WorldWideScience

Sample records for resident intestinal bacteria

  1. [Transformation and expression of specific insecticide gene Bt cry3A in resident endogenetic bacteria isolated from Apriona germari (Hope) larvae intestines].

    Science.gov (United States)

    Zhongkang, Wang; Wei, He; Guoxiong, Peng; Yuxian, Xia; Qiang, Li; Youping, Yin

    2008-09-01

    Transforming the specific insecticidal gene Bt cry3A into the dominant resident endogenetic bacteria in intestines of Apriona germari (Hope) larvae to construct transgenic bacteria that can colonize and express the insecticidal gene Bt cry3A perfectly in intestines of Apriona germari (Hope) larvae. We isolated and identified the dominant resident endogenetic bacteria by traditional methods and molecular method based of 16S rDNA analysis. Two Escherichia coli--Bacillus thuringiensis shuttle plasmid pHT305a and pHT7911 which contained specific insecticidal gene Bt cry3A were transformed into two resident endogenetic bacteria Brevibacillus brevis Ag12 and Bacillus thuringiensis Ag13 isolated from A. germari larvae intestines respectively by electro-transformation. Eighteen species of bacteria have isolated and identified from Apriona germari larvae intestines and two of them (Brevibacillus brevis Ag12 and Bacillus thuringiensis Ag13) were selected as starting bacteria to recieve the Bt cry3A. The 4 transgenic engineering strains Ag12-7911, Ag12-305a, Ag13-7911 and Ag13-305a were obtained successfully and validated by testing the plasmid stability in recombinants, transformants vegetal properties, crystal poisonous protein observation, expressional protein SDS-PAGE. The Bt cry3A gene had been transformed into Brevibacillus brevis and Bacillus thuringiensis. Both bioassay and examination of the engineering strains in intestines after feeding them to larvae showed that all these transformant strains (Brevibacillus brevis Ag12-305a, Bacillus thurigiensis Ag13-305a, Brevibacillus brevis Ag12-7911 and Bacillus thurigiensis Ag13-7911) could colonize and express 65 kDa protoxin in intestines of A. germari larvae and had insecticidal activity. We obtained four transgenic bacteria that can colonize and express the target insecticide gene Bt cry3A in A. germari larvae. They may be developed as a new insecticide.

  2. Understanding how commensal obligate anaerobic bacteria regulate immune functions in the large intestine.

    Science.gov (United States)

    Maier, Eva; Anderson, Rachel C; Roy, Nicole C

    2014-12-24

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases.

  3. Understanding How Commensal Obligate Anaerobic Bacteria Regulate Immune Functions in the Large Intestine

    Science.gov (United States)

    Maier, Eva; Anderson, Rachel C.; Roy, Nicole C.

    2014-01-01

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases. PMID:25545102

  4. A method for the specific detection of resident bacteria in brine shrimp larvae.

    Science.gov (United States)

    Niu, Yufeng; Defoirdt, Tom; Rekecki, Anamaria; De Schryver, Peter; Van den Broeck, Wim; Dong, Shuanglin; Sorgeloos, Patrick; Boon, Nico; Bossier, Peter

    2012-04-01

    In this study, we describe an easy but efficient method to specifically target the intestinal resident microbiota in brine shrimp larvae during DGGE analysis, hereby excluding the interference of both transient (luminal) bacteria and body surface bacteria. This effective technique has several advantages over alternative methods, with respect of ease of use and rapidity. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The friendly bacteria within us Commensal bacteria of the intestine ...

    Indian Academy of Sciences (India)

    Balance of bacterial species in the gut · Immunosensory detection of intestinal bacteria · Pathogenic bacteria release interleukin-8 from HT-29 cells · Lactobacillus GG prevents the IL-8 release in response to pathogens · Effect of probiotic bacteria on chemokine response of epithelia to pathogens · PCR array studies in colon ...

  6. Mucosal immunity to pathogenic intestinal bacteria.

    Science.gov (United States)

    Perez-Lopez, Araceli; Behnsen, Judith; Nuccio, Sean-Paul; Raffatellu, Manuela

    2016-03-01

    The intestinal mucosa is a particularly dynamic environment in which the host constantly interacts with trillions of commensal microorganisms, known as the microbiota, and periodically interacts with pathogens of diverse nature. In this Review, we discuss how mucosal immunity is controlled in response to enteric bacterial pathogens, with a focus on the species that cause morbidity and mortality in humans. We explain how the microbiota can shape the immune response to pathogenic bacteria, and we detail innate and adaptive immune mechanisms that drive protective immunity against these pathogens. The vast diversity of the microbiota, pathogens and immune responses encountered in the intestines precludes discussion of all of the relevant players in this Review. Instead, we aim to provide a representative overview of how the intestinal immune system responds to pathogenic bacteria.

  7. Intestinal T-cell responses in celiac disease - impact of celiac disease associated bacteria.

    Directory of Open Access Journals (Sweden)

    Veronika Sjöberg

    Full Text Available A hallmark of active celiac disease (CD, an inflammatory small-bowel enteropathy caused by permanent intolerance to gluten, is cytokine production by intestinal T lymphocytes. Prerequisites for contracting CD are that the individual carries the MHC class II alleles HLA-DQ2 and/or HLA-DQ8 and is exposed to gluten in the diet. Dysbiosis in the resident microbiota has been suggested to be another risk factor for CD. In fact, rod shaped bacteria adhering to the small intestinal mucosa were frequently seen in patients with CD during the "Swedish CD epidemic" and bacterial candidates could later be isolated from patients born during the epidemic suggesting long-lasting changes in the gut microbiota. Interleukin-17A (IL-17A plays a role in both inflammation and anti-bacterial responses. In active CD IL-17A was produced by both CD8(+ T cells (Tc17 and CD4(+ T cells (Th17, with intraepithelial Tc17 cells being the dominant producers. Gluten peptides as well as CD associated bacteria induced IL-17A responses in ex vivo challenged biopsies from patients with inactive CD. The IL-17A response was suppressed in patients born during the epidemic when a mixture of CD associated bacteria was added to gluten, while the reverse was the case in patients born after the epidemic. Under these conditions Th17 cells were the dominant producers. Thus Tc17 and Th17 responses to gluten and bacteria seem to pave the way for the chronic disease with interferon-γ-production by intraepithelial Tc1 cells and lamina propria Th1 cells. The CD associated bacteria and the dysbiosis they might cause in the resident microbiota may be a risk factor for CD either by directly influencing the immune responses in the mucosa or by enhancing inflammatory responses to gluten.

  8. Immunization with intestinal microbiota-derived Staphylococcus aureus and Escherichia coli reduces bacteria-specific recolonization of the intestinal tract.

    Science.gov (United States)

    Garfias-López, Julio Adrián; Castro-Escarpuli, Graciela; Cárdenas, Pedro E; Moreno-Altamirano, María Maximina Bertha; Padierna-Olivos, Juan; Sánchez-García, F Javier

    2018-04-01

    A wide array of microorganisms colonizes distinctive anatomical regions of animals, being the intestine the one that harbors the most abundant and complex microbiota. Phylogenetic analyses indicate that it is composed mainly of bacteria, and that Bacterioidetes and Firmicutes are the most represented phyla (>90% of the total eubacteria) in mice and humans. Intestinal microbiota plays an important role in host physiology, contributing to digestion, epithelial cells metabolism, stimulation of intestinal immune responses, and protection against intestinal pathogens. Changes in its composition may affect intestinal homeostasis, a condition known as dysbiosis, which may lead to non-specific inflammation and disease. The aim of this work was to analyze the effect that a bacteria-specific systemic immune response would have on the intestinal re-colonization by that particular bacterium. Bacteria were isolated and identified from the feces of Balb/c mice, bacterial cell-free extracts were used to immunize the same mice from which bacteria came from. Concurrently with immunization, mice were subjected to a previously described antibiotic-based protocol to eliminate most of their intestinal bacteria. Serum IgG and feces IgA, specific for the immunizing bacteria were determined. After antibiotic treatment was suspended, specific bacteria were orally administered, in an attempt to specifically re-colonize the intestine. Results showed that parenteral immunization with gut-derived bacteria elicited the production of both anti-bacterial IgG and IgA, and that immunization reduces bacteria specific recolonization of the gut. These findings support the idea that the systemic immune response may, at least in part, determine the bacterial composition of the gut. Copyright © 2018. Published by Elsevier B.V.

  9. Status of intestinal parasitic infections among residents of Jimma Town, Ethiopia

    OpenAIRE

    Jejaw, Ayalew; Zeynudin, Ahmed; Zemene, Endalew; Belay, Tariku

    2014-01-01

    Background Intestinal parasites cause considerable morbidity and mortality in the world, especially in developing countries like Ethiopia. Both urban and rural inhabitants are vulnerable to infection with intestinal parasites in developing countries. The aim of this study was to determine the status of intestinal parasitic infections (IPIs) among residents of Jimma Town, seven years after high prevalence was reported. Results Four hundred and thirty four residents of Jimma Town were included ...

  10. Metabolism of gentiopicroside (gentiopicrin) by human intestinal bacteria.

    Science.gov (United States)

    el-Sedawy, A I; Hattori, M; Kobashi, K; Namba, T

    1989-09-01

    As a part of our studies on the metabolism of crude drug components by intestinal bacteria, gentiopicroside (a secoiridoid glucoside isolated from Gentiana lutea), was anaerobically incubated with various defined strains of human intestinal bacteria. Many species had ability to transform it to a series of metabolites. Among them, Veillonella parvula ss parvula produced five metabolites, which were identified as erythrocentaurin, gentiopicral, 5-hydroxymethylisochroman-1-one,5-hydroxymethylisochromen-1- one and trans-5,6-dihydro-5-hydroxymethyl-6-methyl-1H,3H-pyrano[3,4-c]pyra n-1-one.

  11. Intestinal bacteria and the regulation of immune cell homeostasis.

    Science.gov (United States)

    Hill, David A; Artis, David

    2010-01-01

    The human intestine is colonized by an estimated 100 trillion bacteria. Some of these bacteria are essential for normal physiology, whereas others have been implicated in the pathogenesis of multiple inflammatory diseases including IBD and asthma. This review examines the influence of signals from intestinal bacteria on the homeostasis of the mammalian immune system in the context of health and disease. We review the bacterial composition of the mammalian intestine, known bacterial-derived immunoregulatory molecules, and the mammalian innate immune receptors that recognize them. We discuss the influence of bacterial-derived signals on immune cell function and the mechanisms by which these signals modulate the development and progression of inflammatory disease. We conclude with an examination of successes and future challenges in using bacterial communities or their products in the prevention or treatment of human disease.

  12. Status of intestinal parasitic infections among residents of Jimma Town, Ethiopia.

    Science.gov (United States)

    Jejaw, Ayalew; Zeynudin, Ahmed; Zemene, Endalew; Belay, Tariku

    2014-08-07

    Intestinal parasites cause considerable morbidity and mortality in the world, especially in developing countries like Ethiopia. Both urban and rural inhabitants are vulnerable to infection with intestinal parasites in developing countries. The aim of this study was to determine the status of intestinal parasitic infections (IPIs) among residents of Jimma Town, seven years after high prevalence was reported. Four hundred and thirty four residents of Jimma Town were included in this study. By the cross-sectional survey, the overall prevalence of intestinal parasites was 209 (48.2%). Nine species of intestinal parasites were isolated, Ascaris lumbricoides and Trichuris trichiura being the most predominant. Residence in Hermata Mentina kebele, Adjusted Odds Ratio (AOR), 3.0, 95% CI, 1.71-5.39), age less than 10 years (AOR, 3.7, 95% CI, 1.33-10.36), illiteracy (AOR, 3.2, 95% CI, 1.64-6.19), estimated monthly family income of less than 500 Ethiopian Birr (AOR, 2.9, 95% CI, 1.32-4.90) and irregular washing hands before meal (AOR, 5.3, 95% CI, 1.36-21.07) were predictors of IPI in this study. The retrospective study revealed a significant decrease (P = 0.037) in the proportion of patients infected with intestinal parasites out of those who requested stool examination over the six-year period. This study confirms that IPIs are still common among residents of Jimma Town. Nearly half of the study participants were infected with at least one intestinal parasite. Public health interventions targeting prevention of IPIs should be strengthened in Jimma Town.

  13. Modulation of immune homeostasis by commensal bacteria

    Science.gov (United States)

    Ivanov, Ivaylo I.; Littman, Dan R.

    2011-01-01

    Intestinal bacteria form a resident community that has co-evolved with the mammalian host. In addition to playing important roles in digestion and harvesting energy, commensal bacteria are crucial for the proper functioning of mucosal immune defenses. Most of these functions have been attributed to the presence of large numbers of “innocuous” resident bacteria that dilute or occupy niches for intestinal pathogens or induce innate immune responses that sequester bacteria in the lumen, thus quenching excessive activation of the mucosal immune system. However it has recently become obvious that commensal bacteria are not simply beneficial bystanders, but are important modulators of intestinal immune homeostasis and that the composition of the microbiota is a major factor in pre-determining the type and robustness of mucosal immune responses. Here we review specific examples of individual members of the microbiota that modify innate and adaptive immune responses, and we focus on potential mechanisms by which such species-specific signals are generated and transmitted to the host immune system. PMID:21215684

  14. [Comparison of transformation of four processed rhubarb aqueous extracts in intestinal bacteria in vitro].

    Science.gov (United States)

    Song, Rui; Tian, Yuan; Zhang, Zunjian

    2012-06-01

    To compare the metabolic transformation of four processed rhubarb aqueous extracts in rat intestinal bacteria in vitro. Rat intestinal bacteria test solution and each of four processed rhubarb aqueous extracts were incubated under anaerobic conditions at 37 degrees C. High-performance liquid chromatography with diode-array detection (HPLC-DAD) and tandem mass spectrometry (HPLC-MS/MS) was used for the qualitative analysis on the components that can be bio-transformed by rat intestinal bacteria as well as the trend of metabolic transformation of each parent compounds according to the changes in chromatographic peak areas in different incubation times. Anthraquinones, glucose gallates and naphthalenes glucosides could be bio-transformed by rat intestinal bacteria. Of them, anthraquinones were undoubtedly the most prevalent parent compounds, as 12 out of the 17 metabolites were tentatively assigned as metabolites transformed from anthraquinones. Besides, it was also found that each parent compound in four processed rhubarb extract were diverse from each other with the incubation time. The preparations change composition and proportional relationship of ingredients contained in rhubarb and thus impacting their transformation effect in intestinal bacteria.

  15. Bioactivation of Phytoestrogens: Intestinal Bacteria and Health.

    Science.gov (United States)

    Landete, J M; Arqués, J; Medina, M; Gaya, P; de Las Rivas, B; Muñoz, R

    2016-08-17

    Phytoestrogens are polyphenols similar to human estrogens found in plants or derived from plant precursors. Phytoestrogens are found in high concentration in soya, flaxseed and other seeds, fruits, vegetables, cereals, tea, chocolate, etc. They comprise several classes of chemical compounds (stilbenes, coumestans, isoflavones, ellagitannins, and lignans) which are structurally similar to endogenous estrogens but which can have both estrogenic and antiestrogenic effects. Although epidemiological and experimental evidence indicates that intake of phytoestrogens in foods may be protective against certain chronic diseases, discrepancies have been observed between in vivo and in vitro experiments. The microbial transformations have not been reported so far in stilbenes and coumestans. However, isoflavones, ellagitanins, and lignans are metabolized by intestinal bacteria to produce equol, urolithins, and enterolignans, respectively. Equol, urolithin, and enterolignans are more bioavailable, and have more estrogenic/antiestrogenic and antioxidant activity than their precursors. Moreover, equol, urolithins and enterolignans have anti-inflammatory effects and induce antiproliferative and apoptosis-inducing activities. The transformation of isoflavones, ellagitanins, and lignans by intestinal microbiota is essential to be protective against certain chronic diseases, as cancer, cardiovascular disease, osteoporosis, and menopausal symptoms. Bioavailability, bioactivity, and health effects of dietary phytoestrogens are strongly determined by the intestinal bacteria of each individual.

  16. Comparative quantification of human intestinal bacteria based on cPCR and LDR/LCR.

    Science.gov (United States)

    Tang, Zhou-Rui; Li, Kai; Zhou, Yu-Xun; Xiao, Zhen-Xian; Xiao, Jun-Hua; Huang, Rui; Gu, Guo-Hao

    2012-01-21

    To establish a multiple detection method based on comparative polymerase chain reaction (cPCR) and ligase detection reaction (LDR)/ligase chain reaction (LCR) to quantify the intestinal bacterial components. Comparative quantification of 16S rDNAs from different intestinal bacterial components was used to quantify multiple intestinal bacteria. The 16S rDNAs of different bacteria were amplified simultaneously by cPCR. The LDR/LCR was examined to actualize the genotyping and quantification. Two beneficial (Bifidobacterium, Lactobacillus) and three conditionally pathogenic bacteria (Enterococcus, Enterobacterium and Eubacterium) were used in this detection. With cloned standard bacterial 16S rDNAs, standard curves were prepared to validate the quantitative relations between the ratio of original concentrations of two templates and the ratio of the fluorescence signals of their final ligation products. The internal controls were added to monitor the whole detection flow. The quantity ratio between two bacteria was tested. cPCR and LDR revealed obvious linear correlations with standard DNAs, but cPCR and LCR did not. In the sample test, the distributions of the quantity ratio between each two bacterial species were obtained. There were significant differences among these distributions in the total samples. But these distributions of quantity ratio of each two bacteria remained stable among groups divided by age or sex. The detection method in this study can be used to conduct multiple intestinal bacteria genotyping and quantification, and to monitor the human intestinal health status as well.

  17. Role of intestinal bacteria in gliadin-induced changes in intestinal mucosa: study in germ-free rats.

    Directory of Open Access Journals (Sweden)

    Jana Cinova

    Full Text Available BACKGROUND AND AIMS: Celiac disease (CD is a chronic inflammatory disorder of the small intestine that is induced by dietary wheat gluten proteins (gliadins in genetically predisposed individuals. The overgrowth of potentially pathogenic bacteria and infections has been suggested to contribute to CD pathogenesis. We aimed to study the effects of gliadin and various intestinal bacterial strains on mucosal barrier integrity, gliadin translocation, and cytokine production. METHODOLOGY/PRINCIPAL FINDINGS: Changes in gut mucosa were assessed in the intestinal loops of inbred Wistar-AVN rats that were reared under germ-free conditions in the presence of various intestinal bacteria (enterobacteria and bifidobacteria isolated from CD patients and healthy children, respectively and CD-triggering agents (gliadin and IFN-γ by histology, scanning electron microscopy, immunofluorescence, and a rat cytokine antibody array. Adhesion of the bacterial strains to the IEC-6 rat cell line was evaluated in vitro. Gliadin fragments alone or together with the proinflammatory cytokine interferon (IFN-γ significantly decreased the number of goblet cells in the small intestine; this effect was more pronounced in the presence of Escherichia coli CBL2 and Shigella CBD8. Shigella CBD8 and IFN-γ induced the highest mucin secretion and greatest impairment in tight junctions and, consequently, translocation of gliadin fragments into the lamina propria. Shigella CBD8 and E. coli CBL2 strongly adhered to IEC-6 epithelial cells. The number of goblet cells in small intestine increased by the simultaneous incubation of Bifidobacterium bifidum IATA-ES2 with gliadin, IFN-γ and enterobacteria. B. bifidum IATA-ES2 also enhanced the production of chemotactic factors and inhibitors of metalloproteinases, which can contribute to gut mucosal protection. CONCLUSIONS: Our results suggest that the composition of the intestinal microbiota affects the permeability of the intestinal mucosa

  18. Zonulin Regulates Intestinal Permeability and Facilitates Enteric Bacteria Permeation in Coronary Artery Disease

    OpenAIRE

    Li, Chuanwei; Gao, Min; Zhang, Wen; Chen, Caiyu; Zhou, Faying; Hu, Zhangxu; Zeng, Chunyu

    2016-01-01

    Several studies have reported an association between enteric bacteria and atherosclerosis. Bacterial 16S ribosomal RNA (rRNA) gene belong to Enterobacteriaceae have been detected in atherosclerotic plaques. How intestinal bacteria go into blood is not known. Zonulin reversibly modulate intestinal permeability (IP), the circulating zonulin levels were increased in diabetes, obesity, all of which are risk factors for atherosclerosis. It is unclear whether the circulating zonulin levels were cha...

  19. Reduction of malachite green to leucomalachite green by intestinal bacteria.

    OpenAIRE

    Henderson, A L; Schmitt, T C; Heinze, T M; Cerniglia, C E

    1997-01-01

    Intestinal microfloras from human, rat, mouse, and monkey fecal samples and 14 pure cultures of anaerobic bacteria representative of those found in the human gastrointestinal tract metabolized the triphenylmethane dye malachite green to leucomalachite green. The reduction of malachite green to the leuco derivative suggests that intestinal microflora could play an important role in the metabolic activation of the triphenylmethane dye to a potential carcinogen.

  20. Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin

    Directory of Open Access Journals (Sweden)

    Keita Nishiyama

    2016-09-01

    Full Text Available Lactic acid bacteria (LAB are Gram-positive bacteria that are natural inhabitants of the gastrointestinal (GI tracts of mammals, including humans. Since Mechnikov first proposed that yogurt could prevent intestinal putrefaction and aging, the beneficial effects of LAB have been widely demonstrated. The region between the duodenum and the terminal of the ileum is the primary region colonized by LAB, particularly the Lactobacillus species, and this region is covered by a mucus layer composed mainly of mucin-type glycoproteins. The mucus layer plays a role in protecting the intestinal epithelial cells against damage, but is also considered to be critical for the adhesion of Lactobacillus in the GI tract. Consequently, the adhesion exhibited by lactobacilli on mucin has attracted attention as one of the critical factors contributing to the persistent beneficial effects of Lactobacillus in a constantly changing intestinal environment. Thus, understanding the interactions between Lactobacillus and mucin is crucial for elucidating the survival strategies of LAB in the GI tract. This review highlights the properties of the interactions between Lactobacillus and mucin, while concomitantly considering the structure of the GI tract from a histochemical perspective.

  1. Models of antimicrobial pressure on intestinal bacteria of the treated host populations.

    Science.gov (United States)

    Volkova, V V; Cazer, C L; Gröhn, Y T

    2017-07-01

    Antimicrobial drugs are used to treat pathogenic bacterial infections in animals and humans. The by-stander enteric bacteria of the treated host's intestine can become exposed to the drug or its metabolites reaching the intestine in antimicrobially active form. We consider which processes and variables need to be accounted for to project the antimicrobial concentrations in the host's intestine. Those include: the drug's fraction (inclusive of any active metabolites) excreted in bile; the drug's fractions and intestinal segments of excretion via other mechanisms; the rates and intestinal segments of the drug's absorption and re-absorption; the rates and intestinal segments of the drug's abiotic and biotic degradation in the intestine; the digesta passage time through the intestinal segments; the rates, mechanisms, and reversibility of the drug's sorption to the digesta and enteric microbiome; and the volume of luminal contents in the intestinal segments. For certain antimicrobials, the antimicrobial activity can further depend on the aeration and chemical conditions in the intestine. Model forms that incorporate the inter-individual variation in those relevant variables can support projections of the intestinal antimicrobial concentrations in populations of treated host, such as food animals. To illustrate the proposed modeling framework, we develop two examples of treatments of bovine respiratory disease in beef steers by oral chlortetracycline and injectable third-generation cephalosporin ceftiofur. The host's diet influences the digesta passage time, volume, and digesta and microbiome composition, and may influence the antimicrobial loss due to degradation and sorption in the intestine. We consider two diet compositions in the illustrative simulations. The examples highlight the extent of current ignorance and need for empirical data on the variables influencing the selective pressures imposed by antimicrobial treatments on the host's intestinal bacteria.

  2. Methylation of mercuric chloride by human intestinal bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, I R; Grasso, P; Davies, M J

    1975-01-01

    There is now evidence that ingested mercuric chloride (HgCl/sub 2/) may be methylated, in vivo, in the rat intestine and, in vitro, by human feces. However, one cannot infer from these experiments that the microbial flora of the intestine is responsible for the methylation reaction, since the gut contents contain several sources of metabolic activity other than bacteria. Data are presented on the ability of pure cultures of bacteria and yeasts, isolated from human feces, to convert HgCl/sub 2/ to methylmercury. Strains of Escherichia coli, streptococci, staphylococci, bacteriodes and bifidobacteria were inoculated into a medium containing 0.1 M potassium phosphate buffer, pH 7.0, Bacto-tryptone, yeast extract and D-glucose, each at 0.5% (w/v). Results indicate that most strains of staphylococci, streptococci, yeasts and E. coli isolated from human feces, could synthesize methylmercury compounds. In contrast, few strains of obligate anaerobes could do so. Up to 6 ng methylmercury/ml were formed in 44 h from 2 ..mu..g mercuric chloride.

  3. Alcaligenes is Commensal Bacteria Habituating in the Gut-Associated Lymphoid Tissue for the Regulation of Intestinal IgA Responses.

    Science.gov (United States)

    Kunisawa, Jun; Kiyono, Hiroshi

    2012-01-01

    Secretory-immunoglobulin A (S-IgA) plays an important role in immunological defense in the intestine. It has been known for a long time that microbial stimulation is required for the development and maintenance of intestinal IgA production. Recent advances in genomic technology have made it possible to detect uncultivable commensal bacteria in the intestine and identify key bacteria in the regulation of innate and acquired mucosal immune responses. In this review, we focus on the immunological function of Peyer's patches (PPs), a major gut-associated lymphoid tissue, in the induction of intestinal IgA responses and the unique immunological interaction of PPs with commensal bacteria, especially Alcaligenes, a unique indigenous bacteria habituating inside PPs.

  4. Response of resident bacteria in a tropical detergent effluent ...

    African Journals Online (AJOL)

    Bacteria were isolated from a tropical detergent-polluted stream, and their responses to linear alkylbenzene sulfonate (LAS) were investigated. The responses of the resident bacteria were assessed in terms of their ability or failure to grow in the presence of LAS and of their potential to degrade the surfactant. Eighteen ...

  5. Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation.

    Science.gov (United States)

    Hegazy, Ahmed N; West, Nathaniel R; Stubbington, Michael J T; Wendt, Emily; Suijker, Kim I M; Datsi, Angeliki; This, Sebastien; Danne, Camille; Campion, Suzanne; Duncan, Sylvia H; Owens, Benjamin M J; Uhlig, Holm H; McMichael, Andrew; Bergthaler, Andreas; Teichmann, Sarah A; Keshav, Satish; Powrie, Fiona

    2017-11-01

    Interactions between commensal microbes and the immune system are tightly regulated and maintain intestinal homeostasis, but little is known about these interactions in humans. We investigated responses of human CD4 + T cells to the intestinal microbiota. We measured the abundance of T cells in circulation and intestinal tissues that respond to intestinal microbes and determined their clonal diversity. We also assessed their functional phenotypes and effects on intestinal resident cell populations, and studied alterations in microbe-reactive T cells in patients with chronic intestinal inflammation. We collected samples of peripheral blood mononuclear cells and intestinal tissues from healthy individuals (controls, n = 13-30) and patients with inflammatory bowel diseases (n = 119; 59 with ulcerative colitis and 60 with Crohn's disease). We used 2 independent assays (CD154 detection and carboxy-fluorescein succinimidyl ester dilution assays) and 9 intestinal bacterial species (Escherichia coli, Lactobacillus acidophilus, Bifidobacterium animalis subsp lactis, Faecalibacterium prausnitzii, Bacteroides vulgatus, Roseburia intestinalis, Ruminococcus obeum, Salmonella typhimurium, and Clostridium difficile) to quantify, expand, and characterize microbe-reactive CD4 + T cells. We sequenced T-cell receptor Vβ genes in expanded microbe-reactive T-cell lines to determine their clonal diversity. We examined the effects of microbe-reactive CD4 + T cells on intestinal stromal and epithelial cell lines. Cytokines, chemokines, and gene expression patterns were measured by flow cytometry and quantitative polymerase chain reaction. Circulating and gut-resident CD4 + T cells from controls responded to bacteria at frequencies of 40-4000 per million for each bacterial species tested. Microbiota-reactive CD4 + T cells were mainly of a memory phenotype, present in peripheral blood mononuclear cells and intestinal tissue, and had a diverse T-cell receptor Vβ repertoire. These

  6. Efficacy of Lactic Acid Bacteria (LAB supplement in management of constipation among nursing home residents

    Directory of Open Access Journals (Sweden)

    Kim Jung

    2010-02-01

    Full Text Available Abstract Background Constipation is a significant problem in the elderly, specifically nursing home and/or extended-care facility residents are reported to suffer from constipation. Lactic acid bacteria (LAB are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as diarrhea and constipation effect. The objective of this study was to investigate the efficacy of this LAB supplement in the management of nursing home residents. Methods Nineteen subjects (8M, 11F; mean age 77.1 ± 10.1 suffering with chronic constipation were assigned to receive LAB (3.0 × 1011 CFU/g twice (to be taken 30 minutes after breakfast and dinner a day for 2 weeks in November 2008. Subjects draw up a questionnaire on defecation habits (frequency of defecation, amount and state of stool, and we collected fecal samples from the subjects both before entering and after ending the trial, to investigate LAB levels and inhibition of harmful enzyme activities. Results were tested with SAS and Student's t-test. Results Analysis of questionnaire showed that there was an increase in the frequency of defecation and amount of stool excreted in defecation habit after LAB treatment, but there were no significant changes. And it also affects the intestinal environment, through significantly increase (p p Conclusion LAB, when added to the standard treatment regimen for nursing home residents with chronic constipation, increased defecation habit such as frequency of defecation, amount and state of stool. So, it may be used as functional probiotics to improve human health by helping to prevent constipation.

  7. Anaerobic bacteria in the intestinal microbiota of Brazilian children.

    Science.gov (United States)

    Talarico, Silvia T; Santos, Florenza E; Brandt, Katia Galeão; Martinez, Marina B; Taddei, Carla R

    2017-03-01

    Changes in the neonatal gut environment allow for the colonization of the mucin layer and lumen by anaerobic bacteria. The aim of the present study was to evaluate Bifidobacterium, Lactobacillus and Lactococcus colonization through the first year of life in a group of 12 Brazilian infants and to correlate these data with the levels of Escherichia coli. The presence of anaerobic members of the adult intestinal microbiota, including Eubacterium limosum and Faecalibacterium prausnitzii, was also evaluated. Fecal samples were collected during the first year of life, and 16S rRNA from anaerobic and facultative bacteria was detected by real-time PCR. Bifidobacterium was present at the highest levels at all of the studied time points, followed by E. coli and Lactobacillus. E. limosum was rarely detected, and F. prausnitzii was detected only in the samples from the latest time points. These results are consistent with reports throughout the world on the community structure of the intestinal microbiota in infants fed a milk diet. Our findings also provide evidence for the influence of the environment on intestinal colonization due to the high abundance of E. coli. The presence of important anaerobic genera was observed in Brazilian infants living at a low socioeconomic level, a result that has already been well established for infants living in developed countries.

  8. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD)

    Science.gov (United States)

    Duchmann, R; Kaiser, I; Hermann, E; Mayet, W; Ewe, K; Meyer zum Büschenfelde, K H

    1995-12-01

    Hyporesponsiveness to a universe of bacterial and dietary antigens from the gut lumen is a hallmark of the intestinal immune system. Since hyperresponsiveness against these antigens might be associated with inflammation, we studied the immune response to the indigenous intestinal microflora in peripheral blood, inflamed and non-inflamed human intestine. Lamina propria monocuclear cells (LPMC) isolated from inflamed intestine but not peripheral blood mononuclear cells (PBMC) of IBD patients with active inflammatory disease strongly proliferated after co-culture with sonicates of bacteria from autologous intestine (BsA). Proliferation was inhibitable by anti-MHC class II MoAb, suggesting that it was driven by antigen. LPMC from adjacent non-inflamed intestinal areas of the same IBD patients and PBMC or LPMC isolated from non-inflamed intestine of controls and patients with IBD in remission, in contrast, did not proliferate. PBMC or LPMC which had been tolerant to bacteria from autologous intestine, however, strongly proliferated after co-culture with bacterial sonicates from heterologous intestine (BsH). This proliferation was associated with an expansion of CD8+ T cells, increased expression of activation markers on both CD4+ and CD8+ lymphocyte subsets, and production of IL-12, interferon-gamma (IFN-gamma), and IL-10 protein. These results show that tolerance selectively exists to intestinal flora from autologous but not heterologous intestine, and that tolerance is broken in intestinal inflammation. This may be an important mechanism for the perpetuation of chronic IBD.

  9. Anatomical localization of commensal bacteria in immune cell homeostasis and disease.

    Science.gov (United States)

    Fung, Thomas C; Artis, David; Sonnenberg, Gregory F

    2014-07-01

    The mammalian gastrointestinal (GI) tract is colonized by trillions of beneficial commensal bacteria that are essential for promoting normal intestinal physiology. While the majority of commensal bacteria are found in the intestinal lumen, many species have also adapted to colonize different anatomical locations in the intestine, including the surface of intestinal epithelial cells (IECs) and the interior of gut-associated lymphoid tissues. These distinct tissue localization patterns permit unique interactions with the mammalian immune system and collectively influence intestinal immune cell homeostasis. Conversely, dysregulated localization of commensal bacteria can lead to inappropriate activation of the immune system and is associated with numerous chronic infectious, inflammatory, and metabolic diseases. Therefore, regulatory mechanisms that control proper anatomical containment of commensal bacteria are essential to maintain tissue homeostasis and limit pathology. In this review, we propose that commensal bacteria associated with the mammalian GI tract can be anatomically defined as (i) luminal, (ii) epithelial-associated, or (iii) lymphoid tissue-resident, and we discuss the role and regulation of these microbial populations in health and disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

    Science.gov (United States)

    2010-01-01

    Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients. PMID:21040540

  11. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

    Directory of Open Access Journals (Sweden)

    Kalischuk Lisa D

    2010-11-01

    Full Text Available Abstract Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'. To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase. Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients.

  12. Controlling the frontier: regulatory T-cells and intestinal homeostasis.

    Science.gov (United States)

    Bollrath, Julia; Powrie, Fiona M

    2013-11-30

    The intestine represents one of the most challenging sites for the immune system as immune cells must be able to mount an efficient response to invading pathogens while tolerating the large number and diverse array of resident commensal bacteria. Foxp3(+) regulatory T-cells (Tregs) play a non-redundant role at maintaining this balance. At the same time Treg cell differentiation and function can be modulated by the intestinal microbiota. In this review, we will discuss effector mechanisms of Treg cells in the intestine and how these cells can be influenced by the intestinal microbiota. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Gluten-degrading bacteria are present in the human small intestine of healthy volunteers and celiac patients.

    Science.gov (United States)

    Herrán, Alexandra R; Pérez-Andrés, Jénifer; Caminero, Alberto; Nistal, Esther; Vivas, Santiago; Ruiz de Morales, José María; Casqueiro, Javier

    2017-09-01

    Gluten is the only known environmental factor that triggers celiac disease. Several studies have described an imbalance between the intestinal microbiota of different individuals based on diagnoses. Moreover, recent studies have suggested that human bacteria may play an important role in gluten hydrolysis. However, there has been no research focusing on the small intestine. This study aimed to characterize the adult small intestine microbiota possibly implicated in gluten hydrolysis. Duodenal biopsies from different diagnosed individuals were cultured in a gluten-containing medium, and the grown microbiota was analyzed by culture dependent/independent methods. Results showed that gluten-degrading bacteria can be found in the human small intestine. Indeed, 114 bacterial strains belonging to 32 species were isolated; 85 strains were able to grow in a medium containing gluten as the sole nitrogen source, 31 strains showed extracellular proteolytic activity against gluten protein and 27 strains showed peptidolytic activity towards the 33 mer peptide, an immunogenic peptide for celiac disease patients. We found that there are no differences based on the diagnosis, but each individual has its own population of gluten-hydrolyzing bacteria. These bacteria or their gluten-degrading enzymes could help to improve the quality of life of celiac disease patients'. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  14. The potential for Probiotic Bacteria from milkfish intestine in reducing mercury metals in skimmed milk media

    Science.gov (United States)

    Dwyana, Zaraswati; Priosambodo, D.; Haedar, N.; Erviani, A. E.; Djabura, A. K.; Sukma, R.

    2018-03-01

    Mercury (Hg) is one of the heavy metals that is harmful to humans. The accumulation of mercury in the body is generally derived from food. Several types of bacteria from intestine of milkfish are known to reduce mercury concentration. People can take advantage of this bacterial ability by eating it through probiotic foods. This research conducted to figure out the potential for probiotic bacteria from milkfish intestine in reducing mercury. Isolation from probiotic bacteria from milkfish intestine conducted with grown the isolates in MRSA medium with addition of 1% CaCO3. Twelve isolate were obtained from milkfish intestine. Mercury resistance tested was performed by measuring cell density using a spectrophotometer at concentrations of 10, 15 and 20 ppm respectively in skim milk media. Probiotic tests (gastric acid, bile salts and antimicrobial activity) for MRSB media was also conducted. Results showed that seven isolate were resistant to mercury in all concentrations and potential as probiotics. All resistant isolate then tested for skim milk media with addition of 5, 10, 20 ppm mercury acetate respectively. Result showed that only one isolated was able to reduce the concentration of mercury (Hg) in all variations on concentration and potential as mercury reducer probiotic bacteria.

  15. [Markers of antimicrobial drug resistance in the most common bacteria of normal facultative anaerobic intestinal flora].

    Science.gov (United States)

    Plavsić, Teodora

    2011-01-01

    Bacteria of normal intestinal flora are frequent carriers of markers of antimicrobial drug resistance. Resistance genes may be exchanged with other bacteria of normal flora as well as with pathogenic bacteria. The increase in the number of markers of resistance is one of the major global health problems, which induces the emergence of multi-resistant strains. The aim of this study is to confirm the presence of markers of resistance in bacteria of normal facultative anaerobic intestinal flora in our region. The experiment included a hundred fecal specimens obtained from a hundred healthy donors. A hundred bacterial strains were isolated (the most numerous representatives of the normal facultative-anaerobic intestinal flora) by standard bacteriological methods. The bacteria were cultivated on Endo agar and SS agar for 24 hours at 37 degrees C. Having been incubated, the selected characteristic colonies were submitted to the biochemical analysis. The susceptibility to antimicrobial drugs was tested by standard disc diffusion method, and the results were interpreted according to the Standard of Clinical and Laboratory Standards Institute 2010. The marker of resistance were found in 42% of the isolated bacteria. The resistance was the most common to ampicillin (42% of isolates), amoxicillin with clavulanic acid (14% of isolates), cephalexin (14%) and cotrimoxazole (8%). The finding of 12 multiresistant strains (12% of isolates) and resistance to ciprofloxacin were significant. The frequency of resistance markers was statistically higher in Klebsiella pneumoniae compared to Escherichia coli of normal flora. The finding of a large number of markers of antimicrobial drug resistance among bacteria of normal intestinal flora shows that it is necessary to begin with systematic monitoring of their antimicrobial resistance because it is an indicator of resistance in the population.

  16. Commensal-pathogen interactions in the intestinal tract

    Science.gov (United States)

    Reynolds, Lisa A; Smith, Katherine A; Filbey, Kara J; Harcus, Yvonne; Hewitson, James P; Redpath, Stephen A; Valdez, Yanet; Yebra, María J; Finlay, B Brett; Maizels, Rick M

    2016-01-01

    The intestinal microbiota are pivotal in determining the developmental, metabolic and immunological status of the mammalian host. However, the intestinal tract may also accommodate pathogenic organisms, including helminth parasites which are highly prevalent in most tropical countries. Both microbes and helminths must evade or manipulate the host immune system to reside in the intestinal environment, yet whether they influence each other’s persistence in the host remains unknown. We now show that abundance of Lactobacillus bacteria correlates positively with infection with the mouse intestinal nematode, Heligmosomoides polygyrus, as well as with heightened regulatory T cell (Treg) and Th17 responses. Moreover, H. polygyrus raises Lactobacillus species abundance in the duodenum of C57BL/6 mice, which are highly susceptible to H. polygyrus infection, but not in BALB/c mice, which are relatively resistant. Sequencing of samples at the bacterial gyrB locus identified the principal Lactobacillus species as L. taiwanensis, a previously characterized rodent commensal. Experimental administration of L. taiwanensis to BALB/c mice elevates regulatory T cell frequencies and results in greater helminth establishment, demonstrating a causal relationship in which commensal bacteria promote infection with an intestinal parasite and implicating a bacterially-induced expansion of Tregs as a mechanism of greater helminth susceptibility. The discovery of this tripartite interaction between host, bacteria and parasite has important implications for both antibiotic and anthelmintic use in endemic human populations. PMID:25144609

  17. Effects of nonpathogenic bacteria on cytokine secretion by human intestinal mucosa.

    Science.gov (United States)

    Borruel, Natalia; Casellas, Francesc; Antolín, María; Llopis, Marta; Carol, Monica; Espíin, Eloy; Naval, Javier; Guarner, Francisco; Malagelada, Juan R

    2003-04-01

    The human intestine harbors a complex microbial ecosystem, and the mucosa is the interface between the immune system and the luminal environment. The aim of this study was to elucidate whether host-bacteria interactions influence mucosal cytokine production. Macroscopically normal colonic specimens were obtained at surgery from eight patients with neoplasm, and inflamed ileal specimens were obtained from two patients with Crohn's disease. Mucosal explants were cultured for 24 h with either nonpathogenic Escherichia coli ECOR-26, Lactobacillus casei DN-114 001, L. casei DN-114 056, L. casei ATCC-334, or Lactobacillus bulgaricus LB-10. Each study included blank wells with no bacteria. Tissue and bacteria viability were confirmed by LDH release and culture. Concentration of tumor necrosis factor (TNF)alpha, transforming growth factor beta1, interleukin (IL)-8, and IL-10 was measured in supernatants. In parallel experiments, neutralizing anti-TNFalpha antibody was added to the culture. Co-culture of mucosa with bacteria did not modify LDH release. Co-culture with L. casei strains significantly reduced TNFalpha release, whereas E. coli increased it. These effects were observed both in normal and inflamed mucosa. In combination studies, L. casei DN-114 001 prevented TNFalpha stimulation by E. coli. L. casei DN-114 001 also reduced IL-8 release via a TNFalpha-independent pathway. L. casei DN-114 056 or E. coli increased IL-10 release in the presence of neutralizing anti-TNFalpha. Nonpathogenic bacteria interact with human intestinal mucosa and can induce changes in cytokine production that are strain specific.

  18. Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer

    NARCIS (Netherlands)

    Boleij, A.; Tjalsma, H.

    2012-01-01

    A healthy human body contains at least tenfold more bacterial cells than human cells and the most abundant and diverse microbial community resides in the intestinal tract. Intestinal health is not only maintained by the human intestine itself and by dietary factors, but is also largely supported by

  19. Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria.

    Science.gov (United States)

    Salzman, Nita H; de Jong, Hendrik; Paterson, Yvonne; Harmsen, Hermie J M; Welling, Gjalt W; Bos, Nicolaas A

    2002-11-01

    Total genomic DNA from samples of intact mouse small intestine, large intestine, caecum and faeces was used as template for PCR amplification of 16S rRNA gene sequences with conserved bacterial primers. Phylogenetic analysis of the amplification products revealed 40 unique 16S rDNA sequences. Of these sequences, 25% (10/40) corresponded to described intestinal organisms of the mouse, including Lactobacillus spp., Helicobacter spp., segmented filamentous bacteria and members of the altered Schaedler flora (ASF360, ASF361, ASF502 and ASF519); 75% (30/40) represented novel sequences. A large number (11/40) of the novel sequences revealed a new operational taxonomic unit (OTU) belonging to the Cytophaga-Flavobacter-Bacteroides phylum, which the authors named 'mouse intestinal bacteria'. 16S rRNA probes were developed for this new OTU. Upon analysis of the novel sequences, eight were found to cluster within the Eubacterium rectale-Clostridium coccoides group and three clustered within the Bacteroides group. One of the novel sequences was distantly related to Verrucomicrobium spinosum and one was distantly related to Bacillus mycoides. Oligonucleotide probes specific for the 16S rRNA of these novel clones were generated. Using a combination of four previously described and four newly designed probes, approximately 80% of bacteria recovered from the murine large intestine and 71% of bacteria recovered from the murine caecum could be identified by fluorescence in situ hybridization (FISH).

  20. Prevalence of bacteria and intestinal parasites among food-handlers in Gondar town, northwest Ethiopia.

    Science.gov (United States)

    Andargie, Gashaw; Kassu, Afework; Moges, Feleke; Tiruneh, Moges; Huruy, Kahsay

    2008-12-01

    Food-handlers with poor personal hygiene working in food-service establishments could be potential sources of infection due to pathogenic organisms. The study was undertaken to determine the prevalence of bacteria and intestinal parasites among 127 food-handlers working in the cafeterias of the University of Gondar and the Gondar Teachers Training College, Gondar, Ethiopia. Fingernail contents of both the hands and stool specimens were collected from all the 127 food-handlers. The samples were examined for bacteria and intestinal parasites following standard procedures. Coagulase-negative staphylococci were the predominant bacteria species (41.7%) isolated from fingernail contents, followed by Staphylococcus aureus (16.5%), Klebsiella species (5.5%), Escherichia coli (3.1%), Serratia species (1.58%), Citrobacter species (0.8%), and Enterobacter species (0.8%). Shigella species were isolated from stool samples of four food-handlers (3.1%). None of the food-handlers was positive for Salmonella species and Shigella species in respect of their fingernail contents. No intestinal parasites were detected from fingernail contents. Intestinal parasites detected in the stools of the food-handlers included Ascaris lumbricoides (18.11%), Strongyloides stercoralis (5.5%), Entamoeba histolytica/dispar (1.6%), Trichuris trichiura (1.6%), hookworm species (0.8%), Gardia lamblia (0.8%), and Schistosoma mansoni (0.8%); 1.6% of the study subjects were positive for each of A. lumbricoides, T. trichiura, hookworm, and G. lamblia. The findings emphasize the importance of food-handlers as potential sources of infections and suggest health institutions for appropriate hygienic and sanitary control measures.

  1. Bovine intestinal bacteria inactivate and degrade ceftiofur and ceftriaxone with multiple beta-lactamases.

    Science.gov (United States)

    Wagner, R Doug; Johnson, Shemedia J; Cerniglia, Carl E; Erickson, Bruce D

    2011-11-01

    The veterinary cephalosporin drug ceftiofur is rapidly degraded in the bovine intestinal tract. A cylinder-plate assay was used to detect microbiologically active ceftiofur, and high-performance liquid chromatography-mass spectrometry analysis was used to quantify the amount of ceftiofur remaining after incubation with bovine intestinal anaerobic bacteria, which were isolated from colon contents or feces from 8 cattle. Ninety-six percent of the isolates were able to inactivate ceftiofur to some degree, and 54% actually degraded the drug. None of 9 fungal isolates inactivated or degraded ceftiofur. Facultative and obligate anaerobic bacterial species that inactivated or degraded ceftiofur were identified with Vitek and Biolog systems, respectively. A subset of ceftiofur degraders also degraded the chemically similar drug ceftriaxone. Most of the species of bacteria that degraded ceftiofur belonged to the genera Bacillus and Bacteroides. PCR analysis of bacterial DNA detected specific β-lactamase genes. Bacillus cereus and B. mycoides isolates produced extended-spectrum β-lactamases and metallo-β-lactamases. Seven isolates of Bacteroides spp. produced multiple β-lactamases, including possibly CepA, and metallo-β-lactamases. Isolates of Eubacterium biforme, Bifidobacterium breve, and several Clostridium spp. also produced ceftiofur-degrading β-lactamases. An agar gel overlay technique on isoelectric focusing separations of bacterial lysates showed that β-lactamase enzymes were sufficient to degrade ceftiofur. These results suggest that ceftiofur is inactivated nonenzymatically and degraded enzymatically by multiple β-lactamases from bacteria in the large intestines of cattle.

  2. Bovine Intestinal Bacteria Inactivate and Degrade Ceftiofur and Ceftriaxone with Multiple β-Lactamases▿

    Science.gov (United States)

    Wagner, R. Doug; Johnson, Shemedia J.; Cerniglia, Carl E.; Erickson, Bruce D.

    2011-01-01

    The veterinary cephalosporin drug ceftiofur is rapidly degraded in the bovine intestinal tract. A cylinder-plate assay was used to detect microbiologically active ceftiofur, and high-performance liquid chromatography-mass spectrometry analysis was used to quantify the amount of ceftiofur remaining after incubation with bovine intestinal anaerobic bacteria, which were isolated from colon contents or feces from 8 cattle. Ninety-six percent of the isolates were able to inactivate ceftiofur to some degree, and 54% actually degraded the drug. None of 9 fungal isolates inactivated or degraded ceftiofur. Facultative and obligate anaerobic bacterial species that inactivated or degraded ceftiofur were identified with Vitek and Biolog systems, respectively. A subset of ceftiofur degraders also degraded the chemically similar drug ceftriaxone. Most of the species of bacteria that degraded ceftiofur belonged to the genera Bacillus and Bacteroides. PCR analysis of bacterial DNA detected specific β-lactamase genes. Bacillus cereus and B. mycoides isolates produced extended-spectrum β-lactamases and metallo-β-lactamases. Seven isolates of Bacteroides spp. produced multiple β-lactamases, including possibly CepA, and metallo-β-lactamases. Isolates of Eubacterium biforme, Bifidobacterium breve, and several Clostridium spp. also produced ceftiofur-degrading β-lactamases. An agar gel overlay technique on isoelectric focusing separations of bacterial lysates showed that β-lactamase enzymes were sufficient to degrade ceftiofur. These results suggest that ceftiofur is inactivated nonenzymatically and degraded enzymatically by multiple β-lactamases from bacteria in the large intestines of cattle. PMID:21876048

  3. Intestinal bacteria in bioaerosols and factors affecting their survival in two oxidation ditch process municipal wastewater treatment plants located in different regions.

    Science.gov (United States)

    Wang, Yanjie; Li, Lin; Han, Yunping; Liu, Junxin; Yang, Kaixiong

    2018-06-15

    Samples from two oxidation ditch process municipal wastewater treatment plants (MWTPs) (HJK and GXQ) in two regions of China were analysed for bacteria, particles, total organic carbon, and water-soluble ions in bioaerosols. Diversity and potential pathogen populations were evaluated by high-throughput sequencing. Bioaerosol sources, factors affecting intestinal bacterial survival, and the relationship between bioaerosols and water were analysed by Source tracker and partial least squares-discriminant, principal component, and canonical correspondence analyses. Culturable bacteria concentrations were 110-846 and 27-579 CFU/m 3 at HJK and GXQ, respectively. Intestinal bacteria constituted 6-33% of bacteria. Biochemical reaction tank, sludge dewatering house (SDH), and fine screen samples showed the greatest contribution to bioaerosol contamination. Enterobacter aerogenes was the main intestinal bacteria (> 99.5%) in HJK and detected at each sampling site. Enterobacter aerogenes (98.67% in SDH), Aeromonas sp. (76.3% in biochemical reaction tank), and Acinetobacter baumannii (99.89% in fine screens) were the main intestinal bacteria in GXQ. Total suspended particulate masses in SDH were 229.46 and 141.6 μg/m 3 in HJK and GXQ, respectively. Percentages of insoluble compounds in total suspended particulates decreased as height increased. The main soluble ions in bioaerosols were Ca 2+ , Na + , Cl - , and SO 4 2- , which ranged from 3.8 to 27.55 μg/m 3 in the MWTPs. Water was a main source of intestinal bacteria in bioaerosols from the MWTPs. Bioaerosols in HJK but not in GXQ were closely related. Relative humidity and some ions positively influenced intestinal bacteria in bioaerosols, while wind speed and solar illumination had a negative influence. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Consequences of bile salt biotransformations by intestinal bacteria

    Science.gov (United States)

    Ridlon, Jason M.; Harris, Spencer C.; Bhowmik, Shiva; Kang, Dae-Joong; Hylemon, Phillip B.

    2016-01-01

    ABSTRACT Emerging evidence strongly suggest that the human “microbiome” plays an important role in both health and disease. Bile acids function both as detergents molecules promoting nutrient absorption in the intestines and as hormones regulating nutrient metabolism. Bile acids regulate metabolism via activation of specific nuclear receptors (NR) and G-protein coupled receptors (GPCRs). The circulating bile acid pool composition consists of primary bile acids produced from cholesterol in the liver, and secondary bile acids formed by specific gut bacteria. The various biotransformation of bile acids carried out by gut bacteria appear to regulate the structure of the gut microbiome and host physiology. Increased levels of secondary bile acids are associated with specific diseases of the GI system. Elucidating methods to control the gut microbiome and bile acid pool composition in humans may lead to a reduction in some of the major diseases of the liver, gall bladder and colon. PMID:26939849

  5. The role of intestinal microflora and probiotic bacteria in prophylactic and development of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Ewa Wasilewska

    2013-08-01

    Full Text Available The gut microbiota comprises a large and diverse range of microorganisms whose activities have a significant impact on health. It interacts with its host at both the local and systemic level, resulting in a broad range of beneficial or detrimental outcomes for nutrition, infections, xenobiotic metabolism, and cancer. The current paper reviews research on the role of intestinal microflora in colorectal cancer development. Especially a protective effect of beneficial bacteria and probiotics on the risk of cancer development is highly discussed. There is substantial experimental evidence that the beneficial gut bacteria and their metabolism have the potential to inhibit the development and progression of neoplasia in the large intestine. Most of the data derive, however, from experimental and animal trials. Over a dozen well-documented animal studies have been published, wherein it has been clearly revealed that some lactic acid bacteria, especially lactobacilli and bifidobacteria, inhibit initiation and progression of colorectal cancer. Studies on cancer suppression in humans as a result of the consumption of probiotics are still sparse. Nevertheless, some epidemiological and interventional studies seem to confirm the bacterial anticancerogenic activity also in human gut. The mechanism by which probiotics may inhibit cancer development is unknown. Probiotics increase the amount of beneficial bacteria and decrease the pathogen level in the gut, consequently altering metabolic, enzymatic and carcinogenic activity in the intestine, decreasing inflammation and enhancing immune function, which may contribute to cancer defense.

  6. Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon.

    Directory of Open Access Journals (Sweden)

    Wanilada Rungrassamee

    Full Text Available The black tiger shrimp (Penaeus monodon is a marine crustacean of economic importance in the world market. To ensure sustainability of the shrimp industry, production capacity and disease outbreak prevention must be improved. Understanding healthy microbial balance inside the shrimp intestine can provide an initial step toward better farming practice and probiotic applications. In this study, we employed a barcode pyrosequencing analysis of V3-4 regions of 16S rRNA genes to examine intestinal bacteria communities in wild-caught and domesticated P. monodon broodstock. Shrimp faeces were removed from intestines prior to further analysis in attempt to identify mucosal bacterial population. Five phyla, Actinobacteria, Fusobacteria, Proteobacteria, Firmicutes and Bacteroidetes, were found in all shrimp from both wild and domesticated environments. The operational taxonomic unit (OTU was assigned at 97% sequence identity, and our pyrosequencing results identified 18 OTUs commonly found in both groups. Sequences of the shared OTUs were similar to bacteria in three phyla, namely i Proteobacteria (Vibrio, Photobacterium, Novosphingobium, Pseudomonas, Sphingomonas and Undibacterium, ii Firmicutes (Fusibacter, and iii Bacteroidetes (Cloacibacterium. The shared bacterial members in P. monodon from two different habitats provide evidence that the internal environments within the host shrimp also exerts selective pressure on bacterial members. Intestinal bacterial profiles were compared using denaturing gradient gel electrophoresis (DGGE. The sequences from DGGE bands were similar to those of Vibrio and Photobacterium in all shrimp, consistent with pyrosequencing results. This work provides the first comprehensive report on bacterial populations in the intestine of adult black tiger shrimp and reveals some similar bacterial members between the intestine of wild-caught and domesticated shrimp.

  7. Zonulin Regulates Intestinal Permeability and Facilitates Enteric Bacteria Permeation in Coronary Artery Disease.

    Science.gov (United States)

    Li, Chuanwei; Gao, Min; Zhang, Wen; Chen, Caiyu; Zhou, Faying; Hu, Zhangxu; Zeng, Chunyu

    2016-06-29

    Several studies have reported an association between enteric bacteria and atherosclerosis. Bacterial 16S ribosomal RNA (rRNA) gene belong to Enterobacteriaceae have been detected in atherosclerotic plaques. How intestinal bacteria go into blood is not known. Zonulin reversibly modulate intestinal permeability (IP), the circulating zonulin levels were increased in diabetes, obesity, all of which are risk factors for atherosclerosis. It is unclear whether the circulating zonulin levels were changed in coronary artery disease (CAD) patients and modulate IP. The 16S rRNA gene of bacteria in blood sample was checked by 454 pyrosequencing. The zonulin levels were determined by enzyme-linked immunosorbent assay (ELISA) methods. The distribution of zonulin was detected by confocal immunofluorescence microscopy. Bacteria and Caco-2 cell surface micro-structure were checked by transmission electron microscopy. A high diversity of bacterial 16S rRNA gene can be detected in samples from CAD patients, most of them (99.4%) belong to Enterobacteriaceaes, eg. Rahnella. The plasma zonulin levels were significantly higher in CAD patients. Pseudomonas fluorescens exposure significantly increased zonulin expression and decreased IP in a time dependent manner. The elevated zonulin increase IP and may facilitate enteric translocation by disassembling the tight junctions, which might explain the observed high diversity of bacterial 16S rRNA genes in blood samples.

  8. Comparison of intestinal parasitic infection in newly arrived and resident workers in Qatar

    Directory of Open Access Journals (Sweden)

    Abu-Madi Marawan A

    2011-11-01

    Full Text Available Abstract Background The rapid growth of Qatar in the last two decades has been associated with an enormous expansion of building programs in its cities and in the provision of new service industries. This in turn has attracted a large influx of immigrant workers seeking employment in jobs associated with food handling, domestic service and the building industry. Many of these immigrants come from countries in the tropics and subtropics where intestinal parasitic infections are common. Methods We analyzed intestinal parasitic infections recorded in 2008 among immigrant and long-term resident workers in Doha city, Qatar (n = 1538. Stool examinations were carried out at the Hamad Medical Corporation and at the Medical Commission in Doha using standard procedures. Results Overall, 21.5% of subjects were infected with at least one of the species recorded (8 helminth and 4 protozoan species; the highest prevalence was for hookworms = 8.3% and there were strong regional effects on prevalence of helminths, with subjects from North East Africa and Nepal showing particularly high prevalence. Most helminths declined in prevalence in subjects that acquired residency status in Qatar, especially among female subjects, but there was a marked exception among male Nepalese workers, who continued to harbour helminth infections (notably hookworms after they became residents. Contrary to all other regional groups the prevalence of Giardia duodenalis was higher among Nepalese residents compared with new arrivals, while Blastocystis hominis infections were more common among residents of all regions, and especially among North East Africans. Conclusions Our analysis has identified male Nepalese workers as a particular risk group continuing to harbour hookworm infection and G. duodenalis as residents, and subjects from North East Africa are as particularly likely to acquire B. hominis infection after settling in the country. These conclusions have important

  9. In-vitro activity of solithromycin against anaerobic bacteria from the normal intestinal microbiota.

    Science.gov (United States)

    Weintraub, Andrej; Rashid, Mamun-Ur; Nord, Carl Erik

    2016-12-01

    Solithromycin is a novel fluoroketolide with high activity against bacteria associated with community-acquired respiratory tract infections as well as gonorrhea. However, data on the activity of solithromycin against anaerobic bacteria from the normal intestinal microbiota are scarce. In this study, 1024 Gram-positive and Gram-negative anaerobic isolates from the normal intestinal microbiota were analyzed for in-vitro susceptibility against solithromycin and compared to azithromycin, amoxicillin/clavulanic acid, ceftriaxone, metronidazole and levofloxacin by determining the minimum inhibitory concentration (MIC). Solithromycin was active against Bifidobacteria (MIC 50 , 0.008 mg/L) and Lactobacilli (MIC 50 , 0.008 mg/L). The MIC 50 for Clostridia, Bacteroides, Prevotella and Veillonella were 0.5, 0.5, 0.125 and 0.016 mg/L, respectively. Gram-positive anaerobes were more susceptible to solithromycin as compared to the other antimicrobials tested. The activity of solithromycin against Gram-negative anaerobes was equal or higher as compared to other tested agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Is there any change in the prevalence of intestinal and urinary parasitosis among "non-permanent resident" students in Tunisia ?

    Science.gov (United States)

    Trabelsi, Sonia; Bouchakoua, Myiram; Aouinet, Amira; Sellami, Amira; Khaled, Samira

    2012-07-01

    Intestinal parasitosis are cosmopolitan affections, often related to the fecal peril. However urinary bilharziosis is a disease eliminated in Tunisia. As part of monitoring the emergence and re-emergence of intestinal parasitosis and urinary bilharziasis, foreign students benefit from parasitological systematic monitoring stool and urine during their enrollment to the University. To study the prevalence of various intestinal parasitosis and urinary bilharziasis among non permanent resident students in Tunisia. A retrospective survey was carried at the Laboratory of Parasitology- Mycology of Charles Nicolle Hospital of Tunis during the inscription period of 6 university years 2005-2010. 328 students profited from a parasitological examination of stool and urine. 144 students (43.9%) harbored intestinal parasites. More than one parasite was detected in 69 students (47.9%). Intestinal protozoa were the majority of identified parasites (96.9%). 9.7% of identified parasites were pathogenic. Three cases (0.91%) of urinary bilharziasis were diagnosed. The prevalence of intestinal and urinary parasitism among the "non-permanent residents" students in Tunisia has not changed. This justifies a systematic parasitologic monitoring for students coming from areas of high endemicity of parasitosis in order to avoid the introduction of these.

  11. Quantification of intestinal bacteria, operating cost and performance of fingerlings Nile tilapia subjected to probiotics

    Directory of Open Access Journals (Sweden)

    Nilton Garcia-Marengoni

    2015-05-01

    Full Text Available The use of microorganisms of the genus Bacillus in aquaculture is a nutritional management practice that is rapidly expanding in regions with intensive fish farming. This study aimed to quantify the total bacteria and total coliforms from the intestinal microbiota and estimate the partial operating costs and growth performance of Nile tilapia (Oreochromis niloticus of the GIFT strain. A total of 1,200 post-larvae (24.7 ± 0.50 mg were distributed into 24 aquaria (0.03-m³ capacity within a completely randomized design in 2 x 3 factorial (phase x bacteria, with four replications. Each aquarium, containing 50 post-larvae (sex reversal phase or 30 fish (fingerlings phase, it was considered to be an experimental unit, consisting of three treatments (diet+Bacillus subtilis C-3102, diet+Bacillus cereus var. toyoi and diet without probiotic addition. The quantification of the total bacteria and total coliforms of the intestinal microbiota of tilapia were influenced (P 0.05 by adding probiotics in the diets and no effect of the interaction between phase and bacteria was observed. The weight gain, average daily weight gain, specific growth rate and apparent feed conversion were not affected (P > 0.05 by inclusion of probiotics as part of the diets. The inclusion of B. subtilis and B. cereus as part of diets for Nile tilapia promotes intestinal colonization and improves the survival rate without negatively influencing the feed intake, total biomass, gross revenue and partial operating costs and net revenue. Therefore it recommends the use of these probiotics to growth of tilapia fingerlings Nile, GIFT strain.

  12. Triterpenoid herbal saponins enhance beneficial bacteria, decrease sulfate-reducing bacteria, modulate inflammatory intestinal microenvironment and exert cancer preventive effects in ApcMin/+ mice

    Science.gov (United States)

    Chen, Lei; Brar, Manreetpal S.; Leung, Frederick C. C.; Hsiao, W. L. Wendy

    2016-01-01

    Saponins derived from medicinal plants have raised considerable interest for their preventive roles in various diseases. Here, we investigated the impacts of triterpenoid saponins isolated from Gynostemma pentaphyllum (GpS) on gut microbiome, mucosal environment, and the preventive effect on tumor growth. Six-week old ApcMin/+ mice and their wild-type littermates were fed either with vehicle or GpS daily for the duration of 8 weeks. The fecal microbiome was analyzed by enterobacterial repetitive intergenic consensus (ERIC)-PCR and 16S rRNA gene pyrosequencing. Study showed that GpS treatment significantly reduced the number of intestinal polyps in a preventive mode. More importantly, GpS feeding strikingly reduced the sulfate-reducing bacteria lineage, which are known to produce hydrogen sulfide and contribute to damage the intestinal epithelium or even promote cancer progression. Meanwhile, GpS also boosted the beneficial microbes. In the gut barrier of the ApcMin/+ mice, GpS treatment increased Paneth and goblet cells, up-regulated E-cadherin and down-regulated N-cadherin. In addition, GpS decreased the pro-oncogenic β-catenin, p-Src and the p-STAT3. Furthermore, GpS might also improve the inflamed gut epithelium of the ApcMin/+ mice by upregulating the anti-inflammatory cytokine IL-4, while downregulating pro-inflammatory cytokines TNF-β, IL-1β and IL-18. Intriguingly, GpS markedly stimulated M2 and suppressed M1 macrophage markers, indicating that GpS altered mucosal cytokine profile in favor of the M1 to M2 macrophages switching, facilitating intestinal tissue repair. In conclusion, GpS might reverse the host's inflammatory phenotype by increasing beneficial bacteria, decreasing sulfate-reducing bacteria, and alleviating intestinal inflammatory gut environment, which might contribute to its cancer preventive effects. PMID:27121311

  13. Pathoadaptation of the Intracellular Bacteria Shigella and Chlamydia: Virulence, Antivirulence, and Tissue Tropism

    Science.gov (United States)

    2015-04-27

    innate immune mechanisms, the bacteria must also prevent or avoid adaptive immune responses such as B cell antibody production and, in the case of...residing in the intestinal lumen and 13 present them to immune cells in the underlying lymphoid tissue. M cells are situated in the region of the...Peyer‟s Patches (or gut-associated lymphoid tissue (GALT)), enteric bacteria transcytosed through M cells must then contend with macrophages, T

  14. Effects of doe-litter separation on intestinal bacteria, immune response and morphology of suckling rabbits

    Directory of Open Access Journals (Sweden)

    Yukun Zhang

    2018-03-01

    Full Text Available Gut development is stimulated by exposure to microorganisms, especially early-life microbial exposure. This study aimed to investigate whether doe-litter separation, which is performed in many rabbit farms, affects this exposure and therefore inhibits the development of intestinal system in suckling rabbits. Immediately after parturition, Rex rabbit does (n=16 were adjusted to 8 kits per litter and divided into doe-litter separation (DLS group and doe-litter together (DLT group based on the conditions of the does. One healthy kit per litter was selected and sacrificed at 7 d, 14 d, 21 d and 28 d of age, and the number of total bacteria, Escherichia coli and Bacteroides-Prevotella, expression of interleukin 6 (IL-6 and interleukin 10 (IL-10 in duodenum and caecum were investigated by real-time polymerase chain reaction. The morphological parameters of duodenum and vermiform appendix were also measured. Our results showed that doe-litter separation affected the number of intestinal bacteria. At 7 d of age, except for caecal Escherichia coli, the number of the investigated bacteria was decreased by doe-litter separation (P<0.05. But 1 wk later, only the number of total bacteria and Bacteroides-Prevotella in caecal content (P<0.05 and Escherichia coli in duodenal content from DLS kits (P<0.05 were still lower than those from DLT kits. After being provided with supplementary food for 7 d, DLS kits had fewer total bacteria in caecal content (P<0.05 and fewer E. coli in duodenal content (P<0.01 than DLT kits. After growing to 28 d of age, kits in DLS group still tended to have fewer total bacteria in caecal content, and expression of IL-10 and secretion of secretory IgA (sIgA in vermiform appendix in DLS group was obviously lower than kits in DLT group (P<0.05. The villus height:crypt depth ratio in duodenum at 3rd wk and 4th wk was decreased by DLS (P<0.05. Kits in DLS group had shorter villus height (P<0.05, higher crypt depth (P<0.05 and shorter

  15. Sulfate-reducing bacteria slow intestinal transit in a bismuth-reversible fashion in mice.

    Science.gov (United States)

    Ritz, N L; Lin, D M; Wilson, M R; Barton, L L; Lin, H C

    2017-01-01

    Hydrogen sulfide (H 2 S) serves as a mammalian cell-derived gaseous neurotransmitter. The intestines are exposed to a second source of this gas by sulfate-reducing bacteria (SRB). Bismuth subsalicylate binds H 2 S rendering it insoluble. The aim of this study was to test the hypothesis that SRB may slow intestinal transit in a bismuth-reversible fashion. Eighty mice were randomized to five groups consisting of Live SRB, Killed SRB, SRB+Bismuth, Bismuth, and Saline. Desulfovibrio vulgaris, a common strain of SRB, was administered by gavage at the dose of 1.0 × 10 9 cells along with rhodamine, a fluorescent dye. Intestinal transit was measured 50 minutes after gavage by euthanizing the animals, removing the small intestine between the pyloric sphincter and the ileocecal valve and visualizing the distribution of rhodamine across the intestine using an imaging system (IVIS, Perkin-Elmer). Intestinal transit (n=50) was compared using geometric center (1=minimal movement, 100=maximal movement). H 2 S concentration (n=30) was also measured when small intestinal luminal content was allowed to generate this gas. The Live SRB group had slower intestinal transit as represented by a geometric center score of 40.2 ± 5.7 when compared to Saline: 73.6 ± 5.7, Killed SRB: 77.9 ± 6.9, SRB+Bismuth: 81.0 ± 2.0, and Bismuth: 73.3 ± 4.2 (Pfashion in mice. Our results demonstrate that intestinal transit is slowed by SRB and this effect could be abolished by H 2 S-binding bismuth. © 2016 John Wiley & Sons Ltd.

  16. Detection and identification of intestinal pathogenic bacteria by hybridization to oligonucleotide microarrays

    Science.gov (United States)

    Jin, Lian-Qun; Li, Jun-Wen; Wang, Sheng-Qi; Chao, Fu-Huan; Wang, Xin-Wei; Yuan, Zheng-Quan

    2005-01-01

    AIM: To detect the common intestinal pathogenic bacteria quickly and accurately. METHODS: A rapid (<3 h) experimental procedure was set up based upon the gene chip technology. Target genes were amplified and hybridized by oligonucleotide microarrays. RESULTS: One hundred and seventy strains of bacteria in pure culture belonging to 11 genera were successfully discriminated under comparatively same conditions, and a series of specific hybridization maps corresponding to each kind of bacteria were obtained. When this method was applied to 26 divided cultures, 25 (96.2%) were identified. CONCLUSION: Salmonella sp., Escherichia coli, Shigella sp., Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, Proteus sp., Bacillus cereus, Vibrio cholerae, Enterococcus faecalis, Yersinia enterocolitica, and Campylobacter jejuni can be detected and identified by our microarrays. The accuracy, range, and discrimination power of this assay can be continually improved by adding further oligonucleotides to the arrays without any significant increase of complexity or cost. PMID:16437687

  17. Characterization of microbiota in Arapaima gigas intestine and isolation of potential probiotic bacteria.

    Science.gov (United States)

    do Vale Pereira, G; da Cunha, D G; Pedreira Mourino, J L; Rodiles, A; Jaramillo-Torres, A; Merrifield, D L

    2017-11-01

    The aim of this study was to determine the intestinal microbiota of pirarucu (Arapaima gigas) in different growth stages (adult and fingerlings) and to isolate and identify potential probiotic bacteria. High-throughput sequencing analysis of the intestinal contents revealed that the majority of sequences belonged to the Proteobacteria, Fusobacteria and Firmicutes phyla. At the genus level, the greatest number of sequences belonged to Bradyrhizobium in adult fish, while Cetobacterium was the most abundant in juvenile fish. Twenty-three lactic-acid bacteria (LABs) were isolated on MRS agar from healthy juvenile fish. The isolates were tested in vitro for probiotic properties. Two isolates (identified as strains of Lactococcus lactis subsp. lactis and Enterococcus faecium) displayed antagonism against all 10 pathogens tested, were nonhaemolytic and maintained good viability for at least 3 weeks when supplemented to fish diets. The presence of a number of antibiotic resistance genes (ARGs), conferring resistance to erythromycin, tetracycline and chloramphenicol, was investigated by PCR. The absence of ARGs investigated the potential to antagonize pathogens, and favourable growth and survival characteristics indicate that these autochthonous isolates have the potential to be considered probiotics, which will be studied in future in vivo experiments. This study has demonstrated, for the first time, the normal microbiota in the A. gigas intestine during different life stages and the presence of LAB strains. It also demonstrated LAB antibiotic resistance and antagonistic behaviour against pathogens isolated from the same fish. © 2017 The Society for Applied Microbiology.

  18. Diagnosis and interpretation of intestinal dysbiosis in dogs and cats.

    Science.gov (United States)

    Suchodolski, Jan S

    2016-09-01

    The intestinal tracts of dogs and cats harbor a highly complex microbiota, which consists of bacteria, fungi, viruses and protozoa. Until recently, traditional bacterial culture was commonly used to identify bacteria present in the gastrointestinal tract, but it is now well recognized that standard plating techniques do not have enough resolution for identification of the mostly anaerobic bacteria that reside within the gut. Molecular methods are now established for assessing intestinal dysbiosis in dogs and cats with gastrointestinal disease, but these approaches are not yet widely available for routine diagnosis. The loss of normal commensal bacterial microbiota (i.e. Lachnospiraceae, Ruminococcaceae, and Faecalibacterium spp.) in acute and chronic intestinal diseases has been linked to metabolic changes, for example alterations in immunomodulatory bacterial metabolites, such as short chain fatty acids and secondary bile acids. This highlights the importance of dysbiosis in the pathophysiology of gastrointestinal diseases. Development of molecular based assays for specific bacterial groups, calculations of microbial dysbiosis indices and assays for microbial functional metabolites are currently underway to help assess dysbiosis. These will yield a better understanding of the pathophysiology of gastrointestinal diseases and may also lead to new diagnostic and therapeutic approaches to dysbiosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Identification of glucose-fermenting bacteria present in an in vitro model of the human intestine by RNA-stable isotope probing

    NARCIS (Netherlands)

    Egert, M.; Graaf, A.A. de; Maathuis, A.; Waard, P. de; Plugge, C.M.; Smidt, H.; Deutz, N.E.P.; Dijkema, C.; Vos, W.M. de; Venema, K.

    2007-01-01

    16S rRNA-based stable isotope probing (SIP) and nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling were used to identify bacteria fermenting glucose under conditions simulating the human intestine. The TIM-2 in vitro model of the human intestine was inoculated with a GI tract

  20. FEATURES OF THE LARGE INTESTINE MICROFLORA OF CHILDREN – DONOR LIVER TRANSPLANT RECIPIENTS

    Directory of Open Access Journals (Sweden)

    N. I. Gabrielyan

    2013-01-01

    Full Text Available Aim. The study microecology of the large intestine of children with cirrhosis before transplantation of the share liver. Materials and methods. Studied the flora of the colon 157 children of 1 to 17 years admitted to hospital for liver transplantation fragment from a related donor. Identification was carried out using microbial panels BD Crystal and databases BBL Crystal MIND. Methicillin-resistant staphylococci were determined by their sensiti- vity to oxacillin and cefoxitin. Beta-lactamase activity was tested using discs with ceftazidime and ceftazidime/ clavulanic acid. Results. Microecological revealed deep irregularities in the large intestine transplantation in children up lobe of the liver on a spectrum and composition of the microflora. Among the resident microflora decreased levels of bifidobacteria, lactobacilli and coliform bacteria, especially in children under one year. A sig- nificant portion of the children surveyed (over 60–70% had an increase of frequency of finding stateally bacteria, especially Klebsiella and enterobacteria in third children – non-fermenting bacteria – Pseudomonas and Acine- tobacter spp. Revealed the spread of strains of gram-negative bacteria with extended-spectrum betalaktamaz.Conclusion. Expressed microecological violations in the large intestine in children with higher levels of bac- teria are conditionally risk factor reeks of infectious complications in the postoperative period and require are complex tools to assist in eliminatsii.s given antibiotic resistance of bacteria

  1. Effects of intestinal bacteria-derived p-cresyl sulfate on Th1-type immune response in vivo and in vitro

    International Nuclear Information System (INIS)

    Shiba, Takahiro; Kawakami, Koji; Sasaki, Takashi; Makino, Ikuyo; Kato, Ikuo; Kobayashi, Toshihide; Uchida, Kazumi; Kaneko, Kimiyuki

    2014-01-01

    Protein fermentation by intestinal bacteria generates various compounds that are not synthesized by their hosts. An example is p-cresol, which is produced from tyrosine. Patients with chronic kidney disease (CKD) accumulate high concentrations of intestinal bacteria-derived p-cresyl sulfate (pCS), which is the major metabolite of p-cresol, in their blood, and this accumulation contributes to certain CKD-associated disorders. Immune dysfunction is a CKD-associated disorder that frequently contributes to infectious diseases among CKD patients. Although some studies imply pCS as an etiological factor, the relation between pCS and immune systems is poorly understood. In the present study, we investigated the immunological effects of pCS derived from intestinal bacteria in mice. For this purpose, we fed mice a tyrosine-rich diet that causes the accumulation of pCS in their blood. The mice were shown to exhibit decreased Th1-driven 2, 4-dinitrofluorobenzene-induced contact hypersensitivity response. The concentration of pCS in blood was negatively correlated with the degree of the contact hypersensitivity response. In contrast, the T cell-dependent antibody response was not influenced by the accumulated pCS. We also examined the in vitro cytokine responses by T cells in the presence of pCS. The production of IFN-γ was suppressed by pCS. Further, pCS decreased the percentage of IFN-γ-producing Th1 cells. Our results suggest that intestinal bacteria-derived pCS suppressesTh1-type cellular immune responses. - Highlights: • Mice fed a tyrosine-rich diet accumulated p-cresyl sulfate in their blood. • p-Cresyl sulfate negatively correlated with contact hypersensitivity response. • The in vitro production of IFN-γ was suppressed by p-cresyl sulfate. • p-Cresyl sulfate decreased the percentage of IFN-γ-producing Th1 cells in vitro

  2. Effects of intestinal bacteria-derived p-cresyl sulfate on Th1-type immune response in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, Takahiro, E-mail: takahiro-shiba@yakult.co.jp; Kawakami, Koji; Sasaki, Takashi; Makino, Ikuyo; Kato, Ikuo; Kobayashi, Toshihide; Uchida, Kazumi; Kaneko, Kimiyuki

    2014-01-15

    Protein fermentation by intestinal bacteria generates various compounds that are not synthesized by their hosts. An example is p-cresol, which is produced from tyrosine. Patients with chronic kidney disease (CKD) accumulate high concentrations of intestinal bacteria-derived p-cresyl sulfate (pCS), which is the major metabolite of p-cresol, in their blood, and this accumulation contributes to certain CKD-associated disorders. Immune dysfunction is a CKD-associated disorder that frequently contributes to infectious diseases among CKD patients. Although some studies imply pCS as an etiological factor, the relation between pCS and immune systems is poorly understood. In the present study, we investigated the immunological effects of pCS derived from intestinal bacteria in mice. For this purpose, we fed mice a tyrosine-rich diet that causes the accumulation of pCS in their blood. The mice were shown to exhibit decreased Th1-driven 2, 4-dinitrofluorobenzene-induced contact hypersensitivity response. The concentration of pCS in blood was negatively correlated with the degree of the contact hypersensitivity response. In contrast, the T cell-dependent antibody response was not influenced by the accumulated pCS. We also examined the in vitro cytokine responses by T cells in the presence of pCS. The production of IFN-γ was suppressed by pCS. Further, pCS decreased the percentage of IFN-γ-producing Th1 cells. Our results suggest that intestinal bacteria-derived pCS suppressesTh1-type cellular immune responses. - Highlights: • Mice fed a tyrosine-rich diet accumulated p-cresyl sulfate in their blood. • p-Cresyl sulfate negatively correlated with contact hypersensitivity response. • The in vitro production of IFN-γ was suppressed by p-cresyl sulfate. • p-Cresyl sulfate decreased the percentage of IFN-γ-producing Th1 cells in vitro.

  3. Delayed accumulation of intestinal coliform bacteria enhances life span and stress resistance in Caenorhabditis elegans fed respiratory deficient E. coli.

    Science.gov (United States)

    Gomez, Fernando; Monsalve, Gabriela C; Tse, Vincent; Saiki, Ryoichi; Weng, Emily; Lee, Laura; Srinivasan, Chandra; Frand, Alison R; Clarke, Catherine F

    2012-12-20

    Studies with the nematode model Caenorhabditis elegans have identified conserved biochemical pathways that act to modulate life span. Life span can also be influenced by the composition of the intestinal microbiome, and C. elegans life span can be dramatically influenced by its diet of Escherichia coli. Although C. elegans is typically fed the standard OP50 strain of E. coli, nematodes fed E. coli strains rendered respiratory deficient, either due to a lack coenzyme Q or the absence of ATP synthase, show significant life span extension. Here we explore the mechanisms accounting for the enhanced nematode life span in response to these diets. The intestinal load of E. coli was monitored by determination of worm-associated colony forming units (cfu/worm or coliform counts) as a function of age. The presence of GFP-expressing E. coli in the worm intestine was also monitored by fluorescence microscopy. Worms fed the standard OP50 E. coli strain have high cfu and GFP-labeled bacteria in their guts at the L4 larval stage, and show saturated coliform counts by day five of adulthood. In contrast, nematodes fed diets of respiratory deficient E. coli lacking coenzyme Q lived significantly longer and failed to accumulate bacteria within the lumen at early ages. Animals fed bacteria deficient in complex V showed intermediate coliform numbers and were not quite as long-lived. The results indicate that respiratory deficient Q-less E. coli are effectively degraded in the early adult worm, either at the pharynx or within the intestine, and do not accumulate in the intestinal tract until day ten of adulthood. The findings of this study suggest that the nematodes fed the respiratory deficient E. coli diet live longer because the delay in bacterial colonization of the gut subjects the worms to less stress compared to worms fed the OP50 E. coli diet. This work suggests that bacterial respiration can act as a virulence factor, influencing the ability of bacteria to colonize and

  4. Delayed accumulation of intestinal coliform bacteria enhances life span and stress resistance in Caenorhabditis elegans fed respiratory deficient E. coli

    Directory of Open Access Journals (Sweden)

    Gomez Fernando

    2012-12-01

    Full Text Available Abstract Background Studies with the nematode model Caenorhabditis elegans have identified conserved biochemical pathways that act to modulate life span. Life span can also be influenced by the composition of the intestinal microbiome, and C. elegans life span can be dramatically influenced by its diet of Escherichia coli. Although C. elegans is typically fed the standard OP50 strain of E. coli, nematodes fed E. coli strains rendered respiratory deficient, either due to a lack coenzyme Q or the absence of ATP synthase, show significant life span extension. Here we explore the mechanisms accounting for the enhanced nematode life span in response to these diets. Results The intestinal load of E. coli was monitored by determination of worm-associated colony forming units (cfu/worm or coliform counts as a function of age. The presence of GFP-expressing E. coli in the worm intestine was also monitored by fluorescence microscopy. Worms fed the standard OP50 E. coli strain have high cfu and GFP-labeled bacteria in their guts at the L4 larval stage, and show saturated coliform counts by day five of adulthood. In contrast, nematodes fed diets of respiratory deficient E. coli lacking coenzyme Q lived significantly longer and failed to accumulate bacteria within the lumen at early ages. Animals fed bacteria deficient in complex V showed intermediate coliform numbers and were not quite as long-lived. The results indicate that respiratory deficient Q-less E. coli are effectively degraded in the early adult worm, either at the pharynx or within the intestine, and do not accumulate in the intestinal tract until day ten of adulthood. Conclusions The findings of this study suggest that the nematodes fed the respiratory deficient E. coli diet live longer because the delay in bacterial colonization of the gut subjects the worms to less stress compared to worms fed the OP50 E. coli diet. This work suggests that bacterial respiration can act as a virulence factor

  5. Crohn's disease intestinal CD4+ T cells have impaired interleukin-10 productionwhich is not restored by probiotic bacteria

    DEFF Research Database (Denmark)

    Hvas, Christian L; Kelsen, Jens; Agnholt, Jørgen

    2007-01-01

    OBJECTIVE: Crohn's disease (CD) has been associated with low mucosal interleukin (IL)-10 production, but the mechanism behind this deficiency remains unclear. The aim of this study was to investigate IL-10 and interferon (IFN)-gamma production in intestinal CD4+ T cells from CD patients and healthy...... volunteers (HV) and to examine how this was affected by bacterial products and the presence or absence of autologous dendritic cells. MATERIAL AND METHODS: We cultured intestinal CD4+ T cells from CD patients (n=9) and HV (n=6) and differentiated dendritic cells from their peripheral monocytes. Intestinal T...... this imbalance in CD, but tended to do so in HV. When there were no dendritic cells, CD intestinal T cells responded to autologous bacteria with an increased IFN-gamma production (2.3+/-1.3 ng/ml) compared with HV intestinal T cells (0.3+/-0.2 ng/ml). CONCLUSIONS: Crohn's disease intestinal CD4+ T cells display...

  6. Immunomodulatory properties of probiotic bacteria

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen

    2007-01-01

    Certain lactic acid bacteria (LAB) are part of the commensal intestinal flora and considered beneficial for health, as they compete with pathogens for adhesion sites in the intestine and ferment otherwise indigestible compounds. Another important property of these so-called probiotic bacteria...... with bacteria, and the cytokine pattern induced by specific bacteria resembled the pattern induced in MoDC, except for TNF-alpha and IL-6, which were induced in response to different bacteria in blood DC/monocytes and monocyte-derived DC. Autologous NK cells produced IFN-gamma when cultured with blood DC......, monocytes and monocyte-derived DC and IL-12-inducing bacteria, whereas only DC induced IFN-gamma production in allogeneic T cells. In vitro-generated DC is a commonly used model of tissue DC, but they differ in certain aspects from intestinal DC, which are in direct contact with the intestinal microbiota...

  7. Development and validation of an automated, microscopy-based method for enumeration of groups of intestinal bacteria

    NARCIS (Netherlands)

    Jansen, GJ; Wildeboer-Veloo, ACM; Tonk, RHJ; Franks, AH; Welling, G

    An automated microscopy-based method using fluorescently labelled 16S rRNA-targeted oligonucleotide probes directed against the predominant groups of intestinal bacteria was developed and validated. The method makes use of the Leica 600HR. image analysis system, a Kodak MegaPlus camera model 1.4 and

  8. [Intestinal disorder of anaerobic bacteria aggravates pulmonary immune pathological injury of mice infected with influenza virus].

    Science.gov (United States)

    Wu, Sha; Yan, Yuqi; Zhang, Mengyuan; Shi, Shanshan; Jiang, Zhenyou

    2016-04-01

    To investigate the relationship between the intestinal disorder of anaerobic bacteria and influenza virus infection, and the effect on pulmonary inflammatory cytokines in mice. Totally 36 mice were randomly divided into normal control group, virus-infected group and metronidazole treatment group (12 mice in each group). Mice in the metronidazole group were administrated orally with metronidazole sulfate for 8 days causing anaerobic bacteria flora imbalance; then all groups except the normal control group were treated transnasally with influenza virus (50 μL/d FM1) for 4 days to establish the influenza virus-infected models. Their mental state and lung index were observed, and the pathological morphological changes of lung tissues, caecum and intestinal mucosa were examined by HE staining. The levels of interleukin 4 (IL-4), interferon γ (IFN-γ), IL-10 and IL-17 in the lung homogenates were determined by ELISA. Compared with the virus control group, the metronidazole group showed obviously increased lung index and more serious pathological changes of the lung tissue and appendix inflammation performance. After infected by the FM1 influenza virus, IFN-γ and IL-17 of the metronidazole group decreased significantly and IL-4 and IL-10 levels were raised, but there was no statistically difference between the metronidazole and virus control groups. Intestinal anaerobic bacteria may inhibit the adaptive immune response in the lungs of mice infected with FM1 influenza virus through adjusting the lung inflammatory factors, affect the replication and clean-up time of the FM1 influenza virus, thus further aggravating pulmonary immune pathological injury caused by the influenza virus infection.

  9. Prevalence and co-infection of intestinal parasites among thai rural residents at high-risk of developing cholangiocarcinoma: a cross-sectional study in a prospective cohort study.

    Science.gov (United States)

    Songserm, Nopparat; Promthet, Supannee; Wiangnon, Surapon; Sithithaworn, Paiboon

    2012-01-01

    Intestinal parasitic infections (IPIs) are still important to the health of Thai rural residents. IPIs are the cause of many chronic diseases with, for example, opisthorchiasis resulting in progression to cholangiocarcinoma (CCA). This cross-sectional study in a prospective cohort study aimed to examine the prevalence and co- infection of intestinal parasites among Northeastern Thai rural residents, recruited into the Khon Kaen Cohort Study (KKCS), and who were residing in areas of high-risk for developing CCA. On recruitment, subjects had completed questionnaires and provided fecal samples for IPI testing using the formalin ethyl acetate concentration technique. Data on selected general characteristics and the results of the fecal tests were analysed. IPI test results were available for 18,900 of cohort subjects, and 38.50% were found to be positive for one or more types of intestinal parasite. The prevalence of Opisthorchis viverrini (O. viverrini) infection was the highest (45.7%), followed by intestinal flukes (31.9%), intestinal nematodes (17.7%), intestinal protozoa (3.02%), and intestinal cestodes (1.69%). The pattern of different infections was similar in all age groups. According to a mapping analysis, a higher CCA burden was correlated with a higher prevalence of O. viverrini and intestinal flukes and a greater intensity of O. viverrini. Both prevention and control programs against liver fluke and other intestinal parasites are needed and should be delivered simultaneously. We can anticipate that the design of future control and prevention programmes will accommodate a more community-orientated and participatory approach.

  10. Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Qinghua eYu

    2015-03-01

    Full Text Available Pathogens invade intestinal mucosal barrier through phagocytosis of antigen presenting cells (dendritic cell, microfold cells, or through the invasion into the intestinal epithelial directly. Some pathogens could damage the cell junction between epithelial cells and use the paracellular pathway as an entrance to invade. Moreover, some Lactobacillus could inhibit the adhesion of the pathogens and protect the integrity of the cell junction and mucosal barrier. This research focused on the potential therapeutic effect of Lactobacillus fructosus (L. fructosus C2 to attenuate ETEC K88 or S. typhimurium SL1344 induced changes to mucosal barrier. The results demonstrated that treatment of polarized Caco-2 cells with L. fructosus C2 reduced the permeation of dextran, and expression of IL-8, p-ERK and p-JNK when cells were infected with pathogenic bacteria. The findings indicated that L. fructosus C2 exerted a protective effect against the damage to the integrity of Caco-2 cells by ETEC or S. typhimurium infection.

  11. Effects of Achyrocline satureioides Inflorescence Extracts against Pathogenic Intestinal Bacteria: Chemical Characterization, In Vitro Tests, and In Vivo Evaluation

    Directory of Open Access Journals (Sweden)

    Karla Suzana Moresco

    2017-01-01

    Full Text Available Three Achyrocline satureioides (AS inflorescences extracts were characterized: (i a freeze-dried extract prepared from the aqueous extractive solution and (ii a freeze-dried and (iii a spray-dried extract prepared from hydroethanol extractive solution (80% ethanol. The chemical profile, antioxidant potential, and antimicrobial activity against intestinal pathogenic bacteria of AS extracts were evaluated. In vitro antioxidant activity was determined by the total reactive antioxidant potential (TRAP assay. In vivo analysis and characterization of intestinal microbiota were performed in male Wistar rats (saline versus treated animals with AS dried extracts by high-throughput sequencing analysis: metabarcoding. Antimicrobial activity was tested in vitro by the disc diffusion tests. Moisture content of the extracts ranged from 10 to 15% and 5.7 to 17 mg kg−1 of fluorine. AS exhibited antioxidant activity, especially in its freeze-dried form which also exhibited a wide spectrum of antimicrobial activity against intestinal pathogenic bacteria greater than those observed by the antibiotic, amoxicillin, when tested against Bacillus cereus and Staphylococcus aureus. Antioxidant and antimicrobial activities of AS extracts seemed to be positively correlated with the present amount of flavonoids. These findings suggest a potential use of AS as a coadjuvant agent for treating bacterial-induced intestinal diseases with high rates of antibiotic resistance.

  12. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells

    Science.gov (United States)

    Hepworth, Matthew R.; Fung, Thomas C.; Masur, Samuel H.; Kelsen, Judith R.; McConnell, Fiona M.; Dubrot, Juan; Withers, David R.; Hugues, Stephanie; Farrar, Michael A.; Reith, Walter; Eberl, Gerard; Baldassano, Robert N.; Laufer, Terri M.; Elson, Charles O.; Sonnenberg, Gregory F.

    2015-01-01

    Inflammatory CD4+ T cell responses to self or commensal bacteria underlie the pathogenesis of autoimmunity and inflammatory bowel disease (IBD), respectively. While selection of self-specific T cells in the thymus limits responses to tissue antigens, the mechanisms that control selection of commensal bacteria-specific T cells remain poorly understood. Here we demonstrate that group 3 innate lymphoid cell (ILC3)-intrinsic expression of major histocompatibility complex class II (MHCII) is regulated similarly to thymic epithelial cells, and that MHCII+ ILC3s directly induce cell death of activated commensal bacteria-specific T cells. Further, MHCII on human colonic ILC3s was reduced in pediatric IBD patients. Collectively, these results define a selection pathway for commensal bacteria-specific CD4+ T cells in the intestine, and suggest that this process is dysregulated in human IBD. PMID:25908663

  13. The genus Romboutsia : genomic and functional characterization of novel bacteria dedicated to life in the intestinal tract

    NARCIS (Netherlands)

    Gerritsen, J.

    2015-01-01

    The genus Romboutsia: genomic and functional characterization of novel bacteria dedicated to life in the intestinal tract

    PhD thesis Jacoline Gerritsen, 2015

    Abstract

    Humans, like other mammals, are not single-species organisms, but they

  14. Viability of lactic acid bacteria coated as synbiotic during storage and gastro-intestinal simulation

    Science.gov (United States)

    Jamilah, It; Priyani, Nunuk; Lusia Natalia, Santa

    2018-03-01

    Lactic acid bacteria (LAB) has been added to various food products as a probiotic agent because it has been known to provide beneficial health effects in humans. In the application of LAB, cell viability often decreased as influenced by environment stresses. Encapsulation technique is one of the cell protection techniques using a coating material. Effective coating material is required to produce maximum protection of LAB cells. In this study, candidate of probiotic LAB (isolate US7) was encapsulated with alginate-mung bean flour and alginate-gram flour with inulin prebiotic by extrusion technique. Viability of encapsulated LAB cells were able to survive by up to 108CFU g‑1 after 4 weeks of storage at 4 °C. Beads were incubated in simulated liquid gastric acid (pH=2) for 2 hrs and simulated intestinal fluid (pH=6) for 3 hrs at 37 °C. The results showed that encapsulated LAB cells maintained the survival rate of 97% with the number of cells at 9.07 Log CFU g‑1in the simulated liquid gastric acid and then followed by releasing cells in simulated intestinal fluid. In general, this study indicates that encapsulation with alginate-mung bean flour and alginategram flour with inulin successfullyprotect probiotic bacteria against simulated human gastrointestinal conditions.

  15. Research of Correlation between Intestinal Bacteria and Digestive System Diseases%肠道微生物与消化系统疾病的相关性研究

    Institute of Scientific and Technical Information of China (English)

    王翠婷

    2015-01-01

    肠道细菌被称为人类的长寿细菌,是一种混合的微生物在肠道内与宿主共生,在不同的身体部位、不同的个体、不同的环境因素以及随着时间变化具有差异. 这些细菌参与到机体的生理、代谢、营养、免疫等,然而肠道细菌失调和受损与某些疾病也有一定的关系,如炎症性肠病、肠易激综合征、肠道肿瘤、肥胖等. 因此,肠道细菌对于人类身体健康是极其重要的. 该文就肠道微生物与消化系统疾病的相关性研究予以综述.%The intestinal microbiota,known as the human longevity bacteria,is a group of microorganisms in intestinal symbiosis with the host.The composition of intestinal bacteria varies in different parts of the body,in different individuals,under different environmental factors and at different times.They are involved in body's physiological and metabolic,nutrition,immune process,etc.However,disorder and damage of intes-tinal bacteria also have certain relations with some diseases,such as inflammatory bowel disease and irritable bowel syndrome,intestinal cancer,obesity, etc.Therefore,the intestinal bacteria is extremely important for human health.Here is to make a review of the relationship between intestinal bacteria and digestive system diseases.

  16. Update on small intestinal stem cells

    OpenAIRE

    Tesori, Valentina; Puglisi, Maria Ausiliatrice; Lattanzi, Wanda; Gasbarrini, Giovanni Battista; Gasbarrini, Antonio

    2013-01-01

    Among somatic stem cells, those residing in the intestine represent a fascinating and poorly explored research field. Particularly, somatic stem cells reside in the small intestine at the level of the crypt base, in a constant balance between self-renewal and differentiation. Aim of the present review is to delve into the mechanisms that regulate the delicate equilibrium through which intestinal stem cells orchestrate intestinal architecture. To this aim, special focus will be addressed to id...

  17. Screening for in vitro metabolites of kakkalide and irisolidone in human and rat intestinal bacteria by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhang, Guozhe; Gong, Tianxing; Kano, Yoshihiro; Yuan, Dan

    2014-02-01

    Kakkalide and irisolidone, the main isoflavones of Flos Puerariae, exhibit a wide spectrum of bioactivities. Intestinal bacteria biotransformation plays an important role in the metabolic pathways of flavones, and is directly related to the bioactivities of the prodrugs after oral administration. To the best of our knowledge, the metabolic pathways of kakkalide and irisolidone in vitro have not been comprehensively studied yet. This paper describes the strategy using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF MS) for the rapid analysis of the metabolic profiles of kakkalide and irisolidone after incubated with human and rat intestinal bacteria. Bacteria incubated samples were prepared and analyzed after incubated under anaerobic conditions for 48 h. A total of 17 metabolites, including parent compounds, were detected in human and rat intestinal bacteria incubated samples. The results obtained indicate that hydrolysis, dehydroxylation, demethoxylation, demethylation, hydroxylation, decarbonylation, and reduction were the detected metabolic pathways of kakkalide and irisolidone in vitro. The conversion rate of irisolidone in human and rat bacteria was 8.57% and 6.51%, respectively. Biochanin A was the relatively main metabolite of irisolidone, and the content of biochanin A in human and rat bacteria was 3.68% and 4.25%, respectively. The conversion rate of kakkalide in human and rat bacteria was 99.92% and 98.58%, respectively. Irisolidone was the main metabolite of kakkalide, and the content of irisolidone in human and rat bacteria was 89.58% and 89.38%, respectively. This work not only provides the evidence of kakkalide and irisolidone metabolites in vivo, but also demonstrates a simple, fast, sensitive, and inexpensive method for identification of metabolites of other compounds transformed by intestinal bacteria. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Humoral immunity provides resident intestinal eosinophils access to luminal antigen via eosinophil-expressed low affinity Fc gamma receptors

    Science.gov (United States)

    Smith, Kalmia M.; Rahman, Raiann S.; Spencer, Lisa A.

    2016-01-01

    Eosinophils are native to the healthy gastrointestinal tract, and are associated with inflammatory diseases likely triggered by exposure to food allergens (e.g. food allergies and eosinophilic gastrointestinal disorders). In models of allergic respiratory diseases and in vitro studies, direct antigen engagement elicits eosinophil effector functions including degranulation and antigen presentation. However, it was not known whether intestinal tissue eosinophils that are separated from luminal food antigens by a columnar epithelium might similarly engage food antigens. Using an intestinal ligated loop model in mice, here we determined that resident intestinal eosinophils acquire antigen from the lumen of antigen-sensitized but not naïve mice in vivo. Antigen acquisition was immunoglobulin-dependent; intestinal eosinophils were unable to acquire antigen in sensitized immunoglobulin-deficient mice, and passive immunization with immune serum or antigen-specific IgG was sufficient to enable intestinal eosinophils in otherwise naïve mice to acquire antigen in vivo. Intestinal eosinophils expressed low affinity IgG receptors, and the activating receptor FcγRIII was necessary for immunoglobulin-mediated acquisition of antigens by isolated intestinal eosinophils in vitro. Our combined data suggest that intestinal eosinophils acquire lumen-derived food antigens in sensitized mice via FcγRIII antigen focusing, and may therefore participate in antigen-driven secondary immune responses to oral antigens. PMID:27683752

  19. Humoral Immunity Provides Resident Intestinal Eosinophils Access to Luminal Antigen via Eosinophil-Expressed Low-Affinity Fcγ Receptors.

    Science.gov (United States)

    Smith, Kalmia M; Rahman, Raiann S; Spencer, Lisa A

    2016-11-01

    Eosinophils are native to the healthy gastrointestinal tract and are associated with inflammatory diseases likely triggered by exposure to food allergens (e.g., food allergies and eosinophilic gastrointestinal disorders). In models of allergic respiratory diseases and in vitro studies, direct Ag engagement elicits eosinophil effector functions, including degranulation and Ag presentation. However, it was not known whether intestinal tissue eosinophils that are separated from luminal food Ags by a columnar epithelium might similarly engage food Ags. Using an intestinal ligated loop model in mice, in this study we determined that resident intestinal eosinophils acquire Ag from the lumen of Ag-sensitized but not naive mice in vivo. Ag acquisition was Ig-dependent; intestinal eosinophils were unable to acquire Ag in sensitized Ig-deficient mice, and passive immunization with immune serum or Ag-specific IgG was sufficient to enable intestinal eosinophils in otherwise naive mice to acquire Ag in vivo. Intestinal eosinophils expressed low-affinity IgG receptors, and the activating receptor FcγRIII was necessary for Ig-mediated acquisition of Ags by isolated intestinal eosinophils in vitro. Our combined data suggest that intestinal eosinophils acquire lumen-derived food Ags in sensitized mice via FcγRIII Ag focusing and that they may therefore participate in Ag-driven secondary immune responses to oral Ags. Copyright © 2016 by The American Association of Immunologists, Inc.

  20. Antioxidant properties of caroot juices and their impact on intestinal and probiotic bacteria

    Directory of Open Access Journals (Sweden)

    Aleksandra Duda-Chodak

    2015-08-01

    Full Text Available There is a growing interest in non-dairy probiotic products. The main aim of the study was to evaluate the impact of juice prepared from 15 various cultivars of carrot on the growth of representatives of human intestinal microbiota (Bifidobacterium catenulatum, Escherichia coli and probiotic strains (Lactobacillus acidophilus LA-5, Lactobacillus casei 01. Carrot juice was added to liquid medium at a final concentration of 5.0% and their impact on the bacteria number was assessed by measurement of the turbidity after 24 h of culture. The number of cells was expressed as % of positive control (medium without juice addition. Juices prepared from all tested cultivars of carrot inhibited the growth of Bifidobacterium catenulatum, and the strongest inhibitory effect was observed for juices obtained from the 'Kongo F1' cultivar (3.40 ±2.85% of positive control, 'Rumba F1'(4.17 ±2.27% and 'Broker F1' (5.35 ±2.14%. The majority of tested juices also inhibited the growth of E. coli, but those prepared from the 'Niland F1', 'Napa F1', 'Afro F1'and 'Samba F1' cultivars stimulated the growth of this bacterium. The probiotic strains were less sensitive to carrot juice impact than intestinal species, however both stimulation and inhibition could be observed. Juices made from the cultivars 'Kongo F1' and 'Deep Purple F1' acted negatively on the growth of both probiotic strains, while juice from 'Bangor F1' cultivar inhibited L. casei 01 growth, but stimulated the growth of LA-5. The obtained results suggest that 'Kongo F1' and 'Deep Purple F1' cultivars are not suitable as an additive or raw material for the production of probiotic products, because of their inhibitory properties against probiotic strains. Concluding, carrots can be used as raw material for the production of probiotic beverages, however both the cultivar of carrot and the strains of probiotic bacteria used for the production should be selected carefully. The most suitable for production of

  1. Isolation of dextran-hydrolyzing intestinal bacteria and characterization of their dextranolytic activities.

    Science.gov (United States)

    Kim, Jin Kyoung; Shin, So-Yeon; Moon, Jin Seok; Li, Ling; Cho, Seung Kee; Kim, Tae-Jip; Han, Nam Soo

    2015-06-01

    The aim of this study was to isolate dextran-hydrolyzing bacteria from the human intestines and to identify their dextranolytic enzymes. For this, dextranase-producing microorganisms were screened from fecal samples by using blue dextran-containing media. Colonies producing a decolorized zone were isolated and they were grouped using RAPD-PCR. 16S rRNA gene sequencing analysis revealed the isolates were Bacteroides (B.) thetaiotaomicron, B. ovatus, B. vulgatus, B. dorei, B. xylanisolvens, B. uniformis, and Veillonella (V.) rogosae. Thin layer chromatography analysis showed that the dextranases exhibit mainly endo-type activity and produce various oligosaccharides including isomaltose and isomaltotriose. Zymogram analysis demonstrated that enzymes localized mainly in the cell membrane fraction and the molecular weight was 50-70 kDa. When cultured in a dextran-containing medium, all strains isolated in this study produced short-chain fatty acids, with butyric acid as the major compound. This is the first study to report that human intestinal B. xylanisolvens, B. dorei, and V. rogosae metabolize dextran utilizing dextranolytic enzymes. © 2015 Wiley Periodicals, Inc.

  2. Always one step ahead: How pathogenic bacteria use the type III secretion system to manipulate the intestinal mucosal immune system

    Directory of Open Access Journals (Sweden)

    Marchès Olivier

    2011-05-01

    Full Text Available Abstract The intestinal immune system and the epithelium are the first line of defense in the gut. Constantly exposed to microorganisms from the environment, the gut has complex defense mechanisms to prevent infections, as well as regulatory pathways to tolerate commensal bacteria and food antigens. Intestinal pathogens have developed strategies to regulate intestinal immunity and inflammation in order to establish or prolong infection. The organisms that employ a type III secretion system use a molecular syringe to deliver effector proteins into the cytoplasm of host cells. These effectors target the host cell cytoskeleton, cell organelles and signaling pathways. This review addresses the multiple mechanisms by which the type III secretion system targets the intestinal immune response, with a special focus on pathogenic E. coli.

  3. Scintigraphic visualization of bacterial translocation in experimental strangulated intestinal obstruction

    International Nuclear Information System (INIS)

    Galeev, Yu.M.; Popov, M.V.; Salato, O.V.; Lishmanov, Yu.B.; Grigorev, E.G.; Aparcin, K.A.

    2009-01-01

    The purpose of this study was to obtain scintigraphic images depicting translocation of 99m Tc-labelled Escherichia coli bacteria through the intestinal barrier and to quantify this process using methods of nuclear medicine. Thirty male Wistar rats (including 20 rats with modelled strangulated intestinal obstruction and 10 healthy rats) were used for bacterial scintigraphy. 99m Tc-labelled E. coli bacteria ( 99m Ts-E. coli) with an activity of 7.4-11.1 MBq were administered into a section of the small intestine. Scintigraphic visualization of bacterial translocation into organs and tissues of laboratory animals was recorded in dynamic (240 min) and static (15 min) modes. The number of labelled bacteria, which migrated through the intestinal barrier, was quantified by calculating the translocation index (TI). Control indicated no translocation of 99m Ts-E. coli administered into the intestine through the parietes of the small intestine's distal part in healthy animals. Animals with strangulated obstruction demonstrated different migration strength and routes of labelled bacteria from strangulated and superior to strangulation sections of the small intestine. 99m Ts-E. coli migrated from the strangulated loop into the peritoneal cavity later causing systemic bacteraemia through peritoneal resorption. The section of the small intestine, which was superior to the strangulation, demonstrated migration of labelled bacteria first into the portal and then into the systemic circulation. The strangulated section of the small intestine was the main source of bacteria dissemination since the number of labelled bacteria, which migrated from this section significantly, exceeded that of the area superior to the strangulation section of the small intestine (p = 0.0003). Bacterial scintigraphy demonstrated the possibility of visualizing migration routes of labelled bacteria and quantifying their translocation through the intestinal barrier. This approach to study bacterial

  4. Intestinal Microbiota Signatures Associated With Histological Liver Steatosis in Pediatric-Onset Intestinal Failure.

    Science.gov (United States)

    Korpela, Katri; Mutanen, Annika; Salonen, Anne; Savilahti, Erkki; de Vos, Willem M; Pakarinen, Mikko P

    2017-02-01

    Intestinal failure (IF)-associated liver disease (IFALD) is the major cause of mortality in IF. The link between intestinal microbiota and IFALD is unclear. We compared intestinal microbiota of patients with IF (n = 23) with healthy controls (n = 58) using culture-independent phylogenetic microarray analysis. The microbiota was related to histological liver injury, fecal markers of intestinal inflammation, matrix metalloproteinase 9 and calprotectin, and disease characteristics. Overabundance of Lactobacilli, Proteobacteria, and Actinobacteria was observed in IF, whereas bacteria related to Clostridium clusters III, IV, and XIVa along with overall diversity and richness were reduced. Patients were segregated into 3 subgroups based on dominating bacteria: Clostridium cluster XIVa, Proteobacteria, and bacteria related to Lactobacillus plantarum. In addition to liver steatosis and fibrosis, Proteobacteria were associated with prolonged current parenteral nutrition (PN) as well as liver and intestinal inflammation. Lactobacilli were related to advanced steatosis and fibrosis mostly after weaning off PN without associated inflammation. In multivariate permutational analysis of variance, liver steatosis, bowel length, PN calories, and antibiotic treatment best explained the microbiota variation among patients with IF. Intestinal microbiota composition was associated with liver steatosis in IF and better predicted steatosis than duration of PN or length of the remaining intestine. Our results may be explained by a model in which steatosis is initiated during PN in response to proinflammatory lipopolysaccharides produced by Proteobacteria and progresses after weaning off PN, as the L plantarum group Lactobacilli becomes dominant and affects lipid metabolism by altering bile acid signaling.

  5. Lactobacillus acidophilus, Lactobacillus reuteri and metabolites of intestinal bacteria as therapeutic agents in acute diarrhea in children

    Czech Academy of Sciences Publication Activity Database

    Tláskal, P.; Kokešová, A.; Schramlová, J.; Tlaskalová, Helena; Adamus, J.; Bubáková, D.; Kočnarová, N.; Kopecký, J.; Mucková, M.; Pacovská, J.; Sládková, J.

    2007-01-01

    Roč. 2, č. 1 (2007), s. 67-74 ISSN 1555-1431 Grant - others:CZ(CZ) 00000064203/6041; CZ(CZ) 00064203/6309 Institutional research plan: CEZ:AV0Z50200510 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje Keywords : acute diarrhea * metabolites of intestinal bacteria * probiotics Subject RIV: EE - Microbiology, Virology

  6. Necrotizing Enterocolitis in Preterm Pigs Is Associated with Increased Density of Intestinal Mucosa-Associated Bacteria Including Clostridium perfringens

    DEFF Research Database (Denmark)

    Støy, Ann Cathrine Findal; Mølbak, Lars; Delègue, Camilla Lindholm

    2015-01-01

    correlates with NEC severity in preterm pigs and that in vitro infection with increasing densities of Clostridium perfringens, which has been associated with NEC in preterm infants, would lead to a transcriptional response related to the inflammatory conditions of NEC. Methods: First, we determined...... the density of total bacteria and C. perfringens in the distal small intestinal mucosa of 58 NEC and healthy preterm pigs using quantitative PCR. Next, we analyzed in IPEC-J2 cells the effect of different infection densities of C. perfringens type A on the expression of genes related to intestinal function...

  7. Effects of ethanolic Chavill extract on growth of lactobacillus and salmonella bacteria, in skimmed milk and imaging gastric-intestine media in vitro

    Directory of Open Access Journals (Sweden)

    R naghiha

    2015-08-01

    Full Text Available Introduction & aim: To achieve high performance and health, it’s better to use additives in the human diet which have beneficial effects on good bacteria and damaging effect on the harmful bacteria. For this purpose, effects of Chavill extract on growth, viability and death of lactobacillus and salmonella, in skimmed milk and imaging gastric-intestine media were studied in vitro conditions. Methods: This study was investigated in two completely randomized experiments with three levels of Chavill extract. In the first experiment, ability of the Chavill extract in Skim Milk medium was examined to survey survival, proliferation and death of beneficial and pathogenic gut bacteria. The second experiment which was down in the simulation of simulated gastric juice and simulated small intestine juice, the effect of Chavill extract on survival, proliferation and death of the bacteria were investigated. Treatments in both of experiments were three levels of Chavill extract (0, 1, and 3 % for three probiotic bacteria species. Data were analyzed with SAS 9.1 software and their means were compared by Duncan’s Multiple Range test at a significance level of 5 %. Results: By increasing of Chavill extract concentration to 1%, probiotic bacterial counts significantly increase compared to control treatment and the differences were significant and the count of Salmonella typhimurium difference with control significantly decreased. Using 3% Chavill extract compared to 1% extract, increased number of Lactobacillus acidophilus and Lactobacillus plantarum, decreased number of Lactobacillus casei, inhibit growth of Salmonella typhimurium bacterium and block growth of this bacterium. The second experiment on simulated gastric juice showed that numbers of Lactobacillus acidophilus and Lactobacillus plantarum bacteria increased and Lactobacillus casei and Salmonella typhimurium decreased. Also, findings of bacterial survival on simulated small intestine juice showed

  8. Toxicity of graphene oxide on intestinal bacteria and Caco-2 cells.

    Science.gov (United States)

    Nguyen, Trang H D; Lin, Mengshi; Mustapha, Azlin

    2015-05-01

    In recent years, novel nanomaterials have received much attention due to their great potential for applications in agriculture, food safety, and food packaging. Among them, graphene and graphene oxide (GO) are emerging as promising nanomaterials that may have a profound impact on food packaging. However, there are some concerns from consumers and the scientific community about the potential toxicity and biocompatibility of nanomaterials. In this study, we investigated the antibacterial properties of GO against human intestinal bacteria. The cytotoxicity of GO was also studied in vitro using the Caco-2 cell line derived from a colon carcinoma. Electron microscopy was used to investigate the morphology of GO and the interaction between GO flakes and Caco-2 cells. GO at different concentrations (10 to 500 μg/ml) exhibited no toxicity against the selected bacteria and a mild cytotoxic action on Caco-2 cells after 24 h of exposure. The results show that weak adsorption of medium nutrients may contribute to GO's low toxicity. This study suggests that GO is biocompatible and has a potential to be used in agriculture and food science, indicating that more studies are needed to exploit its potential applications.

  9. Update on small intestinal stem cells.

    Science.gov (United States)

    Tesori, Valentina; Puglisi, Maria Ausiliatrice; Lattanzi, Wanda; Gasbarrini, Giovanni Battista; Gasbarrini, Antonio

    2013-08-07

    Among somatic stem cells, those residing in the intestine represent a fascinating and poorly explored research field. Particularly, somatic stem cells reside in the small intestine at the level of the crypt base, in a constant balance between self-renewal and differentiation. Aim of the present review is to delve into the mechanisms that regulate the delicate equilibrium through which intestinal stem cells orchestrate intestinal architecture. To this aim, special focus will be addressed to identify the integrating signals from the surrounding niche, supporting a model whereby distinct cell populations facilitate homeostatic vs injury-induced regeneration.

  10. Evaluation of bean and soy tempeh influence on intestinal bacteria and estimation of antibacterial properties of bean tempeh.

    Science.gov (United States)

    Kuligowski, Maciej; Jasińska-Kuligowska, Iwona; Nowak, Jacek

    2013-01-01

    In this study the effect of bean tempeh on the growth of Bacillus subtilis, Escherichia coli, Lactobacillus acidophilus and Lactobacillus paracasei bacteria was investigated. Antibacterial activity was observed only in relation to the bacteria Bacillus subtilis. The effect of tempeh products on human intestinal microflora was also assessed. Bean and soy tempeh were culinarily processed and next digested in conditions simulating the human digestive tract (one of the digestive tracts was equipped with a mechanism simulating absorption). Soy tempeh stimulated most the growth of bacteria of the genus Bifidobacterium, while bean tempeh that of Escherichia coli. Using simulation of absorption for the digestion of fried soy tempeh resulted in a higher rise in the bacteria count of the genus Lactobacillus, while after digestion of fried bean tempeh the highest increase was recorded for Bifidobacterium and E. coli.

  11. Evaluation of the intestinal colonization by microencapsulated probiotic bacteria in comparison with the same uncoated strains.

    Science.gov (United States)

    Del Piano, Mario; Carmagnola, Stefania; Andorno, Silvano; Pagliarulo, Michela; Tari, Roberto; Mogna, Luca; Strozzi, Gian Paolo; Sforza, Filomena; Capurso, Lucio

    2010-09-01

    Beneficial findings concerning probiotics are increasing day by day. However, one of the most important parameter which affects the probiotic activity of a microorganism is its survival during the gastroduodenal transit. Some microencapsulation techniques could be applied to bacterial cells to improve this parameter. A comparison between the intestinal colonization by microencapsulated bacteria and the same not microencapsulated strains has been conducted in a double blind, randomized, cross-over study. The study (April to July 2005) involved 44 healthy volunteers. In particular, participants were divided into 2 groups: group A (21 participants) received a mix of probiotic strains Lactobacillus plantarum LP01 (LMG P-21021) and Bifidobacterium breve BR03 (DSM 16604) in an uncoated form, group B (23 participants) was given the same strains microencapsulated with a gastroresistant material. The not microencapsulated strains were administered at 5 x 10(9) colony forming units/strain/d for 21 days, whereas the microencapsulated bacteria were given at 1 x 10(9) colony forming units/strain/d for 21 days. At the end of the first period of treatment with probiotics a 3 weeks washout phase has been included in the study protocol. At the end of the washout period the groups were crossed: in detail, group A had the microencapsulated and group B the uncoated bacteria. The administered amounts of each strain were the same as the first treatment. The quantitative evaluation of intestinal colonization by strains microencapsulated or not microencapsulated was made by fecal samples examination at the beginning of the clinical trial, after 10 and 21 days of each treatment period. In particular, fecal heterofermentative Lactobacilli and Bifidobacteria have been counted. A statistically significant increase in the fecal amounts of Lactobacilli and Bifidobacteria was recorded in both groups at the end of each treatment compared with d0 or d42 (Pstrains to colonize the human gut, either

  12. Community and genomic analysis of the human small intestine microbiota

    NARCIS (Netherlands)

    Bogert, van den B.

    2013-01-01

    Our intestinal tract is densely populated by different microbes, collectively called microbiota, of which the majority are bacteria. Research focusing on the intestinal microbiota often use fecal samples as a representative of the bacteria that inhabit the end of the large intestine.

  13. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid.

    Science.gov (United States)

    O'Shea, Eileen F; Cotter, Paul D; Stanton, Catherine; Ross, R Paul; Hill, Colin

    2012-01-16

    The mechanisms by which intestinal bacteria achieve their associated health benefits can be complex and multifaceted. In this respect, the diverse microbial composition of the human gastrointestinal tract (GIT) provides an almost unlimited potential source of bioactive substances (pharmabiotics) which can directly or indirectly affect human health. Bacteriocins and fatty acids are just two examples of pharmabiotic substances which may contribute to probiotic functionality within the mammalian GIT. Bacteriocin production is believed to confer producing strains with a competitive advantage within complex microbial environments as a consequence of their associated antimicrobial activity. This has the potential to enable the establishment and prevalence of producing strains as well as directly inhibiting pathogens within the GIT. Consequently, these antimicrobial peptides and the associated intestinal producing strains may be exploited to beneficially influence microbial populations. Intestinal bacteria are also known to produce a diverse array of health-promoting fatty acids. Indeed, certain strains of intestinal bifidobacteria have been shown to produce conjugated linoleic acid (CLA), a fatty acid which has been associated with a variety of systemic health-promoting effects. Recently, the ability to modulate the fatty acid composition of the liver and adipose tissue of the host upon oral administration of CLA-producing bifidobacteria and lactobacilli was demonstrated in a murine model. Importantly, this implies a potential therapeutic role for probiotics in the treatment of certain metabolic and immunoinflammatory disorders. Such examples serve to highlight the potential contribution of pharmabiotic production to probiotic functionality in relation to human health maintenance. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. A Possible Role of Intestinal Microbiota in the Pathogenesis of Ankylosing Spondylitis

    Directory of Open Access Journals (Sweden)

    Lianjun Yang

    2016-12-01

    Full Text Available Ankylosing spondylitis (AS is a chronic inflammatory disease primarily affecting the sacroiliac joints and the spine, for which the pathogenesis is thought to be a result of the combination of host genetic factors and environmental triggers. However, the precise factors that determine one’s susceptibility to AS remain to be unraveled. With 100 trillion bacteria residing in the mammalian gut having established a symbiotic relation with their host influencing many aspects of host metabolism, physiology, and immunity, a growing body of evidence suggests that intestinal microbiota may play an important role in AS. Several mechanisms have been suggested to explain the potential role of the microbiome in the etiology of AS, such as alterations of intestinal permeability, stimulation of immune responses, and molecular mimicry. In this review, the existing evidence for the involvement of the microbiome in AS pathogenesis was discussed and the potential of intestinal microbiome-targeting strategies in the prevention and treatment of AS was evaluated.

  15. Intestinal Microbiota Containing Barnesiella Species Cures Vancomycin-Resistant Enterococcus faecium Colonization

    Science.gov (United States)

    Bucci, Vanni; Caballero, Silvia; Djukovic, Ana; Toussaint, Nora C.; Equinda, Michele; Lipuma, Lauren; Ling, Lilan; Gobourne, Asia; No, Daniel; Taur, Ying; Jenq, Robert R.; van den Brink, Marcel R. M.; Xavier, Joao B.

    2013-01-01

    Bacteria causing infections in hospitalized patients are increasingly antibiotic resistant. Classical infection control practices are only partially effective at preventing spread of antibiotic-resistant bacteria within hospitals. Because the density of intestinal colonization by the highly antibiotic-resistant bacterium vancomycin-resistant Enterococcus (VRE) can exceed 109 organisms per gram of feces, even optimally implemented hygiene protocols often fail. Decreasing the density of intestinal colonization, therefore, represents an important approach to limit VRE transmission. We demonstrate that reintroduction of a diverse intestinal microbiota to densely VRE-colonized mice eliminates VRE from the intestinal tract. While oxygen-tolerant members of the microbiota are ineffective at eliminating VRE, administration of obligate anaerobic commensal bacteria to mice results in a billionfold reduction in the density of intestinal VRE colonization. 16S rRNA gene sequence analysis of intestinal bacterial populations isolated from mice that cleared VRE following microbiota reconstitution revealed that recolonization with a microbiota that contains Barnesiella correlates with VRE elimination. Characterization of the fecal microbiota of patients undergoing allogeneic hematopoietic stem cell transplantation demonstrated that intestinal colonization with Barnesiella confers resistance to intestinal domination and bloodstream infection with VRE. Our studies indicate that obligate anaerobic bacteria belonging to the Barnesiella genus enable clearance of intestinal VRE colonization and may provide novel approaches to prevent the spread of highly antibiotic-resistant bacteria. PMID:23319552

  16. Interactions between bacteria and the gut mucosa: Do enteric neurotransmitters acting on the mucosal epithelium influence intestinal colonization or infection?

    Science.gov (United States)

    The intestinal epithelium is a critical barrier between the internal and external milieux of the mammalian host. Epithelial interactions between these two host environments have been shown to be modulated by several different, cross-communicating cell types residing in the gut mucosa. These include ...

  17. Detection of possible AI-2-mediated quorum sensing system in commensal intestinal bacteria.

    Science.gov (United States)

    Lukás, F; Gorenc, G; Kopecný, J

    2008-01-01

    The Vibrio harveyi strain BB170-autoinducer bioassay was used to detect possible quorum sensing autoinducer-2 molecule (AI-2) in culture fluids of commensal intestinal bacteria. Culture fluids of Bacteroides vulgatus, Clostridium proteoclasticum, Escherichia coli, Eubacterium rectale, Lachnospira multipara, Pseudobutyrivibrio ruminis, Roseburia intestinalis, Ruminococcus albus and Ruminococcus flavefaciens contained AI-2-like molecules. The PCR bands from some of the tested strains could be also amplified using primers designed for the luxS gene. These findings suggest that AI-2 is present in the gastrointestinal tract; however, it has not yet been proved whether it is used for bacterial cell-to-cell communication.

  18. G protein-coupled receptor 120 (GPR120) transcription in intestinal epithelial cells is significantly affected by bacteria belonging to the Bacteroides, Proteobacteria, and Firmicutes phyla

    DEFF Research Database (Denmark)

    Fredborg, Marlene; Theil, Peter Kappel; Jensen, Bent Borg

    2012-01-01

    RNA abundance. Supernatants of the 12 bacteria were added to differentiated Caco-2 intestinal epithelial cells cultured on filter inserts in concentrations corresponding to a cell:bacteria ratio of 1:200. After 4 h of incubation, changes in cellular mRNA of GLP-1 and GPR120 by bacterial supernatant were...

  19. Multiple-unit tablet of probiotic bacteria for improved storage stability, acid tolerability, and in vivo intestinal protective effect

    Directory of Open Access Journals (Sweden)

    Park HJ

    2016-04-01

    Full Text Available Hee Jun Park,1 Ga Hyeon Lee,1 Joonho Jun,1 Miwon Son,1 Myung Joo Kang2 1Dong-A Pharmaceutical Co. Ltd., Yongin, Gyeonggi, 2College of Pharmacy, Dankook University, Cheonan, Chungnam, Korea Abstract: The aim of this study was to formulate probiotics-loaded pellets in a tablet form to improve storage stability, acid tolerability, and in vivo intestinal protective effect. Bacteria-loaded pellets primarily prepared with hydroxypropyl methylcellulose acetate succinate were compressed into tablets with highly compressible excipients and optimized for flow properties, hardness, and disintegration time. The optimized probiotic tablet consisted of enteric-coated pellets (335 mg, microcrystalline cellulose (Avicel PH102, 37.5 mg, and porous calcium silicate (25 mg and allowed whole survival of living bacteria during the compaction process with sufficient tablet hardness (13 kp and disintegration time (14 minutes. The multiple-unit tablet showed remarkably higher storage stability under ambient conditions (25°C/60% relative humidity over 6 months and resistance to acidic medium compared to uncoated strains or pellets. Repeated intake of this multiple-unit tablet significantly lowered plasma level of endotoxin, a pathogenic material, compared to repeated intake of bare probiotics or marketed products in rats. These results, therefore, suggest that the multiple-unit tablet is advantageous to better bacterial viability and gain the beneficial effects on the gut flora, including the improvement of intestinal barrier function. Keywords: probiotics, multiple-unit tablet, bacterial viability, acid resistance, intestinal barrier function

  20. Effect of lactic acid bacteria on the intestinal production of lactate and short-chain fatty acids, and the absorption of lactose

    DEFF Research Database (Denmark)

    Hove, H; Nordgaard-Andersen, I; Mortensen, P B

    1994-01-01

    (10) cells), but did not influence the concentrations and productions of DL-lactate and short-chain fatty acids in the ileostomic outputs and incubates. Large amounts of ingested lactic acid bacteria (4.2 x 10(10) cells) did not ameliorate lactose malabsorption measured by the breath-hydrogen test in 12...... lactose malabsorbers. This study shows that ingested lactic acid bacteria are indeed present in the colon, but it does not support the theory that they change the pattern of colonic fermentation or the degree of intestinal lactose malabsorption....

  1. Intestinal Parasitic Infections among Long-Term-Residents and Settled Immigrants in Qatar in the Period 2005 to 2011

    Science.gov (United States)

    Abu-Madi, Marawan A.; Behnke, Jerzy M.; Doiphode, Sanjay H.

    2013-01-01

    The expanding economy of Qatar in the last two decades has attracted immigrants, often from countries with poor socio-economic levels. Many arrive with patent intestinal parasitic infections, and recent analyses have indicated consistently rising trends in the prevalence of some infections. Here, we examined 18,563 hospital records of subjects in Qatar seeking medical assistance for a variety of ailments, combining data from 2009 to 2011 with the earlier dataset from 2005 to 2008 to enable trends to be identified across a 7-year period. We found that 8.6% were infected with one or more species of parasites, however in contrast to the earlier period (2005–2008), in the latter 3 years there were falling trends of prevalence providing some optimism that parasitic infections among the resident immigrants have begun to decline. We identified also geographic regions from which resident workers still maintain a relatively high prevalence of helminth infections despite their long-term residence in Qatar. PMID:23478576

  2. Lactic Acid Bacteria Protects Caenorhabditis elegans from Toxicity of Graphene Oxide by Maintaining Normal Intestinal Permeability under different Genetic Backgrounds

    Science.gov (United States)

    Zhao, Yunli; Yu, Xiaoming; Jia, Ruhan; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2015-11-01

    Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO.

  3. The use of lactic acid bacteria isolated from intestinal tract of Nile tilapia (Oreochromis niloticus, as growth promoters in fish fed low protein diets

    Directory of Open Access Journals (Sweden)

    Maurilio Lara-Flores

    2013-07-01

    Full Text Available In this study, the effect as growth promoter of five lactic acid strains (Enterococcus faecium, E. durans, Leuconostoc sp., Streptococcus sp. I and Streptococcus sp. II, isolated from intestinal tract of Nile tilapia (Oreochromis niloticus, was evaluated. Eight isocaloric diets were formulated: one containing 40% of protein as positive control, and seven with 27% protein. Five diets with 27% protein were supplemented with one of the isolated lactic acid bacteria in a concentration of 2.5x10(6 cfu g-1 of diet. A commercial probiotic based on S. faecium and Lactobacillus acidophilus was added at the same concentration to one 27% protein diet as a comparative diet, and the last diet was not supplemented with bacteria (negative control. Tilapia fry (280 mg basal weight stocked in 15 L aquaria at a density of two per liter were fed for 12 weeks with experimental diets. Results showed that fry fed with native bacteria supplemented diets presented significantly higher growth and feeding performance than those fed with control diet. Treatment with Streptococcus sp. I isolated from the intestine of Tilapia produced the best growth and feeding efficiency, suggesting that this bacteria is an appropriate native growth promoter.

  4. Communication between B-Cells and Microbiota for the Maintenance of Intestinal Homeostasis

    Directory of Open Access Journals (Sweden)

    Yuying Liu

    2013-10-01

    Full Text Available The human intestine is populated with an extremely dense and diverse bacterial community. Commensal bacteria act as an important antigenic stimulus producing the maturation of gut-associated lymphoid tissue (GALT. The production of immunoglobulin (Ig A by B-cells in the GALT is one of the immune responses following intestinal colonization of bacteria. The switch of B-cells from IgM to IgA-producing cells in the Peyer’s patches and neighboring lamina propria proceeds by T-cell-dependent and T-cell-independent mechanisms. Several grams of secretory IgA (SIgA are released into the intestine each day. SIgA serves as a first-line of defense in protecting the intestinal epithelium from enteric toxins and pathogenic microorganisms. SIgA has a capacity to directly quench bacterial virulence factors, influence the composition of the intestinal microbiota, and promote the transportation of antigens across the intestinal epithelium to GALT and down-regulate proinflammatory responses associated with the uptake of highly pathogenic bacteria and potentially allergenic antigens. This review summarizes the reciprocal interactions between intestinal B cells and bacteria, specifically, the formation of IgA in the gut, the role of intestinal IgA in the regulation of bacterial communities and the maintenance of intestinal homeostasis, and the effects of probiotics on IgA levels in the gastrointestinal tract.

  5. Gastric acid reduction leads to an alteration in lower intestinal microflora

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Takayuki [Department of Gastroenterology, Wakayama Medical University, 811-1 Kimiidera, Wakayama-city, Wakayama 641-0012 (Japan); Matsuki, Takahiro [Yakult Central Institute for Microbiological Research, Tokyo (Japan); Oka, Masashi; Utsunomiya, Hirotoshi [Department of Gastroenterology, Wakayama Medical University, 811-1 Kimiidera, Wakayama-city, Wakayama 641-0012 (Japan); Inada, Kenichi [First Department of Pathology, Fujita Health University School of Medicine, Aichi (Japan); Magari, Hirohito; Inoue, Izumi; Maekita, Takao; Ueda, Kazuki; Enomoto, Shotaro; Iguchi, Mikitaka; Yanaoka, Kimihiko; Tamai, Hideyuki [Department of Gastroenterology, Wakayama Medical University, 811-1 Kimiidera, Wakayama-city, Wakayama 641-0012 (Japan); Akimoto, Shigeru [Department of Microbiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama-city, Wakayama 641-0012 (Japan); Nomoto, Koji; Tanaka, Ryuichiro [Yakult Central Institute for Microbiological Research, Tokyo (Japan); Ichinose, Masao, E-mail: ichinose@wakayama-med.ac.jp [Department of Gastroenterology, Wakayama Medical University, 811-1 Kimiidera, Wakayama-city, Wakayama 641-0012 (Japan)

    2009-04-17

    To clarify the alterations in lower intestinal microflora induced by gastric acid reduction, the dynamics of 12 major genera or groups of bacteria comprising the microflora in feces and colonic contents were examined by quantitative real-time PCR in proton pump inhibitor-treated rats and in asymptomatic human subjects with hypochlorhydria. In both rat and human experiments, most genera or groups of intestinal microflora (facultative and obligate anaerobes) proliferated by gastric acid reduction, and marked and significant increases in the Lactobacilli group and Veillonella, oropharyngeal bacteria, were observed. In rats, potent gastric acid inhibition led to a marked and significant increase of intestinal bacteria, including the Bacteroidesfragilis group, while Bifidobacterium, a beneficial bacterial species, remained at a constant level. These results strongly indicate that the gastric acid barrier not only controls the colonization and growth of oropharyngeal bacteria, but also regulates the population and composition of lower intestinal microflora.

  6. Gastric acid reduction leads to an alteration in lower intestinal microflora

    International Nuclear Information System (INIS)

    Kanno, Takayuki; Matsuki, Takahiro; Oka, Masashi; Utsunomiya, Hirotoshi; Inada, Kenichi; Magari, Hirohito; Inoue, Izumi; Maekita, Takao; Ueda, Kazuki; Enomoto, Shotaro; Iguchi, Mikitaka; Yanaoka, Kimihiko; Tamai, Hideyuki; Akimoto, Shigeru; Nomoto, Koji; Tanaka, Ryuichiro; Ichinose, Masao

    2009-01-01

    To clarify the alterations in lower intestinal microflora induced by gastric acid reduction, the dynamics of 12 major genera or groups of bacteria comprising the microflora in feces and colonic contents were examined by quantitative real-time PCR in proton pump inhibitor-treated rats and in asymptomatic human subjects with hypochlorhydria. In both rat and human experiments, most genera or groups of intestinal microflora (facultative and obligate anaerobes) proliferated by gastric acid reduction, and marked and significant increases in the Lactobacilli group and Veillonella, oropharyngeal bacteria, were observed. In rats, potent gastric acid inhibition led to a marked and significant increase of intestinal bacteria, including the Bacteroidesfragilis group, while Bifidobacterium, a beneficial bacterial species, remained at a constant level. These results strongly indicate that the gastric acid barrier not only controls the colonization and growth of oropharyngeal bacteria, but also regulates the population and composition of lower intestinal microflora.

  7. Diversity and functions of intestinal mononuclear phagocytes

    DEFF Research Database (Denmark)

    Joeris, Thorsten; Müller-Luda, K; Agace, William Winston

    2017-01-01

    The intestinal lamina propria (LP) contains a diverse array of mononuclear phagocyte (MNP) subsets, including conventional dendritic cells (cDC), monocytes and tissue-resident macrophages (mφ) that collectively play an essential role in mucosal homeostasis, infection and inflammation. In the curr......The intestinal lamina propria (LP) contains a diverse array of mononuclear phagocyte (MNP) subsets, including conventional dendritic cells (cDC), monocytes and tissue-resident macrophages (mφ) that collectively play an essential role in mucosal homeostasis, infection and inflammation....... In the current review we discuss the function of intestinal cDC and monocyte-derived MNP, highlighting how these subsets play several non-redundant roles in the regulation of intestinal immune responses. While much remains to be learnt, recent findings also underline how the various populations of MNP adapt...

  8. Ulcerative enteritis in Homarus americanus: case report and molecular characterization of intestinal aerobic bacteria of apparently healthy lobsters in live storage.

    Science.gov (United States)

    Battison, Andrea L; Després, Béatrice M; Greenwood, Spencer J

    2008-10-01

    An intermoult male American lobster, Homarus americanus, with severe intestinal lesions was encountered while collecting samples of aerobic intestinal bacteria from lobsters held in an artificial sea-water recirculation aquarium system. Grossly, the intestine was firm, thickened, and white. Histologic examination revealed a severe, diffuse, ulcerative enteritis which spared the chitin-lined colon, somewhat similar to hemocytic enteritis of shrimp. The bacterial isolates from this lobster were compared to 11 other lobsters lacking gross intestinal lesions. Two organisms, one identified as Vibrio sp. and another most similar to an uncultured proteobacterium (98.9%), clustering with Rhanella and Serratia species using 16S rDNA PCR, were isolated from the intestines of the 11, grossly normal, lobsters and the affected lobster. An additional two intestinal isolates were cultured only from the lobster with ulcerative enteritis. One, a Flavobacterium, similar to Lutibacter litoralis (99.3%), possibly represented a previously described commensal of the distal intestine. The second, a Vibrio sp., was unique to the affected animal. While the etiology of the ulcerative enteritis remains undetermined, this report represents the first description of gross and histologic findings in H. americanus of a condition which has morphologic similarities to hemocytic enteritis of shrimp. An additional observation was a decrease in the number of intestinal isolates recovered from the 11 apparently healthy lobsters compared to that previously reported for recently harvested lobster. More comprehensive studies of the relationship between the health of lobsters, gut microbial flora and the husbandry and environment maintained within holding units are warranted.

  9. Isolation and Flow Cytometry Analysis of Innate Lymphoid Cells from the Intestinal Lamina Propria.

    Science.gov (United States)

    Gronke, Konrad; Kofoed-Nielsen, Michael; Diefenbach, Andreas

    2017-01-01

    The intestinal mucosa constitutes the biggest surface area of the body. It is constantly challenged by bacteria, commensal and pathogenic, protozoa, and food-derived irritants. In order to maintain homeostasis, a complex network of signaling circuits has evolved that includes contributions of immune cells. In recent years a subset of lymphocytes, which belong to the innate immune system, has caught particular attention. These so-called innate lymphoid cells (ILC) reside within the lamina propria of the small and large intestines and rapidly respond to environmental challenges. They provide immunity to various types of infections but may also contribute to organ homeostasis as they produce factors acting on epithelial cells thereby enhancing barrier integrity. Here, we describe how these cells can be isolated from their environment and provide an in-depth protocol how to visualize the various ILC subsets by flow cytometry.

  10. Intestinal carriage of multidrug-resistant bacteria among healthcare professionals in Germany

    Directory of Open Access Journals (Sweden)

    Jozsa, Katalin

    2017-11-01

    Full Text Available Healthcare professionals (HCP might be at increased risk of acquisition of multidrug-resistant bacteria (MDRB, i.e., methillicin-resistant (MRSA, vancomycin-resistant enterococci (VRE, and multidrug-resistant gram-negative bacteria (MDRGN and could be an unidentified source of MDRB transmission.The aim of this study was to determine the prevalence as well as risk factors of MDRB colonization among HCP.HCP (n=107 taking part in an antibiotic stewardship program, were voluntarily recruited to perform a rectal swab and to fill in a questionnaire to identify risk factors of MDRB carriage, i.e. being physician, gender, travel abroad within the previous 12 months, vegetarianism, regular consumption of raw meat, contact to domestic animals, household members with contact to livestock, work or fellowship abroad, as well as medical treatment abroad and antibiotic therapy within the previous 12 months. Selective solid media were used to determine the colonization rate with MRSA, VRE and MDRGN. MDRGN were further characterized by molecular analysis of underlying β-lactamases. None of the participants had an intestinal colonization with MRSA or VRE. 3.7% of the participants were colonized with extended-spectrum beta-lactamase (ESBL-producing , predominantly type. Neither additional flouroquinolone resistance nor carbapenem resistance was detected in any of these isolates. No risk factors were identified to have a significant impact of MDRB carriage among HCP.A colonization rate of 3.7% with ESBL-producing is of interest, but comparing it to previously published data with similar colonization rates in the healthy population in the same geographic area, it is probably less an occupational risk.

  11. Role of Intestinal Microbiota in Ulcerative Colitis – Effects of Novel Carbohydrate Preparations

    DEFF Research Database (Denmark)

    Vigsnæs, Louise Kristine

    2011-01-01

    such as protection against pathogens, induction of immune regulatory functions and nutrient processing. Hence, the composition of commensal bacteria is important to preserve colonic health. Ulcerative colitis (UC) is an inflammatory bowel disease and dysbiosis in the composition of commensals has been reported...... the colonic mucus are suggested to play an important role in stimulating regulatory immune responses compared to luminal bacteria, since they reside closer to the intestinal epithelial cells. The ability of fecal microbiota derived from healthy subjects and UC patients to colonize mucus was examined...... in a study of this thesis to elucidate, if the adhesion capacity is different depending on disease state. For this purpose, an in vitro dynamic gut model was used. Several bacterial taxa from both lumen and mucus were quantified using qPCR. The results revealed that the bacterial community of the mucus...

  12. Kiwifruit (Actinidia deliciosa changes intestinal microbial profile

    Directory of Open Access Journals (Sweden)

    Yuan Kun Lee

    2012-06-01

    Full Text Available Background: Kiwifruit is high in pectic polysaccharides and dietary fiber. This study aimed to find out how the ingestion of kiwifruit will affect intestinal microbiota populations, namely Lactobacillus, Bacteroides, Clostridium, Bifidobacterium, and Enterococcus. Methods: Freeze dried kiwifruit (equivalent of two fresh kiwifruits was given to each of the six subjects daily for four days. Faecal samples were collected before, during and after kiwifruit consumption. The faecal bacteria were enumerated by qPCR and RT qPCR methods. Results: The effect of the kiwifruit on intestinal microbiota profile varied between individuals; in general, the kiwifruit demonstrated a prebiotic effect of promoting the content of faecal lactobacilli and bifidobacteria (as compared to the baselines of the same individual before consumption for as long as the fruit was consumed. The effect was however transient, the levels of the two bacteria returned near to that of the baselines upon cessation of consumption. Conclusion: Kiwifruit is a prebiotic in selectively enhancing the growth of intestinal lactic acid bacteria.

  13. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens.

    Science.gov (United States)

    Rehman, Habib Ur; Vahjen, Wilfried; Awad, Wageha A; Zentek, Jürgen

    2007-10-01

    The gastrointestinal tract is a dynamic ecosystem containing a complex microbial community. In this paper, the indigenous intestinal bacteria and the microbial fermentation profile particularly short chain fatty acids (SCFA), lactate, and ammonia concentrations are reviewed. The intestinal bacterial composition changes with age. The bacterial density of the small intestine increases with age and comprises of lactobacilli, streptococci, enterobacteria, fusobacteria and eubacteria. Strict anaerobes (anaerobic gram-positive cocci, Eubacterium spp., Clostridium spp., Lactobacillus spp., Fusobacterium spp. and Bacteroides) are predominating caecal bacteria in young broilers. Data from culture-based studies showed that bifidobacteria could not be isolated from young birds, but were recovered from four-week-old broilers. Caecal lactobacilli accounted for 1.5-24% of the caecal bacteria. Gene sequencing of caecal DNA extracts showed that the majority of bacteria belonged to Clostridiaceae. Intestinal bacterial community is influenced by the dietary ingredients, nutrient levels and physical structure of feed. SCFA and other metabolic products are affected by diet formulation and age. Additional studies are required to know the bacterial metabolic activities together with the community analysis of the intestinal bacteria. Feed composition and processing have great potential to influence the activities of intestinal bacteria towards a desired direction in order to support animal health, well-being and microbial safety of broiler meat.

  14. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice

    International Nuclear Information System (INIS)

    Zhang, Youcai; Limaye, Pallavi B.; Renaud, Helen J.; Klaassen, Curtis D.

    2014-01-01

    Antibiotic treatments have been used to modulate intestinal bacteria and investigate the role of intestinal bacteria on bile acid (BA) homeostasis. However, knowledge on which intestinal bacteria and bile acids are modified by antibiotics is limited. In the present study, mice were administered various antibiotics, 47 of the most abundant bacterial species in intestine, as well as individual BAs in plasma, liver, and intestine were quantified. Compared to the two antibiotic combinations (vancomycin + imipenem and cephalothin + neomycin), the three single antibiotics (metronidazole, ciprofloxacin and aztreonam) have less effect on intestinal bacterial profiles, and thus on host BA profiles and mRNA expression of genes that are important for BA homeostasis. The two antibiotic combinations decreased the ratio of Firmicutes to Bacteroidetes in intestine, as well as most secondary BAs in serum, liver and intestine. Additionally, the two antibiotic combinations significantly increased mRNA of the hepatic BA uptake transporters (Ntcp and Oatp1b2) and canalicular BA efflux transporters (Bsep and Mrp2), but decreased mRNA of the hepatic BA synthetic enzyme Cyp8b1, suggesting an elevated enterohepatic circulation of BAs. Interestingly, the two antibiotic combinations tended to have opposite effect on the mRNAs of most intestinal genes, which tended to be inhibited by vancomycin + imipenem but stimulated by cephalothin + neomycin. To conclude, the present study clearly shows that various antibiotics have distinct effects on modulating intestinal bacteria and host BA metabolism. - Highlights: • Various antibiotics have different effects on intestinal bacteria. • Antibiotics alter bile acid composition in mouse liver and intestine. • Antibiotics influence genes involved in bile acid homeostasis. • Clostridia appear to be important for secondary bile acid formation

  15. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Youcai; Limaye, Pallavi B.; Renaud, Helen J.; Klaassen, Curtis D., E-mail: curtisklaassenphd@gmail.com

    2014-06-01

    Antibiotic treatments have been used to modulate intestinal bacteria and investigate the role of intestinal bacteria on bile acid (BA) homeostasis. However, knowledge on which intestinal bacteria and bile acids are modified by antibiotics is limited. In the present study, mice were administered various antibiotics, 47 of the most abundant bacterial species in intestine, as well as individual BAs in plasma, liver, and intestine were quantified. Compared to the two antibiotic combinations (vancomycin + imipenem and cephalothin + neomycin), the three single antibiotics (metronidazole, ciprofloxacin and aztreonam) have less effect on intestinal bacterial profiles, and thus on host BA profiles and mRNA expression of genes that are important for BA homeostasis. The two antibiotic combinations decreased the ratio of Firmicutes to Bacteroidetes in intestine, as well as most secondary BAs in serum, liver and intestine. Additionally, the two antibiotic combinations significantly increased mRNA of the hepatic BA uptake transporters (Ntcp and Oatp1b2) and canalicular BA efflux transporters (Bsep and Mrp2), but decreased mRNA of the hepatic BA synthetic enzyme Cyp8b1, suggesting an elevated enterohepatic circulation of BAs. Interestingly, the two antibiotic combinations tended to have opposite effect on the mRNAs of most intestinal genes, which tended to be inhibited by vancomycin + imipenem but stimulated by cephalothin + neomycin. To conclude, the present study clearly shows that various antibiotics have distinct effects on modulating intestinal bacteria and host BA metabolism. - Highlights: • Various antibiotics have different effects on intestinal bacteria. • Antibiotics alter bile acid composition in mouse liver and intestine. • Antibiotics influence genes involved in bile acid homeostasis. • Clostridia appear to be important for secondary bile acid formation.

  16. Changing trends in intestinal parasitic infections among long-term-residents and settled immigrants in Qatar

    Directory of Open Access Journals (Sweden)

    Doiphode Sanjay H

    2010-10-01

    Full Text Available Abstract Background The rapid socio-economic development in Qatar in the last two decades has encouraged a mass influx of immigrant workers, the majority of whom originate from countries with low socio-economic levels, inadequate medical care and many are known to carry patent intestinal helminth and protozoan infections on arrival in Qatar. Some eventually acquire residency status but little is known about whether they continue to harbour infections. Methods We examined 9208 hospital records of stool samples that had been analysed for the presence of intestinal helminth and protozoan ova/cysts, over the period 2005-2008, of subjects from 28 nationalities, but resident in Qatar and therefore not recent arrivals in the country. Results Overall 10.2% of subjects were infected with at least one species, 2.6% with helminths and 8.0% with protozoan species. Although hookworms, Ascaris lumbricoides, Trichuris trichiura and Hymenolepis nana were observed, the majority of helminth infections (69% were caused by hookworms, and these were largely aggregated among 20.0-39.9 year-old male subjects from Nepal. The remaining cases of helminth infection were mostly among Asian immigrants. Protozoan infections were more uniformly spread across immigrants from different regions when prevalence was calculated on combined data, but this disguised three quite contrasting underlying patterns for 3 taxa of intestinal protozoa. Blastocystis hominis, Giardia duodenalis and non-pathogenic amoebae were all acquired in childhood, but whereas prevalence of B. hominis rose to a plateau and then even further among the elderly, prevalence of G. duodenalis fell markedly in children aged 10 and older, and stayed low (Entamoeba coli, E. hartmanni, Endolimax nana and Iodamoeba buetschlii peaked in the 30.0-39.9 age group and only then dropped to very low values among the oldest subjects examined. A worrying trend in respect of both helminth and protozoan parasites was the

  17. Potential Role of Probiotics in Mechanism of Intestinal Immunity

    Directory of Open Access Journals (Sweden)

    Imran Rashid Rajput and Wei Fen Li*

    2012-06-01

    Full Text Available Probiotics are nonpathogenic bacteria exert a constructive influence on health or physiology of the host. Effect of probiotics in the intestinal defense against variety of diseases is well known. The probiotics are involved in the mechanism of intestinal defense, support as antagonist against pathogens, improve intestinal epithelial layer and boost the innate as well as adaptive immunity. However these responses are also exerted by intestinal components. The intestinal components as well as probiotics play a reciprocal role to enhance the immune response of the individual. The possibilities of mechanism of action include the stimulation of epithelial cells, activation of dendritic cells via toll-like receptors (TLRs, conversely produce cytokines. These observations reviewed together advocate that specific immunomodulatory properties of probiotic bacteria should be focusing on mechanism of action via antigen presenting cells (APC.

  18. Oral Administration of Probiotics Increases Paneth Cells and Intestinal Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Silvia I. Cazorla

    2018-04-01

    Full Text Available The huge amount of intestinal bacteria represents a continuing threat to the intestinal barrier. To meet this challenge, gut epithelial cells produce antimicrobial peptides (AMP that act at the forefront of innate immunity. We explore whether this antimicrobial activity and Paneth cells, the main intestinal cell responsible of AMP production, are influenced by probiotics administration, to avoid the imbalance of intestinal microbiota and preserve intestinal barrier. Administration of Lactobacillus casei CRL 431 (Lc 431 and L. paracasei CNCM I-1518 (Lp 1518 to 42 days old mice, increases the number of Paneth cells on small intestine, and the antimicrobial activity against the pathogens Staphylococcus aureus and Salmonella Typhimurium in the intestinal fluids. Specifically, strong damage of the bacterial cell with leakage of cytoplasmic content, and cellular fragmentation were observed in S. Typhimurium and S. aureus. Even more important, probiotics increase the antimicrobial activity of the intestinal fluids at the different ages, from weaning (21 days old to old age (180 days old. Intestinal antimicrobial activity stimulated by oral probiotics, do not influence significantly the composition of total anaerobic bacteria, lactobacilli and enterobacteria in the large intestine, at any age analyzed. This result, together with the antimicrobial activity observed against the same probiotic bacteria; endorse the regular consumption of probiotics without adverse effect on the intestinal homeostasis in healthy individuals. We demonstrate that oral probiotics increase intestinal antimicrobial activity and Paneth cells in order to strengthen epithelial barrier against pathogens. This effect would be another important mechanism by which probiotics protect the host mainly against infectious diseases.

  19. Effects of BmCPV Infection on Silkworm Bombyx mori Intestinal Bacteria.

    Directory of Open Access Journals (Sweden)

    Zhenli Sun

    Full Text Available The gut microbiota has a crucial role in the growth, development and environmental adaptation in the host insect. The objective of our work was to investigate the microbiota of the healthy silkworm Bombyx mori gut and changes after the infection of B. mori cypovirus (BmCPV. Intestinal contents of the infected and healthy larvae of B. mori of fifth instar were collected at 24, 72 and 144 h post infection with BmCPV. The gut bacteria were analyzed by pyrosequencing of the 16S rRNA gene. 147(135 and 113(103 genera were found in the gut content of the healthy control female (male larvae and BmCPV-infected female (male larvae, respectively. In general, the microbial communities in the gut content of healthy larvae were dominated by Enterococcus, Delftia, Pelomonas, Ralstonia and Staphylococcus, however the abundance change of each genus was depended on the developmental stage and gender. Microbial diversity reached minimum at 144 h of fifth instar larvae. The abundance of Enterococcus in the females was substantially lower and the abundance of Delftia, Aurantimonas and Staphylococcus was substantially higher compared to the males. Bacterial diversity in the intestinal contents decreased after post infection with BmCPV, whereas the abundance of both Enterococcus and Staphylococcus which belongs to Gram-positive were increased. Therefore, our findings suggested that observed changes in relative abundance was related to the immune response of silkworm to BmCPV infection. Relevance analysis of plenty of the predominant genera showed the abundance of the Enterococcus genus was in negative correlation with the abundance of the most predominant genera. These results provided insight into the relationship between the gut microbiota and development of the BmCPV-infected silkworm.

  20. Determination of lactic acid bacteria viability in the small intestine of catfish (Pangasius Djambal) by using the 32P radioisotope

    International Nuclear Information System (INIS)

    Sugoro, I.; Citraresmini, A.; Murni, A.P.; Fairuz, D.

    2015-01-01

    The viability of probiotics is important to be determined, as is its probiotics potency in the small intestine of fish. The result can be used as a basis to determine the feeding frequency of the probiotics to the fish. The aim of this study is to gain information about the viability of lactic acid bacteria (LAB) in the small intestine of fish by using the 32 P isotope technique. Catfish (Pangasius djambal) was used as a test fish, and the LAB with the code of P2.1 PTB was the subject of the experiment. Before its viability was tested, the LAB had been labelled with radioisotope 32 P, then mixed into catfish feed. Its viability could be determined by counting the activity of 32 P. The results showed that the percentage of LAB viability in the small intestine of catfish declined until day 7. The percentage of LAB viability was decreased at an amount of 30% at day 3. Based on this result, the feeding frequency of LAB P2.1 PTB is every 3 days. (author)

  1. Effects of prebiotics, probiotics, and their combination on growth performance, small intestine morphology, and resident Lactobacillus of male broilers.

    Science.gov (United States)

    Wang, X; Farnell, Y Z; Peebles, E D; Kiess, A S; Wamsley, K G S; Zhai, W

    2016-06-01

    Effects of commercial antimicrobials and the individual and combinational use of commercial prebiotics and probiotics in feed from d zero to 41 on the growth performance, small intestine size, jejunal morphology, and ileal resident bacteria population of broiler chickens were determined. A total of 1,040 one-day-old male Ross × Ross 708 broilers were randomly distributed to 80 floor pens (5 treatments, 16 replications per treatment, 13 chicks per pen). Five dietary treatments were employed: 1) a corn soybean-meal basal diet (served as a negative control diet, NC); 2) a basal diet supplemented with a commercial prebiotic product (Pre); 3) a basal diet supplemented with a probiotic product containing Bacillus subtilis spores (Pro); 4) a basal diet supplemented with both prebiotic and probiotic products (Pre + Pro); and 5) a basal diet supplemented with commercial antimicrobials (served as a positive control diet, PC). At d 14, Pre diets improved the relative level of Lactobacillus in ileal mucosa as compared to NC, Pro, or PC diets (P = 0.045) without improving broiler BW. Broilers fed PC diets exhibited the highest BW gain from d 15 to 27, the lowest duodenum, jejunum, and ileum relative weights as percentage of BW at d 27, and the highest breast weight at d 42 (P = 0.026, 0.035, 0.002, 0.025, and 0.035, respectively). Broilers fed Pro or Pre + Pro diets exhibited higher BW gain from d 28 to 41 (P = 0.005) and higher overall BW gain from d zero to 41 (P = 0.039) than those fed other diets. Dietary treatments did not affect jejunal morphology or ileal resident Escherichia coli level at any age. From our results, including spores of Bacillus subtilis in feed may stimulate growth at a later age and may facilitate broilers in reaching their target weight sooner. Therefore, probiotics are recommended as potential alternatives to antimicrobials in chicken diets, especially in grower and finisher feed. © 2016 Poultry Science Association Inc.

  2. Diversity, Biocontrol, and Plant Growth Promoting Abilities of Xylem Residing Bacteria from Solanaceous Crops

    Directory of Open Access Journals (Sweden)

    Gauri A. Achari

    2014-01-01

    Full Text Available Eggplant (Solanum melongena L. is one of the solanaceous crops of economic and cultural importance and is widely cultivated in the state of Goa, India. Eggplant cultivation is severely affected by bacterial wilt caused by Ralstonia solanacearum that colonizes the xylem tissue. In this study, 167 bacteria were isolated from the xylem of healthy eggplant, chilli, and Solanum torvum Sw. by vacuum infiltration and maceration. Amplified rDNA restriction analysis (ARDRA grouped these xylem residing bacteria (XRB into 38 haplotypes. Twenty-eight strains inhibited growth of R. solanacearum and produced volatile and diffusible antagonistic compounds and plant growth promoting substances in vitro. Antagonistic strains XB86, XB169, XB177, and XB200 recorded a biocontrol efficacy greater than 85% against BW and exhibited 12%–22 % increase in shoot length in eggplant in the greenhouse screening. 16S rRNA based identification revealed the presence of 23 different bacterial genera. XRB with high biocontrol and plant growth promoting activities were identified as strains of Staphylococcus sp., Bacillus sp., Streptomyces sp., Enterobacter sp., and Agrobacterium sp. This study is the first report on identity of bacteria from the xylem of solanaceous crops having traits useful in cultivation of eggplant.

  3. Enteric Virome Sensing—Its Role in Intestinal Homeostasis and Immunity

    Directory of Open Access Journals (Sweden)

    Rebecca N. Metzger

    2018-03-01

    Full Text Available Pattern recognition receptors (PRRs sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis.

  4. Enteric Virome Sensing-Its Role in Intestinal Homeostasis and Immunity.

    Science.gov (United States)

    Metzger, Rebecca N; Krug, Anne B; Eisenächer, Katharina

    2018-03-23

    Pattern recognition receptors (PRRs) sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis.

  5. Supplementation of a Blend of Beneficial Bacteria and Antibodies on Growth Performance, Intestinal Mucosa Morphology and Right Heart Failure of Japanese Quail (Coturnix coturnix japonica

    Directory of Open Access Journals (Sweden)

    Mohammad Hasan Mehraei Hamzekolaei

    2017-05-01

    Full Text Available Background: Early nutrition of chicks with beneficial bacteria might help in occupying the inner surface of the intestinal tract. Interference of pathogens in intestinal microbiota is well known as barrier effect, bacterial interference, and competitive exclusion. Objectives: It was hypothesized that competitive exclusion in Japanese quails with a blend of beneficial bacteria (Aquablend Avian® probiotic would enhance quails’ growth performance and intestinal mucosal morphology. Furthermore, the study was performed at 2100 m above sea level at Shahrekord University, so another hypothesis was the capability of the probiotic for inhibiting right heart failure. Materials and Methods: One hundred fifty-six Japanese quails were divided into 4 groups: 2 groups (Aquablend and control at standard environmental temperature and 2 (Aqua-stress and Cont-stress at cold-hypoxic environmental situation. Aquablend groups received the probiotic in the first 3 days of life in drinking water (0.5 g/100 birds/day. Results: Feed conversion ratio (FCR was significantly reduced at the end of the experiment (day 35 in both Aquablend and aqua-stress groups compared to control and cont-stress groups, respectively (P 0.05. Cont-stress group had higher RV: TV ratio (0.28 and heterophil: lymphocyte (H: L ratio (1.22 than aqua-stress group: (0.25 and (1.20, respectively (P > 0.05. Data regarding to intestinal mucosa morphology was controversial but the probiotic was able to elevate duodenum villi surface (P < 0.05 and also jejunum and ileum lamina propria thickness. Conclusion: Obtained data suggests that addition of Aquablend Avian® probiotic in the first 3 days of life may improve growth performance and some intestinal mucosa characteristics of Japanese quails. Moreover, the probiotic might reduce right heart failure and stress induced by cold-hypoxic situation.

  6. The intestinal complement system in inflammatory bowel disease: Shaping intestinal barrier function.

    Science.gov (United States)

    Sina, Christian; Kemper, Claudia; Derer, Stefanie

    2018-06-01

    The complement system is part of innate sensor and effector systems such as the Toll-like receptors (TLRs). It recognizes and quickly systemically and/or locally respond to microbial-associated molecular patterns (MAMPs) with a tailored defense reaction. MAMP recognition by intestinal epithelial cells (IECs) and appropriate immune responses are of major importance for the maintenance of intestinal barrier function. Enterocytes highly express various complement components that are suggested to be pivotal for proper IEC function. Appropriate activation of the intestinal complement system seems to play an important role in the resolution of chronic intestinal inflammation, while over-activation and/or dysregulation may worsen intestinal inflammation. Mice deficient for single complement components suffer from enhanced intestinal inflammation mimicking the phenotype of patients with chronic inflammatory bowel disease (IBD) such as Crohn's disease (CD) or ulcerative colitis (UC). However, the mechanisms leading to complement expression in IECs seem to differ markedly between UC and CD patients. Hence, how IECs, intestinal bacteria and epithelial cell expressed complement components interact in the course of IBD still remains to be mostly elucidated to define potential unique patterns contributing to the distinct subtypes of intestinal inflammation observed in CD and UC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The bacteriology of the small intestinal mucosa of free-living reindeer

    Directory of Open Access Journals (Sweden)

    Wenche Sørmo

    1994-12-01

    Full Text Available Bacteria in close associaton with the intestinal mucosa are thought to protect the mucosa from pathogenic microorganisms. The pH of the small intestinal mucosa and the viable populations of aerobic and anaerobic bacteria associated with the proximal and distal jejunal mucosa, were measured in four free-living reindeer in winter. The anaerobic bacterial populations were characterized. The median pH of the mucosa of the duodenum was 6.6 (n=4 at point 0.2 m from the pyloric sphincter. The mucosal pH increased along the length of the intestine to 8.3 at 14 m and then decreased to 7.9 at 19.8 m from the pyloric sphincter. Examination by transmission electron microscopy and cultivation techniques failed to reveal any bacteria on the mucosa of the proximal jejunum in two of the animals. In two other reindeer the median anaerobic bacterial densities in the proximal jejunum ranged from 25-2500 cells/g mucosa. The median anaerobic bacterial populations in the distal jejunum ranged from 80 to 20000 bacteria/g mucosa (n=4. The anaerobic population of bacteria in the proximal jejunum was dominated by streptococci and unidentified gram positive rods. Bacteroidaceae, streptococci and unidentified gram positive rods were common in the distal jejunum. The low density and the species diversity of bacteria in the small intestine suggests that these microorganisms are inhibited by components in the natural winter diet of reindeer. Bacteria evidently play a minor role in protection of the mucosa of reindeer in winter.

  8. Lead biosorption of probiotic bacteria: effects of the intestinal content from laying hens.

    Science.gov (United States)

    Xing, Sicheng; Wang, Jie; Liang, Juan Boo; Jahromi, Mohammad Faseleh; Zhu, Cui; Shokryazdan, Parisa; Laudadio, Vito; Tufarelli, Vincenzo; Liao, Xindi

    2017-05-01

    This study investigated the effects and the possible mechanisms of intestinal content (IC) from laying hens on in vitro lead (Pb 2+ ) biosorption of four probiotic bacterial strains (Bifidobacterium longum BB79, Lactobacillus paracasei Kgl6, Lactobacillus pentosus ITA23, and Lactobacillus acidipiscis ITA44). The total Pb 2+ removal capacity of the four probiotic strains, with and without capsule polysaccharides (CPSs), increased in the presence of IC compared to the control (without IC). SEM imaging revealed certain unidentified particles from the IC adhered on the surface of bacterial cells sorted out using flow cytometry. Follow-up experiment showed an overall trend of increase in the Pb 2+ removal capacity of the sorted bacteria, but statistically significant for L. pentosus ITA23 and B. longum BB79 after incubation with IC, particularly with the suspended solid portion of the IC. In addition, the Fourier transform infrared spectrophotometer data showed that functional groups such as C-H, O-H, C=O, and C-O-C which possibly associated with Pb 2+ binding were mainly presented in the suspended solid portion of IC. Putting the above together, we postulated that the enhanced Pb 2+ binding capacity the probiotic bacteria incubated in IC is due to the adherence of the yet to be identified particles which could much exist in suspended solid portion of IC containing negatively charged functional groups which bind with the positive Pb 2+ ions.

  9. Toxicity of Food-Grade TiO2 to Commensal Intestinal and Transient Food-Borne Bacteria: New Insights Using Nano-SIMS and Synchrotron UV Fluorescence Imaging

    Science.gov (United States)

    Radziwill-Bienkowska, Joanna M.; Talbot, Pauline; Kamphuis, Jasper B. J.; Robert, Véronique; Cartier, Christel; Fourquaux, Isabelle; Lentzen, Esther; Audinot, Jean-Nicolas; Jamme, Frédéric; Réfrégiers, Matthieu; Bardowski, Jacek K.; Langella, Philippe; Kowalczyk, Magdalena; Houdeau, Eric; Thomas, Muriel; Mercier-Bonin, Muriel

    2018-01-01

    Titanium dioxide (TiO2) is commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, a risk of intestinal barrier disruption, including dysbiosis of the gut microbiota, is increasingly suspected because of the presence of a nano-sized fraction in this additive. We hypothesized that food-grade E171 and Aeroxyde P25 (identical to the NM-105 OECD reference nanomaterial in the European Union Joint Research Centre) interact with both commensal intestinal bacteria and transient food-borne bacteria under non-UV-irradiated conditions. Based on differences in their physicochemical properties, we expect a difference in their respective effects. To test these hypotheses, we chose a panel of eight Gram-positive/Gram-negative bacterial strains, isolated from different biotopes and belonging to the species Escherichia coli, Lactobacillus rhamnosus, Lactococcus lactis (subsp. lactis and cremoris), Streptococcus thermophilus, and Lactobacillus sakei. Bacterial cells were exposed to food-grade E171 vs. P25 in vitro and the interactions were explored with innovative (nano)imaging methods. The ability of bacteria to trap TiO2 was demonstrated using synchrotron UV fluorescence imaging with single cell resolution. Subsequent alterations in the growth profiles were shown, notably for the transient food-borne L. lactis and the commensal intestinal E. coli in contact with food-grade TiO2. However, for both species, the reduction in cell cultivability remained moderate, and the morphological and ultrastructural damages, observed with electron microscopy, were restricted to a small number of cells. E. coli exposed to food-grade TiO2 showed some internalization of TiO2 (7% of cells), observed with high-resolution nano-secondary ion mass spectrometry (Nano-SIMS) chemical imaging. Taken together, these data show that E171 may be trapped by commensal and transient food-borne bacteria within the gut. In return, it may induce some physiological

  10. Toxicity of Food-Grade TiO2 to Commensal Intestinal and Transient Food-Borne Bacteria: New Insights Using Nano-SIMS and Synchrotron UV Fluorescence Imaging.

    Science.gov (United States)

    Radziwill-Bienkowska, Joanna M; Talbot, Pauline; Kamphuis, Jasper B J; Robert, Véronique; Cartier, Christel; Fourquaux, Isabelle; Lentzen, Esther; Audinot, Jean-Nicolas; Jamme, Frédéric; Réfrégiers, Matthieu; Bardowski, Jacek K; Langella, Philippe; Kowalczyk, Magdalena; Houdeau, Eric; Thomas, Muriel; Mercier-Bonin, Muriel

    2018-01-01

    Titanium dioxide (TiO 2 ) is commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, a risk of intestinal barrier disruption, including dysbiosis of the gut microbiota, is increasingly suspected because of the presence of a nano-sized fraction in this additive. We hypothesized that food-grade E171 and Aeroxyde P25 (identical to the NM-105 OECD reference nanomaterial in the European Union Joint Research Centre) interact with both commensal intestinal bacteria and transient food-borne bacteria under non-UV-irradiated conditions. Based on differences in their physicochemical properties, we expect a difference in their respective effects. To test these hypotheses, we chose a panel of eight Gram-positive/Gram-negative bacterial strains, isolated from different biotopes and belonging to the species Escherichia coli , Lactobacillus rhamnosus , Lactococcus lactis (subsp. lactis and cremoris ), Streptococcus thermophilus , and Lactobacillus sakei . Bacterial cells were exposed to food-grade E171 vs. P25 in vitro and the interactions were explored with innovative (nano)imaging methods. The ability of bacteria to trap TiO 2 was demonstrated using synchrotron UV fluorescence imaging with single cell resolution. Subsequent alterations in the growth profiles were shown, notably for the transient food-borne L. lactis and the commensal intestinal E. coli in contact with food-grade TiO 2 . However, for both species, the reduction in cell cultivability remained moderate, and the morphological and ultrastructural damages, observed with electron microscopy, were restricted to a small number of cells. E. coli exposed to food-grade TiO 2 showed some internalization of TiO 2 (7% of cells), observed with high-resolution nano-secondary ion mass spectrometry (Nano-SIMS) chemical imaging. Taken together, these data show that E171 may be trapped by commensal and transient food-borne bacteria within the gut. In return, it may induce some

  11. Toxicity of Food-Grade TiO2 to Commensal Intestinal and Transient Food-Borne Bacteria: New Insights Using Nano-SIMS and Synchrotron UV Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Joanna M. Radziwill-Bienkowska

    2018-04-01

    Full Text Available Titanium dioxide (TiO2 is commonly used as a food additive (E171 in the EU for its whitening and opacifying properties. However, a risk of intestinal barrier disruption, including dysbiosis of the gut microbiota, is increasingly suspected because of the presence of a nano-sized fraction in this additive. We hypothesized that food-grade E171 and Aeroxyde P25 (identical to the NM-105 OECD reference nanomaterial in the European Union Joint Research Centre interact with both commensal intestinal bacteria and transient food-borne bacteria under non-UV-irradiated conditions. Based on differences in their physicochemical properties, we expect a difference in their respective effects. To test these hypotheses, we chose a panel of eight Gram-positive/Gram-negative bacterial strains, isolated from different biotopes and belonging to the species Escherichia coli, Lactobacillus rhamnosus, Lactococcus lactis (subsp. lactis and cremoris, Streptococcus thermophilus, and Lactobacillus sakei. Bacterial cells were exposed to food-grade E171 vs. P25 in vitro and the interactions were explored with innovative (nanoimaging methods. The ability of bacteria to trap TiO2 was demonstrated using synchrotron UV fluorescence imaging with single cell resolution. Subsequent alterations in the growth profiles were shown, notably for the transient food-borne L. lactis and the commensal intestinal E. coli in contact with food-grade TiO2. However, for both species, the reduction in cell cultivability remained moderate, and the morphological and ultrastructural damages, observed with electron microscopy, were restricted to a small number of cells. E. coli exposed to food-grade TiO2 showed some internalization of TiO2 (7% of cells, observed with high-resolution nano-secondary ion mass spectrometry (Nano-SIMS chemical imaging. Taken together, these data show that E171 may be trapped by commensal and transient food-borne bacteria within the gut. In return, it may induce some

  12. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases

    Science.gov (United States)

    Opazo, Maria C.; Ortega-Rocha, Elizabeth M.; Coronado-Arrázola, Irenice; Bonifaz, Laura C.; Boudin, Helene; Neunlist, Michel; Bueno, Susan M.; Kalergis, Alexis M.; Riedel, Claudia A.

    2018-01-01

    The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases. PMID:29593681

  13. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Maria C. Opazo

    2018-03-01

    Full Text Available The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases.

  14. Large intestine bacterial flora of nonhibernating and hibernating leopard frogs (Rana pipiens).

    OpenAIRE

    Gossling, J; Loesche, W J; Nace, G W

    1982-01-01

    The bacteria in the large intestines of 10 northern leopard frogs (Rana pipiens) were enumerated and partially characterized. Four nonhibernating frogs were collected in the summer, four hibernating frogs were collected in the winter, and two frogs just emerged from hibernation were collected in the spring. All frogs had about 10(10) bacteria per g (wet weight) of intestinal contents and about 10(9) bacteria per g (wet weight) of mucosal scraping, although the counts from the winter frogs wer...

  15. The fecal bacteria

    Science.gov (United States)

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  16. Interactions between the intestinal microbiota and innate lymphoid cells

    Science.gov (United States)

    Chen, Vincent L; Kasper, Dennis L

    2014-01-01

    The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells. PMID:24418741

  17. Fermentation of D-Tagatose by Human Intestinal Bacteria and Dairy Lactic Acid Bacteria

    OpenAIRE

    Bertelsen, Hans; Andersen, Hans; Tvede, Michael

    2011-01-01

    A number of 174 normal or pathogenic human enteric bacteria and dairy lactic acid bacteria were screened for D-tagatose fermentation by incubation for 48 hours. Selection criteria for fermentation employed included a drop in pH below 5.5 and a distance to controls of more than 0.5. Only a few of the normal occurring enteric human bacteria were able to ferment D-tagatose, among those Enterococcus faecalis, Enterococcus faecium and Lactobacillus strains. D-Tagatose fermentation seems to be comm...

  18. Antibiotic Resistant Microbiota in the Swine Intestinal Tract

    Science.gov (United States)

    The healthy swine intestine is populated by upwards of 500 bacterial species, mainly obligate anaerobes. Our research focuses on the roles of these commensal bacteria in antimicrobial resistance and on interventions to reduce the prevalence of antibiotic resistant bacteria. In comparisons of intes...

  19. Impact of lactic Acid bacteria on dendritic cells from allergic patients in an experimental model of intestinal epithelium.

    Science.gov (United States)

    Ratajczak, Céline; Duez, Catherine; Grangette, Corinne; Pochard, Pierre; Tonnel, André-Bernard; Pestel, Joël

    2007-01-01

    Lactic acid bacteria (LAB) are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC) by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393) on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase) and increased their interleukin (IL)-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4(+) T cells to produce more interferon-gamma than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction.

  20. Impact of Lactic Acid Bacteria on Dendritic Cells from Allergic Patients in an Experimental Model of Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Céline Ratajczak

    2007-01-01

    Full Text Available Lactic acid bacteria (LAB are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393 on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase and increased their interleukin (IL-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4+ T cells to produce more interferon-γ than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction.

  1. What causes the spatial heterogeneity of bacterial flora in the intestine of zebrafish larvae?

    Science.gov (United States)

    Yang, Jinyou; Shimogonya, Yuji; Ishikawa, Takuji

    2018-06-07

    Microbial flora in the intestine has been thoroughly investigated, as it plays an important role in the health of the host. Jemielita et al. (2014) showed experimentally that Aeromonas bacteria in the intestine of zebrafish larvae have a heterogeneous spatial distribution. Although bacterial aggregation is important biologically and clinically, there is no mathematical model describing the phenomenon and its mechanism remains largely unknown. In this study, we developed a computational model to describe the heterogeneous distribution of bacteria in the intestine of zebrafish larvae. The results showed that biological taxis could cause the bacterial aggregation. Intestinal peristalsis had the effect of reducing bacterial aggregation through mixing function. Using a scaling argument, we showed that the taxis velocity of bacteria must be larger than the sum of the diffusive velocity and background bulk flow velocity to induce bacterial aggregation. Our model and findings will be useful to further the scientific understanding of intestinal microbial flora. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Intestinal microbiota: a potential diet-responsive prevention target in ApcMin mice.

    Science.gov (United States)

    Mai, Volker; Colbert, Lisa H; Perkins, Susan N; Schatzkin, Arthur; Hursting, Stephen D

    2007-01-01

    We previously reported that two dietary regimens, calorie restriction (CR) and a high olive oil-containing diet supplemented with a freeze-dried fruit and vegetable extract (OFV), reduced the development of intestinal adenomas in Apc(Min) mice by 57% and 33%, respectively, compared to control mice fed a defined diet ad libitum. The OFV diet was designed to have a strong effect on the composition of the intestinal microbiota through its high content of fiber, which represents a major source of fermentable substrate for the gut bacteria. We hypothesized that some of the observed effects of diet on intestinal carcinogenesis might be mediated by diet-related changes in the bacterial species that thrive in the gut. Therefore, we determined by fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) how the dietary interventions affected the composition of the intestinal microbiota, and we characterized specific microbiota changes that were associated with diet and reduced intestinal carcinogenesis. The OFV diet changed the overall composition of the intestinal microbiota, smaller changes were observed for the CR diet. Furthermore, we detected a 16S rDNA fragment associated with mice that did not develop polyps. Sequence analysis suggested that hitherto unidentified bacteria belonging to the family Lachnospiraceae (order Clostridiales) were its source. Thus, these bacteria may be an indicator of intestinal conditions associated with reduced intestinal carcinogenesis in Apc(Min) mice. Copyright 2006 Wiley-Liss, Inc.

  3. Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure.

    Science.gov (United States)

    El Asmar, Ramzi; Panigrahi, Pinaki; Bamford, Penelope; Berti, Irene; Not, Tarcisio; Coppa, Giovanni V; Catassi, Carlo; Fasano, Alessio; El Asmar, Rahzi

    2002-11-01

    Enteric infections have been implicated in the pathogenesis of both food intolerance and autoimmune diseases secondary to the impairment of the intestinal barrier. On the basis of our recent discovery of zonulin, a modulator of small-intestinal tight junctions, we asked whether microorganisms might induce zonulin secretion and increased small-intestinal permeability. Both ex vivo mammalian small intestines and intestinal cell monolayers were exposed to either pathogenic or nonpathogenic enterobacteria. Zonulin production and changes in paracellular permeability were monitored in Ussing chambers and micro-snapwells. Zonula occludens 1 protein redistribution after bacteria colonization was evaluated on cell monolayers. Small intestines exposed to enteric bacteria secreted zonulin. This secretion was independent of either the species of the small intestines or the virulence of the microorganisms tested, occurred only on the luminal aspect of the bacteria-exposed small-intestinal mucosa, and was followed by a decrease in small-intestinal tissue resistance (transepithelial electrical resistance). The transepithelial electrical resistance decrement was secondary to the zonulin-induced tight junction disassembly, as also shown by the disengagement of the protein zonula occludens 1 protein from the tight junctional complex. This zonulin-driven opening of the paracellular pathway may represent a defensive mechanism, which flushes out microorganisms and contributes to the host response against bacterial colonization of the small intestine.

  4. Effect of the extract of Daigo lactic acid bacteria fermentation on the composition of the microflora and intestinal motor function in experimental dysbiosis

    Directory of Open Access Journals (Sweden)

    T. S. Popova

    2016-01-01

    Full Text Available In experiments on rats, the efficacy of the extract of Daigo lactic acid bacteria fermentation was investigated as the means for the prophylaxis and correction of an impaired microflora composition, and small intestine motor activity changes at dysbiosis. Experimental dysbiosis induced by a 7-day oral administration of antimicrobials (Amoxycillinum and Metronidazolum was manifested by considerable disturbances in qualitative and  quantitative composition of the jejunum and cecum microflora. A preventive administration of Daigo prior to the exposure to antimicrobials eliminated the dysbiosis signs. Daygo administration after modeling the dysbiosis led to the recovery of intestinal motor function,normalized the numbers of conditionally-pathogenic microorganisms in a jejunum, and decreased the numbers of opportunistic microorganisms in the cecum.

  5. Alteration of intestinal microbiota in mice orally administered with salmon cartilage proteoglycan, a prophylactic agent.

    Directory of Open Access Journals (Sweden)

    Krisana Asano

    Full Text Available Proteoglycan (PG extracted from salmon nasal cartilage has potential to be a prophylactic agent. Daily oral administration of the PG attenuates systemic inflammatory response in the experimental mouse models. In this study, we applied the culture-independent approach to investigate an alteration of intestinal microbiota composition in PG-administered mice. The results indicated that the population level of bacilli increased in the small and large intestine upon PG administration. On the other hand, the population level of clostridia decreased in the large intestine. The proportion of bacteria that are able to ferment saccharides and produce short-chain fatty acids increased in the small intestine and decreased in the large intestine. Importantly, population level of probiotic lactobacilli and bacteria exhibiting the immunomodulatory effect increased in the PG-administered mice. In addition, several disease-associated bacteria decreased upon PG administration. These results provided an understanding of the specific role of PG involved in host immune modulation and supported our hypothesis that daily oral administration of PG improves the overall balance in composition of the intestinal microbial community.

  6. Bile acids in regulation of intestinal physiology.

    LENUS (Irish Health Repository)

    Keating, Niamh

    2009-10-01

    In addition to their roles in facilitating lipid digestion and absorption, bile acids are recognized as important regulators of intestinal function. Exposure to bile acids can dramatically influence intestinal transport and barrier properties; in recent years, they have also become appreciated as important factors in regulating cell growth and survival. Indeed, few cells reside within the intestinal mucosa that are not altered to some degree by exposure to bile acids. The past decade saw great advances in the knowledge of how bile acids exert their actions at the cellular and molecular levels. In this review, we summarize the current understanding of the role of bile acids in regulation of intestinal physiology.

  7. Comparison of the kinetics of intestinal colonization by associating 5 probiotic bacteria assumed either in a microencapsulated or in a traditional, uncoated form.

    Science.gov (United States)

    Piano, Mario D; Carmagnola, Stefania; Ballarè, Marco; Balzarini, Marco; Montino, Franco; Pagliarulo, Michela; Anderloni, Andrea; Orsello, Marco; Tari, Roberto; Sforza, Filomena; Mogna, Luca; Mogna, Giovanni

    2012-10-01

    Beneficial findings concerning probiotics are increasing day by day. However, one of the most important parameters able to significantly affect the probiotic value of a microorganism is its survival during the transit through the stomach and the duodenum. Some techniques may be applied that aim to improve this parameter, but microencapsulation of bacterial cells remains one of the most important. A recent study assessed the kinetics of intestinal colonization by a mixture of 2 probiotic strains, given either in a microencapsulated or in a traditional, uncoated form. A comparison between the intestinal colonization by associating 5 microencapsulated bacteria and the same uncoated strains was performed by a double-blind, randomized, cross-over study. The study (December 2007 to January 2009) involved 53 healthy volunteers. In particular, subjects were divided into 2 groups: group A (27 subjects) was given a mix of probiotic strains Probiotical S.p.A. (Novara, Italy), Lactobacillus acidophilus LA02 (DSM 21717), Lactobacillus rhamnosus LR04 (DSM 16605), L. rhamnosus GG, or LGG (ATCC 53103), L. rhamnosus LR06 (DSM 21981), and Bifidobacterium lactis BS01 (LMG P-21384) in an uncoated form, whereas group B (26 subjects) received the same strains microencapsulated with a gastroprotected material. The uncoated strains were administered at 5×10⁹ cfu/strain/d (a total of 25×10⁹ cfu/d) for 21 days, whereas the microencapsulated bacteria were given at 1×10⁹ cfu/strain/d (a total of 5×10⁹ cfu/d) for 21 days. At the end of the first period of supplementation with probiotics, a 3-week wash-out phase was included in the study setting. At the end of the wash-out period, the groups crossed over their treatment regimen; that is, group A was administered the microencapsulated bacteria and group B the uncoated bacteria. The administered quantities of each strain were the same as the first treatment. A quantitative evaluation of intestinal colonization by probiotics, either

  8. Biotransformation of Food Dyes by Human Intestinal Bacteria ...

    African Journals Online (AJOL)

    Biotransformation of food dyes (Tartrazine and Quinoline yellow) by Streptococcus faecalis and Escherichia coli isolated from human intestinal microflora was investigated. Decolourisation of the media containing the dyes was used as an index of biotransformation. Biotransformation was higher under aerobic than under ...

  9. Utilização de bactérias ácido-lácticas isoladas do trato intestinal de tilápia-do-nilo como probiótico Lactic-acid bacteria isolated from the intestinal tract of Nile tilapia utilized as probiotic

    Directory of Open Access Journals (Sweden)

    Adolfo Jatobá

    2008-09-01

    Full Text Available O objetivo deste trabalho foi isolar bactérias ácido-lácticas do intestino de tilápias-do-nilo, e avaliar seu potencial probiótico. Foram isoladas cepas de bactérias ácido-lácticas, e foi avaliada a inibição aos patógenos in vitro. As cepas com os melhores resultados foram identificadas e utilizadas no experimento de colonização do trato intestinal de tilápias-do-nilo, via suplementação na dieta, em delineamento inteiramente ao acaso, com três tratamentos e quatro repetições. Foram avaliados: o total de bactérias, as bactérias ácido-lácticas, Vibrio ssp. e Pseudomonas ssp. A cepa com melhor resultado foi utilizada na infecção experimental, em delineamento inteiramente ao acaso, em esquema fatorial 2x3: dieta suplementada com a cepa e dieta-controle; e os peixes não submetidos à injeção, peixes submetidos à injeção de solução salina e à injeção de Enterococcus durans, com três repetições. Foram avaliados os parâmetros hematológicos. As duas cepas identificadas foram: Lactobacillus plantarum e Lactobacillus brevis, que colonizaram o trato intestinal de tilápias, contudo L. plantarum teve menor número total de bactérias e de Pseudomonas ssp. Foi observado maior número total de eritrócitos, trombócitos, leucócitos, linfócitos, neutrófilos e monócitos, em peixes alimentados com L. plantarum e submetidos à injeção de E. durans. O L. plantarum tem efeito probiótico e melhora o sistema imune das tilápias.The objective of this work was to isolate lactic-acid bacteria from the intestines of Nile tilapia, and to assess their potential as probiotic. Strains of lactic-acid bacteria were isolated, and inhibition against pathogens was evaluated in vitro. Strains with best results were identified and used in tilapia intestinal tract colonization experiment through supplementation in the diet, in a completely randomized design, with three treatments and four replicates. Total number bacteria, lactic

  10. The Brain–Intestinal Mucosa–Appendix– Microbiome–Brain Loop

    Directory of Open Access Journals (Sweden)

    Luis Vitetta

    2018-04-01

    Full Text Available The brain and the gut are connected from early fetal life. The mother’s exposure to microbial molecules is thought to exert in utero developmental effects on the fetus. These effects could importantly underpin the groundwork for subsequent pathophysiological mechanisms for achieving immunological tolerance and metabolic equilibrium post birth, events that continue through to 3–4 years of age. Furthermore, it is understood that the microbiome promotes cues that instruct the neonate’s mucosal tissues and skin in the language of molecular and cellular biology. Post birth mucosal lymphoid tissue formation and maturation (most probably including the vermiform appendix is microbiota-encouraged co-establishing the intestinal microbiome with a developing immune system. Intestinal mucosal tissue maturation loops the brain-gut-brain and is postulated to influence mood dispositions via shifts in the intestinal microbiome phyla. A plausible appreciation is that dysregulated pro-inflammatory signals from intestinal resident macrophages could breach the loop by providing adverse mood signals via vagus nerve afferents to the brain. In this commentary, we further suggest that the intestinal resident macrophages act as an upstream traffic controller of translocated microbes and metabolites in order to maintain local neuro-endocrine-immunological equilibrium. When macrophages are overwhelmed through intestinal microbiome and intestinal epithelial cell dysbiosis, pro-inflammatory signals are sustained, which may then lead to mood disorders. The administration of probiotics as an adjunctive medicine co-administered with antidepressant medications in improving depressed mood may have biological and clinical standing.

  11. Intestinal Complications of IBD

    Science.gov (United States)

    ... localized pocket of pus caused by infection from bacteria. More common in Crohn’s than in colitis, an abscess may form in the intestinal wall—sometimes causing it to bulge out. Visible abscesses, such as those around the anus, look like boils and treatment often involves lancing. Symptoms of ...

  12. [Intestinal parasitic diseases in children].

    Science.gov (United States)

    Mare, Anca; Man, A; Toma, Felicia; Székely, Edit; Lôrinczi, Lilla; Sipoş, Anca

    2007-01-01

    To compare the incidence of intestinal parasitosis between children with residence in urban and rural areas: to compare the efficacy of parasitologic diagnostic methods. In our study we included two lots of children. The first lot consisted in 74 children from rural areas from which we collected 44 samples of feces and 55 samples for the "Scotch tape" test. The second lot consisted in 214 children from urban areas from which we collected 44 samples of feces. We examined each sample of feces by three different methods. The study was performed between April to June 2006. The incidence of intestinal parasitosis increases in children from urban areas towards rural areas, and in children between 5 and 10 years. Ascariasis is the most frequent disease in both urban and rural areas. By examination of each fecal sample by three different methods, the number of positive cases increased. The residence in rural areas and age between 5 to 10 years are risk factors for intestinal parasitosis. The "Scotch tape" test was more efficient in Enterobius vermicularis infection than the methods performed from feces. We recommend using at the same time three diagnostic methods for feces examination to improve the diagnostic sensibility.

  13. Immunology and probiotic impact of the newborn and young children intestinal microflora.

    Science.gov (United States)

    Bezirtzoglou, Eugenia; Stavropoulou, Elisabeth

    2011-12-01

    human gastrointestinal tract, LAB are referred to as "probiotics", and efforts are underway to employ them in modern nutrition habits with so-called functional foods. Members of Lactobacillus and Bifidobacterium genera are normal residents of the microbiota in the human gastrointestinal tract, in which they developed soon after birth. But, whether such probiotic strains derived from the human gut should be commercially employed in the so-called functional foods is a matter of debate between scientists and the industrial world. Within a few hours from birth the newborn develops its normal bacterial flora. Indeed human milk frequently contains low amounts of non-pathogenic bacteria like Streptococcus, Micrococcus, Lactobacillus, Staphylococcus, Corynebacterium and Bifidobacterium. In general, bacteria start to appear in feces within a few hours after birth. Colonization by Bifidobacterium occurs generally within 4 days of life. Claims have been made for positive effects of Bifidobacterium on infant growth and health. The effect of certain bacteria having a benefic action on the intestinal ecosystem is largely discussed during the last years by many authors. Bifidobacterium is reported to be a probiotic bacterium, exercising a beneficial effect on the intestinal flora. An antagonism has been reported between B. bifidum and C. perfringens in the intestine of newborns delivered by cesarean section. The aim of the probiotic approach is to repair the deficiencies in the gut flora and restore the protective effect. However, the possible ways in which the gut microbiota is being influenced by probiotics is yet unknown. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Degradation of structurally different non-digestible oligosaccharides by intestinal bacteria: glycosylhydrolases of Bifidobacterium adolescentis = Afbraak van in structuur verschillende niet-verteerbare oligosacchariden door darmbacteriën : glycosylhydrolasen van Bifidobacterium adolescentis

    NARCIS (Netherlands)

    Laere, Van K.

    2000-01-01

    Non-digestible oligosaccharides (NDOs) are oligosaccharides, which resist digestion in the upper gastrointestinal tract, and which are fermented in the colon by intestinal bacteria. Some NDOs are considered bifidogenic, meaning that they selectively stimulate the growth of bifidobacteria in

  15. Mucin dynamics in intestinal bacterial infection.

    Directory of Open Access Journals (Sweden)

    Sara K Lindén

    Full Text Available Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract.Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17 in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05. Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon.Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection.

  16. Isolation and characterization of cultivable fermentative bacteria from the intestine of two edible snails, Helixpomatia and Cornu aspersum (Gastropoda: Pulmonata

    Directory of Open Access Journals (Sweden)

    MAR YVONNE CHARRIER

    2006-01-01

    Full Text Available The intestinal microbiota of the edible snails Cornu aspersum fSyn: H. aspersa, and Helix pomatia were investigated by culture-based methods, 16S rRNA sequence analyses and phenotypic characterisations. The study was carried out on aestivating snails and two populations of H. pomatia were considered. The cultivable bacteria dominated in the distal part of the intestine, with up to 5.10(9 CFU g -1, but the Swedish H. pomatia appeared significantly less colonised, suggesting a higher sensitivity of its microbiota to climatic change. All the strains, but one, shared ≥ 97% sequence identity with reference strains. They were arranged into two taxa: the Gamma Proteobacteria with Buttiauxella, Citrobacter, Enterobacter, Kluyvera, Obesumbacterium, Raoultella and the Firmicutes with Enterococcus, Lactococcus, and Clostridium. According to the literature, these genera are mostly assigned to enteric environments or to phyllosphere, data in favour of culturing snails in contact with soil and plants. None of the strains were able to digest filter paper, Avicel cellulose or carboxymethyl cellulose (CMC. Acetogens and methanogenic archaea were not cultivated, so the fate of hydrogen remains questionable. This microbiota could play important roles in the digestive process (fermentation and the energy supply of the snail (L-lactate, acetate. The choice of cereals and plants by snail farmers should take into account the fermentative abilities of the intestinal microbiota

  17. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria.

    Science.gov (United States)

    Stecher, Bärbel; Chaffron, Samuel; Käppeli, Rina; Hapfelmeier, Siegfried; Freedrich, Susanne; Weber, Thomas C; Kirundi, Jorum; Suar, Mrutyunjay; McCoy, Kathy D; von Mering, Christian; Macpherson, Andrew J; Hardt, Wolf-Dietrich

    2010-01-01

    The intestinal ecosystem is formed by a complex, yet highly characteristic microbial community. The parameters defining whether this community permits invasion of a new bacterial species are unclear. In particular, inhibition of enteropathogen infection by the gut microbiota ( = colonization resistance) is poorly understood. To analyze the mechanisms of microbiota-mediated protection from Salmonella enterica induced enterocolitis, we used a mouse infection model and large scale high-throughput pyrosequencing. In contrast to conventional mice (CON), mice with a gut microbiota of low complexity (LCM) were highly susceptible to S. enterica induced colonization and enterocolitis. Colonization resistance was partially restored in LCM-animals by co-housing with conventional mice for 21 days (LCM(con21)). 16S rRNA sequence analysis comparing LCM, LCM(con21) and CON gut microbiota revealed that gut microbiota complexity increased upon conventionalization and correlated with increased resistance to S. enterica infection. Comparative microbiota analysis of mice with varying degrees of colonization resistance allowed us to identify intestinal ecosystem characteristics associated with susceptibility to S. enterica infection. Moreover, this system enabled us to gain further insights into the general principles of gut ecosystem invasion by non-pathogenic, commensal bacteria. Mice harboring high commensal E. coli densities were more susceptible to S. enterica induced gut inflammation. Similarly, mice with high titers of Lactobacilli were more efficiently colonized by a commensal Lactobacillus reuteri(RR) strain after oral inoculation. Upon examination of 16S rRNA sequence data from 9 CON mice we found that closely related phylotypes generally display significantly correlated abundances (co-occurrence), more so than distantly related phylotypes. Thus, in essence, the presence of closely related species can increase the chance of invasion of newly incoming species into the gut

  18. Modulation of pathogen-induced CCL20 secretion from HT-29 human intestinal epithelial cells by commensal bacteria.

    LENUS (Irish Health Repository)

    Sibartie, Shomik

    2009-01-01

    BACKGROUND: Human intestinal epithelial cells (IECs) secrete the chemokine CCL20 in response to infection by various enteropathogenic bacteria or exposure to bacterial flagellin. CCL20 recruits immature dendritic cells and lymphocytes to target sites. Here we investigated IEC responses to various pathogenic and commensal bacteria as well as the modulatory effects of commensal bacteria on pathogen-induced CCL20 secretion. HT-29 human IECs were incubated with commensal bacteria (Bifidobacterium infantis or Lactobacillus salivarius), or with Salmonella typhimurium, its flagellin, Clostridium difficile, Mycobacterium paratuberculosis, or Mycobacterium smegmatis for varying times. In some studies, HT-29 cells were pre-treated with a commensal strain for 2 hr prior to infection or flagellin stimulation. CCL20 and interleukin (IL)-8 secretion and nuclear factor (NF)-kappaB activation were measured using enzyme-linked immunosorbent assays. RESULTS: Compared to untreated cells, S. typhimurium, C. difficile, M. paratuberculosis, and flagellin activated NF-kappaB and stimulated significant secretion of CCL20 and IL-8 by HT-29 cells. Conversely, B. infantis, L. salivarius or M. smegmatis did not activate NF-kappaB or augment CCL20 or IL-8 production. Treatment with B. infantis, but not L. salivarius, dose-dependently inhibited the baseline secretion of CCL20. In cells pre-treated with B. infantis, C. difficile-, S. typhimurium-, and flagellin-induced CCL20 were significantly attenuated. B. infantis did not limit M. Paratuberculosis-induced CCL20 secretion. CONCLUSION: This study is the first to demonstrate that a commensal strain can attenuate CCL20 secretion in HT-29 IECs. Collectively, the data indicate that M. paratuberculosis may mediate mucosal damage and that B. infantis can exert immunomodulatory effects on IECs that mediate host responses to flagellin and flagellated enteric pathogens.

  19. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile

    Directory of Open Access Journals (Sweden)

    Eugenia Elefterios Venizelos Bezirtzoglou

    2012-09-01

    Full Text Available Cytochromes P450 (CYPs enzymes metabolize a large variety of xenobiotic substances. In this vein, a plethora of studies were conducted to investigate their role, as cytochromes are located in both liver and intestinal tissues. The P450 profile of the human intestine has not been fully characterized. Human intestine serves primarily as an absorptive organ for nutrients, although it has also the ability to metabolize drugs. CYPs are responsible for the majority of phase I drug metabolism reactions. CYP3A represents the major intestinal CYP (80% followed by CYP2C9. CYP1A is expressed at high level in the duodenum, together with less abundant levels of CYP2C8-10 and CYP2D6. Cytochromes present a genetic polymorphism intra- or interindividual and intra- or interethnic. Changes in the pharmacokinetic profile of the drug are associated with increased toxicity due to reduced metabolism, altered efficacy of the drug, increased production of toxic metabolites, and adverse drug interaction. The high metabolic capacity of the intestinal flora is due to its enormous pool of enzymes, which catalyzes reactions in phase I and phase II drug metabolism. Compromised intestinal barrier conditions, when rupture of the intestinal integrity occurs, could increase passive paracellular absorption. It is clear that high microbial intestinal charge following intestinal disturbances, ageing, environment, or food-associated ailments leads to the microbial metabolism of a drug before absorption. The effect of certain bacteria having a benefic action on the intestinal ecosystem has been largely discussed during the past few years by many authors. The aim of the probiotic approach is to repair the deficiencies in the gut flora and establish a protective effect. There is a tentative multifactorial association of the CYP (P450 cytochrome role in the different diseases states, environmental toxic effects or chemical exposures and nutritional status.

  20. Bacterial Population in Intestines of Litopenaeus vannamei Fed Different Probiotics or Probiotic Supernatant.

    Science.gov (United States)

    Sha, Yujie; Liu, Mei; Wang, Baojie; Jiang, Keyong; Qi, Cancan; Wang, Lei

    2016-10-28

    The interactions of microbiota in the gut play an important role in promoting or maintaining the health of hosts. In this study, in order to investigate and compare the effects of dietary supplementation with Lactobacillus pentosus HC-2 (HC-2), Enterococcus faecium NRW-2, or the bacteria-free supernatant of a HC-2 culture on the bacterial composition of Litopenaeus vannamei , Illumina sequencing of the V1-V2 region of the 16S rRNA gene was used. The results showed that unique species exclusively existed in specific dietary groups, and the abundance of Actinobacteria was significantly increased in the intestinal bacterial community of shrimp fed with the bacteria-free supernatant of an HC-2 culture compared with the control. In addition, the histology of intestines of the shrimp from the four dietary groups was also described, but no obvious improvements in the intestinal histology were observed. The findings in this work will help to promote the understanding of the roles of intestinal bacteria in shrimps when fed with probiotics or probiotic supernatant.

  1. Lactobacillus salivarius reverse diabetes-induced intestinal defense impairment in mice through non-defensin protein.

    Science.gov (United States)

    Chung, Pei-Hsuan; Wu, Ying-Ying; Chen, Pei-Hsuan; Fung, Chang-Phone; Hsu, Ching-Mei; Chen, Lee-Wei

    2016-09-01

    Altered intestinal microbiota and subsequent endotoxemia play pathogenic roles in diabetes. We aimed to study the mechanisms of intestinal defense impairment in type 1 diabetes and the effects of Lactobacillus salivarius as well as fructooligosaccharides (FOS) supplementation on diabetes-induced bacterial translocation. Alterations in the enteric microbiome, expression of mucosal antibacterial proteins and bacteria-killing activity of the intestinal mucosa in streptozotocin (STZ)-induced diabetic mice and Ins2(Akita) mice were investigated. The effects of dead L. salivarius (2×10(8)CFU/ml) and FOS (250 mg per day) supplementation for 1 week on endotoxin levels and Klebsiella pneumoniae translocation were also examined. Finally, germ-free mice were cohoused with wild-type or Ins2(Akita) mice for 2 weeks to examine the contribution of microbiota on the antibacterial protein expression. STZ-induced diabetic mice developed intestinal defense impairment as demonstrated by decreased mucosal bacteria-killing activity; reduction of non-defensin family proteins, such as Reg3β, Reg3γ, CRP-ductin and RELMβ, but not the defensin family proteins; and increased bacterial translocation. Intestinal bacteria overgrowth, enteric dysbiosis and increased intestinal bacterial translocation, particularly pathogenic K. pneumoniae in STZ-induced diabetic mice and Ins2(Akita) mice, were noted. Treating diabetic mice with dead L. salivarius or FOS reversed enteric dysbiosis, restored mucosal antibacterial protein and lessened endotoxin levels as well as K. pneumoniae translocation. Moreover, germ-free mice cohoused with wild-type mice demonstrated more intestinal Reg3β and RELMβ expression than those cohoused with Ins2(Akita) mice. These results indicate that hyperglycemia induces enteric dysbiosis, reduction of non-defensin proteins as well as bacteria-killing activity of the intestinal mucosa and intestinal defense impairment. Reversal of enteric dysbiosis with dead L. salivarius or

  2. Determination of Lactic Acid Bacteria Viability in the Small Intestine of Catfish (Pangasius djambal by Using the 32P Radioisotope

    Directory of Open Access Journals (Sweden)

    I. Sugoro

    2015-04-01

    Full Text Available The viability of probiotics is important to be determined, as is its probiotic potency in the small instestine of fish. The result can be used as a basis to determine the feeding frequency of the probiotics to the fish.The aim of this study is to gain information about the viability of lactic acid bacteria (LAB in the small intestine of fish by using the 32P isotope technique. Catfish (Pangasius djambal was used as a test fish, and the LAB with the code of P2.1 PTB was the subject of the experiment. Before its viability was tested, the LAB had been labelled with radioisotope 32P, then mixed into catfish feed. Its viability could be determined by counting the activity of 32P. The results showed that the percentage of LAB viability in the small intestine of catfish declined until day 7. The percentage of LAB viability was decreased at an amount of 30% at day 3. Based on this result, the feeding frequency of LAB P2.1 PTB is every 3 days.

  3. Intestinal Microbiota and Relapse After Hematopoietic-Cell Transplantation.

    Science.gov (United States)

    Peled, Jonathan U; Devlin, Sean M; Staffas, Anna; Lumish, Melissa; Khanin, Raya; Littmann, Eric R; Ling, Lilan; Kosuri, Satyajit; Maloy, Molly; Slingerland, John B; Ahr, Katya F; Porosnicu Rodriguez, Kori A; Shono, Yusuke; Slingerland, Ann E; Docampo, Melissa D; Sung, Anthony D; Weber, Daniela; Alousi, Amin M; Gyurkocza, Boglarka; Ponce, Doris M; Barker, Juliet N; Perales, Miguel-Angel; Giralt, Sergio A; Taur, Ying; Pamer, Eric G; Jenq, Robert R; van den Brink, Marcel R M

    2017-05-20

    Purpose The major causes of mortality after allogeneic hematopoietic-cell transplantation (allo-HCT) are relapse, graft-versus-host disease (GVHD), and infection. We have reported previously that alterations in the intestinal flora are associated with GVHD, bacteremia, and reduced overall survival after allo-HCT. Because intestinal bacteria are potent modulators of systemic immune responses, including antitumor effects, we hypothesized that components of the intestinal flora could be associated with relapse after allo-HCT. Methods The intestinal microbiota of 541 patients admitted for allo-HCT was profiled by means of 16S ribosomal sequencing of prospectively collected stool samples. We examined the relationship between abundance of microbiota species or groups of related species and relapse/progression of disease during 2 years of follow-up time after allo-HCT by using cause-specific proportional hazards in a retrospective discovery-validation cohort study. Results Higher abundance of a bacterial group composed mostly of Eubacterium limosum in the validation set was associated with a decreased risk of relapse/progression of disease (hazard ratio [HR], 0.82 per 10-fold increase in abundance; 95% CI, 0.71 to 0.95; P = .009). When the patients were categorized according to presence or absence of this bacterial group, presence also was associated with less relapse/progression of disease (HR, 0.52; 95% CI, 0.31 to 0.87; P = .01). The 2-year cumulative incidences of relapse/progression among patients with and without this group of bacteria were 19.8% and 33.8%, respectively. These associations remained significant in multivariable models and were strongest among recipients of T-cell-replete allografts. Conclusion We found associations between the abundance of a group of bacteria in the intestinal flora and relapse/progression of disease after allo-HCT. These might serve as potential biomarkers or therapeutic targets to prevent relapse and improve survival after allo-HCT.

  4. [Production, absorption and excretion of phenols in intestinal obstruction].

    Science.gov (United States)

    Kawamoto, M

    1986-11-01

    In intestinal obstruction, phenols were produced in the distended loop proximal to obstruction by enteric bacteria. Clinically, in 17 cases of non-strangulated intestinal obstruction, phenols were detected in 15 cases and mean concentration of phenols was 4.2 +/- 9.7 micro g/ml(mean +/- 1 SD). In the fraction of phenols, p-cresol was detected in 15 cases and mean concentration was 3.8 +/- 7.7 and phenol was detected in 4 cases and mean concentration was 0.5 +/- 2.6. Phenols were decreased as clinical improvement of intestinal obstruction. Enteric bacteria in enteric juice ranged from 10(4) to 10(10)/ml and its change paralleled to phenols concentration. Mean urinary concentration of phenols in intestinal obstruction was increased to 297 +/- 415 mg/day compared to control (less than 50 mg/day). Its change also paralleled to phenols concentration in enteric juice. Closed ileal loop was made in dogs and phenols were infused in the loop. Phenols were increased in the portal vein 5 min after the infusion and in the femoral vein 60 min after the infusion. Phenols, which was thought to be toxic to the host, were proved to be produced in the distended intestine and excreted from the kidney.

  5. Functional and structural characterization of a β-glucosidase involved in saponin metabolism from intestinal bacteria.

    Science.gov (United States)

    Yan, Shan; Wei, Peng-Cheng; Chen, Qiao; Chen, Xin; Wang, Shi-Cheng; Li, Jia-Ru; Gao, Chuan

    2018-02-19

    Saponins are natural glycosides widely used in medicine and the food industry. Although saponin metabolism in human is dependent on intestinal microbes, few involving bacteria enzymes have been identified. We cloned BlBG3, a GH3 β-glucosidase from Bifidobacterium longum, from human stool. We found that BlBG3 catalyzes the hydrolysis of glycoside furostanol and ginsenoside Rb1 at higher efficiency than other microbial β-glucosidases. Structural analysis of BlBG3 in complex with d-glucose revealed its three unique loops, which form a deep pocket and participate in substrate binding. To understand how substrate is bound to the pocket, molecular docking was performed and the binding interactions of protobioside with BlBG3 were revealed. Mutational study suggested that R484 and H642 are critical for enzymatic activity. Our study presents the first structural and functional analysis of a saponin-processing enzyme from human microbiota. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Computer processing of microscopic images of bacteria : morphometry and fluorimetry

    NARCIS (Netherlands)

    Wilkinson, Michael H.F.; Jansen, Gijsbert J.; Waaij, Dirk van der

    1994-01-01

    Several techniques that use computer analysis of microscopic images have been developed to study the complicated microbial flora in the human intestine, including measuring the shape and fluorescence intensity of bacteria. These techniques allow rapid assessment of changes in the intestinal flora

  7. Regulation of intestinal homeostasis by innate immune cells.

    Science.gov (United States)

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-12-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

  8. Gut Bacteria Affect Immunotherapy Response

    Science.gov (United States)

    Three new studies have identified intestinal bacteria that appear to influence the response to checkpoint inhibitors. This Cancer Currents blog post explains how the researchers think their findings could be used to improve patients’ responses to these immunotherapy drugs.

  9. Vitamin D Receptor Negatively Regulates Bacterial-Stimulated NF-κB Activity in Intestine

    OpenAIRE

    Wu, Shaoping; Liao, Anne P.; Xia, Yinglin; Li, Yan Chun; Li, Jian-Dong; Sartor, R. Balfour; Sun, Jun

    2010-01-01

    Vitamin D receptor (VDR) plays an essential role in gastrointestinal inflammation. Most investigations have focused on the immune response; however, how bacteria regulate VDR and how VDR modulates the nuclear factor (NF)-κB pathway in intestinal epithelial cells remain unexplored. This study investigated the effects of VDR ablation on NF-κB activation in intestinal epithelia and the role of enteric bacteria on VDR expression. We found that VDR−/− mice exhibited a pro-inflammatory bias. After ...

  10. Common occurrence of antibacterial agents in human intestinal microbiota

    Directory of Open Access Journals (Sweden)

    Fatima eDrissi

    2015-05-01

    Full Text Available Laboratory experiments have revealed many active mechanisms by which bacteria can inhibit the growth of other organisms. Bacteriocins are a diverse group of natural ribosomally-synthesized antimicrobial peptides produced by a wide range of bacteria and which seem to play an important role in mediating competition within bacterial communities. In this study, we have identified and established the structural classification of putative bacteriocins encoded by 317 microbial genomes in the human intestine. On the basis of homologies to available bacteriocin sequences, mainly from lactic acid bacteria, we report the widespread occurrence of bacteriocins across the gut microbiota: 175 bacteriocins were found to be encoded in Firmicutes, 79 in Proteobacteria, 34 in Bacteroidetes and 25 in Actinobacteria. Bacteriocins from gut bacteria displayed wide differences among phyla with regard to class distribution, net positive charge, hydrophobicity and secondary structure, but the α-helix was the most abundant structure. The peptide structures and physiochemical properties of bacteriocins produced by the most abundant bacteria in the gut, the Firmicutes and the Bacteroidetes, seem to ensure low antibiotic activity and participate in permanent intestinal host defence against the proliferation of harmful bacteria. Meanwhile, the potentially harmful bacteria, including the Proteobacteria, displayed highly effective bacteriocins, probably supporting the virulent character of diseases. These findings highlight the eventual role played by bacteriocins in gut microbial competition and their potential place in antibiotic therapy.

  11. TLR2 Controls Intestinal Carcinogen Detoxication by CYP1A1

    DEFF Research Database (Denmark)

    Do, Khoa; Fink, Lisbeth Nielsen; Jensen, Thomas Elbenhardt

    2012-01-01

    of ligands for TLR2 of bacterial origin seems to be crucial for detoxication of luminal carcinogens by CYP1A1 in the intestine. This unprecedented finding indicates a complex interplay between the immune system of the host and intestinal bacteria with detoxication mechanisms. This highlights the relevance...

  12. Prevalence and risk factors for intestinal protozoa infection in elderly residents at Long Term Residency Institutions in Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Katymilla Guimarães Girotto

    2013-02-01

    Full Text Available This study determined the prevalence of intestinal protozoa in Long Term Residency Institutions for the Elderly (ILPI in elders, nurses and food handlers, identifying the risk factors associated with the infections. Stool samples taken from the elderly (n = 293, nurses (63 and food handlers (19 were studied. Questionnaires were used with questions related to sociodemographic variables, health, behavior and health characteristics. Stool samples were examined using the techniques of Faust and Ziehl Neelsen, and the prevalence of G. duodenalis, Cryptosporidium spp., E. histolytica/dispar in the elderly was 4.0%, 1.0% and 0.3% respectively. Nurses and food handlers showed 4.8% and 5.2% positivity only for G. duodenalis, respectively. The origin of the individuals and contact with domestic animals has been associated with infection by G. duodenalis in the elderly, and contact with domestic animals was considered a risk factor for infection. The last stool examinations were related to Cryptosporidium spp.. None of the variables were associated with E. histolytica/dispar. The frequency of hand washing was significantly associated with G. duodenalis among nurses. The frequency of positive samples of G. duodenalis, Cryptosporidium spp., E. histolytica/dispar showed that ILPIs environments are conducive to this occurring due to contact between the elderly, nurses and food handlers, which are often poorly trained in hygiene procedures and food handling.

  13. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage

    NARCIS (Netherlands)

    P. Aparicio-Domingo (Patricia); M. Romera Hernández (Mónica); J.J. Karrich (Julien J.); F.H.J. Cornelissen (Ferry); N. Papazian (Natalie); D.J. Lindenbergh-Kortleve (Dicky); J.A. Butler (James A.); L. Boon (Louis); M. Coles (Mark); J.N. Samsom (Janneke); T. Cupedo (Tom)

    2015-01-01

    textabstractDisruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence

  14. Helminth-bacteria interaction in the gut of domestic pigeon Columba livia domestica.

    Science.gov (United States)

    Biswal, Debraj; Nandi, Anadi Prasad; Chatterjee, Soumendranath

    2016-03-01

    The present paper is an attempt to study the interaction between the helminth parasite and bacteria residing in the gut of domestic pigeon, Columba livia domestica. Biochemical and molecular characterization of the gut bacterial isolate were done and the isolate was identified as Staphylococcus sp. DB1 (JX442510). The interaction of Staphylococcus sp. with Cotugnia cuneata, an intestinal helminth parasite of domestic pigeon was studied on the basis of the difference between 'mean worm burden' of antibiotic treated infected pigeons and infected pigeons without any antibiotic treatment. The ANOVA and Tukey tests of the data obtained showed that antibiotic treatment reduced the mean worm burden significantly. The biochemical properties of Staphylococcus sp. DB1 (JX442510) also showed a mutualistic relationship with the physiology of C. cuneata.

  15. Negative regulation of Toll-like receptor signaling plays an essential role in homeostasis of the intestine.

    Science.gov (United States)

    Biswas, Amlan; Wilmanski, Jeanette; Forsman, Huamei; Hrncir, Tomas; Hao, Liming; Tlaskalova-Hogenova, Helena; Kobayashi, Koichi S

    2011-01-01

    A healthy intestinal tract is characterized by controlled homeostasis due to the balanced interaction between commensal bacteria and the host mucosal immune system. Human and animal model studies have supported the hypothesis that breakdown of this homeostasis may underlie the pathogenesis of inflammatory bowel diseases. However, it is not well understood how intestinal microflora stimulate the intestinal mucosal immune system and how such activation is regulated. Using a spontaneous, commensal bacteria-dependent colitis model in IL-10-deficient mice, we investigated the role of TLR and their negative regulation in intestinal homeostasis. In addition to IL-10(-/-) MyD88(-/-) mice, IL-10(-/-) TLR4(-/-) mice exhibited reduced colitis compared to IL-10(-/-) mice, indicating that TLR4 signaling plays an important role in inducing colitis. Interestingly, the expression of IRAK-M, a negative regulator of TLR signaling, is dependent on intestinal commensal flora, as IRAK-M expression was reduced in mice re-derived into a germ-free environment, and introduction of commensal bacteria into germ-free mice induced IRAK-M expression. IL-10(-/-) IRAK-M(-/-) mice exhibited exacerbated colitis with increased inflammatory cytokine gene expression. Therefore, this study indicates that intestinal microflora stimulate the colitogenic immune system through TLR and negative regulation of TLR signaling is essential in maintaining intestinal homeostasis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The endogenous bacteria alter gut epithelial apoptosis and decrease mortality following Pseudomonas aeruginosa pneumonia.

    Science.gov (United States)

    Fox, Amy C; McConnell, Kevin W; Yoseph, Benyam P; Breed, Elise; Liang, Zhe; Clark, Andrew T; O'Donnell, David; Zee-Cheng, Brendan; Jung, Enjae; Dominguez, Jessica A; Dunne, W Michael; Burd, Eileen M; Coopersmith, Craig M

    2012-11-01

    The endogenous bacteria have been hypothesized to play a significant role in the pathophysiology of critical illness, although their role in sepsis is poorly understood. The purpose of this study was to determine how commensal bacteria alter the host response to sepsis. Conventional and germ-free (GF) C57Bl/6 mice were subjected to Pseudomonas aeruginosa pneumonia. All GF mice died within 2 days, whereas 44% of conventional mice survived for 7 days (P = 0.001). Diluting the dose of bacteria 10-fold in GF mice led to similar survival in GF and conventional mice. When animals with similar mortality were assayed for intestinal integrity, GF mice had lower levels of intestinal epithelial apoptosis but similar levels of proliferation and intestinal permeability. Germ-free mice had significantly lower levels of tumor necrosis factor and interleukin 1β in bronchoalveolar lavage fluid compared with conventional mice without changes in systemic cytokine production. Under conventional conditions, sepsis unmasks lymphocyte control of intestinal epithelial apoptosis, because sepsis induces a greater increase in gut apoptosis in Rag-1 mice than in wild-type mice. However, in a separate set of experiments, gut apoptosis was similar between septic GF Rag-1 mice and septic GF wild-type mice. These data demonstrate that the endogenous bacteria play a protective role in mediating mortality from pneumonia-induced sepsis, potentially mediated through altered intestinal apoptosis and the local proinflammatory response. In addition, sepsis-induced lymphocyte-dependent increases in gut epithelial apoptosis appear to be mediated by the endogenous bacteria.

  17. Intestine immune homeostasis after alcohol and burn injury.

    Science.gov (United States)

    Li, Xiaoling; Hammer, Adam M; Rendon, Juan L; Choudhry, Mashkoor A

    2015-06-01

    Traumatic injury remains one of the most prevalent reasons for patients to be hospitalized. Burn injury accounts for 40,000 hospitalizations in the United States annually, resulting in a large burden on both the health and economic system and costing millions of dollars every year. The complications associated with postburn care can quickly cause life-threatening conditions including sepsis and multiple organ dysfunction and failure. In addition, alcohol intoxication at the time of burn injury has been shown to exacerbate these problems. One of the biggest reasons for the onset of these complications is the global suppression of the host immune system and increased susceptibility to infection. It has been hypothesized that infections after burn and other traumatic injury may stem from pathogenic bacteria from within the host's gastrointestinal tract. The intestine is the major reservoir of bacteria within the host, and many studies have demonstrated perturbations of the intestinal barrier after burn injury. This article reviews the findings of these studies as they pertain to changes in the intestinal immune system after alcohol and burn injury.

  18. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages.

    Science.gov (United States)

    Rungrassamee, Wanilada; Klanchui, Amornpan; Chaiyapechara, Sage; Maibunkaew, Sawarot; Tangphatsornruang, Sithichoke; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2013-01-01

    Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities.

  19. The transcriptome of HIV-1 infected intestinal CD4+ T cells exposed to enteric bacteria.

    Directory of Open Access Journals (Sweden)

    Alyson C Yoder

    2017-02-01

    Full Text Available Global transcriptome studies can help pinpoint key cellular pathways exploited by viruses to replicate and cause pathogenesis. Previous data showed that laboratory-adapted HIV-1 triggers significant gene expression changes in CD4+ T cell lines and mitogen-activated CD4+ T cells from peripheral blood. However, HIV-1 primarily targets mucosal compartments during acute infection in vivo. Moreover, early HIV-1 infection causes extensive depletion of CD4+ T cells in the gastrointestinal tract that herald persistent inflammation due to the translocation of enteric microbes to the systemic circulation. Here, we profiled the transcriptome of primary intestinal CD4+ T cells infected ex vivo with transmitted/founder (TF HIV-1. Infections were performed in the presence or absence of Prevotella stercorea, a gut microbe enriched in the mucosa of HIV-1-infected individuals that enhanced both TF HIV-1 replication and CD4+ T cell death ex vivo. In the absence of bacteria, HIV-1 triggered a cellular shutdown response involving the downregulation of HIV-1 reactome genes, while perturbing genes linked to OX40, PPAR and FOXO3 signaling. However, in the presence of bacteria, HIV-1 did not perturb these gene sets or pathways. Instead, HIV-1 enhanced granzyme expression and Th17 cell function, inhibited G1/S cell cycle checkpoint genes and triggered downstream cell death pathways in microbe-exposed gut CD4+ T cells. To gain insights on these differential effects, we profiled the gene expression landscape of HIV-1-uninfected gut CD4+ T cells exposed to bacteria. Microbial exposure upregulated genes involved in cellular proliferation, MAPK activation, Th17 cell differentiation and type I interferon signaling. Our findings reveal that microbial exposure influenced how HIV-1 altered the gut CD4+ T cell transcriptome, with potential consequences for HIV-1 susceptibility, cell survival and inflammation. The HIV-1- and microbe-altered pathways unraveled here may serve as a

  20. Determination of Lactic Acid Bacteria Viability in the Small Intestine of Catfish (Pangasius djambal by Using the 32P Radioisotope

    Directory of Open Access Journals (Sweden)

    I. Sugoro

    2015-10-01

    Full Text Available The viability of probiotics is important to be determined, as is its probiotic potency in the small instestine of fish. The result can be used as a basis to determine the feeding frequency of the probiotics to the fish.The aim of this study is to gain information about the viability of lactic acid bacteria (LAB in the small intestine of fish by using the 32P isotope technique. Catfish (Pangasius djambal was used as a test fish, and the LAB with the code of P2.1 PTB was the subject of the experiment. Before its viability was tested, the LAB had been labelled with radioisotope 32P, then mixed into catfish feed. Its viability could be determined by counting the activity of 32P. The results showed that the percentage of LAB viability in the small intestine of catfish declined until day 7. The percentage of LAB viability was decreased at an amount of 30% at day 3. Based on this result, the feeding frequency of LAB P2.1 PTB is every 3 days. Received: 04 October 2014 Revised: 26 March 2015; Accepted: 05 April 2015

  1. Age-Related Variations in Intestinal Microflora of Free-Range and Caged Hens.

    Science.gov (United States)

    Cui, Yizhe; Wang, Qiuju; Liu, Shengjun; Sun, Rui; Zhou, Yaqiang; Li, Yue

    2017-01-01

    Free range feeding pattern puts the chicken in a mixture of growth materials and enteric bacteria excreted by nature, while it is typically unique condition materials and enteric bacteria in commercial caged hens production. Thus, the gastrointestinal microflora in two feeding patterns could be various. However, it remains poorly understood how feeding patterns affect development and composition of layer hens' intestinal microflora. In this study, the effect of feeding patterns on the bacteria community in layer hens' gut was investigated using free range and caged feeding form. Samples of whole small intestines and cecal digesta were collected from young hens (8-weeks) and mature laying hens (30-weeks). Based on analysis using polymerase chain reaction-denaturing gradient gel electrophoresis and sequencing of bacterial 16S rDNA gene amplicons, the microflora of all intestinal contents were affected by both feeding patterns and age of hens. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Fusobacteria were the main components. Additionally, uncultured environmental samples were found too. There were large differences between young hens and adult laying hens, the latter had more Firmicutes and Bacteroidetes, and bacterial community is more abundant in 30-weeks laying hens of all six phyla than 8-weeks young hens of only two phyla. In addition, the differences were also observed between free range and caged hens. Free range hens had richer Actinobacteria, Bacteroidetes, and Proteobacteria. Most of strains found were detected more abundant in small intestines than in cecum. Also the selected Lactic acid bacteria from hens gut were applied in feed and they had beneficial effects on growth performance and jejunal villus growth of young broilers. This study suggested that feeding patterns have an importance effect on the microflora composition of hens, which may impact the host nutritional status and intestinal health.

  2. Autophagy and tight junction proteins in the intestine and intestinal diseases

    Directory of Open Access Journals (Sweden)

    Chien-An A. Hu

    2015-09-01

    Full Text Available The intestinal epithelium (IE forms an indispensible barrier and interface between the intestinal interstitium and the luminal environment. The IE regulates water, ion and nutrient transport while providing a barrier against toxins, pathogens (bacteria, fungi and virus and antigens. The apical intercellular tight junctions (TJ are responsible for the paracellular barrier function and regulate trans-epithelial flux of ions and solutes between adjacent cells. Increased intestinal permeability caused by defects in the IE TJ barrier is considered an important pathogenic factor for the development of intestinal inflammation, diarrhea and malnutrition in humans and animals. In fact, defects in the IE TJ barrier allow increased antigenic penetration, resulting in an amplified inflammatory response in inflammatory bowel disease (IBD, necrotizing enterocolitis and ischemia-reperfusion injury. Conversely, the beneficial enhancement of the intestinal TJ barrier has been shown to resolve intestinal inflammation and apoptosis in both animal models of IBD and human IBD. Autophagy (self-eating mechanism is an intracellular lysosome-dependent degradation and recycling pathway essential for cell survival and homeostasis. Dysregulated autophagy has been shown to be directly associated with many pathological processes, including IBD. Importantly, the crosstalk between IE TJ and autophagy has been revealed recently. We showed that autophagy enhanced IE TJ barrier function by increasing transepithelial resistance and reducing the paracellular permeability of small solutes and ions, which is, in part, by targeting claudin-2, a cation-selective, pore-forming, transmembrane TJ protein, for lysosome (autophagy-mediated degradation. Interestingly, previous studies have shown that the inflamed intestinal mucosa in patients with active IBD has increased claudin-2 expression. In addition, inflammatory cytokines (for example, tumor necrosis factor-α, interleukin-6

  3. The role of CDX2 in intestinal homeostasis and inflammation

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Troelsen, Jesper Thorvald; Nielsen, Ole Haagen

    2011-01-01

    a causal role in a large number of diseases and developmental disorders. Inflammatory bowel disease (IBD) is characterized by a chronically inflamed mucosa caused by dysregulation of the intestinal immune homeostasis. The aetiology of IBD is thought to be a combination of genetic and environmental factors......, including luminal bacteria. The Caudal-related homeobox transcription factor 2 (CDX2) is critical in early intestinal differentiation and has been implicated as a master regulator of the intestinal homeostasis and permeability in adults. When expressed, CDX2 modulates a diverse set of processes including...... of the intestinal homeostasis and further to reveal its potential role in inflammation....

  4. The first thousand days – intestinal microbiology of early life: establishing a symbiosis

    NARCIS (Netherlands)

    Wopereis, H.; Oozeer, R.; Knipping, K.; Belzer, C.; Knol, J.

    2014-01-01

    The development of the intestinal microbiota in the first years of life is a dynamic process significantly influenced by early-life nutrition. Pioneer bacteria colonizing the infant intestinal tract and the gradual diversification to a stable climax ecosystem plays a crucial role in establishing

  5. Neuron-macrophage crosstalk in the intestine: a ‘microglia’ perspective

    Directory of Open Access Journals (Sweden)

    Simon eVerheijden

    2015-10-01

    Full Text Available Intestinal macrophages are strategically located in different layers of the intestine, including the mucosa, submucosa and muscularis externa, where they perform complex tasks to maintain intestinal homeostasis. As the gastrointestinal tract is continuously challenged by foreign antigens, macrophage activation should be tightly controlled to prevent chronic inflammation and tissue damage. Unraveling the precise cellular and molecular mechanisms underlying the tissue-specific control of macrophage activation is crucial to get more insight into intestinal immune regulation. Two recent reports provide unanticipated evidence that the enteric nervous system acts as a critical regulator of macrophage function in the myenteric plexus. Both studies clearly illustrate that enteric neurons reciprocally interact with intestinal macrophages and are actively involved in shaping their phenotype. This concept has striking parallels with the central nervous system (CNS, where neuronal signals maintain microglia, the resident macrophages of the CNS, in a quiescent, anti-inflammatory state. This inevitably evokes the perception that the ENS and CNS share mechanisms of neuroimmune interaction. In line, intestinal macrophages, both in the muscularis externa and (submucosa, express high levels of CX3CR1, a feature that was once believed to be unique for microglia. CX3CR1 is the sole receptor of fractalkine (CX3CL1, a factor mainly produced by neurons in the CNS to facilitate neuron-microglia communication. The striking parallels between resident macrophages of the brain and intestine might provide a promising new line of thought to get more insight into cellular and molecular mechanisms controlling macrophage activation in the gut.

  6. Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice.

    Directory of Open Access Journals (Sweden)

    Markus M Heimesaat

    Full Text Available BACKGROUND: Postmortem microbiological examinations are performed in forensic and medical pathology for defining uncertain causes of deaths and for screening of deceased tissue donors. Interpretation of bacteriological data, however, is hampered by false-positive results due to agonal spread of microorganisms, postmortem bacterial translocation, and environmental contamination. METHODOLOGY/PRINCIPAL FINDINGS: We performed a kinetic survey of naturally occurring postmortem gut flora changes in the small and large intestines of conventional and gnotobiotic mice associated with a human microbiota (hfa applying cultural and molecular methods. Sacrificed mice were kept under ambient conditions for up to 72 hours postmortem. Intestinal microbiota changes were most pronounced in the ileal lumen where enterobacteria and enterococci increased by 3-5 orders of magnitude in conventional and hfa mice. Interestingly, comparable intestinal overgrowth was shown in acute and chronic intestinal inflammation in mice and men. In hfa mice, ileal overgrowth with enterococci and enterobacteria started 3 and 24 hours postmortem, respectively. Strikingly, intestinal bacteria translocated to extra-intestinal compartments such as mesenteric lymphnodes, spleen, liver, kidney, and cardiac blood as early as 5 min after death. Furthermore, intestinal tissue destruction was characterized by increased numbers of apoptotic cells and neutrophils within 3 hours postmortem, whereas counts of proliferative cells as well as T- and B-lymphocytes and regulatory T-cells decreased between 3 and 12 hours postmortem. CONCLUSIONS/SIGNIFICANCE: We conclude that kinetics of ileal overgrowth with enterobacteria and enterococci in hfa mice can be used as an indicator for compromized intestinal functionality and for more precisely defining the time point of death under defined ambient conditions. The rapid translocation of intestinal bacteria starting within a few minutes after death will help

  7. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon under different growth stages.

    Directory of Open Access Journals (Sweden)

    Wanilada Rungrassamee

    Full Text Available Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon, bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15, 1- (J1, 2- (J2, and 3-month-old (J3 juveniles using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases were obtained, which were categorized by barcode for PL15 (7,045 sequences, J1 (3,055 sequences, J2 (13,130 sequences and J3 (1,890 sequences. Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities.

  8. Anthrax lethal toxin disrupts intestinal barrier function and causes systemic infections with enteric bacteria.

    Directory of Open Access Journals (Sweden)

    Chen Sun

    Full Text Available A variety of intestinal pathogens have virulence factors that target mitogen activated protein kinase (MAPK signaling pathways, including Bacillus anthracis. Anthrax lethal toxin (LT has specific proteolytic activity against the upstream regulators of MAPKs, the MAPK kinases (MKKs. Using a murine model of intoxication, we show that LT causes the dose-dependent disruption of intestinal epithelial integrity, characterized by mucosal erosion, ulceration, and bleeding. This pathology correlates with an LT-dependent blockade of intestinal crypt cell proliferation, accompanied by marked apoptosis in the villus tips. C57BL/6J mice treated with intravenous LT nearly uniformly develop systemic infections with commensal enteric organisms within 72 hours of administration. LT-dependent intestinal pathology depends upon its proteolytic activity and is partially attenuated by co-administration of broad spectrum antibiotics, indicating that it is both a cause and an effect of infection. These findings indicate that targeting of MAPK signaling pathways by anthrax LT compromises the structural integrity of the mucosal layer, serving to undermine the effectiveness of the intestinal barrier. Combined with the well-described immunosuppressive effects of LT, this disruption of the intestinal barrier provides a potential mechanism for host invasion via the enteric route, a common portal of entry during the natural infection cycle of Bacillus anthracis.

  9. Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, Marlies; Mayassi, Toufic; Fehlner-Peach, Hannah; Koval, Jason C.; O' Brien, Sarah L.; Hinterleitner, Reinhard; Lesko, Kathryn; Kim, Sangman; Bouziat, Romain; Chen, Li; Weber, Christopher R.; Mazmanian, Sarkis K.; Jabri, Bana; Antonopoulos, Dionysios A.

    2016-09-20

    Dysbiosis resulting in gut-microbiome alterations with reduced butyrate production are thought to disrupt intestinal immune homeostasis and promote complex immune disorders. However, whether and how dysbiosis develops before the onset of overt pathology remains poorly defined. Interleukin 15 (IL-15) is upregulated in distressed tissue and its overexpression is thought to predispose susceptible individuals to and play a role in the pathogenesis of celiac disease and inflammatory bowel disease (IBD). While the immunological roles of IL-15 have been largely studied, its potential impact on the microbiota remains unexplored. Analysis of 16S rRNA-based inventories of bacterial communities in mice overexpressing IL-15 in the intestinal epithelium (v-IL-15tg mice) shows distinct changes in the composition of the intestinal bacteria. While some alterations are specific to individual intestinal compartments, others are found across the ileum, cecum, and feces. In particular, IL-15 overexpression restructures the composition of the microbiota with a decrease in butyrate producing bacteria that is associated with a reduction in luminal butyrate levels across all intestinal compartments. Fecal microbiota transplant experiments of wild-type and v-IL-15tg microbiota into germ-free mice further indicate that diminishing butyrate concentration observed in the intestinal lumen of v-IL-15tg mice is the result of intrinsic alterations in the microbiota induced by IL-15. This reconfiguration of the microbiota is associated with increased susceptibility to dextran sodium sulfate induced colitis. Altogether, this study reveals that IL-15 impacts butyrate-producing bacteria and lowers butyrate levels in the absence of overt pathology, which represent events that precede and promote intestinal inflammatory diseases.

  10. Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius

    Science.gov (United States)

    O'Hara, Ann M; O'Regan, Padraig; Fanning, Áine; O'Mahony, Caitlin; MacSharry, John; Lyons, Anne; Bienenstock, John; O'Mahony, Liam; Shanahan, Fergus

    2006-01-01

    Intestinal epithelial cells (IECs) and dendritic cells (DCs) play a pivotal role in antigen sampling and the maintenance of gut homeostasis. However, the interaction of commensal bacteria with the intestinal surface remains incompletely understood. Here we investigated immune cell responses to commensal and pathogenic bacteria. HT-29 human IECs were incubated with Bifidobacterium infantis 35624, Lactobacillus salivarius UCC118 or Salmonella typhimurium UK1 for varying times, or were pretreated with a probiotic for 2 hr prior to stimulation with S. typhimurium or flagellin. Gene arrays were used to examine inflammatory gene expression. Nuclear factor (NF)-κB activation, interleukin (IL)-8 secretion, pathogen adherence to IECs, and mucin-3 (MUC3) and E-cadherin gene expression were assayed by TransAM assay, enzyme-linked immunosorbent assay (ELISA), fluorescence, and real-time reverse transcriptase–polymerase chain reaction (RT-PCR), respectively. IL-10 and tumour necrosis factor (TNF)-α secretion by bacteria-treated peripheral blood-derived DCs were measured using ELISA. S. typhimurium increased expression of 36 of the 847 immune-related genes assayed, including NF-κB and IL-8. The commensal bacteria did not alter expression levels of any of the 847 genes. However, B. infantis and L. salivarius attenuated both IL-8 secretion at baseline and S. typhimurium-induced pro-inflammatory responses. B. infantis also limited flagellin-induced IL-8 protein secretion. The commensal bacteria did not increase MUC3 or E-cadherin expression, or interfere with pathogen binding to HT-29 cells, but they did stimulate IL-10 and TNF-α secretion by DCs. The data demonstrate that, although the intestinal epithelium is immunologically quiescent when it encounters B. infantis or L. salivarius, these commensal bacteria exert immunomodulatory effects on intestinal immune cells that mediate host responses to flagellin and enteric pathogens. PMID:16771855

  11. Regulation of intestinal health by branched-chain amino acids.

    Science.gov (United States)

    Zhou, Hua; Yu, Bing; Gao, Jun; Htoo, John Khun; Chen, Daiwen

    2018-01-01

    Besides its primary role in the digestion and absorption of nutrients, the intestine also interacts with a complex external milieu, and is the first defense line against noxious pathogens and antigens. Dysfunction of the intestinal barrier is associated with enhanced intestinal permeability and development of various gastrointestinal diseases. The branched-chain amino acids (BCAAs) are important nutrients, which are the essential substrates for protein biosynthesis. Recently, emerging evidence showed that BCAAs are involved in maintaining intestinal barrier function. It has been reported that dietary supplementation with BCAAs promotes intestinal development, enhances enterocyte proliferation, increases intestinal absorption of amino acids (AA) and glucose, and improves the immune defenses of piglets. The underlying mechanism of these effects is mediated by regulating expression of genes and proteins associate with various signaling pathways. In addition, BCAAs promote the production of beneficial bacteria in the intestine of mice. Compelling evidence supports the notion that BCAAs play important roles in both nutrition and intestinal health. Therefore, as functional amino acids with various physiological effects, BCAAs hold key roles in promoting intestinal development and health in animals and humans. © 2017 Japanese Society of Animal Science.

  12. Selection of probiotic bacteria for prevention of allergic diseases: immunomodulation of neonatal dendritic cells

    NARCIS (Netherlands)

    Niers, L. E. M.; Hoekstra, M. O.; Timmerman, H. M.; van Uden, N. O.; de Graaf, P. M. A.; Smits, H. H.; Kimpen, J. L. L.; Rijkers, G. T.

    2007-01-01

    Modification of intestinal microbiota early in life by administration of probiotic bacteria may be a potential approach to prevent allergic disease. To select probiotic bacteria for in vivo purposes, we investigated the capacity of probiotic bacteria to interact with neonatal dendritic cells (DC)

  13. Intestinal Stem Cell Niche: The Extracellular Matrix and Cellular Components

    Directory of Open Access Journals (Sweden)

    Laween Meran

    2017-01-01

    Full Text Available The intestinal epithelium comprises a monolayer of polarised columnar cells organised along the crypt-villus axis. Intestinal stem cells reside at the base of crypts and are constantly nourished by their surrounding niche for maintenance, self-renewal, and differentiation. The cellular microenvironment including the adjacent Paneth cells, stromal cells, smooth muscle cells, and neural cells as well as the extracellular matrix together constitute the intestinal stem cell niche. A dynamic regulatory network exists among the epithelium, stromal cells, and the matrix via complex signal transduction to maintain tissue homeostasis. Dysregulation of these biological or mechanical signals could potentially lead to intestinal injury and disease. In this review, we discuss the role of different intestinal stem cell niche components and dissect the interaction between dynamic matrix factors and regulatory signalling during intestinal stem cell homeostasis.

  14. The intestinal microenvironment in sepsis.

    Science.gov (United States)

    Fay, Katherine T; Ford, Mandy L; Coopersmith, Craig M

    2017-10-01

    The gastrointestinal tract has long been hypothesized to function as "the motor" of multiple organ dysfunction syndrome. The gastrointestinal microenvironment is comprised of a single cell layer epithelia, a local immune system, and the microbiome. These three components of the intestine together play a crucial role in maintaining homeostasis during times of health. However, the gastrointestinal microenvironment is perturbed during sepsis, resulting in pathologic changes that drive both local and distant injury. In this review, we seek to characterize the relationship between the epithelium, gastrointestinal lymphocytes, and commensal bacteria during basal and pathologic conditions and how the intestinal microenvironment may be targeted for therapeutic gain in septic patients. Published by Elsevier B.V.

  15. Fish oil enhances recovery of intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplant.

    Directory of Open Access Journals (Sweden)

    Qiurong Li

    Full Text Available BACKGROUND: The intestinal chronic rejection (CR is the major limitation to long-term survival of transplanted organs. This study aimed to investigate the interaction between intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplantation, and to find out whether fish oil enhances recovery of intestinal microbiota and epithelial integrity. METHODS/PRINCIPAL FINDINGS: The luminal and mucosal microbiota composition of CR rats were characterized by DGGE analysis at 190 days after intestinal transplant. The specific bacterial species were determined by sequence analysis. Furthermore, changes in the localization of intestinal TJ proteins were examined by immunofluorescent staining. PCR-DGGE analysis revealed that gut microbiota in CR rats had a shift towards Escherichia coli, Bacteroides spp and Clostridium spp and a decrease in the abundance of Lactobacillales bacteria in the intestines. Fish oil supplementation could enhance the recovery of gut microbiota, showing a significant decrease of gut bacterial proportions of E. coli and Bacteroides spp and an increase of Lactobacillales spp. In addition, CR rats showed pronounced alteration of tight junction, depicted by marked changes in epithelial cell ultrastructure and redistribution of occuldin and claudins as well as disruption in TJ barrier function. Fish oil administration ameliorated disruption of epithelial integrity in CR, which was associated with an improvement of the mucosal structure leading to improved tight junctions. CONCLUSIONS/SIGNIFICANCE: Our study have presented novel evidence that fish oil is involved in the maintenance of epithelial TJ integrity and recovery of gut microbiota, which may have therapeutic potential against CR in intestinal transplantation.

  16. Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts

    Directory of Open Access Journals (Sweden)

    Verónica Urdaneta

    2017-10-01

    Full Text Available Bile salts and bacteria have intricate relationships. The composition of the intestinal pool of bile salts is shaped by bacterial metabolism. In turn, bile salts play a role in intestinal homeostasis by controlling the size and the composition of the intestinal microbiota. As a consequence, alteration of the microbiome–bile salt homeostasis can play a role in hepatic and gastrointestinal pathological conditions. Intestinal bacteria use bile salts as environmental signals and in certain cases as nutrients and electron acceptors. However, bile salts are antibacterial compounds that disrupt bacterial membranes, denature proteins, chelate iron and calcium, cause oxidative damage to DNA, and control the expression of eukaryotic genes involved in host defense and immunity. Bacterial species adapted to the mammalian gut are able to endure the antibacterial activities of bile salts by multiple physiological adjustments that include remodeling of the cell envelope and activation of efflux systems and stress responses. Resistance to bile salts permits that certain bile-resistant pathogens can colonize the hepatobiliary tract, and an outstanding example is the chronic infection of the gall bladder by Salmonella enterica. A better understanding of the interactions between bacteria and bile salts may inspire novel therapeutic strategies for gastrointestinal and hepatobiliary diseases that involve microbiome alteration, as well as novel schemes against bacterial infections.

  17. [Intestinal parasitosis among non-permanent resident students in Tunisia: a review of 23 years of monitoring in the department of Parasitology-Mycology at the Rabta Hospital of Tunisia].

    Science.gov (United States)

    Dridi, Kalthoum; Fakhfakh, Najla; Belhadj, Sleh; Kaouech, Emira; Kallel, Kalthoum; Chaker, Emna

    2015-07-01

    In order to fight digestive parasitism in Tunisia, a national program of surveillance of non-permanent resident students in Tunisia has been found to detect these parasitosis in this target population. To determine the prevalence of intestinal parasitosis among non-permanent resident students in Tunisia, to identify the different parasitic species founded and to show the interest of this screening. During a period of 23 years (1990-2012), 7386 parasitological examinations of stools has been made among students essentially from or had visited tropical Africa, Maghreb and Middle-East, at the laboratory of Parasitology-Mycology at the Rabta Hospital of Tunis. The prevalence of intestinal parasitism found was 34.45% (i.e. 2545 infested students). Among the protozoa that have been isolated in the majority of cases (78.75%), amoebae were most frequently found (86.4%) represented mainly by Entamoeba coli and Endolimax nanus in respectively, 25.62 and 23.33% of parasites isolated; while Entamoeba histolytica/dispar, only pathogenic Amoeba was found in 8.05% of the total of parasites isolated. Regarding helminths, found in 21.25% of parasites isolated, Ankylostome was predominant (34.5%) represented by the species of Necator americanus. A single case of Ancylostom duodenale has been isolated. Among the identified parasite species, 38.7% were known parasitic pathogens for humans. These results note the interest of the control of the non-permanent resident students in Tunisia. The precocious tracking and treatment of affected subjects permits to avoid the introduction and the dissemination of parasites already rare and virulent strains in our country.

  18. Modulation of host responses by oral commensal bacteria

    Directory of Open Access Journals (Sweden)

    Deirdre A. Devine

    2015-02-01

    Full Text Available Immunomodulatory commensal bacteria are proposed to be essential for maintaining healthy tissues, having multiple roles including priming immune responses to ensure rapid and efficient defences against pathogens. The default state of oral tissues, like the gut, is one of inflammation which may be balanced by regulatory mechanisms and the activities of anti-inflammatory resident bacteria that modulate Toll-like receptor (TLR signalling or NF-κB activation, or influence the development and activities of immune cells. However, the widespread ability of normal resident organisms to suppress inflammation could impose an unsustainable burden on the immune system and compromise responses to pathogens. Immunosuppressive resident bacteria have been isolated from the mouth and, for example, may constitute 30% of the resident streptococci in plaque or on the tongue. Their roles in oral health and dysbiosis remain to be determined. A wide range of bacterial components and/or products can mediate immunomodulatory activity, raising the possibility of development of alternative strategies for therapy and health promotion using probiotics, prebiotics, or commensal-derived immunomodulatory molecules.

  19. Mechanisms involved in alleviation of intestinal inflammation by bifidobacterium breve soluble factors.

    Directory of Open Access Journals (Sweden)

    Elise Heuvelin

    Full Text Available OBJECTIVES: Soluble factors released by Bifidobacterium breve C50 (Bb alleviate the secretion of pro-inflammatory cytokines by immune cells, but their effect on intestinal epithelium remains elusive. To decipher the mechanisms accounting for the cross-talk between bacteria/soluble factors and intestinal epithelium, we measured the capacity of the bacteria, its conditioned medium (Bb-CM and other Gram(+ commensal bacteria to dampen inflammatory chemokine secretion. METHODS: TNFalpha-induced chemokine (CXCL8 secretion and alteration of NF-kappaB and AP-1 signalling pathways by Bb were studied by EMSA, confocal microscopy and western blotting. Anti-inflammatory capacity was also tested in vivo in a model of TNBS-induced colitis in mice. RESULTS: Bb and Bb-CM, but not other commensal bacteria, induced a time and dose-dependent inhibition of CXCL8 secretion by epithelial cells driven by both AP-1 and NF-kappaB transcription pathways and implying decreased phosphorylation of p38-MAPK and IkappaB-alpha molecules. In TNBS-induced colitis in mice, Bb-CM decreased the colitis score and inflammatory cytokine expression, an effect reproduced by dendritic cell conditioning with Bb-CM. CONCLUSIONS: Bb and secreted soluble factors contribute positively to intestinal homeostasis by attenuating chemokine production. The results indicate that Bb down regulate inflammation at the epithelial level by inhibiting phosphorylations involved in inflammatory processes and by protective conditioning of dendritic cells.

  20. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms.

    Directory of Open Access Journals (Sweden)

    Jonna Jalanka-Tuovinen

    Full Text Available While our knowledge of the intestinal microbiota during disease is accumulating, basic information of the microbiota in healthy subjects is still scarce. The aim of this study was to characterize the intestinal microbiota of healthy adults and specifically address its temporal stability, core microbiota and relation with intestinal symptoms. We carried out a longitudinal study by following a set of 15 healthy Finnish subjects for seven weeks and regularly assessed their intestinal bacteria and archaea with the Human Intestinal Tract (HIT Chip, a phylogenetic microarray, in conjunction with qPCR analyses. The health perception and occurrence of intestinal symptoms was recorded by questionnaire at each sampling point.A high overall temporal stability of the microbiota was observed. Five subjects showed transient microbiota destabilization, which correlated not only with the intake of antibiotics but also with overseas travelling and temporary illness, expanding the hitherto known factors affecting the intestinal microbiota. We identified significant correlations between the microbiota and common intestinal symptoms, including abdominal pain and bloating. The most striking finding was the inverse correlation between Bifidobacteria and abdominal pain: subjects who experienced pain had over five-fold less Bifidobacteria compared to those without pain. Finally, a novel computational approach was used to define the common core microbiota, highlighting the role of the analysis depth in finding the phylogenetic core and estimating its size. The in-depth analysis suggested that we share a substantial number of our intestinal phylotypes but as they represent highly variable proportions of the total community, many of them often remain undetected.A global and high-resolution microbiota analysis was carried out to determine the temporal stability, the associations with intestinal symptoms, and the individual and common core microbiota in healthy adults. The

  1. Antibiotics with a selective aerobic or anaerobic spectrum have different therapeutic activities in various regions of the colon in interleukin 10 gene deficient mice

    NARCIS (Netherlands)

    Hoentjen, F; Harmsen, HJM; Braat, H; Torrice, CD; Mann, BA; Sartor, RB; Dieleman, LA

    2003-01-01

    Background and aims: Multiple rodent models implicate resident intestinal bacteria in the pathogenesis of chronic immune mediated intestinal inflammation. Specific pathogen free (SPF) interleukin 10 gene deficient (IL-10(-/-)) mice develop colitis, which does not occur in the germ free (GF) state.

  2. Lymphoma Caused by Intestinal Microbiota

    Directory of Open Access Journals (Sweden)

    Mitsuko L. Yamamoto

    2014-09-01

    Full Text Available The intestinal microbiota and gut immune system must constantly communicate to maintain a balance between tolerance and activation: on the one hand, our immune system should protect us from pathogenic microbes and on the other hand, most of the millions of microbes in and on our body are innocuous symbionts and some can even be beneficial. Since there is such a close interaction between the immune system and the intestinal microbiota, it is not surprising that some lymphomas such as mucosal-associated lymphoid tissue (MALT lymphoma have been shown to be caused by the presence of certain bacteria. Animal models played an important role in establishing causation and mechanism of bacteria-induced MALT lymphoma. In this review we discuss different ways that animal models have been applied to establish a link between the gut microbiota and lymphoma and how animal models have helped to elucidate mechanisms of microbiota-induced lymphoma. While there are not a plethora of studies demonstrating a connection between microbiota and lymphoma development, we believe that animal models are a system which can be exploited in the future to enhance our understanding of causation and improve prognosis and treatment of lymphoma.

  3. The Composition of Colonic Commensal Bacteria According to Anatomical Localization in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Liuyang Zhao

    2017-02-01

    Full Text Available Colorectal cancer (CRC is a multistage disease resulting from complex factors, including genetic mutations, epigenetic changes, chronic inflammation, diet, and lifestyle. Recent accumulating evidence suggests that the gut microbiota is a new and important player in the development of CRC. Imbalance of the gut microbiota, especially dysregulated gut bacteria, contributes to colon cancer through mechanisms of inflammation, host defense modulations, oxidative stress, and alterations in bacterial-derived metabolism. Gut commensal bacteria are anatomically defined as four populations: luminal commensal bacteria, mucus-resident bacteria, epithelium-resident bacteria, and lymphoid tissue-resident commensal bacteria. The bacterial flora that are harbored in the gastrointestinal (GI tract vary both longitudinally and cross-sectionally by different anatomical localization. It is notable that the translocation of colonic commensal bacteria is closely related to CRC progression. CRC-associated bacteria can serve as a non-invasive and accurate biomarker for CRC diagnosis. In this review, we summarize recent findings on the oncogenic roles of gut bacteria with different anatomical localization in CRC progression.

  4. [INTESTINAL FAILURE AND YERSINIA PSEUDOTUBERCULOSIS TRANSLOCATION IN THE DEVELOPMENTOF EXPERIMENTAL GENERALIZED INFECTION].

    Science.gov (United States)

    Chicherin, I Yu; Pogorelky, I P; Lundovskikh, I A; Darmov, I V; Gorshkov, A S; Shabalina, M R

    2016-01-01

    To determine the value of intestinal failure and translocation of bacteria Y. pseudotuberculosis, and normal intestinal microbiota in the initiation and generalization of infection in experimental pseudotuberculosis in conventional white mice, as well as pathological manifestation of it as a response to the adhesion and colonization of the mucosus membrane by pathogenic bacteria Y. pseudotuberculosis. Experimental models of pseudotuberculosis in conventional white mice used the pathogenic Y. pseudotuberculosis 147 serotype I strain, containing a calcium-dependence plasmid with a molecular weight of 47 MDa. Cultivation of the pseudotuberculosis pathogen given its psychrophilic was performed on Hottinger agar at a temperature of (4-5) °C. The lactobacilli strain L plantarum 8P-A3 was isolated from a lyophilized commercial probiotic Lactobacterin (manufactured by "NPO Microgen", Russia) and used to obtain native culture supernatant fluid of lactobacilli, the composition of which was detected by gas-liquid chromatography with mass-selective detection. Gentamicin for parenteral administration was manufactured by JSC "Biochemist", Russia. Pathomorphological examination was performed on the 4-6th day of the experiment. Fragments of the small intestine, liver, kidneys, and lungs from dead animals were chosen for examination. Tissues were fixed in 10% neutral formalin, dehydrated in isopropanol and embedded in paraffin. Preparations were stained with Ehrlich hematoxylin and eosin, examined on the microscope "Mikmed-2" (JSC "LOMO", Russia) under magnification x 200-x1000. Statistical processing of the experimental results was carried out according to the method of Kerber in modification of I.P. Ashmarin and A.A. Vorobyov. The role of intestinal failure and translocation of bacteria Y. pseudotuberculosis, and normal intestinal microbiota in the initiation and generalization of infection in animals has been found. It has been proved that the oral administration of supernatant

  5. Oral, intestinal, and skin bacteria in ventral hernia mesh implants

    Directory of Open Access Journals (Sweden)

    Odd Langbach

    2016-07-01

    Full Text Available Background: In ventral hernia surgery, mesh implants are used to reduce recurrence. Infection after mesh implantation can be a problem and rates around 6–10% have been reported. Bacterial colonization of mesh implants in patients without clinical signs of infection has not been thoroughly investigated. Molecular techniques have proven effective in demonstrating bacterial diversity in various environments and are able to identify bacteria on a gene-specific level. Objective: The purpose of this study was to detect bacterial biofilm in mesh implants, analyze its bacterial diversity, and look for possible resemblance with bacterial biofilm from the periodontal pocket. Methods: Thirty patients referred to our hospital for recurrence after former ventral hernia mesh repair, were examined for periodontitis in advance of new surgical hernia repair. Oral examination included periapical radiographs, periodontal probing, and subgingival plaque collection. A piece of mesh (1×1 cm from the abdominal wall was harvested during the new surgical hernia repair and analyzed for bacteria by PCR and 16S rRNA gene sequencing. From patients with positive PCR mesh samples, subgingival plaque samples were analyzed with the same techniques. Results: A great variety of taxa were detected in 20 (66.7% mesh samples, including typical oral commensals and periodontopathogens, enterics, and skin bacteria. Mesh and periodontal bacteria were further analyzed for similarity in 16S rRNA gene sequences. In 17 sequences, the level of resemblance between mesh and subgingival bacterial colonization was 98–100% suggesting, but not proving, a transfer of oral bacteria to the mesh. Conclusion: The results show great bacterial diversity on mesh implants from the anterior abdominal wall including oral commensals and periodontopathogens. Mesh can be reached by bacteria in several ways including hematogenous spread from an oral site. However, other sites such as gut and skin may also

  6. Quantification of Faecalibacterium prausnitzii- and Subdoligranulum variabile-like bacteria in the cecum of chickens by real-time PCR

    DEFF Research Database (Denmark)

    Lund, Marianne; Friis-Holm, Lotte Bjerrum; Pedersen, Karl

    2010-01-01

    The intestinal microbial community is playing an important role in health and production performance of chickens. To understand the effect on the intestinal microflora induced by various feeding strategies, feed additives, infections, and intestinal disorders, it is important to have methods......, and in hatcher material. Quantification of this group of F. prausnitzii-S. variabile-like bacteria has not been performed before by real-time PCR, but results confirm previous results obtained by cloning and sequencing showing that the F. prausnitzii-S. variabile-like group of bacteria constitutes a major...

  7. Cytokine Tuning of Intestinal Epithelial Function

    Directory of Open Access Journals (Sweden)

    Caroline Andrews

    2018-06-01

    Full Text Available The intestine serves as both our largest single barrier to the external environment and the host of more immune cells than any other location in our bodies. Separating these potential combatants is a single layer of dynamic epithelium composed of heterogeneous epithelial subtypes, each uniquely adapted to carry out a subset of the intestine’s diverse functions. In addition to its obvious role in digestion, the intestinal epithelium is responsible for a wide array of critical tasks, including maintaining barrier integrity, preventing invasion by microbial commensals and pathogens, and modulating the intestinal immune system. Communication between these epithelial cells and resident immune cells is crucial for maintaining homeostasis and coordinating appropriate responses to disease and can occur through cell-to-cell contact or by the release or recognition of soluble mediators. The objective of this review is to highlight recent literature illuminating how cytokines and chemokines, both those made by and acting on the intestinal epithelium, orchestrate many of the diverse functions of the intestinal epithelium and its interactions with immune cells in health and disease. Areas of focus include cytokine control of intestinal epithelial proliferation, cell death, and barrier permeability. In addition, the modulation of epithelial-derived cytokines and chemokines by factors such as interactions with stromal and immune cells, pathogen and commensal exposure, and diet will be discussed.

  8. Evaluation of intestinal sampling sites in pigs at slaughter for assessing antibiotic resistance level in swine herds

    DEFF Research Database (Denmark)

    Jensen, Annette Nygaard; Thanou, Olga; Axelsdottir, Aslaug

    2012-01-01

    to at each individual herd would reduce the work load and costs significantly. However, due to the potential oral exposure to bacteria in the environment during transport and lairage of pigs, intestinal content sampled at the slaughterhouse may not represent the bacterial status of the pig back in the herd......In the EU project SafeOrganic, the objective is to compare the level of antibiotic resistance in conventional pig herds with the level in organic pig herds, where a restricted use of antimicrobials is expected to result in less resistant bacteria. For such survey, sampling at the abattoir opposed......-colon in some pigs indicating a relatively short intestinal passage time after ingestion and then the risk of finding bacteria not originating from the host pig but from the environment. However, the proportion of the TET resistant E. coli in the large intestine appeared relatively stable over time, though...

  9. Functional metagenomic profiling of intestinal microbiome in extreme ageing

    Science.gov (United States)

    Rampelli, Simone; Candela, Marco; Turroni, Silvia; Biagi, Elena; Collino, Sebastiano; Franceschi, Claudio; O'Toole, Paul W; Brigidi, Patrizia

    2013-01-01

    Age-related alterations in human gut microbiota composition have been thoroughly described, but a detailed functional description of the intestinal bacterial coding capacity is still missing. In order to elucidate the contribution of the gut metagenome to the complex mosaic of human longevity, we applied shotgun sequencing to total fecal bacterial DNA in a selection of samples belonging to a well-characterized human ageing cohort. The age-related trajectory of the human gut microbiome was characterized by loss of genes for shortchain fatty acid production and an overall decrease in the saccharolytic potential, while proteolytic functions were more abundant than in the intestinal metagenome of younger adults. This altered functional profile was associated with a relevant enrichment in “pathobionts”, i.e. opportunistic pro-inflammatory bacteria generally present in the adult gut ecosystem in low numbers. Finally, as a signature for long life we identified 116 microbial genes that significantly correlated with ageing. Collectively, our data emphasize the relationship between intestinal bacteria and human metabolism, by detailing the modifications in the gut microbiota as a consequence of and/or promoter of the physiological changes occurring in the human host upon ageing. PMID:24334635

  10. Functional metagenomic profiling of intestinal microbiome in extreme ageing.

    Science.gov (United States)

    Rampelli, Simone; Candela, Marco; Turroni, Silvia; Biagi, Elena; Collino, Sebastiano; Franceschi, Claudio; O'Toole, Paul W; Brigidi, Patrizia

    2013-12-01

    Age-related alterations in human gut microbiota composition have been thoroughly described, but a detailed functional description of the intestinal bacterial coding capacity is still missing. In order to elucidate the contribution of the gut metagenome to the complex mosaic of human longevity, we applied shotgun sequencing to total fecal bacterial DNA in a selection of samples belonging to a well-characterized human ageing cohort. The age-related trajectory of the human gut microbiome was characterized by loss of genes for shortchain fatty acid production and an overall decrease in the saccharolytic potential, while proteolytic functions were more abundant than in the intestinal metagenome of younger adults. This altered functional profile was associated with a relevant enrichment in "pathobionts", i.e. opportunistic pro-inflammatory bacteria generally present in the adult gut ecosystem in low numbers. Finally, as a signature for long life we identified 116 microbial genes that significantly correlated with ageing. Collectively, our data emphasize the relationship between intestinal bacteria and human metabolism, by detailing the modifications in the gut microbiota as a consequence of and/or promoter of the physiological changes occurring in the human host upon ageing.

  11. Antagonistic intestinal microflora produces antimicrobial substance inhibitory to pseudomonas species and other spoilage organisms

    NARCIS (Netherlands)

    Hatew, B.; Delessa, T.; Zakin, V.; Gollop, N.

    2011-01-01

    Chicken intestine harbors a vast number of bacterial strains. In the present study, antimicrobial substance produced by lactic acid bacteria (LAB) isolated from the gastrointestinal tract of healthy chicken was detected, characterized, and purified. Based on 16S rRNA sequencing, the bacteria were

  12. Macrophages in intestinal homeostasis and inflammation

    Science.gov (United States)

    Bain, Calum C; Mowat, Allan McI

    2014-01-01

    The intestine contains the largest pool of macrophages in the body which are essential for maintaining mucosal homeostasis in the face of the microbiota and the constant need for epithelial renewal but are also important components of protective immunity and are involved in the pathology of inflammatory bowel disease (IBD). However, defining the biological roles of intestinal macrophages has been impeded by problems in defining the phenotype and origins of different populations of myeloid cells in the mucosa. Here, we discuss how multiple parameters can be used in combination to discriminate between functionally distinct myeloid cells and discuss the roles of macrophages during homeostasis and how these may change when inflammation ensues. We also discuss the evidence that intestinal macrophages do not fit the current paradigm that tissue-resident macrophages are derived from embryonic precursors that self-renew in situ, but require constant replenishment by blood monocytes. We describe our recent work demonstrating that classical monocytes constantly enter the intestinal mucosa and how the environment dictates their subsequent fate. We believe that understanding the factors that drive intestinal macrophage development in the steady state and how these may change in response to pathogens or inflammation could provide important insights into the treatment of IBD. PMID:24942685

  13. Community diversity of bacteria in digestive tract of mud snail (Bullacta exarata Philippi) and its rearing shoal

    Institute of Scientific and Technical Information of China (English)

    王国良; 郑天伦; 陆彤霞; 王一农; 於宏; 金珊

    2002-01-01

    The bacterial flora in the digestive tract of B. exarata Philippi and its rearing shoal were investigated, respectively. A total of 107 strains of heterotrophic bacteria, isolated from crop, stomach and intestine, mainly belong to genera Photobacterium, Bacillus, Pseudomonas and Vibrio. Varieties of bacteria in crop were significantly more than that in stomach and in intestine. A total of 173 strains of bacteria were isolated from the rearing shoal, belonging to 13 genera. The 5 predominant genera are Photobacterium, Bacillus, Pseudomonas, Vibrio and some genera of Enterobacteriaceae. The number of heterotrophic bacteria and Vibrio in rearing shoal changed in line with the alteration of the temperature, and were significantly affected by the use of pesticide.

  14. The interplay between intestinal bacteria and host metabolism in health and disease: lessons from Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Adam C. N. Wong

    2016-03-01

    Full Text Available All higher organisms negotiate a truce with their commensal microbes and battle pathogenic microbes on a daily basis. Much attention has been given to the role of the innate immune system in controlling intestinal microbes and to the strategies used by intestinal microbes to overcome the host immune response. However, it is becoming increasingly clear that the metabolisms of intestinal microbes and their hosts are linked and that this interaction is equally important for host health and well-being. For instance, an individual's array of commensal microbes can influence their predisposition to chronic metabolic diseases such as diabetes and obesity. A better understanding of host–microbe metabolic interactions is important in defining the molecular bases of these disorders and could potentially lead to new therapeutic avenues. Key advances in this area have been made using Drosophila melanogaster. Here, we review studies that have explored the impact of both commensal and pathogenic intestinal microbes on Drosophila carbohydrate and lipid metabolism. These studies have helped to elucidate the metabolites produced by intestinal microbes, the intestinal receptors that sense these metabolites, and the signaling pathways through which these metabolites manipulate host metabolism. Furthermore, they suggest that targeting microbial metabolism could represent an effective therapeutic strategy for human metabolic diseases and intestinal infection.

  15. The three-dimensional structure of CFA/I adhesion pili: traveler's diarrhea bacteria hang on by a spring.

    Science.gov (United States)

    Mu, Xiang-Qi; Savarino, Stephen J; Bullitt, Esther

    2008-02-22

    To survive the harsh environment of a churning intestinal tract, bacteria attach to the host epithelium via thin fibers called pili (or fimbriae). Enterotoxigenic Escherichia coli bacteria expressing colonization factor antigen I (CFA/I) pili and related pili are the most common known bacterial cause of diarrheal disease, including traveler's diarrhea. CFA/I pili, assembled via the alternate chaperone pathway, are essential for binding and colonization of the small bowel by these pathogenic bacteria. Herein, we elucidate unique structural features of CFA/I pili that appear to optimize their function as bacterial tethers in the intestinal tract. Using transmission electron microscopy of negatively stained samples in combination with iterative three-dimensional helical reconstruction methods for image processing, we determined the structure of the CFA/I pilus filament. Our results indicate that strong end-to-end protein interactions and weak interactions between the coils of a sturdy spring-like helix provide the combination of strength, stability, and flexibility required to sustain bacterial adhesion and incite intestinal disease. We propose that CFA/I pili behave like a spring to maintain attachment to the gut lining during vortex mixing and downward flow of the intestinal contents, thereby persisting long enough for these bacteria to colonize the host epithelium and cause enteric disease.

  16. Regionalized Development and Maintenance of the Intestinal Adaptive Immune Landscape

    DEFF Research Database (Denmark)

    Agace, William Winston; McCoy, Kathy D.

    2017-01-01

    The intestinal immune system has the daunting task of protecting us from pathogenic insults while limiting inflammatory responses against the resident commensal microbiota and providing tolerance to food antigens. This role is particularly impressive when one considers the vast mucosal surface...... and changing landscape that the intestinal immune system must monitor. In this review, we highlight regional differences in the development and composition of the adaptive immune landscape of the intestine and the impact of local intrinsic and environmental factors that shape this process. To conclude, we...... review the evidence for a critical window of opportunity for early-life exposures that affect immune development and alter disease susceptibility later in life....

  17. Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content.

    Science.gov (United States)

    Bertin, Yolande; Girardeau, J P; Chaucheyras-Durand, F; Lyan, Bernard; Pujos-Guillot, Estelle; Harel, Josée; Martin, Christine

    2011-02-01

    The bovine gastrointestinal tract is the main reservoir for enterohaemorrhagic Escherichia coli (EHEC) responsible for food-borne infections. Characterization of nutrients that promote the carriage of these pathogens by the ruminant would help to develop ecological strategies to reduce their survival in the bovine gastrointestinal tract. In this study, we show for the first time that free ethanolamine (EA) constitutes a nitrogen source for the O157:H7 EHEC strain EDL933 in the bovine intestinal content because of induction of the eut (ethanolamine utilization) gene cluster. In contrast, the eut gene cluster is absent in the genome of most species constituting the mammalian gut microbiota. Furthermore, the eutB gene (encoding a subunit of the enzyme that catalyses the release of ammonia from EA) is poorly expressed in non-pathogenic E. coli. Accordingly, EA is consumed by EHEC but is poorly metabolized by endogenous microbiota of the bovine small intestine, including commensal E. coli. Interestingly, the capacity to utilize EA as a nitrogen source confers a growth advantage to E. coli O157:H7 when the bacteria enter the stationary growth phase. These data demonstrate that EHEC strains take advantage of a nitrogen source that is not consumed by the resident microbiota, and suggest that EA represents an ecological niche favouring EHEC persistence in the bovine intestine.

  18. A Lactobacillus mutant capable of accumulating long-chain polyphosphates that enhance intestinal barrier function.

    Science.gov (United States)

    Saiki, Asako; Ishida, Yasuaki; Segawa, Shuichi; Hirota, Ryuichi; Nakamura, Takeshi; Kuroda, Akio

    2016-05-01

    Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein-approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function.

  19. Effect of in ovo administration of an adult-derived microbiota on establishment of the intestinal microbiome in chickens.

    Science.gov (United States)

    Pedroso, Adriana A; Batal, Amy B; Lee, Margie D

    2016-05-01

    OBJECTIVE To determine effects of in ovo administration of a probiotic on development of the intestinal microbiota of 2 genetic lineages (modern and heritage) of chickens. SAMPLE 10 newly hatched chicks and 40 fertile eggs to determine intestinal microbiota at hatch, 900 fertile eggs to determine effects of probiotic on hatchability, and 1,560 chicks from treated or control eggs. PROCEDURES A probiotic competitive-exclusion product derived from adult microbiota was administered in ovo to fertile eggs of both genetic lineages. Cecal contents and tissues were collected from embryos, newly hatched chicks, and chicks. A PCR assay was used to detect bacteria present within the cecum of newly hatched chicks. Fluorescence in situ hybridization and vitality staining were used to detect viable bacteria within intestines of embryos. The intestinal microbiota was assessed by use of 16S pyrosequencing. RESULTS Microscopic evaluation of embryonic cecal contents and tissues subjected to differential staining techniques revealed viable bacteria in low numbers. Development of the intestinal microbiota of broiler chicks of both genetic lineages was enhanced by in ovo administration of adult microbiota. Although the treatment increased diversity and affected composition of the microbiota of chicks, most bacterial species present in the probiotic were transient colonizers. However, the treatment decreased the abundance of undesirable bacterial species within heritage lineage chicks. CONCLUSIONS AND CLINICAL RELEVANCE In ovo inoculation of a probiotic competitive-exclusion product derived from adult microbiota may be a viable method of managing development of the microbiota and reducing the prevalence of pathogenic bacteria in chickens.

  20. Commensal Streptococcus salivarius Modulates PPARγ Transcriptional Activity in Human Intestinal Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Benoît Couvigny

    Full Text Available The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor, we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health.

  1. Response of Intestinal Bacterial Flora to the Long-term Feeding of Aflatoxin B1 (AFB1) in Mice.

    Science.gov (United States)

    Yang, Xiai; Liu, Liangliang; Chen, Jing; Xiao, Aiping

    2017-10-12

    In order to investigate the influence of aflatoxin B1 (AFB1) on intestinal bacterial flora, 24 Kunming mice (KM mice) were randomly placed into four groups, which were labeled as control, low-dose, medium-dose, and high-dose groups. They were fed intragastrically with 0.4 mL of 0 mg/L, 2.5 mg/L, 4 mg/L, or 10 mg/L of AFB1 solutions, twice a day for 2 months. The hypervariable region V3 + V4 on 16S rDNA of intestinal bacterial flora was sequenced by the use of a high-flux sequencing system on a Miseq Illumina platform; then, the obtained sequences were analyzed. The results showed that, when compared with the control group, both genera and phyla of intestinal bacteria in the three treatment groups decreased. About one third of the total genera and one half of the total phyla remained in the high-dose group. The dominant flora were Lactobacillus and Bacteroides in all groups. There were significant differences in the relative abundance of intestinal bacterial flora among groups. Most bacteria decreased as a whole from the control to the high-dose groups, but several beneficial and pathogenic bacterial species increased significantly with increasing dose of AFB1. Thus, the conclusion was that intragastric feeding with 2.5~10 mg/mL AFB1 for 2 months could decrease the majority of intestinal bacterial flora and induce the proliferation of some intestinal bacteria flora.

  2. Differential effect of immune cells on non-pathogenic Gram-negative bacteria-induced nuclear factor-kappaB activation and pro-inflammatory gene expression in intestinal epithelial cells

    DEFF Research Database (Denmark)

    Haller, D.; Holt, L.; Parlesak, Alexandr

    2004-01-01

    stimulation, interleukin-8 (IL-8) mRNA accumulation is strongly induced in Escherichia coli- but not Bacteroides vulgatus-stimulated IEC cocultured with peripheral blood (PBMC) and lamina propria mononuclear cells (LPMC). The presence of PBMC triggered both E. coli- and B. vulgatus-induced mRNA expression...... in the presence of PBMC. Interestingly, B. vulgatus- and E. coli-derived lipopolysaccharide-induced similar IL-8 mRNA expression in epithelial cells after basolateral stimulation of HT-29/PBMC cocultures. Although luminal enteric bacteria have adjuvant and antigenic properties in chronic intestinal inflammation...

  3. Effect of peristalsis in balance of intestinal microbial ecosystem

    Science.gov (United States)

    Mirbagheri, Seyed Amir; Fu, Henry C.

    2017-11-01

    A balance of microbiota density in gastrointestinal tracts is necessary for health of the host. Although peristaltic flow made by intestinal muscles is constantly evacuating the lumen, bacterial density stay balanced. Some of bacteria colonize in the secreted mucus where there is no flow, but the rest resist the peristaltic flow in lumen and maintain their population. Using a coupled two-dimensional model of flow induced by large amplitude peristaltic waves, bacterial motility, reproduction, and diffusion, we address how bacterial growth and motility combined with peristaltic flow affect the balance of the intestinal microbial ecosystem.

  4. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine.

    Science.gov (United States)

    Klunder, Leon J; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C D

    2017-07-05

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. Transplantation of Expanded Fetal Intestinal Progenitors Contributes to Colon Regeneration after Injury

    DEFF Research Database (Denmark)

    Fordham, Robert P; Yui, Shiro; Hannan, Nicholas R F

    2013-01-01

    Regeneration and homeostasis in the adult intestinal epithelium is driven by proliferative resident stem cells, whose functional properties during organismal development are largely unknown. Here, we show that human and mouse fetal intestine contains proliferative, immature progenitors, which can...... be expanded in vitro as Fetal Enterospheres (FEnS). A highly similar progenitor population can be established during intestinal differentiation of human induced pluripotent stem cells. Established cultures of mouse fetal intestinal progenitors express lower levels of Lgr5 than mature progenitors and propagate...... in the presence of the Wnt antagonist Dkk1, and new cultures can be induced to form mature intestinal organoids by exposure to Wnt3a. Following transplantation in a colonic injury model, FEnS contribute to regeneration of colonic epithelium by forming epithelial crypt-like structures expressing region...

  6. A five patient’s case study on the influence of two different probiotics on individual intestinal microbiota

    Directory of Open Access Journals (Sweden)

    Yoko Uchiyama-Tanaka

    2013-05-01

    Full Text Available ABSTRACTBackground: The composition and activities of indigenous intestinal microbiota are of paramount importance to human immunity, nutrition, and pathological processes, and hence, the health of the individual. It is well established that the intestine is an important site for local immunity. It is known that the effect of probiotics increases beneficial microbiota and improves chronic conditions such as atopic diseases, irritable bowel disease, and obesity. However, as there are so many probiotics, it is unknown which probiotics might have more of an impact upon intestinal microbiota.Objective: To understand how two different types of probiotics influence human intestinal microbiota, we analyzed human fecal microbiota after taking each of the probiotics.Methods: Five outpatients from Yoko Clinic (1 male and 4 females; aged between 34–46 years old were enrolled in this study. None of the subjects had cancer or any active inflammatory diseases. The five patients took Lactobacillus buchneri (SU for 4 weeks, no probiotics the following week, and mixed probiotics (NS which are Lactobacillus plantarum (NS-5, Lactobacillus rhamnosus (NS-11, Lactobacillus delbruekii (NS-12, Lactobacillus helveticus (NS-8, Lactobacillus fermentum (NS-9 for the following 4 weeks. Fecal samples were collected before and after the outpatients took each of the two probiotics, and were then analyzed using a kit from Techno Suruga Laboratory Co., Ltd. The analysis of the microbiota was performed by targeting bacterial 16S rRNA genes with a terminal restriction fragment length polymorphism analysis program (Nagashima method.Results: Three patients of the five patients decreased the percentage of beneficial bacteria(Lactobacillales, Bifidobacteria after taking SU (13.7 ± 7.1% to 4.0 ± 3.5%, whereas the remaining two patients showed an increased percentage of beneficial bacteria (16.8 ± 3.4% to 30.4 ± 4.6%. After taking NS, the three patients who decreased the

  7. Physiological Achilles' heels of Enteropathogenic bacteria in livestock

    NARCIS (Netherlands)

    Becker, P.M.

    2005-01-01

    An elaborate feeding regimen of animals, which takes advantage of the Achilles' heels of enteropathogenic bacteria, can possibly enable prophylaxis in the intestinal tract, attenuate actual disease symptoms, accelerate recovery from a bacterial gastroenteritis or ensure food safety. There is a wide

  8. Hydrocarbon degradation potentials of bacteria isolated from spent ...

    African Journals Online (AJOL)

    Hydrocarbon degradation potentials of bacteria isolated from spent lubricating oil contaminated soil. ... This study has shown that resident bacteria strains in lubricating oil contaminated soils have potential application in the bioremediation of oil polluted sites and enhance the possibility of developing models and strategies ...

  9. Innate Lymphoid Cells in Intestinal Inflammation

    Science.gov (United States)

    Geremia, Alessandra; Arancibia-Cárcamo, Carolina V.

    2017-01-01

    Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD) and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC) in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an increased risk of

  10. Innate Lymphoid Cells in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Alessandra Geremia

    2017-10-01

    Full Text Available Inflammatory bowel disease (IBD is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an

  11. Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis.

    Science.gov (United States)

    Czaja, Albert J

    2016-11-14

    The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies.

  12. Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2

    NARCIS (Netherlands)

    Simmini, Salvatore; Bialecka, Monika; Huch, Meritxell; Kester, Lennart; van de Wetering, Marc; Sato, Toshiro; Beck, Felix; van Oudenaarden, Alexander; Clevers, Hans; Deschamps, Jacqueline

    2014-01-01

    The endodermal lining of the adult gastro-intestinal tract harbours stem cells that are responsible for the day-to-day regeneration of the epithelium. Stem cells residing in the pyloric glands of the stomach and in the small intestinal crypts differ in their differentiation programme and in the gene

  13. [Intestinal microbiota and cardiometabolic risk: mechanisms and diet modulation].

    Science.gov (United States)

    Moraes, Ana Carolina Franco de; Silva, Isis Tande da; Almeida-Pititto, Bianca de; Ferreira, Sandra Roberta G

    2014-06-01

    The gut microbiota obtained after birth is composed of a large range of bacteria that play different roles in the human host, such as nutrient uptake, protection against pathogens and immune modulation. The intestinal bacterial content is not completely known, but it is influenced by internal, and mainly by external factors, which modulate its composition and function. Studies indicate that the gut microbiota differs in lean and obese individuals, and in individuals with different food habits. There is evidence that the relationship between diet, inflammation, insulin resistance, and cardiometabolic risk are, in part, mediated by the composition of intestinal bacteria. Knowledge about the gut microbiota may result in different strategies to manipulate bacterial populations and promote health. This review discusses the relevance of understanding the role of dietary factors or patterns in the composition of the microbiota, as well as pathophysiological mechanisms of chronic metabolic diseases, and the potential of prebiotics and probiotics on the cardiometabolic risk profile.

  14. Intestinal parasitosis and shigellosis among diarrheal patients in Gondar teaching hospital, northwest Ethiopia

    Directory of Open Access Journals (Sweden)

    Huruy Kahsay

    2011-10-01

    Full Text Available Abstract Background Diarrheal diseases are the major causes of morbidity and mortality in developing world. Understanding the etiologic agents of diarrheal diseases and their association with socio-demographic characteristics of patients would help to design better preventive measures. Thus, this study was aimed to determine the prevalence of intestinal parasites and enteropathogenic bacteria in diarrheic patients. Methods A cross-sectional study involving 384 consecutive diarrheal patients who visited Gondar teaching hospital, Gondar, Ethiopia from October 2006 to March 2007 was conducted. Stool specimens were collected and examined for intestinal parasites and enteropathogenic bacteria following standard parasitological and microbiological procedures. Results Intestinal parasites were diagnosed in 36.5% of the patients. The most frequently encountered protozoan parasite was Entamoeba histolytica/dispar (7.3% followed by Giardia lamblia (5.0%, Cryptosporidium parvum (1.8% and Isospora belli (1.3%. The dominant helminthic parasite identified was Ascaris lumbricoides (5.5% followed by Strongyloides stercoralis and Schistosoma mansoni (3.1% each, hookworm infection (1.8%, and Hymenolepis species (1.3%. Multiple infections of intestinal parasites were also observed in 6.3% of the patients. Among the enteropathogenic bacteria Shigella and Salmonella species were isolated from 15.6% and 1.6%, respectively, of the patients. Escherichia coli O57:H7 was not found in any of the stool samples tested. Eighty eight percent and 83.3% of the Shigella and Salmonella isolates were resistant to one or more commonly used antibiotics, respectively. Intestinal parasitosis was higher in patients who live in rural area, in patients who were washing their hands after visiting toilet either irregularly with soap and without soap or not at all, in patients who used well and spring water for household consumption, and in patients who had nausea (P P Conclusions The high

  15. [Epidemiology aspects intestinal parasitosis among the population of Baku].

    Science.gov (United States)

    Khalafli, Kh N

    2009-03-01

    The aim of this study was to determine the prevalence of intestinal parasitosis in Baku and to evaluate its association with socio-economic and environmental factors. In the research 424 residents of Baku were investigated. Intestinal helminths and protozoosis were revealed by means of Standard methods of investigation (A.A.Turdiev (1967), K.Kato, M.Miura (1954) and C.Graham (1941) in modification variants R.E.Cobanov et al. (1993)). Data were analyzed using Student's t criterion and Van der Varden's X criterion. Total cases of infectious-contagious disease was about of 42,5+/-2,4% of investigated persons; ascaris, trichocephalus, trichostrongylus was found in 19,1+/-1,9% (p>0,001). There were some persons infected with Taeniarhynchus saginatus (mainly women)- 0,9+/-0,4% (p>0,001). In children the frequency of accompanying diseases was 2,15-4,3 times (X=5,19, pintestinal parasites among residents were investigated. The investigation showed that the current socio economic conditions have caused the increase of intestinal parasitosis. If left untreated, serious complications may occur due to parasitic infections. Therefore, public health care employee as well as the officers of municipality and government should cooperate to improve the conditions, and also people should be informed about the signs, symptoms and prevention methods of the parasitic diseases.

  16. Enteropathogenic Escherichia coli, Samonella, Shigella and Yersinia: cellular aspects of host-bacteria interactions in enteric diseases

    Directory of Open Access Journals (Sweden)

    Reis Roberta

    2010-07-01

    Full Text Available Abstract A successful infection of the human intestine by enteropathogenic bacteria depends on the ability of bacteria to attach and colonize the intestinal epithelium and, in some cases, to invade the host cell, survive intracellularly and disseminate from cell to cell. To accomplish these processes bacteria have evolved an arsenal of molecules that are mostly secreted by dedicated type III secretion systems, and that interact with the host, subverting normal cellular functions. Here we overview the most important molecular strategies developed by enteropathogenic Escherichia coli, Salmonella enterica, Shigella flexneri, and Yersinia enterocolitica to cause enteric infections. Despite having evolved different effectors, these four microorganisms share common host cellular targets.

  17. The role of the intestinal microbiota in pneumonia and sepsis

    NARCIS (Netherlands)

    Lankelma, J.M.

    2017-01-01

    Humans carry with them trillions of bacteria, viruses and fungi that are collectively called the human microbiota. The intestinal microbiota fulfills essential functions in human physiology and has recently been suggested as a potential therapeutic target for several diseases. This thesis focuses on

  18. Negative regulation of Toll-like receptor signaling plays an essential role in the homeostasis of the intestine

    OpenAIRE

    Biswas, Amlan; Wilmanski, Jeanette; Forsman, Huamei; Hrncir, Tomas; Hao, Liming; Tlaskalova-Hogenova, Helena; Kobayashi, Koichi S.

    2010-01-01

    A healthy intestinal tract is characterized by controlled homeostasis due to the balanced interaction between commensal bacteria and the host mucosal immune system. Human and animal model studies have supported the hypothesis that breakdown of this homeostasis may underlie the pathogenesis of inflammatory bowel diseases (IBDs). However it is not well understood how intestinal microflora stimulate the intestinal mucosal immune system and how such activation is regulated. Using a spontaneous, c...

  19. Microbiota-Dependent Crosstalk Between Macrophages and ILC3 Promotes Intestinal Homeostasis

    Science.gov (United States)

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P.; Belkaid, Yasmine; Merad, Miriam

    2014-01-01

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (Treg) numbers and impaired oral tolerance. We observed that RORγt+ innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine. PMID:24625929

  20. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis.

    Science.gov (United States)

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P; Belkaid, Yasmine; Merad, Miriam

    2014-03-28

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (T(reg)) numbers and impaired oral tolerance. We observed that RORγt(+) innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine.

  1. Probiotic lactic acid bacteria ? the fledgling cuckoos of the gut?

    OpenAIRE

    Berstad, Arnold; Raa, Jan; Midtvedt, Tore; Valeur, J?rgen

    2016-01-01

    It is tempting to look at bacteria from our human egocentric point of view and label them as either ‘good’ or ‘bad’. However, a microbial society has its own system of government – ‘microcracy’ – and its own rules of play. Lactic acid bacteria are often referred to as representatives of the good ones, and there is little doubt that those belonging to the normal intestinal flora are beneficial for human health. But we should stop thinking of lactic acid bacteria as always being ‘friendly’ – th...

  2. Probiotic lactic acid bacteria - the fledgling cuckoos of the gut?

    Science.gov (United States)

    Berstad, Arnold; Raa, Jan; Midtvedt, Tore; Valeur, Jørgen

    2016-01-01

    It is tempting to look at bacteria from our human egocentric point of view and label them as either 'good' or 'bad'. However, a microbial society has its own system of government - 'microcracy' - and its own rules of play. Lactic acid bacteria are often referred to as representatives of the good ones, and there is little doubt that those belonging to the normal intestinal flora are beneficial for human health. But we should stop thinking of lactic acid bacteria as always being 'friendly' - they may instead behave like fledgling cuckoos.

  3. Intestinal helminth co-infection and associated factors among tuberculosis patients in Arba Minch, Ethiopia.

    Science.gov (United States)

    Alemu, Getaneh; Mama, Mohammedaman

    2017-01-13

    Helminths affect the outcome of tuberculosis by shifting cell mediated immune response to humoral and by total suppression of the host immune system. On the reverse, Mycobacterium infection favors immune escape of helminths. Therefore assessing helminth co-infection rate and predisposing factors in tuberculosis patients is mandatory to set strategies for better case management. Facility based cross-sectional study was conducted in Arba Minch to assess the prevalence and associated factors of intestinal helminths among pulmonary tuberculosis patients from January to August, 2016. A structured questionnaire was used to capture data about socio-demographic characteristics, clinical history and possible risk factors for intestinal helminth infections. Height and weight were measured to calculate body-mass index. Appropriate amount of stool was collected and processed by direct saline and formol-ether concentration techniques following standard protocols. All the data were analyzed using SPSS version 20.0. A total of 213 (57.3% male and 42.7% female) pulmonary tuberculosis patients were participated in the study. The overall co-infection rate of intestinal parasites was 26.3%. The infection rate of intestinal helminths account 24.4% and that of intestinal protozoa was 6.1%. Ascaris lumbricoides accounted the highest frequency of 11.3%. Living in rural residence (AOR = 3.175, 95% CI: 1.102-9.153, p = 0.032), Eating vegetables/ fruits without washing or peeling off (AOR = 2.208, 95% CI: 1.030-4.733, p = 0.042) and having body-mass index intestinal helminth infection. The infection rate by intestinal helminths was 24.4%. Ascaris lumbricoides was the most prevalent helminth. Residence, habit of washing vegetables/fruits before use and body-mass index were associated factors with intestinal helminthiasis. Therefore health care providers should screen and treat TB patients for intestinal helminthiasis in order to ensure good prognosis.

  4. Development of Functional Microfold (M Cells from Intestinal Stem Cells in Primary Human Enteroids.

    Directory of Open Access Journals (Sweden)

    Joshua D Rouch

    Full Text Available Intestinal microfold (M cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer's patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs, and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting.Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium.Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2 in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells.Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium preferentially infect these cells in an

  5. Effects Of pH, Temperature And Salinity In Growth And Organic Acid Production Of Lactic Acid Bacteria Isolated From Penaeid Shrimp Intestine

    Directory of Open Access Journals (Sweden)

    Subagiyo Subagiyo

    2015-12-01

    Full Text Available Bakteri asam laktat telah lama dikembangkan sebagai probiotik. Penentuan kondisi lingkungan yang optimum untuk pertumbuhan sel serta asam organik memberikan gambaran aktivitas optimum untuk kinerja probiotik baik dalam sistem fisiologi inang maupun dalam sistem bioproses untuk produksi sel dan metabolit. Penelitian ini bertujuan untuk mengetahui pengaruh faktor lingkungan (pH, suhu dan salinitas terhadap pertumbuhan dan produksi total asam organik tiga isolat bakteri asam laktat yang telah diseleksi dari intestinum udang penaeid. Eksperimen menggunakan  medium deMan, Rogosa and Sharpe (MRS cair. Perlakuan pH awal meliputi  nilai pH 4, 5 dan 6. Perlakuan suhu meliputi suhu 25, 30 dan 35OC serta perlakuan salinitas  meliputi salinitas 0,75 %, 1,5 % dan 3 %.  Setiap interval 6 jam dilakukan pengambilan sampel kultur bakteri dan penghitungan pertumbuhan berdasarkan perubahan optical density (pada panjang gelombang 600 nm sedangkan produksi asam laktat dianalisis dengan metode titrimetrik menggunakan NaOH 1 N sebagai larutan titrasinya. Berdasarkan hasil penelitian disimpulkan bahwa suhu, pH awal dan salinitas berpengaruh terhadap pertumbuhan dan produksi asam organik. Nilai kondisi lingkungan terbaik untuk pertumbuhan dapat berbeda dengan nilai terbaik untuk produksi asam organic. Hal ini ditunjukan oleh nilai laju pertumbuhan dan produksi asam laktat tertinggi dari tiga isolat uji terjadi pada suhu, pH awal dan salinitas yang berbeda.  Isolat L12 tumbuh optimum pada suhu 30oC, pH awal 6 dan salinitas 0,75%. Isolat L14 tumbuh optimum pada suhu 30oC, pH awal 6 dan salinitas 1.5%. Isolat L 21 tumbuh optimum pada suhu 30 oC, pH awal 6 dan salinitas 1.5%. Kata kunci: bakteri asam laktat, suhu, pH, salinitas, asamorganik, pertumbuhan, Lactic acid bacteria are widely distributed in intestinal tracts of various animals where they live as normal flora.Strains of lactic acid bacteria are the most common microbes employed as probiotics, The optimum

  6. Pathogenic features of heterotrophic plate count bacteria from drinking-water boreholes.

    Science.gov (United States)

    Horn, Suranie; Pieters, Rialet; Bezuidenhout, Carlos

    2016-12-01

    Evidence suggests that heterotrophic plate count (HPC) bacteria may be hazardous to humans with weakened health. We investigated the pathogenic potential of HPC bacteria from untreated borehole water, consumed by humans, for: their haemolytic properties, the production of extracellular enzymes such as DNase, proteinase, lipase, lecithinase, hyaluronidase and chondroitinase, the effect simulated gastric fluid has on their survival, as well as the bacteria's antibiotic-susceptible profile. HuTu-80 cells acted as model for the human intestine and were exposed to the HPC isolates to determine their effects on the viability of the cells. Several HPC isolates were α- or β-haemolytic, produced two or more extracellular enzymes, survived the SGF treatment, and showed resistance against selected antibiotics. The isolates were also harmful to the human intestinal cells to varying degrees. A novel pathogen score was calculated for each isolate. Bacillus cereus had the highest pathogen index: the pathogenicity of the other bacteria declined as follows: Aeromonas taiwanensis > Aeromonas hydrophila > Bacillus thuringiensis > Alcaligenes faecalis > Pseudomonas sp. > Bacillus pumilus > Brevibacillus sp. > Bacillus subtilis > Bacillus sp. These results demonstrated that the prevailing standards for HPCs in drinking water may expose humans with compromised immune systems to undue risk.

  7. Alteration in the endogenous intestinal flora of swiss webster mice by experimental Angiostrongylus costaricensis infection

    Directory of Open Access Journals (Sweden)

    Vandack Nobre

    2004-11-01

    Full Text Available The association between worm infections and bacterial diseases has only recently been emphasized. This study examined the effect of experimental Angiostrongylus costaricensis infection on endogenous intestinal flora of Swiss Webster mice. Eight mice aging six weeks were selected for this experiment. Four were infected with A. costaricensis and the other four were used as controls. Twenty eight days after the worm infection, all mice in both groups were sacrificed and samples of the contents of the ileum and colon were obtained and cultured for aerobic and anaerobic bacteria. In the mice infected with A. costaricensis there was a significant increase in the number of bacteria of the endogenous intestinal flora, accompanied by a decrease in the number of Peptostreptococcus spp. This alteration in the intestinal flora of mice infected by the nematode may help to understand some bacterial infections described in humans.

  8. Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells.

    Science.gov (United States)

    Roubos-van den Hil, P J; Nout, M J R; Beumer, R R; van der Meulen, J; Zwietering, M H

    2009-03-01

    This study aimed to investigate the effect of processed soya bean, during the successive stages of tempe fermentation and different fermentation times, on adhesion of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal brush border cells as well as Caco-2 intestinal epithelial cells; and to clarify the mechanism of action. Tempe was prepared at controlled laboratory scale using Rhizopus microsporus var. microsporus as the inoculum. Extracts of raw, soaked and cooked soya beans reduced ETEC adhesion to brush border cells by 40%. Tempe extracts reduced adhesion by 80% or more. ETEC adhesion to Caco-2 cells reduced by 50% in the presence of tempe extracts. ETEC K88 bacteria were found to interact with soya bean extracts, and this may contribute to the observed decrease of ETEC adhesion to intestinal epithelial cells. Fermented soya beans (tempe) reduce the adhesion of ETEC to intestinal epithelial cells of pig and human origin. This reduced adhesion is caused by an interaction between ETEC K88 bacteria and soya bean compounds. The results strengthen previous observations on the anti-diarrhoeal effect of tempe. This effect indicates that soya-derived compounds may reduce adhesion of ETEC to intestinal cells in pigs as well as in humans and prevent against diarrhoeal diseases.

  9. Biotin absorption by distal rat intestine

    International Nuclear Information System (INIS)

    Bowman, B.B.; Rosenberg, I.H.

    1987-01-01

    We used the in vivo intestinal loop approach, with short (10-min) and long (3-h) incubations, to examine biotin absorption in proximal jejunum, distal ileum, cecum and proximal colon. In short-term studies, luminal biotin disappearance from rat ileum was about half that observed in the jejunum, whereas absorption by proximal colon was about 12% of that in the jejunum. In 3-h closed-loop studies, the absorption of 1.0 microM biotin varied regionally. Biotin absorption was nearly complete in the small intestine after 3 h; however, only about 15% of the dose had been absorbed in the cecum and 27% in the proximal colon after 3 h. Independent of site of administration, the major fraction of absorbed biotin was recovered in the liver; measurable amounts of radioactive biotin were also present in kidney and plasma. The results support the potential nutritional significance for the rat of biotin synthesized by bacteria in the distal intestine, by demonstrating directly an absorptive capability of mammalian large bowel for this vitamin

  10. Effects of probiotics and antibiotics on the intestinal homeostasis in a computer controlled model of the large intestine

    Directory of Open Access Journals (Sweden)

    Rehman Ateequr

    2012-03-01

    Full Text Available Abstract Background Antibiotic associated diarrhea and Clostridium difficile infection are frequent complications of broad spectrum antibiotic therapy. Probiotic bacteria are used as therapeutic and preventive agents in these disorders, but the exact functional mechanisms and the mode of action are poorly understood. The effects of clindamycin and the probiotic mixture VSL#3 (containing the 8 bacterial strains Streptococcus thermophilus, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus paracasei and Lactobacillus delbrueckii subsp. Bulgaricus consecutively or in combination were investigated and compared to controls without therapy using a standardized human fecal microbiota in a computer-controlled in vitro model of large intestine. Microbial metabolites (short chain fatty acids, lactate, branched chain fatty acids, and ammonia and the intestinal microbiota were analyzed. Results Compared to controls and combination therapy, short chain fatty acids and lactate, but also ammonia and branched chain fatty acids, were increased under probiotic therapy. The metabolic pattern under combined therapy with antibiotics and probiotics had the most beneficial and consistent effect on intestinal metabolic profiles. The intestinal microbiota showed a decrease in several indigenous bacterial groups under antibiotic therapy, there was no significant recovery of these groups when the antibiotic therapy was followed by administration of probiotics. Simultaneous application of anti- and probiotics had a stabilizing effect on the intestinal microbiota with increased bifidobacteria and lactobacilli. Conclusions Administration of VSL#3 parallel with the clindamycin therapy had a beneficial and stabilizing effect on the intestinal metabolic homeostasis by decreasing toxic metabolites and protecting the endogenic microbiota from destruction. Probiotics could be a reasonable

  11. Interrelations between the microbiotas in the litter and in the intestines of commercial broiler chickens.

    Science.gov (United States)

    Cressman, Michael D; Yu, Zhongtang; Nelson, Michael C; Moeller, Steven J; Lilburn, Michael S; Zerby, Henry N

    2010-10-01

    The intestinal microbiota of broiler chickens and the microbiota in the litter have been well studied, but the interactions between these two microbiotas remain to be determined. Therefore, we examined their reciprocal effects by analyzing the intestinal microbiotas of broilers reared on fresh pine shavings versus reused litter, as well as the litter microbiota over a 6-week cycle. Composite ileal mucosal and cecal luminal samples from birds (n = 10) reared with both litter conditions (fresh versus reused) were collected at 7, 14, 21, and 42 days of age. Litter samples were also collected at days 7, 14, 21, and 42. The microbiotas were profiled and compared within sample types based on litter condition using PCR and denaturing gradient gel electrophoresis (PCR-DGGE). The microbiotas were further analyzed using 16S rRNA gene clone libraries constructed from microbiota DNA extracted from both chick intestinal and litter samples collected at day 7. Results showed significant reciprocal effects between the microbiotas present in the litter and those in the intestines of broilers. Fresh litter had more environmental bacteria, while reused litter contained more bacteria of intestinal origin. Lactobacillus spp. dominated the ileal mucosal microbiota of fresh-litter chicks, while a group of bacteria yet to be classified within Clostridiales dominated in the ileal mucosal microbiota in the reused-litter chicks. The Litter condition (fresh versus reused) seemed to have a more profound impact on the ileal microbiota than on the cecal microbiota. The data suggest that the influence of fresh litter on ileal microbiota decreased as broilers grew, compared with temporal changes observed under reused-litter rearing conditions.

  12. Production of enterodiol from defatted flaxseeds through biotransformation by human intestinal bacteria

    Directory of Open Access Journals (Sweden)

    Ma Miao

    2010-04-01

    Full Text Available Abstract Background The effects of enterolignans, e.g., enterodiol (END and particularly its oxidation product, enterolactone (ENL, on prevention of hormone-dependent diseases, such as osteoporosis, cardiovascular diseases, hyperlipemia, breast cancer, colon cancer, prostate cancer and menopausal syndrome, have attracted much attention. To date, the main way to obtain END and ENL is chemical synthesis, which is expensive and inevitably leads to environmental pollution. To explore a more economic and eco-friendly production method, we explored biotransformation of enterolignans from precursors contained in defatted flaxseeds by human intestinal bacteria. Results We cultured fecal specimens from healthy young adults in media containing defatted flaxseeds and detected END from the culture supernatant. Following selection through successive subcultures of the fecal microbiota with defatted flaxseeds as the only carbon source, we obtained a bacterial consortium, designated as END-49, which contained the smallest number of bacterial types still capable of metabolizing defatted flaxseeds to produce END. Based on analysis with pulsed field gel electrophoresis, END-49 was found to consist of five genomically distinct bacterial lineages, designated Group I-V, with Group I strains dominating the culture. None of the individual Group I-V strains produced END, demonstrating that the biotransformation of substrates in defatted flaxseeds into END is a joint work by different members of the END-49 bacterial consortium. Interestingly, Group I strains produced secoisolariciresinol, an important intermediate of END production; 16S rRNA analysis of one Group I strain established its close relatedness with Klebsiella. Genomic analysis is under way to identify all members in END-49 involved in the biotransformation and the actual pathway leading to END-production. Conclusion Biotransformation is a very economic, efficient and environmentally friendly way of mass

  13. A probiotic strain of L. acidophilus reduces DMH-induced large intestinal tumors in male Sprague-Dawley rats.

    Science.gov (United States)

    McIntosh, G H; Royle, P J; Playne, M J

    1999-01-01

    Probiotic bacteria strains were examined for their influence on 1,2-dimethylhydrazine (DMH)-induced intestinal tumors in 100 male Sprague-Dawley rats. Lactobacillus acidophilus (Delvo Pro LA-1), Lactobacillus rhamnosus (GG), Bifidobacterium animalis (CSCC1941), and Streptococcus thermophilus (DD145) strains were examined for their influence when added as freeze-dried bacteria to an experimental diet based on a high-fat semipurified (AIN-93) rodent diet. Four bacterial treatments were compared: L. acidophilus, L. acidophilus + B. animalis, L. rhamnosus, and S. thermophilus, the bacteria being added daily at 1% freeze-dried weight (10(10) colony-forming units/g) to the diet. Trends were observed in the incidence of rats with large intestinal tumors for three treatments: 25% lower than control for L. acidophilus, 20% lower for L. acidophilus + B. animalis and L. rhamnosus treatments, and 10% lower for S. thermophilus. Large intestinal tumor burden was significantly lower for treated rats with L. acidophilus than for the control group (10 and 3 tumors/treatment group, respectively, p = 0.05). Large intestinal tumor mass index was also lower for the L. acidophilus treatment than for control (1.70 and 0.10, respectively, p L. acidophilus, no adenocarcinomas were present in the colons. Pulsed-field gel electrophoresis of bacterial chromosomal DNA fragments was used to differentiate introduced (exogenous) bacterial strains from indigenous bacteria of the same genera present in the feces. Survival during gut passage and displacement of indigenous lactobacilli occurred with introduced L. acidophilus and L. rhamnosus GG during the probiotic treatment period. However, introduced strains of B. animalis and S. thermophilus were not able to be isolated from feces. It is concluded that this strain of L. acidophilus supplied as freeze-dried bacteria in the diet was protective, as seen by a small but significant inhibition of tumors within the rat colon.

  14. FEATURES OF INTESTINAL MICROBIOTA IN CHILDREN WITH A SYNDROME OF EXCESSIVE BACTERIAL GROWTH IN THE SMALL INTESTINE

    Directory of Open Access Journals (Sweden)

    L. A. Lityaeva

    2018-01-01

    Full Text Available The purpose of the study was to determine the features of the parietal microbiota of the intestine in children with a verified syndrome of excessive bacterial growth in the small intestine. Clinical and laboratory examination of 25 children at risk of intrauterine infection at the age of 8 months — 4 years with a verified syndrome of excess bacterial growth in the small intestine was performed based on the results of the hydrogen breath test. Investigation of the species and quantitative composition of the parietal intestinal microbiota was carried out with the help of the gas chromatography-mass spectrometry method with determination of the concentration of microbial markers by drop of blood (laboratory of bifidobacteria of the Federal Budgetary Institute of Science Moscow Research Institute of Epidemiology and Microbiology name after G.N. Gabrichevsky. It was revealed that all of them recorded a high concentration of microbial markers of gram-negative anaerobic bacteria of the colon and viruses of the Herpes family due to a deficit of representatives of priority genera (Propionibacterium Freunderherii 5-fold, Eubacterium spp. 4.8-fold, Bifidobacterium spp. 4-fold, Lactobacillus spp. 1.5-fold with an excess of endotoxin (by 1.5—2-fold and a decrease in plasmalogen (by 2-fold. These data testify to the inflammatory process of the small intestinal mucosa, which aggravates the disturbances in its functioning and confirm the informative nature of the gas chromatography and spectrometry method.

  15. Surface proteins of bacteria of the genus Bifidobacterium 

    Directory of Open Access Journals (Sweden)

    Ewa Dylus

    2013-05-01

    Full Text Available Beneficial effects due to the presence of probiotic bacteria of the genus Bifidobacterium in the human intestinal tract are still an interesting object of study. So far activities have been confirmed of bifidobacteria in stimulation of the host immune system, stimulation of tumor cell apoptosis, improvement of bowel motility, alleviation of symptoms of lactose intolerance, cholesterol lowering capacity, prevention and treatment of diarrhea and irritable bowel syndrome, alleviation of allergy or atopic dermatitis, maintenance of homeostasis of the intestine, and stimulation of the development of normal intestinal microflora in infants. A multitude of therapeutic properties encourages researchers to investigate the possibility of using the potential of Bifidobacterium in the prevention and treatment of other conditions such as rheumatoid arthritis and depression. Although it is known that the beneficial effects are due to intestinal mucosal colonization by these bacteria, the cell components responsible for the colonization are still not determined. In addition to the beneficial effects of probiotic administration, there were also negative effects including sepsis. Therefore research has been directed to identify specific components of Bifidobacterium responsible for probiotic effects. Currently researchers are focused on identifying, isolating and evaluating the properties of surface proteins that are probably involved in the adhesion of bacterial cells to the intestinal epithelium, improving colonization. This paper is an overview of current knowledge on Bifidobacterium surface proteins. The ways of transport and anchoring proteins in Gram-positive bacterial cells, the assembly of cell wall, and a description of the genus Bifidobacterium are presented.

  16. [Pharyngeal bacteria and professional oral health care in elderly people].

    Science.gov (United States)

    Hirota, K; Yoneyama, T; Ota, M; Hashimoto, K; Miyake, Y

    1997-02-01

    In 15 elderly residents of an old-age home, we measured the total number of bacteria and the numbers of streptococci and staphylococci in the pharynx over 5 months. Seven residents received professional oral health care from dentists and dental hygienists and eight practiced oral care by themselves or together with a helper. During the 5 months, the total number of bacteria and the numbers of streptococci and staphylococci decreased (p professional care. In contrast, the total number of bacteria and the numbers of streptococci and staphylococci neither did not change or increased in those who did not receive professional care. These findings show that professional oral health care by dentists and dental hygienists can decrease the total number of bacteria and the numbers of streptococci and staphylococci in the pharynx of elderly people, which might prevent aspiration pneumonia.

  17. [Interaction of effective ingredients from traditional Chinese medicines with intestinal microbiota].

    Science.gov (United States)

    Zu, Xian-Peng; Lin, Zhang; Xie, Hai-Sheng; Yang, Niao; Liu, Xin-Ru; Zhang, Wei-Dong

    2016-05-01

    A large number and wide varieties of microorganisms colonize in the human gastrointestinal tract. They construct an intestinal microecological system in the intestinal environment. The intestinal symbiotic flora regulates a series of life actions, including digestion and absorption of nutrient, immune response, biological antagonism, and is closely associated with the occurrence and development of many diseases. Therefore, it is greatly essential for the host's health status to maintain the equilibrium of intestinal microecological environment. After effective compositions of traditional Chinese medicines are metabolized or biotransformed by human intestinal bacteria, their metabolites can be absorbed more easily, and can even decrease or increase toxicity and then exhibit significant different biological effects. Meanwhile, traditional Chinese medicines can also regulate the composition of the intestinal flora and protect the function of intestinal mucosal barrier to restore the homeostasis of intestinal microecology. The relevant literatures in recent 15 years about the interactive relationship between traditional Chinese medicines and gut microbiota have been collected in this review, in order to study the classification of gut microflora, the relationship between intestinal dysbacteriosis and diseases, the important roles of gut microflora in intestinal bacterial metabolism in effective ingredients of traditional Chinese medicines and bioactivities, as well as the modulation effects of Chinese medicine on intestinal dysbacteriosis. In addition, it also makes a future prospect for the research strategies to study the mechanism of action of traditional Chinese medicines based on multi-omics techniques. Copyright© by the Chinese Pharmaceutical Association.

  18. The Roles of Bacteria and TLR4 in Rat and Murine Models of Necrotizing Enterocolitis1

    Science.gov (United States)

    Jilling, Tamas; Simon, Dyan; Lu, Jing; Meng, Fan Jing; Li, Dan; Schy, Robert; Thomson, Richard B.; Soliman, Antoine; Arditi, Moshe; Caplan, Michael S.

    2009-01-01

    Bacteria are thought to contribute to the pathogenesis of necrotizing enterocolitis (NEC), but it is unknown whether their interaction with the epithelium can participate in the initiation of mucosal injury or they can act only following translocation across a damaged intestinal barrier. Our aims were to determine whether bacteria and intestinal epithelial TLR4 play roles in a well-established neonatal rat model and a novel neonatal murine model of NEC. Neonatal rats, C57BL/6J, C3HeB/FeJ (TLR4 wild type), and C3H/HeJ (TLR4 mutant) mice were delivered by Cesarean section and were subjected to formula feeding and cold asphyxia stress or were delivered naturally and were mother-fed. NEC incidence was evaluated by histological scoring, and gene expression was quantified using quantitative real-time PCR from cDNA generated from intestinal total RNA or from RNA obtained by laser capture microdissection. Spontaneous feeding catheter colonization or supplementation of cultured bacterial isolates to formula increased the incidence of experimental NEC. During the first 72 h of life, i.e., the time frame of NEC development in this model, intestinal TLR4 mRNA gradually decreases in mother-fed but increases in formula feeding and cold asphyxia stress, correlating with induced inducible NO synthase. TLR4, inducible NO synthase, and inflammatory cytokine induction occurred in the intestinal epithelium but not in the submucosa. NEC incidence was diminished in C3H/HeJ mice, compared with C3HeB/FeJ mice. In summary, bacteria and TLR4 play significant roles in experimental NEC, likely via an interaction of intraluminal bacteria and aberrantly overexpressed TLR4 in enterocytes. PMID:16920968

  19. Influence of resistant starch on the SCFA production and cell counts of butyrate-producing Eubacterium spp. in the human intestine.

    Science.gov (United States)

    Schwiertz, A; Lehmann, U; Jacobasch, G; Blaut, M

    2002-01-01

    The genus Eubacterium, which is the second most common genus in the human intestine, includes several known butyrate producers. We hypothesized that Eubacterium species play a role in the intestinal butyrate production and are inducible by resistant starch. In a human pilot study species-specific and group-specific 16S rRNA-targeted, Cy3 (indocarbocyanine)-labelled oligonucleotide probes were used to quantify butyrogenic species of the genera Eubacterium, Clostridium and Ruminococcus. Following the intake of RS type III a significant increase in faecal butyrate but not in total SCFA was observed. However, increase in butyrate was not accompanied by a proliferation in the targeted bacteria. The tested Eubacterium species have the capacity to produce butyrate but do not appear to play a major role for butyric acid production in the human intestine. In view of the fact that the bacteria responsible for butyrate production are largely unknown, it is still difficult to devise a dietary intervention to stimulate butyrogenic bacteria in a targeted way.

  20. Role of intestinal flora in colorectal cancer from the metabolite perspective: a systematic review

    Science.gov (United States)

    Han, Shuwen; Gao, Jianlan; Zhou, Qing; Liu, Shanshan; Wen, Caixia

    2018-01-01

    Colorectal cancer is one of the most common human malignant tumors. Recent research has shown that colorectal cancer is a dysbacteriosis-induced disease; however, the role of intestinal bacteria in colorectal cancer is unclear. This review explores the role of intestinal flora in colorectal cancer. In total, 57 articles were included after identification and screening. The pertinent literature on floral metabolites in colorectal cancer from three metabolic perspectives – including carbohydrate, lipid, and amino acid metabolism – was analyzed. An association network regarding the role of intestinal flora from a metabolic perspective was constructed by analyzing the previous literature to provide direction and insight for further research on intestinal flora in colorectal cancer. PMID:29440929

  1. Resilience of small intestinal beneficial bacteria to the toxicity of soybean oil fatty acids

    Science.gov (United States)

    Di Rienzi, Sara C; Jacobson, Juliet; Kennedy, Elizabeth A; Bell, Mary E; Shi, Qiaojuan; Waters, Jillian L; Lawrence, Peter; Brenna, J Thomas; Britton, Robert A; Walter, Jens

    2018-01-01

    Over the past century, soybean oil (SBO) consumption in the United States increased dramatically. The main SBO fatty acid, linoleic acid (18:2), inhibits in vitro the growth of lactobacilli, beneficial members of the small intestinal microbiota. Human-associated lactobacilli have declined in prevalence in Western microbiomes, but how dietary changes may have impacted their ecology is unclear. Here, we compared the in vitro and in vivo effects of 18:2 on Lactobacillus reuteri and L. johnsonii. Directed evolution in vitro in both species led to strong 18:2 resistance with mutations in genes for lipid biosynthesis, acid stress, and the cell membrane or wall. Small-intestinal Lactobacillus populations in mice were unaffected by chronic and acute 18:2 exposure, yet harbored both 18:2- sensitive and resistant strains. This work shows that extant small intestinal lactobacilli are protected from toxic dietary components via the gut environment as well as their own capacity to evolve resistance. PMID:29580380

  2. Acidic Conditions in the NHE2-/- Mouse Intestine Result in an Altered Mucosa-Associated Bacterial Population with Changes in Mucus Oligosaccharides

    Directory of Open Access Journals (Sweden)

    Melinda A. Engevik

    2013-12-01

    Full Text Available Background: The mechanisms bacteria use to proliferate and alter the normal bacterial composition remain unknown. The ability to link changes in the intestinal micro-environment, such as ion composition and pH, to bacterial proliferation is clinically advantageous for diseases that involve an altered gut microbiota, such as Inflammatory Bowel Disease, obesity and diabetes. In human and mouse intestine, the apical Na+/H+ exchangers NHE2 and NHE3 affect luminal Na+, water, and pH. Loss of NHE2 results in acidic luminal pH. Since acid resistance systems in gram-positive bacteria are well documented, we hypothesize that gram-positive bacteria would increase in representation in the acidic NHE2-/- intestine. Methods: Intestinal ion composition was measured by fame photometry and chloridometry and pH measured electrochemically. DNA extracted from intestinal flushes or from mucosal scrapings was analyzed by qRT-PCR to examine luminal and mucosa-associated bacterial populations. Epithelial mucus oligosaccharide patterns were examined by histology with FIT-C labeled lectins. Results: Although total luminal and mucosa-associated bacteria were unchanged in NHE2-/- intestine, gram-positive bacterial phyla were increased in the mucosa-associated bacterial population in a region-specific manner. The genera Clostridium and Lactobacillus were increased in the cecum and colon which corresponded to changes in NHE2-/- mucus oligosaccharide composition of mannose, N-acetyglucosamine, N-acetygalactosamine and galactose. Conclusions: Together these data indicate that changes in ion transport induce region-specific bacterial changes, which alter host mucus oligosaccharide patterns. These host-bacterial interactions provide a possible mechanism of niche-development and shed insight on how certain groups proliferate in changing environments and maintain their proliferation by altering the host.

  3. Intestinal volvulus with coagulative hepatic necrosis in a chicken.

    Science.gov (United States)

    Haridy, Mohie; Goryo, Masanobu; Sasaki, Jun; Okada, Kosuke

    2010-04-01

    A 7-week-old SPF chicken inoculated at 4 weeks of age with chicken anemia virus was puffed up depressed and had ruffled feathers and a good body condition. Intestinal volvulus involving the jejunum and part of the duodenum forming two loops with one knob was observed. Microscopically, venous infarction of the obstructed loops, periportal and sublobular multifocal coagulative hepatic necrosis and granulomatous inflammation of the cecal tonsils were observed. Gram staining revealed no bacteria in hepatic tissue; however, gram-positive bacilli were detected in the necrotic debris in the intestinal lumen. Immunosuppression might have predisposed the chicken to intestinal and cecal tonsil infection that then progressed to volvulus. Loss of the mucosal barrier in infarction might allow bacterial toxins and vasoactive factors to escape into the systemic circulation (toxemia) and be responsible for the hepatic necrosis.

  4. Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis.

    Science.gov (United States)

    Qiu, Xinyun; Zhang, Feng; Yang, Xi; Wu, Na; Jiang, Weiwei; Li, Xia; Li, Xiaoxue; Liu, Yulan

    2015-05-27

    Intestinal fungi are increasingly believed to greatly influence gut health. However, the effects of fungi on intestinal inflammation and on gut bacterial constitution are not clear. Here, based on pyrosequencing method, we reveal that fungal compositions vary in different intestinal segments (ileum, cecum, and colon), prefer different colonization locations (mucosa and feces), and are remarkably changed during intestinal inflammation in dextran sulfate sodium (DSS)-colitis mouse models compare to normal controls: Penicillium, Wickerhamomyces, Alternaria, and Candida are increased while Cryptococcus, Phialemonium, Wallemia and an unidentified Saccharomycetales genus are decreased in the guts of DSS-colitis mice. Fungi-depleted mice exhibited aggravated acute DSS-colitis associated with gain of Hallella, Barnesiella, Bacteroides, Alistipes, and Lactobacillus and loss of butyrate-producing Clostridium XIVa, and Anaerostipes compare with normal control. In contrast, bacteria-depleted mice show attenuated acute DSS-colitis. Mice with severely chronic recurrent DSS-colitis show increased plasma (1,3)-β-D-glucan level and fungal translocation into the colonic mucosa, mesenteric lymph nodes and spleen. This work demonstrate the different roles of fungi in acute and chronic recurrent colitis: They are important counterbalance to bacteria in maintaining intestinal micro-ecological homeostasis and health in acutely inflamed intestines, but can harmfully translocate into abnormal sites and could aggravate disease severity in chronic recurrent colitis.

  5. Mixed Lactobacillus plantarum Strains Inhibit Staphylococcus aureus Induced Inflammation and Ameliorate Intestinal Microflora in Mice.

    Science.gov (United States)

    Ren, Dayong; Gong, Shengjie; Shu, Jingyan; Zhu, Jianwei; Rong, Fengjun; Zhang, Zhenye; Wang, Di; Gao, Liangfeng; Qu, Tianming; Liu, Hongyan; Chen, Ping

    2017-01-01

    Objective . Staphylococcus aureus is an important pathogen that causes intestinal infection. We examined the immunomodulatory function of single and mixed Lactobacillus plantarum strains, as well as their impacts on the structure of the microbiome in mice infected with Staphylococcus aureus . The experiment was divided into three groups: protection, treatment, and control. Serum IFN- γ and IL-4 levels, as well as intestinal sIgA levels, were measured during and 1 week after infection with Staphylococcus aureus with and without Lactobacillus plantarum treatment. We used 16s rRNA tagged sequencing to analyze microbiome composition. IFN- γ /IL-4 ratio decreased significantly from infection to convalescence, especially in the mixed Lactobacillus plantarum group. In the mixed Lactobacillus plantarum group the secretion of sIgA in the intestine of mice (9.4-9.7 ug/mL) was significantly higher than in the single lactic acid bacteria group. The dominant phyla in mice are Firmicutes , Bacteroidetes , and Proteobacteria . Treatment with mixed lactic acid bacteria increased the anti-inflammatory factor and the secretion of sIgA in the intestine of mice infected with Staphylococcus aureus and inhibited inflammation.

  6. Interactions between the microbiota and pathogenic bacteria in the gut.

    Science.gov (United States)

    Bäumler, Andreas J; Sperandio, Vanessa

    2016-07-07

    The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases.

  7. Interactions between the microbiota and pathogenic bacteria in the gut

    Science.gov (United States)

    Bäumler, Andreas J.; Sperandio, Vanessa

    2016-01-01

    The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases. PMID:27383983

  8. Intestinal polyparasitism with special emphasis to soil-transmitted helminths among residents around Gilgel Gibe Dam, Southwest Ethiopia: a community based survey.

    Science.gov (United States)

    Mekonnen, Zeleke; Suleman, Sultan; Biruksew, Abdissa; Tefera, Tamirat; Chelkeba, Legese

    2016-11-23

    One third of the world population is estimated to be infected with intestinal parasites. The most affected people are children and the poor people living in tropics and subtropics. Polyparasitism (the concurrent infection with multiple intestinal parasite species) is found to be the norm among the same population although accurate estimate of its magnitude is unknown. It was found that polyparasitism might have a greater impact on morbidity than single species infection which might also increase susceptibility to other infections. Therefore, this study aimed at determining the prevalence and distribution of intestinal polyparasitism with special emphasis on Soil-Transmitted Helminths (STH) among residents around Gilgel Gibe dam located in Jimma zone of Oromia regional state, Ethiopia. A total of 1,021 participants were recruited in this study and provided stool samples for parasitological examination. Direct wet mount and Kato-Katz techniques were employed for stool examination. Pearson chi-square test was employed to assess the association of infection status and polyparasitism with gender and age group of the study participants. Five hundred thirty two individuals were infected with at least one parasite, providing the overall prevalence of 52.1%. Among positive individuals, 405 (76.1%), 114 (21.4%), and 13 (2.5%) individuals were infected with only one, two and three species of parasites, respectively. The overall prevalence of intestinal polyparasitism observed among the study participants was 12.4% (127/1,021). The predominant STH was hookworm, with a prevalence of 44.1%. Hookworm and Ascaris lumbricoides were the most frequently recorded combination in cases of polyparasitic infection. The study revealed that there was no significant difference in the distribution of polyparasitism with regard to age group and sex of the study participants (p > 0.05). The study indicated the presence of high prevalence of parasites as well as distribution of

  9. Intestinal polyparasitism with special emphasis to soil-transmitted helminths among residents around Gilgel Gibe Dam, Southwest Ethiopia: a community based survey

    Directory of Open Access Journals (Sweden)

    Zeleke Mekonnen

    2016-11-01

    Full Text Available Abstract Background One third of the world population is estimated to be infected with intestinal parasites. The most affected people are children and the poor people living in tropics and subtropics. Polyparasitism (the concurrent infection with multiple intestinal parasite species is found to be the norm among the same population although accurate estimate of its magnitude is unknown. It was found that polyparasitism might have a greater impact on morbidity than single species infection which might also increase susceptibility to other infections. Therefore, this study aimed at determining the prevalence and distribution of intestinal polyparasitism with special emphasis on Soil-Transmitted Helminths (STH among residents around Gilgel Gibe dam located in Jimma zone of Oromia regional state, Ethiopia. Methods A total of 1,021 participants were recruited in this study and provided stool samples for parasitological examination. Direct wet mount and Kato-Katz techniques were employed for stool examination. Pearson chi-square test was employed to assess the association of infection status and polyparasitism with gender and age group of the study participants. Results Five hundred thirty two individuals were infected with at least one parasite, providing the overall prevalence of 52.1%. Among positive individuals, 405 (76.1%, 114 (21.4%, and 13 (2.5% individuals were infected with only one, two and three species of parasites, respectively. The overall prevalence of intestinal polyparasitism observed among the study participants was 12.4% (127/1,021. The predominant STH was hookworm, with a prevalence of 44.1%. Hookworm and Ascaris lumbricoides were the most frequently recorded combination in cases of polyparasitic infection. The study revealed that there was no significant difference in the distribution of polyparasitism with regard to age group and sex of the study participants (p > 0.05. Conclusion The study indicated the presence of high

  10. INTESTINAL VIROME AND NORMAL MICROFLORA OF HUMAN: FEATURES OF INTERACTION

    Directory of Open Access Journals (Sweden)

    Bobyr V.V.

    2015-05-01

    Full Text Available Summary: Intestinal bacteria defend the host organism and narrow pathogenic bacterial colonization. However, the microbiome effect to enteric viruses is unexplored largely as well as role of microbiota in the pathogenesis of viral infections in general. This review focuses on precisely these issues. Keywords: microbiome, virome, normal microflora, enteric viruses, contagiousness. In this review article, facts about viral persistence in the human gut are summarized. It is described the role of viral populations during health and diseases. After analyzing of the literary facts it was concluded that the gastrointestinal tract is an environment for one from the most complex microbial ecosystems, which requires of more deeper study of its composition, role in physiological processes, as well as the dynamics of changes under influence of the environment. Normal microflora performs a different important functions providing the physiological homeostasis of the human body, including, in particular, an important role in the human metabolic processes, supporting of homeostasis, limiting of colonization by infectious bacteria. The multifactorial significance of the normal gastrointestinal microflora can be divided into immunological, structural and metabolic functions. At the same time, interaction between intestinal microflora and enteric viruses has not been studied largely. In recent years, much attention is paid to study of viruses-bacteria associations, and it is possible, obtained results should change our understanding of microbiota role in the systematic pathogenesis of the diseases with viral etiology. In contrast to the well-known benefits of normal microflora to the host, the viruses can use intestinal microflora as a trigger for replication at the optimal region. Recent studies give a reason for assumption that depletion of normal microflora with antibiotics can determining the antiviral effect. Thus, the role of commensal bacteria in viral

  11. Factors with to intestinal constipation in the rural area elderly

    Directory of Open Access Journals (Sweden)

    Sara Franco Diniz Heitor

    2013-12-01

    Full Text Available The objective of this study was to identify the prevalence of intestinal constipation in the rural area elderly and verify the factors associated. This is a home survey performed with 850 elderly residents of the rural area of Uberaba, Minas Gerais state. A structured instrument was used; information regarding their eating habits was obtained using an adapted questionnaire for food consumption frequency, and intestinal constipation was self-reported. Descriptive analysis, chi-square test and multiple logistic regression (p<0.05 were performed. The prevalence of intestinal constipation was 13.2%. The factors associated with intestinal constipation were: female gender (p<0.001, 80 years of age or older (p=0.035, living with another person (p=0.004, having no income (p=0.033, inadequate consumption of fruits (p=0.005 and vegetable (p=0.002. It is considered that client-centered nutritional education can help remove the factors associated with the outcome. Descriptors: Constipation; Aged; Gastrointestinal Motility; Rural Population; Geriatric Nursing.

  12. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine

    NARCIS (Netherlands)

    Klunder, Leon J.; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C. D.

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we

  13. THE CHANGES OF LARGE INTESTINE CAVITY’S MICROBIOTA IN PATIENTS WITH HIV INFECTION

    Directory of Open Access Journals (Sweden)

    Savinova O.M.

    2015-12-01

    Full Text Available Introduction. Infections of the gastrointestinal tract are caused by a wide range of fungi, viruses and bacteria. The great value has the ratio of microorganisms. There are certain regularities in microecological system of intestinal microflora. Thus, bifidous bacteria should be more than lactobacterium; enterobacteria – more than enterococcus; E.faecalis more than E.faecium. However, these differences should be at least one or two orders of magnitude. An important indicator is the ratio of enterobacteria and enterococcus. Material & methods. In the paper were used following materials and methods: bacteriological and statistical. The conditions of intestinal microbiocenosis were evaluated according to the methodical instructions about researches of fecal masses on dysbiosis and modern methods of correction of intestinal dysbiosis that included identifying of anaerobic and facultative anaerobic microorganisms, staphylococci, enterococci, opportunistic enterobacteria, Proteus spp., Klebsiella spp., P.aeruginosa, C.albicans. Bacterial cultures were identified by standard techniques. Statistical analysis of the results was performed by the standard method of determining the average value and its standard deviation (M + m and Student's t-test. The reliability of the difference was evaluated at the level of probability p 104 CFU/grams in 11,8 + 5,53%, S.epidermidis in amount of > 105 CFU/grams in 32,4 + 8,03%, C.albicans in amount of > 104 CFU/grams in 11,1 + 6,59% and 1 patient had Clostridium in amount > 103 CFU/grams, which was 3 + 2,93%. These data show that patients with HIV infection is detected at the same time reducing number of anaerobic microflora (bifidus bacteria and lactobacilli and aerobic microflora, a leading representative of which is intestinal E.coli irrespective of the clinical stage of the disease. Association of these microorganisms is 56%. To this attach indicators of reduction E.faecalis and E.faecium. Taking into account the

  14. Host-microbiota interactions within the fish intestinal ecosystem.

    Science.gov (United States)

    Pérez, T; Balcázar, J L; Ruiz-Zarzuela, I; Halaihel, N; Vendrell, D; de Blas, I; Múzquiz, J L

    2010-07-01

    Teleost fish are in direct contact with the aquatic environment, and are therefore in continual contact with a complex and dynamic microbiota, some of which may have implications for health. Mucosal surfaces represent the main sites in which environmental antigens and intestinal microbiota interact with the host. Thus, the gut-associated lymphoid tissues (GALT) must develop mechanisms to discriminate between pathogenic and commensal microorganisms. Colonization of intestinal mucosal surfaces with a normal microbiota has a positive effect on immune regulatory functions of the gut, and disturbance in these immune regulatory functions by an imbalanced microbiota may contribute to the development of diseases. Significant attention has therefore been recently focused on the role of probiotics in the induction or restoration of a disturbed microbiota to its normal beneficial composition. Given this, this article explores the fascinating relationship between the fish immune system and the bacteria that are present in its intestinal microbiota, focusing on the bacterial effect on the development of certain immune responses.

  15. Methods for the cultivation of ciliated protozoa from the large intestine of horses.

    Science.gov (United States)

    Bełżecki, Grzegorz; Miltko, Renata; Michałowski, Tadeusz; McEwan, Neil R

    2016-01-01

    This paper describes cultivation methods for ciliates from the digestive tract of horses. Members of three different genera were successfully grown in vitro for short periods of time. However, only cells belonging to the genus Blepharocorys, which resides in the horse's large intestine, were maintained for longer periods. This Blepharocorys culture was successfully grown in vitro after inoculation of freshly excreted horse faeces in culture medium containing a population of bacteria. The ciliates survived for over six months, and the density of their population varied between 1.7 × 10(3) and 2.4 × 10(3) cells mL(-1). Favourable conditions for the prolonged cultivation of this ciliate were observed when the medium was prepared by mixing horse faeces and 'caudatum' salt solution in a 1:1 V/V ratio together with food (60% powdered meadow hay, 16% wheat gluten, 12% barley flour and 12% microcrystalline cellulose) supplied as 0.20 mg mL(-1) culture per day. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Intestinal barrier: A gentlemen's agreement between microbiota and immunity.

    Science.gov (United States)

    Caricilli, Andrea Moro; Castoldi, Angela; Câmara, Niels Olsen Saraiva

    2014-02-15

    Our body is colonized by more than a hundred trillion commensals, represented by viruses, bacteria and fungi. This complex interaction has shown that the microbiome system contributes to the host's adaptation to its environment, providing genes and functionality that give flexibility of diet and modulate the immune system in order not to reject these symbionts. In the intestine, specifically, the microbiota helps developing organ structures, participates of the metabolism of nutrients and induces immunity. Certain components of the microbiota have been shown to trigger inflammatory responses, whereas others, anti-inflammatory responses. The diversity and the composition of the microbiota, thus, play a key role in the maintenance of intestinal homeostasis and explain partially the link between intestinal microbiota changes and gut-related disorders in humans. Tight junction proteins are key molecules for determination of the paracellular permeability. In the context of intestinal inflammatory diseases, the intestinal barrier is compromised, and decreased expression and differential distribution of tight junction proteins is observed. It is still unclear what is the nature of the luminal or mucosal factors that affect the tight junction proteins function, but the modulation of the immune cells found in the intestinal lamina propria is hypothesized as having a role in this modulation. In this review, we provide an overview of the current understanding of the interaction of the gut microbiota with the immune system in the development and maintenance of the intestinal barrier.

  17. IGHV1-69 B cell chronic lymphocytic leukemia antibodies cross-react with HIV-1 and hepatitis C virus antigens as well as intestinal commensal bacteria.

    Directory of Open Access Journals (Sweden)

    Kwan-Ki Hwang

    Full Text Available B-cell chronic lymphocytic leukemia (B-CLL patients expressing unmutated immunoglobulin heavy variable regions (IGHVs use the IGHV1-69 B cell receptor (BCR in 25% of cases. Since HIV-1 envelope gp41 antibodies also frequently use IGHV1-69 gene segments, we hypothesized that IGHV1-69 B-CLL precursors may contribute to the gp41 B cell response during HIV-1 infection. To test this hypothesis, we rescued 5 IGHV1-69 unmutated antibodies as heterohybridoma IgM paraproteins and as recombinant IgG1 antibodies from B-CLL patients, determined their antigenic specificities and analyzed BCR sequences. IGHV1-69 B-CLL antibodies were enriched for reactivity with HIV-1 envelope gp41, influenza, hepatitis C virus E2 protein and intestinal commensal bacteria. These IGHV1-69 B-CLL antibodies preferentially used IGHD3 and IGHJ6 gene segments and had long heavy chain complementary determining region 3s (HCDR3s (≥21 aa. IGHV1-69 B-CLL BCRs exhibited a phenylalanine at position 54 (F54 of the HCDR2 as do rare HIV-1 gp41 and influenza hemagglutinin stem neutralizing antibodies, while IGHV1-69 gp41 antibodies induced by HIV-1 infection predominantly used leucine (L54 allelic variants. These results demonstrate that the B-CLL cell population is an expansion of members of the innate polyreactive B cell repertoire with reactivity to a number of infectious agent antigens including intestinal commensal bacteria. The B-CLL IGHV1-69 B cell usage of F54 allelic variants strongly suggests that IGHV1-69 B-CLL gp41 antibodies derive from a restricted B cell pool that also produces rare HIV-1 gp41 and influenza hemagglutinin stem antibodies.

  18. Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice.

    Science.gov (United States)

    Horie, Masanori; Miura, Takamasa; Hirakata, Satomi; Hosoyama, Akira; Sugino, Sakiko; Umeno, Aya; Murotomi, Kazutoshi; Yoshida, Yasukazu; Koike, Taisuke

    2017-10-30

    A relationship between type 2 diabetes mellitus (T2DM) and intestinal flora has been suggested since development of analysis technology for intestinal flora. An animal model of T2DM is important for investigation of T2DM. Although there are some animal models of T2DM, a comparison of the intestinal flora of healthy animals with that of T2DM animals has not yet been reported. The intestinal flora of Tsumura Suzuki Obese Diabetes (TSOD) mice was compared with that of Tsumura, Suzuki, Non Obesity (TSNO) mice in the present study. The TSOD mice showed typical type 2 diabetes symptoms, which were high-fat diet-independent. The TSOD and the TSNO mouse models were derived from the same strain, ddY. In this study, we compared the intestinal flora of TSOD mice with that if TSNO mice at 5 and 12 weeks of age. We determined that that the number of operational taxonomic units (OTUs) was significantly higher in the cecum of TSOD mice than in that of TSNO mice. The intestinal flora of the cecum and that of the feces were similar between the TSNO and the TSOD strains. The dominant bacteria in the cecum and feces were of the phyla Firmicutes and Bacteroidetes. However, the content of some bacterial species varied between the two strains. The percentage of Lactobacillus spp. within the general intestinal flora was higher in TSOD mice than in TSNO mice. In contrast, the percentages of order Bacteroidales and family Lachnospiraceae were higher in TSNO mice than in TSOD mice. Some species were observed only in TSOD mice, such as genera Turicibacter and SMB53 (family Clostridiaceae), the percentage of which were 3.8% and 2.0%, respectively. Although further analysis of the metabolism of the individual bacteria in the intestinal flora is essential, genera Turicibacter and SMB53 may be important for the abnormal metabolism of type 2 diabetes.

  19. Epidemiology of infections with intestinal parasites and human immunodeficiency virus (HIV) among sugar-estate residents in Ethiopia

    NARCIS (Netherlands)

    Fontanet, A. L.; Sahlu, T.; Rinke de Wit, T.; Messele, T.; Masho, W.; Woldemichael, T.; Yeneneh, H.; Coutinho, R. A.

    2000-01-01

    Intestinal parasitic infections could play an important role in the progression of infection with human immunodeficiency virus (HIV), by further disturbing the immune system whilst it is already engaged in the fight against HIV. HIV and intestinal parasitic infections were investigated in 1239,

  20. Isolation and screening of lactic acid bacteria, Lactococcus lactis ...

    African Journals Online (AJOL)

    In aquaculture probiotic feeding could play a crucial role in developing microbial control strategies, since disease outbreaks are recognized as important constraints to aquaculture production and the fear of antibiotic resistance. In this study, lactic acid bacteria (LAB) strains from the intestinal tissue of African catfish Clarias ...

  1. Flow and active mixing have a strong impact on bacterial growth dynamics in the proximal large intestine

    Science.gov (United States)

    Cremer, Jonas; Segota, Igor; Yang, Chih-Yu; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    2016-11-01

    More than half of fecal dry weight is bacterial mass with bacterial densities reaching up to 1012 cells per gram. Mostly, these bacteria grow in the proximal large intestine where lateral flow along the intestine is strong: flow can in principal lead to a washout of bacteria from the proximal large intestine. Active mixing by contractions of the intestinal wall together with bacterial growth might counteract such a washout and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate contractions. We investigate growth along the channel under a steady nutrient inflow. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term. Based on this model, we discuss bacterial growth dynamics in the human large intestine using flow- and mixing-behavior having been observed for humans.

  2. Intestinal commensal microbes as immune modulators.

    Science.gov (United States)

    Ivanov, Ivaylo I; Honda, Kenya

    2012-10-18

    Commensal bacteria are necessary for the development and maintenance of a healthy immune system. Harnessing the ability of microbiota to affect host immunity is considered an important therapeutic strategy for many mucosal and nonmucosal immune-related conditions, such as inflammatory bowel diseases (IBDs), celiac disease, metabolic syndrome, diabetes, and microbial infections. In addition to well-established immunostimulatory effects of the microbiota, the presence of individual mutualistic commensal bacteria with immunomodulatory effects has been described. These organisms are permanent members of the commensal microbiota and affect host immune homeostasis in specific ways. Identification of individual examples of such immunomodulatory commensals and understanding their mechanisms of interaction with the host will be invaluable in designing therapeutic strategies to reverse intestinal dysbiosis and recover immunological homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Application of genomic densitometry for calculating the relative population of Escherichia Coli in the intestine of broiler chicks

    Directory of Open Access Journals (Sweden)

    A.R Seidavi

    2009-05-01

    Full Text Available In this study, the densitometry technique for calculating of the relative population of Escherichia coli in various segments of the intestine of broiler chicks was evaluated. Following preparation of the intestinal contents, the process of extraction and purification of DNA from the contents of duodenum, jejunum, ileum and cecum was undertaken. A specific polymerase chain reaction (PCR using two pairs of primers was employed to detect Escherichia coli and total bacteria present in the gastrointestinal tract of the chicks. Specific bands of E.coli were obtained using densitometry and Gel Proc Analyzer software based on linear regression with extrapolation. E.coli populations at different ages were also determined in various segments of the gastrointestinal tract of the chicks. The Results of this experiment indicated that 0.000004%, 0.07%, 0.64% and 2.51% of total bacteria present in the duodenum, jejunum, ileum and cecum respectively consisted of E.coli. Also, E.coli constitutes 1.76, 0.01 and 0.80% of the total intestinal bacteria of chicks at 4, 14 and 30 days of age respectively. Furthermore, it was shown that at 4 days of age, 0.30, 2.05 and 3.97% of the total bacteria present in the jejunum, ileum and cecum respectively were from E.coli species and this bacteria was absent in the duodenum. At 14 days of age these figures were 0.000009%, 0.00011% and 0.08% respectively while at 30 days of age 0.00011%, 0.009% and 2.40% of all bacteria in the duodenum, ileum and cecum were E.coli species and this bacteria was absent in the jejunum. In conclusion, the densitometry method based on PCR results can be regarded as a useful tool for densitometry the relative population E.coli in the gastrointestinal tract of poultry.

  4. Tissue-resident adult stem cell populations of rapidly self-renewing organs

    NARCIS (Netherlands)

    Barker, N.; Bartfeld, S.; Clevers, H.

    2010-01-01

    The epithelial lining of the intestine, stomach, and skin is continuously exposed to environmental assault, imposing a requirement for regular self-renewal. Resident adult stem cell populations drive this renewal, and much effort has been invested in revealing their identity. Reliable adult stem

  5. Socioenvironmental conditions and intestinal parasitic infections in Brazilian urban slums: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Caroline Ferraz Ignacio

    Full Text Available ABSTRACT Intestinal parasitic infections (IPIs are neglected diseases with limited data regarding prevalence in Brazil and many other countries. In increasingly urban societies, investigating the profile and socioenvironmental determinants of IPIs in the general population of slum dwellers is necessary for establishing appropriate public policies catered to these environments. This study assessed the socioenvironmental conditions and prevalence of IPIs in slums of Rio de Janeiro, RJ State, Brazil. Methods A cross-sectional study covering an agglomeration of urban slums was conducted between 2015 and 2016 using participants observation, a socioeconomic survey, and the spontaneous sedimentation method with three slides per sample to analyze fresh stool specimens ( n =595 searching for intestinal parasites. Results Endolimax nana ( n =95, 16.0% and Entamoeba coli ( n =65, 10.9% were the most frequently identified agents, followed by Giardia intestinalis ( n =24, 4.0% and Ascaris lumbricoides ( n =11, 1.8%. Coinfections caused by E. nana and E. histolytica/dispar and by Entamoeba coli/A. lumbricoides were significant. The use of piped water as drinking water, the presence of A. lumbricoides , and contamination with coliform bacteria and Escherichia coli were more common in major area (MA 1. Children (0-19 years had a greater chance of living in poverty (OR 3.36; 95% CI: 2.50- 4.52; p <0.001 which was pervasive. The predominance of protozoa parasites suggests that a one-size-fits-all approach focusing on preventive chemotherapy for soil-transmitted helminths is not appropriate for all communities in developing countries. It is important that both residents and health professionals consider the socioenvironmental conditions of urban slums when assessing intestinal parasitic infections for disease control and health promotion initiatives.

  6. Probiotic lactic acid bacteria – the fledgling cuckoos of the gut?

    Directory of Open Access Journals (Sweden)

    Arnold Berstad

    2016-05-01

    Full Text Available It is tempting to look at bacteria from our human egocentric point of view and label them as either ‘good’ or ‘bad’. However, a microbial society has its own system of government – ‘microcracy’ – and its own rules of play. Lactic acid bacteria are often referred to as representatives of the good ones, and there is little doubt that those belonging to the normal intestinal flora are beneficial for human health. But we should stop thinking of lactic acid bacteria as always being ‘friendly’ – they may instead behave like fledgling cuckoos.

  7. Susceptibilidad de las bacterias aisladas de infecciones gastrointestinales agudas a la rifaximina y otros agentes antimicrobianos en México

    Directory of Open Access Journals (Sweden)

    O. Novoa-Farías

    2016-01-01

    Conclusiones: La resistencia de las bacterias enteropatógenas a antimicrobianos utilizados en gastroenteritis es alta. La rifaximina fue activa contra el 99-100% de las bacterias en concentraciones alcanzables en el contenido intestinal con las dosis recomendadas.

  8. PREVALENCE OF GIARDIA LAMBLIA AND OTHER INTESTINAL PARASITES IN PRESCHOOL CHILDREN AND ITS RELATION TO RESIDENCE PLACE, SEX AND BLOOD GROUP IN ILAM COUNTY OF IRAN

    Directory of Open Access Journals (Sweden)

    Pourbabak

    1996-06-01

    Full Text Available 1711' object of this study was to determine the prevalence oj asymptomatic infestation with Giardia lamblia lind other intestinal parasites in children of urban anti rural communities oj /lam county and its relation with dwelling place, sex and blood grollp!.. 77w study designed as (l five-month pUTasitoulgica! .m,..£!' oj fecal ami blood specimens from humans anti performed in 10 urban hcalih-trcatmcru clinics of llam city, two urban health treatment clinics of Eyvun city, two rural health-treatment clinics oj Chavar and Sartaf villages, llam province west of fran, 17,e examined population was preschool {, to 7 year-old children without any 'gastrointestinal compliarus. Prevalence oj infestation in subject grOllp W(l."' 32.54% (n=3100. Among intestinal parasites' G. lambliu with 85.43o/c (27.8% oj all, n=JO(JI prevalence rate was the most common. Infestation with 11. nnrm with 1'/.93% and E. coli with 3.07';, were in the second and third ranks, respectively, Infestation shows a distinct relationship with gender (P<0.05 and dwelling place, but it lacks a significant relation with blood groups. This study ."lIOWS that the prevalence of intestinal infestation in 6 to 7 year old child oj llam county hi equivalent to the top oj tile line oj the statistical percentage all over the world. 17,e relation between the severity oj infestation and residence place may arouse the suspicion oj sever contamination oj imbibing water.

  9. MicroRNAs and the regulation of intestinal homeostasis.

    Science.gov (United States)

    Runtsch, Marah C; Round, June L; O'Connell, Ryan M

    2014-01-01

    The mammalian intestinal tract is a unique site in which a large portion of our immune system and the 10(14) commensal organisms that make up the microbiota reside in intimate contact with each other. Despite the potential for inflammatory immune responses, this complex interface contains host immune cells and epithelial cells interacting with the microbiota in a manner that promotes symbiosis. Due to the complexity of the cell types and microorganisms involved, this process requires elaborate regulatory mechanisms to ensure mutualism and prevent disease. While many studies have described critical roles for protein regulators of intestinal homeostasis, recent reports indicate that non-coding RNAs are also major contributors to optimal host-commensal interactions. In particular, there is emerging evidence that microRNAs (miRNAs) have evolved to fine tune host gene expression networks and signaling pathways that modulate cellular physiology in the intestinal tract. Here, we review our present knowledge of the influence miRNAs have on both immune and epithelial cell biology in the mammalian intestines and the impact this has on the microbiota. We also discuss a need for further studies to decipher the functions of specific miRNAs within the gut to better understand cellular mechanisms that promote intestinal homeostasis and to identify potential molecular targets underlying diseases such as inflammatory bowel disease and colorectal cancer.

  10. Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin-p38 MAPK pathway.

    Directory of Open Access Journals (Sweden)

    Shuichi Segawa

    Full Text Available Probiotics exhibit beneficial effects on human health, particularly in the maintenance of intestinal homeostasis in a complex manner notwithstanding the diversity of an intestinal flora between individuals. Thus, it is highly probable that some common molecules secreted by probiotic and/or commensal bacteria contribute to the maintenance of intestinal homeostasis and protect the intestinal epithelium from injurious stimuli. To address this question, we aimed to isolate the cytoprotective compound from a lactobacillus strain, Lactobacillus brevis SBC8803 which possess the ability to induce cytoprotective heat shock proteins in mouse small intestine. L. brevis was incubated in MRS broth and the supernatant was passed through with a 0.2-µm filter. Caco2/bbe cells were treated with the culture supernatant, and HSP27 expression was evaluated by Western blotting. HSP27-inducible components were separated by ammonium sulfate precipitation, DEAE anion exchange chromatography, gel filtration, and HPLC. Finally, we identified that the HSP27-inducible fraction was polyphosphate (poly P, a simple repeated structure of phosphates, which is a common product of lactobacilli and other bacteria associated with intestinal microflora without any definitive physiological functions. Then, poly P was synthesized by poly P-synthesizing enzyme polyphosphate kinase. The synthesized poly P significantly induced HSP27 from Caco2/BBE cells. In addition, Poly P suppressed the oxidant-induced intestinal permeability in the mouse small intestine and pharmacological inhibitors of p38 MAPK and integrins counteract its protective effect. Daily intrarectal administration of poly P (10 µg improved the inflammation grade and survival rate in 4% sodium dextran sulfate-administered mice. This study, for the first time, demonstrated that poly P is the molecule responsible for maintaining intestinal barrier actions which are mediated through the intestinal integrin β1-p38 MAPK.

  11. Microbial production of volatile sulphur compounds in the large intestine of pigs fed two different diets.

    Science.gov (United States)

    Poulsen, H V; Jensen, B B; Finster, K; Spence, C; Whitehead, T R; Cotta, M A; Canibe, N

    2012-07-01

      To investigate the production of volatile sulphur compounds (VSC) in the segments of the large intestine of pigs and to assess the impact of diet on this production.   Pigs were fed two diets based on either wheat and barley (STD) or wheat and dried distillers grains with solubles (DDGS). Net production of VSC and potential sulphate reduction rate (SRR) (sulphate saturated) along the large intestine were determined by means of in vitro incubations. The net production rate of hydrogen sulphide and potential SRR increased from caecum towards distal colon and were significantly higher in the STD group. Conversely, the net methanethiol production rate was significantly higher in the DDGS group, while no difference was observed for dimethyl sulphide. The number of sulphate-reducing bacteria and total bacteria were determined by quantitative PCR and showed a significant increase along the large intestine, whereas no diet-related differences were observed.   VSC net production varies widely throughout the large intestine of pigs and the microbial processes involved in this production can be affected by diet.   This first report on intestinal production of all VSC shows both spatial and dietary effects, which are relevant to both bowel disease- and odour mitigation research. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  12. Transfer of intestinal bacterial components to mammary secretions in the cow

    Directory of Open Access Journals (Sweden)

    Wayne Young

    2015-04-01

    Full Text Available Results from large multicentre epidemiological studies suggest an association between the consumption of raw milk and a reduced incidence of allergy and asthma in children. Although the underlying mechanisms for this association are yet to be confirmed, researchers have investigated whether bacteria or bacterial components that naturally occur in cow’s milk are responsible for modulating the immune system to reduce the risk of allergic diseases. Previous research in human and mice suggests that bacterial components derived from the maternal intestine are transported to breast milk through the bloodstream. The aim of our study was to assess whether a similar mechanism of bacterial trafficking could occur in the cow. Through the application of culture-independent methodology, we investigated the microbial composition and diversity of milk, blood and feces of healthy lactating cows. We found that a small number of bacterial OTUs belonging to the genera Ruminococcus and Bifidobacterium, and the Peptostreptococcaceae family were present in all three samples from the same individual animals. Although these results do not confirm the hypothesis that trafficking of intestinal bacteria into mammary secretions does occur in the cow, they support the existence of an endogenous entero-mammary pathway for some bacterial components during lactation in the cow. Further research is required to define the specific mechanisms by which gut bacteria are transported into the mammary gland of the cow, and the health implications of such bacteria being present in milk.

  13. Analyzing the functionality of the human intestinal microbiota by stable isotope probing

    NARCIS (Netherlands)

    Kovatcheva, P.P.

    2010-01-01

    Key words: gut bacteria, dietary carbohydrates, digestion, RNA-SIP, TIM-2, HITChip, human trial

    The human gastro-intestinal (GI) tract comprises a series of complex and dynamic organs ranging from the stomach to the distal colon, which harbor immense microbial assemblages, with

  14. Comparison of intestinal bacterial communities in grass carp, Ctenopharyngodon idellus, from two different habitats

    Science.gov (United States)

    Ni, Jiajia; Yu, Yuhe; Zhang, Tanglin; Gao, Lei

    2012-09-01

    The intestinal bacteria of vertebrates form a close relationship with their host. External and internal conditions of the host, including its habitat, affect the intestinal bacterial community. Similarly, the intestinal bacterial community can, in turn, influence the host, particularly with respect to disease resistance. We compared the intestinal bacterial communities of grass carp that were collected from farm-ponds or a lake. We conducted denaturing gradient gel electrophoresis of amplified 16S rRNA genes, from which 66 different operational taxonomic units were identified. Using both the unweighted pair-group method with arithmetic means clustering and principal component analysis ordination, we found that the intestinal bacterial communities from the two groups of pond fish were clustered together and inset into the clusters of wild fish, except for DF-7, and there was no significant correlation between genetic diversity of grass carp and their intestinal bacterial communities (Mantel one-tailed test, R=0.157, P=0.175). Cetobacterium appeared more frequently in the intestine of grass carp collected from pond. A more thorough understanding of the role played by intestinal microbiota on fish health would be of considerable benefit to the aquaculture industry.

  15. Effects of byproducts on intestinal microbiota and the immune modulation

    Directory of Open Access Journals (Sweden)

    Da Yoon Yu

    2018-03-01

    Full Text Available Objective Although the efficacy of Rubus coreanus (RC byproducts as a feed additive has been recognized, its effects on intestinal microorganisms and the immune system are still unknown. Methods Six-week-old male rats were treated with 0.5% RC (T1, 1.0% RC (T2, and 1.5% RC (T3 for 4 weeks. Results We found that treatment with RC byproducts significantly increased the daily gain of body weight and feed intake. Treg-cell differentiation was enhanced in the mesenteric lymph nodes and spleen from the rats fed with RC byproducts. Illumina sequencing showed that bacteria in the phylum Firmicutes decreased and while those in the phylum Bacteroidetes increased in RC-treated groups. Particularly, the pathogenic microorganisms in the family Peptococcaceae decreased, and the non-pathogenic families Lachnospiraceae and S24-7 increased. Quantitative polymerase chain reaction analysis showed that the RC byproducts increased the lactic acid bacteria Bifidobacterium spp., Oscillospira spp., Leuconostoc citreum, and Weissella cibaria in a concentration-dependent manner. Conclusion RC byproducts may be effective in immunomodulation by affecting intestinal microorganisms.

  16. Intestinal crosstalk: a new paradigm for understanding the gut as the "motor" of critical illness.

    Science.gov (United States)

    Clark, Jessica A; Coopersmith, Craig M

    2007-10-01

    For more than 20 years, the gut has been hypothesized to be the "motor" of multiple organ dysfunction syndrome. As critical care research has evolved, there have been multiple mechanisms by which the gastrointestinal tract has been proposed to drive systemic inflammation. Many of these disparate mechanisms have proved to be important in the origin and propagation of critical illness. However, this has led to an unusual situation where investigators describing the gut as a "motor" revving the systemic inflammatory response syndrome are frequently describing wholly different processes to support their claim (i.e., increased apoptosis, altered tight junctions, translocation, cytokine production, crosstalk with commensal bacteria, etc). The purpose of this review is to present a unifying theory as to how the gut drives critical illness. Although the gastrointestinal tract is frequently described simply as "the gut," it is actually made up of (1) an epithelium; (2) a diverse and robust immune arm, which contains most of the immune cells in the body; and (3) the commensal bacteria, which contain more cells than are present in the entire host organism. We propose that the intestinal epithelium, the intestinal immune system, and the intestine's endogenous bacteria all play vital roles driving multiple organ dysfunction syndrome, and the complex crosstalk between these three interrelated portions of the gastrointestinal tract is what cumulatively makes the gut a "motor" of critical illness.

  17. Shigella infection of intestinal epithelium and circumvention of the host innate defense system.

    Science.gov (United States)

    Ashida, Hiroshi; Ogawa, Michinaga; Mimuro, Hitomi; Sasakawa, Chihiro

    2009-01-01

    Shigella, Gram-negative bacteria closely related to Escherichia coli, are highly adapted human pathogens that cause bacillary dysentery. Although Shigella have neither adherence factors nor flagella required for attaching or accessing the intestinal epithelium, Shigella are capable of colonizing the intestinal epithelium by exploiting epithelial-cell functions and circumventing the host innate immune response. During Shigella infection, they deliver many numbers of effectors through the type III secretion system into the surrounding space and directly into the host-cell cytoplasm. The effectors play pivotal roles from the onset of bacterial infection through to the establishment of the colonization of the intestinal epithelium, such as bacterial invasion, intracellular survival, subversion of the host immune defense response, and maintenance of the infectious foothold. These examples suggest that Shigella have evolved highly sophisticated infectious and intracellular strategies to establish replicative niches in the intestinal epithelium.

  18. Intestinal parasitosis and anaemia among patients in a Health Center, North Ethiopia.

    Science.gov (United States)

    Alemu, Megbaru; Kinfe, Birhane; Tadesse, Desalegn; Mulu, Wondemagegn; Hailu, Tadesse; Yizengaw, Endalew

    2017-11-28

    The aim of this cross-sectional study was to determine the magnitude of intestinal parasitosis and anaemia in a Health Center, North Ethiopia. A total of 427 outpatients were enrolled and the median age of the participants was 22 years. The prevalence of intestinal parasitosis was 143 (33.5%). Age, place of residence and occupation were significantly associated with intestinal parasitosis. When we see parasite specific factors, significant associations were observed for source of drinking water (P = 0.02), age (P intestinal parasite -infected and non-infected participants was 10.7 and 7.0%, respectively. Study participants infected with S. stercoralis and hookworm were more likely to develop anaemia than the non- infected ones; AOR (adjusted odds ratio) = 5.3, 95% CI (1.01-27.4); P = 0.028 and AOR = 11.1, 95% CI (3.36-36.9); P = 0.000, respectively.

  19. Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: Stimulation of interleukin-8 secretion, potentiation of interleukin-1β effect and increase in the transepithelial passage of commensal bacteria

    International Nuclear Information System (INIS)

    Maresca, Marc; Yahi, Nouara; Younes-Sakr, Lama; Boyron, Marilyn; Caporiccio, Bertrand; Fantini, Jacques

    2008-01-01

    Mycotoxins are fungal secondary metabolites responsible of food-mediated intoxication in animals and humans. Deoxynivalenol, ochratoxin A and patulin are the best known enteropathogenic mycotoxins able to alter intestinal functions resulting in malnutrition, diarrhea, vomiting and intestinal inflammation in vivo. Although their effects on intestinal barrier and transport activities have been extensively characterized, the mechanisms responsible for their pro-inflammatory effect are still poorly understood. Here we investigated if mycotoxin-induced intestinal inflammation results from a direct and/or indirect pro-inflammatory activity of these mycotoxins on human intestinal epithelial cells, using differentiated Caco-2 cells as model and interleukin 8 (IL-8) as an indicator of intestinal inflammation. Deoxynivalenol was the only mycotoxin able to directly increase IL-8 secretion (10- to 15-fold increase). We also investigated if these mycotoxins could indirectly stimulate IL-8 secretion through: (i) a modulation of the action of pro-inflammatory molecules such as the interleukin-1beta (IL-1β), and/or (ii) an increase in the transepithelial passage of non-invasive commensal Escherichia coli. We found that deoxynivalenol, ochratoxin A and patulin all potentiated the effect of IL-1β on IL-8 secretion (ranging from 35% to 138% increase) and increased the transepithelial passage of commensal bacteria (ranging from 12- to 1544-fold increase). In addition to potentially exacerbate established intestinal inflammation, these mycotoxins may thus participate in the induction of sepsis and intestinal inflammation in vivo. Taken together, our results suggest that the pro-inflammatory activity of enteropathogenic mycotoxins is mediated by both direct and indirect effects

  20. Activation of intestinal epithelial Stat3 orchestrates tissue defense during gastrointestinal infection.

    Directory of Open Access Journals (Sweden)

    Nadine Wittkopf

    Full Text Available Gastrointestinal infections with EHEC and EPEC are responsible for outbreaks of diarrheal diseases and represent a global health problem. Innate first-line-defense mechanisms such as production of mucus and antimicrobial peptides by intestinal epithelial cells are of utmost importance for host control of gastrointestinal infections. For the first time, we directly demonstrate a critical role for Stat3 activation in intestinal epithelial cells upon infection of mice with Citrobacter rodentium - a murine pathogen that mimics human infections with attaching and effacing Escherichia coli. C. rodentium induced transcription of IL-6 and IL-22 in gut samples of mice and was associated with activation of the transcription factor Stat3 in intestinal epithelial cells. C. rodentium infection induced expression of several antimicrobial peptides such as RegIIIγ and Pla2g2a in the intestine which was critically dependent on Stat3 activation. Consequently, mice with specific deletion of Stat3 in intestinal epithelial cells showed increased susceptibility to C. rodentium infection as indicated by high bacterial load, severe gut inflammation, pronounced intestinal epithelial cell death and dissemination of bacteria to distant organs. Together, our data implicate an essential role for Stat3 activation in intestinal epithelial cells during C. rodentium infection. Stat3 concerts the host response to bacterial infection by controlling bacterial growth and suppression of apoptosis to maintain intestinal epithelial barrier function.

  1. Antimicrobial-resistant bacteria in wild game in Slovenia

    Science.gov (United States)

    Križman, M.; Kirbiš, A.; Jamnikar-Ciglenečki, U.

    2017-09-01

    Wildlife is usually not exposed to clinically-used antimicrobial agents but can acquire antimicrobial resistance throughout contact with humans, domesticated animals and environments. Samples of faeces from intestines (80 in total) were collected from roe deer (52), wild boars (11), chamois (10) red deer (6) and moufflon (1). After culture on ChromID extended spectrum β-lactamase (ESBL) plates to select for growth of ESBL-producing bacteria, 25 samples produced bacterial colonies for further study. Six species of bacteria were identified from the 25 samples: Stenotrophomonas maltophilia, Serratia fonticola, Stenotrophomonas nitritireducens, Enterococcus faecium, Enterococcus faecalis and Escherichia coli. Two ESBL enzymes were amplified from group TEM and three from group CTX-M-1. Undercooked game meat and salami can be a source of resistant bacteria when animals are not eviscerated properly.

  2. Fecal indicator bacteria at Havana Bay

    International Nuclear Information System (INIS)

    Lopez Perez, Lisse; Gomez D'Angelo, Yamiris; Beltran Gonzalez, Jesus; Alvarez Valiente, Reinaldo

    2013-01-01

    Aims: Fecal indicator bacteria concentrations were evaluated in Havana Bay. Methods: Concentrations of traditional fecal indicator bacteria were calculated between April 2010 and February 2011, by MPN methods. Concentrations of thermo tolerant coliform (CTT), Escherichia coli, fecal streptococci (EF), intestinal enterococci (ENT) in seawater, and Clostridium perfringens in sediment surface, were determined. Results: CTT and E. coli levels were far above Cuban water quality standard for indirect contact with water, showing the negative influence of sewage and rivers on the bay. The EF and ENT were measured during sewage spills at the discharge site and they were suitable indicators of fecal contamination, but these indicators didn't show the same behavior in other selected sites. This result comes from its well-known inactivation by solar light in tropical zones and the presumable presence of humid acids in the waters of the bay. Conclusion: Fecal indicator bacteria and its statistical relationships reflect recent and chronic fecal contamination at the bay and near shores.

  3. Giardia co-infection promotes the secretion of antimicrobial peptides beta-defensin 2 and trefoil factor 3 and attenuates attaching and effacing bacteria-induced intestinal disease.

    Science.gov (United States)

    Manko, Anna; Motta, Jean-Paul; Cotton, James A; Feener, Troy; Oyeyemi, Ayodele; Vallance, Bruce A; Wallace, John L; Buret, Andre G

    2017-01-01

    Our understanding of polymicrobial gastrointestinal infections and their effects on host biology remains incompletely understood. Giardia duodenalis is an ubiquitous intestinal protozoan parasite infecting animals and humans. Concomitant infections with Giardia and other gastrointestinal pathogens commonly occur. In countries with poor sanitation, Giardia infection has been associated with decreased incidence of diarrheal disease and fever, and reduced serum inflammatory markers release, via mechanisms that remain obscure. This study analyzed Giardia spp. co-infections with attaching and effacing (A/E) pathogens, and assessed whether and how the presence of Giardia modulates host responses to A/E enteropathogens, and alters intestinal disease outcome. In mice infected with the A/E pathogen Citrobacter rodentium, co-infection with Giardia muris significantly attenuated weight loss, macro- and microscopic signs of colitis, bacterial colonization and translocation, while concurrently enhancing the production and secretion of antimicrobial peptides (AMPs) mouse β-defensin 3 and trefoil factor 3 (TFF3). Co-infection of human intestinal epithelial cells (Caco-2) monolayers with G. duodenalis trophozoites and enteropathogenic Escherichia coli (EPEC) enhanced the production of the AMPs human β-defensin 2 (HBD-2) and TFF3; this effect was inhibited with treatment of G. duodenalis with cysteine protease inhibitors. Collectively, these results suggest that Giardia infections are capable of reducing enteropathogen-induced colitis while increasing production of host AMPs. Additional studies also demonstrated that Giardia was able to directly inhibit the growth of pathogenic bacteria. These results reveal novel mechanisms whereby Giardia may protect against gastrointestinal disease induced by a co-infecting A/E enteropathogen. Our findings shed new light on how microbial-microbial interactions in the gut may protect a host during concomitant infections.

  4. Effect of polydextrose on intestinal microbes and immune functions in pigs.

    Science.gov (United States)

    Fava, Francesca; Mäkivuokko, Harri; Siljander-Rasi, Hilkka; Putaala, Heli; Tiihonen, Kirsti; Stowell, Julian; Tuohy, Kieran; Gibson, Glenn; Rautonen, Nina

    2007-07-01

    Dietary fibre has been proposed to decrease risk for colon cancer by altering the composition of intestinal microbes or their activity. In the present study, the changes in intestinal microbiota and its activity, and immunological characteristics, such as cyclo-oxygenase (COX)-2 gene expression in mucosa, in pigs fed with a high-energy-density diet, with and without supplementation of a soluble fibre (polydextrose; PDX) (30 g/d) were assessed in different intestinal compartments. PDX was gradually fermented throughout the intestine, and was still present in the distal colon. Irrespective of the diet throughout the intestine, of the four microbial groups determined by fluorescent in situ hybridisation, lactobacilli were found to be dominating, followed by clostridia and Bacteroides. Bifidobacteria represented a minority of the total intestinal microbiota. The numbers of bacteria increased approximately ten-fold from the distal small intestine to the distal colon. Concomitantly, also concentrations of SCFA and biogenic amines increased in the large intestine. In contrast, concentrations of luminal IgA decreased distally but the expression of mucosal COX-2 had a tendency to increase in the mucosa towards the distal colon. Addition of PDX to the diet significantly changed the fermentation endproducts, especially in the distal colon, whereas effects on bacterial composition were rather minor. There was a reduction in concentrations of SCFA and tryptamine, and an increase in concentrations of spermidine in the colon upon PDX supplementation. Furthermore, PDX tended to decrease the expression of mucosal COX-2, therefore possibly reducing the risk of developing colon cancer-promoting conditions in the distal intestine.

  5. Human Intestinal Cells Modulate Conjugational Transfer of Multidrug Resistance Plasmids between Clinical Escherichia coli Isolates

    DEFF Research Database (Denmark)

    Machado, Ana Manuel; Sommer, Morten

    2014-01-01

    Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems...... to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an extended spectrum beta-lactamase is reduced when clinical isolates of Escherichia coli are co...... of the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut....

  6. Identification of glucose-fermenting bacteria present in an in-vitro model of the human inetstine by RNA-stable isotope probing

    NARCIS (Netherlands)

    Egert, M.G.G.; Graaf, de A.A.; Maathuis, A.; Waard, de P.; Plugge, C.M.; Smidt, H.; Deutz, N.E.P.; Dijkema, C.; Vos, de W.M.; Venema, K.

    2007-01-01

    16S rRNA-based stable isotope probing (SIP) and nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling were used to identify bacteria fermenting glucose under conditions simulating the human intestine. The TIM-2 in vitro model of the human intestine was inoculated with a GI tract

  7. Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells.

    Science.gov (United States)

    Atarashi, Koji; Tanoue, Takeshi; Ando, Minoru; Kamada, Nobuhiko; Nagano, Yuji; Narushima, Seiko; Suda, Wataru; Imaoka, Akemi; Setoyama, Hiromi; Nagamori, Takashi; Ishikawa, Eiji; Shima, Tatsuichiro; Hara, Taeko; Kado, Shoichi; Jinnohara, Toshi; Ohno, Hiroshi; Kondo, Takashi; Toyooka, Kiminori; Watanabe, Eiichiro; Yokoyama, Shin-Ichiro; Tokoro, Shunji; Mori, Hiroshi; Noguchi, Yurika; Morita, Hidetoshi; Ivanov, Ivaylo I; Sugiyama, Tsuyoshi; Nuñez, Gabriel; Camp, J Gray; Hattori, Masahira; Umesaki, Yoshinori; Honda, Kenya

    2015-10-08

    Intestinal Th17 cells are induced and accumulate in response to colonization with a subgroup of intestinal microbes such as segmented filamentous bacteria (SFB) and certain extracellular pathogens. Here, we show that adhesion of microbes to intestinal epithelial cells (ECs) is a critical cue for Th17 induction. Upon monocolonization of germ-free mice or rats with SFB indigenous to mice (M-SFB) or rats (R-SFB), M-SFB and R-SFB showed host-specific adhesion to small intestinal ECs, accompanied by host-specific induction of Th17 cells. Citrobacter rodentium and Escherichia coli O157 triggered similar Th17 responses, whereas adhesion-defective mutants of these microbes failed to do so. Moreover, a mixture of 20 bacterial strains, which were selected and isolated from fecal samples of a patient with ulcerative colitis on the basis of their ability to cause a robust induction of Th17 cells in the mouse colon, also exhibited EC-adhesive characteristics. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora.

    Science.gov (United States)

    Rafii, F; Franklin, W; Cerniglia, C E

    1990-07-01

    A plate assay was developed for the detection of anaerobic bacteria that produce azoreductases. With this plate assay, 10 strains of anaerobic bacteria capable of reducing azo dyes were isolated from human feces and identified as Eubacterium hadrum (2 strains), Eubacterium spp. (2 species), Clostridium clostridiiforme, a Butyrivibrio sp., a Bacteroides sp., Clostridium paraputrificum, Clostridium nexile, and a Clostridium sp. The average rate of reduction of Direct Blue 15 dye (a dimethoxybenzidine-based dye) in these strains ranged from 16 to 135 nmol of dye per min per mg of protein. The enzymes were inactivated by oxygen. In seven isolates, a flavin compound (riboflavin, flavin adenine dinucleotide, or flavin mononucleotide) was required for azoreductase activity. In the other three isolates and in Clostridium perfringens, no added flavin was required for activity. Nondenaturing polyacrylamide gel electrophoresis showed that each bacterium expressed only one azoreductase isozyme. At least three types of azoreductase enzyme were produced by the different isolates. All of the azoreductases were produced constitutively and released extracellularly.

  9. The probiotic mixture VSL#3 has differential effects on intestinal immune parameters in healthy female BALB/c and C57BL/6 mice

    NARCIS (Netherlands)

    Mariman, R.; Tielen, F.; Koning, F.; Nagelkerken, L.

    2015-01-01

    Background: Probiotic bacteria may render mice resistant to the development of various inflammatory and infectious diseases. Objective: This study aimed to identify mechanisms by which probiotic bacteria may influence intestinal immune homeostasis in noninflammatory conditions. Methods: The effect

  10. The influence of the microbial factor on the death of animals by intestinal radiation syndrome

    International Nuclear Information System (INIS)

    Kudryavtsev, V.D.; Kartasheva, A.L.; Tsyran, N.I.

    1979-01-01

    Data obtained in rats and mice irradiated with 900 - 1600 rad 60 Co gamma radiation point to an important role of the microbial factor in the 'intestinal death'. At the climax of the intestinal syndrome dysbacterial conditions developed violently in the intestinal content under predominance of putrefactive bacteria (Proteus). The application of kanamycin according to an elaborated pattern completely suppressed the proteus growth in the intestine and decreased considerably the content of obligatory representatives of the intestinal flora by which most of the animals could survive the time of 'intestinal death' (3rd to 5th day) after irradiation with relatively low doses (900 - 1200 rad). With increasing radiation doses (up to 1400 rad and more) the antibacterial therapy became uneffective because of the increasing importance of other lethal factors. The analysis of these results as well as literature data allow the conclusion that microbial intoxication plays a leading role in the death of the animals at the initial period and at the climax of the intestinal syndrome (3rd to 4th day). At the final stage of the development of the intestinal syndrome (5th day) septicaemia supervened. (author)

  11. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice.

    Directory of Open Access Journals (Sweden)

    Trevor D Lawley

    Full Text Available Relapsing C. difficile disease in humans is linked to a pathological imbalance within the intestinal microbiota, termed dysbiosis, which remains poorly understood. We show that mice infected with epidemic C. difficile (genotype 027/BI develop highly contagious, chronic intestinal disease and persistent dysbiosis characterized by a distinct, simplified microbiota containing opportunistic pathogens and altered metabolite production. Chronic C. difficile 027/BI infection was refractory to vancomycin treatment leading to relapsing disease. In contrast, treatment of C. difficile 027/BI infected mice with feces from healthy mice rapidly restored a diverse, healthy microbiota and resolved C. difficile disease and contagiousness. We used this model to identify a simple mixture of six phylogenetically diverse intestinal bacteria, including novel species, which can re-establish a health-associated microbiota and clear C. difficile 027/BI infection from mice. Thus, targeting a dysbiotic microbiota with a defined mixture of phylogenetically diverse bacteria can trigger major shifts in the microbial community structure that displaces C. difficile and, as a result, resolves disease and contagiousness. Further, we demonstrate a rational approach to harness the therapeutic potential of health-associated microbial communities to treat C. difficile disease and potentially other forms of intestinal dysbiosis.

  12. Effects of a Lactobacillus salivarius mixture on performance, intestinal health and serum lipids of broiler chickens.

    Science.gov (United States)

    Shokryazdan, Parisa; Faseleh Jahromi, Mohammad; Liang, Juan Boo; Ramasamy, Kalavathy; Sieo, Chin Chin; Ho, Yin Wan

    2017-01-01

    The ban or severe restriction on the use of antibiotics in poultry feeds to promote growth has led to considerable interest to find alternative approaches. Probiotics have been considered as such alternatives. In the present study, the effects of a Lactobacillus mixture composed from three previously isolated Lactobacillus salivarius strains (CI1, CI2 and CI3) from chicken intestines on performance, intestinal health status and serum lipids of broiler chickens has been evaluated. Supplementation of the mixture at a concentration of 0.5 or 1 g kg-1 of diet to broilers for 42 days improved body weight, body weight gain and FCR, reduced total cholesterol, LDL-cholesterol and triglycerides, increased populations of beneficial bacteria such as lactobacilli and bifidobacteria, decreased harmful bacteria such as E. coli and total aerobes, reduced harmful cecal bacterial enzymes such as β-glucosidase and β-glucuronidase, and improved intestinal histomorphology of broilers. Because of its remarkable efficacy on broiler chickens, the L. salivarius mixture could be considered as a good potential probiotic for chickens, and its benefits should be further evaluated on a commercial scale.

  13. Live Faecalibacterium prausnitzii Does Not Enhance Epithelial Barrier Integrity in an Apical Anaerobic Co-Culture Model of the Large Intestine

    Directory of Open Access Journals (Sweden)

    Eva Maier

    2017-12-01

    Full Text Available Appropriate intestinal barrier maturation during infancy largely depends on colonization with commensal bacteria. Faecalibacterium prausnitzii is an abundant obligate anaerobe that colonizes during weaning and is thought to maintain colonic health throughout life. We previously showed that F. prausnitzii induced Toll-like receptor 2 (TLR2 activation, which is linked to enhanced tight junction formation. Therefore, we hypothesized that F. prausnitzii enhances barrier integrity, an important factor in appropriate intestinal barrier maturation. In order to test metabolically active bacteria, we used a novel apical anaerobic co-culture system that allows the survival of both obligate anaerobic bacteria and oxygen-requiring intestinal epithelial cells (Caco-2. The first aim was to optimize the culture medium to enable growth and active metabolism of F. prausnitzii while maintaining the viability and barrier integrity, as measured by trans-epithelial electrical resistance (TEER, of the Caco-2 cells. This was achieved by supplementing the apical cell culture medium with bacterial culture medium. The second aim was to test the effect of F. prausnitzii on TEER across Caco-2 cell layers. Live F. prausnitzii did not improve TEER, which indicates that its benefits are not via altering tight junction integrity. The optimization of the novel dual-environment co-culturing system performed in this research will enable the investigation of new probiotics originating from indigenous beneficial bacteria.

  14. Live Faecalibacterium prausnitzii Does Not Enhance Epithelial Barrier Integrity in an Apical Anaerobic Co-Culture Model of the Large Intestine.

    Science.gov (United States)

    Maier, Eva; Anderson, Rachel C; Roy, Nicole C

    2017-12-12

    Appropriate intestinal barrier maturation during infancy largely depends on colonization with commensal bacteria. Faecalibacterium prausnitzii is an abundant obligate anaerobe that colonizes during weaning and is thought to maintain colonic health throughout life. We previously showed that F. prausnitzii induced Toll-like receptor 2 (TLR2) activation, which is linked to enhanced tight junction formation. Therefore, we hypothesized that F. prausnitzii enhances barrier integrity, an important factor in appropriate intestinal barrier maturation. In order to test metabolically active bacteria, we used a novel apical anaerobic co-culture system that allows the survival of both obligate anaerobic bacteria and oxygen-requiring intestinal epithelial cells (Caco-2). The first aim was to optimize the culture medium to enable growth and active metabolism of F. prausnitzii while maintaining the viability and barrier integrity, as measured by trans-epithelial electrical resistance (TEER), of the Caco-2 cells. This was achieved by supplementing the apical cell culture medium with bacterial culture medium. The second aim was to test the effect of F. prausnitzii on TEER across Caco-2 cell layers. Live F. prausnitzii did not improve TEER, which indicates that its benefits are not via altering tight junction integrity. The optimization of the novel dual-environment co-culturing system performed in this research will enable the investigation of new probiotics originating from indigenous beneficial bacteria.

  15. Isolation of Intestinal Parasites of Public Health Importance from Cockroaches (Blattella germanica) in Jimma Town, Southwestern Ethiopia

    OpenAIRE

    Hamu, Haji; Debalke, Serkadis; Zemene, Endalew; Birlie, Belay; Mekonnen, Zeleke; Yewhalaw, Delenasaw

    2014-01-01

    Cockroaches are claimed to be mechanical transmitters of disease causing microorganisms such as intestinal parasites, bacteria, fungi, and viruses. This study assessed the potential of the German cockroach Blattella germanica in the mechanical transmission of intestinal parasites of public health importance. A total of 2010 cockroaches were collected from 404 households in Jimma Town, southwestern Ethiopia. All the collected cockroaches were identified to species as B. germanica. The contents...

  16. Epithelial Cell Damage Activates Bactericidal/Permeability Increasing-Protein (BPI Expression in Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Arjun Balakrishnan

    2017-08-01

    Full Text Available As the first line of defense against invading pathogen, intestinal epithelium produces various antimicrobial proteins (AMP that help in clearance of pathogen. Bactericidal/permeability-increasing protein (BPI is a 55 kDa AMP that is expressed in intestinal epithelium. Dysregulation of BPI in intestinal epithelium is associated with various inflammatory diseases like Crohn’s Disease, Ulcerative colitis, and Infectious enteritis’s. In this paper, we report a direct correlation between intestinal damage and BPI expression. In Caco-2 cells, we see a significant increase in BPI levels upon membrane damage mediated by S. aureus infection and pore-forming toxins (Streptolysin and Listeriolysin. Cells detect changes in potassium level as a Danger-associated molecular pattern associated with cell damage and induce BPI expression in a p38 dependent manner. These results are further supported by in vivo findings that the BPI expression in murine intestinal epithelium is induced upon infection with bacteria which cause intestinal damage (Salmonella Typhimurium and Shigella flexneri whereas mutants that do not cause intestinal damage (STM ΔfliC and STM ΔinvC did not induce BPI expression. Our results suggest that epithelial damage associated with infection act as a signal to induce BPI expression.

  17. Transformation of trollioside and isoquercetin by human intestinal flora in vitro.

    Science.gov (United States)

    Yuan, Ming; Shi, Duo-Zhi; Wang, Teng-Yu; Zheng, Shi-Qi; Liu, Li-Jia; Sun, Zhen-Xiao; Wang, Ru-Feng; Ding, Yi

    2016-03-01

    The present study was designed to determine the intestinal bacterial metabolites of trollioside and isoquercetin and their antibacterial activities. A systematic in vitro biotransformation investigation on trollioside and isoquercetin, including metabolite identification, metabolic pathway deduction, and time course, was accomplished using a human intestinal bacterial model. The metabolites were analyzed and identified by HPLC and HPLC-MS. The antibacterial activities of trollioside, isoquercetin, and their metabolites were evaluated using the broth microdilution method with berberine as a positive control, and their potency was measured as minimal inhibitory concentration (MIC). Our results indicated that trollioside and isoquercetin were metabolized by human intestinal flora through O-deglycosylation, yielding aglycones proglobeflowery acid and quercetin, respectively The antibacterial activities of both metabolites were more potent than that of their parent compounds. In conclusion, trollioside and isoquercetin are totally and rapidly transformed by human intestinal bacteria in vitro and the transformation favors the improvement of the antibacterial activities of the parent compounds. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  18. Cholesterol Assimilation by Lactobacillus Probiotic Bacteria: An In Vitro Investigation

    Directory of Open Access Journals (Sweden)

    Catherine Tomaro-Duchesneau

    2014-01-01

    Full Text Available Excess cholesterol is associated with cardiovascular diseases (CVD, an important cause of mortality worldwide. Current CVD therapeutic measures, lifestyle and dietary interventions, and pharmaceutical agents for regulating cholesterol levels are inadequate. Probiotic bacteria have demonstrated potential to lower cholesterol levels by different mechanisms, including bile salt hydrolase activity, production of compounds that inhibit enzymes such as 3-hydroxy-3-methylglutaryl coenzyme A, and cholesterol assimilation. This work investigates 11 Lactobacillus strains for cholesterol assimilation. Probiotic strains for investigation were selected from the literature: Lactobacillus reuteri NCIMB 11951, L. reuteri NCIMB 701359, L. reuteri NCIMB 702655, L. reuteri NCIMB 701089, L. reuteri NCIMB 702656, Lactobacillus fermentum NCIMB 5221, L. fermentum NCIMB 8829, L. fermentum NCIMB 2797, Lactobacillus rhamnosus ATCC 53103 GG, Lactobacillus acidophilus ATCC 314, and Lactobacillus plantarum ATCC 14917. Cholesterol assimilation was investigated in culture media and under simulated intestinal conditions. The best cholesterol assimilator was L. plantarum ATCC 14917 (15.18 ± 0.55 mg/1010 cfu in MRS broth. L. reuteri NCIMB 701089 assimilated over 67% (2254.70 ± 63.33 mg/1010 cfu of cholesterol, the most of all the strains, under intestinal conditions. This work demonstrates that probiotic bacteria can assimilate cholesterol under intestinal conditions, with L. reuteri NCIMB 701089 showing great potential as a CVD therapeutic.

  19. Effects of selected non-digestible dietary carbohydrates on the composition of the large intestinal microbiota and susceptibility to salmonella infections

    DEFF Research Database (Denmark)

    Petersen, Anne

    The mammalian intestinal tract is a complex ecosystem colonised by a high and diverse number of commensal bacterial. Bacteria colonising the intestinal tract have a profound impact on host health e.g. by acting as a barrier against colonisation by pathogens and by contributing to digestion...... of complex food components. In this regard there is a considerable interest in dietary components that can modulate the gut microbiota and potentially improve gut health. Some gut bacteria, known as probiotics, are belived to improve gut health upond ingestion, whereas non-digestible (ND) dietary...... of the gut microbiota or by stimulating the immune response. Salmonella is a genus of Gram-negative bacteria that are a major cause of food-borne illness globally. Several studies with probiotics have demonstrated protective effects against murine Salmonella infections, while studies with prebiotics have...

  20. Regulation of intestinal immune responses through TLR activation: implications for pro- and prebiotics

    Directory of Open Access Journals (Sweden)

    Sander eDe Kivit

    2014-02-01

    Full Text Available The intestinal mucosa is constantly facing a high load of antigens including bacterial antigens derived from the microbiota and food. Despite this, the immune cells present in the gastrointestinal tract do not initiate a pro-inflammatory immune response. Toll-like receptors (TLRs are pattern recognition receptors expressed by various cells in the gastrointestinal tract, including intestinal epithelial cells (IEC and resident immune cells in the lamina propria. Many diseases, including chronic intestinal inflammation (e.g. inflammatory bowel disease, irritable bowel syndrome (IBS, allergic gastroenteritis (e.g. eosinophilic gastroenteritis and allergic IBS and infections are nowadays associated with a deregulated microbiota. The microbiota may directly interact with TLR. In addition, differences in intestinal TLR expression in health and disease may suggest that TLR play an essential role in disease pathogenesis and may be novel targets for therapy. TLR signaling in the gut is involved in either maintaining intestinal homeostasis or the induction of an inflammatory response. This mini review provides an overview of the current knowledge regarding the contribution of intestinal epithelial TLR signaling in both tolerance induction or promoting intestinal inflammation, with a focus on food allergy. We will also highlight a potential role of the microbiota in regulating gut immune responses, especially through TLR activation.

  1. Natural Pig Plasma Immunoglobulins Have Anti-Bacterial Effects: Potential for Use as Feed Supplement for Treatment of Intestinal Infections in Pigs

    DEFF Research Database (Denmark)

    Hedegaard, Chris Juul; Strube, Mikael Lenz; Hansen, Marie B.

    2016-01-01

    ), and was demonstrated to inhibit the binding of the four pig relevant bacteria to a pig intestinal cell line (IPEC-J2). Finally it was demonstrated in an in vivo weaning piglet model for intestinal colonization with an E. coli F4+ challenge strain that ppIgG given in the feed significantly reduced shedding...

  2. Meconium microbiome analysis identifies bacteria correlated with premature birth.

    Directory of Open Access Journals (Sweden)

    Alexandria N Ardissone

    Full Text Available Preterm birth is the second leading cause of death in children under the age of five years worldwide, but the etiology of many cases remains enigmatic. The dogma that the fetus resides in a sterile environment is being challenged by recent findings and the question has arisen whether microbes that colonize the fetus may be related to preterm birth. It has been posited that meconium reflects the in-utero microbial environment. In this study, correlations between fetal intestinal bacteria from meconium and gestational age were examined in order to suggest underlying mechanisms that may contribute to preterm birth.Meconium from 52 infants ranging in gestational age from 23 to 41 weeks was collected, the DNA extracted, and 16S rRNA analysis performed. Resulting taxa of microbes were correlated to clinical variables and also compared to previous studies of amniotic fluid and other human microbiome niches.Increased detection of bacterial 16S rRNA in meconium of infants of <33 weeks gestational age was observed. Approximately 61·1% of reads sequenced were classified to genera that have been reported in amniotic fluid. Gestational age had the largest influence on microbial community structure (R = 0·161; p = 0·029, while mode of delivery (C-section versus vaginal delivery had an effect as well (R = 0·100; p = 0·044. Enterobacter, Enterococcus, Lactobacillus, Photorhabdus, and Tannerella, were negatively correlated with gestational age and have been reported to incite inflammatory responses, suggesting a causative role in premature birth.This provides the first evidence to support the hypothesis that the fetal intestinal microbiome derived from swallowed amniotic fluid may be involved in the inflammatory response that leads to premature birth.

  3. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora.

    Science.gov (United States)

    Rafii, F; Franklin, W; Cerniglia, C E

    1990-01-01

    A plate assay was developed for the detection of anaerobic bacteria that produce azoreductases. With this plate assay, 10 strains of anaerobic bacteria capable of reducing azo dyes were isolated from human feces and identified as Eubacterium hadrum (2 strains), Eubacterium spp. (2 species), Clostridium clostridiiforme, a Butyrivibrio sp., a Bacteroides sp., Clostridium paraputrificum, Clostridium nexile, and a Clostridium sp. The average rate of reduction of Direct Blue 15 dye (a dimethoxybenzidine-based dye) in these strains ranged from 16 to 135 nmol of dye per min per mg of protein. The enzymes were inactivated by oxygen. In seven isolates, a flavin compound (riboflavin, flavin adenine dinucleotide, or flavin mononucleotide) was required for azoreductase activity. In the other three isolates and in Clostridium perfringens, no added flavin was required for activity. Nondenaturing polyacrylamide gel electrophoresis showed that each bacterium expressed only one azoreductase isozyme. At least three types of azoreductase enzyme were produced by the different isolates. All of the azoreductases were produced constitutively and released extracellularly. Images PMID:2202258

  4. [Physiological patterns of intestinal microbiota. The role of dysbacteriosis in obesity, insulin resistance, diabetes and metabolic syndrome].

    Science.gov (United States)

    Halmos, Tamás; Suba, Ilona

    2016-01-03

    The intestinal microbiota is well-known for a long time, but due to newly recognized functions, clinician's attention has turned to it again in the last decade. About 100 000 billion bacteria are present in the human intestines. The composition of bacteriota living in diverse parts of the intestinal tract is variable according to age, body weight, geological site, and diet as well. Normal bacteriota defend the organism against the penetration of harmful microorganisms, and has many other functions in the gut wall integrity, innate immunity, insulin sensitivity, metabolism, and it is in cross-talk with the brain functions as well. It's a recent recognition, that intestinal microbiota has a direct effect on the brain, and the brain also influences the microbiota. This two-way gut-brain axis consists of microbiota, immune and neuroendocrine system, as well as of the autonomic and central nervous system. Emerging from fermentation of carbohydrates, short-chain fatty acids develop into the intestines, which produce butyrates, acetates and propionates, having favorable effects on different metabolic processes. Composition of the intestinal microbiota is affected by the circadian rhythm, such as in shift workers. Dysruption of circadian rhythm may influence intestinal microbiota. The imbalance between the microbiota and host organism leads to dysbacteriosis. From the membrane of Gram-negative bacteria lipopolysacharides penetrate into the blood stream, via impaired permeability of the intestinal mucosa. These processes induce metabolic endotoxaemia, inflammation, impaired glucose metabolism, insulin resistance, obesity, and contribute to the development of metabolic syndrome, type 2 diabetes, inflammarory bowel diseases, autoimmunity and carcinogenesis. Encouraging therapeutic possibility is to restore the normal microbiota either using pro- or prebiotics, fecal transplantation or bariatric surgery. Human investigations seem to prove that fecal transplant from lean

  5. Supplemental Dietary Inulin of Variable Chain Lengths Alters Intestinal Bacterial Populations in Young Pigs123

    Science.gov (United States)

    Patterson, Jannine K.; Yasuda, Koji; Welch, Ross M.; Miller, Dennis D.; Lei, Xin Gen

    2010-01-01

    Previously, we showed that supplementation of diets with short-chain inulin (P95), long-chain inulin (HP), and a 50:50 mixture of both (Synergy 1) improved body iron status and altered expression of the genes involved in iron homeostasis and inflammation in young pigs. However, the effects of these 3 types of inulin on intestinal bacteria remain unknown. Applying terminal restriction fragment length polymorphism analysis, we determined the abundances of luminal and adherent bacterial populations from 6 segments of the small and large intestines of pigs (n = 4 for each group) fed an iron-deficient basal diet (BD) or the BD supplemented with 4% of P95, Synergy 1, or HP for 5 wk. Compared with BD, all 3 types of inulin enhanced (P inulin on bacterial populations in the lumen contents were found. Meanwhile, all 3 types of inulin suppressed the less desirable bacteria Clostridium spp. and members of the Enterobacteriaceae in the lumen and mucosa of various gut segments. Our findings suggest that the ability of dietary inulin to alter intestinal bacterial populations may partially account for its iron bioavailability-promoting effect and possibly other health benefits. PMID:20980641

  6. Characterisation of the bacterial community structures in the intestine of Lampetra morii.

    Science.gov (United States)

    Li, Yingying; Xie, Wenfang; Li, Qingwei

    2016-07-01

    The metagenomic analysis and 16S rDNA sequencing method were used to investigate the bacterial community in the intestines of Lampetra morii. The bacterial community structure in L. morii intestine was relatively simple. Eight different operational taxonomic units were observed. Chitinophagaceae_unclassified (26.5 %) and Aeromonas spp. (69.6 %) were detected as dominant members at the genus level. The non-dominant genera were as follows: Acinetobacter spp. (1.4 %), Candidatus Bacilloplasma (2.5 %), Enterobacteria spp. (1.5 %), Shewanella spp. (0.04 %), Vibrio spp. (0.09 %), and Yersinia spp. (1.8 %). The Shannon-Wiener (H) and Simpson (1-D) indexes were 0.782339 and 0.5546, respectively. The rarefaction curve representing the bacterial community richness and Shannon-Wiener curve representing the bacterial community diversity reached asymptote, which indicated that the sequence depth were sufficient to represent the majority of species richness and bacterial community diversity. The number of Aeromonas in lamprey intestine was two times higher after stimulation by lipopolysaccharide than PBS. This study provides data for understanding the bacterial community harboured in lamprey intestines and exploring potential key intestinal symbiotic bacteria essential for the L. morii immune response.

  7. An update discussion on the current assessment of the safety of veterinary antimicrobial drug residues in food with regard to their impact on the human intestinal microbiome.

    Science.gov (United States)

    Cerniglia, Carl E; Pineiro, Silvia A; Kotarski, Susan F

    2016-05-01

    The human gastrointestinal tract ecosystem consists of complex and diverse microbial communities that have now been collectively termed the intestinal microbiome. Recent scientific breakthroughs and research endeavours have increased our understanding of the important role the intestinal microbiome plays in human health and disease. The use of antimicrobial new animal drugs in food-producing animals may result in the presence of low levels of drug residues in edible foodstuffs. There is concern that antimicrobial new animal drugs in or on animal-derived food products at residue-level concentrations could disrupt the colonization barrier and/or modify the antimicrobial resistance profile of human intestinal bacteria. Therapeutic doses of antimicrobial drugs have been shown to promote shifts in the intestinal microbiome, and these disruptions promote the emergence of antimicrobial-resistant bacteria. To assess the effects of antimicrobial new animal drug residues in food on human intestinal bacteria, many national regulatory agencies and international committees follow a harmonized process, VICH GL36(R), which was issued by a trilateral organization of the European Union, the USA, and Japan called the International Cooperation on Harmonization of Technical Requirements for Veterinary Medicinal Products (VICH). The guidance describes a general approach currently used by national regulatory agencies and international committees to assess the effects of antimicrobial new animal drug residues in animal-derived food on human intestinal bacteria. The purpose of this review is to provide an overview of this current approach as part of the antimicrobial new animal drug approval process in participating countries, give insights on the microbiological endpoints used in this safety evaluation, and discuss the availability of new information. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Bacterial lipopolysaccharide promotes profibrotic activation of intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P

    2012-02-01

    BACKGROUND: Fibroblasts play a critical role in intestinal wound healing. Lipopolysaccharide (LPS) is a cell wall component of commensal gut bacteria. The effects of LPS on intestinal fibroblast activation were characterized. METHODS: Expression of the LPS receptor, toll-like receptor (TLR) 4, was assessed in cultured primary human intestinal fibroblasts using flow cytometry and confocal microscopy. Fibroblasts were treated with LPS and\\/or transforming growth factor (TGF) beta1. Nuclear factor kappaB (NFkappaB) pathway activation was assessed by inhibitory kappaBalpha (IkappaBalpha) degradation and NFkappaB promoter activity. Fibroblast contractility was measured using a fibroblast-populated collagen lattice. Smad-7, a negative regulator of TGF-beta1 signalling, and connective tissue growth factor (CTGF) expression were assessed using reverse transcriptase-polymerase chain reaction and western blot. The NFkappaB pathway was inhibited by IkappaBalpha transfection. RESULTS: TLR-4 was present on the surface of intestinal fibroblasts. LPS treatment of fibroblasts induced IkappaBalpha degradation, enhanced NFkappaB promoter activity and increased collagen contraction. Pretreatment with LPS (before TGF-beta1) significantly increased CTGF production relative to treatment with TGF-beta1 alone. LPS reduced whereas TGF-beta1 increased smad-7 expression. Transfection with an IkappaBalpha plasmid enhanced basal smad-7 expression. CONCLUSION: Intestinal fibroblasts express TLR-4 and respond to LPS by activating NFkappaB and inducing collagen contraction. LPS acts in concert with TGF-beta1 to induce CTGF. LPS reduces the expression of the TGF-beta1 inhibitor, smad-7.

  9. Effects of subtherapeutic concentrations of antimicrobials on gene acquisition events in Yersinia, Proteus, Shigella, and Salmonella recipient organisms in isolated ligated intestinal loops of swine.

    Science.gov (United States)

    Brewer, Matt T; Xiong, Nalee; Anderson, Kristi L; Carlson, Steve A

    2013-08-01

    To assess antimicrobial resistance and transfer of virulence genes facilitated by subtherapeutic concentrations of antimicrobials in swine intestines. 20 anesthetized pigs experimentally inoculated with donor and recipient bacteria. 4 recipient pathogenic bacteria (Salmonella enterica serotype Typhimurium, Yersinia enterocolitica, Shigella flexneri, or Proteus mirabilis) were incubated with donor bacteria in the presence of subinhibitory concentrations of 1 of 16 antimicrobials in isolated ligated intestinal loops in swine. Donor Escherichia coli contained transferrable antimicrobial resistance or virulence genes. After coincubations, intestinal contents were removed and assessed for pathogens that acquired new antimicrobial resistance or virulence genes following exposure to the subtherapeutic concentrations of antimicrobials. 3 antimicrobials (apramycin, lincomycin, and neomycin) enhanced transfer of an antimicrobial resistance plasmid from commensal E coli organisms to Yersinia and Proteus organisms, whereas 7 antimicrobials (florfenicol, hygromycin, penicillin G, roxarsone, sulfamethazine, tetracycline, and tylosin) exacerbated transfer of an integron (Salmonella genomic island 1) from Salmonella organisms to Yersinia organisms. Sulfamethazine induced the transfer of Salmonella pathogenicity island 1 from pathogenic to nonpathogenic Salmonella organisms. Six antimicrobials (bacitracin, carbadox, erythromycin, sulfathiazole, tiamulin, and virginiamycin) did not mediate any transfer events. Sulfamethazine was the only antimicrobial implicated in 2 types of transfer events. 10 of 16 antimicrobials at subinhibitory or subtherapeutic concentrations augmented specific antimicrobial resistance or transfer of virulence genes into pathogenic bacteria in isolated intestinal loops in swine. Use of subtherapeutic antimicrobials in animal feed may be associated with unwanted collateral effects.

  10. Visualization of probiotic-mediated Ca2+ signaling in intestinal epithelial cells in vivo

    Directory of Open Access Journals (Sweden)

    Takahiro Adachi

    2016-12-01

    Full Text Available Probiotics, such as lactic acid bacteria (LAB and Bacillus subtilis var. natto, have been shown to modulate immune responses. It is important to understand how probiotic bacteria impact intestinal epithelial cells (IECs, because IECs are the first line of defense at the mucosal surface barrier and their activities substantially affect the gut microenvironment and immunity. However, to date, their precise mechanism remains unknown due to a lack of analytical systems available for live animal models. Recently, we generated a conditional Ca2+ biosensor Yellow Cameleon (YC3.60 transgenic mouse line and established 5D (x, y, z, time, and Ca2+ intravital imaging systems of lymphoid tissues including those in Peyer’s patches and bone marrow. In the present study, we further advance our intravital imaging system for intestinal tracts to visualize IEC responses against orally administrated food compounds in real time. Using this system, heat-killed Bacillus subtilis natto, a probiotic TTCC012 strain, is shown to directly induce Ca2+ signaling in IECs in mice housed under specific pathogen-free conditions. In contrast, this activation is not observed in the Lactococcus lactis strain C60; however, when we generate germ-free YC3.60 mice and observe the LAB stimulation of IECs in the absence of gut microbiota, C60 is capable of inducing Ca2+ signaling. This is the first study to successfully visualize the direct effect of probiotics on IECs in live animals. These data strongly suggest that probiotic strains stimulate IECs under physiological conditions, and that their activity is affected by the microenvironment of the small intestine, such as commensal bacteria.

  11. [Adult intestinal malrotation associated with intestinal volvulus].

    Science.gov (United States)

    Hernando-Almudí, Ernesto; Cerdán-Pascual, Rafael; Vallejo-Bernad, Cristina; Martín-Cuartero, Joaquín; Sánchez-Rubio, María; Casamayor-Franco, Carmen

    Intestinal malrotation is a congenital anomaly of the intestinal rotation and fixation, and usually occurs in the neonatal age. Description of a clinical case associated with acute occlusive symptoms. A case of intestinal malrotation is presented in a previously asymptomatic woman of 46 years old with an intestinal obstruction, with radiology and surgical findings showing an absence of intestinal rotation. Intestinal malrotation in adults is often asymptomatic, and is diagnosed as a casual finding during a radiological examination performed for other reasons. Infrequently, it can be diagnosed in adults, associated with an acute abdomen. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  12. The Use of Lactic Acid Bacteria as a Probiotic in Swine Diets

    Directory of Open Access Journals (Sweden)

    Fengjuan Yang

    2015-01-01

    Full Text Available As the resistance of pathogens to antibiotics and the possibility of antibiotic residues in animal products attract increasing attention, the interest in the use of alternatives to in-feed antibiotics has been growing. Recent research with Lactic acid bacteria (LAB in pigs suggests that LAB provide a potential alternative to antibiotic strategies. LAB include Lactobacillus species, Bifidobacterium spp, Bacillus spp, and some other microbes. LAB can adjust the intestinal environment, inhibit or kill pathogens in the gastrointestinal tract and improve the microbial balance in the intestine, as well as regulate intestinal mucosal immunity and maintain intestinal barrier function, thereby benefiting the health of pigs. The related mechanisms for these effects of LAB may include producing microbicidal substances with effects against gastrointestinal pathogens and other harmful microbes, competing with pathogens for binding sites on the intestinal epithelial cell surface and mucin as well as stimulating the immune system. In this review, the characteristics of LAB and their probiotic effects in newborn piglets, weaned piglets, growing pigs and sows are documented.

  13. The role of intestinal microbiota and the immune system.

    Science.gov (United States)

    Purchiaroni, F; Tortora, A; Gabrielli, M; Bertucci, F; Gigante, G; Ianiro, G; Ojetti, V; Scarpellini, E; Gasbarrini, A

    2013-02-01

    The human gut is an ecosystem consisting of a great number of commensal bacteria living in symbiosis with the host. Several data confirm that gut microbiota is engaged in a dynamic interaction with the intestinal innate and adaptive immune system, affecting different aspects of its development and function. To review the immunological functions of gut microbiota and improve knowledge of its therapeutic implications for several intestinal and extra-intestinal diseases associated to dysregulation of the immune system. Significant articles were identified by literature search and selected based on content, including atopic diseases, inflammatory bowel diseases and treatment of these conditions with probiotics. Accumulating evidence indicates that intestinal microflora has protective, metabolic, trophic and immunological functions and is able to establish a "cross-talk" with the immune component of mucosal immunity, comprising cellular and soluble elements. When one or more steps in this fine interaction fail, autoimmune or auto-inflammatory diseases may occur. Furthermore, it results from the data that probiotics, used for the treatment of the diseases caused by the dysregulation of the immune system, can have a beneficial effect by different mechanisms. Gut microbiota interacts with both innate and adaptive immune system, playing a pivotal role in maintenance and disruption of gut immune quiescence. A cross talk between the mucosal immune system and endogenous microflora favours a mutual growth, survival and inflammatory control of the intestinal ecosystem. Based on these evidences, probiotics can be used as an ecological therapy in the treatment of immune diseases.  

  14. [Bacterial Translocation from Intestine: Microbiological, Immunological and Pathophysiological Aspects].

    Science.gov (United States)

    Podoprigora, G I; Kafarskaya, L I; Bainov, N A; Shkoporov, A N

    2015-01-01

    Bacterial translocation (BT) is both pathology and physiology phenomenon. In healthy newborns it accompanies the process of establishing the autochthonous intestinal microbiota and the host microbiome. In immunodeficiency it can be an aethio-pathogenetic link and a manifestation of infection or septic complications. The host colonization resistance to exogenous microbic colonizers is provided by gastrointestinal microbiota in concert with complex constitutional and adaptive defense mechanisms. BT may be result of barrier dysfunction and self-purification mechanisms involving the host myeloid cell phagocytic system and opsonins. Dynamic cell humoral response to microbial molecular patterns that occurs on the mucous membranes initiates receptorsignalingpathways and cascade ofreactions. Their vector and results are largely determined by cross-reactivity between microbiome and the host genome. Enterocyte barriers interacting with microbiota play leading role in providing adaptive, homeostatic and stress host reactivity. Microcirculatory ischemic tissue alterations and inflammatory reactions increase the intestinal barrier permeability and BT These processes a well as mechanisms for apoptotic cells and bacteria clearance are justified to be of prospective research interest. The inflammatory and related diseases caused by alteration and dysfunction of the intestinal barrier are reasonably considered as diseases of single origin. Maternal microbiota affects theformation of the innate immune system and the microbiota of the newborn, including intestinal commensal translocation during lactation. Deeper understanding of intestinal barrier mechanisms needs complex microbiological, immunological, pathophysiological, etc. investigations using adequate biomodels, including gnotobiotic animals.

  15. Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria

    NARCIS (Netherlands)

    Salzman, NH; de Jong, H; Paterson, Y; Harmsen, HJM; Welling, GW; Bos, NA

    2002-01-01

    Total genomic DNA from samples of intact mouse small intestine, large intestine, caecum and faeces was used as template for PCR amplification of 16S rRNA gene sequences with conserved bacterial primers. Phylogenetic analysis of the amplification products revealed 40 unique 16S rDNA sequences. Of

  16. Efficacy of microencapsulated lactic acid bacteria in Helicobater pylori eradication therapy

    Directory of Open Access Journals (Sweden)

    Maha A Khalil

    2015-01-01

    Full Text Available Background: Probiotic delivery systems are widely used nutraceutical products for the supplementation of natural intestinal flora. These delivery systems vary greatly in the effectiveness to exert health benefits for a patient. This study focuses on providing probiotic living cells with a physical barrier against adverse environmental conditions. Materials and Methods: Microencapsulation of the selected lactic acid bacteria (LAB using chitosan and alginate was performed. Physical examination of the formulated LAB microcapsules was observed using phase contrast inverted microscope and scanning electron microscope (SEM. Finally, the survival of microencapsulated and noncapsulated bacteria was cheeked in the simulated human gastric tract (GT. The potential antimicrobial activity of the most potent microencapsulated LAB strain was in vivo evaluated in rabbit models. Results: Microencapsulated L. plantarum, L. acidophilus, and L. bulgaricus DSMZ 20080 were loaded with 1.03 × 10 10 CFU viable bacteria/g, 1.9 × 10 10 CFU viable bacteria/g, and 5.5 × 10 9 CFU viable bacteria/g, respectively. The survival of microencapsulated cells was significantly higher than that of the free cells after exposure to simulated gastric juice (SGJ at pH 2. Additionally, in simulated small intestine juice (SSJ, larger amounts of the selected LAB cells were found, whereas in simulated colon juice (SCJ, the released LAB reached the maximum counts. In vivo results pointed out that an 8-week supplementation with a triple therapy of a microencapsulated L. plantarum, L. acidophilus, and L. bulgaricus DSMZ 20080 might be able to reduce H. pylori. Conclusion: Microencapsulated probiotics could possibly compete with and downregulate H. pylori infection in humans.

  17. Intestinal Microbiota in Pediatric Surgical Cases Administered Bifidobacterium Breve: A Randomized Controlled Trial.

    Science.gov (United States)

    Okazaki, Tadaharu; Asahara, Takashi; Yamataka, Atsuyuki; Ogasawara, Yuki; Lane, Geoffrey J; Nomoto, Koji; Nagata, Satoru; Yamashiro, Yuichiro

    2016-07-01

    The efficacy of perioperative probiotic administration has been reported in adults. We examined the effects of orally administered Bifidobacterium breve strain Yakult (BBG-01) on outcomes in pediatric surgical cases by assessing intestinal and blood microbiota. BBG-01 was well tolerated without adverse effects, and postoperative infectious complications were significantly decreased. Fecal analysis showed increased Bifidobacterium and decreased Enterobacteriaceae, Clostridium difficile, and Pseudomonas. Concentrations of fecal acetic acid were significantly increased, maintaining fecal pH at <7.0. The incidence of detecting bacteria in blood was significantly reduced. BBG-01 improved the intestinal environment, and may be implicated in suppressing bacterial translocation.

  18. Zebrafish Axenic Larvae Colonization with Human Intestinal Microbiota.

    Science.gov (United States)

    Arias-Jayo, Nerea; Alonso-Saez, Laura; Ramirez-Garcia, Andoni; Pardo, Miguel A

    2018-04-01

    The human intestine hosts a vast and complex microbial community that is vital for maintaining several functions related with host health. The processes that determine the gut microbiome composition are poorly understood, being the interaction between species, the external environment, and the relationship with the host the most feasible. Animal models offer the opportunity to understand the interactions between the host and the microbiota. There are different gnotobiotic mice or rat models colonized with the human microbiota, however, to our knowledge, there are no reports on the colonization of germ-free zebrafish with a complex human intestinal microbiota. In the present study, we have successfully colonized 5 days postfertilization germ-free zebrafish larvae with the human intestinal microbiota previously extracted from a donor and analyzed by high-throughput sequencing the composition of the transferred microbial communities that established inside the zebrafish gut. Thus, we describe for first time which human bacteria phylotypes are able to colonize the zebrafish digestive tract. Species with relevant interest because of their linkage to dysbiosis in different human diseases, such as Akkermansia muciniphila, Eubacterium rectale, Faecalibacterium prausnitzii, Prevotella spp., or Roseburia spp. have been successfully transferred inside the zebrafish digestive tract.

  19. Intestinal Alkaline Phosphatase: Potential Roles in Promoting Gut Health in Weanling Piglets and Its Modulation by Feed Additives - A Review.

    Science.gov (United States)

    Melo, A D B; Silveira, H; Luciano, F B; Andrade, C; Costa, L B; Rostagno, M H

    2016-01-01

    The intestinal environment plays a critical role in maintaining swine health. Many factors such as diet, microbiota, and host intestinal immune response influence the intestinal environment. Intestinal alkaline phosphatase (IAP) is an important apical brush border enzyme that is influenced by these factors. IAP dephosphorylates bacterial lipopolysaccharides (LPS), unmethylated cytosine-guanosine dinucleotides, and flagellin, reducing bacterial toxicity and consequently regulating toll-like receptors (TLRs) activation and inflammation. It also desphosphorylates extracellular nucleotides such as uridine diphosphate and adenosine triphosphate, consequently reducing inflammation, modulating, and preserving the homeostasis of the intestinal microbiota. The apical localization of IAP on the epithelial surface reveals its role on LPS (from luminal bacteria) detoxification. As the expression of IAP is reported to be downregulated in piglets at weaning, LPS from commensal and pathogenic gram-negative bacteria could increase inflammatory processes by TLR-4 activation, increasing diarrhea events during this phase. Although some studies had reported potential IAP roles to promote gut health, investigations about exogenous IAP effects or feed additives modulating IAP expression and activity yet are necessary. However, we discussed in this paper that the critical assessment reported can suggest that exogenous IAP or feed additives that could increase its expression could show beneficial effects to reduce diarrhea events during the post weaning phase. Therefore, the main goals of this review are to discuss IAP's role in intestinal inflammatory processes and present feed additives used as growth promoters that may modulate IAP expression and activity to promote gut health in piglets.

  20. Biosynthesis of methylmercury compounds by the intestinal flora of the rat

    International Nuclear Information System (INIS)

    Rowland, I.; Davies, M.; Grasso, P.

    1977-01-01

    The contents of the rat cecum and, to a lesser extent, those of the small intestine, synthesized methylmercury from mercuric chloride labeled with Hg 203 in vitro under aerobic or anaerobic conditions. The rate of formation was approximately 18 ng/g cecal contents/20 hr. The synthesis of methylmercury was inhibited by antibiotics and by filtration of the cecal contents through membrane filters, indicating that the bacterial flora of the gut participates in the reaction. Pure cultures of bacteria, isolated from the intestinal tract of the rat, could methylate mercuric chloride. It was estimated that the total amount of methylmercury synthesized from ingested inorganic mercury in man is approximately 400 ng/day

  1. Associations between common intestinal parasites and bacteria in humans as revealed by qPCR

    DEFF Research Database (Denmark)

    O'Brien Andersen, L.; Karim, A. B.; Roager, Henrik Munch

    2016-01-01

    Several studies have shown associations between groups of intestinal bacterial or specific ratios between bacterial groups and various disease traits. Meanwhile, little is known about interactions and associations between eukaryotic and prokaryotic microorganisms in the human gut. In this work, we...

  2. Functional Intestinal Bile Acid 7α-Dehydroxylation by Clostridium scindens Associated with Protection from Clostridium difficile Infection in a Gnotobiotic Mouse Model.

    Science.gov (United States)

    Studer, Nicolas; Desharnais, Lyne; Beutler, Markus; Brugiroux, Sandrine; Terrazos, Miguel A; Menin, Laure; Schürch, Christian M; McCoy, Kathy D; Kuehne, Sarah A; Minton, Nigel P; Stecher, Bärbel; Bernier-Latmani, Rizlan; Hapfelmeier, Siegfried

    2016-01-01

    Bile acids, important mediators of lipid absorption, also act as hormone-like regulators and as antimicrobial molecules. In all these functions their potency is modulated by a variety of chemical modifications catalyzed by bacteria of the healthy gut microbiota, generating a complex variety of secondary bile acids. Intestinal commensal organisms are well-adapted to normal concentrations of bile acids in the gut. In contrast, physiological concentrations of the various intestinal bile acid species play an important role in the resistance to intestinal colonization by pathogens such as Clostridium difficile . Antibiotic therapy can perturb the gut microbiota and thereby impair the production of protective secondary bile acids. The most important bile acid transformation is 7α-dehydroxylation, producing deoxycholic acid (DCA) and lithocholic acid (LCA). The enzymatic pathway carrying out 7α-dehydroxylation is restricted to a narrow phylogenetic group of commensal bacteria, the best-characterized of which is Clostridium scindens . Like many other intestinal commensal species, 7-dehydroxylating bacteria are understudied in vivo . Conventional animals contain variable and uncharacterized indigenous 7α-dehydroxylating organisms that cannot be selectively removed, making controlled colonization with a specific strain in the context of an undisturbed microbiota unfeasible. In the present study, we used a recently established, standardized gnotobiotic mouse model that is stably associated with a simplified murine 12-species "oligo-mouse microbiota" (Oligo-MM 12 ). It is representative of the major murine intestinal bacterial phyla, but is deficient for 7α-dehydroxylation. We find that the Oligo-MM 12 consortium carries out bile acid deconjugation, a prerequisite for 7α-dehydroxylation, and confers no resistance to C. difficile infection (CDI). Amendment of Oligo-MM 12 with C. scindens normalized the large intestinal bile acid composition by reconstituting 7

  3. Microbiota intestinal en la salud y la enfermedad

    OpenAIRE

    M.E. Icaza-Chávez

    2013-01-01

    La microbiota intestinal es la comunidad de microorganismos vivos residentes en el tubo digestivo. Muchos grupos de investigadores a nivel mundial trabajan descifrando el genoma de la microbiota. Las técnicas modernas de estudio de la microbiota nos han acercado al conocimiento de un número importante de bacterias que no son cultivables, y de la relación entre los microorganismos que nos habitan y nuestra homeostasis. La microbiota es indispensable para el correcto crecimiento corporal, el de...

  4. Effects of a Lactobacillus salivarius mixture on performance, intestinal health and serum lipids of broiler chickens.

    Directory of Open Access Journals (Sweden)

    Parisa Shokryazdan

    Full Text Available The ban or severe restriction on the use of antibiotics in poultry feeds to promote growth has led to considerable interest to find alternative approaches. Probiotics have been considered as such alternatives. In the present study, the effects of a Lactobacillus mixture composed from three previously isolated Lactobacillus salivarius strains (CI1, CI2 and CI3 from chicken intestines on performance, intestinal health status and serum lipids of broiler chickens has been evaluated. Supplementation of the mixture at a concentration of 0.5 or 1 g kg-1 of diet to broilers for 42 days improved body weight, body weight gain and FCR, reduced total cholesterol, LDL-cholesterol and triglycerides, increased populations of beneficial bacteria such as lactobacilli and bifidobacteria, decreased harmful bacteria such as E. coli and total aerobes, reduced harmful cecal bacterial enzymes such as β-glucosidase and β-glucuronidase, and improved intestinal histomorphology of broilers. Because of its remarkable efficacy on broiler chickens, the L. salivarius mixture could be considered as a good potential probiotic for chickens, and its benefits should be further evaluated on a commercial scale.

  5. The Inside Story of Shigella Invasion of Intestinal Epithelial Cells

    Science.gov (United States)

    Carayol, Nathalie; Tran Van Nhieu, Guy

    2013-01-01

    As opposed to other invasive pathogens that reside into host cells in a parasitic mode, Shigella, the causative agent of bacillary dysentery, invades the colonic mucosa but does not penetrate further to survive into deeper tissues. Instead, Shigella invades, replicates, and disseminates within the colonic mucosa. Bacterial invasion and spreading in intestinal epithelium lead to the elicitation of inflammatory responses responsible for the tissue destruction and shedding in the environment for further infection of other hosts. In this article, we highlight specific features of the Shigella arsenal of virulence determinants injected by a type III secretion apparatus (T3SA) that point to the targeting of intestinal epithelial cells as a discrete route of invasion during the initial event of the infectious process. PMID:24086068

  6. Susceptibility to rifaximin and other antimicrobial agents of bacteria isolated from acute gastrointestinal infections in Mexico

    Directory of Open Access Journals (Sweden)

    O. Novoa-Farías

    2016-01-01

    Conclusions: Resistance of enteropathogenic bacteria to various antibiotics used in gastrointestinal infections is high. Rifaximin was active against 99-100% of these enteropathogens at reachable concentrations in the intestine with the recommended dose.

  7. Molecular and cellular aspects of the bidirectional interaction between probiotic bacteria and the host

    NARCIS (Netherlands)

    van Bergenhenegouwen, B.J.|info:eu-repo/dai/nl/358625165

    2015-01-01

    Accumulating evidence suggests that intestinal microbial imbalance, or dysbiosis, and the associated changes in microbe-host interactions might contribute to the prevalence of disease. Dysbiosis is associated with a loss of beneficial bacteria and has triggered research into the potential preventive

  8. Quantitative analyses of the bacterial microbiota of rearing environment, tilapia and common carp cultured in earthen ponds and inhibitory activity of its lactic acid bacteria on fish spoilage and pathogenic bacteria.

    Science.gov (United States)

    Kaktcham, Pierre Marie; Temgoua, Jules-Bocamdé; Ngoufack Zambou, François; Diaz-Ruiz, Gloria; Wacher, Carmen; Pérez-Chabela, María de Lourdes

    2017-02-01

    The present study aimed to evaluate the bacterial load of water, Nile Tilapia and common Carp intestines from earthen ponds, isolate lactic acid bacteria (LAB) and assess their antimicrobial activity against fish spoilage and pathogenic bacteria. Following enumeration and isolation of microorganisms the antimicrobial activity of the LAB isolates was evaluated. Taxonomic identification of selected antagonistic LAB strains was assessed, followed by partial characterisation of their antimicrobial metabolites. Results showed that high counts (>4 log c.f.u ml -1 or 8 log c.f.u g -1 ) of total aerobic bacteria were recorded in pond waters and fish intestines. The microbiota were also found to be dominated by Salmonella spp., Vibrio spp., Staphylococcus spp. and Escherichia coli. LAB isolates (5.60%) exhibited potent direct and extracellular antimicrobial activity against the host-derived and non host-derived spoilage and pathogenic bacteria. These antagonistic isolates were identified and Lactococcus lactis subsp. lactis was found as the predominant (42.85%) specie. The strains displayed the ability to produce lactic, acetic, butyric, propionic and valeric acids. Bacteriocin-like inhibitory substances with activity against Gram-positive and Gram-negative (Vibrio spp. and Pseudomonas aeruginosa) bacteria were produced by three L. lactis subsp. lactis strains. In this study, the LAB from the microbiota of fish and pond water showed potent antimicrobial activity against fish spoilage or pathogenic bacteria from the same host or ecological niche. The studied Cameroonian aquatic niche is an ideal source of antagonistic LAB that could be appropriate as new fish biopreservatives or disease control agents in aquaculture under tropical conditions in particular or worldwide in general.

  9. The Intestinal Eukaryotic and Bacterial Biome of Spotted Hyenas: The Impact of Social Status and Age on Diversity and Composition.

    Science.gov (United States)

    Heitlinger, Emanuel; Ferreira, Susana C M; Thierer, Dagmar; Hofer, Heribert; East, Marion L

    2017-01-01

    In mammals, two factors likely to affect the diversity and composition of intestinal bacteria (bacterial microbiome) and eukaryotes (eukaryome) are social status and age. In species in which social status determines access to resources, socially dominant animals maintain better immune processes and health status than subordinates. As high species diversity is an index of ecosystem health, the intestinal biome of healthier, socially dominant animals should be more diverse than those of subordinates. Gradual colonization of the juvenile intestine after birth predicts lower intestinal biome diversity in juveniles than adults. We tested these predictions on the effect of: (1) age (juvenile/adult) and (2) social status (low/high) on bacterial microbiome and eukaryome diversity and composition in the spotted hyena ( Crocuta crocuta ), a highly social, female-dominated carnivore in which social status determines access to resources. We comprehensively screened feces from 35 individually known adult females and 7 juveniles in the Serengeti ecosystem for bacteria and eukaryotes, using a set of 48 different amplicons (4 for bacterial 16S, 44 for eukaryote 18S) in a multi-amplicon sequencing approach. We compared sequence abundances to classical coprological egg or oocyst counts. For all parasite taxa detected in more than six samples, the number of sequence reads significantly predicted the number of eggs or oocysts counted, underscoring the value of an amplicon sequencing approach for quantitative measurements of parasite load. In line with our predictions, our results revealed a significantly less diverse microbiome in juveniles than adults and a significantly higher diversity of eukaryotes in high-ranking than low-ranking animals. We propose that free-ranging wildlife can provide an intriguing model system to assess the adaptive value of intestinal biome diversity for both bacteria and eukaryotes.

  10. Salmonella enterica serovar Typhimurium exploits inflammation to modify swine intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Rosanna eDrumo

    2016-01-01

    Full Text Available Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota.

  11. A New Phylogenetic Approach to Investigate the Intestinal Bacterial Composition

    DEFF Research Database (Denmark)

    Hermann-Bank, Marie Louise; Mølbak, Lars

    literature, meaning their use had already been verified. DNA from reference bacteria and DNA from faecal samples were used to check specificity and sensitivity of the assay when analysing bacterial communities. The heat map showed nice dilution colour series consistent with the diluted sample concentrations...... reactions in a few hours. Subsequently the 16S rDNA amplicons can be harvested and used for next generation sequencing. The experimental setup was designed so that the primers represented a phylogenetic overview of the biggest groups of intestinal bacteria. Primers were mainly chosen from published...... ranging from 50 to 0.005 ng/μl and in agreement to the expected results. This implies that the AA48.48 is a useful tool when examining the bacterial composition of faeces and maybe superior to competitive methods, as it gives a quantitative measurement of the bacteria in the sample and afterwards...

  12. Kefir-isolated bacteria and yeasts inhibit Shigella flexneri invasion and modulate pro-inflammatory response on intestinal epithelial cells.

    Science.gov (United States)

    Bolla, P A; Abraham, A G; Pérez, P F; de Los Angeles Serradell, M

    2016-02-01

    The aim of this work was to evaluate the ability of a kefir-isolated microbial mixture containing three bacterial and two yeast strains (MM) to protect intestinal epithelial cells against Shigella flexneri invasion, as well as to analyse the effect on pro-inflammatory response elicited by this pathogen. A significant decrease in S. flexneri strain 72 invasion was observed on both HT-29 and Caco-2 cells pre-incubated with MM. Pre-incubation with the individual strains Saccharomyces cerevisiae CIDCA 8112 or Lactococcus lactis subsp. lactis CIDCA 8221 also reduced the internalisation of S. flexneri into HT-29 cells although in a lesser extent than MM. Interestingly, Lactobacillus plantarum CIDCA 83114 exerted a protective effect on the invasion of Caco-2 and HT-29 cells by S. flexneri. Regarding the pro-inflammatory response on HT-29 cells, S. flexneri infection induced a significant activation of the expression of interleukin 8 (IL-8), chemokine (C-C motif) ligand 20 (CCL20) and tumour necrosis factor alpha (TNF-α) encoding genes (P<0.05), whereas incubation of cells with MM did not induce the expression of any of the mediators assessed. Interestingly, pre-incubation of HT-29 monolayer with MM produced an inhibition of S. flexneri-induced IL-8, CCL20 and TNF-α mRNA expression. In order to gain insight on the effect of MM (or the individual strains) on this pro-inflammatory response, a series of experiments using a HT-29-NF-κB-hrGFP reporter system were performed. Pre-incubation of HT-29-NF-κB-hrGFP cells with MM significantly dampened Shigella-induced activation. Our results showed that the contribution of yeast strain Kluyveromyces marxianus CIDCA 8154 seems to be crucial in the observed effect. In conclusion, results presented in this study demonstrate that pre-treatment with a microbial mixture containing bacteria and yeasts isolated from kefir, resulted in inhibition of S. flexneri internalisation into human intestinal epithelial cells, along with the

  13. The membrane-bound form of gene 9 minor coat protein of bacteriophage M13

    NARCIS (Netherlands)

    Houbiers, M.C.

    2002-01-01

    Bacteriophage M13 is a virus that infects the bacteria Escherichia coli ( E. coli ), a single cell organism that resides in our intestines. It consists of the cytoplasm (contents) and a double membrane that keeps the

  14. Beta-Defensin-2 and Beta-Defensin-3 Reduce Intestinal Damage Caused by Salmonella typhimurium Modulating the Expression of Cytokines and Enhancing the Probiotic Activity of Enterococcus faecium

    Directory of Open Access Journals (Sweden)

    Alessandra Fusco

    2017-01-01

    Full Text Available The intestinal microbiota is a major factor in human health and disease. This microbial community includes autochthonous (permanent inhabitants and allochthonous (transient inhabitants microorganisms that contribute to maintaining the integrity of the intestinal wall, modulating responses to pathogenic noxae and representing a key factor in the maturation of the immune system. If this healthy microbiota is disrupted by antibiotics, chemotherapy, or a change in diet, intestinal colonization by pathogenic bacteria or viruses may occur, leading to disease. To manage substantial microbial exposure, epithelial surfaces of the intestinal tract produce a diverse arsenal of antimicrobial peptides (AMPs, including, of considerable importance, the β-defensins, which directly kill or inhibit the growth of microorganisms. Based on the literature data, the purpose of this work was to create a line of intestinal epithelial cells able to stably express gene encoding human β-defensin-2 (hBD-2 and human β-defensin-3 (hBD-3, in order to test their role in S. typhimurium infections and their interaction with the bacteria of the gut microbiota.

  15. Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate-producing bacteria

    NARCIS (Netherlands)

    Nylund, L.; Nermes, M.; Isolauri, E.; Salminen, S.; Vos, de W.M.; Satokari, R.

    2015-01-01

    The reports on atopic diseases and microbiota in early childhood remain contradictory and both decreased and increased microbiota diversity have been associated with atopic eczema. In this study, the intestinal microbiota signatures associated with the severity of eczema in 6-month-old infants were

  16. Stagnant loop syndrome resulting from small-bowel irradiation injury and intestinal by-pass

    International Nuclear Information System (INIS)

    Swan, R.W.

    1974-01-01

    Stagnant or blind-loop syndrome includes vitamin B12 malabsorption, steatorrhea, and bacterial overgrowth of the small intestine. A case is presented to demonstrate this syndrome occurring after small-bowel irradiation injury with exaggeration postenterocolic by-pass. Alteration of normal small-bowel flora is basic to development of the stagnant-loop syndrome. Certain strains of bacteria as Bacteriodes and E. coli are capable of producing a malabsorption state. Definitive therapy for this syndrome developing after severe irradiation injury and intestinal by-pass includes antibiotics. Rapid symptomatic relief from diarrhea and improved malabsorption studies usually follow appropriate antibiotic therapy. Recolonization of the loop(s) with the offending bacterial species may produce exacerbation of symptoms. Since antibiotics are effective, recognition of this syndrome is important. Foul diarrheal stools should not be considered a necessary consequence of irradiation injury and intestinal by-pass

  17. Metabolic changes during B cell differentiation for the production of intestinal IgA antibody.

    Science.gov (United States)

    Kunisawa, Jun

    2017-04-01

    To sustain the bio-energetic demands of growth, proliferation, and effector functions, the metabolism of immune cells changes dramatically in response to immunologic stimuli. In this review, I focus on B cell metabolism, especially regarding the production of intestinal IgA antibody. Accumulating evidence has implicated not only host-derived factors (e.g., cytokines) but also gut environmental factors, including the possible involvement of commensal bacteria and diet, in the control of B cell metabolism during intestinal IgA antibody production. These findings yield new insights into the regulation of immunosurveillance and homeostasis in the gut.

  18. Investigation of the effective components of the flowers of Trollius chinensis from the perspectives of intestinal bacterial transformation and intestinal absorption.

    Science.gov (United States)

    Guo, Lina; Qiao, Shanshan; Hu, Junhong; Li, Deli; Zheng, Shiqi; Shi, Duozhi; Liu, Junxiu; Wang, Rufeng

    2017-12-01

    The flowers of Trollius chinensis Bunge (Ranunculaceae), used for respiratory tract infections, mainly contain flavonoids, phenolic acids, and alkaloids; however, the effective components are debatable because of their unclear in vivo activities. This study investigates the effective components from the perspectives of biotransformation and absorption. Both single person derived- and multiple people-derived intestinal florae were used to investigate the biotransformation of aqueous extract of the flowers of T. chinensis (AEOF) at the concentrations of 15.0, 30.0, and 60.0 mg/mL, respectively, for 72 h. Both human colon adenocarcinoma cell line (Caco-2) monolayers and everted gut sacs were employed to evaluate the intestinal absorption of the intestinal bacterial transformed AEOF at the concentrations of 10, 20, and 30 mg/mL, respectively, for 180 min. 2″-O-β-l-Galactopyranosylorientin, orientin, vitexin, quercetin, veratric acid, proglobeflowery acid, and trolline in AEOF were not transformed by intestinal bacteria, while isoquercetin and trollioside were completely transformed. The P app values of 2″-O-β-l-galactopyranosylorientin, orientin, and vitexin calculated based on the experimental data of intestinal absorption were at the levels of 10 -5 , whereas those of veratric acid, proglobeflowery acid, and trolline were at 10 -4 . The mass ratio of flavonoids to phenolic acids to alkaloids changed from 16:10:7 to 9:12:8 before and after absorption. The dominant position of flavonoids was replaced by phenolic acids after absorption. In addition to flavonoids which are usually considered as the dominant effective ones, phenolic acids and alkaloids should be also very important for the efficacy of these flowers.

  19. New Neonatal Porcine Diarrhea Syndrome in Denmark Characterization of the intestinal lesions and identification of the etiology

    DEFF Research Database (Denmark)

    Jonach, Beata Renata; Jensen, Tim Kåre; Boye, Mette

    of various degrees with concomitant crypt hyperplasia in the jejunum and ileum (Chapter 4.1). Villus atrophy is a common pathological feature seen in numerous infectious intestinal conditions and is associated with malabsorptive diarrhea due to insufficient absorption of water and nutrients from the small...... with enlargement of the proliferative compartment in the crypts and that epithelial cell turnover was enhanced in the diarrheic piglets.Potentially pathogenic bacteria such as Escherichia coli, Enterococcus spp., Clostridium perfringens and Clostridium difficile have been proposed to be involved in NNPDS. In order...... that adherent E. coli and Enterococcus spp. were involved in NNPDS. These bacteria were present in 37% of the diarrheic piglets and were associated with villus atrophy and epithelial lesions in the small intestine. No clear association between the presence of C. perfringens and C. difficile and diarrhea...

  20. Differential Susceptibility of Bacteria to Mouse Paneth Cell a-Defensins under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Jennifer R. Mastroianni

    2014-10-01

    Full Text Available Small intestinal Paneth cells secrete a-defensin peptides, termed cryptdins (Crps in mice, into the intestinal lumen, where they confer immunity to oral infections and define the composition of the ileal microbiota. In these studies, facultative bacteria maintained under aerobic or anaerobic conditions displayed differential sensitivities to mouse a-defensins under in vitro assay conditions. Regardless of oxygenation, Crps 2 and 3 had robust and similar bactericidal activities against S. typhimurium and S. flexneri, but Crp4 activity against S. flexneri was attenuated in the absence of oxygen. Anaerobic bacteria varied in their susceptibility to Crps 2-4, with Crp4 showing less activity than Crps 2 and 3 against Enterococcus faecalis, and Bacteroides fragilis in anaerobic assays, but Fusobacterium necrophorum was killed only by Crp4 and not by Crps 2 and 3. The influence of anaerobiosis in modulating Crp bactericidal activities in vitro suggests that a-defensin effects on the enteric microbiota may be subject to regulation by local oxygen tension.

  1. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Martinez, Asuncion; Mincer, Tracy J

    2006-01-01

    Planktonic Bacteria, Archaea and Eukarya reside and compete in the ocean's photic zone under the pervasive influence of light. Bacteria in this environment were recently shown to contain photoproteins called proteorhodopsins, thought to contribute to cellular energy metabolism by catalysing light...... phylogenetic distribution of proteorhodopsins reflects their significant light-dependent fitness contributions, which drive the photoprotein's lateral acquisition and retention, but constrain its dispersal to the photic zone....

  2. Bacterial Signaling at the Intestinal Epithelial Interface in Inflammation and Cancer

    Directory of Open Access Journals (Sweden)

    Olivia I. Coleman

    2018-01-01

    Full Text Available The gastrointestinal (GI tract provides a compartmentalized interface with an enormous repertoire of immune and metabolic activities, where the multicellular structure of the mucosa has acquired mechanisms to sense luminal factors, such as nutrients, microbes, and a variety of host-derived and microbial metabolites. The GI tract is colonized by a complex ecosystem of microorganisms, which have developed a highly coevolved relationship with the host’s cellular and immune system. Intestinal epithelial pattern recognition receptors (PRRs substantially contribute to tissue homeostasis and immune surveillance. The role of bacteria-derived signals in intestinal epithelial homeostasis and repair has been addressed in mouse models deficient in PRRs and signaling adaptors. While critical for host physiology and the fortification of barrier function, the intestinal microbiota poses a considerable health challenge. Accumulating evidence indicates that dysbiosis is associated with the pathogenesis of numerous GI tract diseases, including inflammatory bowel diseases (IBD and colorectal cancer (CRC. Aberrant signal integration at the epithelial cell level contributes to such diseases. An increased understanding of bacterial-specific structure recognition and signaling mechanisms at the intestinal epithelial interface is of great importance in the translation to future treatment strategies. In this review, we summarize the growing understanding of the regulation and function of the intestinal epithelial barrier, and discuss microbial signaling in the dynamic host–microbe mutualism in both health and disease.

  3. Antimicrobial resistances do not affect colonization parameters of intestinal E. coli in a small piglet group

    Directory of Open Access Journals (Sweden)

    Schierack Peter

    2009-10-01

    Full Text Available Abstract Background Although antimicrobial resistance and persistence of resistant bacteria in humans and animals are major health concerns worldwide, the impact of antimicrobial resistance on bacterial intestinal colonization in healthy domestic animals has only been rarely studied. We carried out a retrospective analysis of the antimicrobial susceptibility status and the presence of resistance genes in intestinal commensal E. coli clones from clinically healthy pigs from one production unit with particular focus on effects of pheno- and/or genotypic resistance on different nominal and numerical intestinal colonization parameters. In addition, we compared the occurrence of antimicrobial resistance phenotypes and genotypes with the occurrence of virulence associated genes typical for extraintestinal pathogenic E. coli. Results In general, up to 72.1% of all E. coli clones were resistant to ampicillin, chloramphenicol, kanamycin, streptomycin, sulfamethoxazole or tetracycline with a variety of different resistance genes involved. There was no significant correlation between one of the nominal or numerical colonization parameters and the absence or presence of antimicrobial resistance properties or resistance genes. However, there were several statistically significant associations between the occurrence of single resistance genes and single virulence associated genes. Conclusion The demonstrated resistance to the tested antibiotics might not play a dominant role for an intestinal colonization success in pigs in the absence of antimicrobial drugs, or cross-selection of other colonization factors e.g. virulence associated genes might compensate "the cost of antibiotic resistance". Nevertheless, resistant strains are not outcompeted by susceptible bacteria in the porcine intestine. Trial Registration The study was approved by the local animal welfare committee of the "Landesamt für Arbeitsschutz, Gesundheitsschutz und technische Sicherheit" Berlin

  4. Inulin with different degrees of polymerization modulates composition of intestinal microbiota in mice.

    Science.gov (United States)

    Zhu, Limeng; Qin, Song; Zhai, Shixiang; Gao, Yonglin; Li, Lili

    2017-05-01

    The study aimed to analyze the global influences of dietary inulin with different degrees of polymerization (DP) on intestinal microbial communities. Six-week-old male C57BL/6J mice were treated with fructo-oligosaccharides and inulin for 6 weeks. Fecal samples were obtained at time point 0 and 6th week. 16S rRNA sequence analysis was used to measure intestinal microbiota performed on the Illumina MiSeq platform. Influences of dietary inulin on intestinal microbiota were more complex effects than bifidogenic effects, relative abundance of butyrate-producing bacteria increased after interventions. Akkermansia muciniphila, belonging to mucin-degrading species, became a dominant species in Verrucomicrobia phylum after treatment with fructo-oligosaccharides and inulin. Modulation effects of intestinal microbiota were positively correlated with DP. Lower DP interventions exhibited better effects than higher DP treatment on stimulation of probiotics. We hypothesized that Akkermansia muciniphila played an important role on maintaining balance between mucin and short chain fatty acids. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. SURVIVAL OF MICROORGANISMS FROM MODERN PROBIOTICS IN MODEL CONDITIONS OF THE INTESTINE

    Directory of Open Access Journals (Sweden)

    Kabluchko TV

    2017-03-01

    Full Text Available Introduction. The staye of intestinal microflora affects the work of the whole organism. When composition of normal ibtestine microflora changes, its restoration is required. In our days a wide variety of probiotic drugs are available on the market which can be used to solve this problem. Most bacteria having probiotic properties represent the families Lactobacillus and Bifidobacterium, which have poor resistance to acidic content of the stomach and toxic effects of bile salts. Various studies have clearly shown that in a person with normal acidic and bile secretion, the lactobacilli and bifidobacteria are not detected after the passage through the duodenum, i.e., they perish before reaching the small intestines. In this study we compared the survival of different microorganisms which are contained in 9 probiotic drugs in a model of gastric and intestinal environments. Material and methods. In the laboratory of SI: “Mechnikov Institute Microbiology and Immunology, National Ukrainian Academy Medical Sciences" the in vitro experiments have been evaluated to test the ability of different probiotic bacteria which were contained in 9 probiotic drugs to survive the impact of the model environment of the stomach and duodenum. Bacillus coagulans persistence was evaluated under impact of simulated environment of the stomach and duodenum, it also was assessed by the quantity of CFU by incubation on culture medium. The following were studied: Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus bulgaricus, Bifidobacterium bifidum, Bifidobacterium longum , Bifidobacterium breve, Bifidobacterium infantis, Bifidobacterium animalis subsp. Lactis BB-12, Saccharomyces boulardii, Bacillus coagulans, Bacillus clausii, Enterococcus faecium. Microorganisms were incubated for 3 hours in a model environment of the stomach (pepsin 3 g / l, hydrochloric acid of 160 mmol / l, pH 2

  6. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity.

    Science.gov (United States)

    Chen, Zhongyi; Guo, Lilu; Zhang, Yongqin; Walzem, Rosemary L; Pendergast, Julie S; Printz, Richard L; Morris, Lindsey C; Matafonova, Elena; Stien, Xavier; Kang, Li; Coulon, Denis; McGuinness, Owen P; Niswender, Kevin D; Davies, Sean S

    2014-08-01

    Metabolic disorders, including obesity, diabetes, and cardiovascular disease, are widespread in Westernized nations. Gut microbiota composition is a contributing factor to the susceptibility of an individual to the development of these disorders; therefore, altering a person's microbiota may ameliorate disease. One potential microbiome-altering strategy is the incorporation of modified bacteria that express therapeutic factors into the gut microbiota. For example, N-acylphosphatidylethanolamines (NAPEs) are precursors to the N-acylethanolamide (NAE) family of lipids, which are synthesized in the small intestine in response to feeding and reduce food intake and obesity. Here, we demonstrated that administration of engineered NAPE-expressing E. coli Nissle 1917 bacteria in drinking water for 8 weeks reduced the levels of obesity in mice fed a high-fat diet. Mice that received modified bacteria had dramatically lower food intake, adiposity, insulin resistance, and hepatosteatosis compared with mice receiving standard water or control bacteria. The protective effects conferred by NAPE-expressing bacteria persisted for at least 4 weeks after their removal from the drinking water. Moreover, administration of NAPE-expressing bacteria to TallyHo mice, a polygenic mouse model of obesity, inhibited weight gain. Our results demonstrate that incorporation of appropriately modified bacteria into the gut microbiota has potential as an effective strategy to inhibit the development of metabolic disorders.

  7. The effect of prebiotics on production of antimicrobial compounds, resistance to growth at low pH and in the presence of bile, and adhesion of probiotic cells to intestinal mucus.

    Science.gov (United States)

    Brink, M; Todorov, S D; Martin, J H; Senekal, M; Dicks, L M T

    2006-04-01

    Screening of five bile salt-resistant and low pH-tolerant lactic acid bacteria for inhibitory activity against lactic acid bacteria and bacterial strains isolated from the faeces of children with HIV/AIDS. Determining the effect of prebiotics and soy milk-base on cell viability and adhesion of cells to intestinal mucus. Lactobacillus plantarum 423, Lactobacillus casei LHS, Lactobacillus salivarius 241, Lactobacillus curvatus DF 38 and Pediococcus pentosaceus 34 produced the highest level of antimicrobial activity (12,800 AU ml(-1)) when grown in MRS broth supplemented with 2% (m/v) dextrose. Growth in the presence of Raftilose Synergy1, Raftilose L95 and Raftiline GR did not lead to increased levels of antimicrobial activity. Cells grown in the presence of Raftilose Synergy1 took longer to adhere to intestinal mucus, whilst cells grown in the absence of prebiotics showed a linear rate of binding. A broad range of gram-positive and gram-negative bacteria were inhibited. Dextrose stimulated the production of antimicrobial compounds. Adhesion to intestinal mucus did not increase with the addition of prebiotics. The strains may be incorporated in food supplements for HIV/AIDS patients suffering from gastro-intestinal disorders.

  8. Galectin-4 and small intestinal brush border enzymes form clusters

    DEFF Research Database (Denmark)

    Danielsen, E M; van Deurs, B

    1997-01-01

    that galectin-4 is indeed an intestinal brush border protein; we also localized galectin-4 throughout the cell, mainly associated with membraneous structures, including small vesicles, and to the rootlets of microvillar actin filaments. This was confirmed by subcellular fractionation, showing about half...... by a nonclassical pathway, and the brush border enzymes represent a novel class of natural ligands for a member of the galectin family. Newly synthesized galectin-4 is rapidly "trapped" by association with intracellular structures prior to its apical secretion, but once externalized, association with brush border......Detergent-insoluble complexes prepared from pig small intestine are highly enriched in several transmembrane brush border enzymes including aminopeptidase N and sucrase-isomaltase, indicating that they reside in a glycolipid-rich environment in vivo. In the present work galectin-4, an animal lectin...

  9. Secretory IgA is Concentrated in the Outer Layer of Colonic Mucus along with Gut Bacteria

    Directory of Open Access Journals (Sweden)

    Eric W. Rogier

    2014-04-01

    Full Text Available Antibodies of the secretory IgA (SIgA class comprise the first line of antigen-specific immune defense, preventing access of commensal and pathogenic microorganisms and their secreted products into the body proper. In addition to preventing infection, SIgA shapes the composition of the gut microbiome. SIgA is transported across intestinal epithelial cells into gut secretions by the polymeric immunoglobulin receptor (pIgR. The epithelial surface is protected by a thick network of mucus, which is composed of a dense, sterile inner layer and a loose outer layer that is colonized by commensal bacteria. Immunofluorescence microscopy of mouse and human colon tissues demonstrated that the SIgA co-localizes with gut bacteria in the outer mucus layer. Using mice genetically deficient for pIgR and/or mucin-2 (Muc2, the major glycoprotein of intestinal mucus, we found that Muc2 but not SIgA was necessary for excluding gut bacteria from the inner mucus layer in the colon. Our findings support a model whereby SIgA is anchored in the outer layer of colonic mucus through combined interactions with mucin proteins and gut bacteria, thus providing immune protection against pathogens while maintaining a mutually beneficial relationship with commensals.

  10. Control of intestinal bacterial proliferation in regulation of lifespan in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Portal-Celhay Cynthia

    2012-03-01

    Full Text Available Abstract Background A powerful approach to understanding complex processes such as aging is to use model organisms amenable to genetic manipulation, and to seek relevant phenotypes to measure. Caenorhabditis elegans is particularly suited to studies of aging, since numerous single-gene mutations have been identified that affect its lifespan; it possesses an innate immune system employing evolutionarily conserved signaling pathways affecting longevity. As worms age, bacteria accumulate in the intestinal tract. However, quantitative relationships between worm genotype, lifespan, and intestinal lumen bacterial load have not been examined. We hypothesized that gut immunity is less efficient in older animals, leading to enhanced bacterial accumulation, reducing longevity. To address this question, we evaluated the ability of worms to control bacterial accumulation as a functional marker of intestinal immunity. Results We show that as adult worms age, several C. elegans genotypes show diminished capacity to control intestinal bacterial accumulation. We provide evidence that intestinal bacterial load, regulated by gut immunity, is an important causative factor of lifespan determination; the effects are specified by bacterial strain, worm genotype, and biologic age, all acting in concert. Conclusions In total, these studies focus attention on the worm intestine as a locus that influences longevity in the presence of an accumulating bacterial population. Further studies defining the interplay between bacterial species and host immunity in C. elegans may provide insights into the general mechanisms of aging and age-related diseases.

  11. Prevalence of intestinal parasites infections among Afghan children of primary and junior high schools residing Kashan city, Iran, 2009-2010

    Directory of Open Access Journals (Sweden)

    Mansoureh Momen Heravi

    2013-06-01

    Results: out of the 430 students, 49.7% were male and the rest were female. The prevalence of intestinal parasites was 33.5%. The frequency of pathogenic intestinal parasite was 15.4%. The rate of intestinal parasite infections were: Entamoeba coli 16.5%, Giardia lamblia 8.8%,Blastocystis hominis 7%, Endolimax nana 3.4%, Iodamoeba buchlelli 3.4%, Chilomastix mesnili 1.62%, Entamoeba histolytica/E.dispar 1.2%,Hymenolepis nana 1.8% , and Ascaris lumbricoides0.2%.Entrobius vermicularis was found in 13.5% of the students using scotch tape test.There was a significant statistical association between duration of living in Afghanistan and intestinal parasitic infections.(p≤0.03 Conclusion: According to the results of this study, the prevalence of parasitic infections in the Afghan children was rather high. Examination and treatment of the students, education of the children and their parents and teachers in the field of personal hygine and environmental sanitation are necessary for prevention of parasite transmission.

  12. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.; Jiang, Y. [Southern Medical University, Nanfang Hospital, Department of Anesthesia, Guangzhou, China, Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou (China); Tang, Y.; Chen, B. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China); Sun, X. [Laboratory of Traditional Chinese Medicine Syndrome, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Su, L.; Liu, Z. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China)

    2013-06-25

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.

  13. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    International Nuclear Information System (INIS)

    Tang, J.; Jiang, Y.; Tang, Y.; Chen, B.; Sun, X.; Su, L.; Liu, Z.

    2013-01-01

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries

  14. INTESTINAL OBSTRUCTION

    Science.gov (United States)

    Whipple, G. H.; Stone, H. B.; Bernheim, B. M.

    1913-01-01

    formed in no other way than by the activity of the intestinal mucosa and the growth of the intestinal bacteria. This material after dilution, autolysis, sterilization, and filtration produces a characteristic effect when introduced intravenously. When in toxic doses it causes a profound drop in blood pressure, general collapse, drop in temperature, salivation, vomiting, and profuse diarrhea, which is often blood-stained. Splanchnic congestion is the conspicuous feature at autopsy and shows especially in the villi of the duodenal and jejunal mucosæ. Adrenalin, during this period of low blood pressure and splanchnic congestion, will cause the usual reaction when given intravenously, but applied locally or given intravenously it causes no bleaching of the engorged intestinal mucosa. Secretin is not found in the duodenal loop fluid, and the loop material does not influence the pancreatic secretion. Intraportal injection of the toxic material gives a reaction similar to intravenous injection. Intraperitoneal and subcutaneous injections produce a relatively slow reaction which closely resembles the picture seen in the closed duodenal loop dog. In both cases there is a relatively slow absorption, but the splanchnic congestion and other findings, though less intense, are present in both groups. There seems, therefore, to be no escape from the conclusion that a poisonous substance is formed in this closed duodenal loop which is absorbed from it and causes intoxication and death. Injection of this toxic substance into a normal dog gives intoxication and a reaction more intense but similar to that developing in a closed-loop dog. PMID:19867644

  15. Video Coaching as an Efficient Teaching Method for Surgical Residents-A Randomized Controlled Trial.

    Science.gov (United States)

    Soucisse, Mikael L; Boulva, Kerianne; Sideris, Lucas; Drolet, Pierre; Morin, Michel; Dubé, Pierre

    As surgical training is evolving and operative exposure is decreasing, new, effective, and experiential learning methods are needed to ensure surgical competency and patient safety. Video coaching is an emerging concept in surgery that needs further investigation. In this randomized controlled trial conducted at a single teaching hospital, participating residents were filmed performing a side-to-side intestinal anastomosis on cadaveric dog bowel for baseline assessment. The Surgical Video Coaching (SVC) group then participated in a one-on-one video playback coaching and debriefing session with a surgeon, during which constructive feedback was given. The control group went on with their normal clinical duties without coaching or debriefing. All participants were filmed making a second intestinal anastomosis. This was compared to their first anastomosis using a 7-category-validated technical skill global rating scale, the Objective Structured Assessment of Technical Skills. A single independent surgeon who did not participate in coaching or debriefing to the SVC group reviewed all videos. A satisfaction survey was then sent to the residents in the coaching group. Department of Surgery, HôpitalMaisonneuve-Rosemont, tertiary teaching hospital affiliated to the University of Montreal, Canada. General surgery residents from University of Montreal were recruited to take part in this trial. A total of 28 residents were randomized and completed the study. After intervention, the SVC group (n = 14) significantly increased their Objective Structured Assessment of Technical Skills score (mean of differences 3.36, [1.09-5.63], p = 0.007) when compared to the control group (n = 14) (mean of differences 0.29, p = 0.759). All residents agreed or strongly agreed that video coaching was a time-efficient teaching method. Video coaching is an effective and efficient teaching intervention to improve surgical residents' technical skills. Crown Copyright © 2017. Published by Elsevier

  16. Macrophages and dendritic cells emerge in the liver during intestinal inflammation and predispose the liver to inflammation.

    Directory of Open Access Journals (Sweden)

    Yohei Mikami

    Full Text Available The liver is a physiological site of immune tolerance, the breakdown of which induces immunity. Liver antigen-presenting cells may be involved in both immune tolerance and activation. Although inflammatory diseases of the liver are frequently associated with inflammatory bowel diseases, the underlying immunological mechanisms remain to be elucidated. Here we report two murine models of inflammatory bowel disease: RAG-2(-/- mice adoptively transferred with CD4(+CD45RB(high T cells; and IL-10(-/- mice, accompanied by the infiltration of mononuclear cells in the liver. Notably, CD11b(-CD11c(lowPDCA-1(+ plasmacytoid dendritic cells (DCs abundantly residing in the liver of normal wild-type mice disappeared in colitic CD4(+CD45RB(high T cell-transferred RAG-2(-/- mice and IL-10(-/- mice in parallel with the emergence of macrophages (Mφs and conventional DCs (cDCs. Furthermore, liver Mφ/cDCs emerging during intestinal inflammation not only promote the proliferation of naïve CD4(+ T cells, but also instruct them to differentiate into IFN-γ-producing Th1 cells in vitro. The emergence of pathological Mφ/cDCs in the liver also occurred in a model of acute dextran sulfate sodium (DSS-induced colitis under specific pathogen-free conditions, but was canceled in germ-free conditions. Last, the Mφ/cDCs that emerged in acute DSS colitis significantly exacerbated Fas-mediated hepatitis. Collectively, intestinal inflammation skews the composition of antigen-presenting cells in the liver through signaling from commensal bacteria and predisposes the liver to inflammation.

  17. Immunization of Mice with Lactobacillus casei Expressing a Beta-Intimin Fragment Reduces Intestinal Colonization by Citrobacter rodentium ▿ †

    OpenAIRE

    Ferreira, P. C. D.; da Silva, J. B.; Piazza, R. M. F.; Eckmann, L.; Ho, P. L.; Oliveira, M. L. S.

    2011-01-01

    Enteropathogenic Escherichia coli (EPEC) is a common cause of diarrhea in children from developing countries. Intimate adhesion of the bacteria to intestinal cells occurs via binding of the adhesin intimin to the TIR receptor exposed on cell surfaces. Here, Lactobacillus casei expressing a fragment of β-intimin (L. casei-Intcv) was tested as mucosal vaccines in mice against intestinal colonization with the murine pathogen Citrobacter rodentium. Oral or sublingual immunization of C57BL/6 mice ...

  18. Intestinal epithelial cell-specific RARα depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system.

    Science.gov (United States)

    Jijon, H B; Suarez-Lopez, L; Diaz, O E; Das, S; De Calisto, J; Yaffe, M B; Pittet, M J; Mora, J R; Belkaid, Y; Xavier, R J; Villablanca, E J

    2018-05-01

    Retinoic acid (RA), a dietary vitamin A metabolite, is crucial in maintaining intestinal homeostasis. RA acts on intestinal leukocytes to modulate their lineage commitment and function. Although the role of RA has been characterized in immune cells, whether intestinal epithelial cells (IECs) rely on RA signaling to exert their immune-regulatory function has not been examined. Here we demonstrate that lack of RA receptor α (RARα) signaling in IECs results in deregulated epithelial lineage specification, leading to increased numbers of goblet cells and Paneth cells. Mechanistically, lack of RARα resulted in increased KLF4 + goblet cell precursors in the distal bowel, whereas RA treatment inhibited klf4 expression and goblet cell differentiation in zebrafish. These changes in secretory cells are associated with increased Reg3g, reduced luminal bacterial detection, and an underdeveloped intestinal immune system, as evidenced by an almost complete absence of lymphoid follicles and gut resident mononuclear phagocytes. This underdeveloped intestinal immune system shows a decreased ability to clear infection with Citrobacter rodentium. Collectively, our findings indicate that epithelial cell-intrinsic RARα signaling is critical to the global development of the intestinal immune system.

  19. THE EFFECT OF CEFTRIAXONE ON THE ANAEROBIC BACTERIAL-FLORA AND THE BACTERIAL ENZYMATIC-ACTIVITY IN THE INTESTINAL-TRACT

    NARCIS (Netherlands)

    WELLING, GW; MEIJERSEVERS, GJ; HELMUS, G; VANSANTEN, E; TONK, RHJ; DEVRIESHOSPERS, HG; VANDERWAAIJ, D

    1991-01-01

    The normal flora of the intestinal tract, mainly consisting of anaerobic bacteria, protects the host against colonization by pathogenic microorganisms. Antimicrobial treatment with ceftriaxone may influence the colonic microflora and as a consequence, the protective effect. Ten healthy volunteers

  20. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation.

    Science.gov (United States)

    Kurashima, Yosuke; Goto, Yoshiyuki; Kiyono, Hiroshi

    2013-12-01

    Continuous exposure of intestinal mucosal surfaces to diverse microorganisms and their metabolites reflects the biological necessity for a multifaceted, integrated epithelial and immune cell-mediated regulatory system. The development and function of the host cells responsible for the barrier function of the intestinal surface (e.g., M cells, Paneth cells, goblet cells, and columnar epithelial cells) are strictly regulated through both positive and negative stimulation by the luminal microbiota. Stimulation by damage-associated molecular patterns and commensal bacteria-derived microbe-associated molecular patterns provokes the assembly of inflammasomes, which are involved in maintaining the integrity of the intestinal epithelium. Mucosal immune cells located beneath the epithelium play critical roles in regulating both the mucosal barrier and the relative composition of the luminal microbiota. Innate lymphoid cells and mast cells, in particular, orchestrate the mucosal regulatory system to create a mutually beneficial environment for both the host and the microbiota. Disruption of mucosal homeostasis causes intestinal inflammation such as that seen in inflammatory bowel disease. Here, we review the recent research on the biological interplay among the luminal microbiota, epithelial cells, and mucosal innate immune cells in both healthy and pathological conditions. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Anaerobic bacteria in the gut of terrestrial isopod Crustacean Porcellio scaber.

    Science.gov (United States)

    Kostanjsek, R; Lapanje, A; Rupnik, M; Strus, J; Drobne, D; Avgustin, G

    2004-01-01

    Anaerobic bacteria from Porcellio scaber hindgut were identified and, subsequently, isolated using molecular approach. Phylogenetic affiliation of bacteria associated with the hindgut wall was determined by analysis of bacterial 16S rRNA gene sequences which were retrieved directly from washed hindguts of P. scaber. Sequences from bacteria related to obligate anaerobic bacteria from genera Bacteroides and Enterococcus were retrieved, as well as sequences from 'A1 subcluster' of the wall-less mollicutes. Bacteria from the genus Desulfotomaculum were isolated from gut wall and cultivated under anaerobic conditions. In contrast to previous reports which suggested the absence of anaerobic bacteria in the isopod digestive system due to short retention time of the food in the tube-like hindgut, frequent renewal of the gut cuticle during the moulting process, and unsuccessful attempts to isolate anaerobic bacteria from this environment our results indicate the presence of resident anaerobic bacteria in the gut of P. scaber, in spite of apparently unsuitable, i.e. predominantly oxic, conditions.

  2. The antimicrobial action of chitosan, low molar mass chitosan, and chitooligosaccharides on human colonic bacteria

    Czech Academy of Sciences Publication Activity Database

    Šimůnek, Jiří; Brandysová, V.; Koppová, Ingrid; Šimůnek, Jiří Jr.

    2012-01-01

    Roč. 57, č. 4 (2012), 341-345 ISSN 0015-5632 R&D Projects: GA ČR(CZ) GA525/08/0803 Institutional support: RVO:67985904 Keywords : antibacterial activity * intestinal bacteria * in vitro Subject RIV: EE - Microbiology, Virology Impact factor: 0.791, year: 2012

  3. Effect of wild-type Shigella species and attenuated Shigella vaccine candidates on small intestinal barrier function, antigen trafficking, and cytokine release.

    Directory of Open Access Journals (Sweden)

    Maria Fiorentino

    Full Text Available Bacterial dysentery due to Shigella species is a major cause of morbidity and mortality worldwide. The pathogenesis of Shigella is based on the bacteria's ability to invade and replicate within the colonic epithelium, resulting in severe intestinal inflammatory response and epithelial destruction. Although the mechanisms of pathogenesis of Shigella in the colon have been extensively studied, little is known on the effect of wild-type Shigella on the small intestine and the role of the host response in the development of the disease. Moreover, to the best of our knowledge no studies have described the effects of apically administered Shigella flexneri 2a and S. dysenteriae 1 vaccine strains on human small intestinal enterocytes. The aim of this study was to assess the coordinated functional and immunological human epithelial responses evoked by strains of Shigella and candidate vaccines on small intestinal enterocytes. To model the interactions of Shigella with the intestinal mucosa, we apically exposed monolayers of human intestinal Caco2 cells to increasing bacterial inocula. We monitored changes in paracellular permeability, examined the organization of tight-junctions and the pro-inflammatory response of epithelial cells. Shigella infection of Caco2 monolayers caused severe mucosal damage, apparent as a drastic increase in paracellular permeability and disruption of tight junctions at the cell-cell boundary. Secretion of pro-inflammatory IL-8 was independent of epithelial barrier dysfunction. Shigella vaccine strains elicited a pro-inflammatory response without affecting the intestinal barrier integrity. Our data show that wild-type Shigella infection causes a severe alteration of the barrier function of a small intestinal cell monolayer (a proxy for mucosa and might contribute (along with enterotoxins to the induction of watery diarrhea. Diarrhea may be a mechanism by which the host attempts to eliminate harmful bacteria and transport them

  4. Multicopy Single-Stranded DNA Directs Intestinal Colonization of Enteric Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Elfenbein, Johanna R.; Knodler, Leigh A.; Nakayasu, Ernesto S.; Ansong, Charles; Brewer, Heather M.; Bogomolnaya, Lydia; Adams, L. Garry; McClelland, Michael; Adkins, Joshua N.; Andrews-Polymenis, Helene L.; Fang, Ferric C.

    2015-09-14

    Multicopy single-stranded DNAs (msDNAs) are hybrid RNA-DNA molecules encoded on retroelements called retrons and produced by the action of retron reverse transcriptases. Retrons are widespread in bacteria but the natural function of msDNA has remained elusive despite 30 years of study. The major roadblock to elucidation of the function of these unique molecules has been the lack of any identifiable phenotypes for mutants unable to make msDNA. We report that msDNA of the zoonotic pathogen Salmonella Typhimurium is necessary for colonization of the intestine. Similarly, we observed a defect in intestinal persistence in an enteropathogenic E. coli mutant lacking its retron reverse transcriptase. Under anaerobic conditions in the absence of msDNA, proteins of central anaerobic metabolism needed for Salmonella colonization of the intestine are dysregulated. We show that the msDNA-deficient mutant can utilize nitrate but not other alternate electron acceptors in anaerobic conditions. Consistent with the availability of nitrate in the inflamed gut, a neutrophilic inflammatory response partially rescued the ability of a mutant lacking msDNA to colonize the intestine. These findings together indicate that the mechanistic basis of msDNA function during Salmonella colonization of the intestine is proper production of proteins needed for anaerobic metabolism. We further conclude that a natural function of msDNA is to regulate protein abundance, the first attributable function for any msDNA. Our data provide novel insight into the function of this mysterious molecule that likely represents a new class of regulatory molecules.

  5. Intestinal Cancer

    Science.gov (United States)

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  6. Intestinal parasitic infections in HIV-infected patients, Lao People's Democratic Republic.

    Directory of Open Access Journals (Sweden)

    Phimpha Paboriboune

    Full Text Available BACKGROUND: HIV infection is an emerging problem in Laos. We conducted the first prospective study on intestinal parasites, including opportunistic protozoa, in newly diagnosed HIV infected patients, with or without diarrhea. The aims were to describe the spectrum of infections, to determine their prevalence and to assess their associations with diarrhea, CD4 cell count, place of residence and living conditions. METHODOLOGY: One to three stool samples over consecutive days were obtained from 137 patients. The Kato thick smear method, formalin-ethyl concentration and specific stains for coccidia and microsporidia diagnosis were performed on 260 stool samples. Baseline characteristics regarding relevant demographics, place of residence and living conditions, clinical features including diarrhea, were collected using a standardized questionnaire. PRINCIPAL FINDINGS: The 137 patients were young (median age: 36 years and severely immunocompromised (83.9% at WHO stage 3 or 4, median CD4 cell count: 41/mm3. Diarrhea was present in 43.0% of patients. Parasite infection was found in 78.8% of patients, infection with at least two species in 49.6%. Prevalence rates of protozoan and helminth infections were similar (54.7% and 58.4% respectively. Blastocystis sp. was the most frequent protozoa (26.3%. Cryptosporidium sp., Cytoisospora belli and microsporidia, found at low prevalence rates (6.6%, 4.4%, 2.9%, respectively, were described for the first time in Laos. Cryptosporidium sp. was associated with persistent diarrhea. Strongyloides stercoralis was the most prevalent helminth following Opisthorchis viverrini (20.4% and 47.5% respectively. The most immunocompromised patients, as assessed by a CD4 count ≤ 50 cells/mm3, were more likely to be infected with intestinal parasites. CONCLUSIONS/SIGNIFICANCE: HIV infection was mainly diagnosed at an advanced stage of immunosuppression in Lao patients. Intestinal parasite infections were highly prevalent

  7. Pulmonary exposure of mice to engineered pseudomonads influences intestinal microbiota populations

    Energy Technology Data Exchange (ETDEWEB)

    George, S.E.; Kohan, M.J.; Creason, J.P.; Claxton, L.D. (U.S. Environmental Protection Agency, Research Triangle Park, NC (United States). Health Effects Research Lab.)

    1993-09-01

    In this study, a mouse model was used to evaluate indirect effects of pulmonary exposure to representative biotechnology agents (Pseudomonas aeruginosa strain AC869 and Pseudomonas cepacia strain AC1100) selected for their ability to degrade hazardous chemicals. CD-1[reg sign] mice were challenged intranasally with approximately 10[sup 3] or 10[sup 7] colony-forming units (cfu) of strain AC869 or 10[sup 8] cfu of strain AC1100. At time intervals, clearance of the microorganisms and effects on resident microbiota were determined. When the low (10[sup 3] cfu) dose was administered, strain AC869 was not recovered from the small intestine but was detectable in the cecum and lungs 3 h after treatment and persisted in the nasal cavity intermittently for 14 d. Treatment of animals with 10[sup 7] cfu of strain AC869 resulted in detection 14 d following treatment. Strain AC869 challenge modified the small intestinal anaerobe count and cecal obligately anaerobic gram-negative rods (OAGNR) and lactobacilli. Following exposure, Pseudomonas cepacia strain AC1100 persisted in the lungs for 7 d and was recovered from the small intestine, cecum, and nasal cavity 2 d following treatment. Strain AC1100 treatment impacted the small intestinal anaerobe count, OAGNR counts, and reduced lactobacilli numbers. Strain AC1100 also altered the cecal OAGNR and lactobacilli. Therefore, pulmonary treatment of mice with Pseudomonas aeruginosa or cepacia affects the balance of the protective intestinal microbiota, which may cause further negative health effects.

  8. Effect of cocoa's theobromine on intestinal microbiota of rats.

    Science.gov (United States)

    Martín-Peláez, Sandra; Camps-Bossacoma, Mariona; Massot-Cladera, Malen; Rigo-Adrover, Mar; Franch, Àngels; Pérez-Cano, Francisco J; Castell, Margarida

    2017-10-01

    To establish the role of cocoa theobromine on gut microbiota composition and fermentation products after cocoa consumption in rats. Lewis rats were fed either a standard diet (RF diet), a diet containing 10% cocoa (CC diet) or a diet including 0.25% theobromine (TB diet) for 15 days. Gut microbiota (fluorescence in situ hybridization coupled to flow cytometry and metagenomics analysis), SCFA and IgA-coated bacteria were analyzed in fecal samples. CC and TB diets induced lower counts of E. coli whereas TB diet led to lower counts of Bifidobacterium spp., Streptococcus spp. and Clostridium histolyticum-C. perfingens group compared to RF diet. Metagenomics analysis also revealed a different microbiota pattern among the studied groups. The SCFA content was higher after both CC and TB diets, which was mainly due to enhanced butyric acid production. Furthermore, both diets decreased the proportion of IgA-coated bacteria. Cocoa's theobromine plays a relevant role in some effects related to cocoa intake, such as the lower proportion of IgA-coated bacteria. Moreover, theobromine modifies gut microbiota although other cocoa compounds could also act on intestinal bacteria, attenuating or enhancing the theobromine effects. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Clinical report of one case of intestinal form of acute radiation sickness

    International Nuclear Information System (INIS)

    Yu Changlin; Qiao Jianhui; Luo Weidong; Guo Mei; Wang Danhong; Sun Qiyun; Zhang Shi; Chen Jiankui; Li Xiaobing; Ai Huisheng

    2007-01-01

    Objective: To summarize the irradiation course, estimation of radiation dosage, clinical course, diagnosis and treatment of the patient A in a 60 Co radiation accident on October 21, 2004 in Jining, Shandong Province, China. Methods: According to the simulated test of the scene, chromosome aberration analysis, clinical course and tooth enamel ESR measurement, the total body dose of A was 20-25 Gy and diagnosed as intestinal form of acute radiation sickness. The patient was transferred to our hospital on day 3 post- irradiation, total environmental protection (TEP), antibiotics and emergency HLA-typing from his elder sister were given. On day 7 HLA haplo-identical peripheral blood stem cell transplantation was performed. Results: On day 10 post-transplant (+ 10 d), the counts of WBC began to increase and up to 5.1 x 10 9 /L on + 12 d. Bone marrow feature showed hematopoietic recovery of the three lineage blood cells. Continuous detection of the implantation ratio of donor's cells by STR-PCR showed stable 100% donor-derived chimera. On day 13, severe acute peritonitis and intestinal obstruction occurred; imipenem was much effective to control intestinal bacteria infection. Three days later, hematopoiesis reconstructed rapidly, peritonitis and intestinal obstruction were cured. On day 19, chest X-ray picture and CT scanning suggested that pulmonary mixed infection of bacteria and fungi appeared. The most severe skin irradiation burn damage occurred on day 25 which occupied the 14% of whole body skin surface. The functions of lung, heart and kidney were deteriorated sequentially. On day 30, tracheotomy had to be conducted and respirator was used. The patient died of multiple organ failure (MOF) on day 33. Conclusions: Patient A was exposed to relative well-distributed high dose and high dose rate of irradiation up to 20-25 Gy. This is the first case report of successful HLA haplo-identical peripheral blood stem cell transplantation for intestinal form of acute

  10. Development and application of a low volume, increased throughput in vitro model simulating the passage through small intestine

    DEFF Research Database (Denmark)

    Cieplak, Tomasz Maciej

    are unevenly distributed along the GIT, ranging from 101-103 cells/g in the stomach, through 103-108 cells/g in the small intestine and up to 1012 cells/g in the colon. In the last decade, numerous studies have been conducted focussing on the faecal microbiota composition and its impact on the host health...... conditions (fed, fasted) and the presence of small intestine microbiota influence intestine persistence of probiotic bacteria. In the same manuscript, we described for the first time the fully functional in vitro model prototype called “The Smallest Intestine (TSI)”. The model proved to be a cost...... and naked cells in the small intestine was investigated in both fed and fasted conditions in the TSI model. Results indicated a protective effect of xanthan/gellan gum for L. plantarum and decreased viability of coated A. muciniphila due to the desiccation effect of coating, which probably caused leakage...

  11. The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats.

    Directory of Open Access Journals (Sweden)

    Xiaoxi B Lin

    Full Text Available CPT-11 is a drug used as chemotherapy for colorectal cancer. CPT-11 causes toxic side-effects in patients. CPT-11 toxicity has been attributed to the activity of intestinal microbiota, however, intestinal microbiota may also have protective effects in CP!-11 chemotherapy. This study aimed to elucidate mechanisms through which microbiota and dietary fibres could modify host health. Rats bearing a Ward colon carcinoma were treated with a two-cycle CPT-11/5-fluorouracil therapy recapitulating clinical therapy of colorectal cancer. Animals were fed with a semi-purified diet or a semi-purified diet was supplemented with non-digestible carbohydrates (isomalto-oligosaccharides, resistant starch, fructo-oligosaccharides, or inulin in 3 independent experiments. Changes in intestinal microbiota, bacteria translocating to mesenteric lymphnodes, cecal GUD activity, and cecal SCFA production, and the intestinal concentration of CPT-11 and its metabolites were analysed. Non-digestible carbohydrates significantly influenced feed intake, body weight and other indicators of animal health. The identification of translocating bacteria and their quantification in cecal microbiota indicated that overgrowth of the intestine by opportunistic pathogens was not a major contributor to CPT-11 toxicity. Remarkably, fecal GUD activity positively correlated to body weight and feed intake but negatively correlated to cecal SN-38 concentrations and IL1-β. The reduction in CPT-11 toxicity by non-digestible carbohydrates did not correlate to stimulation of specific bacterial taxa. However, cecal butyrate concentrations and feed intake were highly correlated. The protective role of intestinal butyrate production was substantiated by a positive correlation of the host expression of MCT1 (monocarboxylate transporter 1 with body weight as well as a positive correlation of the abundance of bacterial butyryl-CoA gene with cecal butyrate concentrations. These correlations support the

  12. Live Faecalibacterium prausnitzii in an apical anaerobic model of the intestinal epithelial barrier.

    Science.gov (United States)

    Ulluwishewa, Dulantha; Anderson, Rachel C; Young, Wayne; McNabb, Warren C; van Baarlen, Peter; Moughan, Paul J; Wells, Jerry M; Roy, Nicole C

    2015-02-01

    Faecalibacterium prausnitzii, an abundant member of the human commensal microbiota, has been proposed to have a protective role in the intestine. However, it is an obligate anaerobe, difficult to co-culture in viable form with oxygen-requiring intestinal cells. To overcome this limitation, a unique apical anaerobic model of the intestinal barrier, which enabled co-culture of live obligate anaerobes with the human intestinal cell line Caco-2, was developed. Caco-2 cells remained viable and maintained an intact barrier for at least 12 h, consistent with gene expression data, which suggested Caco-2 cells had adapted to survive in an oxygen-reduced atmosphere. Live F. prausnitzii cells, but not ultraviolet (UV)-killed F. prausnitzii, increased the permeability of mannitol across the epithelial barrier. Gene expression analysis showed inflammatory mediators to be expressed at lower amounts in Caco-2 cells exposed to live F. prausnitzii than UV-killed F. prausnitzii, This, consistent with previous reports, implies that live F. prausnitzii produces an anti-inflammatory compound in the culture supernatant, demonstrating the value of a physiologically relevant co-culture system that allows obligate anaerobic bacteria to remain viable. © 2014 John Wiley & Sons Ltd.

  13. The Evaluation of Small Intestinal Volvulus Caused by PathogenicMicroorganisms in a Thoroughbred Mare

    Directory of Open Access Journals (Sweden)

    Javad Javanbakht

    2013-11-01

    prognosis and guide to decision making for horses with this condition. Conclusions: The present study results can be used to make a scientific assessment of prognosis in the pre-operative, operative, and postoperative management of horses with small intestinal volvulus. Bacterial infectivity results from a disturbance in the balance between bacterial virulence and host resistance. The “objective” of bacteria is to multiply rather than to cause disease; it is in the best interest of the bacteria to kill the host. Rectal samples were not entirely representative of intestinal compartments in the small or large intestine. This should be taken into account when designing studies using fecal sampling to assess other intestinal compartments, suggesting that parts of the intestinal microbiota were unique to each animal in this study.

  14. Intestinal tract diseases

    International Nuclear Information System (INIS)

    Rozenshtraukh, L.S.

    1985-01-01

    Roentgenoanatomy and physiology of the small intestine are described. Indications for radiological examinations and their possibilities in the diagnosis of the small intestine diseases are considered.Congenital anomalies and failures in the small intestine development, clinical indications and diagnosis methods for the detection of different aetiology enteritis are described. Characteristics of primary malabsorption due to congenital or acquired inferiority of the small intestine, is provided. Radiological picture of intestinal allergies is described. Clinical, morphological, radiological pictures of Crohn's disease are considered in detail. Special attention is paid to the frequency of primary and secondary tuberculosis of intestinal tract. The description of clinical indications and frequency of benign and malignant tumours of the small intestine, methods for their diagnosis are given. Radiological pictures of parasitogenic and rare diseases of the small intestine are presented. Changes in the small intestine as a result of its reaction to pathological processes, developing in other organs and systems of the organism, are described

  15. Commensal bacteria-dependent select expression of CXCL2 contributes to periodontal tissue homeostasis.

    Science.gov (United States)

    Zenobia, Camille; Luo, Xiao Long; Hashim, Ahmed; Abe, Toshiharu; Jin, Lijian; Chang, Yucheng; Jin, Zhi Chao; Sun, Jian Xun; Hajishengallis, George; Curtis, Mike A; Darveau, Richard P

    2013-08-01

    The oral and intestinal host tissues both carry a heavy microbial burden. Although commensal bacteria contribute to healthy intestinal tissue structure and function, their contribution to oral health is poorly understood. A crucial component of periodontal health is the recruitment of neutrophils to periodontal tissue. To elucidate this process, gingival tissues of specific-pathogen-free and germ-free wild-type mice and CXCR2KO and MyD88KO mice were examined for quantitative analysis of neutrophils and CXCR2 chemoattractants (CXCL1, CXCL2). We show that the recruitment of neutrophils to the gingival tissue does not require commensal bacterial colonization but is entirely dependent on CXCR2 expression. Strikingly, however, commensal bacteria selectively upregulate the expression of CXCL2, but not CXCL1, in a MyD88-dependent way that correlates with increased neutrophil recruitment as compared with germ-free conditions. This is the first evidence that the selective use of chemokine receptor ligands contributes to neutrophil homing to healthy periodontal tissue. © 2013 John Wiley & Sons Ltd.

  16. Microbiota promote secretory cell determination in the intestinal epithelium by modulating host Notch signaling.

    Science.gov (United States)

    Troll, Joshua V; Hamilton, M Kristina; Abel, Melissa L; Ganz, Julia; Bates, Jennifer M; Stephens, W Zac; Melancon, Ellie; van der Vaart, Michiel; Meijer, Annemarie H; Distel, Martin; Eisen, Judith S; Guillemin, Karen

    2018-02-23

    Resident microbes promote many aspects of host development, although the mechanisms by which microbiota influence host tissues remain unclear. We showed previously that the microbiota is required for allocation of appropriate numbers of secretory cells in the zebrafish intestinal epithelium. Because Notch signaling is crucial for secretory fate determination, we conducted epistasis experiments to establish whether the microbiota modulates host Notch signaling. We also investigated whether innate immune signaling transduces microbiota cues via the Myd88 adaptor protein. We provide the first evidence that microbiota-induced, Myd88-dependent signaling inhibits host Notch signaling in the intestinal epithelium, thereby promoting secretory cell fate determination. These results connect microbiota activity via innate immune signaling to the Notch pathway, which also plays crucial roles in intestinal homeostasis throughout life and when impaired can result in chronic inflammation and cancer. © 2018. Published by The Company of Biologists Ltd.

  17. [Intraoperative placement of transnasal small intestinal feeding tube during the surgery in 5 cases with high position intestinal obstruction and postoperative feeding].

    Science.gov (United States)

    Duan, Guang-qi; Zhang, Min; Guan, Xiao-hao; Yin, Zhi-qing

    2012-09-01

    gastrointestine did not show anastomomotic stricture or fistula, or intestinal obstruction. After pulling out the tube, the symptoms disappeared and then the patient was discharged. One child was found to have diarrhea with no lactose nutrition liquid and given compound lactic bacteria preparations for oral administration, the symptom disappeared. In the 5 cases, the shortest hospital stay was 10 days and the longest was 22 days, the average stay was 16 days. Three to 5 days after operation the weight restored to birth weight, the weight had increased, when discharged, to an average of 5.5 g (kg·d). The small intestinal feeding tube was very effective for the postoperative nutrition maintenance of high position intestinal obstruction in newborn infants.

  18. The Multibiome: The Intestinal Ecosystem's Influence on Immune Homeostasis, Health, and Disease

    OpenAIRE

    Filyk, Heather A; Osborne, Lisa C

    2016-01-01

    Mammalian evolution has occurred in the presence of mutualistic, commensal, and pathogenic micro- and macro-organisms for millennia. The presence of these organisms during mammalian evolution has allowed for intimate crosstalk between these colonizing species and the host immune system. In this review, we introduce the concept of the ‘multibiome’ to holistically refer to the biodiverse collection of bacteria, viruses, fungi and multicellular helminthic worms colonizing the mammalian intestine...

  19. Naso- and oropharyngeal bacterial carriage in nursing home residents: Impact of multimorbidity and functional impairment.

    Directory of Open Access Journals (Sweden)

    Anja Kwetkat

    Full Text Available From April 2013 to February 2014 we performed a multicentre prospective cross-sectional study in 541 German nursing home residents. We determined pharyngeal carriage of Streptococcus pneumoniae (primary objective and other bacteria (secondary objective in naso- and oropharyngeal swabs by culture-based standard procedures and explored the influence of multimorbidity and functional status on bacterial carriage.Socio-demographic data, vaccination status, multimorbidity, nutrition and functional status defined by Comprehensive Geriatric Assessment were evaluated. We estimated carriage rates with 95% confidence intervals (CI and explored potential risk factors by logistic regression analysis.Pneumococcal post-serotyping carriage rate was 0.8% (95%CI 0.2-1.9%; 4/526. Serotyping revealed serotypes 4, 7F, 23B and 23F and S. pseudopneumoniae in two other cases. Odds of carriage were higher in men (Odds ratio OR 5.3 (95%CI 0.9-29.4, in malnourished residents (OR 4.6 (0.8-25.7, residents living in shared rooms (OR 3.0 (0.5-16.5 or having contact with schoolchildren (OR 2.0 (0.2-17.6. The most frequent pathogen was Staphylococcus aureus (prevalence 29.5% (25.6-33.6% with meticillin-resistant Staphylococcus aureus prevalence of 1.1%. Gram-negative bacteria (GNB were found in 22.5% (19.0-26.3% with a prevalence of extended-spectrum beta lactamase (ESBL producing bacteria of 0.8%. Odds of S. aureus carriage were higher for immobility (OR 1.84 (1.15-2.93 and cognitive impairment (OR 1.54 (0.98-2.40. Odds of GNB carriage were higher in residents with more severe comorbidity (OR 1.13 (1.00-1.28 and malnutrition (OR 1.54 (0.81-2.91.Given the observed data, at least long-term carriage of S. pneumoniae in nursing home residents seems to be rare and rather unlikely to cause nursing home acquired pneumonia. The low rate of colonization with multi drug resistant (MDR bacteria confirms that nursing home residency is not a risk factor for MDR pneumonia in Germany. For

  20. Predictors and risk factors for the intestinal shedding of Escherichia coli O157 among working donkeys (Equus asinus) in Nigeria

    Science.gov (United States)

    Jedial, Jesse T.; Shittu, Aminu; Tambuwal, Faruk M.; Abubakar, Mikail B.; Garba, Muhammed K.; Kwaga, Jacob P.; Fasina, Folorunso O.

    2015-01-01

    Objectives Escherichia coli are an important group of bacteria in the normal gastrointestinal system but can sometimes cause infections in domestic animals and man. Donkeys are routinely used as multipurpose animal but details of burdens of potentially infectious bacteria associated with it are limited. The prevalence and associations between intestinal shedding of E. coli O157 and animal characteristics and management factors were studied among 240 randomly selected working donkeys in north-western Nigeria. Design Four local government areas, of Sokoto State in north-western Nigeria were recruited in this study. A multistage randomised cluster design was used to select subjects and donkey owners within selected zones. Confirmation of infection was based on bacterial culture, isolation and biochemical test for E. coli O157 from faecal samples. Results Of the total bacteria isolated, 203 of the 329 (61.70 per cent) were E. coli, 76 of which was E. coli serotype O157. A multivariable logistic regression model was used to examine the relation between intestinal shedding of E. coli O157 and selected variables. The analysis yielded five potential predictors of shedding: soft faeces in donkeys, Akaza and Fari ecotypes of donkey were positive predictors while maize straw as feed and sampling during the cold dry period were negative predictors. Conclusions This study concludes that controlling intestinal shedding of E. coli O157 among working donkeys in Nigeria is possible using the identified predictors in planning appropriate interventions to reduced human risk of infection. PMID:26392892

  1. Arthritis by autoreactive T cell lines obtained from rats after injection of intestinal bacterial cell wall fragments

    NARCIS (Netherlands)

    I. Klasen (Ina); J. Kool (Jeanette); M.J. Melief (Marie-José); I. Loeve (I.); W.B. van den Berg (Wim); A.J. Severijnen; M.P.H. Hazenberg (Maarten)

    1992-01-01

    markdownabstract__Abstract__ T cell lines (B13, B19) were isolated from the lymph nodes of Lewis rats 12 days after an arthritogenic injection of cell wall fragments of Eubacterium aerofaciens (ECW), a major resident of the human intestinal flora. These cell wall fragments consist of

  2. Assessment of the Effect of Intestinal Permeability Probes (Lactulose And Mannitol) and Other Liquids on Digesta Residence Times in Various Segments of the Gut Determined by Wireless Motility Capsule: A Randomised Controlled Trial.

    Science.gov (United States)

    Sequeira, Ivana R; Lentle, Roger G; Kruger, Marlena C; Hurst, Roger D

    2015-01-01

    Whilst the use of the mannitol/lactulose test for intestinal permeability has been long established it is not known whether the doses of these sugars modify transit time Similarly it is not known whether substances such as aspirin that are known to increase intestinal permeability to lactulose and mannitol and those such as ascorbic acid which are stated to be beneficial to gastrointestinal health also influence intestinal transit time. Gastric and intestinal transit times were determined with a SmartPill following consumption of either a lactulose mannitol solution, a solution containing 600 mg aspirin, a solution containing 500 mg of ascorbic acid or an extract of blackcurrant, and compared by doubly repeated measures ANOVA with those following consumption of the same volume of a control in a cross-over study in six healthy female volunteers. The dominant frequencies of cyclic variations in gastric pressure recorded by the Smartpill were determined by fast Fourier transforms. The gastric transit times of lactulose mannitol solutions, of aspirin solutions and of blackcurrant juice did not differ from those of the control. The gastric transit times of the ascorbic acid solutions were significantly shorter than those of the other solutions. There were no significant differences between the various solutions either in the total small intestinal or colonic transit times. The intraluminal pHs during the initial quartiles of the small intestinal transit times were lower than those in the succeeding quartiles. This pattern did not vary with the solution that was consumed. The power of the frequencies of cyclic variation in intragastric pressure recorded by the Smartpill declined exponentially with increase in frequency and did not peak at the reported physiological frequencies of gastric contractile activity. Whilst the segmental residence times were broadly similar to those using other methods, the high degree of variation between subjects generally precluded the

  3. Assessment of the Effect of Intestinal Permeability Probes (Lactulose And Mannitol and Other Liquids on Digesta Residence Times in Various Segments of the Gut Determined by Wireless Motility Capsule: A Randomised Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Ivana R Sequeira

    Full Text Available Whilst the use of the mannitol/lactulose test for intestinal permeability has been long established it is not known whether the doses of these sugars modify transit time Similarly it is not known whether substances such as aspirin that are known to increase intestinal permeability to lactulose and mannitol and those such as ascorbic acid which are stated to be beneficial to gastrointestinal health also influence intestinal transit time.Gastric and intestinal transit times were determined with a SmartPill following consumption of either a lactulose mannitol solution, a solution containing 600 mg aspirin, a solution containing 500 mg of ascorbic acid or an extract of blackcurrant, and compared by doubly repeated measures ANOVA with those following consumption of the same volume of a control in a cross-over study in six healthy female volunteers. The dominant frequencies of cyclic variations in gastric pressure recorded by the Smartpill were determined by fast Fourier transforms.The gastric transit times of lactulose mannitol solutions, of aspirin solutions and of blackcurrant juice did not differ from those of the control. The gastric transit times of the ascorbic acid solutions were significantly shorter than those of the other solutions. There were no significant differences between the various solutions either in the total small intestinal or colonic transit times. The intraluminal pHs during the initial quartiles of the small intestinal transit times were lower than those in the succeeding quartiles. This pattern did not vary with the solution that was consumed. The power of the frequencies of cyclic variation in intragastric pressure recorded by the Smartpill declined exponentially with increase in frequency and did not peak at the reported physiological frequencies of gastric contractile activity.Whilst the segmental residence times were broadly similar to those using other methods, the high degree of variation between subjects generally

  4. Prevalence of intestinal pathogens in Danish finishing pig herds

    DEFF Research Database (Denmark)

    Stege, H.; Jensen, Tim Kåre; Møller, Kristian

    2000-01-01

    Our aim was to determine the prevalence of the intestinal bacteria: Lawsonia intracellularis, Brachyspira hyodysenteriae, Serpulina intermedia, Brachyspira innocens, Brachyspira pilosicoli, pathogenic Escherichia coli (serogroups 0138, 0139, 0141 and 0149) and Salmonella enterica in Danish...... were collected and examined by polymerase chain reaction (PCR) or culture. L. intracellularis was found in 74 herds (93.7%), B. hyodysenteriae in two herds (2.5%), S. intermedia in 10 herds (12.7%), B. innocens in 27 herds (34.2%), B. pilosicoli in 15 herds (19.0%), pathogenic E. call in 19 herds (24...

  5. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis

    DEFF Research Database (Denmark)

    De Vadder, Filipe; Kovatcheva-Datchary, Petia; Zitoun, Carine

    2016-01-01

    Beneficial effects of dietary fiber on glucose and energy homeostasis have long been described, focusing mostly on the production of short-chain fatty acids by the gut commensal bacteria. However, bacterial fermentation of dietary fiber also produces large amounts of succinate and, to date......, no study has focused on the role of succinate on host metabolism. Here, we fed mice a fiber-rich diet and found that succinate was the most abundant carboxylic acid in the cecum. Dietary succinate was identified as a substrate for intestinal gluconeogenesis (IGN), a process that improves glucose...

  6. Detection of Sialic Acid-Utilising Bacteria in a Caecal Community Batch Culture Using RNA-Based Stable Isotope Probing

    Directory of Open Access Journals (Sweden)

    Wayne Young

    2015-03-01

    Full Text Available Sialic acids are monosaccharides typically found on cell surfaces and attached to soluble proteins, or as essential components of ganglioside structures that play a critical role in brain development and neural transmission. Human milk also contains sialic acid conjugated to oligosaccharides, glycolipids, and glycoproteins. These nutrients can reach the large bowel where they may be metabolised by the microbiota. However, little is known about the members of the microbiota involved in this function. To identify intestinal bacteria that utilise sialic acid within a complex intestinal community, we cultured the caecal microbiota from piglets in the presence of 13C-labelled sialic acid. Using RNA-based stable isotope probing, we identified bacteria that consumed 13C-sialic acid by fractionating total RNA in isopycnic buoyant density gradients followed by 16S rRNA gene analysis. Addition of sialic acid caused significant microbial community changes. A relative rise in Prevotella and Lactobacillus species was accompanied by a corresponding reduction in the genera Escherichia/Shigella, Ruminococcus and Eubacterium. Inspection of isotopically labelled RNA sequences suggests that the labelled sialic acid was consumed by a wide range of bacteria. However, species affiliated with the genus Prevotella were clearly identified as the most prolific users, as solely their RNA showed significantly higher relative shares among the most labelled RNA species. Given the relevance of sialic acid in nutrition, this study contributes to a better understanding of their microbial transformation in the intestinal tract with potential implications for human health.

  7. Two size-selective mechanisms specifically trap bacteria-sized food particles in Caenorhabditis elegans.

    Science.gov (United States)

    Fang-Yen, Christopher; Avery, Leon; Samuel, Aravinthan D T

    2009-11-24

    Caenorhabditis elegans is a filter feeder: it draws bacteria suspended in liquid into its pharynx, traps the bacteria, and ejects the liquid. How pharyngeal pumping simultaneously transports and filters food particles has been poorly understood. Here, we use high-speed video microscopy to define the detailed workings of pharyngeal mechanics. The buccal cavity and metastomal flaps regulate the flow of dense bacterial suspensions and exclude excessively large particles from entering the pharynx. A complex sequence of contractions and relaxations transports food particles in two successive trap stages before passage into the terminal bulb and intestine. Filtering occurs at each trap as bacteria are concentrated in the central lumen while fluids are expelled radially through three apical channels. Experiments with microspheres show that the C. elegans pharynx, in combination with the buccal cavity, is tuned to specifically catch and transport particles of a size range corresponding to most soil bacteria.

  8. Intraepithelial lymphocytes express junctional molecules in murine small intestine

    International Nuclear Information System (INIS)

    Inagaki-Ohara, Kyoko; Sawaguchi, Akira; Suganuma, Tatsuo; Matsuzaki, Goro; Nawa, Yukifumi

    2005-01-01

    Intestinal intraepithelial lymphocytes (IEL) that reside at basolateral site regulate the proliferation and differentiation of epithelial cells (EC) for providing a first line of host defense in intestine. However, it remains unknown how IEL interact and communicate with EC. Here, we show that IEL express junctional molecules like EC. We identified mRNA expression of the junctional molecules in IEL such as zonula occludens (ZO)-1, occludin and junctional adhesion molecule (JAM) (tight junction), β-catenin and E-cadherin (adherens junction), and connexin26 (gap junction). IEL constitutively expressed occludin and E-cadherin at protein level, while other T cells in the thymus, spleen, liver, mesenteric lymph node, and Peyer's patches did not. γδ IEL showed higher level of these expressions than αβ IEL. The expression of occludin was augmented by anti-CD3 Ab stimulation. These results suggest the possibility of a novel role of IEL concerning epithelial barrier and communication between IEL and EC

  9. Impact of synbiotic diets including inulin, Bacillus coagulans and Lactobacillus plantarum on intestinal microbiota of rat exposed to cadmium and mercury

    Directory of Open Access Journals (Sweden)

    Dornoush Jafarpour

    2015-09-01

    Full Text Available The aim of this study was to investigate the efficacy of two probiotics and a prebiotic (inulin on intestinal microbiota of rats exposed to cadmium and mercury. Fifty-four male Wistar rats were randomly divided into nine groups. All groups except control group were fed standard rat chow with 5% inulin and treated as follows: i control (standard diet, ii Lactobacillus plantarum- treated group (1×109 CFU/day, iii Bacillus coagulans-treated group (1×109 spores/day, iv cadmium-treated group (200 μg/rat/day, v L. plantarum and cadmium-treated group, vi B. coagulans and cadmium-treated group, vii mercury-treated group (10 μg/rat/day, viii L. plantarum and mercurytreated group, ix B. coagulans and mercurytreated group. Cadmium, mercury and probiotics were daily gavaged to individual rats for 42 days. Treatment effects on intestinal microbiota composition of rats were determined. Data showed that cadmium and mercury accumulation in rat intestine affected the gastrointestinal tract and had a reduction effect on all microbial counts (total aerobic bacteria, total anaerobic bacteria, total Lactic acid bacteria, L. plantarum and B. coagulans counts compared to the control group. It was also observed that application of synbiotics in synbiotic and heavy metals-treated groups had a significant effect and increased the number of fecal bacteria compared to the heavy metals groups. Based on our study, it can be concluded that L. plantarum and B. coagulans along with prebiotic inulin play a role in protection against cadmium and mercury inhibitory effect and have the potential to be a beneficial supplement in rats’ diets.

  10. Influence of Chicken Manure Fertilization on Antibiotic-Resistant Bacteria in Soil and the Endophytic Bacteria of Pakchoi

    Directory of Open Access Journals (Sweden)

    Qingxiang Yang

    2016-06-01

    Full Text Available Animal manure is commonly used as fertilizer for agricultural crops worldwide, even though it is believed to contribute to the spread of antibiotic resistance from animal intestines to the soil environment. However, it is unclear whether and how there is any impact of manure fertilization on populations and community structure of antibiotic-resistant endophytic bacteria (AREB in plant tissues. To investigate the effect of manure and organic fertilizer on endophytic bacterial communities, pot experiments were performed with pakchoi grown with the following treatments: (1 non-treated; (2 chicken manure-treated and (3 organic fertilizer-treated. Manure or organic fertilizer significantly increased the abundances of total cultivable endophytic bacteria (TCEB and AREB in pakchoi, and the effect of chicken manure was greater than that of organic fertilizer. Further, 16S rDNA sequencing and the phylogenetic analysis indicated that chicken manure or organic fertilizer application increased the populations of multiple antibiotic-resistant bacteria (MARB in soil and multiple antibiotic-resistant endophytic bacteria (MAREB in pakchoi. The identical multiple antibiotic-resistant bacterial populations detected in chicken manure, manure- or organic fertilizer-amended soil and the vegetable endophytic system were Brevundimonas diminuta, Brachybacterium sp. and Bordetella sp., suggesting that MARB from manure could enter and colonize the vegetable tissues through manure fertilization. The fact that some human pathogens with multiple antibiotic resistance were detected in harvested vegetables after growing in manure-amended soil demonstrated a potential threat to human health.

  11. Comparative studies on intestine ultrastructure of third-stage larvae and adults of Cystidicoloides ephemeridarum (Nematoda, Cystidicolidae).

    Science.gov (United States)

    Frantová, Denisa; Moravec, Frantisek

    2004-11-01

    The intestinal epithelium of third-stage larvae and adults of Cystidicoloides ephemeridarum from haemocoel of mayflies and stomach of brown trout was studied by electron microscopy and cytochemistry. In section, the intestine of both stages is composed of a single layer of about ten undifferentiated intestinal cells in a ring. A labyrinth of deep invaginations is present in the basal region of each cell. The apical surface is modified into well developed, regularly arranged microvilli. These, together with numerous organelles engaged in metabolism and a well defined gut lumen filled with unidentifiable material suggest that the intestine may function in digestion and absorption during both stages. The adults seem to feed upon the semifluid content of the stomach of brown trout. Fortuitous oral infection with undetermined bacteria in vitro led to degenerative changes in the intestinal tissue and probably caused death of the infected specimens. Up to 75% of the cell volume in the L(3) is occupied by glycogen deposits. In the adults, a minor portion of glycogen, together with lipid droplets, has been observed. The adults are considered to rely more on aerobic metabolism, whereas anaerobic metabolism (glycolysis) may prevail in L(3).

  12. Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins.

    Directory of Open Access Journals (Sweden)

    Verena Olivier

    2009-10-01

    Full Text Available Vibrio cholerae colonizes the small intestine of adult C57BL/6 mice. In this study, the physical and genetic parameters that facilitate this colonization were investigated. Successful colonization was found to depend upon anesthesia with ketamine-xylazine and neutralization of stomach acid with sodium bicarbonate, but not streptomycin treatment. A variety of common mouse strains were colonized by O1, O139, and non-O1/non-O139 strains. All combinations of mutants in the genes for hemolysin, the multifunctional, autoprocessing RTX toxin (MARTX, and hemagglutinin/protease were assessed, and it was found that hemolysin and MARTX are each sufficient for colonization after a low dose infection. Overall, this study suggests that, after intragastric inoculation, V. cholerae encounters barriers to infection including an acidic environment and an immediate immune response that is circumvented by sodium bicarbonate and the anti-inflammatory effects of ketamine-xylazine. After initial adherence in the small intestine, the bacteria are subjected to additional clearance mechanisms that are evaded by the independent toxic action of hemolysin or MARTX. Once colonization is established, it is suggested that, in humans, these now persisting bacteria initiate synthesis of the major virulence factors to cause cholera disease. This adult mouse model of intestinal V. cholerae infection, now well-characterized and fully optimized, should serve as a valuable tool for studies of pathogenesis and testing vaccine efficacy.

  13. Cocoa Flavonoid-Enriched Diet Modulates Systemic and Intestinal Immunoglobulin Synthesis in Adult Lewis Rats

    Directory of Open Access Journals (Sweden)

    Francisco J. Pérez-Cano

    2013-08-01

    Full Text Available Previous studies have reported that a diet containing 10% cocoa, a rich source of flavonoids, has immunomodulatory effects on rats and, among others effects, is able to attenuate the immunoglobulin (Ig synthesis in both systemic and intestinal compartments. The purpose of the present study was focused on investigating whether these effects were attributed exclusively to the flavonoid content or to other compounds present in cocoa. To this end, eight-week-old Lewis rats were fed, for two weeks, either a standard diet or three isoenergetic diets containing increasing proportions of cocoa flavonoids from different sources: one with 0.2% polyphenols from conventional defatted cocoa, and two others with 0.4% and 0.8% polyphenols, respectively, from non-fermented cocoa. Diet intake and body weight were monitored and fecal samples were obtained throughout the study to determine fecal pH, IgA, bacteria proportions, and IgA-coated bacteria. Moreover, IgG and IgM concentrations in serum samples collected during the study were quantified. At the end of the dietary intervention no clear changes of serum IgG or IgM concentrations were quantified, showing few effects of cocoa polyphenol diets at the systemic level. However, in the intestine, all cocoa polyphenol-enriched diets attenuated the age-related increase of both fecal IgA and IgA-coated bacteria, as well as the proportion of bacteria in feces. As these effects were not dependent on the dose of polyphenol present in the diets, other compounds and/or the precise polyphenol composition present in cocoa raw material used for the diets could be key factors in this effect.

  14. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy.

    Science.gov (United States)

    Hu, Qinglian; Wu, Min; Fang, Chun; Cheng, Changyong; Zhao, Mengmeng; Fang, Weihuan; Chu, Paul K; Ping, Yuan; Tang, Guping

    2015-04-08

    Live attenuated bacteria are of increasing importance in biotechnology and medicine in the emerging field of cancer immunotherapy. Oral DNA vaccination mediated by live attenuated bacteria often suffers from low infection efficiency due to various biological barriers during the infection process. To this end, we herein report, for the first time, a new strategy to engineer cationic nanoparticle-coated bacterial vectors that can efficiently deliver oral DNA vaccine for efficacious cancer immunotherapy. By coating live attenuated bacteria with synthetic nanoparticles self-assembled from cationic polymers and plasmid DNA, the protective nanoparticle coating layer is able to facilitate bacteria to effectively escape phagosomes, significantly enhance the acid tolerance of bacteria in stomach and intestines, and greatly promote dissemination of bacteria into blood circulation after oral administration. Most importantly, oral delivery of DNA vaccines encoding autologous vascular endothelial growth factor receptor 2 (VEGFR2) by this hybrid vector showed remarkable T cell activation and cytokine production. Successful inhibition of tumor growth was also achieved by efficient oral delivery of VEGFR2 with nanoparticle-coated bacterial vectors due to angiogenesis suppression in the tumor vasculature and tumor necrosis. This proof-of-concept work demonstrates that coating live bacterial cells with synthetic nanoparticles represents a promising strategy to engineer efficient and versatile DNA vaccines for the era of immunotherapy.

  15. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans

    Science.gov (United States)

    Guo, Zhuang; Zhang, Jiachao; Wang, Zhanli; Ang, Kay Ying; Huang, Shi; Hou, Qiangchuan; Su, Xiaoquan; Qiao, Jianmin; Zheng, Yi; Wang, Lifeng; Koh, Eileen; Danliang, Ho; Xu, Jian; Lee, Yuan Kun; Zhang, Heping

    2016-01-01

    Current blood-based approach for gout diagnosis can be of low sensitivity and hysteretic. Here via a 68-member cohort of 33 healthy and 35 diseased individuals, we reported that the intestinal microbiota of gout patients are highly distinct from healthy individuals in both organismal and functional structures. In gout, Bacteroides caccae and Bacteroides xylanisolvens are enriched yet Faecalibacterium prausnitzii and Bifidobacterium pseudocatenulatum depleted. The established reference microbial gene catalogue for gout revealed disorder in purine degradation and butyric acid biosynthesis in gout patients. In an additional 15-member validation-group, a diagnosis model via 17 gout-associated bacteria reached 88.9% accuracy, higher than the blood-uric-acid based approach. Intestinal microbiota of gout are more similar to those of type-2 diabetes than to liver cirrhosis, whereas depletion of Faecalibacterium prausnitzii and reduced butyrate biosynthesis are shared in each of the metabolic syndromes. Thus the Microbial Index of Gout was proposed as a novel, sensitive and non-invasive strategy for diagnosing gout via fecal microbiota. PMID:26852926

  16. EFFECTIVENESS OF THE SANDPITS SECURITY SYSTEM AGAINST MICROORGANISMS AND INTESTINAL PARASITES SAND CONTAMINATION

    Directory of Open Access Journals (Sweden)

    Magdalena Błaszak

    2015-09-01

    Full Text Available Playgrounds and sandpits (small architecture objects according to the Construction Law are subject to meticulous supervision, both at the design stage and subsequent status checks of the objects. One of the requirements arising from the need to protect playgrounds from animals is the necessity for fencing the object (Regulation of 31 December 2002 On Safety and Hygiene in Public and Private Schools and Institutions; Polish Standard PN-EN 1176 Playground equipment and surfacing. Does fencing playgrounds really reduce contamination of sand? To verify this hypothesis, the studies have been conducted on the residential areas’ sandpits, both fence secured and unsecured, located in close proximity to one another. The aim of the study was to evaluate the effectiveness of fences and nets as protection from microbial and parasite contamination of sandpits, mainly due to the access of animals to them. For several seasons of spring and summer the sand was examined in terms of the total number of heterotrophic bacteria and fungi (organic matter contamination of sand indicators and for the presence of coliform bacteria (including Escherichia coli, bacteria of the Salmonella genus and the eggs of intestinal parasites. It can be concluded that fencing playgrounds affects sand pollution less with waste and plant material (as a consequence, it has been reported statistically significantly less heterotrophic bacteria and fungi in the fenced sandpits’ sand. Unfortunately, the fence does not eliminate the risks associated with sand pollution of coliform bacteria. Cats and birds, but also dogs, still have a continuous access to sand. Due to the repeatedly stated carelessness of children and their caregivers, gates left open to the playground do not constitute an obstacle for domestic and stray animals. Another source of sand pollution with intestinal pathogens can be a manner of carriage of new sand, as there is no legislation governing the issue of transport

  17. Normal intestinal flora of wild Nile crocodiles (Crocodylus niloticus in the Okavango Delta, Botswana

    Directory of Open Access Journals (Sweden)

    C.J. Lovely

    2008-05-01

    Full Text Available Bacterial and fungal cultures were performed from cloacal swabs collected from 29 wild Nile crocodiles, captured in the Okavango Delta, Botswana. Sixteen species of bacteria and 6 fungal species were cultured. Individual crocodiles yielded 1-4 bacterial species, and 0-2 fungal species. The most commonly isolated bacteria were Microbacterium, Enterococcus faecalis, Aeromonas hydrophila, and Escherichia coli. No salmonellae were cultured. The most commonly occurring fungus was Cladosporium. Several of the bacterial and fungal species isolated have been implicated in cases of septicaemia in crocodilians. Knowledge of the normal intestinal flora will contribute towards the development of a crocodile-specific probiotic for use in farmed crocodiles.

  18. Intestinal Surgery.

    Science.gov (United States)

    Desrochers, André; Anderson, David E

    2016-11-01

    A wide variety of disorders affecting the intestinal tract in cattle may require surgery. Among those disorders the more common are: intestinal volvulus, jejunal hemorrhage syndrome and more recently the duodenal sigmoid flexure volvulus. Although general principles of intestinal surgery can be applied, cattle has anatomical and behavior particularities that must be known before invading the abdomen. This article focuses on surgical techniques used to optimize outcomes and discusses specific disorders of small intestine. Diagnoses and surgical techniques presented can be applied in field conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Anaerobic bacteria as producers of antibiotics.

    Science.gov (United States)

    Behnken, Swantje; Hertweck, Christian

    2012-10-01

    Anaerobic bacteria are the oldest terrestrial creatures. They occur ubiquitously in soil and in the intestine of higher organisms and play a major role in human health, ecology, and industry. However, until lately no antibiotic or any other secondary metabolite has been known from anaerobes. Mining the genome sequences of Clostridium spp. has revealed a high prevalence of putative biosynthesis genes (PKS and NRPS), and only recently the first antibiotic from the anaerobic world, closthioamide, has been isolated from the cellulose degrading bacterium Clostridium cellulolyticum. The successful genetic induction of antibiotic biosynthesis in an anaerobe encourages further investigations of obligate anaerobes to tap their hidden biosynthetic potential.

  20. Lipopolysaccharide Binding Protein Enables Intestinal Epithelial Restitution Despite Lipopolysaccharide Exposure

    Science.gov (United States)

    Richter, Juli M.; Schanbacher, Brandon L.; Huang, Hong; Xue, Jianjing; Bauer, John A.; Giannone, Peter J.

    2011-01-01

    Intestinal epithelial restitution is the first part in the process of mucosal repair after injury in the intestine. Integrity of the intestinal mucosal barrier is important as a first line of defense against bacteria and endotoxin. Necrotizing enterocolitis (NEC) is a major cause of morbidity and mortality in extremely low birth weight infants, but its mechanisms are not well defined. Abnormal bacterial colonization, immature barrier function, innate immunity activation and inflammation likely play a role. Lipopolysaccharide (LPS) binding protein (LBP) is secreted by enterocytes in response to inflammatory stimuli and has concentration-dependent effects. At basal concentrations, LBP stimulates the inflammatory response by presenting LPS to its receptor. However, at high concentrations, LBP is able to neutralize LPS and prevent an exaggerated inflammatory response. We sought to determine how LBP would affect wound healing in an in vitro model of intestinal cell restitution and protect against intestinal injury in a rodent model of NEC. Immature intestinal epithelial cells (IEC-6) were seeded in poly-l-lysine coated 8 chamber slides and grown to confluence. A 500μm wound was created using a cell scraper mounted on the microscope to achieve uniform wounding. Media was replaced with media containing LPS +/− LBP. Slide wells were imaged after 0, 8, and 24 hours and then fixed. Cellular restitution was evaluated via digital images captured on an inverted microscope and wound closure was determined by automated analysis. TLR4 was determined by rtPCR after RNA isolation from wounded cells 24 hours after treatment. LPS alone attenuated wound healing in immature intestinal epithelium. This attenuation is reversed by 24 hours with increasing concentrations of LBP so that wound healing is equivalent to control (p< 0.001). TLR4 was increased with LPS alone but levels returned to that of control after addition of LBP in the higher concentrations. LBP had no effect on the

  1. Isolation of Intestinal Parasites of Public Health Importance from Cockroaches (Blattella germanica) in Jimma Town, Southwestern Ethiopia.

    Science.gov (United States)

    Hamu, Haji; Debalke, Serkadis; Zemene, Endalew; Birlie, Belay; Mekonnen, Zeleke; Yewhalaw, Delenasaw

    2014-01-01

    Cockroaches are claimed to be mechanical transmitters of disease causing microorganisms such as intestinal parasites, bacteria, fungi, and viruses. This study assessed the potential of the German cockroach Blattella germanica in the mechanical transmission of intestinal parasites of public health importance. A total of 2010 cockroaches were collected from 404 households in Jimma Town, southwestern Ethiopia. All the collected cockroaches were identified to species as B. germanica. The contents of their gut and external body parts were examined for the presence of intestinal parasites. Overall, 152 (75.6%) of the 210 batches were found to harbor at least one species of human intestinal parasite. Ascaris lumbricoides, Trichuris trichiura, Taenia spp, Strongyloides-like parasite, Entamoeba histolytica/dispar/moshkovski, Giardia duodenalis and Balantidium coli were detected from gut contents. Moreover, parasites were also isolated from the external surface in 22 (10.95%) of the batches. There was significant difference in parasite carriage rate of the cockroaches among the study sites (P = 0.013). In conclusion, B. germanica was found to harbor intestinal parasites of public health importance. Hence, awareness on the potential role of cockroaches in the mechanical transmission of human intestinal parasites needs to be created. Moreover, further identification of the Strongyloides-like worm is required using molecular diagnostics.

  2. Isolation of Intestinal Parasites of Public Health Importance from Cockroaches (Blattella germanica in Jimma Town, Southwestern Ethiopia

    Directory of Open Access Journals (Sweden)

    Haji Hamu

    2014-01-01

    Full Text Available Cockroaches are claimed to be mechanical transmitters of disease causing microorganisms such as intestinal parasites, bacteria, fungi, and viruses. This study assessed the potential of the German cockroach Blattella germanica in the mechanical transmission of intestinal parasites of public health importance. A total of 2010 cockroaches were collected from 404 households in Jimma Town, southwestern Ethiopia. All the collected cockroaches were identified to species as B. germanica. The contents of their gut and external body parts were examined for the presence of intestinal parasites. Overall, 152 (75.6% of the 210 batches were found to harbor at least one species of human intestinal parasite. Ascaris lumbricoides, Trichuris trichiura, Taenia spp, Strongyloides-like parasite, Entamoeba histolytica/dispar/moshkovski, Giardia duodenalis and Balantidium coli were detected from gut contents. Moreover, parasites were also isolated from the external surface in 22 (10.95% of the batches. There was significant difference in parasite carriage rate of the cockroaches among the study sites (P=0.013. In conclusion, B. germanica was found to harbor intestinal parasites of public health importance. Hence, awareness on the potential role of cockroaches in the mechanical transmission of human intestinal parasites needs to be created. Moreover, further identification of the Strongyloides-like worm is required using molecular diagnostics.

  3. Effect of riboflavin-producing bacteria against chemically induced colitis in mice.

    Science.gov (United States)

    Levit, R; Savoy de Giori, G; de Moreno de LeBlanc, A; LeBlanc, J G

    2018-01-01

    To assess the anti-inflammatory effect associated with individual probiotic suspensions of riboflavin-producing lactic acid bacteria (LAB) in a colitis murine model. Mice intrarectally inoculated with trinitrobenzene sulfonic acid (TNBS) were orally administered with individual suspensions of riboflavin-producing strains: Lactobacillus (Lact.) plantarum CRL2130, Lact. paracasei CRL76, Lact. bulgaricus CRL871 and Streptococcus thermophilus CRL803; and a nonriboflavin-producing strain or commercial riboflavin. The extent of colonic damage and inflammation and microbial translocation to liver were evaluated. iNOs enzyme was analysed in the intestinal tissues and cytokine concentrations in the intestinal fluids. Animals given either one of the four riboflavin-producing strains showed lower macroscopic and histologic damage scores, lower microbial translocation to liver, significant decreases of iNOs+ cells in their large intestines and decreased proinflammatory cytokines, compared with mice without treatment. The administration of pure riboflavin showed similar benefits. Lact. paracasei CRL76 accompanied its anti-inflammatory effect with increased IL-10 levels demonstrating other beneficial properties in addition to the vitamin production. Administration of riboflavin-producing strains prevented the intestinal damage induced by TNBS in mice. Riboflavin-producing phenotype in LAB represents a potent tool to select them for preventing/treating IBD. © 2017 The Society for Applied Microbiology.

  4. Microbial Community Analysis of Restaurant Cutting Boards in Seri Kembangan,Malaysia and the Identification of Factors Associated with Foodborne Bacteria Growth

    OpenAIRE

    Noor, Azira Binti Abdul Mutalib

    2016-01-01

    Foodborne diseases have been associated with microorganisms like bacteria,fungi, viruses and parasites. Most commonly, the outbreaks take place due to theingestion of pathogenic bacteria like Salmonella typhi, Escherichia coli,Staphylococcus aureus, Vibrio cholerae, Campylobacter jejuni, and Listeriamonocytogens. The disease usually happens as a result of toxin secretion of themicroorganisms in the intestinal tract of the infected person. Usually, the level ofhygiene in the food premises refl...

  5. Preservation of intestinal integrity during radiotherapy using live Lactobacillus acidophilus cultures

    International Nuclear Information System (INIS)

    Salminen, E.; Elomaa, I.; Minkkenen, J.; Vapaatalo, H.; Salminen, S.

    1988-01-01

    Twenty-four female patients suffering from gynaecological malignancies and scheduled for internal and external irradiation of the pelvic area (pelvic dose 5000 cGy) were selected for a study on prevention of intestinal side-effects by live Lactobacillus acidophilus cultures. The patients were randomised into two groups. Both groups received dietary counselling recommending a low-fat and low-residue diet during radiotherapy. The control group received dietary counselling only. The test group received 150 ml of a fermented milk test product supplying them with at least 2 x 10 9 live Lactobacillus acidophilus bacteria daily and 6.5% lactulose as substrate for the bacteria. The results indicated that the test product appeared to prevent radiotherapy-associated diarrhoea. However, flatulence was increased probably due to lactulose ingestion in the test group. (author)

  6. Isolation and characterization of new strains of cholesterol-reducing bacteria from baboons.

    OpenAIRE

    Brinkley, A W; Gottesman, A R; Mott, G E

    1982-01-01

    We isolated and characterized nine new strains of cholesterol-reducing bacteria from feces and intestinal contents of baboons. Cholesterol-brain agar was used for the primary isolation, and subsequent biochemical tests were done in a lecithin-cholesterol broth containing plasmenylethanolamine and various substrates. All strains had similar colony and cell morphology, hydrolyzed the beta-glucosides esculin and amygdalin, metabolized pyruvate, and produced acetate and acetoin. Unlike previously...

  7. The Effect of Pomegranate (Punica granatum L.) Byproducts and Ellagitannins on the Growth of Human Gut Bacteria

    Science.gov (United States)

    The consumption of pomegranate products leads to a significant accumulation of ellagitannins in the large intestines, where they interact with complex gut microflora. This study investigated the effect of pomegranate tannin constituents on the growth of various species of human gut bacteria. Our r...

  8. Local Inflammatory Cues Regulate Differentiation and Persistence of CD8+ Tissue-Resident Memory T Cells

    Directory of Open Access Journals (Sweden)

    Tessa Bergsbaken

    2017-04-01

    Full Text Available Many pathogens initiate infection at mucosal surfaces, and tissue-resident memory T (Trm cells play an important role in protective immunity, yet the tissue-specific signals that regulate Trm differentiation are poorly defined. During Yersinia infection, CD8+ T cell recruitment to areas of inflammation within the intestine is required for differentiation of the CD103−CD69+ Trm subset. Intestinal proinflammatory microenvironments have elevated interferon (IFN-β and interleukin-12 (IL-12, which regulated Trm markers, including CD103. Type I interferon-receptor- or IL-12-receptor-deficient T cells functioned similarly to wild-type (WT cells during infection; however, the inability of T cells to respond to inflammation resulted in defective differentiation of CD103−CD69+ Trm cells and reduced Trm persistence. Intestinal macrophages were the main producers of IFN-β and IL-12 during infection, and deletion of CCR2+ IL-12-producing cells reduced the size of the CD103− Trm population. These data indicate that intestinal inflammation drives phenotypic diversity and abundance of Trm cells for optimal tissue-specific immunity.

  9. Impact of Intestinal Microbiota on Intestinal Luminal Metabolome

    Science.gov (United States)

    Matsumoto, Mitsuharu; Kibe, Ryoko; Ooga, Takushi; Aiba, Yuji; Kurihara, Shin; Sawaki, Emiko; Koga, Yasuhiro; Benno, Yoshimi

    2012-01-01

    Low–molecular-weight metabolites produced by intestinal microbiota play a direct role in health and disease. In this study, we analyzed the colonic luminal metabolome using capillary electrophoresis mass spectrometry with time-of-flight (CE-TOFMS) —a novel technique for analyzing and differentially displaying metabolic profiles— in order to clarify the metabolite profiles in the intestinal lumen. CE-TOFMS identified 179 metabolites from the colonic luminal metabolome and 48 metabolites were present in significantly higher concentrations and/or incidence in the germ-free (GF) mice than in the Ex-GF mice (p metabolome and a comprehensive understanding of intestinal luminal metabolome is critical for clarifying host-intestinal bacterial interactions. PMID:22724057

  10. Small Intestine Disorders

    Science.gov (United States)

    ... disease Crohn's disease Infections Intestinal cancer Intestinal obstruction Irritable bowel syndrome Ulcers, such as peptic ulcer Treatment of disorders of the small intestine depends on the cause.

  11. Bacteria Facilitate Enteric Virus Co-infection of Mammalian Cells and Promote Genetic Recombination.

    Science.gov (United States)

    Erickson, Andrea K; Jesudhasan, Palmy R; Mayer, Melinda J; Narbad, Arjan; Winter, Sebastian E; Pfeiffer, Julie K

    2018-01-10

    RNA viruses exist in genetically diverse populations due to high levels of mutations, many of which reduce viral fitness. Interestingly, intestinal bacteria can promote infection of several mammalian enteric RNA viruses, but the mechanisms and consequences are unclear. We screened a panel of 41 bacterial strains as a platform to determine how different bacteria impact infection of poliovirus, a model enteric virus. Most bacterial strains, including those extracted from cecal contents of mice, bound poliovirus, with each bacterium binding multiple virions. Certain bacterial strains increased viral co-infection of mammalian cells even at a low virus-to-host cell ratio. Bacteria-mediated viral co-infection correlated with bacterial adherence to cells. Importantly, bacterial strains that induced viral co-infection facilitated genetic recombination between two different viruses, thereby removing deleterious mutations and restoring viral fitness. Thus, bacteria-virus interactions may increase viral fitness through viral recombination at initial sites of infection, potentially limiting abortive infections. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Tetrodotoxin-Producing Bacteria: Detection, Distribution and Migration of the Toxin in Aquatic Systems

    Directory of Open Access Journals (Sweden)

    Timur Yu. Magarlamov

    2017-05-01

    Full Text Available This review is devoted to the marine bacterial producers of tetrodotoxin (TTX, a potent non-protein neuroparalytic toxin. In addition to the issues of the ecology and distribution of TTX-producing bacteria, this review examines issues relating to toxin migration from bacteria to TTX-bearing animals. It is shown that the mechanism of TTX extraction from toxin-producing bacteria to the environment occur through cell death, passive/active toxin excretion, or spore germination of spore-forming bacteria. Data on TTX microdistribution in toxic organs of TTX-bearing animals indicate toxin migration from the digestive system to target organs through the transport system of the organism. The role of symbiotic microflora in animal toxicity is also discussed: despite low toxin production by bacterial strains in laboratory conditions, even minimal amounts of TTX produced by intestinal microflora of an animal can contribute to its toxicity. Special attention is paid to methods of TTX detection applicable to bacteria. Due to the complexity of toxin detection in TTX-producing bacteria, it is necessary to use several methods based on different methodological approaches. Issues crucial for further progress in detecting natural sources of TTX investigation are also considered.

  13. Potential of lactic acid bacteria as suppressors of wine allergies

    Directory of Open Access Journals (Sweden)

    Yıldırım Hatice Kalkan

    2017-01-01

    Full Text Available Allergens causes some symptoms as all asthma, allergic conjunctivitis, and allergic rhinitis. These symptoms are seen twice as many in women than in men. The major wine allergens reported in wines are endochitinase 4A and lipid-transfer protein (LTP. This review deal with possibilities of using lactic acid bacteria as suppressors of wine allergies. Phenolic compounds present in wines have not only antioxidant properties causing radical scavenging but also some special properties reported in many in vitro studies as regulating functions in inflammatory cells as mast cells. So what is the role of lactic acid bacteria in these cases? Lactic acid bacteria are used during malolactic fermentation step of wine production with purpose of malic acid reduction. During this bioconversion complex phenolic compounds could be hydrolysed by bacterial enzymes to their aglycone forms. Obtained aglycons could pass through the intestinal epithelium of human and allowed reduction of IgE antibody production by affecting Th1/ Th2 ratio. Considering different contents and quantities of phenols in different grape varieties and consequently in different wines more studies are required in order to determine which lactic acid bacteria and strains could be effective in suppressing wine allergens.

  14. Precision-cut intestinal slices: alternative model for drug transport, metabolism, and toxicology research.

    Science.gov (United States)

    Li, Ming; de Graaf, Inge A M; Groothuis, Geny M M

    2016-01-01

    The absorption, distribution, metabolism, excretion and toxicity (ADME-tox) processes of drugs are of importance and require preclinical investigation intestine in addition to the liver. Various models have been developed for prediction of ADME-tox in the intestine. In this review, precision-cut intestinal slices (PCIS) are discussed and highlighted as model for ADME-tox studies. This review provides an overview of the applications and an update of the most recent research on PCIS as an ex vivo model to study the transport, metabolism and toxicology of drugs and other xenobiotics. The unique features of PCIS and the differences with other models as well as the translational aspects are also discussed. PCIS are a simple, fast, and reliable ex vivo model for drug ADME-tox research. Therefore, PCIS are expected to become an indispensable link in the in vitro-ex vivo-in vivo extrapolation, and a bridge in translation of animal data to the human situation. In the future, this model may be helpful to study the effects of interorgan interactions, intestinal bacteria, excipients and drug formulations on the ADME-tox properties of drugs. The optimization of culture medium and the development of a (cryo)preservation technique require more research.

  15. Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Qingchao Zhu

    Full Text Available Recent reports have suggested that multiple factors such as host genetics, environment and diet can promote the progression of healthy mucosa towards sporadic colorectal carcinoma. Accumulating evidence has additionally associated intestinal bacteria with disease initiation and progression. In order to examine and analyze the composition of gut microbiota in the absence of confounding influences, we have established an animal model of 1, 2-dimethylhydrazine (DMH-induced colon cancer. Using this model, we have performed pyrosequencing of the V3 region of the 16S rRNA genes in this study to determine the diversity and breadth of the intestinal microbial species. Our findings indicate that the microbial composition of the intestinal lumen differs significantly between control and tumor groups. The abundance of Firmicutes was elevated whereas the abundance of Bacteroidetes and Spirochetes was reduced in the lumen of CRC rats. Fusobacteria was not detected in any of the healthy rats and there was no significant difference in observed Proteobacteria species when comparing the bacterial communities between our two groups. Interestingly, the abundance of Proteobacteria was higher in CRC rats. At the genus level, Bacteroides exhibited a relatively higher abundance in CRC rats compared to controls (14.92% vs. 9.22%, p<0.001. Meanwhile, Prevotella (55.22% vs. 26.19%, Lactobacillus (3.71% vs. 2.32% and Treponema (3.04% vs. 2.43%, were found to be significantly more abundant in healthy rats than CRC rats (p<0.001, respectively. We also demonstrate a significant reduction of butyrate-producing bacteria such as Roseburia and Eubacterium in the gut microbiota of CRC rats. Furthermore, a significant increase in Desulfovibrio, Erysipelotrichaceae and Fusobacterium was also observed in the tumor group. A decrease in probiotic species such as Ruminococcus and Lactobacillus was likewise observed in the tumor group. Collectively, we can conclude that a significant

  16. Two symbiotic bacteria of the entomopathogenic nematode Heterorhabditis spp. against Galleria mellonella.

    Science.gov (United States)

    Liao, Chunli; Gao, Along; Li, Bingbing; Wang, Mengjun; Shan, Linna

    2017-03-01

    The entomopathogenic nematode Heterorhabditis spp. is considered a promising agent in the biocontrol of injurious insects of agriculture. However, different symbiotic bacteria associated with the nematode usually have different specificity and virulence toward their own host. In this study, two symbiotic bacteria, LY2W and NK, were isolated from the intestinal canals of two entomopathogenic nematode Heterorhabditis megidis 90 (PDSj1 and PDSj2) from Galleria mellonela, separately. To determine their species classification, we carried out some investigations on morphology, culture, biochemistry, especially 16S rDNA sequence analyses. As a result, both of them belong to Enterobacter spp., showing the closest relatedness with Enterobacter gergoviae (LY2W) and Enterobacter cloacae (NK), respectively. Moreover, the toxicity to Galleria mellonella was examined using both the metabolites and washed cells (primary and secondary) of these two strains. The results indicated both metabolites and cells of the primary-type bacteria could cause high mortalities (up to 97%) to Galleria mellonella, while those of the primary-type bacteria only killed 20%. These findings would provide new symbiotic bacteria and further references for biological control of the agricultural pest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Alistair eWalsham

    2016-03-01

    Full Text Available Enteropathogenic E. coli (EPEC is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC A/E lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains.

  18. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium.

    Science.gov (United States)

    Walsham, Alistair D S; MacKenzie, Donald A; Cook, Vivienne; Wemyss-Holden, Simon; Hews, Claire L; Juge, Nathalie; Schüller, Stephanie

    2016-01-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC attaching/effacing (A/E) lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains.

  19. Molecular players involved in the interaction between beneficial bacteria and the immune system

    Directory of Open Access Journals (Sweden)

    Arancha eHevia

    2015-11-01

    Full Text Available The human gastrointestinal tract is a very complex ecosystem, in which there is a continuous interaction between nutrients, host cells, and microorganisms. The gut microbiota comprises trillions of microbes that have been selected during evolution on the basis of their functionality and capacity to survive in, and adapt to, the intestinal environment. Host bacteria and our immune system constantly sense and react to one another. In this regard, commensal microbes contribute to gut homeostasis, whereas the necessary responses are triggered against enteropathogens. Some representatives of our gut microbiota have beneficial effects on human health. Some of the most important roles of these microbes are to help to maintain the integrity of the mucosal barrier, to provide nutrients such as vitamins, or to protect against pathogens. In addition, the interaction between commensal microbiota and the mucosal immune system is crucial for proper immune function. This process is mainly performed via the pattern recognition receptors of epithelial cells, such as Toll-like or Nod-like receptors, which are able to recognize the molecular effectors that are produced by intestinal microbes. These effectors mediate processes that can ameliorate certain inflammatory gut disorders, discriminate between beneficial and pathogenic bacteria, or increase the number of immune cells or their pattern recognition receptors. This review intends to summarize the molecular players produced by probiotic bacteria, notably Lactobacillus and Bifidobacterium strains, but also other very promising potential probiotics, which affect the human immune system.

  20. One stage functional end-to-end stapled intestinal anastomosis and resection performed by nonexpert surgeons for the treatment of small intestinal obstruction in 30 dogs.

    Science.gov (United States)

    Jardel, Nicolas; Hidalgo, Antoine; Leperlier, Dimitri; Manassero, Mathieu; Gomes, Aymeric; Bedu, Anne Sophie; Moissonnier, Pierre; Fayolle, Pascal; Begon, Dominique; Riquois, Elisabeth; Viateau, Véronique

    2011-02-01

    To describe stapled 1-stage functional end-to-end intestinal anastomosis for treatment of small intestinal obstruction in dogs and evaluate outcome when the technique is performed by nonexpert surgeons after limited training in the technique. Case series. Dogs (n=30) with intestinal lesions requiring an enterectomy. Stapled 1-stage functional end-to-end anastomosis and resection using a GIA-60 and a TA-55 stapling devices were performed under supervision of senior residents and faculty surgeons by junior surgeons previously trained in the technique on pigs. Procedure duration and technical problems were recorded. Short-term results were collected during hospitalization and at suture removal. Long-term outcome was established by clinical and ultrasonographic examinations at least 2 months after surgery and from written questionnaires, completed by owners. Mean±SD procedure duration was 15±12 minutes. Postoperative recovery was uneventful in 25 dogs. One dog had anastomotic leakage, 1 had a localized abscess at the transverse staple line, and 3 dogs developed an incisional abdominal wall abscess. No long-term complications occurred (follow-up, 2-32 months). Stapled 1-stage functional end-to-end anastomosis and resection is a fast and safe procedure in the hand of nonexpert but trained surgeons. © Copyright 2011 by The American College of Veterinary Surgeons.

  1. Effects of probiotic Lactobacillus rhamnosus GG and Propionibacterium freudenreichii ssp. shermanii JS supplementation on intestinal and systemic markers of inflammation in ApoE*3Leiden mice consuming a high-fat diet.

    Science.gov (United States)

    Oksaharju, Anna; Kooistra, Teake; Kleemann, Robert; van Duyvenvoorde, Wim; Miettinen, Minja; Lappalainen, Jani; Lindstedt, Ken A; Kovanen, Petri T; Korpela, Riitta; Kekkonen, Riina A

    2013-07-14

    A high-fat diet disturbs the composition and function of the gut microbiota and generates local gut-associated and also systemic responses. Intestinal mast cells, for their part, secrete mediators which play a role in the orchestration of physiological and immunological functions of the intestine. Probiotic bacteria, again, help to maintain the homeostasis of the gut microbiota by protecting the gut epithelium and regulating the local immune system. In the present study, we explored the effects of two probiotic bacteria, Lactobacillus rhamnosus GG (GG) and Propionibacterium freudenreichii spp. shermanii JS (PJS), on high fat-fed ApoE*3Leiden mice by estimating the mast cell numbers and the immunoreactivity of TNF-α and IL-10 in the intestine, as well as plasma levels of several markers of inflammation and parameters of lipid metabolism. We found that mice that received GG and PJS exhibited significantly lower numbers of intestinal mast cells compared with control mice. PJS lowered intestinal immunoreactivity of TNF-α, while GG increased intestinal IL-10. PJS was also observed to lower the plasma levels of markers of inflammation including vascular cell adhesion molecule 1, and also the amount of gonadal adipose tissue. GG lowered alanine aminotransferase, a marker of hepatocellular activation. Collectively, these data demonstrate that probiotic GG and PJS tend to down-regulate both intestinal and systemic pro-inflammatory changes induced by a high-fat diet in this humanised mouse model.

  2. The Contributions of Human Mini-Intestines to the Study of Intestinal Physiology and Pathophysiology.

    Science.gov (United States)

    Yu, Huimin; Hasan, Nesrin M; In, Julie G; Estes, Mary K; Kovbasnjuk, Olga; Zachos, Nicholas C; Donowitz, Mark

    2017-02-10

    The lack of accessibility to normal and diseased human intestine and the inability to separate the different functional compartments of the intestine even when tissue could be obtained have held back the understanding of human intestinal physiology. Clevers and his associates identified intestinal stem cells and established conditions to grow "mini-intestines" ex vivo in differentiated and undifferentiated conditions. This pioneering work has made a new model of the human intestine available and has begun making contributions to the understanding of human intestinal transport in normal physiologic conditions and the pathophysiology of intestinal diseases. However, this model is reductionist and lacks many of the complexities of normal intestine. Consequently, it is not yet possible to predict how great the advances using this model will be for understanding human physiology and pathophysiology, nor how the model will be modified to include multiple other intestinal cell types and physical forces necessary to more closely approximate normal intestine. This review describes recent studies using mini-intestines, which have readdressed previously established models of normal intestinal transport physiology and newly examined intestinal pathophysiology. The emphasis is on studies with human enteroids grown either as three-dimensional spheroids or two-dimensional monolayers. In addition, comments are provided on mouse studies in cases when human studies have not yet been described.

  3. protective and therapeutic effects of anaerobic bacteria sonicate on experimentally induced intestinal inflammation

    Czech Academy of Sciences Publication Activity Database

    Sokol, Dan; Rossmann, Pavel; Jelen, P.; Hudcovic, Tomáš; Horáková, Dana; Jelínková, Lenka; Tučková, Ludmila; Tlaskalová, Helena

    2003-01-01

    Roč. 87, č. 1 (2003), s. 87 ISSN 0165-2478. [European Immunology Congress /15./. Rhodes, 08.06.2003-12.06.2003] Institutional research plan: CEZ:AV0Z5020903 Keywords : anacrobic * bacteria * sonicate Subject RIV: EE - Microbiology, Virology Impact factor: 1.710, year: 2003

  4. Primary Intestinal Lymphangiectasia and its Association With Generalized Lymphatic Anomaly

    Directory of Open Access Journals (Sweden)

    Victoria María Díaz Marugán

    2016-01-01

    Full Text Available Background: Lymph is a fluid originating in the interstitial spaces of the body that contains cells, proteins, particles, chylomicrons, and sometimes bacteria. Objectives: The aim of the present study is to demonstrate that primary intestinal lymphangiectasia (PIL results from a disruption of lymphatic circulation, thus corresponding to a secondary rather than a primary event in the context of generalized lymphatic anomaly. Materials and Methods: In this case series and record review, an analysis of intestinal lymphatic involvement was performed on patients diagnosed with PIL between 1965 and 2013. Of the 21 patients included in the study, 10 had been diagnosed before 5 years of age (1 prenatal, 8 between 5 and 18 years of age, and 3 while older than 18 years of age. The follow-up period varied between 1 and 34 years. Clinical data, blood and fecal parameters, imaging studies, endoscopy results, biopsy analyses, treatment details, and outcome information were collected from medical records. Endoscopy, histological studies, magnetic resonance imaging, and lymphoscintigraphy were performed on all patients. Dynamic intranodal lymphangiography was performed on 8 patients. Results: Central lymphatic channel obstruction was identified in 12 patients (57%. Associated lymphatic malformation (LM was present in 16, diarrhea in 10, chylothorax in 11, chylous ascites in 10, pericardial effusion in 6, coagulopathy in 3, and osteolysis in 7. Conclusions: We consider intestinal lymphangiectasia not as an entity in itself, but as a consequence of lymphatic flow impairment in the thoracic duct, producing chylous reflux into the intestinal lymphatics.

  5. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine.

    Science.gov (United States)

    Louis, Petra; Flint, Harry J

    2009-05-01

    Butyrate-producing bacteria play a key role in colonic health in humans. This review provides an overview of the current knowledge of the diversity, metabolism and microbial ecology of this functionally important group of bacteria. Human colonic butyrate producers are Gram-positive firmicutes, but are phylogenetically diverse, with the two most abundant groups related to Eubacterium rectale/Roseburia spp. and to Faecalibacterium prausnitzii. Five different arrangements have been identified for the genes of the central pathway involved in butyrate synthesis, while in most cases butyryl-CoA : acetate CoA-transferase, rather than butyrate kinase, appears to perform the final step in butyrate synthesis. Mechanisms have been proposed recently in non-gut Clostridium spp. whereby butyrate synthesis can result in energy generation via both substrate-level phosphorylation and proton gradients. Here we suggest that these mechanisms also apply to the majority of butyrate producers from the human colon. The roles of these bacteria in the gut community and their influence on health are now being uncovered, taking advantage of the availability of cultured isolates and molecular methodologies. Populations of F. prausnitzii are reported to be decreased in Crohn's disease, for example, while populations of Roseburia relatives appear to be particularly sensitive to the diet composition in human volunteer studies.

  6. Postnatal development of intestinal immune system in piglets: implications for the process of weaning

    OpenAIRE

    Stokes , Christopher; Bailey , Michael; Haverson , Karin; Harris , Cecilla; Jones , Philip; Inman , Charlotte; Pié , Sandrine; Oswald , Isabelle; Williams , Barbara; Akkermans , Antoon; Sowa , Eveline; Rothkötter , Hermann-Josef; Miller , Bevis

    2004-01-01

    International audience; European-wide directives are in place to establish a sustainable production of pigs without using production enhancers and chemotherapeutics. Thus, an economically-viable pig production is now only possible when the physiological mechanisms of defense against pathogens and tolerance against nutrients and commensal bacteria in the intestinal immune system are taken into account. During the postnatal period the piglet is facing first the time large amounts of new antigen...

  7. Use of UV-irradiated bacteriophage T6 to kill extracellular bacteria in tissue culture infectivity assays

    International Nuclear Information System (INIS)

    Shaw, D.R.; Maurelli, A.T.; Goguen, J.D.; Straley, S.C.; Curtiss, R. III

    1983-01-01

    The authors have utilized 'lysis from without' mediated by UV-inactivated bacteriophage T6 to eliminate extracellular bacteria in experiments measuring the internalization, intracellular survival and replication of Yersinia pestis within mouse peritoneal macrophages and of Shigella flexneri within a human intestinal epithelial cell line. The technique described has the following characteristics: (a) bacterial killing is complete within 15 min at 37 0 C, with a >10 3 -fold reduction in colony-forming units (CFU); (b) bacteria within cultured mammalian cells are protected from killing by UV-inactivated T6; (c) the mammalian cells are not observably affected by exposure to UV-inactivated T6. This technique has several advantages over the use of antibiotics to eliminate extracellular bacteria and is potentially widely applicable in studies of the interactions between pathogenic bacteria and host phagocytic cells as well as other target tissues. (Auth.)

  8. The prevalence of overgrowth by aerobic bacteria in the small intestine by small bowel culture: relationship with irritable bowel syndrome.

    Science.gov (United States)

    Pyleris, Emmannouil; Giamarellos-Bourboulis, Evangelos J; Tzivras, Dimitrios; Koussoulas, Vassilios; Barbatzas, Charalambos; Pimentel, Mark

    2012-05-01

    Many studies have linked irritable bowel syndrome (IBS) with small intestinal bacterial overgrowth (SIBO), although they have done so on a qualitative basis using breath tests even though quantitative cultures are the hallmark of diagnosis. The purpose of this study was to underscore the frequency of SIBO in a large number of Greeks necessitating upper gastrointestinal (GI) tract endoscopy by using quantitative microbiological assessment of the duodenal aspirate. Consecutive subjects presenting for upper GI endoscopy were eligible to participate. Quantitative culture of aspirates sampled from the third part of the duodenum during upper GI tract endoscopy was conducted under aerobic conditions. IBS was defined by Rome II criteria. Among 320 subjects enrolled, SIBO was diagnosed in 62 (19.4%); 42 of 62 had IBS (67.7%). SIBO was found in 37.5% of IBS sufferers. SIBO was found in 60% of IBS patients with predominant diarrhea compared with 27.3% without diarrhea (P = 0.004). Escherichia coli, Enterococcus spp and Klebsiella pneumoniae were the most common isolates within patients with SIBO. A step-wise logistic regression analysis revealed that IBS, history of type 2 diabetes mellitus and intake of proton pump inhibitors were independently and positively linked with SIBO; gastritis was protective against SIBO. Using culture of the small bowel, SIBO by aerobe bacteria is independently linked with IBS. These results reinforce results of clinical trials evidencing a therapeutic role of non-absorbable antibiotics for the management of IBS symptoms.

  9. Comparison between Two Decades of Prevalence of Intestinal Parasitic Diseases and Risk Factors in a Brazilian Urban Centre

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Alves de Oliveira Serra

    2015-01-01

    Full Text Available Objectives. This study’s objective was to compare the prevalence of intestinal parasites and associated risk factors in children in urban communities, in the Brazilian Northeast, between two decades. Methods. This quantitative transversal study consisted of a comparative analysis of two different samples: the first viewing the years 1992–1996 and the other through a coproepidemiological data survey undertaken in 2010-2011. Results. It was evidenced that there was a reduction of intestinal parasites and that there were improvements in the socioenvironmental conditions between the two decades evaluated. It was observed that, in the period 1992–1996, playing out in the streets was associated with a higher risk for acquiring intestinal parasites. Over the 2010-2011 period, the characteristics of more than five residents per household, houses with dirt floors, children who live in homes without piped water, and children who play out in the streets were associated with a higher risk of intestinal parasitic infection. Conclusion. The study showed a reduction of intestinal parasitic diseases to 23.8% in 2010-2011 from 81.3% in 1992–1996 and improvement of the social-sanitary conditions of the population between the decades analyzed.

  10. D-Alanine-Controlled Transient Intestinal Mono-Colonization with Non-Laboratory-Adapted Commensal E. coli Strain HS.

    Science.gov (United States)

    Cuenca, Miguelangel; Pfister, Simona P; Buschor, Stefanie; Bayramova, Firuza; Hernandez, Sara B; Cava, Felipe; Kuru, Erkin; Van Nieuwenhze, Michael S; Brun, Yves V; Coelho, Fernanda M; Hapfelmeier, Siegfried

    2016-01-01

    Soon after birth the mammalian gut microbiota forms a permanent and collectively highly resilient consortium. There is currently no robust method for re-deriving an already microbially colonized individual again-germ-free. We previously developed the in vivo growth-incompetent E. coli K-12 strain HA107 that is auxotrophic for the peptidoglycan components D-alanine (D-Ala) and meso-diaminopimelic acid (Dap) and can be used to transiently associate germ-free animals with live bacteria, without permanent loss of germ-free status. Here we describe the translation of this experimental model from the laboratory-adapted E. coli K-12 prototype to the better gut-adapted commensal strain E. coli HS. In this genetic background it was necessary to complete the D-Ala auxotrophy phenotype by additional knockout of the hypothetical third alanine racemase metC. Cells of the resulting fully auxotrophic strain assembled a peptidoglycan cell wall of normal composition, as long as provided with D-Ala and Dap in the medium, but could not proliferate a single time after D-Ala/Dap removal. Yet, unsupplemented bacteria remained active and were able to complete their cell cycle with fully sustained motility until immediately before autolytic death. Also in vivo, the transiently colonizing bacteria retained their ability to stimulate a live-bacteria-specific intestinal Immunoglobulin (Ig)A response. Full D-Ala auxotrophy enabled rapid recovery to again-germ-free status. E. coli HS has emerged from human studies and genomic analyses as a paradigm of benign intestinal commensal E. coli strains. Its reversibly colonizing derivative may provide a versatile research tool for mucosal bacterial conditioning or compound delivery without permanent colonization.

  11. Demonstration of Brachyspira aalborgi lineages 2 and 3 in human colonic biopsies with intestinal spirochaetosis by specific fluorescent in situ hybridization

    DEFF Research Database (Denmark)

    Jensen, Tim Kåre; Teglbjærg, Peter S.; Lindboe, Christian F.

    2004-01-01

    of these organisms in human intestinal spirochaetosis. Seventeen human colonic biopsies from Norway and Denmark with intestinal spirochaetosis caused by Brachyspira-like organisms different from the type strain of B. aalborgi (lineage 1) were examined. Application of the probe gave a positive signal in two Norwegian...... biopsies, whereas the 15 other biopsies were hybridization-negative. The positive reaction visualized the spirochaetes as a fluorescent, 3-5 mum-high fringe on the surface epithelium, extending into the crypts. The study verified the presence of B. aalborgi lineages 2 and 3 and identified the bacteria...

  12. Microbiota intestinal en la salud y la enfermedad

    Directory of Open Access Journals (Sweden)

    M.E. Icaza-Chávez

    2013-10-01

    Full Text Available La microbiota intestinal es la comunidad de microorganismos vivos residentes en el tubo digestivo. Muchos grupos de investigadores a nivel mundial trabajan descifrando el genoma de la microbiota. Las técnicas modernas de estudio de la microbiota nos han acercado al conocimiento de un número importante de bacterias que no son cultivables, y de la relación entre los microorganismos que nos habitan y nuestra homeostasis. La microbiota es indispensable para el correcto crecimiento corporal, el desarrollo de la inmunidad y la nutrición. Las alteraciones en la microbiota podrían explicar, por lo menos en parte, algunas epidemias de la humanidad como el asma y la obesidad. La disbiosis se ha asociado a una serie de trastornos gastrointestinales que incluyen el hígado graso no alcohólico, la enfermedad celíaca y el síndrome de intestino irritable. En el presente trabajo trataremos sobre la nomenclatura, las técnicas de estudio modernas, las funciones de la microbiota intestinal y la relación que tiene con la salud y la enfermedad.

  13. The acetate switch of an intestinal pathogen disrupts host insulin signaling and lipid metabolism.

    Science.gov (United States)

    Hang, Saiyu; Purdy, Alexandra E; Robins, William P; Wang, Zhipeng; Mandal, Manabendra; Chang, Sarah; Mekalanos, John J; Watnick, Paula I

    2014-11-12

    Vibrio cholerae is lethal to the model host Drosophila melanogaster through mechanisms not solely attributable to cholera toxin. To examine additional virulence determinants, we performed a genetic screen in V. cholerae-infected Drosophila and identified the two-component system CrbRS. CrbRS controls transcriptional activation of acetyl-CoA synthase-1 (ACS-1) and thus regulates the acetate switch, in which bacteria transition from excretion to assimilation of environmental acetate. The resultant loss of intestinal acetate leads to deactivation of host insulin signaling and lipid accumulation in enterocytes, resulting in host lethality. These metabolic effects are not observed upon infection with ΔcrbS or Δacs1 V. cholerae mutants. Additionally, uninfected flies lacking intestinal commensals, which supply short chain fatty acids (SCFAs) such as acetate, also exhibit altered insulin signaling and intestinal steatosis, which is reversed upon acetate supplementation. Thus, acetate consumption by V. cholerae alters host metabolism, and dietary acetate supplementation may ameliorate some sequelae of cholera. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism

    Science.gov (United States)

    Yan, Fang; Cao, Hanwei; Cover, Timothy L.; Washington, M. Kay; Shi, Yan; Liu, LinShu; Chaturvedi, Rupesh; Peek, Richard M.; Wilson, Keith T.; Polk, D. Brent

    2011-01-01

    Probiotic bacteria can potentially have beneficial effects on the clinical course of several intestinal disorders, but our understanding of probiotic action is limited. We have identified a probiotic bacteria–derived soluble protein, p40, from Lactobacillus rhamnosus GG (LGG), which prevents cytokine-induced apoptosis in intestinal epithelial cells. In the current study, we analyzed the mechanisms by which p40 regulates cellular responses in intestinal epithelial cells and p40’s effects on experimental colitis using mouse models. We show that the recombinant p40 protein activated EGFR, leading to Akt activation. Activation of EGFR by p40 was required for inhibition of cytokine-induced apoptosis in intestinal epithelial cells in vitro and ex vivo. Furthermore, we developed a pectin/zein hydrogel bead system to specifically deliver p40 to the mouse colon, which activated EGFR in colon epithelial cells. Administration of p40-containing beads reduced intestinal epithelial apoptosis and disruption of barrier function in the colon epithelium in an EGFR-dependent manner, thereby preventing and treating DSS-induced intestinal injury and acute colitis. Furthermore, p40 activation of EGFR was required for ameliorating colon epithelial cell apoptosis and chronic inflammation in oxazolone-induced colitis. These data define what we believe to be a previously unrecognized mechanism of probiotic-derived soluble proteins in protecting the intestine from injury and inflammation. PMID:21606592

  15. Intestinal Parasitological infection of employee in food manufacture anddistribution centers of Ilam University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    R Nasrifar

    2005-10-01

    Full Text Available Backgrand and Aims: Food centers' employee may be carrier of bacteria (eg. Salmonella, E coil,taphylococcus aureus and intestinal parasitical infection. With regard the importance of the roleof manufacturer and distribnter of food materials in enviromental health, the status and assessmentof these infections is necessary.Method:182 employee of food manufacture and distribntion centers' of Ilam University ofMedical Sciences were examined. 3 feaces sample were obtained from each porson in 3 days andby five different laboratory method (i.e. scoth-tape, direct thechuics, Ether formaline, Telmen'Flotation were examined. Date analysis was dane by SPSS Version, and chi square test.Results: 49.2 percent of employee had positive parasitical infection, which 45.1 percent hadprotoza and 9.7 percent had intestinal helminth. The most infections of protoza were due toEntamoeba coli, Endolimax nane, giardia Lamblia, blastocystis hominis, Chilomastix mesniliand Iodamoeba buetschlii. The most infection of intestinal heliminth were Oxyuris VermicularisHymenolepis nana, Ascaris Lumbericoides, Tricocephal, Tricosterongylus.Conclusion: The high occurance of intestinal protoza may be due to Low level of public healthand, not favouring of hygine basis in food manufacture and distribution rlaces.

  16. Diversity of halophilic archaea in fermented foods and human intestines and their application.

    Science.gov (United States)

    Lee, Han-Seung

    2013-12-01

    Archaea are prokaryotic organisms distinct from bacteria in the structural and molecular biological sense, and these microorganisms are known to thrive mostly at extreme environments. In particular, most studies on halophilic archaea have been focused on environmental and ecological researches. However, new species of halophilic archaea are being isolated and identified from high salt-fermented foods consumed by humans, and it has been found that various types of halophilic archaea exist in food products by culture-independent molecular biological methods. In addition, even if the numbers are not quite high, DNAs of various halophilic archaea are being detected in human intestines and much interest is given to their possible roles. This review aims to summarize the types and characteristics of halophilic archaea reported to be present in foods and human intestines and to discuss their application as well.

  17. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances.

    Science.gov (United States)

    Williams, Brent L; Hornig, Mady; Buie, Timothy; Bauman, Margaret L; Cho Paik, Myunghee; Wick, Ivan; Bennett, Ashlee; Jabado, Omar; Hirschberg, David L; Lipkin, W Ian

    2011-01-01

    Gastrointestinal disturbances are commonly reported in children with autism, complicate clinical management, and may contribute to behavioral impairment. Reports of deficiencies in disaccharidase enzymatic activity and of beneficial responses to probiotic and dietary therapies led us to survey gene expression and the mucoepithelial microbiota in intestinal biopsies from children with autism and gastrointestinal disease and children with gastrointestinal disease alone. Ileal transcripts encoding disaccharidases and hexose transporters were deficient in children with autism, indicating impairment of the primary pathway for carbohydrate digestion and transport in enterocytes. Deficient expression of these enzymes and transporters was associated with expression of the intestinal transcription factor, CDX2. Metagenomic analysis of intestinal bacteria revealed compositional dysbiosis manifest as decreases in Bacteroidetes, increases in the ratio of Firmicutes to Bacteroidetes, and increases in Betaproteobacteria. Expression levels of disaccharidases and transporters were associated with the abundance of affected bacterial phylotypes. These results indicate a relationship between human intestinal gene expression and bacterial community structure and may provide insights into the pathophysiology of gastrointestinal disturbances in children with autism.

  18. Intestinal Lymphangiectasia

    Science.gov (United States)

    ... Overview of Crohn Disease Additional Content Medical News Intestinal Lymphangiectasia (Idiopathic Hypoproteinemia) By Atenodoro R. Ruiz, Jr., MD, ... Overview of Malabsorption Bacterial Overgrowth Syndrome Celiac Disease Intestinal ... Intolerance Short Bowel Syndrome Tropical Sprue Whipple ...

  19. Protective effects of Astragalus-Lilygranules on intestinal mucosal barrier of mice in high altitude hypoxia

    Directory of Open Access Journals (Sweden)

    Ling LI

    2016-10-01

    Full Text Available Objective  To investigate the protective effect of Astragalus-Lily Granules on intestinal mucosa and intestinal flora homeostasis in mice under high altitude hypoxia condition. Methods  We put mice into high altitude hypoxia cabin to establish high altitude hypoxia model mice. Sixty Kunming mice were randomly divided into control group, model group, Astragalus-Lily particles (ALP low, medium and high dose groups [1.75, 3.5, 7g/(kg•d] respectively. After three days of routine feeding, the ALP mice received drug by intragastric administration, once a day for continuous 17 days,control group and model group were given double distilled water in same volume. From the 15th day, all the mice but control group were exposed to simulated high altitude hypoxia condition for 3 days in a high altitude hypoxia cabin after they were gavaged for half an hour daily. By the 18th day, the fresh mouse feces were collected and smeared to observe the changes of microflora. The pathological changes of intestinal tissues were observed by HE staining and the expression of HIF-1αprotein in intestines was detected by immunohistochemistry. Results  The enterococci and gram negative bacteria showed a higher proportion (65.2%±2.4% and 56.7%±3.3%, respectively in the model group compared with the control group (24.7%±1.2%, 23.2%±1.5%, respectively, P<0.05. The pathological score of intestinal mucosal necrosis and edema (3.10±0.99, 3.30±0.67 respectively and inflammatory cell count (15.93±3.30, 16.40±3.97/ HP respectively was higher compared with the model group (0.70±0.67, 0.80±0.78; 4.07±2.12, 4.28±2.16/HP respectively; P<0.05. HIF-1αexpression increased significantly compared with the model group (P<0.05. The enterococci (46.7%±2.0%, 32.0%±2.6% respectively and gram negative bacteria rate (34.2%±1.6%, 38.0%±2.8% respectively in the ALP medium and high dose groups were lower compared with the model group (24.7%±1.2%, 23.2%±1.5% respectively, P<0

  20. Investigations to determine whether viable microorganisms are required during intestinal lactose hydrolysis of fermented milk products by microbial ß-galactosidase using gnotobiotic Göttingen minipigs

    OpenAIRE

    Winchenbach, Andrea

    2010-01-01

    The most common reason worldwide for the indigestibility of milk is the lack of ß-galactosidases in the small intestine, leading to the malabsorbtion of lactose. Fermented dairy products are very often much better tolerated than raw (not fermented) milk, because of the microbial ß-galactosidases they contain. The aim of this thesis was to elucidate the question as to weather lactose hydrolysis in the small intestine requires the presence of living bacteria (with their microbial ß-galac...

  1. Pharmacokinetics of enrofloxacin and ceftiofur in plasma, interstitial fluid, and gastrointestinal tract of calves after subcutaneous injection, and bactericidal impacts on representative enteric bacteria.

    Science.gov (United States)

    Foster, D M; Jacob, M E; Warren, C D; Papich, M G

    2016-02-01

    This study's objectives were to determine intestinal antimicrobial concentrations in calves administered enrofloxacin or ceftiofur sodium subcutaneously, and their impact on representative enteric bacteria. Ultrafiltration devices were implanted in the ileum and colon of 12 steers, which received either enrofloxacin or ceftiofur sodium. Samples were collected over 48 h after drug administration for pharmacokinetic/pharmacodynamic analysis. Enterococcus faecalis or Salmonella enterica (5 × 10(5) CFU/mL of each) were exposed in vitro to peak and tail (48 h postadministration) concentrations of both drugs at each location for 24 h to determine inhibition of growth and change in MIC. Enrofloxacin had tissue penetration factors of 1.6 and 2.5 in the ileum and colon, while ciprofloxacin, an active metabolite of enrofloxacin, was less able to cross into the intestine (tissue penetration factors of 0.7 and 1.7). Ceftiofur was rapidly eliminated leading to tissue penetration factors of 0.39 and 0.25. All concentrations of enrofloxacin were bactericidal for S. enterica and significantly reduced E. faecalis. Peak ceftiofur concentration was bactericidal for S. enterica, and tail concentrations significantly reduced growth. E. faecalis experienced growth at all ceftiofur concentrations. The MICs for both organisms exposed to peak and tail concentrations of antimicrobials were unchanged at the end of the study. Enrofloxacin and ceftiofur achieved intestinal concentrations capable of reducing intestinal bacteria, yet the short exposure of ceftiofur in the intestine may select for resistant organisms. © 2015 John Wiley & Sons Ltd.

  2. Intestinal parasites : associations with intestinal and systemic inflammation

    NARCIS (Netherlands)

    Zavala, Gerardo A; García, Olga P; Camacho, Mariela; Ronquillo, Dolores; Campos-Ponce, Maiza; Doak, Colleen; Polman, Katja; Rosado, Jorge L

    2018-01-01

    AIMS: Evaluate associations between intestinal parasitic infection with intestinal and systemic inflammatory markers in school-aged children with high rates of obesity. METHODS AND RESULTS: Plasma concentrations of CRP, leptin, TNF-α, IL-6 and IL-10 were measured as systemic inflammation markers and

  3. Imbalance in the intestinal microbiota as a risk factor of cardiometabolic diseases

    Directory of Open Access Journals (Sweden)

    Yu. V. Lobzin

    2014-01-01

    Full Text Available The review shows the role of the intestinal microflora in the development of atherosclerosis, coronary heart disease, overweight / obesity and diabetes. It is well known that consumption of foods rich in saturated fats and cholesterol (meat, egg yolk and milk products with high fat content is associated with an increased risk of cardiovascular disease. However, new studies show that the atherogenic properties of these products are also due to the high content of L-carnitine and its structural analog choline, which, after entering the body is metabolized by intestinal bacteria up to trimethylamine (TMA, and then converted in the liver to trimethylamine-N-oxide (TMAO having direct atherogenic action. It was found that elevated levels of TMAO increases the risk of myocardial infarction, stroke, cardiac failure and death, including the common causes. In the center of international attention is also the question of the role of the intestinal microbiota imbalance in the development of insulin resistance, endothelial dysfunction, increase of the adhesive properties of macrophages, the appearance of dyslipidemia, elevated blood pressure, overweight. Attention of the doctors is focused on the extremely importance of maintaining a normal balance of the intestinal microbiota to prevent cardiometabolic diseases apart from implementation of already well-known and generally accepted preventive measures.

  4. Pediatric Infection and Intestinal Carriage Due to Extended-Spectrum-Cephalosporin-Resistant Enterobacteriaceae

    Science.gov (United States)

    Qin, Xuan; Oron, Assaf P.; Adler, Amanda L.; Wolter, Daniel J.; Berry, Jessica E.; Hoffman, Lucas; Weissman, Scott J.

    2014-01-01

    The objective of this study is to describe the epidemiology of intestinal carriage with extended-spectrum-cephalosporin-resistant Enterobacteriaceae in children with index infections with these organisms. Patients with resistant Escherichia coli or Klebsiella bacteria isolated from the urine or a normally sterile site between January 2006 and December 2010 were included in this study. Available infection and stool isolates underwent phenotypic and molecular characterization. Clinical data relevant to the infections were collected and analyzed. Overall, 105 patients were identified with 106 extended-spectrum-cephalosporin-resistant E. coli (n = 92) or Klebsiella (n = 14) strains isolated from urine or a sterile site. Among the 27 patients who also had stool screening for resistant Enterobacteriaceae, 17 (63%) had intestinal carriage lasting a median of 199 days (range, 62 to 1,576). There were no significant differences in demographic, clinical, and microbiological variables between those with and those without intestinal carriage. Eighteen (17%) patients had 37 subsequent resistant Enterobacteriaceae infections identified: 31 urine and 6 blood. In a multivariable analysis, antibiotic intake in the 91 days prior to subsequent urine culture was significantly associated with subsequent urinary tract infection with a resistant organism (hazard ratio, 14.3; 95% confidence interval [CI], 1.6 to 130.6). Intestinal carriage and reinfection were most commonly due to bacterial strains of the same sequence type and with the same resistance determinants as the index extended-spectrum-cephalosporin-resistant Enterobacteriaceae, but carriage and reinfection with different resistant Enterobacteriaceae strains also occurred. PMID:24798269

  5. Intestinal Obstruction

    Science.gov (United States)

    ... Colostomy ) is required to relieve an obstruction. Understanding Colostomy In a colostomy, the large intestine (colon) is cut. The part ... 1 What Causes Intestinal Strangulation? Figure 2 Understanding Colostomy Gastrointestinal Emergencies Overview of Gastrointestinal Emergencies Abdominal Abscesses ...

  6. Recycling Metchnikoff. Probiotics, the Intestinal Microbiome and the Quest for Long Life

    Directory of Open Access Journals (Sweden)

    Philip Arthur Mackowiak

    2013-11-01

    Full Text Available Over a centry ago, Elie Metchnikoff theorized that health could be enhanced and senility delayed by manipulating the intestinal microbiome with host-friendly bacteria found in yogurt. His theory flourished for a time, then drifted to the fringe of medical practice before re-emerging in the mid-1990s as a concept worthy of mainstream medical attention. Metchnikoff also predicted the existence of bacterial translocation and anticipated theories linking chronic inflammation with the pathogenesis of atherosclerosis and other disorders of the aged.

  7. In vitro screening of soil bacteria for inhibiting phytopathogenic fungi ...

    African Journals Online (AJOL)

    At present, the greatest interest resides with the development and application of specific biocontrol agent for the control of diseases on plant and this form the focus of this work. Several soil bacteria were evaluated in vitro for their effectiveness on the basis of their ability to suppress fungi in plate inhibition assays. 51 strains ...

  8. Amebiasis intestinal Intestinal amebiasis

    Directory of Open Access Journals (Sweden)

    JULIO CÉSAR GÓMEZ

    2007-03-01

    Full Text Available Entamoeba histolytica es el patógeno intestinal más frecuente en nuestro medio -después de Giardia lamblia-, una de las principales causas de diarrea en menores de cinco años y la cuarta causa de muerte en el mundo debida a infección por protozoarios. Posee mecanismos patogénicos complejos que le permiten invadir la mucosa intestinal y causar colitis amebiana. El examen microscópico es el método más usado para su identificación pero la existencia de dos especies morfológicamente iguales, una patógena ( E. histolytica y una no patógena ( Entamoeba dispar, ha llevado al desarrollo de otros métodos de diagnóstico. El acceso al agua potable y los servicios sanitarios adecuados, un tratamiento médico oportuno y el desarrollo de una vacuna, son los ejes para disminuir la incidencia y mortalidad de esta entidad.Entamoeba histolytica is the most frequent intestinal pathogen seen in our country, after Giardia lamblia, being one of the main causes of diarrhea in children younger than five years of age, and the fourth leading cause of death due to infection for protozoa in the world. It possesses complex pathogenic mechanisms that allow it to invade the intestinal mucosa, causing amoebic colitis. Microscopy is the most used method for its identification, but the existence of two species morphologically identical, the pathogen one ( E. histolytica, and the non pathogen one ( E. dispar, have taken to the development of other methods of diagnosis. The access to drinkable water and appropriate sanitary services, an opportune medical treatment, and the development of a vaccine are the axes to diminish the incidence and mortality of this entity.

  9. Effect of litter treatment on growth performance, intestinal development, and selected cecum microbiota in broiler chickens

    Directory of Open Access Journals (Sweden)

    Gilaneh Taherparvar

    2016-05-01

    Full Text Available ABSTRACT The objective of this study was to determine whether the type of bedding materials (sand, wood shavings, and paper and of two chemical amendments (lime and bentonite could interfere with litter quality (moisture, pH, and total bacterial counts, thereby influencing also the growth performance and the development of intestinal traits and cecum microbiota of chickens. Two hundred and seventy male Ross 308 broiler chickens were randomly assigned into nine treatment groups with three replicates per treatment. Broiler productive parameters, relative weight of different intestinal segments, content of cecal total bacterial counts (total aerobic bacteria, Lactobacilli, and coliforms, as well as litter moisture, pH, and total aerobic bacteria and coliforms counts, were assessed. Litter material, per se, did not significantly affect the productivity parameters at the end of the experimental period (42 days with the exception of protein efficiency. A significant trend was found among treatments with regard to weight gain and feed intake, with lower performance in birds on sand beddings. Litter pH was relatively homogenous between bedding types and amendments, but the moisture was significantly lower when sand was used. Litter type did not influence the relative weight of the different intestinal segments; however, the type of amendment affected the relative jejunum weight, which was increased in bentonite-treated litter. The use of lime and bentonite treatments may be helpful to decrease the differences in litter moisture associated with particular bedding materials. The tested amendments do not interfere with the productive performance of birds.

  10. Intestinal Leiomyositis: A Cause of Chronic Intestinal Pseudo-Obstruction in 6 Dogs.

    Science.gov (United States)

    Zacuto, A C; Pesavento, P A; Hill, S; McAlister, A; Rosenthal, K; Cherbinsky, O; Marks, S L

    2016-01-01

    Intestinal leiomyositis is a suspected autoimmune disorder affecting the muscularis propria layer of the gastrointestinal tract and is a cause of chronic intestinal pseudo-obstruction in humans and animals. To characterize the clinical presentation, histopathologic features, and outcome of dogs with intestinal leiomyositis in an effort to optimize treatment and prognosis. Six client-owned dogs. Retrospective case series. Medical records were reviewed to describe signalment, clinicopathologic and imaging findings, histopathologic diagnoses, treatment, and outcome. All biopsy specimens were reviewed by a board-certified pathologist. Median age of dogs was 5.4 years (range, 15 months-9 years). Consistent clinical signs included vomiting (6/6), regurgitation (2/6), and small bowel diarrhea (3/6). Median duration of clinical signs before presentation was 13 days (range, 5-150 days). Diagnostic imaging showed marked gastric distension with dilated small intestines in 4/6 dogs. Full-thickness intestinal biopsies were obtained in all dogs by laparotomy. Histopathology of the stomach and intestines disclosed mononuclear inflammation, myofiber degeneration and necrosis, and fibrosis centered within the region of myofiber loss in the intestinal muscularis propria. All dogs received various combinations of immunomodulatory and prokinetic treatment, antimicrobial agents, antiemetics, and IV fluids, but none of the dogs showed a clinically relevant improvement with treatment. Median survival was 19 days after diagnosis (range, 3-270 days). Intestinal leiomyositis is a cause of intestinal pseudo-obstruction and must be diagnosed by full-thickness intestinal biopsy. This disease should be considered in dogs with acute and chronic vomiting, regurgitation, and small bowel diarrhea. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  11. Fecal bacteria from treatment-naive Crohn's disease patients can skew helper T cell responses.

    Science.gov (United States)

    Ma, Fei; Zhang, Yi; Xing, Junjie; Song, Xiaoling; Huang, Ling; Weng, Hao; Wu, Xiangsong; Walker, Emma; Wang, Zhongchuan

    2017-12-01

    Many studies have demonstrated that the inflamed mucosa of Crohn's disease (CD) patients presented a disturbed gut commensal community, and the shift in microbial composition and species variety is associated with disease severity. To establish a link between changes in the intestinal bacterial composition and the alteration of inflammation, we obtained fecal bacteria from CD patients and non-CD controls. The bacteria were then used to stimulate the peripheral blood mononuclear cells (PBMCs) from one non-CD individual. We found that the frequency of IFN-γ- and IL-17-expressing CD4 T cells was significantly higher after stimulation with CD bacteria than with non-CD bacteria, while the frequency of IL-4- and IL-10-expressing CD4 T cells was significantly decreased after stimulation with CD bacteria. A similar trend was observed in the level of cytokine expression and transcription expression. However, this difference was not clear-cut, as overlapping regions were observed between the two groups. With longer stimulation using CD bacteria, the skewing toward Th1/Th17 responses were further increased. This increase depended on the presence of monocytes/macrophages. Interestingly, we also found that B cells presented an inhibitory effect in CD bacteria-mediated skewing toward Th1/Th17 cells and promoted IL-10 secretion in CD bacteria-stimulated PBMCs. Together, our results demonstrated that CD bacteria could promote Th1/Th17 inflammation in a host factor-independent fashion. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Dietary levels of Mannanoligosaccharide (MOS for nile-tilapia (Oreochromis niloticus: Intestinal Morphology

    Directory of Open Access Journals (Sweden)

    Flavio Endrigo Cechim

    2012-12-01

    , providing substrate for selective attachment of pathogenic intestinal bacteria, impairing bacterial adhesion to entherocytes, thus preventing infection of host cells. Thereby, the inhibition of bacteria adhesion to enterocytes prevents formation of mixed colonies, the entrapment of nutrients for bacterial growth and infection of host cells, leading to better gut health by increasing regularity, height and integrity of the gut villi and consequent better utilization and absorption of nutrients. In conclusion, dietary MOS at 0.4% supplementation for 30 days presented prebiotic effects for juvenile Nile-tilapia.

  13. [Treatment of children with intestinal failure: intestinal rehabilitation, home parenteral nutrition or small intestine transplantation?

    NARCIS (Netherlands)

    Neelis, E.G.; Oers, H.A. van; Escher, J.C.; Damen, G.M.; Rings, E.H.; Tabbers, M.M.

    2014-01-01

    Intestinal failure is characterised by inadequate absorption of food or fluids, which is caused by insufficient bowel surface area or functioning. Children with chronic intestinal failure are dependent on parenteral nutrition (PN), which can be provided at home (HPN). In the Netherlands, HPN for

  14. The effect of gastric inhibitory polypeptide on intestinal glucose absorption and intestinal motility in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Eiichi [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Hosokawa, Masaya [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Faculty of Human Sciences, Tezukayama Gakuin University, Osaka (Japan); Harada, Norio; Yamane, Shunsuke; Hamasaki, Akihiro; Toyoda, Kentaro; Fujimoto, Shimpei; Fujita, Yoshihito; Fukuda, Kazuhito [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Tsukiyama, Katsushi; Yamada, Yuichiro [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Department of Internal Medicine, Division of Endocrinology, Diabetes and Geriatric Medicine, Akita University School of Medicine, Akita (Japan); Seino, Yutaka [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Kansai Electric Power Hospital, Osaka (Japan); Inagaki, Nobuya, E-mail: inagaki@metab.kuhp.kyoto-u.ac.jp [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); CREST of Japan Science and Technology Cooperation (JST), Kyoto (Japan)

    2011-01-07

    Research highlights: {yields} Exogenous GIP inhibits intestinal motility through a somatostatin-mediated pathway. {yields} Exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility. {yields} The GIP-receptor-mediated action in intestine does not involve in GLP-1-mediated pathway. -- Abstract: Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic {beta} cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucose absorption in vivo was measured by single-pass perfusion method. Incorporation of [{sup 14}C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [{sup 14}C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a somatostatin

  15. The effect of gastric inhibitory polypeptide on intestinal glucose absorption and intestinal motility in mice

    International Nuclear Information System (INIS)

    Ogawa, Eiichi; Hosokawa, Masaya; Harada, Norio; Yamane, Shunsuke; Hamasaki, Akihiro; Toyoda, Kentaro; Fujimoto, Shimpei; Fujita, Yoshihito; Fukuda, Kazuhito; Tsukiyama, Katsushi; Yamada, Yuichiro; Seino, Yutaka; Inagaki, Nobuya

    2011-01-01

    Research highlights: → Exogenous GIP inhibits intestinal motility through a somatostatin-mediated pathway. → Exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility. → The GIP-receptor-mediated action in intestine does not involve in GLP-1-mediated pathway. -- Abstract: Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic β cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucose absorption in vivo was measured by single-pass perfusion method. Incorporation of [ 14 C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [ 14 C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a somatostatin-mediated pathway rather

  16. Impact of feathers and feather follicles on broiler carcass bacteria.

    Science.gov (United States)

    Cason, J A; Hinton, A; Buhr, R J

    2004-08-01

    Genetically featherless and feathered broiler siblings were used to test the contribution of feathers and feather follicles to the numbers of aerobic bacteria, Escherichia coli, and Campylobacter in whole-carcass rinse samples taken immediately after carcasses were defeathered for 30 or 60 s. Numbers of spoilage bacteria were counted after the same fully processed carcasses were stored for 1 wk at 2 degrees C. In each of 3 replications, twenty-eight 11-wk-old, mixed-sex, genetically featherless or feathered broilers were processed in a laboratory processing facility. Immediately after individual defeathering in a mechanical picker, carcasses were sampled using a carcass rinse technique. Carcasses were eviscerated, immersion chilled at 2 degrees C for 30 min, individually bagged, and stored for 1 wk at 2 degrees C, after which all carcasses were rinsed again, and spoilage bacteria in the rinsate were enumerated. There were no significant differences (P defeathering and no differences between carcasses picked for 30 or 60 s. There were no differences in numbers of spoilage bacteria after 1 wk of refrigeration for any of the feather presence-picking length combinations. Although the defeathering step in poultry processing has been identified as an opportunity for bacterial contamination from the intestinal tract and cross-contamination between carcasses, the presence of feathers and feather follicles does not make a significant difference in carcass bacterial contamination immediately after defeathering or in spoilage bacteria after 1 wk of refrigeration.

  17. Intestinal subepithelial myofibroblasts support in vitro and in vivo growth of human small intestinal epithelium.

    Directory of Open Access Journals (Sweden)

    Nicholas Lahar

    Full Text Available The intestinal crypt-niche interaction is thought to be essential to the function, maintenance, and proliferation of progenitor stem cells found at the bases of intestinal crypts. These stem cells are constantly renewing the intestinal epithelium by sending differentiated cells from the base of the crypts of Lieberkühn to the villus tips where they slough off into the intestinal lumen. The intestinal niche consists of various cell types, extracellular matrix, and growth factors and surrounds the intestinal progenitor cells. There have recently been advances in the understanding of the interactions that regulate the behavior of the intestinal epithelium and there is great interest in methods for isolating and expanding viable intestinal epithelium. However, there is no method to maintain primary human small intestinal epithelium in culture over a prolonged period of time. Similarly no method has been published that describes isolation and support of human intestinal epithelium in an in vivo model. We describe a technique to isolate and maintain human small intestinal epithelium in vitro from surgical specimens. We also describe a novel method to maintain human intestinal epithelium subcutaneously in a mouse model for a prolonged period of time. Our methods require various growth factors and the intimate interaction between intestinal sub-epithelial myofibroblasts (ISEMFs and the intestinal epithelial cells to support the epithelial in vitro and in vivo growth. Absence of these myofibroblasts precluded successful maintenance of epithelial cell formation and proliferation beyond just a few days, even in the presence of supportive growth factors. We believe that the methods described here can be used to explore the molecular basis of human intestinal stem cell support, maintenance, and growth.

  18. Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson's disease.

    Science.gov (United States)

    Schwiertz, Andreas; Spiegel, Jörg; Dillmann, Ulrich; Grundmann, David; Bürmann, Jan; Faßbender, Klaus; Schäfer, Karl-Herbert; Unger, Marcus M

    2018-02-12

    Intestinal inflammation and increased intestinal permeability (both possibly fueled by dysbiosis) have been suggested to be implicated in the multifactorial pathogenesis of Parkinson's disease (PD). The objective of the current study was to investigate whether fecal markers of inflammation and impaired intestinal barrier function corroborate this pathogenic aspect of PD. In a case-control study, we quantitatively analyzed established fecal markers of intestinal inflammation (calprotectin and lactoferrin) and fecal markers of intestinal permeability (alpha-1-antitrypsin and zonulin) in PD patients (n = 34) and controls (n = 28, group-matched for age) by enzyme-linked immunosorbent assay. The study design controlled for potential confounding factors. Calprotectin, a fecal marker of intestinal inflammation, and two fecal markers of increased intestinal permeability (alpha-1-antitrypsin and zonulin) were significantly elevated in PD patients compared to age-matched controls. Lactoferrin, as a second fecal marker of intestinal inflammation, showed a non-significant trend towards elevated concentrations in PD patients. None of the four fecal markers correlated with disease severity, PD subtype, dopaminergic therapy, or presence of constipation. Fecal markers reflecting intestinal inflammation and increased intestinal permeability have been primarily investigated in inflammatory bowel disease so far. Our data indicate that calprotectin, alpha-1-antitrypsin and zonulin could be useful non-invasive markers in PD as well. Even though these markers are not disease-specific, they corroborate the hypothesis of an intestinal inflammation as contributing factor in the pathogenesis of PD. Further investigations are needed to determine whether calprotectin, alpha-1-antitrypsin and zonulin can be used to define PD subgroups and to monitor the effect of interventions in PD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Intestinal crosstalk – a new paradigm for understanding the gut as the “motor” of critical illness

    Science.gov (United States)

    Clark, Jessica A; Coopersmith, Craig M

    2007-01-01

    For more than 20 years, the gut has been hypothesized to be the “motor” of multiple organ dysfunction syndrome (MODS). As critical care research has evolved, there have been multiple mechanisms by which the gastrointestinal tract has been proposed to drive systemic inflammation. Many of these disparate mechanisms have proved to be important in the origin and propagation of critical illness. However, this has led to an unusual situation where investigators describing the gut as a “motor” revving the systemic inflammatory response syndrome (SIRS) are frequently describing wholly different processes to support their claim (i.e. increased apoptosis, altered tight junctions, translocation, cytokine production, crosstalk with commensal bacteria, etc). The purpose of this review is to present a unifying theory as to how the gut drives critical illness. Although the gastrointestinal tract is frequently described simply as “the gut,” it is actually made up of a) an epithelium, b) a diverse and robust immune arm, which contains the majority of immune cells in the body, and c) the commensal bacteria, which contain more cells than are present in the entire host organism. We propose that the intestinal epithelium, the intestinal immune system and the intestine’s endogenous bacteria all play vital roles driving MODS, and the complex crosstalk between these three interrelated portions of the gastrointestinal tract are cumulatively what makes the gut a “motor” of critical illness. PMID:17577136

  20. "Omic" investigations of protozoa and worms for a deeper understanding of the human gut "parasitome".

    Science.gov (United States)

    Marzano, Valeria; Mancinelli, Livia; Bracaglia, Giorgia; Del Chierico, Federica; Vernocchi, Pamela; Di Girolamo, Francesco; Garrone, Stefano; Tchidjou Kuekou, Hyppolite; D'Argenio, Patrizia; Dallapiccola, Bruno; Urbani, Andrea; Putignani, Lorenza

    2017-11-01

    The human gut has been continuously exposed to a broad spectrum of intestinal organisms, including viruses, bacteria, fungi, and parasites (protozoa and worms), over millions of years of coevolution, and plays a central role in human health. The modern lifestyles of Western countries, such as the adoption of highly hygienic habits, the extensive use of antimicrobial drugs, and increasing globalisation, have dramatically altered the composition of the gut milieu, especially in terms of its eukaryotic "citizens." In the past few decades, numerous studies have highlighted the composition and role of human intestinal bacteria in physiological and pathological conditions, while few investigations exist on gut parasites and particularly on their coexistence and interaction with the intestinal microbiota. Studies of the gut "parasitome" through "omic" technologies, such as (meta)genomics, transcriptomics, proteomics, and metabolomics, are herein reviewed to better understand their role in the relationships between intestinal parasites, host, and resident prokaryotes, whether pathogens or commensals. Systems biology-based profiles of the gut "parasitome" under physiological and severe disease conditions can indeed contribute to the control of infectious diseases and offer a new perspective of omics-assisted tropical medicine.

  1. “Omic” investigations of protozoa and worms for a deeper understanding of the human gut “parasitome”

    Science.gov (United States)

    Marzano, Valeria; Mancinelli, Livia; Bracaglia, Giorgia; Del Chierico, Federica; Vernocchi, Pamela; Di Girolamo, Francesco; Garrone, Stefano; Tchidjou Kuekou, Hyppolite; D’Argenio, Patrizia; Dallapiccola, Bruno; Urbani, Andrea

    2017-01-01

    The human gut has been continuously exposed to a broad spectrum of intestinal organisms, including viruses, bacteria, fungi, and parasites (protozoa and worms), over millions of years of coevolution, and plays a central role in human health. The modern lifestyles of Western countries, such as the adoption of highly hygienic habits, the extensive use of antimicrobial drugs, and increasing globalisation, have dramatically altered the composition of the gut milieu, especially in terms of its eukaryotic “citizens.” In the past few decades, numerous studies have highlighted the composition and role of human intestinal bacteria in physiological and pathological conditions, while few investigations exist on gut parasites and particularly on their coexistence and interaction with the intestinal microbiota. Studies of the gut “parasitome” through “omic” technologies, such as (meta)genomics, transcriptomics, proteomics, and metabolomics, are herein reviewed to better understand their role in the relationships between intestinal parasites, host, and resident prokaryotes, whether pathogens or commensals. Systems biology–based profiles of the gut “parasitome” under physiological and severe disease conditions can indeed contribute to the control of infectious diseases and offer a new perspective of omics-assisted tropical medicine. PMID:29095820

  2. Carriage of λ Latent Virus Is Costly for Its Bacterial Host due to Frequent Reactivation in Monoxenic Mouse Intestine.

    Directory of Open Access Journals (Sweden)

    Marianne De Paepe

    2016-02-01

    Full Text Available Temperate phages, the bacterial viruses able to enter in a dormant prophage state in bacterial genomes, are present in the majority of bacterial strains for which the genome sequence is available. Although these prophages are generally considered to increase their hosts' fitness by bringing beneficial genes, studies demonstrating such effects in ecologically relevant environments are relatively limited to few bacterial species. Here, we investigated the impact of prophage carriage in the gastrointestinal tract of monoxenic mice. Combined with mathematical modelling, these experimental results provided a quantitative estimation of key parameters governing phage-bacteria interactions within this model ecosystem. We used wild-type and mutant strains of the best known host/phage pair, Escherichia coli and phage λ. Unexpectedly, λ prophage caused a significant fitness cost for its carrier, due to an induction rate 50-fold higher than in vitro, with 1 to 2% of the prophage being induced. However, when prophage carriers were in competition with isogenic phage susceptible bacteria, the prophage indirectly benefited its carrier by killing competitors: infection of susceptible bacteria led to phage lytic development in about 80% of cases. The remaining infected bacteria were lysogenized, resulting overall in the rapid lysogenization of the susceptible lineage. Moreover, our setup enabled to demonstrate that rare events of phage gene capture by homologous recombination occurred in the intestine of monoxenic mice. To our knowledge, this study constitutes the first quantitative characterization of temperate phage-bacteria interactions in a simplified gut environment. The high prophage induction rate detected reveals DNA damage-mediated SOS response in monoxenic mouse intestine. We propose that the mammalian gut, the most densely populated bacterial ecosystem on earth, might foster bacterial evolution through high temperate phage activity.

  3. [Myosin B ATPase activity of the intestinal smooth muscle in intestinal obstruction].

    Science.gov (United States)

    Takamatsu, H

    1983-06-01

    Intestinal smooth myosin B was prepared from muscle layers around the lesion in dogs with experimental colonic stenosis and in patients with congenital intestinal obstruction. Mg2+-ATPase activity of the myosin B was compared between the proximal dilated segment and distal segment to obstruction. Experimental colonic stenosis: In early period after surgery, proximal colons showed higher activity of myosin B ATPase than distal colons, decreasing to less than distal colon as time passed. Congenital intestinal obstruction: In three cases, whose atresia might have occurred at earlier period of gestation, proximal bowels showed less activity of myosin B ATPase than distal bowels. However, in two cases, whose atresia might have occurred at later period of gestation, and two cases with intestinal stenosis, proximal bowels indicated higher activity of myosin B ATPase than distal bowels. These data suggested that the contractibility of the proximal intestine was depending on the duration of obstruction, and it was depressed in the former patients and was accelerated in the latter patients. These results suggested that the extensive resection of dilated proximal bowel in the congenital atresia is not always necessary to obtain good postoperative intestinal dynamics at the operation of the atresial lesions which may be induced at later period of gestation. They also suggested that surgery for intestinal obstruction should be performed before the depression of intestinal contractibility to get good bowel function.

  4. [Congenital intestinal lymphangiectasia].

    Science.gov (United States)

    Popović, Dugan D j; Spuran, Milan; Alempijević, Tamara; Krstić, Miodrag; Djuranović, Srdjan; Kovacević, Nada; Damnjanović, Svetozar; Micev, Marjan

    2011-03-01

    Congenital intestinal lymphangiectasia is a disease which leads to protein losing enteropathy. Tortuous, dilated lymphatic vessels in the intestinal wall and mesenterium are typical features of the disease. Clinical manifestations include malabsorption, diarrhea, steatorrhea, edema and effusions. Specific diet and medication are required for disease control. A 19-year old male patient was hospitalized due to diarrhea, abdominal swelling, weariness and fatigue. Physical examination revealed growth impairment, ascites, and lymphedema of the right hand and forearm. Laboratory assessment indicated iron deficiency anaemia, lymphopenia, malabsorption, inflammatory syndrome, and urinary infection. Enteroscopy and video capsule endoscopy demonstrated dilated lymphatic vessels in the small intestine. The diagnosis was confirmed by intestinal biopsy. The patient was put on high-protein diet containing medium-chain fatty acids, somatotropin and supportive therapy. Congenital intestinal lymphangiectasia is a rare disease, usually diagnosed in childhood. Early recognition of the disease and adequate treatment can prevent development of various complications.

  5. Regulation of intestinal homeostasis by innate and adaptive immunity.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis.

  6. Structural differences in gut bacteria communities in developmental stages of natural populations of Lutzomyia evansi from Colombia's Caribbean coast.

    Science.gov (United States)

    Vivero, Rafael José; Jaramillo, Natalia Gil; Cadavid-Restrepo, Gloria; Soto, Sandra I Uribe; Herrera, Claudia Ximena Moreno

    2016-09-13

    Lutzomyia evansi, a phlebotomine insect endemic to Colombia's Caribbean coast, is considered to be the main vector of visceral and cutaneous leishmaniasis in the region. Although insects of this species can harbor pathogenic and non-pathogenic microorganisms in their intestinal microbiota, there is little information available about the diversity of gut bacteria present in Lutzomyia evansi. In this study, conventional microbiological methods and molecular tools were used to assess the composition of bacterial communities associated with Lutzomyia evansi guts in immature and adult stages of natural populations from the department of Sucre (Caribbean coast of Colombia). Sand flies were collected from two locations (peri-urban and jungle biotype) in the Department of Sucre (Caribbean coast of Colombia). A total of 752 Lutzomyia evansi intestines were dissected. In this study, 125 bacterial strains were isolated from different culture media (LB Agar, MacConkey Agar). Different methods were used for bacterial identification, including ribosomal intergenic spacer analysis (RISA) and analysis of the 16S rRNA and gyrB gene sequences. The genetic profiles of the bacterial populations were generated and temporal temperature gradient gel electrophoresis (TTGE) was used to compare them with total gut DNA. We also used PCR and DNA sequence analysis to determine the presence of Wolbachia endosymbiont bacteria and Leishmania parasites. The culture-dependent technique showed that the dominant intestinal bacteria isolated belong to Acinetobacter, Enterobacter, Pseudomonas, Ochrobactrum, Shinella and Paenibacillus in the larval stage; Lysobacter, Microbacterium, Streptomyces, Bacillus and Rummeliibacillus in the pupal stage; and Staphylococcus, Streptomyces, Brevibacterium, Acinetobacter, Enterobacter and Pantoea in the adult stage. Statistical analysis revealed significant differences between the fingerprint patterns of the PCR-TTGE bands in bacterial communities from immature and

  7. Human antigen-presenting cells respond differently to gut-derived probiotic bacteria but mediate similar strain-dependent NK and T cell activation

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Zeuthen, Louise Hjerrild; Ferlazzo, Guido

    2007-01-01

    The intestinal microbiota is essential for homeostasis of the local and systemic immune system, and particularly strains of lactic acid bacteria and Escherichia coli have been shown to have balancing effects on inflammatory conditions such as allergy and inflammatory bowel disease. However, in vi...

  8. Viabilidad de una bacteria láctica encapsulada e incorporada en una matriz de cobertura de chocolate

    Directory of Open Access Journals (Sweden)

    Estefania García Gonzalez

    2015-01-01

    Full Text Available Se evaluó la viabilidad durante el almacenamiento de Weissella confusa incorporada en una matriz de cobertura de chocolate. La bacteria probiótica se encapsuló empleando tres materiales de pared, gel de Aloe vera, gel Aloe vera + Almidón al 10 % y gel de Aloe vera + Almidón al 15 % y células libres como control. Posteriormente se liofilizó. La bacteria probiótica encapsulada, se incorporó en una matriz de cobertura de chocolate. Los chips se empacaron y almacenaron durante 5 semanas a 4 °C, cada semana se midieron cambios en la viabilidad de la bacteria probiótica y en la actividad de agua. En la quinta semana, los chips se sometieron a condiciones simuladas de jugos intestinales. Durante el almacenamiento los chips mantuvieron su carácter probiótico (>106 UFC/g, sin embargo, cuando la bacteria probiótica se encapsuló en gel aloe vera, se obtuvo mayor número de bacterias probióticas vivas dentro de la matriz sólida (2,1x108 UFC/g. La actividad de agua varió de 0,470 a 0,810. La bacteria probiótica permaneció viva por 2 horas en medios simulados de jugos intestinales, lo cual ratifica que la matriz sólida y los medios de encapsulación seleccionados son adecuados para el desarrollo de productos sólidos probióticos ricos en grasa vegetal.Viability during storage of Weissella confusa incorporated in a chocolate coating matrix was evaluated. Probiotic bacteria was encapsulated using three wall materials, Aloe vera gel, Aloe vera gel + 10 % starch and aloe vera gel + 15 % starch and free cells as control. Subsequently lyophilized. Probiotic bacteria encapsulated, was incorporated into a chocolate coating matrix. The chips were packed and stored for 5 weeks at 4 °C, were measured weekly changes in viability of the probiotic bacteria and water activity. In the fifth week, the chips were subjected to simulated conditions of intestinal juices. During storage chips remained probiotic character (>106 CFU/g, however, if the

  9. Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp during Vibrio harveyi exposure.

    Science.gov (United States)

    Rungrassamee, Wanilada; Klanchui, Amornpan; Maibunkaew, Sawarot; Karoonuthaisiri, Nitsara

    2016-01-01

    The intestinal microbiota play important roles in health of their host, contributing to maintaining the balance and resilience against pathogen. To investigate effects of pathogen to intestinal microbiota, the bacterial dynamics upon a shrimp pathogen, Vibrio harveyi, exposures were determined in two economically important shrimp species; the black tiger shrimp (BT) and the Pacific white shrimp (PW). Both shrimp species were reared under the same diet and environmental conditions. Shrimp survival rates after the V. harveyi exposure revealed that the PW shrimp had a higher resistance to the pathogen than the BT shrimp. The intestinal bacterial profiles were determined by denaturing gradient gel electrophoresis (DGGE) and barcoded pyrosequencing of the 16S rRNA sequences under no pathogen challenge control and under pathogenic V. harveyi challenge. The DGGE profiles showed that the presence of V. harveyi altered the intestinal bacterial patterns in comparison to the control in BT and PW intestines. This implies that bacterial balance in shrimp intestines was disrupted in the presence of V. harveyi. The barcoded pyrosequencing analysis showed the similar bacterial community structures in intestines of BT and PW shrimp under a normal condition. However, during the time course exposure to V. harveyi, the relative abundance of bacteria belong to Vibrio genus was higher in the BT intestines at 12h after the exposure, whereas relative abundance of vibrios was more stable in PW intestines. The principle coordinates analysis based on weighted-UniFrac analysis showed that intestinal bacterial population in the BT shrimp lost their ability to restore their bacterial balance during the 72-h period of exposure to the pathogen, while the PW shrimp were able to reestablish their bacterial population to resemble those seen in the unexposed control group. This observation of bacterial disruption might correlate to different mortality rates observed between the two shrimp species

  10. Bacterial community associated with the intestinal tract of Chinese mitten crab (Eriocheir sinensis farmed in Lake Tai, China.

    Directory of Open Access Journals (Sweden)

    Xiaobing Chen

    Full Text Available Chinese mitten crab (CMC, Eriocheir sinensis is an economically valuable species in South-East Asia that has been widely farmed in China. Characterization of the intestinal bacterial diversity of CMC will provide insights into the aquaculturing of CMCs. Based on the analysis of cloned 16S rRNA genes from culture-independent CMC gut bacteria, 124 out of 128 different clones reveal >95% nucleotide similarity to the species belonging to the four phyla of Tenericutes, Bacteroidetes, Firmicutes and Proteobacteria; one clone shows 91% sequence similarity to the member of TM7 (a candidate phylum without cultured representatives. Fluorescent in situ hybridization also reveals the abundance of Bacteroidetes in crab intestine. Electron micrographs show that spherical and filamentous bacteria are closely associated with the microvillus brush border of the midgut epithelium and are often inserted into the space between the microvilli using a stalk-like cell appendage. In contrast, the predominant rod-shaped bacteria in the hindgut are tightly attached to the epithelium surface by an unusual pili-like structure. Both 16S rRNA gene denaturing gel gradient electrophoresis and metagenome library indicate that the CMC Mollicutes group 2 appears to be present in both the midgut and hindgut with no significant difference in abundance. The CMC Mollicutes group 1, however, was found mostly in the midgut of CMCs. The CMC gut Mollicutes phylotypes appear to be most closely related to Mollicutes symbionts detected in the gut of isopods (Crustacea: Isopoda. Overall, the results suggest that CMCs harbor diverse, novel and specific gut bacteria, which are likely to live in close relationships with the CMC host.

  11. Treatment of hexavalent chrome by bacteria. Saikin ni yoru rokka kuromu no shori

    Energy Technology Data Exchange (ETDEWEB)

    Otake, H [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1993-08-01

    A biological reduction method in which hazardous hexavalent chrome is reduced by bacteria is explained as one of the bioremediation technologies. Those bacteria are separated from active sludge in the urban sewage treatment plant. The hexavalent chrome-reducing bacteria were isolated by cultivating the sludge. They were Enterobacter cloacae which are intestinal bacteria. Then, they were named HO1 stock. As a result of analyzing the reduction mechanism, it was made clear that the function is localized in the cellular endosporium and that the reduction is made by utilizing the electronic transfer system of endosporium. Under both aerobic and anaerobic conditions, they convert the hexavalent chrome into the trivalent chrome outside the cells. As a result of test, it was known that 5mM hexavalent chrome can be treated in one day. A quick reduction was confirmed also through an experiment in which carbon source was added to the industrial wastewater. If used for the treatment of sludge/water contaminated by hexavalent chrome, the present reduction by bacteria has the following advantages: The highest reduction rate is given near pH=7 at ordinary temperatures. It is not necessary to add chemicals. Energy is not needed. It is a disadvantageous fact that the present bacteria, if exposed to oxygen, become inactive. 18 refs., 5 figs.

  12. Nitrogen metabolism of the intestine during digestion in a teleost fish, the plainfin midshipman (Porichthys notatus).

    Science.gov (United States)

    Bucking, Carol; LeMoine, Christophe M R; Craig, Paul M; Walsh, Patrick J

    2013-08-01

    Digestion affects nitrogen metabolism in fish, as both exogenous and endogenous proteins and amino acids are catabolized, liberating ammonia in the process. Here we present a model of local detoxification of ammonia by the intestinal tissue of the plainfin midshipman (Porichthys notatus) during digestion, resulting in an increase in urea excretion of gastrointestinal origin. Corroborating evidence indicated whole-animal ammonia and urea excretion increased following feeding, and ammonia levels within the lumen of the midshipman intestine increased to high levels (1.8±0.4 μmol N g(-1)). We propose that this ammonia entered the enterocytes and was detoxified to urea via the ornithine-urea cycle (O-UC) enzymes, as evidenced by a 1.5- to 2.9-fold post-prandial increase in glutamine synthetase activity (0.14±0.05 and 0.28±0.02 μmol min(-1) g(-1) versus 0.41±0.03 μmol min(-1) g(-1)) and an 8.7-fold increase in carbamoyl phosphate synthetase III activity (0.3±1.2 versus 2.6±0.4 nmol min(-1) g(-1)). Furthermore, digestion increased urea production by isolated gastrointestinal tissue 1.7-fold, supporting our hypothesis that intestinal tissue synthesizes urea in response to feeding. We further propose that the intestinal urea may have been excreted into the intestinal lumen via an apical urea transporter as visualized using immunohistochemistry. A portion of the urea was then excreted to the environment along with the feces, resulting in the observed increase in urea excretion, while another portion may have been used by intestinal ureolytic bacteria. Overall, we propose that P. notatus produces urea within the enterocytes via a functional O-UC, which is then excreted into the intestinal lumen. Our model of intestinal nitrogen metabolism does not appear to be universal as we were unab le to activate the O-UC in the intestine of fed rainbow trout. However, literature values suggest that multiple fish species could follow this model.

  13. Congenital intestinal lymphangiectasia

    Directory of Open Access Journals (Sweden)

    Popović Dušan Đ.

    2011-01-01

    Full Text Available Background. Congenital intestinal lymphangiectasia is a disease which leads to protein losing enteropathy. Tortous, dilated lymphatic vessels in the intestinal wall and mesenterium are typical features of the disease. Clinical manifestations include malabsorption, diarrhea, steatorrhea, edema and effusions. Specific diet and medication are required for disease control. Case report. A 19-year old male patient was hospitalized due to diarrhea, abdominal swelling, weariness and fatigue. Physical examination revealed growth impairment, ascites, and lymphedema of the right hand and forearm. Laboratory assessment indicated iron deficiency anaemia, lymphopenia, malabsorption, inflammatory syndrome, and urinary infection. Enteroscopy and video capsule endoscopy demonstrated dilated lymphatic vessels in the small intestine. The diagnosis was confirmed by intestinal biopsy. The patient was put on high-protein diet containing medium-chain fatty acids, somatotropin and suportive therapy. Conclusion. Congenital intestinal lymphangiectasia is a rare disease, usually diagnosed in childhood. Early recognition of the disease and adequate treatment can prevent development of various complications.

  14. Candida utilis and Chlorella vulgaris counteract intestinal inflammation in Atlantic salmon (Salmo salar L..

    Directory of Open Access Journals (Sweden)

    Fabian Grammes

    Full Text Available Intestinal inflammation, caused by impaired intestinal homeostasis, is a serious condition in both animals and humans. The use of conventional extracted soybean meal (SBM in diets for Atlantic salmon and several other fish species is known to induce enteropathy in the distal intestine, a condition often referred to as SBM induced enteropathy (SBMIE. In the present study, we investigated the potential of different microbial ingredients to alleviate SBMIE in Atlantic salmon, as a model of feed-induced inflammation. The dietary treatments consisted of a negative control based on fish meal (FM, a positive control based on 20% SBM, and four experimental diets combining 20% SBM with either one of the three yeasts Candida utilis (CU, Kluyveromyces marxianus (KM, Saccharomyces cerevisiae (SC or the microalgae Chlorella vulgaris (CV. Histopathological examination of the distal intestine showed that all fish fed the SC or SBM diets developed characteristic signs of SBMIE, while those fed the FM, CV or CU diets showed a healthy intestine. Fish fed the KM diet showed intermediate signs of SBMIE. Corroborating results were obtained when measuring the relative length of PCNA positive cells in the crypts of the distal intestine. Gene set enrichment analysis revealed decreased expression of amino acid, fat and drug metabolism pathways as well as increased expression of the pathways for NOD-like receptor signalling and chemokine signalling in both the SC and SBM groups while CV and CU were similar to FM and KM was intermediate. Gene expression of antimicrobial peptides was reduced in the groups showing SBMIE. The characterisation of microbial communities using PCR-DGGE showed a relative increased abundance of Firmicutes bacteria in fish fed the SC or SBM diets. Overall, our results show that both CU and CV were highly effective to counteract SBMIE, while KM had less effect and SC had no functional effects.

  15. Intestine transplantation

    Directory of Open Access Journals (Sweden)

    Tadeja Pintar

    2011-02-01

    Conclusion: Intestine transplantation is reserved for patients with irreversible intestinal failure due to short gut syndrome requiring total paranteral nutrition with no possibility of discontinuation and loss of venous access for patient maintenance. In these patients complications of underlying disease and long-term total parenteral nutrition are present.

  16. Distinct Gut-Derived Bacteria Differentially Affect Three Types of Antigen-Presenting Cells and Impact on NK- and T-Cell Responses

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Hansen, Anne Marie Valentin; Frøkiær, Hanne

    Objectives Gut bacteria are assumed essential for development and maintenance of a balanced immune system. Specifically, stimulation of antigen-presenting cells (APCs) by gut bacteria is important for polarisation of the immune response. This experiment was designed to reveal similarities...... and differences between the reaction patterns of three types of human APCs when stimulated with intestinal bacteria. Furthermore, the effect of these APCs on NK-cells and T-cells was examined. Methodology The APCs used in this study were blood monocytes, blood dendritic cells, and dendritic cells differentiated...... from monocytes. Monocyte-derived dendritic cells constitute a commonly used model of dendritic cell function. The APCs were cultured for 18 h with four different gut bacteria: Lactobacillus acidophilus X37, Lactobacillus reuteri DSM 12246, E. coli Nissle 1917 or Bifidobacterium longum Q46. Results...

  17. DELAYED APPEARANCE OF LACTOBACILLI IN THE INTESTINES OF CHICKS REARED IN A "NEW" ENVIRONMENT.

    Science.gov (United States)

    BARE, L N; WISEMAN, R F

    1964-11-01

    Male chicks (1 day old; Vantress x Arbor Acre) were fed a basal folic acid-deficient diet, a 5% uric acid-containing diet with and without 5 mg/lb (453.5 g) of bacitracin and 20 mg/lb of sodium penicillin G, the basal diet supplemented with only the antibiotics, and the basal diet plus 500 mug/lb of folic acid. The chicks were reared in a room which had not been used previously for housing chickens ("new" environment). Bacteriological analyses of the contents of the small intestine revealed a decrease in numbers of streptococci and "anaerobic" bacteria in the chicks receiving dietary antibiotics. No persistent changes were seen in the numbers of coliform bacteria. Lactobacilli were not detected in any of the groups until 3 weeks after feeding.

  18. [Surveillance of intestinal helminthiasis in Dafeng City from 2005 to 2010].

    Science.gov (United States)

    Lu, Jian

    2014-12-01

    To understand the current status of intestinal helminth infections in Dafeng City. The residents in 5 villages of Dafeng City were investigated, and their stool samples were detected for the eggs of helminth with Kato-Katz technique, and Enterobius vermicularis was detected by the cellophane anal swab method. The total infection rates of intestinal helminth were 5.77%, 5.51%, 4.60%, 4.18%, 3.41%, and 1.38% from 2005 to 2010, respectively. The trend of total infection rates declined year by year. The infection rates in the 20-30 age-group and 60-80 age-group were higher than those in other age-groups. The infection rates of the male and female were 5.63% (359/6 375) and 2.42% (144/5 949), respectively, and there was a significant difference (χ2 = 74.81, P = 0.00). The infection rate (11.70%) in the northern areas of Dafeng City was higher than that in other places, and the trend of the infection rates decreased from the eastern and northern to the western and southern. The infection rate of E. vermicularis was 1.75% in children in 2010. The infection rate of intestinal helminth is low, but E. vermicularis infection is relatively general in the children in Dafeng City. Therefore, the prevention and treatment still need to be strengthened.

  19. Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn's disease in mice.

    Science.gov (United States)

    LeBlanc, Jean Guy; del Carmen, Silvina; Miyoshi, Anderson; Azevedo, Vasco; Sesma, Fernando; Langella, Philippe; Bermúdez-Humarán, Luis G; Watterlot, Laurie; Perdigon, Gabriela; de Moreno de LeBlanc, Alejandra

    2011-02-10

    Reactive oxygen species are involved in various aspects of intestinal inflammation and tumor development. Decreasing their levels using antioxidant enzymes, such as catalase (CAT) or superoxide dismutase (SOD) could therefore be useful in the prevention of certain diseases. Lactic acid bacteria (LAB) are ideal candidates to deliver these enzymes in the gut. In this study, the anti-inflammatory effects of CAT or SOD producing LAB were evaluated using a trinitrobenzenesulfonic acid (TNBS) induced Crohn's disease murine model. Engineered Lactobacillus casei BL23 strains producing either CAT or SOD, or the native strain were given to mice before and after intrarectal administration of TNBS. Animal survival, live weight, intestinal morphology and histology, enzymatic activities, microbial translocation to the liver and cytokines released in the intestinal fluid were evaluated. The mice that received CAT or SOD-producing LAB showed a faster recovery of initial weight loss, increased enzymatic activities in the gut and lesser extent of intestinal inflammation compared to animals that received the wild-type strain or those that did not receive bacterial supplementation. Our findings suggest that genetically engineered LAB that produce antioxidant enzymes could be used to prevent or decrease the severity of certain intestinal pathologies. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. EFEITO DO LACTOBACILLUS PLANTARUM NO TRATO INTESTINAL DE ALEVINOS DE OREOCHROMIS NILOTICUS

    Directory of Open Access Journals (Sweden)

    José Luís Pedreira Mouriño

    2015-01-01

    Full Text Available The objective of this study was to evaluate alterations in the intestinal tract microbiota and growth performance of Nile tilapia (Orechromis niloticus fed diets supplemented with Lactobacillus plantarum. One hundred and twenty sexually reversed fingerlings were stocked in six aquaria and divided into two treatments, in triplicate: fingerlings fed diet supplement with L. plantarum and fingerlings fed control diet. After 42 days, tilapia fed the diet supplemented with L. plantarum had higher amount of lactic acid bacteria, 3,5x104 CFU and 1,1x102 CFU per g tract, and lower total bacteria, 5,8x106 CFU and 5,2x107 CFU per g tract, than the fish fed the control diet. Furthermore, probiotics increased 3,9% the weekly weight gain, 15,6% final biomass and 15,5% feed efficiency. The use of probiotics in tilapia hatcheries boosts productivity.