcutaneous fat compared with control mice, but pancreatic uptake was minimal for either group. In contrast, diabetic mice exhibited visually noticeable more cFLFLF- 64 Cu retention in pancreas and liver than control mice. The heart and pancreas isolated from diabetic mice contained more macrophages and showed stronger PET signals than those of control mice. Flow cytometry analysis revealed the presence of macrophages but not neutrophils in pancreatic islets. Real-time PCR analysis revealed much higher FPR1 expression in pancreatic islets of diabetic over control mice. Autoradiography and immunohistochemical analysis confirmed abundant FPR1 expression in atherosclerotic lesions. Thus, 64 Cu-labeled cFLFLF peptide is a more effective PET agent for detecting macrophages compared to FDG

  16. Macrophage and nerve interaction in endometriosis.

    Science.gov (United States)

    Wu, Jinjie; Xie, Hongyu; Yao, Shuzhong; Liang, Yanchun

    2017-03-14

    Dysregulation of the immune system in endometriotic milieus has been considered to play a pivotal role in the pathogenesis of endometriosis. Macrophage recruitment and nerve fiber infiltration are the two major characteristics of this aberrant immune environment. First, the recruitment of macrophages and their polarization phenotype within the endometriotic lesion have been demonstrated to facilitate the development and maintenance of endometriosis. M1 phenotype of macrophages has the capacity to secrete multiple cytokines for inflammatory response, while M2 macrophage possesses an opposite property that can mediate the process of immunosuppression and neuroangiogenesis. Upon secretion of multiple abnormal signal molecules by the endometriotic lesion, macrophages could alter their location and phenotype. These changes facilitate the accommodation of the aberrant microenvironment and the exacerbation of disease progression. Second, the infiltration of nerve fibers and their abnormal distribution are proved to be involved in the generation of endometriosis-associated pain and inflammatory response. An imbalance in sensory and sympathetic innervation and the abnormal secretion of different cytokines could mediate neurogenesis and subsequent peripheral neuroinflammation in endometriosis. Although endometriosis creates an inflammatory milieu promoting macrophage infiltration and an imbalanced innervation, interaction between macrophages and nerve fibers in this process remains unknown. The aim of this review is to highlight the role of macrophage and nerve interaction in endometriosis, where macrophage recruitment and neurogenesis can be the underlying mechanism of neuroinflammation and pathogenesis of endometriosis.

  17. Macrophage Plasticity in Skeletal Muscle Repair

    Directory of Open Access Journals (Sweden)

    Elena Rigamonti

    2014-01-01

    Full Text Available Macrophages are one of the first barriers of host defence against pathogens. Beyond their role in innate immunity, macrophages play increasingly defined roles in orchestrating the healing of various injured tissues. Perturbations of macrophage function and/or activation may result in impaired regeneration and fibrosis deposition as described in several chronic pathological diseases. Heterogeneity and plasticity have been demonstrated to be hallmarks of macrophages. In response to environmental cues they display a proinflammatory (M1 or an alternative anti-inflammatory (M2 phenotype. A lot of evidence demonstrated that after acute injury M1 macrophages infiltrate early to promote the clearance of necrotic debris, whereas M2 macrophages appear later to sustain tissue healing. Whether the sequential presence of two different macrophage populations results from a dynamic shift in macrophage polarization or from the recruitment of new circulating monocytes is a subject of ongoing debate. In this paper, we discuss the current available information about the role that different phenotypes of macrophages plays after injury and during the remodelling phase in different tissue types, with particular attention to the skeletal muscle.

  18. Macrophage antioxidant protection within atherosclerotic plaques.

    Science.gov (United States)

    Gieseg, Steven P; Leake, David S; Flavall, Elizabeth M; Amit, Zunika; Reid, Linzi; Yang, Ya-Ting

    2009-01-01

    Macrophage cells within inflammatory lesions are exposed to a wide range of degrading and cytotoxic molecules including reactive oxygen species. Unlike neutrophils, macrophages do not normally die in this environment but continue to generate oxidants, phagocytose cellular remains, and release a range of cyto-active agents which modulate the immune response. It is this potential of the macrophage cell to survive in an oxidative environment that allows the growth and complexity of advanced atherosclerotic plaques. This review will examine the oxidants encountered by macrophages within an atherosclerotic plaque and describe some of the potential antioxidant mechanisms which enable macrophages to function within inflammatory lesions. Ascorbate, a-tocopherol, and glutathione appear to be central to the protection of macrophages yet additional antioxidant mechanisms appear to be involved. Gamma-Interferon causes macrophages to generate 7,8-dihydroneopterin, neopterin and 3-hydroxyanthranilic acid both of which have antioxidant properties. Manganese superoxide dismutase is also upregulated in macrophages. The evidence that these antioxidants provide further protection, so allowing the macrophage cells to survive within sites of chronic inflammation such as atherosclerotic plaques, will be described.

  19. Primed Activation of Macrophages by Oral Administration of Lipopolysaccharide Derived from Pantoea agglomerans.

    Science.gov (United States)

    Inagawa, Hiroyuki; Kobayashi, Yutaro; Kohchi, Chie; Zhang, Ran; Shibasaki, Yasuhiro; Soma, Gen-Ichiro

    2016-01-01

    Bacterial lipopolysaccharide (LPS) is involved in the activation of the innate immune responses on monocytes/macrophages in vitro, and by intravenous injection. Although small quantities of LPS are usually found in traditional Chinese medicines, vegetables and fruits, the mode of action of orally administered LPS is still unclear. LPS derived from Pantoea agglomerans (LPSp) was orally administered to C3H/HeN or C3H/HeJ mice ad libitum. The LPSp treatment enhanced phagocytosis by resident peritoneal macrophages of C3H/HeN mice but not of C3H/HeJ mice. This activation can be defined as primed activation because no augmentation of inflammatory cytokines production was detected. LPSp in peritoneal fluid was detected and successfully quantified. Moreover, the LPSp reduced the expression of avian reticuloendotheliosis viral oncogene-related B (RelB) in the macrophages without degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor, alpha (IκBα). Orally administered LPSp can reach the peritoneum, and enhance phagocytosis via Toll-like receptor 4 signaling pathway in resident peritoneal macrophages. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. DMPD: Iron regulation of hepatic macrophage TNFalpha expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11841920 Iron regulation of hepatic macrophage TNFalpha expression. Tsukamoto H. Fr...ee Radic Biol Med. 2002 Feb 15;32(4):309-13. (.png) (.svg) (.html) (.csml) Show Iron regulation of hepatic m...acrophage TNFalpha expression. PubmedID 11841920 Title Iron regulation of hepatic macrophage TNFalpha expres

  1. DMPD: Nuclear receptors in macrophages: a link between metabolism and inflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18022390 Nuclear receptors in macrophages: a link between metabolism and inflammati... Show Nuclear receptors in macrophages: a link between metabolism and inflammation. PubmedID 18022390 Title ...Nuclear receptors in macrophages: a link between metabolism and inflammation. Aut

  2. Evidence for M2 macrophages in granulomas from pulmonary sarcoidosis : a new aspect of macrophage heterogeneity

    NARCIS (Netherlands)

    Shamaei, Masoud; Mortaz, Esmaeil; Pourabdollah, Mihan; Garssen, Johan; Tabarsi, Payam; Velayati, Aliakbar; Adcock, Ian M

    BACKGROUND: Sarcoidosis is a granulomatous disease of unknown etiology. Macrophages play a key role in granuloma formation with the T cells, having a significant impact on macrophage polarization (M1 and M2) and the cellular composition of the granuloma. This study evaluates macrophage polarization

  3. DMPD: Macrophage activation by endogenous danger signals. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18161744 Macrophage activation by endogenous danger signals. Zhang X, Mosser DM. J ...Pathol. 2008 Jan;214(2):161-78. (.png) (.svg) (.html) (.csml) Show Macrophage activation by endogenous dange...r signals. PubmedID 18161744 Title Macrophage activation by endogenous danger signals. Authors Zhang X, Moss

  4. DMPD: Regulation of endogenous apolipoprotein E secretion by macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18388328 Regulation of endogenous apolipoprotein E secretion by macrophages. Kockx ...svg) (.html) (.csml) Show Regulation of endogenous apolipoprotein E secretion by macrophages. PubmedID 18388...328 Title Regulation of endogenous apolipoprotein E secretion by macrophages. Aut

  5. DMPD: Macrophage differentiation and function in health and disease. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18251777 Macrophage differentiation and function in health and disease. Naito M. Pa...thol Int. 2008 Mar;58(3):143-55. (.png) (.svg) (.html) (.csml) Show Macrophage differentiation and function in health... and disease. PubmedID 18251777 Title Macrophage differentiation and function in health and disease

  6. DMPD: Macrophage migration inhibitory factor and host innate immune responses tomicrobes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14620137 Macrophage migration inhibitory factor and host innate immune responses to...microbes. Calandra T. Scand J Infect Dis. 2003;35(9):573-6. (.png) (.svg) (.html) (.csml) Show Macrophage migration... inhibitory factor and host innate immune responses tomicrobes. PubmedID 14620137 Title Macrophage migration

  7. DMPD: Cellular signaling in macrophage migration and chemotaxis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11073096 Cellular signaling in macrophage migration and chemotaxis. Jones GE. J Leu...koc Biol. 2000 Nov;68(5):593-602. (.png) (.svg) (.html) (.csml) Show Cellular signaling in macrophage migration... and chemotaxis. PubmedID 11073096 Title Cellular signaling in macrophage migration and chemotaxis. Autho

  8. Facility Focus: Residence Halls.

    Science.gov (United States)

    College Planning & Management, 2003

    2003-01-01

    Describes four examples of residence hall design, one renovation and three new residence halls, that exemplify design principles that meet student and institutional requirements. The examples are at (1) the University of Illinois at Chicago; (2) Bowdoin College; (3) Muhlenberg College; and (4) Spring Arbor University. (SLD)

  9. Rain Forest Dance Residency.

    Science.gov (United States)

    Watson, Dawn

    1997-01-01

    Outlines the author's experience as a dancer and choreographer artist-in-residence with third graders at a public elementary school, providing a cultural arts experience to tie in with a theme study of the rain forest. Details the residency and the insights she gained working with students, teachers, and theme. (SR)

  10. The role of fluoxetine on macrophage function in chronic pain (Experimental study in Balb/c mice

    Directory of Open Access Journals (Sweden)

    Dwi Pudjonarko

    2015-11-01

    Full Text Available Chronic pain raises stress conditions such as depression that can lower the cellular immunity. Fluoxetine is an antidepressant  used as an adjuvant in pain management but no one has been linked it with the body immune system. The objectives of this research were to proof the benefits of fluoxetine in  preventing degradation of macrophage function in chronic pain by measuring the macrophage phagocytic index , macrophage NO levels and the liver bacterial count in BALB/c mice infected with Listeria Monocytogenes.A Post Test - Only Control Group Design was conducted using 28 male mice strain BALB /c, age 8-10 weeks. The control group (C, mice got the same standard feed as the other groups. Chronic pain group (P, mice were injected with 20μL intraplantar CFA on day-1. Pain + fluoxetine early group (PFE were treated with P + fluoxetine 5 mg / kg ip day-1, the 4th, the 7th and the 10th, while the Pain + fluoxetine late group (PFL were treated with P + fluoxetine 5 mg / kg ip on day 7th and 10th. All mice were injected with 104 live Listeria monocytogenes iv on day 8th. Termination was performed on day 13th. Differences within groups  were analyzed using  One-way ANOVA and Kruskall Wallis, whereas the correlation of variables were analyzed using  Pearson's product moment. The experimental results showed that The macrophage phagocytic index and NO macrophage level (pg/mL in PFE group(2,24±1,013; 0,24±0,239 was higher than than P group (1,68±0,920; 0,21±0,263 and there was no different in the macrophage phagocytic index of PFE group compared to C group (p=0,583; p=0,805. In PFL group (4,32±1,459; 0,54±0,294 the macrophage phagocytic index as well as NO macrophage level (pg/mL was higher than P group (1,68±0,920; 0,21±0,263 with p=0,002; p=0,017. P group Bacterial count (log cfu/gram (2,30±0,849 was significantly higher than C group(1,15±0,223 (p=0,007, while PFE group bacterial count (1,96±0,653 and PFL group bacterial count (1,84±0

  11. Osteopontin binding to lipopolysaccharide lowers tumor necrosis factor-α and prevents early alcohol-induced liver injury in mice

    DEFF Research Database (Denmark)

    Ge, Xiadong; Leung, Tung-Ming; Arriazu, Elena

    2014-01-01

    , tumor necrosis factor-α (TNFα) production, and liver injury. Since OPN is protective for the intestinal mucosa, we postulated that enhancing OPN expression in the liver and consequently in the blood and/or in the gut could protect from early alcohol-induced liver injury. Wild-type (WT), OPN knockout...... score, and the number of macrophages and TNFα+ cells. To establish if OPN could limit LPS availability and its noxious effects in the liver, binding studies were performed. OPN showed binding affinity for LPS which prevented macrophage activation, reactive oxygen, and nitrogen species generation...... by decreased liver-to-body weight ratio, hepatic triglycerides, the steatosis score, oil red-O staining, and lipid peroxidation. There was also less inflammation and liver injury as demonstrated by lower alanine aminotransferase (ALT) activity, hepatocyte ballooning degeneration, LPS levels, the inflammation...

  12. Psychologic effects of residency.

    Science.gov (United States)

    Reuben, D B

    1983-03-01

    The intense situational and physiologic stresses that accompany postgraduate training may have serious psychosocial ramifications. Although only a small proportion of residents have overt psychiatric illness, virtually all display some psychologic impairment. Contributing factors include life-changes, stresses associated with providing patient care, loss of social support, long working hours, sleep deprivation, and underlying personality traits of residents. The manifestations of this impairment are variable and may be subtle. In response to these problems, residency programs have taken steps to provide psychosocial support. Unfortunately, most programs do not offer formal support groups or seminars to discuss difficulties that accompany residency. Further definition of the psychosocial effects of residency may prompt changes that make the training of physicians a more humane process.

  13. Rat macrophage C-type lectin is an activating receptor expressed by phagocytic cells.

    Directory of Open Access Journals (Sweden)

    Ana Lobato-Pascual

    Full Text Available Macrophage C-type lectin (MCL is a membrane surface receptor encoded by the Antigen Presenting Lectin-like gene Complex (APLEC. We generated a mouse monoclonal antibody for the study of this receptor in the rat. We demonstrate that rat MCL is expressed on blood monocytes and neutrophils, as well as on several tissue macrophage populations, including alveolar and peritoneal cavity macrophages. We also demonstrate MCL expression on a subset of resident spleen macrophages. Immunohistochemistry analysis of the spleen showed staining specifically in the marginal zone and red pulp. Exposure to pro-inflammatory mediators or to yeast cell wall extract (zymosan increased surface MCL expression on peritoneal macrophages. We characterized a rat myeloid cell line, RMW, which expresses high levels of MCL. We found that MCL co-immunoprecipitated with the activating adaptor protein FcεRIγ in these cells. Moreover, beads coated with anti-MCL antibody increased phagocytosis in the RMW cells. Together, these observations indicate that rat MCL is a receptor that activates phagocytosis in myeloid cells under inflammatory conditions.

  14. Human Cord Blood and Bone Marrow CD34+ Cells Generate Macrophages That Support Erythroid Islands.

    Directory of Open Access Journals (Sweden)

    Eyayu Belay

    Full Text Available Recently, we developed a small molecule responsive hyperactive Mpl-based Cell Growth Switch (CGS that drives erythropoiesis associated with macrophages in the absence of exogenous cytokines. Here, we compare the physical, cellular and molecular interaction between the macrophages and erythroid cells in CGS expanded CD34+ cells harvested from cord blood, marrow or G-CSF-mobilized peripheral blood. Results indicated that macrophage based erythroid islands could be generated from cord blood and marrow CD34+ cells but not from G-CSF-mobilized CD34+ cells. Additional studies suggest that the deficiency resides with the G-CSF-mobilized CD34+ derived monocytes. Gene expression and proteomics studies of the in vitro generated erythroid islands detected the expression of erythroblast macrophage protein (EMP, intercellular adhesion molecule 4 (ICAM-4, CD163 and DNASE2. 78% of the erythroblasts in contact with macrophages reached the pre reticulocyte orthochromatic stage of differentiation within 14 days of culture. The addition of conditioned medium from cultures of CD146+ marrow fibroblasts resulted in a 700-fold increase in total cell number and a 90-fold increase in erythroid cell number. This novel CD34+ cell derived erythroid island may serve as a platform to explore the molecular basis of red cell maturation and production under normal, stress and pathological conditions.

  15. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs.

    Science.gov (United States)

    Winkler, Ingrid G; Sims, Natalie A; Pettit, Allison R; Barbier, Valérie; Nowlan, Bianca; Helwani, Falak; Poulton, Ingrid J; van Rooijen, Nico; Alexander, Kylie A; Raggatt, Liza J; Lévesque, Jean-Pierre

    2010-12-02

    In the bone marrow, hematopoietic stem cells (HSCs) reside in specific niches near osteoblast-lineage cells at the endosteum. To investigate the regulation of these endosteal niches, we studied the mobilization of HSCs into the bloodstream in response to granulocyte colony-stimulating factor (G-CSF). We report that G-CSF mobilization rapidly depletes endosteal osteoblasts, leading to suppressed endosteal bone formation and decreased expression of factors required for HSC retention and self-renewal. Importantly, G-CSF administration also depleted a population of trophic endosteal macrophages (osteomacs) that support osteoblast function. Osteomac loss, osteoblast suppression, and HSC mobilization occurred concomitantly, suggesting that osteomac loss could disrupt endosteal niches. Indeed, in vivo depletion of macrophages, in either macrophage Fas-induced apoptosis (Mafia) transgenic mice or by administration of clodronate-loaded liposomes to wild-type mice, recapitulated the: (1) loss of endosteal osteoblasts and (2) marked reduction of HSC-trophic cytokines at the endosteum, with (3) HSC mobilization into the blood, as observed during G-CSF administration. Together, these results establish that bone marrow macrophages are pivotal to maintain the endosteal HSC niche and that the loss of such macrophages leads to the egress of HSCs into the blood.

  16. Purple perilla extracts allay ER stress in lipid-laden macrophages.

    Directory of Open Access Journals (Sweden)

    Sin-Hye Park

    Full Text Available There is a growing body of evidence that excess lipids, hypoxic stress and other inflammatory signals can stimulate endoplasmic reticulum (ER stress in metabolic diseases. However, the pathophysiological importance and the underlying mechanisms of this phenomenon remain unknown. The current study investigated that 50 ng/ml oxidized LDL promoted unfolded protein response (UPR and ER stress in J774A1 murine macrophages, which was blocked by extracts (PPE of purple Perilla frutescens, a plant of the mint family Lamiaceae. The ER stressor tunicamycin was employed as a positive control. Treating 1-10 µg/ml oxidized LDL for 24 h elicited lipotoxic apoptosis in macrophages with obvious nuclear condensation and DNA fragmentation, which was inhibited by PPE. Tunicamycin and oxidized LDL activated and induced the UPR components of activating transcription factor 6 and ER resident chaperone BiP/Grp78 in temporal manners and such effects were blocked by ≥5 µg/ml PPE. In addition, PPE suppressed the enhanced mRNA transcription and splicing of X-box binding protein 1 (XBP1 by tunicamycin and oxidized LDL. The protein induction and nuclear translocation of XBP1 were deterred in PPE-treated macrophages under ER stress. The induction of ATP-binding cassette transporter A1 (ABCA1, scavenger receptor-B1 (SR-B1 and intracellular adhesion molecule-1 (ICAM-1 was abolished by the ER stressor in activated macrophages. The protein induction of ABCA1 and ICAM1 but not SR-B1 was retrieved by adding 10 µg/ml PPE to cells. These results demonstrate that PPE inhibited lipotoxic apoptosis and demoted the induction and activation of UPR components in macrophages. PPE restored normal proteostasis in activated macrophages oxidized LDL. Therefore, PPE was a potent agent antagonizing macrophage ER stress due to lipotoxic signals associated with atherosclerosis.

  17. Human amniotic epithelial cell transplantation induces markers of alternative macrophage activation and reduces established hepatic fibrosis.

    Directory of Open Access Journals (Sweden)

    Ursula Manuelpillai

    Full Text Available Chronic hepatic inflammation from multiple etiologies leads to a fibrogenic response that can progress to cirrhosis and liver failure. Transplantation of human amniotic epithelial cells (hAEC from term delivered placenta has been shown to decrease mild to moderate hepatic fibrosis in a murine model. To model advanced human liver disease and assess the efficacy of hAEC therapy, we transplanted hAEC in mice with advanced hepatic fibrosis. Immunocompetent C57BL/6 mice were administered carbon tetrachloride (CCl(4 twice weekly resulting in bridging fibrosis by 12 weeks. hAEC (2 × 10(6 were infused via the tail vein at week 8 or weeks 8 and 10 (single and double dose, respectively. Human cells were detected in mouse liver four weeks after transplantation showing hAEC engraftment. CCl(4 treated mice receiving single or double hAEC doses showed a significant but similar decrease in liver fibrosis area associated with decreased activation of collagen-producing hepatic stellate cells and decreased hepatic protein levels of the pro-fibrogenic cytokine, transforming growth factor-beta1. CCl(4 administration caused hepatic T cell infiltration that decreased significantly following hAEC transplantation. Hepatic macrophages play a crucial role in both fibrogenesis and fibrosis resolution. Mice exposed to CCl(4 demonstrated increased numbers of hepatic macrophages compared to normal mice; the number of macrophages decreased significantly in CCl(4 treated mice given hAEC. These mice had significantly lower hepatic protein levels of the chemokine monocyte chemoattractant protein-1 than mice given CCl(4 alone. Alternatively activated M2 macrophages are associated with fibrosis resolution. CCl(4 treated mice given hAEC showed increased expression of genes associated with M2 macrophages including YM-1, IL-10 and CD206. We provide novel data showing that hAEC transplantation induces a wound healing M2 macrophage phenotype associated with reduction of established

  18. Role of inflammatory response in liver diseases: Therapeutic strategies.

    Science.gov (United States)

    Del Campo, José A; Gallego, Paloma; Grande, Lourdes

    2018-01-27

    Inflammation and tumorigenesis are tightly linked pathways impacting cancer development. Inflammasomes are key signalling platforms that detect pathogenic microorganisms, including hepatitis C virus (HCV) infection, and sterile stressors (oxidative stress, insulin resistance, lipotoxicity) able to activate pro-inflammatory cytokines interleukin-1β and IL-18. Most of the inflammasome complexes that have been described to date contain a NOD-like receptor sensor molecule. Redox state and autophagy can regulate inflammasome complex and, depending on the conditions, can be either pro- or anti-apoptotic. Acute and chronic liver diseases are cytokine-driven diseases as several proinflammatory cytokines (IL-1α, IL-1β, tumor necrosis factor-alpha, and IL-6) are critically involved in inflammation, steatosis, fibrosis, and cancer development. NLRP3 inflammasome gain of function aggravates liver disease, resulting in severe liver fibrosis and highlighting this pathway in the pathogenesis of non-alcoholic fatty liver disease. On the other hand, HCV infection is the primary catalyst for progressive liver disease and development of liver cancer. It is well established that HCV-induced IL-1β production by hepatic macrophages plays a critical and central process that promotes liver inflammation and disease. In this review, we aim to clarify the role of the inflammasome in the aggravation of liver disease, and how selective blockade of this main pathway may be a useful strategy to delay fibrosis progression in liver diseases.

  19. Nicotine Impairs Macrophage Control of Mycobacterium tuberculosis.

    Science.gov (United States)

    Bai, Xiyuan; Stitzel, Jerry A; Bai, An; Zambrano, Cristian A; Phillips, Matthew; Marrack, Philippa; Chan, Edward D

    2017-09-01

    Pure nicotine impairs macrophage killing of Mycobacterium tuberculosis (MTB), but it is not known whether the nicotine component in cigarette smoke (CS) plays a role. Moreover, the mechanisms by which nicotine impairs macrophage immunity against MTB have not been explored. To neutralize the effects of nicotine in CS extract, we used a competitive inhibitor to the nicotinic acetylcholine receptor (nAChR)-mecamylamine-as well as macrophages derived from mice with genetic disruption of specific subunits of nAChR. We also determined whether nicotine impaired macrophage autophagy and whether nicotine-exposed T regulatory cells (Tregs) could subvert macrophage anti-MTB immunity. Mecamylamine reduced the CS extract increase in MTB burden by 43%. CS extract increase in MTB was also significantly attenuated in macrophages from mice with genetic disruption of either the α7, β2, or β4 subunit of nAChR. Nicotine inhibited autophagosome formation in MTB-infected THP-1 cells and primary murine alveolar macrophages, as well as increased the intracellular MTB burden. Nicotine increased migration of THP-1 cells, consistent with the increased number of macrophages found in the lungs of smokers. Nicotine induced Tregs to produce transforming growth factor-β. Naive mouse macrophages co-cultured with nicotine-exposed Tregs had significantly greater numbers of viable MTB recovered with increased IL-10 production and urea production, but no difference in secreted nitric oxide as compared with macrophages cocultured with unexposed Tregs. We conclude that nicotine in CS plays an important role in subverting macrophage control of MTB infection.

  20. Liver transplant - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100090.htm Liver transplant - series—Normal anatomy To use the sharing ... to slide 5 out of 5 Overview The liver is in the right upper abdomen. The liver ...

  1. Pyogenic liver abscess

    Science.gov (United States)

    Liver abscess; Bacterial liver abscess ... There are many possible causes of liver abscesses, including: Abdominal infection, such as appendicitis , diverticulitis , or a perforated bowel Infection in the blood Infection of the bile draining tubes ...

  2. Fatty Liver Disease

    Science.gov (United States)

    What is fatty liver disease? Your liver is the largest organ inside your body. It helps your body digest food, store energy, and remove poisons. Fatty liver disease is a condition in which fat builds up ...

  3. Contribution of Gut Bacteria to Liver Pathobiology

    Directory of Open Access Journals (Sweden)

    Gakuhei Son

    2010-01-01

    Full Text Available Emerging evidence suggests a strong interaction between the gut microbiota and health and disease. The interactions of the gut microbiota and the liver have only recently been investigated in detail. Receiving approximately 70% of its blood supply from the intestinal venous outflow, the liver represents the first line of defense against gut-derived antigens and is equipped with a broad array of immune cells (i.e., macrophages, lymphocytes, natural killer cells, and dendritic cells to accomplish this function. In the setting of tissue injury, whereby the liver is otherwise damaged (e.g., viral infection, toxin exposure, ischemic tissue damage, etc., these same immune cell populations and their interactions with the infiltrating gut bacteria likely contribute to and promote these pathologies. The following paper will highlight recent studies investigating the relationship between the gut microbiota, liver biology, and pathobiology. Defining these connections will likely provide new targets for therapy or prevention of a wide variety of acute and chronic liver pathologies.

  4. Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors

    International Nuclear Information System (INIS)

    Bonde, Anne-Katrine; Tischler, Verena; Kumar, Sushil; Soltermann, Alex; Schwendener, Reto A

    2012-01-01

    Several stromal cell subtypes including macrophages contribute to tumor progression by inducing epithelial-mesenchymal transition (EMT) at the invasive front, a mechanism also linked to metastasis. Tumor associated macrophages (TAM) reside mainly at the invasive front but they also infiltrate tumors and in this process they mainly assume a tumor promoting phenotype. In this study, we asked if TAMs also regulate EMT intratumorally. We found that TAMs through TGF-β signaling and activation of the β-catenin pathway can induce EMT in intratumoral cancer cells. We depleted macrophages in F9-teratocarcinoma bearing mice using clodronate-liposomes and analyzed the tumors for correlations between gene and protein expression of EMT-associated and macrophage markers. The functional relationship between TAMs and EMT was characterized in vitro in the murine F9 and mammary gland NMuMG cells, using a conditioned medium culture approach. The clinical relevance of our findings was evaluated on a tissue microarray cohort representing 491 patients with non-small cell lung cancer (NSCLC). Gene expression analysis of F9-teratocarcinomas revealed a positive correlation between TAM-densities and mesenchymal marker expression. Moreover, immunohistochemistry showed that TAMs cluster with EMT phenotype cells in the tumors. In vitro, long term exposure of F9-and NMuMG-cells to macrophage-conditioned medium led to decreased expression of the epithelial adhesion protein E-cadherin, activation of the EMT-mediating β-catenin pathway, increased expression of mesenchymal markers and an invasive phenotype. In a candidate based screen, macrophage-derived TGF-β was identified as the main inducer of this EMT-associated phenotype. Lastly, immunohistochemical analysis of NSCLC patient samples identified a positive correlation between intratumoral macrophage densities, EMT markers, intraepithelial TGF-β levels and tumor grade. Data presented here identify a novel role for macrophages in EMT

  5. Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors

    Directory of Open Access Journals (Sweden)

    Bonde Anne-Katrine

    2012-01-01

    Full Text Available Abstract Background Several stromal cell subtypes including macrophages contribute to tumor progression by inducing epithelial-mesenchymal transition (EMT at the invasive front, a mechanism also linked to metastasis. Tumor associated macrophages (TAM reside mainly at the invasive front but they also infiltrate tumors and in this process they mainly assume a tumor promoting phenotype. In this study, we asked if TAMs also regulate EMT intratumorally. We found that TAMs through TGF-β signaling and activation of the β-catenin pathway can induce EMT in intratumoral cancer cells. Methods We depleted macrophages in F9-teratocarcinoma bearing mice using clodronate-liposomes and analyzed the tumors for correlations between gene and protein expression of EMT-associated and macrophage markers. The functional relationship between TAMs and EMT was characterized in vitro in the murine F9 and mammary gland NMuMG cells, using a conditioned medium culture approach. The clinical relevance of our findings was evaluated on a tissue microarray cohort representing 491 patients with non-small cell lung cancer (NSCLC. Results Gene expression analysis of F9-teratocarcinomas revealed a positive correlation between TAM-densities and mesenchymal marker expression. Moreover, immunohistochemistry showed that TAMs cluster with EMT phenotype cells in the tumors. In vitro, long term exposure of F9-and NMuMG-cells to macrophage-conditioned medium led to decreased expression of the epithelial adhesion protein E-cadherin, activation of the EMT-mediating β-catenin pathway, increased expression of mesenchymal markers and an invasive phenotype. In a candidate based screen, macrophage-derived TGF-β was identified as the main inducer of this EMT-associated phenotype. Lastly, immunohistochemical analysis of NSCLC patient samples identified a positive correlation between intratumoral macrophage densities, EMT markers, intraepithelial TGF-β levels and tumor grade. Conclusions Data

  6. Amebic liver abscess

    Science.gov (United States)

    Hepatic amebiasis; Extraintestinal amebiasis; Abscess - amebic liver ... Amebic liver abscess is caused by Entamoeba histolytica. This parasite causes amebiasis , an intestinal infection that is also called ...

  7. Residents in difficulty

    DEFF Research Database (Denmark)

    Christensen, Mette Krogh; O'Neill, Lotte; Hansen, Dorthe Høgh

    2016-01-01

    Background The majority of studies on prevalence and characteristics of residents in difficulty have been conducted in English-speaking countries and the existing literature may not reflect the prevalence and characteristics of residents in difficulty in other parts of the world such as the Scand......Background The majority of studies on prevalence and characteristics of residents in difficulty have been conducted in English-speaking countries and the existing literature may not reflect the prevalence and characteristics of residents in difficulty in other parts of the world...... such as the Scandinavian countries, where healthcare systems are slightly different. The aim of this study was to examine prevalence and characteristics of residents in difficulty in one out of three postgraduate medical training regions in Denmark, and to produce both a quantifiable overview and in-depth understanding...... of the topic. Methods We performed a mixed methods study. All regional residency program directors (N = 157) were invited to participate in an e-survey about residents in difficulty. Survey data were combined with database data on demographical characteristics of the background population (N = 2399...

  8. Mycobacteria, Metals, and the Macrophage

    Science.gov (United States)

    Niederweis, Michael; Wolschendorf, Frank; Mitra, Avishek; Neyrolles, Olivier

    2015-01-01

    Summary Mycobacterium tuberculosis is a facultative intracellular pathogen that thrives inside host macrophages. A key trait of M. tuberculosis is to exploit and manipulate metal cation trafficking inside infected macrophages to ensure survival and replication inside the phagosome. Here we describe the recent fascinating discoveries that the mammalian immune system responds to infections with M. tuberculosis by overloading the phagosome with copper and zinc, two metals which are essential nutrients in small quantities but are toxic in excess. M. tuberculosis has developed multi-faceted resistance mechanisms to protect itself from metal toxicity including control of uptake, sequestration inside the cell, oxidation, and efflux. The host response to infections combines this metal poisoning strategy with nutritional immunity mechanisms that deprive M. tuberculosis from metals such as iron and manganese to prevent bacterial replication. Both immune mechanisms rely on the translocation of metal transporter proteins to the phagosomal membrane during the maturation process of the phagosome. This review summarizes these recent findings and discusses how metal-targeted approaches might complement existing TB chemotherapeutic regimens with novel anti-infective therapies. PMID:25703564

  9. A broken krebs cycle in macrophages.

    Science.gov (United States)

    O'Neill, Luke A J

    2015-03-17

    Macrophages undergo metabolic rewiring during polarization but details of this process are unclear. In this issue of Immunity, Jha et al. (2015) report a systems approach for unbiased analysis of cellular metabolism that reveals key metabolites and metabolic pathways required for distinct macrophage polarization states. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Macrophages in skin injury and repair

    NARCIS (Netherlands)

    Mahdavian Delavary, B.; van der Veer, W.M.; van Egmond, M.; Niessen, F.B.; Beelen, R.H.J.

    2011-01-01

    After recruitment to the wound bed, monocytes differentiate into macrophages. Macrophages play a central role in all stages of wound healing and orchestrate the wound healing process. Their functional phenotype is dependent on the wound microenvironment, which changes during healing, hereby altering

  11. Metabolic regulation of macrophages in tissues

    NARCIS (Netherlands)

    van den Bossche, Jan; Saraber, Doina L.

    2018-01-01

    Macrophages are innate immune cells that provide host defense and have tissue-specific roles in the maintenance of organ homeostasis and integrity. In most cases macrophages keep us healthy but when their balanced response to damage or homeostatic signals is perturbed, they can drive chronic

  12. Macrophages Promote Axon Regeneration with Concurrent Neurotoxicity

    NARCIS (Netherlands)

    Gensel, J.C.; Nakamura, S.; Guan, Z.; Rooijen, van N.; Ankeny, D.P.; Popovich, P.G.

    2009-01-01

    Activated macrophages can promote regeneration of CNS axons. However, macrophages also release factors that kill neurons. These opposing functions are likely induced simultaneously but are rarely considered together in the same experimental preparation. A goal of this study was to unequivocally

  13. Human malignant astrocytes express macrophage phenotype

    NARCIS (Netherlands)

    Leenstra, S.; Das, P. K.; Troost, D.; de Boer, O. J.; Bosch, D. A.

    1995-01-01

    Six well-characterized specimens of cultured astrocytoma cells were investigated with a panel of macrophage markers. Our results show that the macrophage markers OKM-1(CD11b), OKM5(CD36), EBM11(CD68), HAM56, Factor 13, alpha-1-antichymotrypsin, alpha-1-antitrypsin, ferritin and lysozyme are clearly

  14. Macrophage polarization: the epigenetic point of view

    NARCIS (Netherlands)

    van den Bossche, Jan; Neele, Annette E.; Hoeksema, Marten A.; de Winther, Menno P. J.

    2014-01-01

    The first functions of macrophages to be identified by Metchnikoff were phagocytosis and microbial killing. Although these are important features, macrophages are functionally very complex and involved in virtually all aspects of life, from immunity and host defense, to homeostasis, tissue repair

  15. Enhancement of liver regeneration and liver surgery

    NARCIS (Netherlands)

    Olthof, P.B.

    2017-01-01

    Liver regeneration allows surgical resection of up to 75% of the liver and enables curative treatment potential for patients with primary or secondary hepatic malignancies. Liver surgery is associated with substantial risks, reflected by considerable morbidity and mortality rates. Optimization of

  16. Unraveling Macrophage Heterogeneity in Erythroblastic Islands

    Directory of Open Access Journals (Sweden)

    Katie Giger Seu

    2017-09-01

    Full Text Available Mammalian erythropoiesis occurs within erythroblastic islands (EBIs, niches where maturing erythroblasts interact closely with a central macrophage. While it is generally accepted that EBI macrophages play an important role in erythropoiesis, thorough investigation of the mechanisms by which they support erythropoiesis is limited largely by inability to identify and isolate the specific macrophage sub-population that constitute the EBI. Early studies utilized immunohistochemistry or immunofluorescence to study EBI morphology and structure, while more recent efforts have used flow cytometry for high-throughput quantitative characterization of EBIs and their central macrophages. However, these approaches based on the expectation that EBI macrophages are a homogeneous population (F4/80+/CD169+/VCAM-1+ for example provide an incomplete picture and potentially overlook critical information about the nature and biology of the islands and their central macrophages. Here, we present a novel method for analysis of EBI macrophages from hematopoietic tissues of mice and rats using multispectral imaging flow cytometry (IFC, which combines the high-throughput advantage of flow cytometry with the morphological and fluorescence features derived from microscopy. This method provides both quantitative analysis of EBIs, as well as structural and morphological details of the central macrophages and associated cells. Importantly, the images, combined with quantitative software features, can be used to evaluate co-expression of phenotypic markers which is crucial since some antigens used to identify macrophages (e.g., F4/80 and CD11b can be expressed on non-erythroid cells associated with the islands instead of, or in addition to the central macrophage itself. We have used this method to analyze native EBIs from different hematopoietic tissues and evaluated the expression of several markers that have been previously reported to be expressed on EBI macrophages. We

  17. Macrophage Polarization in Health and Disease

    Science.gov (United States)

    Cassetta, Luca; Cassol, Edana; Poli, Guido

    2011-01-01

    Macrophages are terminally differentiated cells of the mononuclear phagocyte system that also encompasses dendritic cells, circulating blood monocytes, and committed myeloid progenitor cells in the bone marrow. Both macrophages and their monocytic precursors can change their functional state in response to microenvironmental cues exhibiting a marked heterogeneity. However, there are still uncertainties regarding distinct expression patterns of surface markers that clearly define macrophage subsets, particularly in the case of human macrophages. In addition to their tissue distribution, macrophages can be functionally polarized into M1 (proinflammatory) and M2 (alternatively activated) as well as regulatory cells in response to both exogenous infections and solid tumors as well as by systems biology approaches. PMID:22194670

  18. The macrophage A2B adenosine receptor regulates tissue insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Hillary Johnston-Cox

    Full Text Available High fat diet (HFD-induced type 2 diabetes continues to be an epidemic with significant risk for various pathologies. Previously, we identified the A2b adenosine receptor (A2bAR, an established regulator of inflammation, as a regulator of HFD-induced insulin resistance. In particular, HFD was associated with vast upregulation of liver A2bAR in control mice, and while mice lacking this receptor showed augmented liver inflammation and tissue insulin resistance. As the A2bAR is expressed in different tissues, here, we provide the first lead to cellular mechanism by demonstrating that the receptor's influence on tissue insulin sensitivity is mediated via its expression in macrophages. This was shown using a newly generated transgenic mouse model expressing the A2bAR gene in the macrophage lineage on an otherwise A2bAR null background. Reinstatement of macrophage A2bAR expression in A2bAR null mice fed HFD restored insulin tolerance and tissue insulin signaling to the level of control mice. The molecular mechanism for this effect involves A2bAR-mediated changes in cyclic adenosine monophosphate in macrophages, reducing the expression and release of inflammatory cytokines, which downregulate insulin receptor-2. Thus, our results illustrate that macrophage A2bAR signaling is needed and sufficient for relaying the protective effect of the A2bAR against HFD-induced tissue inflammation and insulin resistance in mice.

  19. Technology in Residence.

    Science.gov (United States)

    Fox, Jordan

    1999-01-01

    Discusses the necessity for incorporating current technology in today's college residence halls to meet the more diverse and continued activities of its students. Technology addressed covers data networking and telecommunications, heating and cooling systems, and fire-safety systems. (GR)

  20. Thy-1 (CD90)-Positive Hepatic Progenitor Cells, Hepatoctyes, and Non-parenchymal Liver Cells Isolated from Human Livers.

    Science.gov (United States)

    Weiss, Thomas S; Dayoub, Rania

    2017-01-01

    In response to liver injury, hepatic cells, especially hepatocytes, can rapidly proliferate to repair liver damage. Additionally, it was shown that under certain circumstances liver resident cells with progenitor capabilities are involved in liver cell proliferation and differentiation. These hepatic progenitor cells (HPCs), known as oval cells in rodents, are derived from the canals of Hering, which are located in the periportal region of the liver. Regarding to different cell niches, which were defined for human HPCs, several markers have been used to identify these cells such as CD34, c-kit, OV-6, and Thy-1 (CD90). The latter was shown to be expressed on HPCs in human liver tissue with histological signs of regeneration. In this chapter we describe a detailed method for the isolation of Thy-1 positive cells from human resected liver tissue. Based on a procedure for isolating primary human hepatocytes and non-parenchymal cells (NPCs) we expanded this protocol to additional enzymatic dissociation, filtration, and centrifugation steps. This results in a bile duct cell enriched fraction of NPCs from which Thy-1 (CD90) positive cells were purified by Thy-1 positivity selection using MACS technique. Bipotential progenitor cells from human liver resections can be isolated using Thy-1 and was shown to be a suitable tool for the enrichment of liver resident progenitor cells for xenotransplantation.

  1. Suppressor of Cytokine Signaling 3 in Macrophages Prevents Exacerbated Interleukin-6-Dependent Arginase-1 Activity and Early Permissiveness to Experimental Tuberculosis

    Directory of Open Access Journals (Sweden)

    Erik Schmok

    2017-11-01

    Full Text Available Suppressor of cytokine signaling 3 (SOCS3 is a feedback inhibitor of interleukin (IL-6 signaling in macrophages. In the absence of this molecule, macrophages become extremely prone to an IL-6-dependent expression of arginase-1 (Arg1 and nitric oxide synthase (NOS2, the prototype markers for alternative or classical macrophage activation, respectively. Because both enzymes are antipodean macrophage effector molecules in Mycobacterium tuberculosis (Mtb infection, we assessed the relevance of SOCS3 for macrophage activation during experimental tuberculosis using macrophage-specific SOCS3-deficient (LysMcreSOCS3loxP/loxP mice. Aerosol infection of LysMcreSOCS3loxP/loxP mice resulted in remarkably higher bacterial loads in infected lungs and exacerbated pulmonary inflammation. This increased susceptibility to Mtb infection was accompanied by enhanced levels of both classical and alternative macrophage activation. However, high Arg1 expression preceded the increased induction of NOS2 and at early time points of infection mycobacteria were mostly found in cells positive for Arg1. This sequential activation of Arg1 and NOS2 expression in LysMcreSOCS3loxP/loxP mice appears to favor the initial replication of Mtb particularly in Arg1-positive cells. Neutralization of IL-6 in Mtb-infected LysMcreSOCS3loxP/loxP mice reduced arginase activity and restored control of mycobacterial replication in LysMcreSOCS3loxP/loxP mice. Our data reveal an unexpected role of SOCS3 during experimental TB: macrophage SOCS3 restrains early expression of Arg1 and helps limit Mtb replication in resident lung macrophages, thereby limiting the growth of mycobacteria. Together, SOCS3 keeps IL-6-dependent divergent macrophage responses such as Nos2 and Arg1 expression under control and safeguard protective macrophage effector mechanisms.

  2. Satisfaction among residents in ASHP-accredited pharmacy residency programs.

    Science.gov (United States)

    VanDenBerg, C; Murphy, J E

    1997-07-01

    The level of work satisfaction among pharmacists in ASHP-accredited residencies was studied. In March 1996 a questionnaire designed to measure residency satisfaction was mailed to 697 individuals in ASHP-accredited pharmacy practice and specialty practice residencies. Subjects responded to 16 statements relating to intrinsic and extrinsic determinants of work satisfaction on a scale of 1 to 5, where 1 = strongly disagree and 5 = strongly agree. Questionnaires were returned by 413 (59%) of the residents. The respondents were predominantly women (76%), and most (86%) had at least a Pharm. D. degree. Hospitals were the primary work setting (88%). Of the 413 residents, 305 were in pharmacy practice residencies and 108 were in specialized residencies. None of the mean scores indicated disagreement (scores 3) with the negatively worded statements. The median and mode were equal to 2 (disagree) for the three negatively worded items and 4 (agree) for all but three positively worded items. Only 8% of the residents indicated that they would not accept the residency again if given the chance. Specialized residents tended to rate positively worded statements higher and negatively worded statements lower than pharmacy practice residents. Female residents indicated greater satisfaction than male residents. Pay and benefits were rated slightly better than neutral. Pharmacy residents appeared generally satisfied with their residencies. Specialized pharmacy residents were more satisfied than pharmacy practice residents, and women were more satisfied than men.

  3. Andrographolide Inhibits Oxidized LDL-Induced Cholesterol Accumulation and Foam Cell Formation in Macrophages.

    Science.gov (United States)

    Lin, Hung-Chih; Lii, Chong-Kuei; Chen, Hui-Chun; Lin, Ai-Hsuan; Yang, Ya-Chen; Chen, Haw-Wen

    2018-01-01

    oxLDL is involved in the pathogenesis of atherosclerotic lesions through cholesterol accumulation in macrophage foam cells. Andrographolide, the bioactive component of Andrographis paniculata, possesses several biological activities such as anti-inflammatory, anti-oxidant, and anticancer functions. Scavenger receptors (SRs), including class A SR (SR-A) and CD36, are responsible for the internalization of oxLDL. In contrast, receptors for reverse cholesterol transport, including ABCA1 and ABCG1, mediate the efflux of cholesterol from macrophage foam cells. Transcription factor liver X receptor [Formula: see text] (LXR[Formula: see text] plays a key role in lipid metabolism and inflammation as well as in the regulation of ABCA1 and ABCG1 expression. Because of the contribution of inflammation to macrophage foam cell formation and the potent anti-inflammatory activity of andrographolide, we hypothesized that andrographolide might inhibit oxLDL-induced macrophage foam cell formation. The results showed that andrographolide reduced oxLDL-induced lipid accumulation in macrophage foam cells. Andrographolide decreased the mRNA and protein expression of CD36 by inducing the degradation of CD36 mRNA; however, andrographolide had no effect on SR-A expression. In contrast, andrographolide increased the mRNA and protein expression of ABCA1 and ABCG1, which were dependent on LXR[Formula: see text]. Andrographolide enhanced LXR[Formula: see text] nuclear translocation and DNA binding activity. Treatment with the LXR[Formula: see text] antagonist GGPP and transfection with LXR[Formula: see text] siRNA reversed the ability of andrographolide to stimulate ABCA1 and ABCG1 protein expression. In conclusion, inhibition of CD36-mediated oxLDL uptake and induction of ABCA1- and ABCG1-dependent cholesterol efflux are two working mechanisms by which andrographolide inhibits macrophage foam cell formation, which suggests that andrographolide could be a potential candidate to prevent

  4. Purple perilla extracts with α-asarone enhance cholesterol efflux from oxidized LDL-exposed macrophages.

    Science.gov (United States)

    Park, Sin-Hye; Paek, Ji Hun; Shin, Daekeun; Lee, Jae-Yong; Lim, Soon Sung; Kang, Young-Hee

    2015-04-01

    The cellular accumulation of cholesterol is critical in the development and progression of atherosclerosis. ATP-binding cassette (ABC) transporters play an essential role in mediating the efflux of excess cholesterol. In the current study, we investigated whether purple Perilla frutescens extracts (PPE) at a non-toxic concentration of 1-10 µg/ml stimulate the induction of the ABC transporters, ABCA1 and ABCG1, and cholesterol efflux from lipid-laden J774A.1 murine macrophages exposed to 50 ng/ml oxidized low-density lipoprotein (LDL). Purple perilla, an annual herb in the mint family and its constituents, have been reported to exhibit antioxidant and cytostatic activity, as well as to exert anti-allergic effects. Our results revealed that treatment with oxidized LDL for 24 h led to the accumulation of lipid droplets in the macrophages. PPE suppressed the oxidized LDL-induced foam cell formation by blocking the induction of scavenger receptor B1. However, PPE promoted the induction of the ABC transporters, ABCA1 and ABCG1, and subsequently accelerated cholesterol efflux from the lipid-loaded macrophages. The liver X receptor (LXR) agonist, TO-091317, and the peroxisome proliferator-activated receptor (PPAR) agonist, pioglitazone, increased ABCA1 expression and treatment with 10 µg/ml PPE further enhanced this effect. PPE did not induce LXRα and PPARγ expression per se, but enhanced their expression in the macrophages exposed to oxidized LDL. α-asarone was isolated from PPE and characterized as a major component enhancing the induction of ABCA1 and ABCG1 in macrophages exposed to oxidized LDL. α-asarone, but not β-asarone was effective in attenuating foam cell formation and enhancing cholesterol efflux, revealing an isomeric difference in their activity. The results from the present study demonstrate that PPE promotes cholesterol efflux from macrophages by activating the interaction of PPARγ-LXRα-ABC transporters.

  5. Pediatric Liver Transplantation.

    Science.gov (United States)

    Rawal, Nidhi; Yazigi, Nada

    2017-06-01

    Excellent outcomes over the last 3 decades have made liver transplantation the treatment of choice for many advanced liver disorders. This success also opened liver transplantation to new indications such as liver tumors and metabolic disorders. The emergence of such new indications for liver transplantation is bringing a new stream of patients along with disease-specific challenges. The cumulative number of liver transplant recipients is peaking, requiring novel systems of health care delivery that meet the needs of this special patient population. This article reviews updates and new development in pediatric liver transplantation. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Adipose tissue macrophage polarization by intermittent hypoxia in a mouse model of OSA: effect of tumor microenvironment.

    Science.gov (United States)

    Almendros, Isaac; Gileles-Hillel, Alex; Khalyfa, Abdelnaby; Wang, Yang; Zhang, Shelley X; Carreras, Alba; Farré, Ramon; Gozal, David

    2015-06-01

    Intermittent hypoxia (IH)-induces alterations in tumor-associated macrophages (TAMs) that are associated with adverse cancer outcomes, as reported in patients suffering from sleep apnea. Adipose tissues (AT) and bone-marrow (BM)-derived cells are the inferred sources of macrophages infiltrating malignant tumors. Here, the sources of TAMs and the phenotypic changes induced by IH in the ipsilateral and contralateral AT were investigated by using a syngeneic murine solid tumor model (TC1). C57/B6 male mice were exposed to either IH or room air (RA) for 6 weeks, with TC1 cells being inoculated in the 2nd week. Macrophage content, phenotype and tissue origin were assessed in tumors, and ipsilateral and contralateral AT. IH induced a ~2.2-fold increase in TAM tumor infiltration. However, differential responses in the tumor ipsilateral and contralateral AT emerged: IH increased infiltration of preferentially M1 macrophages in contralateral AT, while reductions in macrophages emerged in ipsilateral AT and primarily consisted of the M2 phenotype. These changes were accompanied by reciprocal increases in resident and BM-derived TAMs in the tumor. IH-induced phenotypic alterations in AT macrophages surrounding the tumor and their increased infiltration within the tumor may contribute to the accelerated tumor progression associated with IH. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages.

    Directory of Open Access Journals (Sweden)

    Prajna Jena

    Full Text Available Pathogenic mycobacteria reside in, and are in turn controlled by, macrophages. However, emerging data suggest that neutrophils also play a critical role in innate immunity to tuberculosis, presumably by their different antibacterial granule proteins. In this study, we purified neutrophil azurophil and specific granules and systematically analyzed the antimycobacterial activity of some purified azurophil and specific granule proteins against M. smegmatis, M. bovis-BCG and M. tuberculosis H37Rv. Using gel overlay and colony forming unit assays we showed that the defensin-depleted azurophil granule proteins (AZP were more active against mycobacteria compared to other granule proteins and cytosolic proteins. The proteins showing antimycobacterial activity were identified by MALDI-TOF mass spectrometry. Electron microscopic studies demonstrate that the AZP disintegrate bacterial cell membrane resulting in killing of mycobacteria. Exogenous addition of AZP to murine macrophage RAW 264.7, THP-1 and peripheral blood monocyte-derived macrophages significantly reduced the intracellular survival of mycobacteria without exhibiting cytotoxic activity on macrophages. Immunofluorescence studies showed that macrophages actively endocytose neutrophil granular proteins. Treatment with AZP resulted in increase in co-localization of BCG containing phagosomes with lysosomes but not in increase of autophagy. These data demonstrate that neutrophil azurophil proteins may play an important role in controlling intracellular survival of mycobacteria in macrophages.

  8. Systemic depletion of macrophages by liposomal bisphosphonates reduces neointimal formation following balloon-injury in the rat carotid artery.

    Science.gov (United States)

    Danenberg, Haim D; Fishbein, Ilia; Epstein, Hila; Waltenberger, Johannes; Moerman, Evgeny; Mönkkönen, Jukka; Gao, Jianchuan; Gathi, Irith; Reichi, Reuven; Golomb, Gershon

    2003-11-01

    Macrophage depletion by liposomal clodronate inhibits neointimal formation after balloon-injury. The present study examined bisphosphonates (BPs) potency-effect relationship and the role of systemic versus local monocytes in vascular repair. Liposomal preparations of clodronate, pamidronate, alendronate, and ISA-13-1 inhibited RAW-264 macrophages growth in a dose-response manner. Administration to balloon-injured rats suppressed neointimal growth. Neointima to media ratio (N/M) at 14 days was reduced from 1.35 +/- 0.22 (control) to 0.4 +/- 0.1 and 0.9 +/- 0.17 by liposomal alendronate (1.5 mg/kg, i.v.) and liposomal ISA-13-1 (15 mg/kg), respectively (n = 8-10, P < 0.05). Suppression of neointimal formation was preserved at 30 days. Subcutaneous administration of liposomal BP (LBP) was also effective in suppressing neointimal formation, while short local intraluminal application had no effect. Immunostaining for ED-1 and ED-2 revealed no resident macrophages in the arterial wall, and reduced macrophage infiltration in LBP-treated animals. Arterial PDGF-B chain and PDGF-beta receptor activation were reduced in LBP-treated animals and up-regulation of the PDGF receptor was noted. Systemic transient inactivation of monocytes and macrophages by LBPs reduced macrophage infiltration and neointimal formation in the rat carotid injury model. The findings demonstrate a BP potency-effect relationship, and highlight the role of circulating monocytes in vascular injury and repair.

  9. Liver disease in menopause.

    Science.gov (United States)

    Brady, Carla W

    2015-07-07

    There are numerous physiologic and biochemical changes in menopause that can affect the function of the liver and mediate the development of liver disease. Menopause represents a state of growing estrogen deficiency, and this loss of estrogen in the setting of physiologic aging increases the likelihood of mitochondrial dysfunction, cellular senescence, declining immune responses to injury, and disarray in the balance between antioxidant formation and oxidative stress. The sum effect of these changes can contribute to increased susceptibility to development of significant liver pathology, particularly nonalcoholic fatty liver disease and hepatocellular carcinoma, as well as accelerated progression of fibrosis in liver diseases, as has been particularly demonstrated in hepatitis C virus liver disease. Recognition of the unique nature of these mediating factors should raise suspicion for liver disease in perimenopausal and menopausal women and offer an opportunity for implementation of aggressive treatment measures so as to avoid progression of liver disease to cirrhosis, liver cancer and liver failure.

  10. The Many Alternative Faces of Macrophage Activation.

    Science.gov (United States)

    Hume, David A

    2015-01-01

    Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. Analysis of large gene expression datasets from multiple cells and tissues reveals sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, the gene clusters include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and genes required for endocytosis and lysosome function. Macrophages enter tissues and alter their function to deal with a wide range of challenges related to development and organogenesis, tissue injury, malignancy, sterile, or pathogenic inflammatory stimuli. These stimuli alter the gene expression to produce "activated macrophages" that are better equipped to eliminate the cause of their influx and to restore homeostasis. Activation or polarization states of macrophages have been classified as "classical" and "alternative" or M1 and M2. These proposed states of cells are not supported by large-scale transcriptomic data, including macrophage-associated signatures from large cancer tissue datasets, where the supposed markers do not correlate with other. Individual macrophage cells differ markedly from each other, and change their functions in response to doses and combinations of agonists and time. The most studied macrophage activation response is the transcriptional cascade initiated by the TLR4 agonist lipopolysaccharide. This response is reviewed herein. The network topology is conserved across species, but genes within the transcriptional network evolve rapidly and differ between mouse and human. There is also considerable divergence in the sets of target genes between mouse strains, between individuals, and in other species such as pigs. The deluge of complex information related to macrophage activation can be accessed with new analytical tools and new databases that provide

  11. Burnout Syndrome During Residency.

    Science.gov (United States)

    Turgut, Namigar; Karacalar, Serap; Polat, Cengiz; Kıran, Özlem; Gültop, Fethi; Kalyon, Seray Türkmen; Sinoğlu, Betül; Zincirci, Mehmet; Kaya, Ender

    2016-10-01

    The aim of this study is identified the degree of Burnout Syndrome (BOS) and find out its correlation with years of recidency and sociodemograpfic chareacteristics, training, sleeping habits, such as smoking and alcohol consumption. After approval from the Hospital Ethics Committee and obtaining informed consent, First, second, third, fourth and fifth year of recidency staff (n=127) working in our hospital were involved in this study. The standardized Maslach Burnout Inventory (MBI) was used in this study. Fifty six male (44.1%) and seventy one female (55.9%) residents were enroled in this study (Coranbach Alfa(α)=0.873). 57% of the first year residents smokes cigaret and 54% of them use alcohol. 2% of them gets one day off after hospital night shift, 61% of them suffers from disturbed sleep. 60% of them had been stated that they willingly selected their profession. 61% of them prefers talking to friends and 32% of them prefers shopping to overcome stress. There were statistical difference acording to years of recidency in MBI, Emotional Burnout (EB) and desensitisation scale (DS) points. EB scale points of the second year of residency group was statisticaly higher than fourth year of residency group. DS points of second year of residency group was also statisticaly higher than the third and fourth year of residency group. There was no statistical difference between any groups in Personal Success. BOS is a frequent problem during residency in anaesthesia. Appropriate definition and awareness are the first important steps to prevent this syndrome. Further administrative approaches should be evaluated with regard to their effects.

  12. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M.; Brown, Robert J., E-mail: rbrown@mun.ca

    2014-09-05

    Highlights: • Lipoprotein hydrolysis products were produced by lipoprotein lipase. • Hydrolysis products lowers expression of macrophage cholesterol transporters. • Hydrolysis products reduces expression of select nuclear receptors. • Fatty acid products lowers cholesterol transporters and select nuclear receptors. • Fatty acid products reduces cholesterol efflux from macrophages. - Abstract: Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL.

  13. Immune mediated liver failure

    OpenAIRE

    Wang, Xiaojing; Ning, Qin

    2014-01-01

    Liver failure is a clinical syndrome of various etiologies, manifesting as jaundice, encephalopathy, coagulopathy and circulatory dysfunction, which result in subsequent multiorgan failure. Clinically, liver failure is classified into four categories: acute, subacute, acute-on-chronic and chronic liver failure. Massive hepatocyte death is considered to be the core event in the development of liver failure, which occurs when the extent of hepatocyte death is beyond the liver regenerative capac...

  14. Monocyte/macrophage-derived soluble CD163

    DEFF Research Database (Denmark)

    Andersen, Morten N; Abildgaard, Niels; Maniecki, Maciej B

    2014-01-01

    in bone marrow samples than in the matched blood samples, which indicate a localized production of sCD163 within the bone marrow microenvironment. CONCLUSIONS: Soluble CD163 was found to be a prognostic marker in patients with multiple myeloma. This may indicate that macrophages and/or monocytes have......OBJECTIVES: Macrophages play an important role in cancer by suppression of adaptive immunity and promotion of angiogenesis and metastasis. Tumor-associated macrophages strongly express the hemoglobin scavenger receptor CD163, which can also be found as a soluble protein in serum and other body...

  15. Analysis of Resident Case Logs in an Anesthesiology Residency Program

    DEFF Research Database (Denmark)

    Yamamoto, Satoshi; Tanaka, Pedro; Madsen, Matias Vested

    2016-01-01

    Our goal in this study was to examine Accreditation Council for Graduate Medical Education case logs for Stanford anesthesia residents graduating in 2013 (25 residents) and 2014 (26 residents). The resident with the fewest recorded patients in 2013 had 43% the number of patients compared with the...

  16. Residents as teachers: survey of Canadian family medicine residents.

    Science.gov (United States)

    Ng, Victor K; Burke, Clarissa A; Narula, Archna

    2013-09-01

    To examine Canadian family medicine residents' perspectives surrounding teaching opportunities and mentorship in teaching. A 16-question online survey. Canadian family medicine residency programs. Between May and June 2011, all first- and second-year family medicine residents registered in 1 of the 17 Canadian residency programs as of September 2010 were invited to participate. A total of 568 of 2266 residents responded. Demographic characteristics, teaching opportunities during residency, and resident perceptions about teaching. A total of 77.7% of family medicine residents indicated that they were either interested or highly interested in teaching as part of their future careers, and 78.9% of family medicine residents had had opportunities to teach in various settings. However, only 60.1% of respondents were aware of programs within residency intended to support residents as teachers, and 33.0% of residents had been observed during teaching encounters. It appears that most Canadian family medicine residents have the opportunity to teach during their residency training. Many are interested in integrating teaching as part of their future career goals. Family medicine residencies should strongly consider programs to support and further develop resident teaching skills.

  17. Stable isotopes as tracers of residency for fish on inshore coral reefs

    Science.gov (United States)

    Davis, Jean P.; Pitt, Kylie A.; Fry, Brian; Connolly, Rod M.

    2015-12-01

    Understanding the migratory movements of fish between habitats is an important priority for fisheries management. Carbon (C) and nitrogen (N) stable isotopes were used to evaluate the degree of movement and residency for five fish species collected from coral reefs in Queensland, Australia. Isotope values of fish were measured and compared between slow-turnover muscle tissue and fast-turnover liver tissue, with isotopic agreement between liver and muscle generally indicating resident animals, and relatively low C isotope values in muscle indicating migrants. Three fish species, rabbitfish (Siganus fuscescens), painted sweetlips (Diagramma labiosum) and Guenther's wrasse (Pseudolabrus guentheri) showed relatively consistent carbon isotope values between muscle and liver tissue as expected for resident populations. One quarter of bream (Acanthopagrus australis) individuals showed much lower δ13C values in muscle than liver. These low values diverged from the -10 to -15‰ values of residents and were more similar to the -20‰ values of fish collected from coastal riverine habitats, the presumed migration source. Moses perch (Lutjanus russelli) also showed substantial differences between muscle and liver C isotopes for about a quarter of individuals, but the overall higher C values of these individuals indicated they may have switched diets within island habitats rather than migrating. Our results were consistent with previous studies of fish residency and indicate that measuring stable isotopes in multiple tissues provides a useful methodology for characterizing fish residency in inshore areas.

  18. IQGAP1 is involved in post-ischemic neovascularization by regulating angiogenesis and macrophage infiltration.

    Directory of Open Access Journals (Sweden)

    Norifumi Urao

    2010-10-01

    Full Text Available Neovascularization is an important repair mechanism in response to ischemic injury and is dependent on inflammation, angiogenesis and reactive oxygen species (ROS. IQGAP1, an actin-binding scaffold protein, is a key regulator for actin cytoskeleton and motility. We previously demonstrated that IQGAP1 mediates vascular endothelial growth factor (VEGF-induced ROS production and migration of cultured endothelial cells (ECs; however, its role in post-ischemic neovascularization is unknown.Ischemia was induced by left femoral artery ligation, which resulted in increased IQGAP1 expression in Mac3(+ macrophages and CD31(+ capillary-like ECs in ischemic legs. Mice lacking IQGAP1 exhibited a significant reduction in the post-ischemic neovascularization as evaluated by laser Doppler blood flow, capillary density and α-actin positive arterioles. Furthermore, IQGAP1(-/- mice showed a decrease in macrophage infiltration and ROS production in ischemic muscles, leading to impaired muscle regeneration and increased necrosis and fibrosis. The numbers of bone marrow (BM-derived cells in the peripheral blood were not affected in these knockout mice. BM transplantation revealed that IQGAP1 expressed in both BM-derived cells and tissue resident cells, such as ECs, is required for post-ischemic neovascularization. Moreover, thioglycollate-induced peritoneal macrophage recruitment and ROS production were inhibited in IQGAP1(-/- mice. In vitro, IQGAP1(-/- BM-derived macrophages showed inhibition of migration and adhesion capacity, which may explain the defective macrophage recruitment into the ischemic tissue in IQGAP1(-/- mice.IQGAP1 plays a key role in post-ischemic neovascularization by regulating, not only, ECs-mediated angiogenesis but also macrophage infiltration as well as ROS production. Thus, IQGAP1 is a potential therapeutic target for inflammation- and angiogenesis-dependent ischemic cardiovascular diseases.

  19. Nanoparticle-Based Magnetic Resonance Imaging on Tumor-Associated Macrophages and Inflammation

    Directory of Open Access Journals (Sweden)

    Natalie J. Serkova

    2017-05-01

    Full Text Available The inflammatory response, mediated by tissue-resident or newly recruited macrophages, is an underlying pathophysiological condition for many diseases, including diabetes, obesity, neurodegeneration, atherosclerosis, and cancer. Paradoxically, inflammation is a double-edged sword in oncology. Macrophages are, generally speaking, the major drivers of inflammatory insult. For many solid tumors, high density of cells expressing macrophage-associated markers have generally been found in association with a poor clinical outcome, characterized by inflamed microenvironment, a high level of dissemination and resistance to conventional chemotherapies. On another hand, radiation treatment also triggers an inflammatory response in tumors (often referred to as pseudoprogression, which can be associated with a positive treatment response. As such, non-invasive imaging of cancer inflammation and tumor-associated macrophages (TAMs provides a revolutionary diagnostic tool and monitoring strategy for anti-inflammatory, immuno- and radiotherapies. Recently, quantitative T2-weighted magnetic resonance imaging (qT2wMRI, using injection of superparamagnetic iron oxide nanoparticles (SPIONs, has been reported for the assessment of TAMs non-invasively in animal models and in human trials. The SPIONs are magnetic resonance imaging (MRI contrast agents that significantly decrease T2 MR relaxation times in inflamed tissues due to the macrophage-specific uptake and retention. It has been shown that macrophage-populated tumors and metastases will accumulate iron oxide nanoparticles and decrease T2-relaxation time that will result in a negative (dark contrast in qT2wMRI. Non-invasive imaging of TAMs using SPION holds a great promise for staging the inflammatory microenvironment of primary and metastatic tumors as well monitoring the treatment response of cancer patients treated with radiation and immunotherapy.

  20. Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion

    DEFF Research Database (Denmark)

    Falchi, Mario; Varricchio, Lilian; Martelli, Fabrizio

    2015-01-01

    Cultures of human CD34(pos) cells stimulated with erythroid growth factors plus dexamethasone, a model for stress erythropoiesis, generate numerous erythroid cells plus a few macrophages (approx. 3%; 3:1 positive and negative for CD169). Interactions occurring between erythroblasts and macrophages...... in these cultures and the biological effects associated with these interactions were documented by live phase-contrast videomicroscopy. Macrophages expressed high motility interacting with hundreds/thousands of erythroblasts per hour. CD169(pos) macrophages established multiple rapid 'loose' interactions...... with proerythroblasts leading to formation of transient erythroblastic island-like structures. By contrast, CD169(neg) macrophages established 'tight' interactions with mature erythroblasts and phagocytosed these cells. 'Loose' interactions of CD169(pos) macrophages were associated with proerythroblast cytokinesis (the...

  1. Cell fusion in the liver, revisited.

    Science.gov (United States)

    Lizier, Michela; Castelli, Alessandra; Montagna, Cristina; Lucchini, Franco; Vezzoni, Paolo; Faggioli, Francesca

    2018-02-27

    There is wide agreement that cell fusion is a physiological process in cells in mammalian bone, muscle and placenta. In other organs, such as the cerebellum, cell fusion is controversial. The liver contains a considerable number of polyploid cells: They are commonly believed to originate by genome endoreplication, although the contribution of cell fusion to polyploidization has not been excluded. Here, we address the topic of cell fusion in the liver from a historical point of view. We discuss experimental evidence clearly supporting the hypothesis that cell fusion occurs in the liver, specifically when bone marrow cells were injected into mice and shown to rescue genetic hepatic degenerative defects. Those experiments-carried out in the latter half of the last century-were initially interpreted to show "transdifferentiation", but are now believed to demonstrate fusion between donor macrophages and host hepatocytes, raising the possibility that physiologically polyploid cells, such as hepatocytes, could originate, at least partially, through homotypic cell fusion. In support of the homotypic cell fusion hypothesis, we present new data generated using a chimera-based model, a much simpler model than those previously used. Cell fusion as a road to polyploidization in the liver has not been extensively investigated, and its contribution to a variety of conditions, such as viral infections, carcinogenesis and aging, remains unclear.

  2. Blended Learning in Obstetrics and Gynecology Resident Education: Impact on Resident Clinical Performance.

    Science.gov (United States)

    Ghareeb, Allen; Han, Heeyoung; Delfino, Kristin; Taylor, Funminiyi

    2016-01-01

    Effects of residents' blended learning on their clinical performance have rarely been reported. A blended learning pilot program was instituted at Southern Illinois University School of Medicine's Obstetrics and Gynecology program. One of the modules was chronic hypertension in pregnancy. We sought to evaluate if the resident blended learning was transferred to their clinical performance six months after the module. A review of patient charts demonstrated inadequate documentation of history, evaluation, and counseling of patients with chronic hypertension at the first prenatal visit by Obstetrics and Gynecology (OB/GYN) residents. A blended learning module on chronic hypertension in pregnancy was then provided to the residents. A retrospective chart review was then performed to assess behavioral changes in the OB/GYN residents. This intervention was carried out at the Department of Obstetrics and Gynecology, Southern Illinois University. All 16 OB/GYN residents were enrolled in this module as part of their educational curriculum. A query of all prenatal patients diagnosed with chronic hypertension presenting to the OB/GYN resident clinics four months prior to the implementation of the blended learning module (March 2015-June 2015) and six months after (July 20, 2015-February 2016) was performed. Data were collected from outpatient charts utilizing the electronic medical record. Data were abstracted from resident documentation at the first prenatal visit. The residents thought that the blended learning module was applicable to performance improvement in the real-world setting. Patients evaluated before ( n = 10) and after ( n = 7) the intervention were compared. After the intervention, there was an increase in assessment of baseline liver enzymes, referral for electrocardiogram, and early assessment for diabetes in the obese patients. More patients were provided a blood pressure cuff after the module (71.4% vs. 20%). Data were provided to the residents in an

  3. Characterisation of a Novel Fc Conjugate of Macrophage Colony-stimulating Factor

    Science.gov (United States)

    Gow, Deborah J; Sauter, Kristin A; Pridans, Clare; Moffat, Lindsey; Sehgal, Anuj; Stutchfield, Ben M; Raza, Sobia; Beard, Philippa M; Tsai, Yi Ting; Bainbridge, Graeme; Boner, Pamela L; Fici, Greg; Garcia-Tapia, David; Martin, Roger A; Oliphant, Theodore; Shelly, John A; Tiwari, Raksha; Wilson, Thomas L; Smith, Lee B; Mabbott, Neil A; Hume, David A

    2014-01-01

    We have produced an Fc conjugate of colony-stimulating factor (CSF) 1 with an improved circulating half-life. CSF1-Fc retained its macrophage growth-promoting activity, and did not induce proinflammatory cytokines in vitro. Treatment with CSF1-Fc did not produce adverse effects in mice or pigs. The impact of CSF1-Fc was examined using the Csf1r-enhanced green fluorescent protein (EGFP) reporter gene in MacGreen mice. Administration of CSF1-Fc to mice drove extensive infiltration of all tissues by Csf1r-EGFP positive macrophages. The main consequence was hepatosplenomegaly, associated with proliferation of hepatocytes. Expression profiles of the liver indicated that infiltrating macrophages produced candidate mediators of hepatocyte proliferation including urokinase, tumor necrosis factor, and interleukin 6. CSF1-Fc also promoted osteoclastogenesis and produced pleiotropic effects on other organ systems, notably the testis, where CSF1-dependent macrophages have been implicated in homeostasis. However, it did not affect other putative CSF1 targets, notably intestine, where Paneth cell numbers and villus architecture were unchanged. CSF1 has therapeutic potential in regenerative medicine in multiple organs. We suggest that the CSF1-Fc conjugate retains this potential, and may permit daily delivery by injection rather than continuous infusion required for the core molecule. PMID:24962162

  4. Quercetin-3-O-glucuronide induces ABCA1 expression by LXRα activation in murine macrophages

    International Nuclear Information System (INIS)

    Ohara, Kazuaki; Wakabayashi, Hideyuki; Taniguchi, Yoshimasa; Shindo, Kazutoshi; Yajima, Hiroaki; Yoshida, Aruto

    2013-01-01

    Highlights: •The major circulating quercetin metabolite (Q3GA) activated LXRα. •Q3GA induced ABCA1 via LXRα activation in macrophages. •Nelumbo nucifera leaf extracts contained quercetin glycosides. •N. nucifera leaf extract feeding elevated HDLC in mice. -- Abstract: Reverse cholesterol transport (RCT) removes excess cholesterol from macrophages to prevent atherosclerosis. ATP-binding cassette, subfamily A, member 1 (ABCA1) is a crucial cholesterol transporter involved in RCT to produce high density lipoprotein-cholesterol (HDLC), and is transcriptionally regulated by liver X receptor alpha (LXRα), a nuclear receptor. Quercetin is a widely distributed flavonoid in edible plants which prevented atherosclerosis in an animal model. We found that quercetin-3-O-glucuronide (Q3GA), a major quercetin metabolite after absorption from the digestive tract, enhanced ABCA1 expression, in vitro, via LXRα in macrophages. In addition, leaf extracts of a traditional Asian edible plant, Nelumbo nucifera (NNE), which contained abundant amounts of quercetin glycosides, significantly elevated plasma HDLC in mice. We are the first to present experimental evidence that Q3GA induced ABCA1 in macrophages, and to provide an alternative explanation to previous studies on arteriosclerosis prevention by quercetin

  5. Quercetin-3-O-glucuronide induces ABCA1 expression by LXRα activation in murine macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Kazuaki, E-mail: Kazuaki_Ohara@kirin.co.jp [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Wakabayashi, Hideyuki [Laboratory for New Product Development, Kirin Beverage Company Limited, 1-17-1 Namamugi, Tsurumi-ku, Yokohama 230-8628 (Japan); Taniguchi, Yoshimasa [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Shindo, Kazutoshi [Department of Food and Nutrition, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681 (Japan); Yajima, Hiroaki [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Yoshida, Aruto [Central Laboratories for Key Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan)

    2013-11-29

    Highlights: •The major circulating quercetin metabolite (Q3GA) activated LXRα. •Q3GA induced ABCA1 via LXRα activation in macrophages. •Nelumbo nucifera leaf extracts contained quercetin glycosides. •N. nucifera leaf extract feeding elevated HDLC in mice. -- Abstract: Reverse cholesterol transport (RCT) removes excess cholesterol from macrophages to prevent atherosclerosis. ATP-binding cassette, subfamily A, member 1 (ABCA1) is a crucial cholesterol transporter involved in RCT to produce high density lipoprotein-cholesterol (HDLC), and is transcriptionally regulated by liver X receptor alpha (LXRα), a nuclear receptor. Quercetin is a widely distributed flavonoid in edible plants which prevented atherosclerosis in an animal model. We found that quercetin-3-O-glucuronide (Q3GA), a major quercetin metabolite after absorption from the digestive tract, enhanced ABCA1 expression, in vitro, via LXRα in macrophages. In addition, leaf extracts of a traditional Asian edible plant, Nelumbo nucifera (NNE), which contained abundant amounts of quercetin glycosides, significantly elevated plasma HDLC in mice. We are the first to present experimental evidence that Q3GA induced ABCA1 in macrophages, and to provide an alternative explanation to previous studies on arteriosclerosis prevention by quercetin.

  6. Liver Transplants for Alcoholic Liver Disease

    Directory of Open Access Journals (Sweden)

    RJ Fingerote

    1991-01-01

    Full Text Available Alcohol related end-stage liver disease is a principal cause of liver failure. The scarcity of donor livers and the predominance of alcohol related end-stage liver disease has raised the issue of including alcoholics as candidates for liver transplantation. In rationalizing the arguments for and against the treatment of alcoholic end-stage liver disease with transplantation, factors such as recidivism, resource allocation and principles of medical practice must be considered. Public confidence in organ transplantation depends on the scientific validity and moral integrity of the policies adopted. Sound policies will prove defensible while policies based on perceptions or prejudices will, in the long run, harm the process.

  7. Intimal lining layer macrophages but not synovial sublining macrophages display an IL-10 polarized-like phenotype in chronic synovitis

    NARCIS (Netherlands)

    Ambarus, Carmen A.; Noordenbos, Troy; de Hair, Maria J. H.; Tak, Paul P.; Baeten, Dominique L. P.

    2012-01-01

    Introduction: Synovial tissue macrophages play a key role in chronic inflammatory arthritis, but the contribution of different macrophage subsets in this process remains largely unknown. The main in vitro polarized macrophage subsets are classically (M1) and alternatively (M2) activated macrophages,

  8. Macrophage Recognition of Crystals and Nanoparticles

    Science.gov (United States)

    Nakayama, Masafumi

    2018-01-01

    Inhalation of exogenous crystals such as silica, asbestos, and carbon nanotubes can cause lung fibrosis and cancer. Endogenous crystals such as monosodium urate, cholesterol, and hydroxyapatite are associated with pathogenesis of gout, atherosclerosis, and osteoarthritis, respectively. These crystal-associated-inflammatory diseases are triggered by the macrophage NLRP3 inflammasome activation and cell death. Therefore, it is important to understand how macrophages recognize crystals. However, it is unlikely that macrophages have evolutionally acquired receptors specific for crystals or recently emerged nanoparticles. Several recent studies have reported that some crystal particles are negatively charged and are recognized by scavenger receptor family members in a charge-dependent manner. Alternatively, a model for receptor-independent phagocytosis of crystals has also been proposed. This review focuses on the mechanisms by which macrophages recognize crystals and nanoparticles. PMID:29434606

  9. Macrophage Recognition of Crystals and Nanoparticles

    Directory of Open Access Journals (Sweden)

    Masafumi Nakayama

    2018-01-01

    Full Text Available Inhalation of exogenous crystals such as silica, asbestos, and carbon nanotubes can cause lung fibrosis and cancer. Endogenous crystals such as monosodium urate, cholesterol, and hydroxyapatite are associated with pathogenesis of gout, atherosclerosis, and osteoarthritis, respectively. These crystal-associated-inflammatory diseases are triggered by the macrophage NLRP3 inflammasome activation and cell death. Therefore, it is important to understand how macrophages recognize crystals. However, it is unlikely that macrophages have evolutionally acquired receptors specific for crystals or recently emerged nanoparticles. Several recent studies have reported that some crystal particles are negatively charged and are recognized by scavenger receptor family members in a charge-dependent manner. Alternatively, a model for receptor-independent phagocytosis of crystals has also been proposed. This review focuses on the mechanisms by which macrophages recognize crystals and nanoparticles.

  10. Macrophage Recognition of Crystals and Nanoparticles.

    Science.gov (United States)

    Nakayama, Masafumi

    2018-01-01

    Inhalation of exogenous crystals such as silica, asbestos, and carbon nanotubes can cause lung fibrosis and cancer. Endogenous crystals such as monosodium urate, cholesterol, and hydroxyapatite are associated with pathogenesis of gout, atherosclerosis, and osteoarthritis, respectively. These crystal-associated-inflammatory diseases are triggered by the macrophage NLRP3 inflammasome activation and cell death. Therefore, it is important to understand how macrophages recognize crystals. However, it is unlikely that macrophages have evolutionally acquired receptors specific for crystals or recently emerged nanoparticles. Several recent studies have reported that some crystal particles are negatively charged and are recognized by scavenger receptor family members in a charge-dependent manner. Alternatively, a model for receptor-independent phagocytosis of crystals has also been proposed. This review focuses on the mechanisms by which macrophages recognize crystals and nanoparticles.

  11. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential.

    Science.gov (United States)

    Schepetkin, Igor A; Quinn, Mark T

    2006-03-01

    Botanical polysaccharides exhibit a number of beneficial therapeutic properties, and it is thought that the mechanisms involved in these effects are due to the modulation of innate immunity and, more specifically, macrophage function. In this review, we summarize our current state of understanding of the macrophage modulatory effects of botanical polysaccharides isolated from a wide array of different species of flora, including higher plants, mushrooms, lichens and algae. Overall, the primary effect of botanical polysaccharides is to enhance and/or activate macrophage immune responses, leading to immunomodulation, anti-tumor activity, wound-healing and other therapeutic effects. Furthermore, botanical and microbial polysaccharides bind to common surface receptors and induce similar immunomodulatory responses in macrophages, suggesting that evolutionarily conserved polysaccharide structural features are shared between these organisms. Thus, the evaluation of botanical polysaccharides provides a unique opportunity for the discovery of novel therapeutic agents and adjuvants that exhibit beneficial immunomodulatory properties.

  12. Epigenetic Regulation of Monocyte and Macrophage Function

    NARCIS (Netherlands)

    Hoeksema, Marten A.; de Winther, Menno P. J.

    2016-01-01

    Monocytes and macrophages are key players in tissue homeostasis and immune responses. Epigenetic processes tightly regulate cellular functioning in health and disease. Recent Advances: Recent technical developments have allowed detailed characterizations of the transcriptional circuitry underlying

  13. The Human Amnion Epithelial Cell Secretome Decreases Hepatic Fibrosis in Mice with Chronic Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Majid Alhomrani

    2017-10-01

    Full Text Available Background: Hepatic stellate cells (HSCs are the primary collagen-secreting cells in the liver. While HSCs are the major cell type involved in the pathogenesis of liver fibrosis, hepatic macrophages also play an important role in mediating fibrogenesis and fibrosis resolution. Previously, we observed a reduction in HSC activation, proliferation, and collagen synthesis following exposure to human amnion epithelial cells (hAEC and hAEC-conditioned media (hAEC-CM. This suggested that specific factors secreted by hAEC might be effective in ameliorating liver fibrosis. hAEC-derived extracellular vesicles (hAEC-EVs, which are nanosized (40–100 nm membrane bound vesicles, may act as novel cell–cell communicators. Accordingly, we evaluated the efficacy of hAEC-EV in modulating liver fibrosis in a mouse model of chronic liver fibrosis and in human HSC.Methods: The hAEC-EVs were isolated and characterized. C57BL/6 mice with CCl4-induced liver fibrosis were administered hAEC-EV, hAEC-CM, or hAEC-EV depleted medium (hAEC-EVDM. LX2 cells, a human HSC line, and bone marrow-derived mouse macrophages were exposed to hAEC-EV, hAEC-CM, and hAEC-EVDM. Mass spectrometry was used to examine the proteome profile of each preparation.Results: The extent of liver fibrosis and number of activated HSCs were reduced significantly in CCl4-treated mice given hAEC-EVs, hAEC-CM, and hAEC EVDM compared to untreated controls. Hepatic macrophages were significantly decreased in all treatment groups, where a predominant M2 phenotype was observed. Human HSCs cultured with hAEC-EV and hAEC-CM displayed a significant reduction in collagen synthesis and hAEC-EV, hAEC-CM, and hAEC-EVDM altered macrophage polarization in bone marrow-derived mouse macrophages. Proteome analysis showed that 164 proteins were unique to hAEC-EV in comparison to hAEC-CM and hAEC-EVDM, and 51 proteins were co-identified components with the hAEC-EV fraction.Conclusion: This study provides novel data

  14. The Many Alternative Faces of Macrophage Activation

    Science.gov (United States)

    Hume, David A.

    2015-01-01

    Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. Analysis of large gene expression datasets from multiple cells and tissues reveals sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, the gene clusters include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and genes required for endocytosis and lysosome function. Macrophages enter tissues and alter their function to deal with a wide range of challenges related to development and organogenesis, tissue injury, malignancy, sterile, or pathogenic inflammatory stimuli. These stimuli alter the gene expression to produce “activated macrophages” that are better equipped to eliminate the cause of their influx and to restore homeostasis. Activation or polarization states of macrophages have been classified as “classical” and “alternative” or M1 and M2. These proposed states of cells are not supported by large-scale transcriptomic data, including macrophage-associated signatures from large cancer tissue datasets, where the supposed markers do not correlate with other. Individual macrophage cells differ markedly from each other, and change their functions in response to doses and combinations of agonists and time. The most studied macrophage activation response is the transcriptional cascade initiated by the TLR4 agonist lipopolysaccharide. This response is reviewed herein. The network topology is conserved across species, but genes within the transcriptional network evolve rapidly and differ between mouse and human. There is also considerable divergence in the sets of target genes between mouse strains, between individuals, and in other species such as pigs. The deluge of complex information related to macrophage activation can be accessed with new analytical tools and new databases

  15. Macrophage Polarization in Metabolism and Metabolic Disease

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2013-08-01

    Full Text Available BACKGROUND: Obesity is now recognized as the main cause of the worldwide epidemic of type 2 diabetes. Obesity-associated chronic inflammation is a contributing key factor for type 2 diabetes and cardiovascular disease. Numbers of studies have clearly demonstrated that the immune system and metabolism are highly integrated. CONTENT: Macrophages are an essential component of innate immunity and play a central role in inflammation and host defense. Moreover, these cells have homeostatic functions beyond defense, including tissue remodeling in ontogenesis and orchestration of metabolic functions. Diversity and plasticity are hallmarks of cells of the monocyte-macrophage lineage. In response to interferons (IFNs, toll-like receptor (TLR, or interleukin (IL-4/IL-13 signals, macrophages undergo M1 (classical or M2 (alternative activation. Progress has now been made in defining the signaling pathways, transcriptional networks, and epigenetic mechanisms underlying M1, M2 or M2-like polarized activation. SUMMARY: In response to various signals, macrophages may undergo classical M1 activation (stimulated by TLR ligands and IFN-γ or alternative M2 activation (stimulated by IL-4/IL-13; these states mirror the T helper (Th1–Th2 polarization of T cells. Pathology is frequently associated with dynamic changes in macrophage activation, with classically activated M1 cells implicate in initiating and sustaining inflammation, meanwhile M2 or M2-like activated cells associated with resolution or smoldering chronic inflammation. Identification of the mechanisms and molecules that are associated with macrophage plasticity and polarized activation provides a basis for macrophage centered diagnostic and therapeutic strategies. KEYWORDS: obesity, adipose tissue, inflammation, macrophage polarization.

  16. Macrophage Recognition of Crystals and Nanoparticles

    OpenAIRE

    Nakayama, Masafumi

    2018-01-01

    Inhalation of exogenous crystals such as silica, asbestos, and carbon nanotubes can cause lung fibrosis and cancer. Endogenous crystals such as monosodium urate, cholesterol, and hydroxyapatite are associated with pathogenesis of gout, atherosclerosis, and osteoarthritis, respectively. These crystal-associated-inflammatory diseases are triggered by the macrophage NLRP3 inflammasome activation and cell death. Therefore, it is important to understand how macrophages recognize crystals. However,...

  17. Endometriosis, a disease of the macrophage

    OpenAIRE

    Capobianco, Annalisa; Rovere-Querini, Patrizia

    2013-01-01

    Endometriosis, a common cause of pelvic pain and female infertility, depends on the growth of vascularized endometrial tissue at ectopic sites. Endometrial fragments reach the peritoneal cavity during the fertile years: local cues decide whether they yield endometriotic lesions. Macrophages are recruited at sites of hypoxia and tissue stress, where they clear cell debris and heme-iron and generate pro-life and pro-angiogenesis signals. Macrophages are abundant in endometriotic lesions, where ...

  18. Key hub and bottleneck genes differentiate the macrophage response to virulent and attenuated Mycobacterium bovis

    Directory of Open Access Journals (Sweden)

    Kate E. Killick

    2014-10-01

    Full Text Available Mycobacterium bovis is an intracellular pathogen that causes tuberculosis in cattle. Following infection, the pathogen resides and persists inside host macrophages by subverting host immune responses via a diverse range of mechanisms. Here, a high-density bovine microarray platform was used to examine the bovine monocyte-derived macrophage transcriptome response to M. bovis infection relative to infection with the attenuated vaccine strain, M. bovis Bacille Calmette–Guérin. Differentially expressed genes were identified (adjusted P-value  0.01 and interaction networks generated across an infection time course of 2, 6 and 24 h. The largest number of biological interactions was observed in the 24 h network, which exhibited scale-free network properties. The 24 h network featured a small number of key hub and bottleneck gene nodes, including IKBKE, MYC, NFKB1 and EGR1 that differentiated the macrophage response to virulent and attenuated M. bovis strains, possibly via the modulation of host cell death mechanisms. These hub and bottleneck genes represent possible targets for immunomodulation of host macrophages by virulent mycobacterial species that enable their survival within a hostile environment.

  19. A heart-brain-kidney network controls adaptation to cardiac stress through tissue macrophage activation.

    Science.gov (United States)

    Fujiu, Katsuhito; Shibata, Munehiko; Nakayama, Yukiteru; Ogata, Fusa; Matsumoto, Sahohime; Noshita, Koji; Iwami, Shingo; Nakae, Susumu; Komuro, Issei; Nagai, Ryozo; Manabe, Ichiro

    2017-05-01

    Heart failure is a complex clinical syndrome characterized by insufficient cardiac function. In addition to abnormalities intrinsic to the heart, dysfunction of other organs and dysregulation of systemic factors greatly affect the development and consequences of heart failure. Here we show that the heart and kidneys function cooperatively in generating an adaptive response to cardiac pressure overload. In mice subjected to pressure overload in the heart, sympathetic nerve activation led to activation of renal collecting-duct (CD) epithelial cells. Cell-cell interactions among activated CD cells, tissue macrophages and endothelial cells within the kidney led to secretion of the cytokine CSF2, which in turn stimulated cardiac-resident Ly6C lo macrophages, which are essential for the myocardial adaptive response to pressure overload. The renal response to cardiac pressure overload was disrupted by renal sympathetic denervation, adrenergic β2-receptor blockade or CD-cell-specific deficiency of the transcription factor KLF5. Moreover, we identified amphiregulin as an essential cardioprotective mediator produced by cardiac Ly6C lo macrophages. Our results demonstrate a dynamic interplay between the heart, brain and kidneys that is necessary for adaptation to cardiac stress, and they highlight the homeostatic functions of tissue macrophages and the sympathetic nervous system.

  20. Endometriosis, a disease of the macrophage

    Directory of Open Access Journals (Sweden)

    Annalisa eCapobianco

    2013-01-01

    Full Text Available Endometriosis, a common cause of pelvic pain and female infertility, depends on the growth of vascularised endometrial tissue at ectopic sites. Endometrial fragments reach the peritoneal cavity during the fertile years: local cues decide whether they yield endometriotic lesions. Macrophages are recruited at sites of hypoxia and tissue stress, where they clear cell debris and heme-iron and generate pro-life and pro-angiogenesis signals. Macrophages are abundant in endometriotic lesions, where are recruited and undergo alternative activation. In rodents macrophages are required for lesions to establish and to grow; bone-marrow derived Tie-2 expressing macrophages specifically contribute to lesions neovasculature, possibly because they concur to the recruitment of circulating endothelial progenitors, and sustain their survival and the integrity of the vessel wall. Macrophages sense cues (hypoxia, cell death, iron overload in the lesions and react delivering signals to restore the local homeostasis: their action represents a necessary, non-redundant step in the natural history of the disease. Endometriosis may be due to a misperception of macrophages about ectopic endometrial tissue. They perceive it as a wound, they activate programs leading to ectopic cell survival and tissue vascularization. Clearing this misperception is a critical area for the development of novel medical treatments of endometriosis, an urgent and unmet medical need.

  1. Macrophages and nerve fibres in peritoneal endometriosis.

    Science.gov (United States)

    Tran, Lu Vinh Phuc; Tokushige, Natsuko; Berbic, Marina; Markham, Robert; Fraser, Ian S

    2009-04-01

    Endometriosis is considered to be an inflammatory disease, and macrophages are the most numerous immune cells in endometriotic lesions. However, the mechanisms underlying the elevation of macrophages and their role in the pathogenesis and manifestations of endometriosis still remain unclear. The number of macrophages stained for CD68 in endometriotic lesions (n = 24) and in peritoneum distant from the lesions (n = 14) from women with endometriosis was compared with the number of macrophages in normal peritoneum from women without endometriosis (n = 18). Peritoneal lesions were also double-stained for CD68 and protein gene product 9.5 to study the relationship between macrophages and nerve fibres. The densities of macrophages in peritoneal endometriotic lesions and unaffected peritoneum from women with endometriosis were both significantly higher than that in normal peritoneum from women without endometriosis (P peritoneal lesions from women with endometriosis compared with normal peritoneum from women without endometriosis. These cells may well play roles in the growth and development of endometriotic lesions and in the generation of pain through interaction with nerve fibres.

  2. Biomarkers for liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Jon M.; Burnum-Johnson, Kristin E.; Baker, Erin M.; Smith, Richard D.; Gritsenko, Marina A.; Orton, Daniel

    2017-05-16

    Methods and systems for diagnosing or prognosing liver fibrosis in a subject are provided. In some examples, such methods and systems can include detecting liver fibrosis-related molecules in a sample obtained from the subject, comparing expression of the molecules in the sample to controls representing expression values expected in a subject who does not have liver fibrosis or who has non-progressing fibrosis, and diagnosing or prognosing liver fibrosis in the subject when differential expression of the molecules between the sample and the controls is detected. Kits for the diagnosis or prognosis of liver fibrosis in a subject are also provided which include reagents for detecting liver fibrosis related molecules.

  3. Resident fatigue in otolaryngology residents: a Web based survey.

    Science.gov (United States)

    Nida, Andrew M; Googe, Benjamin J; Lewis, Andrea F; May, Warren L

    2016-01-01

    Resident fatigue has become a point of emphasis in medical education and its effects on otolaryngology residents and their patients require further study. The purpose of our study was to evaluate the prevalence and nature of fatigue in otolaryngology residents, evaluate various quality of life measures, and investigate associations of increased fatigue with resident safety. Anonymous survey. Internet based. United States allopathic otolaryngology residents. None. The survey topics included demographics, residency structure, sleep habits and perceived stress. Responses were correlated with a concurrent Epworth Sleep Scale questionnaire to evaluate effects of fatigue on resident training and quality of life. 190 residents responded to the survey with 178 completing the Epworth Sleep Scale questionnaire. Results revealed a mean Epworth Sleep Scale score of 9.9±5.1 with a median of 10.0 indicating a significant number of otolaryngology residents are excessively sleepy. Statistically significant correlations between Epworth Sleep Scale and sex, region, hours of sleep, and work hours were found. Residents taking in-house call had significantly fewer hours of sleep compared to home call (p=0.01). Residents on "head and neck" (typically consisting of a large proportion of head and neck oncologic surgery) rotations tended to have higher Epworth Sleep Scale and had significantly fewer hours of sleep (p=.003) and greater work hours (potolaryngology residents are excessively sleepy. Our data suggest that the effects of fatigue play a role in resident well-being and resident safety. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Cell-specific discrimination of desmosterol and desmosterol mimetics confers selective regulation of LXR and SREBP in macrophages.

    Science.gov (United States)

    Muse, Evan D; Yu, Shan; Edillor, Chantle R; Tao, Jenhan; Spann, Nathanael J; Troutman, Ty D; Seidman, Jason S; Henke, Adam; Roland, Jason T; Ozeki, Katherine A; Thompson, Bonne M; McDonald, Jeffrey G; Bahadorani, John; Tsimikas, Sotirios; Grossman, Tamar R; Tremblay, Matthew S; Glass, Christopher K

    2018-04-09

    Activation of liver X receptors (LXRs) with synthetic agonists promotes reverse cholesterol transport and protects against atherosclerosis in mouse models. Most synthetic LXR agonists also cause marked hypertriglyceridemia by inducing the expression of sterol regulatory element-binding protein (SREBP)1c and downstream genes that drive fatty acid biosynthesis. Recent studies demonstrated that desmosterol, an intermediate in the cholesterol biosynthetic pathway that suppresses SREBP processing by binding to SCAP, also binds and activates LXRs and is the most abundant LXR ligand in macrophage foam cells. Here we explore the potential of increasing endogenous desmosterol production or mimicking its activity as a means of inducing LXR activity while simultaneously suppressing SREBP1c-induced hypertriglyceridemia. Unexpectedly, while desmosterol strongly activated LXR target genes and suppressed SREBP pathways in mouse and human macrophages, it had almost no activity in mouse or human hepatocytes in vitro. We further demonstrate that sterol-based selective modulators of LXRs have biochemical and transcriptional properties predicted of desmosterol mimetics and selectively regulate LXR function in macrophages in vitro and in vivo. These studies thereby reveal cell-specific discrimination of endogenous and synthetic regulators of LXRs and SREBPs, providing a molecular basis for dissociation of LXR functions in macrophages from those in the liver that lead to hypertriglyceridemia. Copyright © 2018 the Author(s). Published by PNAS.

  5. Targeting arginase-II protects mice from high-fat-diet-induced hepatic steatosis through suppression of macrophage inflammation.

    Science.gov (United States)

    Liu, Chang; Rajapakse, Angana G; Riedo, Erwin; Fellay, Benoit; Bernhard, Marie-Claire; Montani, Jean-Pierre; Yang, Zhihong; Ming, Xiu-Fen

    2016-02-05

    Nonalcoholic fatty liver disease (NAFLD) associates with obesity and type 2 diabetes. Hypoactive AMP-activated protein kinase (AMPK), hyperactive mammalian target of rapamycin (mTOR) signaling, and macrophage-mediated inflammation are mechanistically linked to NAFLD. Studies investigating roles of arginase particularly the extrahepatic isoform arginase-II (Arg-II) in obesity-associated NAFLD showed contradictory results. Here we demonstrate that Arg-II(-/-) mice reveal decreased hepatic steatosis, macrophage infiltration, TNF-α and IL-6 as compared to the wild type (WT) littermates fed high fat diet (HFD). A higher AMPK activation (no difference in mTOR signaling), lower levels of lipogenic transcription factor SREBP-1c and activity/expression of lipogenic enzymes were observed in the Arg-II(-/-) mice liver. Moreover, release of TNF-α and IL-6 from bone marrow-derived macrophages (BMM) of Arg-II(-/-) mice is decreased as compared to WT-BMM. Conditioned medium from Arg-II(-/-)-BMM exhibits weaker activity to facilitate triglyceride synthesis paralleled with lower expression of SREBP-1c and SCD-1 and higher AMPK activation in hepatocytes as compared to that from WT-BMM. These effects of BMM conditioned medium can be neutralized by neutralizing antibodies against TNF-α and IL-6. Thus, Arg-II-expressing macrophages facilitate diet-induced NAFLD through TNF-α and IL-6 in obesity.

  6. A microfluidically perfused three dimensional human liver model.

    Science.gov (United States)

    Rennert, Knut; Steinborn, Sandra; Gröger, Marko; Ungerböck, Birgit; Jank, Anne-Marie; Ehgartner, Josef; Nietzsche, Sandor; Dinger, Julia; Kiehntopf, Michael; Funke, Harald; Peters, Frank T; Lupp, Amelie; Gärtner, Claudia; Mayr, Torsten; Bauer, Michael; Huber, Otmar; Mosig, Alexander S

    2015-12-01

    Within the liver, non-parenchymal cells (NPCs) are critically involved in the regulation of hepatocyte polarization and maintenance of metabolic function. We here report the establishment of a liver organoid that integrates NPCs in a vascular layer composed of endothelial cells and tissue macrophages and a hepatic layer comprising stellate cells co-cultured with hepatocytes. The three-dimensional liver organoid is embedded in a microfluidically perfused biochip that enables sufficient nutrition supply and resembles morphological aspects of the human liver sinusoid. It utilizes a suspended membrane as a cell substrate mimicking the space of Disse. Luminescence-based sensor spots were integrated into the chip to allow online measurement of cellular oxygen consumption. Application of microfluidic flow induces defined expression of ZO-1, transferrin, ASGPR-1 along with an increased expression of MRP-2 transporter protein within the liver organoids. Moreover, perfusion was accompanied by an increased hepatobiliary secretion of 5(6)-carboxy-2',7'-dichlorofluorescein and an enhanced formation of hepatocyte microvilli. From this we conclude that the perfused liver organoid shares relevant morphological and functional characteristics with the human liver and represents a new in vitro research tool to study human hepatocellular physiology at the cellular level under conditions close to the physiological situation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Blended Learning in Obstetrics and Gynecology Resident Education: Impact on Resident Clinical Performance

    Directory of Open Access Journals (Sweden)

    Allen Ghareeb

    2016-01-01

    Full Text Available Problem Effects of residents’ blended learning on their clinical performance have rarely been reported. A blended learning pilot program was instituted at Southern Illinois University School of Medicine's Obstetrics and Gynecology program. One of the modules was chronic hypertension in pregnancy. We sought to evaluate if the resident blended learning was transferred to their clinical performance six months after the module. Intervention A review of patient charts demonstrated inadequate documentation of history, evaluation, and counseling of patients with chronic hypertension at the first prenatal visit by Obstetrics and Gynecology (OB/GYN residents. A blended learning module on chronic hypertension in pregnancy was then provided to the residents. A retrospective chart review was then performed to assess behavioral changes in the OB/GYN residents. Context This intervention was carried out at the Department of Obstetrics and Gynecology, Southern Illinois University. All 16 OB/GYN residents were enrolled in this module as part of their educational curriculum. A query of all prenatal patients diagnosed with chronic hypertension presenting to the OB/GYN resident clinics four months prior to the implementation of the blended learning module (March 2015–June 2015 and six months after (July 20, 2015–February 2016 was performed. Data were collected from outpatient charts utilizing the electronic medical record. Data were abstracted from resident documentation at the first prenatal visit. Outcome The residents thought that the blended learning module was applicable to performance improvement in the real-world setting. Patients evaluated before ( n = 10 and after ( n = 7 the intervention were compared. After the intervention, there was an increase in assessment of baseline liver enzymes, referral for electrocardiogram, and early assessment for diabetes in the obese patients. More patients were provided a blood pressure cuff after the module (71

  8. Phagocytic and chemiluminescent responses of mouse peritoneal macrophages to living and killed Salmonella typhimurium and other bacteria

    International Nuclear Information System (INIS)

    Tomita, T.; Blumenstock, E.; Kanegasaki, S.

    1981-01-01

    In the presence of luminol, resident as well as thioglycolate-induced and immunized macrophages emitted chemiluminescence more efficiently when the cells were exposed to living Salmonella typhimurium than when they were exposed to the same bacterium killed by ultraviolet light or heat. This phenomenon was observed whether or not the bacterium was opsonized. The different response to living and killed bacteria was also found with Escherichia coli, Pseudomonas aeruginosa, Proteus morganii, and Enterobacter aerogenes, but not with Shigella sonnei, Klebsiella pneumoniae, and Propionibacterium acnes. The results suggest that macrophages respond better to living, motile bacteria than to nonmotile or killed bacteria. The experimental results obtained with motility mutants of S. typhimurium, E. coli, and P. aeruginosa confirm that macrophages exposed to the motile bacteria emit chemiluminescence more efficiently and ingest the motile bacteria at a much faster rate than the nonmotile bacteria

  9. Spirulina improves non-alcoholic steatohepatitis, visceral fat macrophage aggregation, and serum leptin in a mouse model of metabolic syndrome.

    Science.gov (United States)

    Fujimoto, Makoto; Tsuneyama, Koichi; Fujimoto, Takako; Selmi, Carlo; Gershwin, M Eric; Shimada, Yutaka

    2012-09-01

    Nutritional approaches are sought to overcome the limits of pioglitazone in metabolic syndrome and non-alcoholic fatty liver disease. Spirulina, a filamentous unicellular alga, reduces serum lipids and blood pressure while exerting antioxidant effects. To determine whether Spirulina may impact macrophages infiltrating the visceral fat in obesity characterizing our metabolic syndrome mouse model induced by the subcutaneous injection treatment of monosodium glutamate. Mice were randomized to receive standard food added with 5% Spirulina, 0.02% pioglitazone, or neither. We tested multiple biochemistry and histology (both liver and visceral fat) readouts at 24 weeks of age. Data demonstrate that both the Spirulina and the pioglitazone groups had significantly lower serum cholesterol and triglyceride levels and liver non-esterified fatty acid compared to untreated mice. Spirulina and pioglitazone were associated with significantly lower leptin and higher levels, respectively, compared to the control group. At liver histology, non-alcoholic fatty liver disease activity score and lipid peroxide were significantly lower in mice treated with Spirulina. Spirulina reduces dyslipidaemia in our metabolic syndrome model while ameliorating visceral adipose tissue macrophages. Human studies are needed to determine whether this safe supplement could prove beneficial in patients with metabolic syndrome. Copyright © 2012 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  10. The role of hepatic and splenic macrophages in E. coli-induced memory impairments in aged rats.

    Science.gov (United States)

    Barrientos, Ruth M; Thompson, Vanessa M; Arnold, T Hayes; Frank, Matthew G; Watkins, Linda R; Maier, Steven F

    2015-01-01

    Bi-directional communication between the peripheral and central nervous systems has been extensively demonstrated. Aged rats exhibit a prolonged proinflammatory response in the hippocampus region of the brain following a peripheral bacterial infection, and this response in turn causes robust memory declines. Here we aimed to determine whether hepatic or splenic macrophages play a role in the maintenance of this central response. Proinflammatory cytokines measured in liver and spleen four days following an Escherichia coli infection revealed a potentiated proinflammatory response in liver, and to a lesser extent in spleen, in aged relative to young rats. To determine whether this potentiated response was caused by impaired bacterial clearance in these organs, E. coli colony forming units in liver and spleen were measured 4 days after infection, and there were no difference between young and aged rats in either organ. No E. coli was detected in the hippocampus, eliminating the possibility that the aged blood brain barrier allowed E. coli to enter the brain. Depletion of hepatic and splenic macrophages with clodronate-encapsulated liposomes effectively eliminated the proinflammatory response to E. coli at four days in both organs. However, this treatment failed to reduce the proinflammatory response in the hippocampus. Moreover, depletion of peripheral macrophages from liver and spleen did not prevent E. coli-induced memory impairment. These data strongly suggest that hepatic and splenic macrophages do not play a major role in the long-lasting maintenance of the proinflammatory response in the hippocampus of aged rats following a bacterial infection, or the memory declines that this response produces. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Peritoneal macrophages mediated delivery of chitosan/siRNA nanoparticle to the lesion site in a murine radiation-induced fibrosis model

    DEFF Research Database (Denmark)

    Nawroth, Isabel; Alsner, Jan; Deleuran, B.W.

    2013-01-01

    of chitosan/siRNA nanoparticles directed towards silencing TNF alpha in local macrophage populations, but the mechanism for the therapeutic effect at the lesion site remains unclear. Methods. Using the same murine RIF model we utilized an optical imaging technique and fluorescence microscopy to investigate...... the uptake of chitosan/fluorescently labeled siRNA nanoparticles by peritoneal macrophages and their subsequent migration to the inflamed tissue in the RIF model. Results. We observed strong accumulation of the fluorescent signal in the lesion site of the irradiated leg up to 24 hours using the optical...... imaging system. We further confirm by immunohistochemical staining that Cy3 labeled siRNA resides in macrophages of the irradiated leg. Conclusion. We provide a proof-of-concept for host macrophage trafficking towards the inflamed region in a murine RIF model, which thereby suggests that the chitosan...

  12. American Liver Foundation

    Science.gov (United States)

    ... Progression of Liver Disease Reye Syndrome Type I Glycogen Storage Disease Wilson Disease Find Your Local Division ... about liver cancer HERE . Thanks to Hep B Free San Francisco, our campaign partner in Northern California, ...

  13. Antioxidants in liver health

    Science.gov (United States)

    Casas-Grajales, Sael; Muriel, Pablo

    2015-01-01

    Liver diseases are a worldwide medical problem because the liver is the principal detoxifying organ and maintains metabolic homeostasis. The liver metabolizes various compounds that produce free radicals (FR). However, antioxidants scavenge FR and maintain the oxidative/antioxidative balance in the liver. When the liver oxidative/antioxidative balance is disrupted, the state is termed oxidative stress. Oxidative stress leads to deleterious processes in the liver and produces liver diseases. Therefore, restoring antioxidants is essential to maintain homeostasis. One method of restoring antioxidants is to consume natural compounds with antioxidant capacity. The objective of this review is to provide information pertaining to various antioxidants found in food that have demonstrated utility in improving liver diseases. PMID:26261734

  14. Diet - liver disease

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002441.htm Diet - liver disease To use the sharing features on this page, please enable JavaScript. Some people with liver disease must eat a special diet. This diet ...

  15. Autoimmune liver disease panel

    Science.gov (United States)

    Liver disease test panel - autoimmune ... Autoimmune disorders are a possible cause of liver disease. The most common of these diseases are autoimmune hepatitis and primary biliary cholangitis (formerly called primary biliary cirrhosis). This group of tests ...

  16. Hepatic (Liver) Function Panel

    Science.gov (United States)

    ... or kidney disease, or nutritional problems. Liver enzymes: Alkaline phosphatase (ALP), alanine aminotransferase (ALT) , and aspartate aminotransferase (AST) . These enzymes help the liver convert food into energy. When their levels are high, it ...

  17. Liver Function Tests

    Science.gov (United States)

    ... Legacy Society Make Gifts of Stock Donate Your Car Personal Fundraising Partnership & Support Share Your Story Spread the Word Give While You Shop Contact Us Donate Now Diagnosing Liver Disease – Liver ...

  18. DMPD: Shaping of monocyte and macrophage function by adenosine receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17056121 Shaping of monocyte and macrophage function by adenosine receptors. Hasko ...G, Pacher P, Deitch EA, Vizi ES. Pharmacol Ther. 2007 Feb;113(2):264-75. Epub 2006 Sep 14. (.png) (.svg) (.html) (.csml) Show Shapi...ng of monocyte and macrophage function by adenosine receptors. PubmedID 17056121 Title Shapi

  19. DMPD: The actions of bacterial DNA on murine macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10534106 The actions of bacterial DNA on murine macrophages. Sester DP, Stacey KJ, ...Sweet MJ, Beasley SJ, Cronau SL, Hume DA. J Leukoc Biol. 1999 Oct;66(4):542-8. (.png) (.svg) (.html) (.csml) Show The... actions of bacterial DNA on murine macrophages. PubmedID 10534106 Title The actions of bacterial D

  20. Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages.

    Science.gov (United States)

    Raggi, Chiara; Correnti, Margherita; Sica, Antonio; Andersen, Jesper B; Cardinale, Vincenzo; Alvaro, Domenico; Chiorino, Giovanna; Forti, Elisa; Glaser, Shannon; Alpini, Gianfranco; Destro, Annarita; Sozio, Francesca; Di Tommaso, Luca; Roncalli, Massimo; Banales, Jesus M; Coulouarn, Cédric; Bujanda, Luis; Torzilli, Guido; Invernizzi, Pietro

    2017-01-01

    A therapeutically challenging subset of cells, termed cancer stem cells (CSCs) are responsible for cholangiocarcinoma (CCA) clinical severity. Presence of tumor-associated macrophages (TAMs) has prognostic significance in CCA and other malignancies. Thus, we hypothesized that CSCs may actively shape their tumor-supportive immune niche. CCA cells were cultured in 3D conditions to generate spheres. CCA sphere analysis of in vivo tumorigenic-engraftment in immune-deficient mice and molecular characterization was performed. The in vitro and in vivo effect of CCA spheres on macrophage precursors was tested after culturing healthy donor cluster of differentiation (CD)14 + with CCA-sphere conditioned medium. CCA spheres engrafted in 100% of transplanted mice and revealed a significant 20.3-fold increase in tumor-initiating fraction (p=0.0011) and a sustained tumorigenic potential through diverse xenograft-generations. Moreover, CCA spheres were highly enriched for CSC, liver cancer and embryonic stem cell markers both at gene and protein levels. Next, fluorescence-activated cell sorting analysis showed that in the presence of CCA sphere conditioned medium, CD14 + macrophages expressed key markers (CD68, CD115, human leukocyte antigen-D related, CD206) indicating that CCA sphere conditioned medium was a strong macrophage-activator. Gene expression profile of CCA sphere activated macrophages revealed unique molecular TAM-like features confirmed by high invasion capacity. Also, freshly isolated macrophages from CCA resections recapitulated a similar molecular phenotype of in vitro-educated macrophages. Consistent with invasive features, the largest CD163 + set was found in the tumor front of human CCA specimens (n=23) and correlated with a high level of serum cancer antigen 19.9 (n=17). Among mediators released by CCA spheres, only interleukin (IL)13, IL34 and osteoactivin were detected and further confirmed in CCA patient sera (n=12). Surprisingly, a significant association

  1. Phytosterols Promote Liver Injury and Kupffer Cell Activation in Parenteral Nutrition–Associated Liver Disease

    Science.gov (United States)

    El Kasmi, Karim C.; Anderson, Aimee L.; Devereaux, Michael W.; Vue, Padade M.; Zhang, Wujuan; Setchell, Kenneth D. R.; Karpen, Saul J.; Sokol, Ronald J.

    2014-01-01

    Parenteral nutrition–associated liver disease (PNALD) is a serious complication of PN in infants who do not tolerate enteral feedings, especially those with acquired or congenital intestinal diseases. Yet, the mechanisms underlying PNALD are poorly understood. It has been suggested that a component of soy oil (SO) lipid emulsions in PN solutions, such as plant sterols (phytosterols), may be responsible for PNALD, and that use of fish oil (FO)–based lipid emulsions may be protective. We used a mouse model of PNALD combining PN infusion with intestinal injury to demonstrate that SO-based PN solution causes liver damage and hepatic macrophage activation and that PN solutions that are FO-based or devoid of all lipids prevent these processes. We have furthermore demonstrated that a factor in the SO lipid emulsions, stigmasterol, promotes cholestasis, liver injury, and liver macrophage activation in this model and that this effect may be mediated through suppression of canalicular bile transporter expression (Abcb11/BSEP, Abcc2/MRP2) via antagonism of the nuclear receptors Fxr and Lxr, and failure of up-regulation of the hepatic sterol exporters (Abcg5/g8/ABCG5/8). This study provides experimental evidence that plant sterols in lipid emulsions are a major factor responsible for PNALD and that the absence or reduction of plant sterols is one of the mechanisms for hepatic protection in infants receiving FO-based PN or lipid minimization PN treatment. Modification of lipid constituents in PN solutions is thus a promising strategy to reduce incidence and severity of PNALD. PMID:24107776

  2. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages.

    Directory of Open Access Journals (Sweden)

    Mário Henrique M Barros

    Full Text Available Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn's disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a

  3. BMP pathway regulation of and by macrophages.

    Directory of Open Access Journals (Sweden)

    Megha Talati

    Full Text Available Pulmonary arterial hypertension (PAH is a disease of progressively increasing pulmonary vascular resistance, associated with mutations of the type 2 receptor for the BMP pathway, BMPR2. The canonical signaling pathway for BMPR2 is through the SMAD family of transcription factors. BMPR2 is expressed in every cell type, but the impact of BMPR2 mutations affecting SMAD signaling, such as Bmpr2delx4+, had only previously been investigated in smooth muscle and endothelium. In the present study, we created a mouse with universal doxycycline-inducible expression of Bmpr2delx4+ in order to determine if broader expression had an impact relevant to the development of PAH. We found that the most obvious phenotype was a dramatic, but patchy, increase in pulmonary inflammation. We crossed these double transgenic mice onto an NF-κB reporter strain, and by luciferase assays on live mice, individual organs and isolated macrophages, we narrowed down the origin of the inflammatory phenotype to constitutive activation of tissue macrophages. Study of bone marrow-derived macrophages from mutant and wild-type mice suggested a baseline difference in differentiation state in Bmpr2 mutants. When activated with LPS, both mutant and wild-type macrophages secrete BMP pathway inhibitors sufficient to suppress BMP pathway activity in smooth muscle cells (SMC treated with conditioned media. Functionally, co-culture with macrophages results in a BMP signaling-dependent increase in scratch closure in cultured SMC. We conclude that SMAD signaling through BMP is responsible, in part, for preventing macrophage activation in both live animals and in cells in culture, and that activated macrophages secrete BMP inhibitors in sufficient quantity to cause paracrine effect on vascular smooth muscle.

  4. Microbiota-Dependent Crosstalk Between Macrophages and ILC3 Promotes Intestinal Homeostasis

    Science.gov (United States)

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P.; Belkaid, Yasmine; Merad, Miriam

    2014-01-01

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (Treg) numbers and impaired oral tolerance. We observed that RORγt+ innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine. PMID:24625929

  5. Deletion of Macrophage Mineralocorticoid Receptor Protects Hepatic Steatosis and Insulin Resistance Through ERα/HGF/Met Pathway.

    Science.gov (United States)

    Zhang, Yu-Yao; Li, Chao; Yao, Gao-Feng; Du, Lin-Juan; Liu, Yuan; Zheng, Xiao-Jun; Yan, Shuai; Sun, Jian-Yong; Liu, Yan; Liu, Ming-Zhu; Zhang, Xiaoran; Wei, Gang; Tong, Wenxin; Chen, Xiaobei; Wu, Yong; Sun, Shuyang; Liu, Suling; Ding, Qiurong; Yu, Ying; Yin, Huiyong; Duan, Sheng-Zhong

    2017-06-01

    Although the importance of macrophages in nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) has been recognized, how macrophages affect hepatocytes remains elusive. Mineralocorticoid receptor (MR) has been implicated to play important roles in NAFLD and T2DM. However, cellular and molecular mechanisms are largely unknown. We report that myeloid MR knockout (MRKO) improves glucose intolerance, insulin resistance, and hepatic steatosis in obese mice. Estrogen signaling is sufficient and necessary for such improvements. Hepatic gene and protein expression suggests that MRKO reduces hepatic lipogenesis and lipid storage. In the presence of estrogen, MRKO in macrophages decreases lipid accumulation and increases insulin sensitivity of hepatocytes through hepatocyte growth factor (HGF)/Met signaling. MR directly regulates estrogen receptor 1 ( Esr1 [encoding ERα]) in macrophages. Knockdown of hepatic Met eliminates the beneficial effects of MRKO in female obese mice. These findings identify a novel MR/ERα/HGF/Met pathway that conveys metabolic signaling from macrophages to hepatocytes in hepatic steatosis and insulin resistance and provide potential new therapeutic strategies for NAFLD and T2DM. © 2017 by the American Diabetes Association.

  6. Liver inflammation during monocrotaline hepatotoxicity

    International Nuclear Information System (INIS)

    Copple, Bryan L.; Ganey, Patricia E.; Roth, Robert A.

    2003-01-01

    Monocrotaline (MCT) is a pyrrolizidine alkaloid (PA) plant toxin that causes hepatotoxicity in humans and animals. Human exposure occurs from consumption of contaminated grains and herbal teas and medicines. Intraperitoneal injection (i.p.) of 300 mg/kg MCT in rats produced time-dependent hepatic parenchymal cell (HPC) injury beginning at 12 h. At this time, an inflammatory infiltrate consisting of neutrophils (PMNs) appeared in areas of hepatocellular injury, and activation of the coagulation system occurred. PMN accumulation was preceded by up-regulation of the PMN chemokines cytokine-induced neutrophil chemoattractant-1 (CINC-1) and macrophage inflammatory protein-2 (MIP-2) in the liver. The monocyte chemokine, monocyte chemoattractant protein-1 (MCP-1), was also upregulated. Inhibition of Kupffer cell function with gadolinium chloride (GdCl 3 ) significantly reduced CINC-1 protein in plasma after MCT treatment but had no effect on hepatic PMN accumulation. Since inflammation can contribute to either pathogenesis or resolution of tissue injury, we explored inflammatory factors as a contributor to MCT hepatotoxicity. To test the hypothesis that PMNs contribute to MCT-induced HPC injury, rats were depleted of PMNs with a rabbit anti-PMN serum prior to MCT treatment. Anti-PMN treatment reduced hepatic PMN accumulation by 80% but had no effect on MCT-induced HPC injury or activation of the coagulation system. To test the hypothesis that Kupffer cells and/or tumor necrosis factor-α (TNF-α) are required for MCT-induced HPC injury, rats were treated with either GdCl 3 to inhibit Kupffer cell function or pentoxifylline (PTX) to prevent synthesis of TNF-α. Neither treatment prevented MCT-induced HPC injury. Results from these studies suggest that PMNs, Kupffer cells and TNF-α are not critical mediators of MCT hepatotoxicity. Accordingly, although inflammation occurs in the liver after MCT treatment, it is not required for HPC injury and possibly occurs secondary to

  7. A macrophage activation switch (MAcS)-index for assessment of monocyte/macrophage activation

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Lauridsen, Mette; Knudsen, Troels Bygum

    2008-01-01

    BACKGROUND: The monocyte/macrophage system plays important roles in host defense, regulation of immune responses, tissue repair, neovascularization, and inflammation. These diverse roles are performed by specific subpopulations of macrophages that are differently activated by surrounding stimuli...... is expressed exclusively on monocytes and macrophages, and its expression is strongly induced by anti-inflammatory stimuli like IL10 and glucocorticoid, making CD163 an ideal M2 macrophage marker (2). Furthermore a soluble variant of CD163 (sCD163) is shed from the cell surface to plasma by protease mediated...... for the resolution of inflammation. Clin Exp Immunol. 2005 Dec;142(3):481-9. 2. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004 Dec;25(12):677-86. 3. Weaver LK, Hintz-Goldstein KA, Pioli PA, Wardwell...

  8. Immune mediated liver failure.

    Science.gov (United States)

    Wang, Xiaojing; Ning, Qin

    2014-01-01

    Liver failure is a clinical syndrome of various etiologies, manifesting as jaundice, encephalopathy, coagulopathy and circulatory dysfunction, which result in subsequent multiorgan failure. Clinically, liver failure is classified into four categories: acute, subacute, acute-on-chronic and chronic liver failure. Massive hepatocyte death is considered to be the core event in the development of liver failure, which occurs when the extent of hepatocyte death is beyond the liver regenerative capacity. Direct damage and immune-mediated liver injury are two major factors involved in this process. Increasing evidence has suggested the essential role of immune-mediated liver injury in the pathogenesis of liver failure. Here, we review the evolved concepts concerning the mechanisms of immune-mediated liver injury in liver failure from human and animal studies. Both innate and adaptive immunity, especially the interaction of various immune cells and molecules as well as death receptor signaling system are discussed. In addition, we highlight the concept of "immune coagulation", which has been shown to be related to the disease progression and liver injury exacerbation in HBV related acute-on-chronic liver failure.

  9. Liver transplantation : an update

    NARCIS (Netherlands)

    Verdonk, R. C.; Van den Berg, A. P.; Slooff, M. J. H.; Porte, R. J.; Haagsma, E. B.

    2007-01-01

    Liver transplantation has been an accepted treatment for end-stage liver disease since the 1980s. Currently it is a highly successful treatment for this indication. The aim of this review is to give a general update on recent developments in the field of liver transplantation. In the last decades

  10. Liver Tumors (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Liver Tumors KidsHealth / For Parents / Liver Tumors What's in this article? Types of Tumors ... Cancerous) Tumors Symptoms Diagnosis Treatment Coping Print The liver is the body's largest solid organ. Lying next ...

  11. 492 Review Liver

    African Journals Online (AJOL)

    Marinda

    2009-11-26

    Nov 26, 2009 ... Severe bleeding still occurs in a minority of cases and efforts to define clinical and blood test predictors for major bleeding during liver surgery remain elusive. Excessive bleeding during liver surgery can be due to surgical factors, haemostatic problems due to liver disease or other causes and poor ...

  12. The clinical significance of the CD163+ and CD68+ macrophages in patients with hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Ling-Qun Kong

    Full Text Available Our previous study has found that the abundance of peritumoral CD68(+ macrophages was associated with poor prognosis in hepatocellular carcinoma (HCC after resection. However, CD68 staining could not discriminate the protumoral or tumoricidal subpopulations from pan-macrophages. CD163 is a marker of alternatively activated macrophages. In this study, the clinical significance of CD163(+ cells in tumors and peritumoral liver tissues was evaluated in a cohort of 295 patients with HCC after curative resection. We found that the density of CD163(+ cells was well correlated with that of CD68(+ cells in both tumors and peritumoral liver tissues but was much more. Immunostaining on consecutive sections and flow cytometry assay on surgical resected specimens further supported the findings that the CD163(+ cells was more abundant than CD68(+ cells. The density of peritumoral CD68(+ cells was associated with poor recurrence-free survival (RFS and poor overall survival (OS (P = 0.004 and P = 0.001, respectively, whereas the CD163(+ cells have no prognostic values either in tumors or in peritumoral liver tissues. In another cohort of 107 HCC patients, preoperative plasma concentration of soluble form of CD163 (sCD163 was associated with active hepatitis-related factors but not associated with the markers of tumor invasion. In conclusion, both the CD163(+ cells local infiltration and plasma sCD163 were of limited significance in HCC, and they were more likely markers related to active hepatitis rather than tumor progression.

  13. Leadership Training in Otolaryngology Residency.

    Science.gov (United States)

    Bent, John P; Fried, Marvin P; Smith, Richard V; Hsueh, Wayne; Choi, Karen

    2017-06-01

    Although residency training offers numerous leadership opportunities, most residents are not exposed to scripted leadership instruction. To explore one program's attitudes about leadership training, a group of otolaryngology faculty (n = 14) and residents (n = 17) was polled about their attitudes. In terms of self-perception, more faculty (10 of 14, 71.4%) than residents (9 of 17, 52.9%; P = .461) considered themselves good leaders. The majority of faculty and residents (27 of 31) thought that adults could be taught leadership ability. Given attitudes about leadership ability and the potential for improvement through instruction, consideration should be given to including such training in otolaryngology residency.

  14. Chylous ascites in a cheetah (Acinonyx jubatus) with venoocclusive liver disease.

    Science.gov (United States)

    Terrell, Scott P; Fontenot, Deidre K; Miller, Michele A; Weber, Martha A

    2003-12-01

    An 11-yr-old female cheetah (Acinonyx jubatus) was diagnosed clinically with hepatic and renal disease and euthanatized after an extended illness. Postmortem examination revealed 8-10 L of milky white fluid in the abdominal cavity and markedly dilated lymphatic vessels within the intestinal mesentery. The abdominal fluid was a chylous effusion based on the cytologic predominance of lymphocytes and macrophages and comparison of cholesterol and triglyceride levels in the fluid and in serum. Gross and histopathologic lesions in the liver were consistent with a diagnosis of venoocclusive liver disease. Chylous ascites is uncommon with human chronic liver disease and is rarely identified in animals.

  15. Gaucher disease in the liver on hepatocyte specific contrast agent enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ayyala, Rama S. [Morgan Stanley Children' s Hospital, Department of Radiology, Columbia University Medical Center, New York, NY (United States); Teot, Lisa A. [Boston Children' s Hospital, Department of Pathology, Harvard Medical School, Boston, MA (United States); Perez Rossello, Jeanette M. [Boston Children' s Hospital, Department of Radiology, Harvard Medical School, Boston, MA (United States)

    2017-04-15

    Gaucher disease is a hereditary lipid storage disorder that affects the enzyme beta glucocerebrosidase, causing accumulation of glucocerebroside in macrophages of the reticuloendothelial system. Accumulation can occur in the liver and spleen, manifesting as hepatosplenomegaly, as well as within the bone marrow. Hepatic involvement is usually diffuse but can occasionally manifest as focal liver lesions. We present a case of a 2-year-old boy with Gaucher disease and an infiltrating liver lesion detected on imaging, which was pathologically shown to be focal changes related to the disease. Imaging characteristics of this lesion using hepatocyte specific contrast agent enhanced MRI, which have not been previously discussed in the literature, are described. (orig.)

  16. Gaucher disease in the liver on hepatocyte specific contrast agent enhanced MR imaging

    International Nuclear Information System (INIS)

    Ayyala, Rama S.; Teot, Lisa A.; Perez Rossello, Jeanette M.

    2017-01-01

    Gaucher disease is a hereditary lipid storage disorder that affects the enzyme beta glucocerebrosidase, causing accumulation of glucocerebroside in macrophages of the reticuloendothelial system. Accumulation can occur in the liver and spleen, manifesting as hepatosplenomegaly, as well as within the bone marrow. Hepatic involvement is usually diffuse but can occasionally manifest as focal liver lesions. We present a case of a 2-year-old boy with Gaucher disease and an infiltrating liver lesion detected on imaging, which was pathologically shown to be focal changes related to the disease. Imaging characteristics of this lesion using hepatocyte specific contrast agent enhanced MRI, which have not been previously discussed in the literature, are described. (orig.)

  17. Macrophage deficiency of Akt2 reduces atherosclerosis in Ldlr null mice[S

    Science.gov (United States)

    Babaev, Vladimir R.; Hebron, Katie E.; Wiese, Carrie B.; Toth, Cynthia L.; Ding, Lei; Zhang, Youmin; May, James M.; Fazio, Sergio; Vickers, Kasey C.; Linton, MacRae F.

    2014-01-01

    Macrophages play crucial roles in the formation of atherosclerotic lesions. Akt, a serine/threonine protein kinase B, is vital for cell proliferation, migration, and survival. Macrophages express three Akt isoforms, Akt1, Akt2, and Akt3, but the roles of Akt1 and Akt2 in atherosclerosis in vivo remain unclear. To dissect the impact of macrophage Akt1 and Akt2 on early atherosclerosis, we generated mice with hematopoietic deficiency of Akt1 or Akt2. After 8 weeks on Western diet, Ldlr−/− mice reconstituted with Akt1−/− fetal liver cells (Akt1−/−→Ldlr−/−) had similar atherosclerotic lesion areas compared with control mice transplanted with WT cells (WT→Ldlr−/−). In contrast, Akt2−/−→Ldlr−/− mice had dramatically reduced atherosclerotic lesions compared with WT→Ldlr−/− mice of both genders. Similarly, in the setting of advanced atherosclerotic lesions, Akt2−/−→Ldlr−/− mice had smaller aortic lesions compared with WT→Ldlr−/− and Akt1−/−→Ldlr−/− mice. Importantly, Akt2−/−→Ldlr−/− mice had reduced numbers of proinflammatory blood monocytes expressing Ly-6Chi and chemokine C-C motif receptor 2. Peritoneal macrophages isolated from Akt2−/− mice were skewed toward an M2 phenotype and showed decreased expression of proinflammatory genes and reduced cell migration. Our data demonstrate that loss of Akt2 suppresses the ability of macrophages to undergo M1 polarization reducing both early and advanced atherosclerosis. PMID:25240046

  18. Vasodilator-Stimulated Phosphoprotein Activity Is Required for Coxiella burnetii Growth in Human Macrophages.

    Directory of Open Access Journals (Sweden)

    Punsiri M Colonne

    2016-10-01

    Full Text Available Coxiella burnetii is an intracellular bacterial pathogen that causes human Q fever, an acute flu-like illness that can progress to chronic endocarditis and liver and bone infections. Humans are typically infected by aerosol-mediated transmission, and C. burnetii initially targets alveolar macrophages wherein the pathogen replicates in a phagolysosome-like niche known as the parasitophorous vacuole (PV. C. burnetii manipulates host cAMP-dependent protein kinase (PKA signaling to promote PV formation, cell survival, and bacterial replication. In this study, we identified the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP as a PKA substrate that is increasingly phosphorylated at S157 and S239 during C. burnetii infection. Avirulent and virulent C. burnetii triggered increased levels of phosphorylated VASP in macrophage-like THP-1 cells and primary human alveolar macrophages, and this event required the Cα subunit of PKA. VASP phosphorylation also required bacterial protein synthesis and secretion of effector proteins via a type IV secretion system, indicating the pathogen actively triggers prolonged VASP phosphorylation. Optimal PV formation and intracellular bacterial replication required VASP activity, as siRNA-mediated depletion of VASP reduced PV size and bacterial growth. Interestingly, ectopic expression of a phospho-mimetic VASP (S239E mutant protein prevented optimal PV formation, whereas VASP (S157E mutant expression had no effect. VASP (S239E expression also prevented trafficking of bead-containing phagosomes to the PV, indicating proper VASP activity is critical for heterotypic fusion events that control PV expansion in macrophages. Finally, expression of dominant negative VASP (S157A in C. burnetii-infected cells impaired PV formation, confirming importance of the protein for proper infection. This study provides the first evidence of VASP manipulation by an intravacuolar bacterial pathogen via activation of PKA

  19. Mathematical modeling of tumor-associated macrophage interactions with the cancer microenvironment.

    Science.gov (United States)

    Mahlbacher, Grace; Curtis, Louis T; Lowengrub, John; Frieboes, Hermann B

    2018-01-30

    Immuno-oncotherapy has emerged as a promising means to target cancer. In particular, therapeutic manipulation of tumor-associated macrophages holds promise due to their various and sometimes opposing roles in tumor progression. It is established that M1-type macrophages suppress tumor progression while M2-types support it. Recently, Tie2-expressing macrophages (TEM) have been identified as a distinct sub-population influencing tumor angiogenesis and vascular remodeling as well as monocyte differentiation. This study develops a modeling framework to evaluate macrophage interactions with the tumor microenvironment, enabling assessment of how these interactions may affect tumor progression. M1, M2, and Tie2 expressing variants are integrated into a model of tumor growth representing a metastatic lesion in a highly vascularized organ, such as the liver. Behaviors simulated include M1 release of nitric oxide (NO), M2 release of growth-promoting factors, and TEM facilitation of angiogenesis via Angiopoietin-2 and promotion of monocyte differentiation into M2 via IL-10. The results show that M2 presence leads to larger tumor growth regardless of TEM effects, implying that immunotherapeutic strategies that lead to TEM ablation may fail to restrain growth when the M2 represents a sizeable population. As TEM pro-tumor effects are less pronounced and on a longer time scale than M1-driven tumor inhibition, a more nuanced approach to influence monocyte differentiation taking into account the tumor state (e.g., under chemotherapy) may be desirable. The results highlight the dynamic interaction of macrophages within a growing tumor, and, further, establish the initial feasibility of a mathematical framework that could longer term help to optimize cancer immunotherapy.

  20. Comparative roles of free fatty acids with reactive nitrogen intermediates and reactive oxygen intermediates in expression of the anti-microbial activity of macrophages against Mycobacterium tuberculosis

    Science.gov (United States)

    Akaki, T; Tomioka, H; Shimizu, T; Dekio, S; Sato, K

    2000-01-01

    We assessed the role of free fatty acids (FFA) in the expression of the activity of macrophages against Mycobacterium tuberculosis in relation to the roles of two major anti-microbial effectors, reactive nitrogen intermediates (RNI) and reactive oxygen intermediates (ROI). Intracellular growth of M. tuberculosis residing inside macrophages was accelerated by treatments of macrophages with either quinacrine (phospholipase A2 (PLA2) inhibitor), arachidonyl trifuloromethylketone (type IV cytosolic PLA2 inhibitor), NG-monomethyl-l-arginine (nitric oxide synthase inhibitor), and superoxide dismutase plus catalase (ROI scavengers). In addition, M. tuberculosis-infected macrophages produced and/or secreted these effectors sequentially in the order ROI (0–3 h), FFA (0–48 h), and RNI (3 to at least 72 h). Notably, membranous FFA (arachidonic acid) of macrophages translocated to M. tuberculosis residing in the phagosomes of macrophages in phagocytic ability-and PLA2-dependent fashions during cultivation after M. tuberculosis infection. FFA, RNI and H2O2-mediated halogenation system (H2O2-halogenation system) displayed strong activity against M. tuberculosis in cell-free systems, while ROI alone exerted no such effects. Combinations of ‘FFA + RNI’ and ‘RNI + H2O2-halogenation system’ exhibited synergistic and additive effects against M. tuberculosis, respectively, while ‘FFA + H2O2-halogenation system’ had an antagonistic effect. Moreover, a sequential attack of FFA followed by RNI exerted synergistic activity against M. tuberculosis. Since M. tuberculosis-infected macrophages showed simultaneous production of RNI with FFA secretion for relatively long periods (approx. 45 h) and prolonged RNI production was seen thereafter, RNI in combination with FFA appear to play critical roles in the manifestation of the activity of macrophages against M. tuberculosis. PMID:10931146

  1. [Liver hemosiderosis study in chronic viral hepatitis].

    Science.gov (United States)

    Cojocariu, Camelia; Trifan, Anca; Mihailovici, Maria Sultana; Danciu, M; Stanciu, C

    2008-01-01

    In chronic viral hepatitis the histopathological exam can reveal the presence of liver iron deposits in 10 to 73% of patients. Iron deposits are usually found in Kupffer cells, in endothelial cells and portal macrophages, and extremely rarely in hepatocytes. To evaluate the incidence of hepatic hemosiderosis in chronic viral hepatitis. 549 morphopathological features of liver biopsy specimens performed in the Gastroenterology and Hepatology Institute IaSi, between January 1 2003 and December 31 2007 have been analyzed. Semiquantitative assessment of the degree of hepatic iron overload was performed and the localization of haemosiderin deposits: at the level of hepatocytes, the reticuloendothelial system or mixedly. The same anatomopathologist examined the blades and interpreted the results. The medium age of patients who underwent liver biopsy was 45.08 years +/- 10.045. Positive iron staining was found in 22.8% of cases, more frequently in males (31%), and in 91.82% of cases iron deposits were grade 1-2. The association of alcoholic etiology did not influence the incidence of hemosiderosis: 23% in patients with hepatitis and no ethanol exposure vs 25% in cases of strictly viral etiology. Deposits of haemosiderin were more frequent in viral hepatitis B (38.6%) than in viral hepatitis C (26.9%). In 34% of cases stainable iron was found only in reticuloendothelial system and in 46% of cases both in Kupffer cells and hepatocytes. Almost a quarter of chronic viral hepatitis cases are associated with liver deposits of haemosiderin, with features of secondary iron overload (deposits localized in the mesenchymal areas or mixedly). There is a higher risk of hemosiderosis in men, especially for those between 30 and 50. Liver iron overload levels in chronic viral hepatitis are, in most cases, low or medium, and the association with an alcoholic etiology does not influence the incidence of hemosiderosis in chronic viral hepatitis.

  2. Hypervascular liver lesions in radiologically normal liver

    Energy Technology Data Exchange (ETDEWEB)

    Amico, Enio Campos; Alves, Jose Roberto; Souza, Dyego Leandro Bezerra de; Salviano, Fellipe Alexandre Macena; Joao, Samir Assi; Liguori, Adriano de Araujo Lima, E-mail: ecamic@uol.com.br [Hospital Universitario Onofre Lopes (HUOL/UFRN), Natal, RN (Brazil). Clinica Gastrocentro e Ambulatorios de Cirurgia do Aparelho Digestivo e de Cirurgia Hepatobiliopancreatica

    2017-09-01

    Background: The hypervascular liver lesions represent a diagnostic challenge. Aim: To identify risk factors for cancer in patients with non-hemangiomatous hypervascular hepatic lesions in radiologically normal liver. Method: This prospective study included patients with hypervascular liver lesions in radiologically normal liver. The diagnosis was made by biopsy or was presumed on the basis of radiologic stability in follow-up period of one year. Cirrhosis or patients with typical imaging characteristics of haemangioma were excluded. Results: Eighty eight patients were included. The average age was 42.4. The lesions were unique and were between 2-5 cm in size in most cases. Liver biopsy was performed in approximately 1/3 of cases. The lesions were benign or most likely benign in 81.8%, while cancer was diagnosed in 12.5% of cases. Univariate analysis showed that age >45 years (p< 0.001), personal history of cancer (p=0.020), presence of >3 nodules (p=0.003) and elevated alkaline phosphatase (p=0.013) were significant risk factors for cancer. Conclusion: It is safe to observe hypervascular liver lesions in normal liver in patients up to 45 years, normal alanine amino transaminase, up to three nodules and no personal history of cancer. Lesion biopsies are safe in patients with atypical lesions and define the treatment to be established for most of these patients. (author)

  3. Hypervascular liver lesions in radiologically normal liver

    International Nuclear Information System (INIS)

    Amico, Enio Campos; Alves, Jose Roberto; Souza, Dyego Leandro Bezerra de; Salviano, Fellipe Alexandre Macena; Joao, Samir Assi; Liguori, Adriano de Araujo Lima

    2017-01-01

    Background: The hypervascular liver lesions represent a diagnostic challenge. Aim: To identify risk factors for cancer in patients with non-hemangiomatous hypervascular hepatic lesions in radiologically normal liver. Method: This prospective study included patients with hypervascular liver lesions in radiologically normal liver. The diagnosis was made by biopsy or was presumed on the basis of radiologic stability in follow-up period of one year. Cirrhosis or patients with typical imaging characteristics of haemangioma were excluded. Results: Eighty eight patients were included. The average age was 42.4. The lesions were unique and were between 2-5 cm in size in most cases. Liver biopsy was performed in approximately 1/3 of cases. The lesions were benign or most likely benign in 81.8%, while cancer was diagnosed in 12.5% of cases. Univariate analysis showed that age >45 years (p< 0.001), personal history of cancer (p=0.020), presence of >3 nodules (p=0.003) and elevated alkaline phosphatase (p=0.013) were significant risk factors for cancer. Conclusion: It is safe to observe hypervascular liver lesions in normal liver in patients up to 45 years, normal alanine amino transaminase, up to three nodules and no personal history of cancer. Lesion biopsies are safe in patients with atypical lesions and define the treatment to be established for most of these patients. (author)

  4. Estudos histológico, histoquímico e ultra-estrutural de fígados e linfonodos de bovinos com presença de macrófagos espumosos ("foam cells" Histologic, histochemical and ultrastructural study of livers and lymph nodes with foamy macrophages (foam cells

    Directory of Open Access Journals (Sweden)

    David Driemeier

    1998-01-01

    Full Text Available Foram examinadas amostras de fígado, rins, baço e linfonodos hepáticos, mesentéricos, retro-mandibulares, pré-escapulares e mediastínicos de 12 lotes em um total de 120 animais, envolvendo diferentes faixas etárias, todos oriundos do Estado de Mato Grosso. Os animais haviam sido mantidos em pastos onde Brachiaria decumbens e Brachiaria brizantha eram as forrageiras predominantes. Macroscopicamente o fígado desses animais mostrava coloração amarelada, mais evidente após 24 horas de fixação em formol a 10%. Nos linfonodos hepáticos e mesentéricos foram evidenciadas, na superfície de corte, estriações esbranquiçadas de forma radiada na cortical e medular com pequenas áreas brancas nodulares multifocais principalmente na medular. Em muitos casos, associado com essas áreas foram vistos focos de aspecto hemorrágico. Microscopicamente foram encontradas, no fígado, linfonodos hepáticos e mesentéricos, células com citoplasma espumoso, muitas das quais multinucleadas. Nos linfonodos hepáticos e mesentéricos estes infiltrados estavam associados a áreas de necrose e hemorragia. No fígado, as células de citoplasma espumoso estavam presentes em todo parênquima, de forma irregular, geralmente formando nódulos ao redor da veia centrolobular. Estas células não se coravam pelo ácido periódico de Schiff (PAS e apenas fracamente na coloração de gordura pelo Oil Red O. Na ultra-estrutura as células de citoplasma espumoso apresentavam fendas, parcial ou totalmente delimitadas por membrana, que representam a imagem negativa de cristais, presentes também no citoplasma dos hepatócitos.Samples of liver, kidney, spleen, and hepatic, mesenteric, retromandibular, prescapular and mediastinic lymph nodes, collected from 12 groups of cattle of different ages from the State of Mato Grosso, were studied. A total of 120 bovines was examined. According to their history, the animals were kept in pastures where Brachiaria decumbens and

  5. Macrophage Activation and Differentiation Signals Regulate Schlafen-4 Gene Expression: Evidence for Schlafen-4 as a Modulator of Myelopoiesis

    Science.gov (United States)

    van Zuylen, Wendy J.; Garceau, Valerie; Idris, Adi; Schroder, Kate; Irvine, Katharine M.; Lattin, Jane E.; Ovchinnikov, Dmitry A.; Perkins, Andrew C.; Cook, Andrew D.; Hamilton, John A.; Hertzog, Paul J.; Stacey, Katryn J.; Kellie, Stuart; Hume, David A.; Sweet, Matthew J.

    2011-01-01

    Background The ten mouse and six human members of the Schlafen (Slfn) gene family all contain an AAA domain. Little is known of their function, but previous studies suggest roles in immune cell development. In this report, we assessed Slfn regulation and function in macrophages, which are key cellular regulators of innate immunity. Methodology/Principal Findings Multiple members of the Slfn family were up-regulated in mouse bone marrow-derived macrophages (BMM) by the Toll-like Receptor (TLR)4 agonist lipopolysaccharide (LPS), the TLR3 agonist Poly(I∶C), and in disease-affected joints in the collagen-induced model of rheumatoid arthritis. Of these, the most inducible was Slfn4. TLR agonists that signal exclusively through the MyD88 adaptor protein had more modest effects on Slfn4 mRNA levels, thus implicating MyD88-independent signalling and autocrine interferon (IFN)-β in inducible expression. This was supported by the substantial reduction in basal and LPS-induced Slfn4 mRNA expression in IFNAR-1−/− BMM. LPS causes growth arrest in macrophages, and other Slfn family genes have been implicated in growth control. Slfn4 mRNA levels were repressed during macrophage colony-stimulating factor (CSF-1)-mediated differentiation of bone marrow progenitors into BMM. To determine the role of Slfn4 in vivo, we over-expressed the gene specifically in macrophages in mice using a csf1r promoter-driven binary expression system. Transgenic over-expression of Slfn4 in myeloid cells did not alter macrophage colony formation or proliferation in vitro. Monocyte numbers, as well as inflammatory macrophages recruited to the peritoneal cavity, were reduced in transgenic mice that specifically over-expressed Slfn4, while macrophage numbers and hematopoietic activity were increased in the livers and spleens. Conclusions Slfn4 mRNA levels were up-regulated during macrophage activation but down-regulated during differentiation. Constitutive Slfn4 expression in the myeloid lineage in

  6. Macrophage activation and differentiation signals regulate schlafen-4 gene expression: evidence for Schlafen-4 as a modulator of myelopoiesis.

    Directory of Open Access Journals (Sweden)

    Wendy J van Zuylen

    Full Text Available BACKGROUND: The ten mouse and six human members of the Schlafen (Slfn gene family all contain an AAA domain. Little is known of their function, but previous studies suggest roles in immune cell development. In this report, we assessed Slfn regulation and function in macrophages, which are key cellular regulators of innate immunity. METHODOLOGY/PRINCIPAL FINDINGS: Multiple members of the Slfn family were up-regulated in mouse bone marrow-derived macrophages (BMM by the Toll-like Receptor (TLR4 agonist lipopolysaccharide (LPS, the TLR3 agonist Poly(I∶C, and in disease-affected joints in the collagen-induced model of rheumatoid arthritis. Of these, the most inducible was Slfn4. TLR agonists that signal exclusively through the MyD88 adaptor protein had more modest effects on Slfn4 mRNA levels, thus implicating MyD88-independent signalling and autocrine interferon (IFN-β in inducible expression. This was supported by the substantial reduction in basal and LPS-induced Slfn4 mRNA expression in IFNAR-1⁻/⁻ BMM. LPS causes growth arrest in macrophages, and other Slfn family genes have been implicated in growth control. Slfn4 mRNA levels were repressed during macrophage colony-stimulating factor (CSF-1-mediated differentiation of bone marrow progenitors into BMM. To determine the role of Slfn4 in vivo, we over-expressed the gene specifically in macrophages in mice using a csf1r promoter-driven binary expression system. Transgenic over-expression of Slfn4 in myeloid cells did not alter macrophage colony formation or proliferation in vitro. Monocyte numbers, as well as inflammatory macrophages recruited to the peritoneal cavity, were reduced in transgenic mice that specifically over-expressed Slfn4, while macrophage numbers and hematopoietic activity were increased in the livers and spleens. CONCLUSIONS: Slfn4 mRNA levels were up-regulated during macrophage activation but down-regulated during differentiation. Constitutive Slfn4 expression in the

  7. Morphological Lesions in Mouse Liver and Lungs After Lung Exposure to Carbon Nanotubes

    DEFF Research Database (Denmark)

    Szarek, J.; Mortensen, Alicja; Jackson, P.

    2013-01-01

    . Materials and Methods: One day before mating, 30 mice (C57BL/6BomTac, Taconic Europe, Denmark) were given 67 μg multi-walled carbon nanotubes (NM-400, Nanocyl, Belgium) intratracheally (group A). A further 30 control mice (group B) received vehicle (Millipore water with 2% mouse serum). Lungs and liver were...... of macrophages. Oedema was slight in A2 mice, but infiltration of macrophages was more intense. In the liver, microfoci of necrosis, infiltration of inflammatory cells and lesions of Kupffer cells were more intense in A1 than A2 mice. Conclusions: Intratracheal exposure to multi-walled carbon nanotubes caused...... inflammatory and degenerative lesions in mouse lungs and liver....

  8. Activation of macrophages by a laccase-polymerized polyphenol is dependent on phosphorylation of Rac1.

    Science.gov (United States)

    Tajima, Katsuya; Akanuma, Satoshi; Matsumoto-Akanuma, Akiko; Yamanaka, Daisuke; Ishibashi, Ken-Ichi; Adachi, Yoshiyuki; Ohno, Naohito

    2018-01-15

    Various physiologically active effects of polymerized polyphenols have been reported. In this study, we synthesized a polymerized polyphenol (mL2a-pCA) by polymerizing caffeic acid using mutant Agaricus brasiliensis laccase and analyzed its physiological activity and mechanism of action. We found that mL2a-pCA induced morphological changes and the production of cytokines and chemokines in C3H/HeN mouse-derived resident peritoneal macrophages in vitro. The mechanisms of action of polymerized polyphenols on in vitro mouse resident peritoneal cells have not been characterized in detail previously. Herein, we report that the mL2a-pCA-induced production of interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1) in C3H/HeN mouse-derived resident peritoneal cells was inhibited by treatment with the Rac1 inhibitor NSC23766 trihydrochloride. In addition, we found that mL2a-pCA activated the phosphorylation Rac1. Taken together, the results show that mL2a-pCA induced macrophage activation via Rac1 phosphorylation-dependent pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Liver and gastrointestinal tract

    International Nuclear Information System (INIS)

    Shahid, M.A.

    1992-01-01

    Liver is often a site of a variety of diseases. A palpable liver during a routine clinical examination is an important finding and requires further investigations. The availability of non-invasive liver imaging procedures using nuclear, ultrasound, CT (and now MRI) techniques have immensely enhanced diagnostic accuracy in liver diseases. In this Chapter, a detailed description of routinely practised nuclear medicine procedures related to liver is given. Brief reference is also made to other imaging techniques, particularly ultrasonography, only for the purposes of comparison. Most of the information is based on our own clinical experience of past 30 years

  10. The Tec Kinase-Regulated Phosphoproteome Reveals a Mechanism for the Regulation of Inhibitory Signals in Murine Macrophages.

    Science.gov (United States)

    Tampella, Giacomo; Kerns, Hannah M; Niu, Deqiang; Singh, Swati; Khim, Socheath; Bosch, Katherine A; Garrett, Meghan E; Moguche, Albanus; Evans, Erica; Browning, Beth; Jahan, Tahmina A; Nacht, Mariana; Wolf-Yadlin, Alejandro; Plebani, Alessandro; Hamerman, Jessica A; Rawlings, David J; James, Richard G

    2015-07-01

    Previous work has shown conflicting roles for Tec family kinases in regulation of TLR-dependent signaling in myeloid cells. In the present study, we performed a detailed investigation of the role of the Tec kinases Btk and Tec kinases in regulating TLR signaling in several types of primary murine macrophages. We demonstrate that primary resident peritoneal macrophages deficient for Btk and Tec secrete less proinflammatory cytokines in response to TLR stimulation than do wild-type cells. In contrast, we found that bone marrow-derived and thioglycollate-elicited peritoneal macrophages deficient for Btk and Tec secrete more proinflammatory cytokines than do wild-type cells. We then compared the phosphoproteome regulated by Tec kinases and LPS in primary peritoneal and bone marrow-derived macrophages. From this analysis we determined that Tec kinases regulate different signaling programs in these cell types. In additional studies using bone marrow-derived macrophages, we found that Tec and Btk promote phosphorylation events necessary for immunoreceptor-mediated inhibition of TLR signaling. Taken together, our results are consistent with a model where Tec kinases (Btk, Tec, Bmx) are required for TLR-dependent signaling in many types of myeloid cells. However, our data also support a cell type-specific TLR inhibitory role for Btk and Tec that is mediated by immunoreceptor activation and signaling via PI3K. Copyright © 2015 by The American Association of Immunologists, Inc.

  11. Playing hide-and-seek with host macrophages through the use of mycobacterial cell envelope phthiocerol dimycocerosates and phenolic glycolipids

    Directory of Open Access Journals (Sweden)

    Ainhoa eARBUES

    2014-12-01

    Full Text Available Mycobacterial pathogens, including Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB, have evolved a remarkable ability to evade the immune system in order to survive and to colonize the host. Among the most important evasion strategies is the capacity of these bacilli to parasitize host macrophages, since these are major effector cells against intracellular pathogens that can be used as long-term cellular reservoirs. Mycobacterial pathogens employ an array of virulence factors that manipulate macrophage function to survive and establish infection. Until recently, however, the role of mycobacterial cell envelope lipids as virulence factors in macrophage subversion has remained elusive. Here, we will address exclusively the proposed role for phthiocerol dimycocerosates (DIM in the modulation of the resident macrophage response and that of phenolic glycolipids (PGL in the regulation of the recruitment and phenotype of incoming macrophage precursors to the site of infection. We will provide a unique perspective of potential additional functions for these lipids, and highlight obstacles and opportunities to further understand their role in the pathogenesis of TB and other mycobacterial diseases.

  12. Oxidized low-density lipoprotein contributes to atherogenesis via co-activation of macrophages and mast cells.

    Directory of Open Access Journals (Sweden)

    Chong Chen

    Full Text Available Oxidized low-density lipoprotein (OxLDL is a risk factor for atherosclerosis, due to its role in endothelial dysfunction and foam cell formation. Tissue-resident cells such as macrophages and mast cells release inflammatory mediators upon activation that in turn cause endothelial activation and monocyte adhesion. Two of these mediators are tumor necrosis factor (TNF-α, produced by macrophages, and histamine, produced by mast cells. Static and microfluidic flow experiments were conducted to determine the number of adherent monocytes on vascular endothelium activated by supernatants of oxLDL-treated macrophages and mast cells or directly by oxLDL. The expression of adhesion molecules on activated endothelial cells and the concentration of TNF-α and histamine in the supernatants were measured by flow cytometry and enzyme-linked immunosorbent assay, respectively. A low dose of oxLDL (8 μg/ml, below the threshold for the clinical presentation of coronary artery disease, was sufficient to activate both macrophages and mast cells and synergistically increase monocyte-endothelium adhesion via released TNF-α and histamine. The direct exposure of endothelial cells to a much higher dose of oxLDL (80 μg/ml had less effect on monocyte adhesion than the indirect activation via oxLDL-treated macrophages and mast cells. The results of this work indicate that the co-activation of macrophages and mast cells by oxLDL is an important mechanism for the endothelial dysfunction and atherogenesis. The observed synergistic effect suggests that both macrophages and mast cells play a significant role in early stages of atherosclerosis. Allergic patients with a lipid-rich diet may be at high risk for cardiovascular events due to high concentration of low-density lipoprotein and histamine in arterial vessel walls.

  13. Lawful Permanent Residents - Annual Report

    Data.gov (United States)

    Department of Homeland Security — A lawful permanent resident (LPR) or 'green card' recipient is defined by immigration law as a person who has been granted lawful permanent residence in the United...

  14. Macrophage migration inhibitory factor deficiency ameliorates high-fat diet induced insulin resistance in mice with reduced adipose inflammation and hepatic steatosis.

    Directory of Open Access Journals (Sweden)

    Orla M Finucane

    Full Text Available Macrophage infiltration is a critical determinant of high-fat diet induced adipose tissue inflammation and insulin resistance. The precise mechanisms underpinning the initiation of macrophage recruitment and activation are unclear. Macrophage migration inhibitory factor (MIF, a pro-inflammatory cytokine, displays chemokine-like properties. Circulating MIF levels are elevated during obesity however its role in high-fat diet induced adipose inflammation and insulin resistance remains elusive. Wildtype and MIF-/- C57Bl\\6J mice were fed chow or high-fat diet. Body weight and food intake was assessed. Glucose homeostasis was monitored by glucose and insulin tolerance tests. Adipose tissue macrophage recruitment and adipose tissue insulin sensitivity was evaluated. Cytokine secretion from stromal vascular fraction, adipose explants and bone marrow macrophages was measured. Inflammatory signature and insulin sensitivity of 3T3-L1-adipocytes co-cultured with wildtype and MIF-/- macrophage was quantified. Hepatic triacylglyceride levels were assessed. MIF-/- exhibited reduced weight gain. Age and weight-matched obese MIF-/- mice exhibited improved glucose homeostasis coincident with reduced adipose tissue M1 macrophage infiltration. Obese MIF-/- stromal vascular fraction secreted less TNFα and greater IL-10 compared to wildtype. Activation of JNK was impaired in obese MIF-/-adipose, concomitant with pAKT expression. 3T3-L1-adipocytes cultured with MIF-/- macrophages had reduced pro-inflammatory cytokine secretion and improved insulin sensitivity, effects which were also attained with MIF inhibitor ISO-1. MIF-/- liver exhibited reduced hepatic triacyglyceride accumulation, enhanced pAKT expression and reduced NFκB activation. MIF deficiency partially protects from high-fat diet induced insulin resistance by attenuating macrophage infiltration, ameliorating adipose inflammation, which improved adipocyte insulin resistance ex vivo. MIF represents a

  15. Leptomeningeal Cells Transduce Peripheral Macrophages Inflammatory Signal to Microglia in Reponse to Porphyromonas gingivalis LPS

    Directory of Open Access Journals (Sweden)

    Yicong Liu

    2013-01-01

    Full Text Available We report here that the leptomeningeal cells transduce inflammatory signals from peripheral macrophages to brain-resident microglia in response to Porphyromonas gingivalis (P.g. LPS. The expression of Toll-like receptor 2 (TLR2, TLR4, TNF-α, and inducible NO synthase was mainly detected in the gingival macrophages of chronic periodontitis patients. In in vitro studies, P.g. LPS induced the secretion of TNF-α and IL-1β from THP-1 human monocyte-like cell line and RAW264.7 mouse macrophages. Surprisingly, the mean mRNA levels of TNF-α and IL-1β in leptomeningeal cells after treatment with the conditioned medium from P.g. LPS-stimulated RAW264.7 macrophages were significantly higher than those after treatment with P.g. LPS alone. Furthermore, the mean mRNA levels of TNF-α and IL-1β in microglia after treatment with the conditioned medium from P.g. LPS-stimulated leptomeningeal cells were significantly higher than those after P.g. LPS alone. These observations suggest that leptomeninges serve as an important route for transducing inflammatory signals from macrophages to microglia by secretion of proinflammatory mediators during chronic periodontitis. Moreover, propolis significantly reduced the P.g. LPS-induced TNF-α and IL-1 β production by leptomeningeal cells through inhibiting the nuclear factor-κB signaling pathway. Together with the inhibitory effect on microglial activation, propolis may be beneficial in preventing neuroinflammation during chronic periodontitis.

  16. Iron storage in liver, bone marrow and splenic Gaucheroma reflects residual disease in type 1 Gaucher disease patients on treatment.

    Science.gov (United States)

    Regenboog, Martine; Bohte, Anneloes E; Akkerman, Erik M; Stoker, Jaap; Hollak, Carla E M

    2017-11-01

    Gaucher disease (GD) is a lysosomal storage disorder characterized by the storage of glycosphingolipids in macrophages. Despite effective therapy, residual disease is present in varying degrees and may be associated with late complications, such as persistent bone or liver disease and increased cancer risk. Gaucher macrophages are capable of storing iron and locations of residual disease may thus be detectable with iron imaging. Forty type 1 GD (GD1) patients and 40 matched healthy controls were examined using a whole-body magnetic resonance imaging protocol consisting of standard sequences, allowing analysis of iron content per organ, expressed as R2* (Hz). Median R2* values were significantly elevated in GD1 patients as compared to healthy controls in liver [41 Hz (range 29-165) vs. 38 Hz (range 28-53), P iron levels in liver and bone marrow, which may carry a risk for liver fibrosis and cancer. © 2017 John Wiley & Sons Ltd.

  17. Cytosolic phospholipase A(2α and eicosanoids regulate expression of genes in macrophages involved in host defense and inflammation.

    Directory of Open Access Journals (Sweden)

    Saritha Suram

    Full Text Available The role of Group IVA cytosolic phospholipase A2 (cPLA2α activation in regulating macrophage transcriptional responses to Candida albicans infection was investigated. cPLA2α releases arachidonic acid for the production of eicosanoids. In mouse resident peritoneal macrophages, prostacyclin, prostaglandin E2 and leukotriene C4 were produced within minutes of C. albicans addition before cyclooxygenase 2 expression. The production of TNFα was lower in C. albicans-stimulated cPLA2α(+/+ than cPLA2α(-/- macrophages due to an autocrine effect of prostaglandins that increased cAMP to a greater extent in cPLA2α(+/+ than cPLA2α(-/- macrophages. For global insight, differential gene expression in C. albicans-stimulated cPLA2α(+/+ and cPLA2α(-/- macrophages (3 h was compared by microarray. cPLA2α(+/+ macrophages expressed 86 genes at lower levels and 181 genes at higher levels than cPLA2α(-/- macrophages (≥2-fold, p<0.05. Several pro-inflammatory genes were expressed at lower levels (Tnfα, Cx3cl1, Cd40, Ccl5, Csf1, Edn1, CxCr7, Irf1, Irf4, Akna, Ifnγ, several IFNγ-inducible GTPases. Genes that dampen inflammation (Socs3, Il10, Crem, Stat3, Thbd, Thbs1, Abca1 and genes involved in host defense (Gja1, Csf3, Trem1, Hdc were expressed at higher levels in cPLA2α(+/+ macrophages. Representative genes expressed lower in cPLA2α(+/+ macrophages (Tnfα, Csf1 were increased by treatment with a prostacyclin receptor antagonist and protein kinase A inhibitor, whereas genes expressed at higher levels (Crem, Nr4a2, Il10, Csf3 were suppressed. The results suggest that C. albicans stimulates an autocrine loop in macrophages involving cPLA2α, cyclooxygenase 1-derived prostaglandins and increased cAMP that globally effects expression of genes involved in host defense and inflammation.

  18. Modeling toxicodynamic effects of trichloroethylene on liver in mouse model of autoimmune hepatitis.

    Science.gov (United States)

    Gilbert, Kathleen M; Reisfeld, Brad; Zurlinden, Todd J; Kreps, Meagan N; Erickson, Stephen W; Blossom, Sarah J

    2014-09-15

    Chronic exposure to industrial solvent and water pollutant trichloroethylene (TCE) in female MRL+/+mice generates disease similar to human autoimmune hepatitis. The current study was initiated to investigate why TCE-induced autoimmunity targeted the liver. Compared to other tissues the liver has an unusually robust capacity for repair and regeneration. This investigation examined both time-dependent and dose-dependent effects of TCE on hepatoprotective and pro-inflammatory events in liver and macrophages from female MRL+/+mice. After a 12-week exposure to TCE in drinking water a dose-dependent decrease in macrophage production of IL-6 at both the transcriptional and protein level was observed. A longitudinal study similarly showed that TCE inhibited macrophage IL-6 production. In terms of the liver, TCE had little effect on expression of pro-inflammatory genes (Tnfa, Saa2 or Cscl1) until the end of the 40-week exposure. Instead, TCE suppressed hepatic expression of genes involved in IL-6 signaling (Il6r, gp130, and Egr1). Linear regression analysis confirmed liver histopathology in the TCE-treated mice correlated with decreased expression of Il6r. A toxicodynamic model was developed to estimate the effects of TCE on IL-6 signaling and liver pathology under different levels of exposure and rates of repair. This study underlined the importance of longitudinal studies in mechanistic evaluations of immuntoxicants. It showed that later-occurring liver pathology caused by TCE was associated with early suppression of hepatoprotection rather than an increase in conventional pro-inflammatory events. This information was used to create a novel toxicodynamic model of IL-6-mediated TCE-induced liver inflammation. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Biodegradation of carbon nanohorns in macrophage cells

    Science.gov (United States)

    Zhang, Minfang; Yang, Mei; Bussy, Cyrill; Iijima, Sumio; Kostarelos, Kostas; Yudasaka, Masako

    2015-02-01

    With the rapid developments in the medical applications of carbon nanomaterials such as carbon nanohorns (CNHs), carbon nanotubes, and graphene based nanomaterials, understanding the long-term fate, health impact, excretion, and degradation of these materials has become crucial. Herein, the in vitro biodegradation of CNHs was determined using a non-cellular enzymatic oxidation method and two types of macrophage cell lines. Approximately 60% of the CNHs was degraded within 24 h in a phosphate buffer solution containing myeloperoxidase. Furthermore, approximately 30% of the CNHs was degraded by both RAW 264.7 and THP-1 macrophage cells within 9 days. Inflammation markers such as pro-inflammatory cytokines interleukin 6 and tumor necrosis factor α were not induced by exposure to CNHs. However, reactive oxygen species were generated by the macrophage cells after uptake of CNHs, suggesting that these species were actively involved in the degradation of the nanomaterials rather than in an inflammatory pathway induction.With the rapid developments in the medical applications of carbon nanomaterials such as carbon nanohorns (CNHs), carbon nanotubes, and graphene based nanomaterials, understanding the long-term fate, health impact, excretion, and degradation of these materials has become crucial. Herein, the in vitro biodegradation of CNHs was determined using a non-cellular enzymatic oxidation method and two types of macrophage cell lines. Approximately 60% of the CNHs was degraded within 24 h in a phosphate buffer solution containing myeloperoxidase. Furthermore, approximately 30% of the CNHs was degraded by both RAW 264.7 and THP-1 macrophage cells within 9 days. Inflammation markers such as pro-inflammatory cytokines interleukin 6 and tumor necrosis factor α were not induced by exposure to CNHs. However, reactive oxygen species were generated by the macrophage cells after uptake of CNHs, suggesting that these species were actively involved in the degradation of the

  20. Modeling toxicodynamic effects of trichloroethylene on liver in mouse model of autoimmune hepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Kathleen M., E-mail: gilbertkathleenm@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States); Reisfeld, Brad, E-mail: brad.reisfeld@colostate.edu [Colorado State University, Fort Collins, CO (United States); Zurlinden, Todd J., E-mail: tjzurlin@rams.colostate.edu [Colorado State University, Fort Collins, CO (United States); Kreps, Meagan N., E-mail: MNKreps@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States); Erickson, Stephen W., E-mail: serickson@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States); Blossom, Sarah J., E-mail: blossomsarah@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States)

    2014-09-15

    Chronic exposure to industrial solvent and water pollutant trichloroethylene (TCE) in female MRL +/+ mice generates disease similar to human autoimmune hepatitis. The current study was initiated to investigate why TCE-induced autoimmunity targeted the liver. Compared to other tissues the liver has an unusually robust capacity for repair and regeneration. This investigation examined both time-dependent and dose-dependent effects of TCE on hepatoprotective and pro-inflammatory events in liver and macrophages from female MRL +/+ mice. After a 12-week exposure to TCE in drinking water a dose-dependent decrease in macrophage production of IL-6 at both the transcriptional and protein level was observed. A longitudinal study similarly showed that TCE inhibited macrophage IL-6 production. In terms of the liver, TCE had little effect on expression of pro-inflammatory genes (Tnfa, Saa2 or Cscl1) until the end of the 40-week exposure. Instead, TCE suppressed hepatic expression of genes involved in IL-6 signaling (Il6r, gp130, and Egr1). Linear regression analysis confirmed liver histopathology in the TCE-treated mice correlated with decreased expression of Il6r. A toxicodynamic model was developed to estimate the effects of TCE on IL-6 signaling and liver pathology under different levels of exposure and rates of repair. This study underlined the importance of longitudinal studies in mechanistic evaluations of immuntoxicants. It showed that later-occurring liver pathology caused by TCE was associated with early suppression of hepatoprotection rather than an increase in conventional pro-inflammatory events. This information was used to create a novel toxicodynamic model of IL-6-mediated TCE-induced liver inflammation. - Highlights: • We developed a toxicodynamic model to study effects of trichloroethylene on liver. • We examined protective as well as pro-inflammatory events in the liver. • Trichloroethylene inhibits IL-6 production by macrophages. • Trichloroethylene

  1. MANAGEMENT OF TRAUMATIC LIVER LESIONS.

    Science.gov (United States)

    Timofte, D; Hutanu, I; Livadariu, Roxana Maria; Soroceanu, R P; Munteanu, Iulia; Diaconu, C; Ionescu, Lidia

    2015-01-01

    To determine the correct therapeutic approach to the different grades of liver trauma. The study is based on a retrospective analysis of treatment outcomes in 56 patients with abdominal trauma admitted over a 9-year period to in the IIIrd Surgical Clinic of the Iasi "Sf. Spiridon" Hospital. It is focused on operative or non-operative management of liver trauma, surgical technique used, morbidity and postoperative mortality. Data were collected from electronic medical records and observation sheets and processed and interpreted using Microsoft Excel statistical functions. In the interval May 26, 2005-April 19, 2013 56 cases of abdominal trauma were recorded, 31 (55.35%) residing in urban areas, and 25 (44.64%) in rural areas. The mean age was 39 years, range 18-83 years old. The male/female ratio was 2.5/1 and the group consisted of 40 (71.42%) male patients and 16 (28.57%) female patients. The causes of abdominal trauma were: car accident in 29 (51%) cases, fall from different heights in 6 (10%) patients, workplace-related accidents in 8 patients (14%) and direct hit injury in 12 patients (12%). In our cohort, 51 (91%) patients with abdominal trauma have been emergency admitted, 3 patients (5%) were transferred from different medical units, and 2 patients (4%) were referred by a specialist doctor. Two or more simultaneous lesions were diagnosed in 53 (96%) cases. Of the 45 patients with traumatic liver injuries diagnosed on admission, 32 (71%) required surgical intervention. In the remaining 13 (29%) patients, the therapeutic management was conservative. Hepatic traumas are often severe, and frequently associated with multiple injuries. The non-operative management is indicated in liver lesions grade I, II and III according to the American Association for the Surgery of Trauma (AAST), if abdominal cavity organs are not injured. Higher grade liver lesions (over IV) in which the hemorrhagic risk persists or reappears require surgical intervention as soon as possible

  2. Cranberry Proanthocyanidins - Protein complexes for macrophage activation.

    Science.gov (United States)

    Carballo, Sergio M; Haas, Linda; Krueger, Christian G; Reed, Jess D

    2017-09-20

    In this work we characterize the interaction of cranberry (Vaccinium macrocarpon) proanthocyanidins (PAC) with bovine serum albumin (BSA) and hen egg-white lysozyme (HEL) and determine the effects of these complexes on macrophage activation and antigen presentation. We isolated PAC from cranberry and complexed the isolated PAC with BSA and HEL. The properties of the PAC-protein complexes were studied by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), gel electrophoresis and zeta-potential. The effects of PAC-BSA complexes on macrophage activation were studied in RAW 264.7 macrophage like cells after treatment with lipopolysaccharide (LPS). Fluorescence microscopy was used to study the endocytosis of PAC-BSA complexes. The effects of the PAC complexes on macrophage antigen presentation were studied in an in vitro model of HEL antigen presentation by mouse peritoneal mononuclear cells to a T-cell hybridoma. The mass spectra of the PAC complexes with BSA and HEL differed from the spectra of the proteins alone by the presence of broad shoulders on the singly and doubly charged protein peaks. Complexation with PAC altered the electrophoretic mobility shift assay in native agarose gel and the electrophoretic mobility (ζ-potential) values. These results indicate that the PAC-protein complexes are stable and alter the protein structure without precipitating the protein. Fluorescence microscopy showed that the RAW 264.7 macrophages endocytosed BSA and PAC-BSA complexes in discrete vesicles that surrounded the nucleus. Macrophages treated with increasing amounts of PAC-BSA complexes had significantly reduced COX-2 and iNOS expression in response to treatment with lipopolysaccharide (LPS) in comparison to the controls. The PAC-HEL complexes modulated antigen uptake, processing and presentation in murine peritoneal macrophages. After 4 h of pre-incubation, only trace amounts of IL-2 were detected in the co-cultures treated with HEL

  3. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis

    Science.gov (United States)

    Chistiakov, Dimitry A.; Nikiforov, Nikita G.

    2016-01-01

    Atherosclerosis can be regarded as a chronic inflammatory state, in which macrophages play different and important roles. Phagocytic proinflammatory cells populate growing atherosclerotic lesions, where they actively participate in cholesterol accumulation. Moreover, macrophages promote formation of complicated and unstable plaques by maintaining proinflammatory microenvironment. At the same time, anti-inflammatory macrophages contribute to tissue repair and remodelling and plaque stabilization. Macrophages therefore represent attractive targets for development of antiatherosclerotic therapy, which can aim to reduce monocyte recruitment to the lesion site, inhibit proinflammatory macrophages, or stimulate anti-inflammatory responses and cholesterol efflux. More studies are needed, however, to create a comprehensive classification of different macrophage phenotypes and to define their roles in the pathogenesis of atherosclerosis. In this review, we provide an overview of the current knowledge on macrophage diversity, activation, and plasticity in atherosclerosis and describe macrophage-based cellular tests for evaluation of potential antiatherosclerotic substances. PMID:27493969

  4. Targeting macrophage Histone deacetylase 3 stabilizes atherosclerotic lesions

    NARCIS (Netherlands)

    Hoeksema, Marten A.; Gijbels, Marion J. J.; van den Bossche, Jan; van der Velden, Saskia; Sijm, Ayestha; Neele, Annette E.; Seijkens, Tom; Stöger, J. Lauran; Meiler, Svenja; Boshuizen, Marieke C. S.; Dallinga-Thie, Geesje M.; Levels, Johannes H. M.; Boon, Louis; Mullican, Shannon E.; Spann, Nathanael J.; Cleutjens, Jack P.; Glass, Chris K.; Lazar, Mitchell A.; de Vries, Carlie J. M.; Biessen, Erik A. L.; Daemen, Mat J. A. P.; Lutgens, Esther; de Winther, Menno P. J.

    2014-01-01

    Macrophages are key immune cells found in atherosclerotic plaques and critically shape atherosclerotic disease development. Targeting the functional repertoire of macrophages may hold novel approaches for future atherosclerosis management. Here, we describe a previously unrecognized role of the

  5. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis

    Directory of Open Access Journals (Sweden)

    Yuri V. Bobryshev

    2016-01-01

    Full Text Available Atherosclerosis can be regarded as a chronic inflammatory state, in which macrophages play different and important roles. Phagocytic proinflammatory cells populate growing atherosclerotic lesions, where they actively participate in cholesterol accumulation. Moreover, macrophages promote formation of complicated and unstable plaques by maintaining proinflammatory microenvironment. At the same time, anti-inflammatory macrophages contribute to tissue repair and remodelling and plaque stabilization. Macrophages therefore represent attractive targets for development of antiatherosclerotic therapy, which can aim to reduce monocyte recruitment to the lesion site, inhibit proinflammatory macrophages, or stimulate anti-inflammatory responses and cholesterol efflux. More studies are needed, however, to create a comprehensive classification of different macrophage phenotypes and to define their roles in the pathogenesis of atherosclerosis. In this review, we provide an overview of the current knowledge on macrophage diversity, activation, and plasticity in atherosclerosis and describe macrophage-based cellular tests for evaluation of potential antiatherosclerotic substances.

  6. Distribution of macrophage polarization markers in human atherosclerosis

    NARCIS (Netherlands)

    Stöger, J. Lauran; Gijbels, Marion J. J.; van der Velden, Saskia; Manca, Marco; van der Loos, Chris M.; Biessen, Erik A. L.; Daemen, Mat J. A. P.; Lutgens, Esther; de Winther, Menno P. J.

    2012-01-01

    Objective: Macrophages are decisive in the chronic inflammatory processes that drive atherogenesis. The purpose of this study was to explore the presence and spatial distribution of polarized macrophage populations in human atherosclerosis. Methods & results: We used transcriptomics and

  7. Contradictory intrahepatic immune responses activated in high-load hepatitis C virus livers compared with low-load livers.

    Science.gov (United States)

    Ishibashi, Mariko; Yamaguchi, Hiromi; Hirotani, Yukari; Sakurada, Akihisa; Endo, Toshihide; Sugitani, Masahiko; Takayama, Tadatoshi; Makishima, Makoto; Esumi, Mariko

    2018-04-01

    We found a HLA class II histocompatibility antigen gene, DQ alpha 1 chain (HLA-DQA1), that was expressed more than 9-fold higher in high-load hepatitis C virus (HCV) livers than low-load HCV livers using transcriptomics of chronic HCV-infected livers. To further investigate this finding, we examined which cells were positive for HLA-DQA1 and what liver immune responses were different between HCV-high and -low livers. HLA-DQA1-positive cells were significantly increased in the HCV-high group, and most positive cells were identified as non-parenchymal sinusoid cells and lymphocytic infiltrates in the portal area. Parenchymal hepatocytes were negative for HLA-DQA1. HLA-DQA1-positive cells in the liver sinusoid were positive for CD68 (macrophages or Kupffer cells); those in the lymphocytic infiltrates were positive for CD20 (B cells) or CD3 (T cells). mRNA levels of antigen-presenting cell (APC) markers such as CD68 and CD11c were significantly upregulated in the HCV-high group and were correlated with HLA-DQA mRNA levels. CD8B mRNA (CD8 + T cells) was upregulated in both HCV-positive livers compared with HCV-negative livers, whereas CD154 mRNA (CD4 + T helper cell) was upregulated in the HCV-high group compared with the HCV-low group. The immune regulatory molecules FOXP3 mRNA (regulatory T cell, T reg) and programmed cell death ligand-1 (PD-L1) mRNA were significantly increased in the HCV-high group. HCV-high livers had two molecular immune responses: increased APC numbers and adaptive immunity and the induction of immune tolerance. The local hepatic imbalance of contradictory immune responses might be responsible for high HCV loads.

  8. Particulate Systems for Targeting of Macrophages: Basic and Therapeutic Concepts

    DEFF Research Database (Denmark)

    Moghimi, Seyed Moien; Parhamifar, Ladan; Ahmadvand, Davoud

    2012-01-01

    Particulate systems in the form of liposomes, polymeric micelles, polymeric nano- and microparticles, and many others offer a rational approach for selective delivery of therapeutic agents to the macrophage from different physiological portals of entry. Particulate targeting of macrophages and in...... at a particular subset of macrophages. Advances in basic and therapeutic concepts of particulate targeting of macrophages and related nanotechnology approaches for immune cell modifications are discussed.Copyright © 2012 S. Karger AG, Basel...

  9. Macrophage phenotype modulation by CXCL4 in vascular disease

    Directory of Open Access Journals (Sweden)

    Christian Albert Gleissner

    2012-01-01

    Full Text Available During atherogenesis, blood monocytes transmigrate into the subendothelial space and differentiate towards macrophages and foam cells. The major driver of this differentiation process is macrophage colony-stimulation factor (M-CSF. M-CSF-induced macrophages are important promoters of atherogenesis as demonstrated in M-CSF and M-CSF receptor knock out mice. However, M-CSF is not the only relevant promoter of macrophage differentiation. The platelet chemokine CXCL4 prevents monocyte apoptosis and promotes macrophage differentiation in vitro. It is secreted from activated platelets and has effects on various cell types relevant in atherogenesis. Knocking out the Pf4 gene coding for CXCL4 in Apoe-/- mice leads to reduced atherogenesis. Thus, it seems likely that CXC4-induced macrophages may have specific pro-atherogenic capacities. We have studied CXC4-induced differentiation of human macrophages using gene chips, systems biology and functional in vitro and ex vivo experiments. Our data indicate that CXCL4-induced macrophages are distinct from both their M-CSF-induced counterparts and other known macrophage polarizations like M1 macrophages (induced by LPS and interferon-gamma or M2 macrophages (induced by interleukin-4. CXCL4-induced macrophages have distinct phenotypic and functional characteristics, e.g. the complete loss of the hemoglobin-haptoglobin (Hb-Hp scavenger receptor CD163 which is necessary for effective hemoglobin clearance after plaque hemorrhage. Lack of CD163 is accompanied by the inability to upregulate the atheroprotective enzyme heme oxygenase-1 in response to Hb-Hp complexes.This review covers the current knowledge about CXCL4-induced macrophages, which based on their unique properties we have suggested to call these macrophages M4. CXCL4 may represent an important driver of macrophage heterogeneity within atherosclerotic lesions. Further dissecting its effects on macrophage differentiation may help to identify novel

  10. 25 Ways to Love Your Liver

    Science.gov (United States)

    ... Related Liver Disease Alpha 1 Antitrypsin Deficiency Autoimmune Hepatitis Benign Liver Tumors Biliary Atresia Cirrhosis of the Liver Galactosemia ... Related Liver Disease Alpha 1 Antitrypsin Deficiency Autoimmune Hepatitis Benign Liver Tumors Biliary Atresia Cirrhosis of the Liver Galactosemia ...

  11. DMPD: Mechanisms for the anti-inflammatory effects of adiponectin in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18336664 Mechanisms for the anti-inflammatory effects of adiponectin in macrophages...(.html) (.csml) Show Mechanisms for the anti-inflammatory effects of adiponectin in macrophages. PubmedID 18336664 Title Mechanism

  12. Wip1-dependent modulation of macrophage migration and phagocytosis

    DEFF Research Database (Denmark)

    Tang, Yiting; Pan, Bing; Zhou, Xin

    2017-01-01

    macrophage migration and phagocytosis associated with atherosclerotic plaque formation. Wip1 deficiency increases migratory and phagocytic activities of the macrophage under stress conditions. Enhanced migration of Wip1-/- macrophages is mediated by Rac1-GTPase and PI3K/AKT signalling pathways. Elevated...

  13. Markers of mouse macrophage development detected by monoclonal antibodies

    NARCIS (Netherlands)

    P.J. Leenen (Pieter); M.F.T.R. de Bruijn (Marella F.T.R); J.S. Voerman (Jane); P.A. Campbell (Priscilla); W. van Ewijk (Willem)

    1994-01-01

    textabstractIn this review, we present and discuss a selected panel of antibody-defined markers expressed during different stages of mouse macrophage development. We distinguish four categories of markers, which are characteristic of: (1) macrophage precursors and immature macrophages (ER-MP12,

  14. Drug Trafficking into Macrophages via the Endocytotic Receptor CD163

    DEFF Research Database (Denmark)

    Graversen, Jonas Heilskov; Moestrup, Søren Kragh

    2015-01-01

    In inflammatory diseases, macrophages are a main producer of a range of cytokines regulating the inflammatory state. This also includes inflammation induced by tumor growth, which recruits so-called tumor-associated macrophages supporting tumor growth. Macrophages are therefore relevant targets f...

  15. Diagnosis of fatty liver

    International Nuclear Information System (INIS)

    Saitoh, Shuichi; Nagamine, Takeaki; Takagi, Hitoshi

    1988-01-01

    Diagnostic values of various ultrasonographic findings were evaluated from fatty infiltration ratio calculated by liver specimens in 42 patients. The ratio of the CT number of liver to those of spleen were also compared with fatty infiltration ratio in 11 patients. Fatty bandless sign one plus (perirenal bright echo between the liver and the right kidney is masked partially) or more and the fatty score 3 (it is calculated by several ultrasonographic findings) and the less than 0.90 of the ratio of CT number of liver to those of spleen were useful for diagnosis of fatty liver, the sensitivity was 100%, 87.5%, 85.7% and the accuracy was 78.1%, 81.8%, 81.8% respectively. It was considered that these criteria were suitable in screening study of fatty liver. (author)

  16. Liver disease in pregnancy

    Directory of Open Access Journals (Sweden)

    Shashank Shekhar

    2015-10-01

    Full Text Available Deranged liver function tests are encountered in 3% of pregnancies. The potential causes are classified as those unique to and those just incidental to pregnancy. Pregnancy-related diseases are the most frequent causes of liver dysfunction during pregnancy and exhibit a trimester-specific occurrence during pregnancy. Differentiation of liver dysfunction as that related to and just incidental to pregnancy is the key to management, especially when liver dysfunction is encountered after 28 weeks of pregnancy. It can be judged from the fact that delivery remains the cornerstone of management of pregnancy-related diseases except hyperemesis gravidarum. This is an overview of the causes of liver dysfunction during pregnancy; an update on the underlying mechanisms of their occurrence, especially liver diseases unique to pregnancy; and a methodological approach to their diagnosis and management.

  17. Insulin-induced cytokine production in macrophages causes insulin resistance in hepatocytes.

    Science.gov (United States)

    Manowsky, Julia; Camargo, Rodolfo Gonzalez; Kipp, Anna P; Henkel, Janin; Püschel, Gerhard P

    2016-06-01

    Overweight and obesity are associated with hyperinsulinemia, insulin resistance, and a low-grade inflammation. Although hyperinsulinemia is generally thought to result from an attempt of the β-cell to compensate for insulin resistance, there is evidence that hyperinsulinaemia itself may contribute to the development of insulin resistance and possibly the low-grade inflammation. To test this hypothesis, U937 macrophages were exposed to insulin. In these cells, insulin induced expression of the proinflammatory cytokines IL-1β, IL-8, CCL2, and OSM. The insulin-elicited induction of IL-1β was independent of the presence of endotoxin and most likely mediated by an insulin-dependent activation of NF-κB. Supernatants of the insulin-treated U937 macrophages rendered primary cultures of rat hepatocytes insulin resistant; they attenuated the insulin-dependent induction of glucokinase by 50%. The cytokines contained in the supernatants of insulin-treated U937 macrophages activated ERK1/2 and IKKβ, resulting in an inhibitory serine phosphorylation of the insulin receptor substrate. In addition, STAT3 was activated and SOCS3 induced, further contributing to the interruption of the insulin receptor signal chain in hepatocytes. These results indicate that hyperinsulinemia per se might contribute to the low-grade inflammation prevailing in overweight and obese patients and thereby promote the development of insulin resistance particularly in the liver, because the insulin concentration in the portal circulation is much higher than in all other tissues. Copyright © 2016 the American Physiological Society.

  18. The Cytokine TGF-β Promotes the Development and Homeostasis of Alveolar Macrophages.

    Science.gov (United States)

    Yu, Xueyang; Buttgereit, Anne; Lelios, Iva; Utz, Sebastian G; Cansever, Dilay; Becher, Burkhard; Greter, Melanie

    2017-11-21

    Alveolar macrophages (AMs) derive from fetal liver monocytes, which colonize the lung during embryonic development and give rise to fully mature AMs perinatally. AM differentiation requires granulocyte macrophage colony-stimulating factor (GM-CSF), but whether additional factors are involved in AM regulation is not known. Here we report that AMs, in contrast to most other tissue macrophages, were also dependent on transforming growth factor-β receptor (TGF-βR) signaling. Conditional deletion of TGF-βR in mice at different time points halted the development and differentiation of AMs. In adult mice, TGF-β was also critical for AM homeostasis. The source of TGF-β was AMs themselves, indicative of an autocrine loop that promotes AM self-maintenance. Mechanistically, TGF-βR signaling resulted in upregulation of PPAR-γ, a signature transcription factor essential for the development of AMs. These findings reveal an additional layer of complexity regarding the guidance cues, which govern the genesis, maturation, and survival of AMs. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway.

    Science.gov (United States)

    Xu, Xiaolin; Li, Qian; Pang, Liewen; Huang, Guoqian; Huang, Jiechun; Shi, Meng; Sun, Xiaotian; Wang, Yiqing

    2013-11-15

    Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Anthocyanins Function as Anti-Inflammatory Agents in a Drosophila Model for Adipose Tissue Macrophage Infiltration

    Directory of Open Access Journals (Sweden)

    Alice Valenza

    2018-01-01

    Full Text Available Epidemiological and preclinical studies have demonstrated that bioactive foods like flavonoids, polyphenolic compounds derived from fruits and vegetables, exert a protective action against obesity, cardiovascular disorders, and Adipocyte Tissue Macrophage infiltration (ATM. All these pathologies are characterized by increase in reactive oxygen species (ROS and in proinflammatory cytokines that have been shown to favor the migration of immune cells, particularly of macrophages, in metabolically active organs like the liver and adipose tissue, that in Drosophila are constituted by a unique organ: the fat body. This study, using a unique Drosophila model that mimics human ATM, reveals the beneficial effects of flavonoids to reduce tissue inflammation. Our data show that anthocyanin-rich food reduces the number of hemocytes, Drosophila macrophages, infiltrating the fat cells, a process that is associated with reduced production of ROS and reduced activation of the JNK/SAPK p46 stress kinase, suggesting a fundamental function for anthocyanins as antioxidants in chronic inflammation and in metabolic diseases.

  1. Cytotoxicity of quantum dots and graphene oxide to erythroid cells and macrophages

    Science.gov (United States)

    Qu, Guangbo; Wang, Xiaoyan; Wang, Zhe; Liu, Sijin; Jiang, Guibing

    2013-04-01

    Great concerns have been raised about the exposure and possible adverse influence of nanomaterials due to their wide applications in a variety of fields, such as biomedicine and daily lives. The blood circulation system and blood cells form an important barrier against invaders, including nanomaterials. However, studies of the biological effects of nanomaterials on blood cells have been limited and without clear conclusions thus far. In the current study, the biological influence of quantum dots (QDs) with various surface coating on erythroid cells and graphene oxide (GO) on macrophages was closely investigated. We found that QDs posed great damage to macrophages through intracellular accumulation of QDs coupled with reactive oxygen species generation, particularly for QDs coated with PEG-NH2. QD modified with polyethylene glycol-conjugated amine particles exerted robust inhibition on cell proliferation of J744A.1 macrophages, irrespective of apoptosis. Additionally, to the best of our knowledge, our study is the first to have demonstrated that GO could provoke apoptosis of erythroid cells through oxidative stress in E14.5 fetal liver erythroid cells and in vivo administration of GO-diminished erythroid population in spleen, associated with disordered erythropoiesis in mice.

  2. Proprotein convertase 1/3 inhibited macrophages: A novel therapeutic based on drone macrophages

    Directory of Open Access Journals (Sweden)

    Marie Duhamel

    2016-06-01

    Full Text Available We demonstrated here thanks to proteomic, that proprotein convertase 1/3 knockdown macrophages present all the characteristic of activated pro-inflammatory macrophages. TLR4 and TLR9 signaling pathways can be enhanced leading to the secretion of pro-inflammatory factors and antitumor factors. We can control their activation by controlling one enzyme, PC1/3. In a tumor context, PC1/3 inhibition in macrophages may reactivate them and lead to a cytokine storm after stimulation “at distance” with a TLR ligand. Therefore, we name these proprotein convertase inhibited macrophages the “drone macrophages”. They constitute an innovative cell therapy to treat efficiently tumors.

  3. Macrophage Migration Inhibitory Factor in Protozoan Infections

    Directory of Open Access Journals (Sweden)

    Marcelo T. Bozza

    2012-01-01

    Full Text Available Macrophage migration inhibitory factor (MIF is a cytokine that plays a central role in immune and inflammatory responses. In the present paper, we discussed the participation of MIF in the immune response to protozoan parasite infections. As a general trend, MIF participates in the control of parasite burden at the expense of promoting tissue damage due to increased inflammation.

  4. Possible macrophage activation syndrome following initiation of ...

    African Journals Online (AJOL)

    Macrophage activation syndrome (MAS) has been rarely reported in the course of adult-onset Still's disease (AOSD) and in the majority of cases, it was triggered by an infection. Here, we report, to our knowledge, the first case of MAS occurring after adalimumab treatment initiation and not triggered by an infection.

  5. Metabolic-epigenetic crosstalk in macrophage activation

    NARCIS (Netherlands)

    Baardman, Jeroen; Licht, Iris; de Winther, Menno P. J.; van den Bossche, Jan

    2015-01-01

    Epigenetic enzymes are emerging as crucial controllers of macrophages, innate immune cells that determine the outcome of many inflammatory diseases. Recent studies demonstrate that the activity of particular chromatin-modifying enzymes is regulated by the availability of specific metabolites like

  6. Atherosclerosis & inflammation: Macrophage heterogeneity in focus

    NARCIS (Netherlands)

    Stöger, J.L.

    2014-01-01

    Macrophages characteristically feature a considerable degree of heterogeneity and plasticity to accommodate for the enormous variety in stimuli and challenges that their microenvironment presents them with. By virtue of their activation status, these cells can be classified into one of several

  7. The macrophage scavenger receptor CD163

    NARCIS (Netherlands)

    Fabriek, Babs O.; Dijkstra, Christine D.; van den Berg, Timo K.

    2005-01-01

    Mature tissue macrophages form a first line of defense to recognize and eliminate potential pathogens; these specialized cells are capable of phagocytosis, degradation of self and foreign materials, establishment of cell-cell interactions, and the production of inflammatory mediators. Mature tissue

  8. Macrophage serum markers in pneumococcal bacteremia

    DEFF Research Database (Denmark)

    Møller, Holger Jon; Moestrup, Søren K; Weis, Nina

    2006-01-01

    OBJECTIVE: Soluble CD163 (sCD163) is a new macrophage-specific serum marker. This study investigated sCD163 and other markers of macrophage activation (neopterin, ferritin, transcobalamin, and soluble urokinase plasminogen activator receptor [suPAR]) as prognostic factors in patients...... analyses at the time of first positive blood culture. MEASUREMENTS AND MAIN RESULTS: sCD163 was highly correlated with other macrophage markers and was significantly elevated (median [25-75 percentiles], 4.6 mg/L [2.8-8.9]) compared with healthy controls (2.7 mg/L [2.1-3.3], p ..., all macrophage markers were increased in patients who died from their infection compared with survivors, whereas no change was observed in any of the markers in the very old age. At cutoff levels of 9.5 mg/L (sCD163) and 1650 nmol/L (C-reactive protein), the relative risk for fatal outcome in patients...

  9. Soluble macrophage-derived CD163

    DEFF Research Database (Denmark)

    Møller, Holger Jon; Nielsen, Marianne Jensby; Maniecki, Maciej Bogdan

    2010-01-01

    BACKGROUND: The soluble form of the haptoglobin-hemoglobin (Hp-Hb) scavenger receptor (sCD163) is a specific plasma/serum marker for macrophage activity. Here, we have characterized molecular forms in serum and investigated a role of sCD163 as a binder of Hp-Hb complexes. METHODS: The sCD163...

  10. Mouse adenovirus type 1 infection of macrophages

    NARCIS (Netherlands)

    Ashley, S.L.; Welton, A.R.; Harwood, K.M.; Rooijen, van N.; Spindler, K.R.

    2009-01-01

    Mouse adenovirus type 1 (MAV-1) causes acute and persistent infections in mice, with high levels of virus found in the brain, spinal cord and spleen in acute infections. MAV-1 infects endothelial cells throughout the mouse, and monocytes/macrophages have also been implicated as targets of the virus.

  11. Ameobal pathogen mimivirus infects macrophages through phagocytosis.

    Directory of Open Access Journals (Sweden)

    Eric Ghigo

    2008-06-01

    Full Text Available Mimivirus, or Acanthamoeba polyphaga mimivirus (APMV, a giant double-stranded DNA virus that grows in amoeba, was identified for the first time in 2003. Entry by phagocytosis within amoeba has been suggested but not demonstrated. We demonstrate here that APMV was internalized by macrophages but not by non-phagocytic cells, leading to productive APMV replication. Clathrin- and caveolin-mediated endocytosis pathways, as well as degradative endosome-mediated endocytosis, were not used by APMV to invade macrophages. Ultrastructural analysis showed that protrusions were formed around the entering virus, suggesting that macropinocytosis or phagocytosis was involved in APMV entry. Reorganization of the actin cytoskeleton and activation of phosphatidylinositol 3-kinases were required for APMV entry. Blocking macropinocytosis and the lack of APMV colocalization with rabankyrin-5 showed that macropinocytosis was not involved in viral entry. Overexpression of a dominant-negative form of dynamin-II, a regulator of phagocytosis, inhibited APMV entry. Altogether, our data demonstrated that APMV enters macrophages through phagocytosis, a new pathway for virus entry in cells. This reinforces the paradigm that intra-amoebal pathogens have the potential to infect macrophages.

  12. Alternatively Activated (M2 Macrophage Phenotype Is Inducible by Endothelin-1 in Cultured Human Macrophages.

    Directory of Open Access Journals (Sweden)

    Stefano Soldano

    Full Text Available Alternatively activated (M2 macrophages are phenotypically characterized by the expression of specific markers, mainly macrophage scavenger receptors (CD204 and CD163 and mannose receptor-1 (CD206, and participate in the fibrotic process by over-producing pro-fibrotic molecules, such as transforming growth factor-beta1 (TGFbeta1 and metalloproteinase (MMP-9. Endothelin-1 (ET-1 is implicated in the fibrotic process, exerting its pro-fibrotic effects through the interaction with its receptors (ETA and ETB. The study investigated the possible role of ET-1 in inducing the transition from cultured human macrophages into M2 cells.Cultured human monocytes (THP-1 cell line were activated into macrophages (M0 macrophages with phorbol myristate acetate and subsequently maintained in growth medium (M0-controls or treated with either ET-1 (100nM or interleukin-4 (IL-4, 10ng/mL, M2 inducer for 72 hours. Similarly, primary cultures of human peripheral blood monocyte (PBM-derived macrophages obtained from healthy subjects, were maintained in growth medium (untreated cells or treated with ET-1 or IL-4 for 6 days. Both M0 and PBM-derived macrophages were pre-treated with ET receptor antagonist (ETA/BRA, bosentan 10-5M for 1 hour before ET-1 stimulation. Protein and gene expression of CD204, CD206, CD163, TGFbeta1 were analysed by immunocytochemistry, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR. Gene expression of interleukin(IL-10 and macrophage derived chemokine (CCL-22 was evaluated by qRT-PCR. MMP-9 production was investigated by gel zymography.ET-1 significantly increased the expression of M2 phenotype markers CD204, CD206, CD163, IL-10 and CCL-22, and the production of MMP-9 in both cultures of M0 and PBM-derived macrophages compared to M0-controls and untreated cells. In cultured PBM-derived macrophages, ET-1 increased TGFbeta1 protein and gene expression compared to untreated cells. The ET-1-mediated effects were

  13. Robotic liver surgery

    Science.gov (United States)

    Leung, Universe

    2014-01-01

    Robotic surgery is an evolving technology that has been successfully applied to a number of surgical specialties, but its use in liver surgery has so far been limited. In this review article we discuss the challenges of minimally invasive liver surgery, the pros and cons of robotics, the evolution of medical robots, and the potentials in applying this technology to liver surgery. The current data in the literature are also presented. PMID:25392840

  14. Tumour macrophages as potential targets of bisphosphonates

    Science.gov (United States)

    2011-01-01

    Tumour cells communicate with the cells of their microenvironment via a series of molecular and cellular interactions to aid their progression to a malignant state and ultimately their metastatic spread. Of the cells in the microenvironment with a key role in cancer development, tumour associated macrophages (TAMs) are among the most notable. Tumour cells release a range of chemokines, cytokines and growth factors to attract macrophages, and these in turn release numerous factors (e.g. VEGF, MMP-9 and EGF) that are implicated in invasion-promoting processes such as tumour cell growth, flicking of the angiogenic switch and immunosuppression. TAM density has been shown to correlate with poor prognosis in breast cancer, suggesting that these cells may represent a potential therapeutic target. However, there are currently no agents that specifically target TAM's available for clinical use. Bisphosphonates (BPs), such as zoledronic acid, are anti-resorptive agents approved for treatment of skeletal complication associated with metastatic breast cancer and prostate cancer. These agents act on osteoclasts, key cells in the bone microenvironment, to inhibit bone resorption. Over the past 30 years this has led to a great reduction in skeletal-related events (SRE's) in patients with advanced cancer and improved the morbidity associated with cancer-induced bone disease. However, there is now a growing body of evidence, both from in vitro and in vivo models, showing that zoledronic acid can also target tumour cells to increase apoptotic cell death and decrease proliferation, migration and invasion, and that this effect is significantly enhanced in combination with chemotherapy agents. Whether macrophages in the peripheral tumour microenvironment are exposed to sufficient levels of bisphosphonate to be affected is currently unknown. Macrophages belong to the same cell lineage as osteoclasts, the major target of BPs, and are highly phagocytic cells shown to be sensitive to

  15. Adipokines in Liver Cirrhosis.

    Science.gov (United States)

    Buechler, Christa; Haberl, Elisabeth M; Rein-Fischboeck, Lisa; Aslanidis, Charalampos

    2017-06-29

    Liver fibrosis can progress to cirrhosis, which is considered a serious disease. The Child-Pugh score and the model of end-stage liver disease score have been established to assess residual liver function in patients with liver cirrhosis. The development of portal hypertension contributes to ascites, variceal bleeding and further complications in these patients. A transjugular intrahepatic portosystemic shunt (TIPS) is used to lower portal pressure, which represents a major improvement in the treatment of patients. Adipokines are proteins released from adipose tissue and modulate hepatic fibrogenesis. These proteins affect various biological processes that are involved in liver function, including angiogenesis, vasodilation, inflammation and deposition of extracellular matrix proteins. The best studied adipokines are adiponectin and leptin. Adiponectin protects against hepatic inflammation and fibrogenesis, and leptin functions as a profibrogenic factor. These and other adipokines are supposed to modulate disease severity in patients with liver cirrhosis. Consequently, circulating levels of these proteins have been analyzed to identify associations with parameters of hepatic function, portal hypertension and its associated complications in patients with liver cirrhosis. This review article briefly addresses the role of adipokines in hepatitis and liver fibrosis. Here, studies having analyzed these proteins in systemic blood in cirrhotic patients are listed to identify adipokines that are comparably changed in the different cohorts of patients with liver cirrhosis. Some studies measured these proteins in systemic, hepatic and portal vein blood or after TIPS to specify the tissues contributing to circulating levels of these proteins and the effect of portal hypertension, respectively.

  16. Acute Liver Failure.

    Science.gov (United States)

    Newland, Catherine D

    2016-12-01

    Pediatric acute liver failure (ALF) is a complex and rapidly progressive syndrome that results from a variety of age-dependent etiologies. It is defined by the acute onset of liver disease with no evidence of chronic liver disease. There must be biochemical or clinical evidence of severe liver dysfunction as defined by an international normalized ratio (INR) ≥2. If hepatic encephalopathy is present, INR should be ≥1.5. Unfortunately, due to the rarity of ALF in pediatric patients, there is a paucity of diagnostic and management algorithms and each patient must have an individualized approach. [Pediatr Ann. 2016;45(12):e433-e438.]. Copyright 2016, SLACK Incorporated.

  17. Nonalcoholic fatty liver disease

    DEFF Research Database (Denmark)

    Patrick-Melin, A J; Kalinski, M I; Kelly, K R

    2009-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a rapidly emerging chronic liver disease and is reported to affect up to 70-80% of overweight and obese individuals. NAFLD represents a spectrum of liver diseases that range from simple hepatic steatosis, to a more severe and treatment resistant stage...... that features steatosis plus inflammation, termed nonalcoholic steatohepatitis (NASH), which may in turn progress to hepatic fibrosis, cirrhosis, and sub-acute liver failure. Thus, NAFLD and its subsequent complications create a significant health burden, and currently there is no effective treatment strategy...

  18. Depletion of macrophages in mice results in higher dengue virus titers and highlights the role of macrophages for virus control

    NARCIS (Netherlands)

    Fink, K.; Ng, C.; Nkenfou, C.; Vasudevan, S.G.; Rooijen, van N.; Schul, W.

    2009-01-01

    Monocytes and macrophages are target cells for dengue infection. Besides their potential role for virus replication, activated monocytes/macrophages produce cytokines that may be critical for dengue pathology. To study the in vivo role of monocytes and macrophages for virus replication, we depleted

  19. DMPD: Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited signalingpathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960231 Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited sign...82. Epub 2003 Jul 22. (.png) (.svg) (.html) (.csml) Show Macrophage activation through CCR5- and CXCR4-media...ted gp120-elicited signalingpathways. PubmedID 12960231 Title Macrophage activation through CCR

  20. DMPD: Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: roles of the receptor complex. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14609719 Molecular mechanisms of macrophage activation and deactivation bylipopolys...acol Ther. 2003 Nov;100(2):171-94. (.png) (.svg) (.html) (.csml) Show Molecular mechanisms of macrophage act...ivation and deactivation bylipopolysaccharide: roles of the receptor complex. PubmedID 14609719 Title Mole...cular mechanisms of macrophage activation and deactivation bylipopolysaccharide: ro

  1. DMPD: Genetic regulation of macrophage priming/activation: the Lsh gene story. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1757110 Genetic regulation of macrophage priming/activation: the Lsh gene story. Bl... (.svg) (.html) (.csml) Show Genetic regulation of macrophage priming/activation: the Lsh gene story. Pubmed...ID 1757110 Title Genetic regulation of macrophage priming/activation: the Lsh gen

  2. DMPD: Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11207583 Pathogen-induced apoptosis of macrophages: a common end for different path...ml) Show Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies. PubmedI...D 11207583 Title Pathogen-induced apoptosis of macrophages: a common end for diff

  3. Biological response of tissues with macrophagic activity to titanium dioxide.

    Science.gov (United States)

    Olmedo, Daniel G; Tasat, Deborah R; Evelson, Pablo; Guglielmotti, María B; Cabrini, Rómulo L

    2008-03-15

    The titanium dioxide layer is composed mainly of anatase and rutile. This layer is prone to break, releasing particles to the milieu. Therefore, corrosion may cause implant failure and body contamination. We have previously shown that commercial anatase-titanium dioxide (TiO(2)-anatase) is deposited in organs with macrophagic activity, transported in the blood by phagocytic-mononuclear cells, and induces an increase in the production of reactive oxygen species (ROS). In this study, we evaluated the effects of rutile-titanium dioxide (TiO(2)-rutile). Male Wistar rats were injected i.p. with a suspension of TiO(2)-rutile powder at a dose of 1.60 g/100 g b.w. Six months postinjection, the presence of Ti was assessed in serum, blood cells, liver, spleen, and lung. Titanium was found in phagocytic mononuclear cells, serum, and in the parenchyma of all the organs tested. TiO(2)-rutile generated a rise in the percentage of reactive cells, which was smaller than that observed when TiO(2)-anatase was employed in a previous study. Although TiO(2)-rutile provoked an augmentation of ROS, it failed to induce damage to membrane lipids, possibly due to an adaptive response. The present study reveals that TiO(2)-rutile is less bioreactive than TiO(2)-anatase. (c) 2007 Wiley Periodicals, Inc.

  4. Yersinia pestis and host macrophages: immunodeficiency of mouse macrophages induced by YscW.

    Science.gov (United States)

    Bi, Yujing; Du, Zongmin; Han, Yanping; Guo, Zhaobiao; Tan, Yafang; Zhu, Ziwen; Yang, Ruifu

    2009-09-01

    The virulence of the pathogenic Yersinia species depends on a plasmid-encoded type III secretion system (T3SS) that transfers six Yersinia outer protein (Yop) effector proteins into the cytoplasm of eukaryotic cells, leading to disruption of host defence mechanisms. It is shown in this study that Yersinia pestis YscW, a protein of the T3SS injectisome, contributes to the induction of a deficiency in phagocytosis in host macrophages and a reduction in their antigen-presenting capacity. A Y. pestis strain lacking yscW had no effect on uptake by host macrophages. In mice infected with wild-type Y. pestis, the yscW mutant or a complement strain, immunodeficiency was observed in host macrophages compared with those from uninfected mice. However, the phagocytosis and antigen presenting capacities of macrophages infected by yscW mutant strain both in vivo and in vitro were significantly higher than those by wild type strain. Consistent with this finding, when YscW was expressed in the RAW264.7 macrophage cell line, phagocytosis and antigen-presenting capacities were significantly lower than those of the control groups. These results indicate that Y. pestis YscW may directly induce immunodeficiency in murine macrophages by crippling their phagocytosis and antigen-presenting capacities. These data provide evidences to Y. pestis pathogenesis that some proteins in T3SS injectisome, such as YscW protein, might play independent roles in disrupting host defense apart from their known functions.

  5. Effects of nanoparticles on murine macrophages

    Science.gov (United States)

    Chevallet, M.; Aude-Garcia, C.; Lelong, C.; Candéias, S.; Luche, S.; Collin-Faure, V.; Triboulet, S.; Diallo, D.; Diemer, H.; van Dorsselaer, A.; Rabilloud, T.

    2011-07-01

    Metallic nanoparticles are more and more widely used in an increasing number of applications. Consequently, they are more and more present in the environment, and the risk that they may represent for human health must be evaluated. This requires to increase our knowledge of the cellular responses to nanoparticles. In this context, macrophages appear as an attractive system. They play a major role in eliminating foreign matter, e.g. pathogens or infectious agents, by phagocytosis and inflammatory responses, and are thus highly likely to react to nanoparticles. We have decided to study their responses to nanoparticles by a combination of classical and wide-scope approaches such as proteomics. The long term goal of this study is the better understanding of the responses of macrophages to nanoparticles, and thus to help to assess their possible impact on human health. We chose as a model system bone marrow-derived macrophages and studied the effect of commonly used nanoparticles such as TiO2 and Cu. Classical responses of macrophage were characterized and proteomic approaches based on 2D gels of whole cell extracts were used. Preliminary proteomic data resulting from whole cell extracts showed different effects for TiO2-NPs and Cu-NPs. Modifications of the expression of several proteins involved in different pathways such as, for example, signal transduction, endosome-lysosome pathway, Krebs cycle, oxidative stress response have been underscored. These first results validate our proteomics approach and open a new wide field of investigation for NPs impact on macrophages.

  6. Anticryptococcal activity of amphotericin B-stimulated macrophages.

    Science.gov (United States)

    Aslanzadeh, J; Mormol, J S; Little, J R

    1991-01-01

    Amphotericin B (AmB) and its methyl ester derivative (AME) are immunoadjuvants with macrophage stimulating properties. Cultures containing AmB and murine peritoneal macrophages showed synergistic anticryptococcal activity. The antifungal activity was associated with AmB-stimulated macrophages and with their culture supernatants. Photoinactivation of the residual AmB in the macrophage culture supernatant did not result in the loss of antifungal activity. AmB-stimulated macrophage culture supernatants inhibited the growth of C. neoformans in a dose responsive manner and the activity was destroyed by incubation at 100 degrees C but not at 60 degrees C.

  7. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling.

    Science.gov (United States)

    Hume, David A; MacDonald, Kelli P A

    2012-02-23

    Macrophage-colony stimulating factor (CSF-1) signaling through its receptor (CSF-1R) promotes the differentiation of myeloid progenitors into heterogeneous populations of monocytes, macrophages, dendritic cells, and bone-resorbing osteoclasts. In the periphery, CSF-1 regulates the migration, proliferation, function, and survival of macrophages, which function at multiple levels within the innate and adaptive immune systems. Macrophage populations elicited by CSF-1 are associated with, and exacerbate, a broad spectrum of pathologies, including cancer, inflammation, and bone disease. Conversely, macrophages can also contribute to immunosuppression, disease resolution, and tissue repair. Recombinant CSF-1, antibodies against the ligand and the receptor, and specific inhibitors of CSF-1R kinase activity have been each been tested in a range of animal models and in some cases, in patients. This review examines the potential clinical uses of modulators of the CSF-1/CSF-1R system. We conclude that CSF-1 promotes a resident-type macrophage phenotype. As a treatment, CSF-1 has therapeutic potential in tissue repair. Conversely, inhibition of CSF-1R is unlikely to be effective in inflammatory disease but may have utility in cancer.

  8. System with embedded drug release and nanoparticle degradation sensor showing efficient rifampicin delivery into macrophages.

    Science.gov (United States)

    Trousil, Jiří; Filippov, Sergey K; Hrubý, Martin; Mazel, Tomáš; Syrová, Zdeňka; Cmarko, Dušan; Svidenská, Silvie; Matějková, Jana; Kováčik, Lubomír; Porsch, Bedřich; Konefał, Rafał; Lund, Reidar; Nyström, Bo; Raška, Ivan; Štěpánek, Petr

    2017-01-01

    We have developed a biodegradable, biocompatible system for the delivery of the antituberculotic antibiotic rifampicin with a built-in drug release and nanoparticle degradation fluorescence sensor. Polymer nanoparticles based on poly(ethylene oxide) monomethyl ether-block-poly(ε-caprolactone) were noncovalently loaded with rifampicin, a combination that, to best of our knowledge, was not previously described in the literature, which showed significant benefits. The nanoparticles contain a Förster resonance energy transfer (FRET) system that allows real-time assessment of drug release not only in vitro, but also in living macrophages where the mycobacteria typically reside as hard-to-kill intracellular parasites. The fluorophore also enables in situ monitoring of the enzymatic nanoparticle degradation in the macrophages. We show that the nanoparticles are efficiently taken up by macrophages, where they are very quickly associated with the lysosomal compartment. After drug release, the nanoparticles in the cmacrophages are enzymatically degraded, with half-life 88±11 min. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Isolation of F. novicida-Containing Phagosome from Infected Human Monocyte Derived Macrophages

    Directory of Open Access Journals (Sweden)

    Valentina Marecic

    2017-07-01

    Full Text Available Francisella is a gram-negative bacterial pathogen, which causes tularemia in humans and animals. A crucial step of Francisella infection is its invasion of macrophage cells. Biogenesis of the Francisella-containing phagosome (FCP is arrested for ~15 min at the endosomal stage, followed by gradual bacterial escape into the cytosol, where the microbe proliferates. The crucial step in pathogenesis of tularemia is short and transient presence of the bacterium within phagosome. Isolation of FCPs for further studies has been challenging due to the short period of time of bacterial residence in it and the characteristics of the FCP. Here, we will for the first time present the method for isolation of the FCPs from infected human monocytes-derived macrophages (hMDMs. For elimination of lysosomal compartment these organelles were pre-loaded with dextran coated colloidal iron particles prior infection and eliminated by magnetic separation of the post-nuclear supernatant (PNS. We encountered the challenge that mitochondria has similar density to the FCP. To separate the FCP in the PNS from mitochondria, we utilized iodophenylnitrophenyltetrazolium, which is converted by the mitochondrial succinate dehydrogenase into formazan, leading to increased density of the mitochondria and allowing separation by the discontinuous sucrose density gradient ultracentrifugation. The purity of the FCP preparation and its acquisition of early endosomal markers was confirmed by Western blots, confocal and transmission electron microscopy. Our strategy to isolate highly pure FCPs from macrophages should facilitate studies on the FCP and its biogenesis.

  10. Epigenetic Regulation of the Nitrosative Stress Response and Intracellular Macrophage Survival by Extraintestinal Pathogenic Escherichia coli

    Science.gov (United States)

    Bateman, Stacey L.; Seed, Patrick C.

    2013-01-01

    Summary Extraintestinal pathogenic Escherichia coli (ExPEC) reside in the enteric tract as a commensal reservoir, but can transition to a pathogenic state by invading normally sterile niches, establishing infection, and disseminating to invasive sites like the bloodstream. Macrophages are required for ExPEC dissemination, suggesting the pathogen has developed mechanisms to persist within professional phagocytes. Here, we report that FimX, an ExPEC-associated DNA invertase that regulates the major virulence factor type 1 pili (T1P), is also an epigenetic regulator of a LuxR-like response regulator HyxR. FimX regulated hyxR expression through bidirectional phase inversion of its promoter region at sites different from the type 1 pili promoter and independent of integration host factor IHF. In vitro, transition from high to low HyxR expression produced enhanced tolerance of reactive nitrogen intermediates (RNI), primarily through de-repression of hmpA, encoding a nitric oxide detoxifying flavohemoglobin. However, in the macrophage, HyxR produced large effects on intracellular survival in the presence and absence of RNI and independent of Hmp. Collectively, we have shown that the ability of ExPEC to survive in macrophages is contingent upon the proper transition from high to low HyxR expression through epigenetic regulatory control by FimX. PMID:22221182

  11. Peroxynitrite, a potent macrophage-derived oxidizing cytotoxin to combat invading pathogens

    Science.gov (United States)

    Prolo, Carolina; Álvarez, María Noel; Radi, Rafael

    2013-01-01

    Macrophages are among the first cellular actors facing the invasion of microorganisms. These cells are able to internalize pathogens and destroy them by means of toxic mediators, many of which are produced enzymatically and have strong oxidizing capacity. Indeed, macrophages count on the NADPH oxidase complex activity, which is triggered during pathogen invasion and leads to the production of superoxide radical inside the phagosome. At the same time, the induction of nitric oxide synthase results in the production of nitric oxide in the cytosol which is able to readily diffuse to the phagocytic vacuole. Superoxide radical and nitric oxide react at diffusion controlled rates with each other inside the phagosome to yield peroxynitrite, a powerful oxidant capable to kill microorganisms. Peroxynitrite toxicity resides on oxidations and nitrations of biomolecules in the target cell. The central role of peroxynitrite as a key effector molecule in the control of infections has been proven in a wide number of models. However, some microorganisms and virulent strains adapt to survive inside the potentially hostile oxidizing microenvironment of the phagosome by either impeding peroxynitrite formation or rapidly detoxifying it once formed. In this context, the outcome of the infection process is a result of the interplay between the macrophage-derived oxidizing cytotoxins such as peroxynitrite and the antioxidant defense machinery of the invading pathogens. PMID:24281946

  12. Epigenetic regulation of the nitrosative stress response and intracellular macrophage survival by extraintestinal pathogenic Escherichia coli.

    Science.gov (United States)

    Bateman, Stacey L; Seed, Patrick C

    2012-03-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) reside in the enteric tract as a commensal reservoir, but can transition to a pathogenic state by invading normally sterile niches, establishing infection and disseminating to invasive sites like the bloodstream. Macrophages are required for ExPEC dissemination, suggesting the pathogen has developed mechanisms to persist within professional phagocytes. Here, we report that FimX, an ExPEC-associated DNA invertase that regulates the major virulence factor type 1 pili (T1P), is also an epigenetic regulator of a LuxR-like response regulator HyxR. FimX regulated hyxR expression through bidirectional phase inversion of its promoter region at sites different from the type 1 pili promoter and independent of integration host factor (IHF). In vitro, transition from high to low HyxR expression produced enhanced tolerance of reactive nitrogen intermediates (RNIs), primarily through de-repression of hmpA, encoding a nitric oxide-detoxifying flavohaemoglobin. However, in the macrophage, HyxR produced large effects on intracellular survival in the presence and absence of RNI and independent of Hmp. Collectively, we have shown that the ability of ExPEC to survive in macrophages is contingent upon the proper transition from high to low HyxR expression through epigenetic regulatory control by FimX. © 2012 Blackwell Publishing Ltd.

  13. Modified pectin from Theobroma cacao induces potent pro-inflammatory activity in murine peritoneal macrophage.

    Science.gov (United States)

    Amorim, Juliana C; Vriesmann, Lucia Cristina; Petkowicz, Carmen L O; Martinez, Glaucia Regina; Noleto, Guilhermina R

    2016-11-01

    In vitro effects of acetylated pectin (OP) isolated from cacao pod husks (Theobroma cacao L.), its partially deacetylated and de-esterified form (MOP), and a commercial homogalacturonan (PG) were investigated on murine peritoneal macrophages. MOP stood out among the studied pectins. After 48h of incubation, compared with the control group, it was able to promote significant macrophage morphological differentiation from resident to activated stage and also stimulated nitric oxide production, which reached a level of 85% of that of LPS stimulus. In the presence of the highest tested concentration of MOP (200μg·mL -1 ), the levels of the cytokines TNF-α (6h) and IL-12 and IL-10 (48h) increased substantially in relation to untreated cells. Our results show that the partial deacetylation and de-esterification of pectin extracted from cacao pod husks (T. cacao L.) produced a polymer with greater ability than its native form to activate macrophages to a cytotoxic phenotype. Like this, they provide the possibility of a therapeutic application to MOP, which could lead to a decreased susceptibility to microbial infection besides antitumor activity. Additionally, the present results also corroborate with the proposition of that the chemical modifications of the biopolymers can result in an improved molecule with new possibilities of application. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Liver transplantation in polycystic liver disease

    DEFF Research Database (Denmark)

    Krohn, Paul S; Hillingsø, Jens; Kirkegaard, Preben

    2008-01-01

    OBJECTIVE: Polycystic liver disease (PLD) is a rare, hereditary, benign disorder. Hepatic failure is uncommon and symptoms are caused by mass effects leading to abdominal distension and pain. Liver transplantation (LTX) offers fully curative treatment, but there is still some controversy about...... whether it is a relevant modality considering the absence of liver failure, relative organ shortage, perioperative risks and lifelong immunosuppression. The purpose of this study was to review our experience of LTX for PLD and to compare the survival with the overall survival of patients who underwent LTX....../kidney transplantation. One patient had undergone kidney transplantation 10 years earlier. RESULTS: Median follow-up was 55 months. One patient who underwent combined transplantation died after 5.4 months because of multiorgan failure after re-LTX, and one patient, with well-functioning grafts, died of lymphoma after 7...

  15. Molecular Mechanisms Modulating the Phenotype of Macrophages and Microglia

    Directory of Open Access Journals (Sweden)

    Stephanie A. Amici

    2017-11-01

    Full Text Available Macrophages and microglia play crucial roles during central nervous system development, homeostasis and acute events such as infection or injury. The diverse functions of tissue macrophages and microglia are mirrored by equally diverse phenotypes. A model of inflammatory/M1 versus a resolution phase/M2 macrophages has been widely used. However, the complexity of macrophage function can only be achieved by the existence of varied, plastic and tridimensional macrophage phenotypes. Understanding how tissue macrophages integrate environmental signals via molecular programs to define pathogen/injury inflammatory responses provides an opportunity to better understand the multilayered nature of macrophages, as well as target and modulate cellular programs to control excessive inflammation. This is particularly important in MS and other neuroinflammatory diseases, where chronic inflammatory macrophage and microglial responses may contribute to pathology. Here, we perform a comprehensive review of our current understanding of how molecular pathways modulate tissue macrophage phenotype, covering both classic pathways and the emerging role of microRNAs, receptor-tyrosine kinases and metabolism in macrophage phenotype. In addition, we discuss pathway parallels in microglia, novel markers helpful in the identification of peripheral macrophages versus microglia and markers linked to their phenotype.

  16. The macrophage in HIV-1 infection: From activation to deactivation?

    Directory of Open Access Journals (Sweden)

    Varin Audrey

    2010-04-01

    Full Text Available Abstract Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1 induced in particular by IFN-γ display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2 induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM. Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease.

  17. Aging and cancer: The role of macrophages and neutrophils.

    Science.gov (United States)

    Jackaman, Connie; Tomay, Federica; Duong, Lelinh; Abdol Razak, Norbaini Bintu; Pixley, Fiona J; Metharom, Pat; Nelson, Delia J

    2017-07-01

    Impaired immune function has been implicated in the declining health and higher incidence of cancer in the elderly. However, age-related changes to immunity are not completely understood. Neutrophils and macrophages represent the first line of defence yet their ability to phagocytose pathogens decrease with aging. Cytotoxic T lymphocytes are critical in eliminating tumors, but T cell function is also compromised with aging. T cell responses can be regulated by macrophages and may depend on the functional phenotype macrophages adopt in response to microenvironmental signals. This can range from pro-inflammatory, anti-tumorigenic M1 to anti-inflammatory, pro-tumorigenic M2 macrophages. Macrophages in healthy elderly adipose and hepatic tissue exhibit a more pro-inflammatory M1 phenotype compared to young hosts whilst immunosuppressive M2 macrophages increase in elderly lymphoid tissues, lung and muscle. These M2-like macrophages demonstrate altered responses to stimuli. Recent studies suggest that neutrophils also regulate T cell function and, like macrophages, neutrophil function is modulated with aging. It is possible that age-modified tissue-specific macrophages and neutrophils contribute to chronic low-grade inflammation that is associated with dysregulated macrophage-mediated immunosuppression, which together are responsible for development of multiple pathologies, including cancer. This review discusses recent advances in macrophage and neutrophil biology in healthy aging and cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders?

    Directory of Open Access Journals (Sweden)

    Luca Parisi

    2018-01-01

    Full Text Available Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1 or alternatively activated (M2. However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in “distant” pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like and/or builders (M2-like. We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy.

  19. Drug Trafficking into Macrophages via the Endocytotic Receptor CD163.

    Science.gov (United States)

    Graversen, Jonas Heilskov; Moestrup, Søren Kragh

    2015-06-23

    In inflammatory diseases, macrophages are a main producer of a range of cytokines regulating the inflammatory state. This also includes inflammation induced by tumor growth, which recruits so-called tumor-associated macrophages supporting tumor growth. Macrophages are therefore relevant targets for cytotoxic or phenotype-modulating drugs in the treatment of inflammatory and cancerous diseases. Such targeting of macrophages has been tried using the natural propensity of macrophages to non-specifically phagocytose circulating foreign particulate material. In addition, the specific targeting of macrophage-expressed receptors has been used in order to obtain a selective uptake in macrophages and reduce adverse effects of off-target delivery of drugs. CD163 is a highly expressed macrophage-specific endocytic receptor that has been studied for intracellular delivery of small molecule drugs to macrophages using targeted liposomes or antibody drug conjugates. This review will focus on the biology of CD163 and its potential role as a target for selective macrophage targeting compared with other macrophage targeting approaches.

  20. Influenza virus replication in macrophages: balancing protection and pathogenesis.

    Science.gov (United States)

    Cline, Troy D; Beck, Donald; Bianchini, Elizabeth

    2017-10-01

    Macrophages are essential for protection against influenza A virus infection, but are also implicated in the morbidity and mortality associated with severe influenza disease, particularly during infection with highly pathogenic avian influenza (HPAI) H5N1 virus. While influenza virus infection of macrophages was once thought to be abortive, it is now clear that certain virus strains can replicate productively in macrophages. This may have important consequences for the antiviral functions of macrophages, the course of disease and the outcome of infection for the host. In this article, we review findings related to influenza virus replication in macrophages and the impact of productive replication on macrophage antiviral functions. A clear understanding of the interactions between influenza viruses and macrophages may lead to new antiviral therapies to relieve the burden of severe disease associated with influenza viruses.

  1. Macrophage activation and polarization: nomenclature and experimental guidelines.

    Science.gov (United States)

    Murray, Peter J; Allen, Judith E; Biswas, Subhra K; Fisher, Edward A; Gilroy, Derek W; Goerdt, Sergij; Gordon, Siamon; Hamilton, John A; Ivashkiv, Lionel B; Lawrence, Toby; Locati, Massimo; Mantovani, Alberto; Martinez, Fernando O; Mege, Jean-Louis; Mosser, David M; Natoli, Gioacchino; Saeij, Jeroen P; Schultze, Joachim L; Shirey, Kari Ann; Sica, Antonio; Suttles, Jill; Udalova, Irina; van Ginderachter, Jo A; Vogel, Stefanie N; Wynn, Thomas A

    2014-07-17

    Description of macrophage activation is currently contentious and confusing. Like the biblical Tower of Babel, macrophage activation encompasses a panoply of descriptors used in different ways. The lack of consensus on how to define macrophage activation in experiments in vitro and in vivo impedes progress in multiple ways, including the fact that many researchers still consider there to be only two types of activated macrophages, often termed M1 and M2. Here, we describe a set of standards encompassing three principles-the source of macrophages, definition of the activators, and a consensus collection of markers to describe macrophage activation-with the goal of unifying experimental standards for diverse experimental scenarios. Collectively, we propose a common framework for macrophage-activation nomenclature. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. HIV Infection of Macrophages: Implications for Pathogenesis and Cure

    Directory of Open Access Journals (Sweden)

    Kiera Leigh Clayton

    2017-05-01

    Full Text Available Although CD4+ T cells represent the major reservoir of persistent HIV and SIV infection, accumulating evidence suggests that macrophages also contribute. However, investigations of the role of macrophages are often underrepresented at HIV pathogenesis and cure meetings. This was the impetus for a scientific workshop dedicated to this area of study, held in Cambridge, MA in January 2017. The workshop brought together experts in the fields of HIV/SIV immunology/virology, macrophage biology and immunology, and animal models of HIV/SIV infection to facilitate discussions regarding the role of macrophages as a physiologically relevant viral reservoir, and the implications of macrophage infection for HIV pathogenesis and cure strategies. An emerging consensus that infected macrophages likely persist in the setting of combination antiretroviral therapy, driving persistent inflammation and contributing to the viral reservoir, indicate the importance of addressing macrophages as well as CD4+ T cells with future therapeutic strategies.

  3. Isoferritins in rat Kupffer cells, hepatocytes, and extrahepatic macrophages. Biosynthesis in cell suspensions and cultures in response to iron

    International Nuclear Information System (INIS)

    Doolittle, R.L.; Richter, G.W.

    1981-01-01

    Cultures of Kupffer cells and of hepatocytes, prepared from single rat livers, synthesized ferritin protein equally efficiently. In culture but not in suspension, both sorts of cells responded significantly to stimulation with iron by increased ferritin synthesis. As determined by isoelectric focusing, the isoferritin profiles of newly synthesized 14 -labeled Kupffer cell and hepatocyte ferritin were identical, each having three bands. However, unlabeled ferritin, extracted from nonparenchymal liver cells (mainly Kupffer and endothelial cells) of iron-loaded rats, contained an acidic isoferritin that was not present in hepatocyte ferritin. Investigation of ferritin synthesis in cultured peritoneal and alveolar macrophages yielded similar results. The isofocusing profile of newly synthesized peritoneal macrophage ferritin was indistinguishable from the profile of fresh Kupffer cell or hepatocyte ferritin. Thus, the three isoferritins common to Kupffer cells, hepatocytes, and extrahepatic macrophages are neither cell- nor tissue-specific. However, modifications on intracellular storage may affect the isofocusing properties. The findings, although consistent with the LnH24-n subunit model of ferritin protein, indicate identical restrictive genomic control of the H:L ratios in these sorts of cells. Further, they make it probable that Kupffer cell ferritin iron, originating by endogenous synthesis, is the principal source of Kupffer cell hemosiderin iron

  4. Scutellarin Suppresses NLRP3 Inflammasome Activation in Macrophages and Protects Mice against Bacterial Sepsis.

    Science.gov (United States)

    Liu, Yi; Jing, Yan-Yun; Zeng, Chen-Ying; Li, Chen-Guang; Xu, Li-Hui; Yan, Liang; Bai, Wen-Jing; Zha, Qing-Bing; Ouyang, Dong-Yun; He, Xian-Hui

    2017-01-01

    . In line with this, scutellarin treatment significantly reduced serum IL-1β levels and attenuated the infiltration of inflammatory cells in the liver of E. coli -infected mice. These data indicated that scutellarin suppressed NLRP3 inflammasome activation in macrophages by augmenting PKA signaling, highlighting its potential therapeutic application for treating NLRP3-related inflammatory diseases.

  5. Scutellarin Suppresses NLRP3 Inflammasome Activation in Macrophages and Protects Mice against Bacterial Sepsis

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2018-01-01

    bacterial sepsis. In line with this, scutellarin treatment significantly reduced serum IL-1β levels and attenuated the infiltration of inflammatory cells in the liver of E. coli-infected mice. These data indicated that scutellarin suppressed NLRP3 inflammasome activation in macrophages by augmenting PKA signaling, highlighting its potential therapeutic application for treating NLRP3-related inflammatory diseases.

  6. Complement 5a stimulates macrophage polarization and contributes to tumor metastases of colon cancer.

    Science.gov (United States)

    Piao, Chunmei; Zhang, Wen-Mei; Li, Tao-Tao; Zhang, Cong-Cong; Qiu, Shulan; Liu, Yan; Liu, Sa; Jin, Ming; Jia, Li-Xin; Song, Wen-Chao; Du, Jie

    2018-05-15

    Inflammatory cells such as macrophages can play a pro-tumorigenic role in the tumor stroma. Tumor-associated macrophages (TAMs) generally display an M2 phenotype with tumor-promoting activity; however, the mechanisms regulating the TAM phenotype remain unclear. Complement 5a (C5a) is a cytokine-like polypeptide that is generated during complement system activation and is known to promote tumor growth. Herein, we investigated the role of C5a on macrophage polarization in colon cancer metastasis in mice. We found that deficiency of the C5a receptor (C5aR) severely impairs the metastatic ability of implanted colon cancer cells. C5aR was expressed on TAMs, which exhibited an M2-like functional profile in colon cancer liver metastatic lesions. Furthermore, C5a mediated macrophage polarization and this process relied substantially on activation of the nuclear factor-kappa B (NF-κB) pathway. Finally, analysis of human colon carcinoma indicated that C5aR expression is negatively associated with tumor differentiation grade. Our results demonstrate that C5aR has a central role in regulating the M2 phenotype of TAMs, which in turn, contributes to hepatic metastasis of colon cancer through NF-κB signaling. C5a is a potential novel marker for cancer prognosis and drugs targeting complement system activation, specifically the C5aR pathway, may offer new therapeutic opportunities for colon cancer management. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway

    International Nuclear Information System (INIS)

    Xu, Xiaolin; Li, Qian; Pang, Liewen; Huang, Guoqian; Huang, Jiechun; Shi, Meng; Sun, Xiaotian; Wang, Yiqing

    2013-01-01

    Highlights: •Arctigenin enhanced cholesterol efflux in oxLDL-loaded THP-1 macrophages. •The expression of ABCA1, ABCG1 and apoE was upregulated in arctigenin-treated cells. •Arctigenin promoted the expression of PPAR-γ and LXR-α. •Inhibition of PPAR-γ or LXR-α reversed arctigenin-mediated biological effects. •Arctigenin promotes cholesterol efflux via activation of PPAR-γ/LXR-α/ABCA1 pathway. -- Abstract: Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α

  8. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaolin [Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200032 (China); Li, Qian [Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai (China); Pang, Liewen; Huang, Guoqian; Huang, Jiechun; Shi, Meng; Sun, Xiaotian [Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200032 (China); Wang, Yiqing, E-mail: yiqingwangbiopaper@163.com [Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200032 (China)

    2013-11-15

    Highlights: •Arctigenin enhanced cholesterol efflux in oxLDL-loaded THP-1 macrophages. •The expression of ABCA1, ABCG1 and apoE was upregulated in arctigenin-treated cells. •Arctigenin promoted the expression of PPAR-γ and LXR-α. •Inhibition of PPAR-γ or LXR-α reversed arctigenin-mediated biological effects. •Arctigenin promotes cholesterol efflux via activation of PPAR-γ/LXR-α/ABCA1 pathway. -- Abstract: Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α.

  9. Liver regeneration and restoration of liver function after partial hepatectomy in patients with liver tumors

    NARCIS (Netherlands)

    Jansen, P. L.; Chamuleau, R. A.; van Leeuwen, D. J.; Schipper, H. G.; Busemann-Sokole, E.; van der Heyde, M. N.

    1990-01-01

    Liver regeneration and restoration of liver function were studied in six patients who underwent partial hepatectomy with removal of 30-70% of the liver. Liver volume and liver regeneration were studied by single-photon computed tomography (SPECT), using 99mTc-colloid as tracer. The method was

  10. Education Research: Neurology resident education

    Science.gov (United States)

    Mayans, David; Schneider, Logan; Adams, Nellie; Khawaja, Ayaz M.; Engstrom, John

    2016-01-01

    Objective: To survey US-trained graduating neurology residents who are American Academy of Neurology members, in an effort to trend perceived quality and completeness of graduate neurology education. Methods: An electronic survey was sent to all American Academy of Neurology members graduating from US neurology residency programs in the Spring of 2014. Results: Of 805 eligible respondents, 24% completed the survey. Ninety-three percent of adult neurology residents and 56% of child neurology residents reported plans to pursue fellowship training after residency. Respondents reported a desire for additional training in neurocritical care, neuro-oncology, neuromuscular diseases, botulinum toxin injection, and nerve blocks. There remains a clear deficit in business training of neurology residents, although there was notable improvement in knowledge of coding and office management compared to previous surveys. Discussion: Although there are still areas of perceived weakness in neurology training, graduating neurology residents feel generally well prepared for their chosen careers. However, most still pursue fellowship training for reasons that are little understood. In addition to certain subspecialties and procedures, practice management remains deficient in neurology training and is a point of future insecurity for most residents. Future curriculum changes should consider resident-reported gaps in knowledge, with careful consideration of improving business training. PMID:26976522

  11. Prolactin and liver disease

    NARCIS (Netherlands)

    A.G.C. Bauer (Alexander)

    1982-01-01

    textabstractCirrhosis of the liver is associated with profound endocrinological disturbances. Until recently it was thought that these disturbances were caused mainly by ineffective elimination of hormones by the diseased liver. It is now known that the pathogenesis of disturbed hormonal function in

  12. Acute liver failure

    DEFF Research Database (Denmark)

    Bernal, William; Lee, William M; Wendon, Julia

    2015-01-01

    Over the last three decades acute liver failure (ALF) has been transformed from a rare and poorly understood condition with a near universally fatal outcome, to one with a well characterized phenotype and disease course. Complex critical care protocols are now applied and emergency liver...

  13. Deletion of Macrophage Vitamin D Receptor Promotes Insulin Resistance and Monocyte Cholesterol Transport to Accelerate Atherosclerosis in Mice

    Directory of Open Access Journals (Sweden)

    Jisu Oh

    2015-03-01

    Full Text Available Intense effort has been devoted to understanding predisposition to chronic systemic inflammation because it contributes to cardiometabolic disease. We demonstrate that deletion of the macrophage vitamin D receptor (VDR in mice (KODMAC is sufficient to induce insulin resistance by promoting M2 macrophage accumulation in the liver as well as increasing cytokine secretion and hepatic glucose production. Moreover, VDR deletion increases atherosclerosis by enabling lipid-laden M2 monocytes to adhere, migrate, and carry cholesterol into the atherosclerotic plaque and by increasing macrophage cholesterol uptake and esterification. Increased foam cell formation results from lack of VDR-SERCA2b interaction, causing SERCA dysfunction, activation of ER stress-CaMKII-JNKp-PPARγ signaling, and induction of the scavenger receptors CD36 and SR-A1. Bone marrow transplant of VDR-expressing cells into KODMAC mice improved insulin sensitivity, suppressed atherosclerosis, and decreased foam cell formation. The immunomodulatory effects of vitamin D in macrophages are thus critical in diet-induced insulin resistance and atherosclerosis in mice.

  14. CD4+ T Cell-derived IL-10 Promotes Brucella abortus Persistence via Modulation of Macrophage Function

    Science.gov (United States)

    Xavier, Mariana N.; Winter, Maria G.; Spees, Alanna M.; Nguyen, Kim; Atluri, Vidya L.; Silva, Teane M. A.; Bäumler, Andreas J.; Müller, Werner; Santos, Renato L.; Tsolis, Renée M.

    2013-01-01

    Evasion of host immune responses is a prerequisite for chronic bacterial diseases; however, the underlying mechanisms are not fully understood. Here, we show that the persistent intracellular pathogen Brucella abortus prevents immune activation of macrophages by inducing CD4+CD25+ T cells to produce the anti-inflammatory cytokine interleukin-10 (IL-10) early during infection. IL-10 receptor (IL-10R) blockage in macrophages resulted in significantly higher NF-kB activation as well as decreased bacterial intracellular survival associated with an inability of B. abortus to escape the late endosome compartment in vitro. Moreover, either a lack of IL-10 production by T cells or a lack of macrophage responsiveness to this cytokine resulted in an increased ability of mice to control B. abortus infection, while inducing elevated production of pro-inflammatory cytokines, which led to severe pathology in liver and spleen of infected mice. Collectively, our results suggest that early IL-10 production by CD25+CD4+ T cells modulates macrophage function and contributes to an initial balance between pro-inflammatory and anti-inflammatory cytokines that is beneficial to the pathogen, thereby promoting enhanced bacterial survival and persistent infection. PMID:23818855

  15. Liver cancer oncogenomics

    DEFF Research Database (Denmark)

    Marquardt, Jens U; Andersen, Jesper B

    2015-01-01

    Primary liver cancers are among the most rapidly evolving malignant tumors worldwide. An underlying chronic inflammatory liver disease, which precedes liver cancer development for several decades and frequently creates a pro-oncogenic microenvironment, impairs progress in therapeutic approaches....... Molecular heterogeneity of liver cancer is potentiated by a crosstalk between epithelial tumor and stromal cells that complicate translational efforts to unravel molecular mechanisms of hepatocarcinogenesis with a drugable intend. Next-generation sequencing has greatly advanced our understanding of cancer...... development. With regards to liver cancer, the unprecedented coverage of next-generation sequencing has created a detailed map of genetic alterations and identified key somatic changes such as CTNNB1 and TP53 as well as several previously unrecognized recurrent disease-causing alterations that could...

  16. Rac2 is required for alternative macrophage activation and bleomycin induced pulmonary fibrosis; a macrophage autonomous phenotype.

    Directory of Open Access Journals (Sweden)

    Shweta Joshi

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a chronic lung disease characterized by cellular phenotype alterations and deposition of extracellular matrix proteins. The alternative activation of macrophages in the lungs has been associated as a major factor promoting pulmonary fibrosis, however the mechanisms underlying this phenomenon are poorly understood. In the present study, we have defined a molecular mechanism by which signals transmitted from the extracellular matrix via the α4β1 integrin lead to the activation of Rac2 which regulates alternative macrophage differentiation, a signaling axis within the pulmonary macrophage compartment required for bleomycin induced pulmonary fibrosis. Mice deficient in Rac2 were protected against bleomycin-induced fibrosis and displayed diminished collagen deposition in association with lower expression of alternatively activated profibrotic macrophage markers. We have demonstrated a macrophage autonomous process by which the injection of M2 and not M1 macrophages restored the bleomycin induced pulmonary fibrosis susceptibility in Rac2-/- mice, establishing a critical role for a macrophage Rac2 signaling axis in the regulation of macrophage differentiation and lung fibrosis in vivo. We also demonstrate that markers of alternative macrophage activation are increased in patients with IPF. Taken together, these studies define an important role for an integrin-driven Rac2 signaling axis in macrophages, and reveal that Rac2 activation is required for polarization of macrophages towards a profibrotic phenotype and progression of pulmonary fibrosis in vivo.

  17. Rac2 is required for alternative macrophage activation and bleomycin induced pulmonary fibrosis; a macrophage autonomous phenotype

    Science.gov (United States)

    Zulcic, Muamera; Jiang, Min; Pardo, Annie; Selman, Moises; Hagood, James S.

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by cellular phenotype alterations and deposition of extracellular matrix proteins. The alternative activation of macrophages in the lungs has been associated as a major factor promoting pulmonary fibrosis, however the mechanisms underlying this phenomenon are poorly understood. In the present study, we have defined a molecular mechanism by which signals transmitted from the extracellular matrix via the α4β1 integrin lead to the activation of Rac2 which regulates alternative macrophage differentiation, a signaling axis within the pulmonary macrophage compartment required for bleomycin induced pulmonary fibrosis. Mice deficient in Rac2 were protected against bleomycin-induced fibrosis and displayed diminished collagen deposition in association with lower expression of alternatively activated profibrotic macrophage markers. We have demonstrated a macrophage autonomous process by which the injection of M2 and not M1 macrophages restored the bleomycin induced pulmonary fibrosis susceptibility in Rac2-/- mice, establishing a critical role for a macrophage Rac2 signaling axis in the regulation of macrophage differentiation and lung fibrosis in vivo. We also demonstrate that markers of alternative macrophage activation are increased in patients with IPF. Taken together, these studies define an important role for an integrin-driven Rac2 signaling axis in macrophages, and reveal that Rac2 activation is required for polarization of macrophages towards a profibrotic phenotype and progression of pulmonary fibrosis in vivo. PMID:28817691

  18. Factors Influencing Resident Choice of Prosthodontic Residency Program.

    Science.gov (United States)

    Wojnarwsky, Pandora Keala Lee; Wang, Yan; Shah, Kumar; Koka, Sreenivas

    2017-06-01

    The decision by prosthodontic residency program directors to employ the Match process highlights the need to understand applicant priorities that influence their choice of which programs to rank highly. The purpose of this study is to determine the factors that were most important to residents when choosing from among nonmilitary based prosthodontics dental residency programs in the United States. Following completion of a pilot study, all currently enrolled prosthodontic residents at nonmilitary residency programs were invited to participate via the internet. The study consisted of a survey instrument asking residents to rank 26 possible factors that might impact an applicant's choice of residency program. In addition, the instrument collected other possible influencing variables including gender and debt load. Mean rank scores were compared to determine the most and least important factors. Kruskal-Wallis test was used to compare specific factors between the possible influencing variables. Two hundred and thirty residents completed the survey instrument, representing a 54.1% response rate of possible participants. With regard to factors influencing program choice, reputation of the residency program was the factor ranked the highest by participants, followed in descending order by the program director's personality, curriculum content, access to use of the latest digital technology, and opportunities for dental implant placement. Quality of schools for children, community outreach opportunities, and the ability to moonlight were ranked as the least important factors. Male and female residents ranked factors such as tuition/stipend, curriculum content, and community outreach opportunities significantly differently. Depending on debt load, residents ranked the factors tuition/stipend, ability to moonlight, curriculum content, and safety of the area where the program is differently. Current prosthodontic residents valued the reputation of the program as the most

  19. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice.

    Science.gov (United States)

    Xia, Bo; Cai, Guo He; Yang, Hao; Wang, Shu Pei; Mitchell, Grant A; Wu, Jiang Wei

    2017-12-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency.

  20. Pathology Informatics Essentials for Residents

    Science.gov (United States)

    Karcher, Donald S.; Harrison, James H.; Sinard, John H.; Riben, Michael W.; Boyer, Philip J.; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron

    2016-01-01

    Context: Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics has been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. Objective: To develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills, and meets Accreditation Council for Graduate Medical Education Informatics Milestones. Design: The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. Results: Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). Conclusions: PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time. PMID:28725772

  1. Pathology Informatics Essentials for Residents

    Directory of Open Access Journals (Sweden)

    Walter H. Henricks MD

    2016-07-01

    Full Text Available Context: Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics has been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. Objective: To develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills, and meets Accreditation Council for Graduate Medical Education Informatics Milestones. Design: The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. Results: Pathology Informatics Essentials for Residents (PIER is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016. Conclusions: PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time.

  2. Incorporating resident research into the dermatology residency program

    Science.gov (United States)

    Wagner, Richard F; Raimer, Sharon S; Kelly, Brent C

    2013-01-01

    Programmatic changes for the dermatology residency program at The University of Texas Medical Branch were first introduced in 2005, with the faculty goal incorporating formal dermatology research projects into the 3-year postgraduate training period. This curriculum initially developed as a recommendation for voluntary scholarly project activity by residents, but it evolved into a program requirement for all residents in 2009. Departmental support for this activity includes assignment of a faculty mentor with similar interest about the research topic, financial support from the department for needed supplies, materials, and statistical consultation with the Office of Biostatistics for study design and data analysis, a 2-week elective that provides protected time from clinical activities for the purpose of preparing research for publication and submission to a peer-reviewed medical journal, and a departmental award in recognition for the best resident scholarly project each year. Since the inception of this program, five classes have graduated a total of 16 residents. Ten residents submitted their research studies for peer review and published their scholarly projects in seven dermatology journals through the current academic year. These articles included three prospective investigations, three surveys, one article related to dermatology education, one retrospective chart review, one case series, and one article about dermatopathology. An additional article from a 2012 graduate about dermatology education has also been submitted to a journal. This new program for residents was adapted from our historically successful Dermatology Honors Research Program for medical students at The University of Texas Medical Branch. Our experience with this academic initiative to promote dermatology research by residents is outlined. It is recommended that additional residency programs should consider adopting similar research programs to enrich resident education. PMID:23901305

  3. Liver biopsy in liver patients with coagulopathy

    DEFF Research Database (Denmark)

    Ott, P.; Gronbaek, H.; Clausen, M.R.

    2008-01-01

    The risk of severe bleeding after liver biopsy is estimated to be 1:12,000 in patients with near normal coagulation (INR 60 billion /l). Beyond these limits, the risk is higher, but still uncertain. The Danish guidelines require INR > 1.5, platelet count

  4. Toll-like receptor-4 mediates cigarette smoke-induced cytokine production by human macrophages

    Directory of Open Access Journals (Sweden)

    De Kimpe Sjef J

    2006-04-01

    Full Text Available Abstract Background The major risk factor for the development of COPD is cigarette smoking. Smoking causes activation of resident cells and the recruitment of inflammatory cells into the lungs, which leads to release of pro-inflammatory cytokines, chemotactic factors, oxygen radicals and proteases. In the present study evidence is found for a new cellular mechanism that refers to a link between smoking and inflammation in lungs. Methods Employing human monocyte-derived macrophages, different techniques including FACS analysis, Cytometric Bead Array Assay and ELISA were achieved to evaluate the effects of CS on pro-inflammatory cytokine secretion including IL-8. Then, Toll-like receptor neutralization was performed to study the involvement of Toll-like receptor-4 in IL-8 production. Finally, signaling pathways in macrophages after exposure to CS medium were investigated performing ELISA and Western analysis. Results We demonstrate that especially human monocytes are sensitive to produce IL-8 upon cigarette smoke stimulation compared to lymphocytes or neutrophils. Moreover, monocyte-derived macrophages produce high amounts of the cytokine. The IL-8 production is dependent on Toll-like receptor 4 stimulation and LPS is not involved. Further research resolved the cellular mechanism by which cigarette smoke induces cytokine production in monocyte-derived macrophages. Cigarette smoke causes subsequently a concentration-dependent phosphorylation of IRAK and degradation of TRAF6. Moreover, IκBα was phosphorylated which suggests involvement of NF-κB. In addition, NFκB -inhibitor blocked cigarette smoke-induced IL-8 production. Conclusion These findings link cigarette smoke to inflammation and lead to new insights/therapeutic strategies in the pathogenesis of lung emphysema.

  5. Macrophagic myofasciitis and vaccination: consequence or coincidence?

    Science.gov (United States)

    Santiago, Tânia; Rebelo, Olinda; Negrão, Luís; Matos, Anabela

    2015-01-01

    Macrophagic myofasciitis (MMF) characterized by specific muscle lesions assessing long-term persistence of aluminum hydroxide within macrophages at the site of previous immunization has been reported with increasing frequency in the past 10 years. We describe clinical and laboratory findings in patients with MMF. We did a retrospective analysis of 16 cases observed in our Neuropathology Laboratory, between January 2000 and July 2013. The mean age of the 16 patients was 48.8 ± 18.0 years; 80.0 % were female. Chronic fatigue syndrome was found in 8 of 16 patients. Half of the patients had elevated creatinine kinase levels, and 25.0 % had a myopathic electromyogram. Thirteen patients received intramuscular administration of aluminum-containing vaccine prior to the onset of symptoms. MMF may mirror a distinctive pattern of an inflammatory myopathy. The vaccines containing this adjuvant may trigger MMF in some patients.

  6. Metabolic Modulation in Macrophage Effector Function

    Directory of Open Access Journals (Sweden)

    Ciana Diskin

    2018-02-01

    Full Text Available Traditionally cellular respiration or metabolism has been viewed as catabolic and anabolic pathways generating energy and biosynthetic precursors required for growth and general cellular maintenance. However, growing literature provides evidence of a much broader role for metabolic reactions and processes in controlling immunological effector functions. Much of this research into immunometabolism has focused on macrophages, cells that are central in pro- as well as anti-inflammatory responses—responses that in turn are a direct result of metabolic reprogramming. As we learn more about the precise role of metabolic pathways and pathway intermediates in immune function, a novel opportunity to target immunometabolism therapeutically has emerged. Here, we review the current understanding of the regulation of macrophage function through metabolic remodeling.

  7. Macrophage specific drug delivery in experimental leishmaniasis.

    Science.gov (United States)

    Basu, Mukul Kumar; Lala, Sanchaita

    2004-09-01

    Macrophage-specific delivery systems are the subject of much interest nowadays, because of the fact that macrophages act as host cells for many parasites and bacteria, which give rise to outbreak of so many deadly diseases(eg. leishmaniasis, tuberculosis etc.) in humans. To combat these deadly diseases initially macrophage specific liposomal delivery system were thought of and tested in vivo against experimental leishmaniasis in hamsters using a series of indigenous or synthetic antileishmanial compounds and the results were critically discussed. In vitro testing was also done against macrophages infected with Leishmania donovani, the causative agent for visceral leishmaniasis. The common problem of liposome therapy being their larger size, stability and storage, non-ionic surfactant vesicles, niosomes were prepared, for their different drug distribution and release characteristics compared to liposomes. When tested in vivo, the retention capacity of niosomes was found to be higher than that of liposomes due to the absence of lipid molecules and their smaller size. Thus the therapeutic efficacy of certain antileishmanial compounds was found to be better than that in the liposomal form. The niosomes, being cheaper, less toxic, biodegradable and non-immunogenic, were considered for sometime as suitable alternatives to liposomes as drug carriers. Besides the advent of other classical drugs carriers(e.g. neoglycoproteins), the biggest challenge came from polymeric delivery vehicles, specially the polymeric nanoparticles which were made of cost effective biodegradable polymers and different natural polymers. Because of very small size and highly stable nature, use of nanoparticles as effective drug carriers has been explored in experimental leishmaniasis using a series of antileishmanial compounds, both of indigenous and synthetic origin. The feasibility of application in vivo, when tested for biological as well as for other physicochemical parameters, the polymeric

  8. Burnout among Dutch medical residents

    NARCIS (Netherlands)

    Prins, J.T.; Hoekstra-Weebers, J.E.; Van De Wiel, H.B.; Gazendam-Donofrio, S.M.; Sprangers, F.; Jaspers, F.C.; van der Heijden, F.M.

    2007-01-01

    We examined levels of burnout and relationships between burnout, gender, age, years in training, and medical specialty in 158 medical residents working at the University Medical Center Groningen, the Netherlands. Thirteen percent of the residents met the criteria for burnout, with the highest

  9. Surgical residency: A tenant's view

    African Journals Online (AJOL)

    'To sleep: perchance to dream', is the frequent mantra of the surgical resident. However, unlike. Hamlet, there is no ensuing speculation as to what dreams may come as there are seldom any!! Surgical residency has been both vilified and immortalized, but the fact remains that it is one of the most challenging, provocative ...

  10. Nocardia brasiliensis Modulates IFN-gamma, IL-10, and IL-12 cytokine production by macrophages from BALB/c Mice.

    Science.gov (United States)

    Salinas-Carmona, Mario C; Zúñiga, Juan M; Pérez-Rivera, Luz I; Segoviano-Ramírez, Juan C; Vázquez-Marmolejo, Anna V

    2009-05-01

    Interferon-gamma (IFN-gamma) is a critical cytokine involved in control of different infections. Actinomycetoma is a chronic infectious disease mainly caused by the bacterium Nocardia brasiliensis, which destroys subcutaneous tissue, including bone. Currently, the mechanism of pathogenesis in N. brasiliensis infection is not known. Here, we demonstrate that N. brasiliensis induced an IFN-gamma response in serum after 24 h of infection, while, in infected tissue, positive cells to IFN-gamma appeared in 2 early peaks: the first was present only 3 h after infection, then transiently decreased; and the second peak appeared 12 h after infection and was independent of interleukin-10. Resident macrophages produced an immediate IFN-gamma response 1 h after in vitro infection, and spleen-positive cells began later. The phase of growth of N. brasiliensis affected cytokine production, and exposure of macrophages to Nocardia opsonized with either polyclonal anti-Nocardia antibodies or anti-P61 monoclonal antibody led to a suppression of cytokine production. Our report provides evidence that N. brasiliensis as an intracellular bacterium modulates macrophage cytokine production, which helps survival of the pathogen. Modulation of these cytokines may contribute to pathogenesis once this bacterium is inside the macrophage.

  11. Macrophage Colony Stimulating Factor Derived from CD4+ T Cells Contributes to Control of a Blood-Borne Infection.

    Science.gov (United States)

    Fontana, Mary F; de Melo, Gabrielly L; Anidi, Chioma; Hamburger, Rebecca; Kim, Chris Y; Lee, So Youn; Pham, Jennifer; Kim, Charles C

    2016-12-01

    Dynamic regulation of leukocyte population size and activation state is crucial for an effective immune response. In malaria, Plasmodium parasites elicit robust host expansion of macrophages and monocytes, but the underlying mechanisms remain unclear. Here we show that myeloid expansion during P. chabaudi infection is dependent upon both CD4+ T cells and the cytokine Macrophage Colony Stimulating Factor (MCSF). Single-cell RNA-Seq analysis on antigen-experienced T cells revealed robust expression of Csf1, the gene encoding MCSF, in a sub-population of CD4+ T cells with distinct transcriptional and surface phenotypes. Selective deletion of Csf1 in CD4+ cells during P. chabaudi infection diminished proliferation and activation of certain myeloid subsets, most notably lymph node-resident CD169+ macrophages, and resulted in increased parasite burden and impaired recovery of infected mice. Depletion of CD169+ macrophages during infection also led to increased parasitemia and significant host mortality, confirming a previously unappreciated role for these cells in control of P. chabaudi. This work establishes the CD4+ T cell as a physiologically relevant source of MCSF in vivo; probes the complexity of the CD4+ T cell response during type 1 infection; and delineates a novel mechanism by which T helper cells regulate myeloid cells to limit growth of a blood-borne intracellular pathogen.

  12. Fresh mouse peritoneal macrophages have low scavenger receptor activity.

    Science.gov (United States)

    Kim, J G; Keshava, C; Murphy, A A; Pitas, R E; Parthasarathy, S

    1997-11-01

    Peritoneal macrophages are easily isolated by lavage, suggesting that they are either nonadherent or weakly adherent in situ. Cultured macrophages express class A scavenger receptors (SCR), which mediate Ca2+-independent adhesion in vitro. We examined fresh peritoneal macrophages from mice and from women with endometriosis to determine whether the adherence of these cells was associated with increased expression of class A SCR. Fresh human macrophages were not immunoreactive to SCR antibodies; however, SCR immunoreactivity increased with time in culture. Fresh mouse and human macrophages took up minimal amounts of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine (DiI)-acetyl-low density lipoproteins (Ac-LDL), a class A SCR ligand. Murine macrophages in culture for 24-72 h internalized four times more Ac-LDL than fresh cells. Cells cultured for 2 days incorporated 3.2 times more [14C] oleate than freshly isolated cells (55.7 +/- 7.9 versus 17.6 +/- 3.0 nmol/mg cell protein). In contrast to SCR activity, mouse macrophage SCR mRNA expression was similar in freshly isolated macrophages and those cultured for 3 days. These results suggest that peritoneal macrophages express only low levels of SCR activity in situ and that posttranscriptional regulation after isolation leads to an increase in SCR activity that correlates wi