WorldWideScience

Sample records for reservoirs selective multizone

  1. Multi-zone coupling productivity of horizontal well fracturing with complex fracture networks in shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Weiyao Zhu

    2018-02-01

    best. Therefore, it is necessary to control fracturing degree reasonably and optimize fracturing parameters, so as to provide a theoretical support for the optimization design of shale gas reservoir fracturing. Keywords: Shale gas, Reservoir, Fracturing, Horizontal well, Complex fracture network, Multi-zone coupling, Multi-scale, Interference, Productivity capacity

  2. Multiobjective reservoir operating rules based on cascade reservoir input variable selection method

    Science.gov (United States)

    Yang, Guang; Guo, Shenglian; Liu, Pan; Li, Liping; Xu, Chongyu

    2017-04-01

    The input variable selection in multiobjective cascade reservoir operation is an important and difficult task. To address this problem, this study proposes the cascade reservoir input variable selection (CIS) method that searches for the most valuable input variables for decision making in multiple-objectivity cascade reservoir operations. From a case study of Hanjiang cascade reservoirs in China, we derive reservoir operating rules based on the combination of CIS and Gaussian radial basis functions (RBFs) methods and optimize the rules through Pareto-archived dynamically dimensioned search (PA-DDS) with two objectives: to maximize both power generation and water supply. We select the most effective input variables and evaluate their impacts on cascade reservoir operations. From the simulated trajectories of reservoir water level, power generation, and water supply, we analyze the multiobjective operating rules with several input variables. The results demonstrate that the CIS method performs well in the selection of input variables for the cascade reservoir operation, and the RBFs method can fully express the nonlinear operating rules for cascade reservoirs. We conclude that the CIS method is an effective and stable approach to identifying the most valuable information from a large number of candidate input variables. While the reservoir storage state is the most valuable information for the Hanjiang cascade reservoir multiobjective operation, the reservoir inflow is the most effective input variable for the single-objective operation of Danjiangkou.

  3. Assessing multizone airflow simulation software

    International Nuclear Information System (INIS)

    Lorenzetti, D.M.

    2002-01-01

    Several standard multizone modeling programs, in order to improve their computational efficiency, make a number of simplifying assumptions. This paper examines how those assumptions reduce the solution times and memory use of the programs, but at the cost of restricting the models they can express. Applications where these restrictions may adversely affect the program's usefulness include: (1) natural ventilation, when buoyancy effects dominate mechanically-driven flow; (2) duct system design, when losses in T-junctions affect the system performance; and (3) control system design, when the dynamic transport of pollutants plays a significant role in the simulated system

  4. Lead-containing solid "oxygen reservoirs" for selective hydrogen combustion

    NARCIS (Netherlands)

    Beckers, J.; Rothenberg, G.

    2009-01-01

    Lead-containing catalysts can be applied as solid "oxygen reservoirs" in a novel process for propane oxidative dehydrogenation. The catalyst lattice oxygen selectively burns hydrogen from the dehydrogenation mixture at 550 degrees C. This shifts the dehydrogenation equilibrium to the desired

  5. Selecting an Appropriate Upscaled Reservoir Model Based on Connectivity Analysis

    Directory of Open Access Journals (Sweden)

    Preux Christophe

    2016-09-01

    Full Text Available Reservoir engineers aim to build reservoir models to investigate fluid flows within hydrocarbon reservoirs. These models consist of three-dimensional grids populated by petrophysical properties. In this paper, we focus on permeability that is known to significantly influence fluid flow. Reservoir models usually encompass a very large number of fine grid blocks to better represent heterogeneities. However, performing fluid flow simulations for such fine models is extensively CPU-time consuming. A common practice consists in converting the fine models into coarse models with less grid blocks: this is the upscaling process. Many upscaling methods have been proposed in the literature that all lead to distinct coarse models. The problem is how to choose the appropriate upscaling method. Various criteria have been established to evaluate the information loss due to upscaling, but none of them investigate connectivity. In this paper, we propose to first perform a connectivity analysis for the fine and candidate coarse models. This makes it possible to identify shortest paths connecting wells. Then, we introduce two indicators to quantify the length and trajectory mismatch between the paths for the fine and the coarse models. The upscaling technique to be recommended is the one that provides the coarse model for which the shortest paths are the closest to the shortest paths determined for the fine model, both in terms of length and trajectory. Last, the potential of this methodology is investigated from two test cases. We show that the two indicators help select suitable upscaling techniques as long as gravity is not a prominent factor that drives fluid flows.

  6. Conjunction of Multizone Infiltration Specialists (COMIS) fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Feustel, H.E.; Rayner-Hooson, A. (eds.)

    1990-05-01

    The COMIS workshop (Conjunction of Multizone Infiltration Specialists) was a joint research effort to develop a multizone infiltration mode. This workshop (October 1988--September 1989) was hosted by the Energy Performance of Buildings Group at Lawrence Berkeley Laboratory's Applied Science Division. The task of the workshop was to develop a detailed multizone infiltration program taking crack flow, HVAC-systems, single-sided ventilation and transport mechanism through large openings into account. This work was accomplished not by investigating into numerical description of physical phenomena but by reviewing the literature for the best suitable algorithm. The numerical description of physical phenomena is clearly a task of IEA-Annex XX Air Flow Patterns in Buildings,'' which will be finished in September 1991. Multigas tracer measurements and wind tunnel data will be used to check the model. The agenda integrated all participants' contributions into a single model containing a large library of modules. The user-friendly program is aimed at researchers and building professionals. From its announcement in December 1986, COMIS was well received by the research community. Due to the internationality of the group, several national and international research programmes were co-ordinated with the COMIS workshop. Colleagues for France, Italy, Japan, The Netherlands, People's Republic of China, Spain, Sweden, Switzerland, and the United States of America were working together on the development of the model. Even though this kind of co-operation is well known in other fields of research, e.g., high energy physics; for the field of building physics it is a new approach. This document contains an overview about infiltration modelling as well as the physics and the mathematics behind the COMIS model. 91 refs., 38 figs., 9 tabs.

  7. Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone Systems

    Science.gov (United States)

    2017-06-05

    management funds over multiple projects . 7.1.3 Energy Costs Energy costs for each air handler are broken into three modes representing the normalized...significant energy consumption reductions seen across all air handlers and operating modes (see Table 12), not all air handler retrofit projects ...39,000 Billion British Thermal Units (BBTUs) of installation energy consumption and between 14,816 and 26,475 individual multizone air handlers. Most

  8. Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone Systems

    Science.gov (United States)

    2017-10-26

    air volume. This will also reduce greenhouse gas production, although the extent depends on the fuels used to generate electricity and heating and...multizone system to a variable air volume system ordinarily requires re- ducting and re-zoning to accommodate “VAV box” terminal units and is a major...deck with associated heating and cooling coils. The system fan operates at a constant speed, and zone dampers blend the hot and cold air from these

  9. Geothermal Reservoir Technology Research Program: Abstracts of selected research projects

    Energy Technology Data Exchange (ETDEWEB)

    Reed, M.J. (ed.)

    1993-03-01

    Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

  10. A survey of air flow models for multizone structures

    Energy Technology Data Exchange (ETDEWEB)

    Feustel, H.E.; Dieris, J.

    1991-03-01

    Air flow models are used to simulate the rates of incoming and outgoing air flows for a building with known leakage under given weather and shielding conditions. Additional information about the flow paths and air-mass flows inside the building can only by using multizone air flow models. In order to obtain more information on multizone air flow models, a literature review was performed in 1984. A second literature review and a questionnaire survey performed in 1989, revealed the existence of 50 multizone air flow models, all developed since 1966, two of which are still under development. All these programs use similar flow equations for crack flow but differ in the versatility to describe the full range of flow phenomena and the algorithm provided for solving the set of nonlinear equations. This literature review was found that newer models are able to describe and simulate the ventilation systems and interrelation of mechanical and natural ventilation. 27 refs., 2 figs., 1 tab.

  11. Integration of a Multizone Airflow Model into a Thermalsimulation Program

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Sørensen, Karl Grau; Heiselberg, Per

    2007-01-01

    An existing computer model for dynamic hygrothermal analysis of buildings has been extended with a multizone airflow model based on loop equations to account for the coupled thermal and airflow in natural and hybrid ventilated buildings. In water distribution network and related fields loop...... a methodology adopted from water distribution network that automatically sets up the independent loops and is easy to implement into a computer program. Finally an example of verification of the model is given which demonstrates the ability of the models to accurately predict the airflow of a simple multizone...

  12. Spatially pooled depth-dependent reservoir storage, elevation, and water-quality data for selected reservoirs in Texas, January 1965-January 2010

    Science.gov (United States)

    Burley, Thomas E.; Asquith, William H.; Brooks, Donald L.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with Texas Tech University, constructed a dataset of selected reservoir storage (daily and instantaneous values), reservoir elevation (daily and instantaneous values), and water-quality data from 59 reservoirs throughout Texas. The period of record for the data is as large as January 1965-January 2010. Data were acquired from existing databases, spreadsheets, delimited text files, and hard-copy reports. The goal was to obtain as much data as possible; therefore, no data acquisition restrictions specifying a particular time window were used. Primary data sources include the USGS National Water Information System, the Texas Commission on Environmental Quality Surface Water-Quality Management Information System, and the Texas Water Development Board monthly Texas Water Condition Reports. Additional water-quality data for six reservoirs were obtained from USGS Texas Annual Water Data Reports. Data were combined from the multiple sources to create as complete a set of properties and constituents as the disparate databases allowed. By devising a unique per-reservoir short name to represent all sites on a reservoir regardless of their source, all sampling sites at a reservoir were spatially pooled by reservoir and temporally combined by date. Reservoir selection was based on various criteria including the availability of water-quality properties and constituents that might affect the trophic status of the reservoir and could also be important for understanding possible effects of climate change in the future. Other considerations in the selection of reservoirs included the general reservoir-specific period of record, the availability of concurrent reservoir storage or elevation data to match with water-quality data, and the availability of sample depth measurements. Additional separate selection criteria included historic information pertaining to blooms of golden algae. Physical properties and constituents were water

  13. Adaptive temperature profile control of a multizone crystal growth furnace

    Science.gov (United States)

    Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.

    1991-01-01

    An intelligent measurement system is described which is used to assess the shape of a crystal while it is growing inside a multizone transparent furnace. A color video imaging system observes the crystal in real time, and determines the position and the shape of the interface. This information is used to evaluate the crystal growth rate, and to analyze the effects of translational velocity and temperature profiles on the shape of the interface. Creation of this knowledge base is the first step to incorporate image processing into furnace control.

  14. Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients

    Czech Academy of Sciences Publication Activity Database

    Jezbera, Jan; Horňák, Karel; Šimek, Karel

    2006-01-01

    Roč. 8, č. 8 (2006), s. 1330-1339 ISSN 1462-2912. [SAME /9./. Helsinky, 21.08.2005-26.08.2005] R&D Projects: GA ČR(CZ) GA206/05/0007 Grant - others:MŠM(CZ) 60076658/01 Institutional research plan: CEZ:AV0Z60170517 Keywords : selectivity * flagellates * grazing * fluorescence * reservoir * nutrients Subject RIV: EE - Microbiology, Virology Impact factor: 4.630, year: 2006

  15. Selection of reservoirs amenable to micellar flooding. First annual report, October 1978-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Goldburg, A.; Price, H.

    1980-12-01

    The overall project objective is to build a solid engineering base upon which the Department of Energy (DOE) can improve and accelerate the application of micellar-polymer recovery technology to Mid-Continent and California sandstone reservoirs. The purpose of the work carried out under these two contracts is to significantly aid, both DOE and the private sector, in gaining the following Project Objectives: to select the better micellar-polymer prospects in the Mid-Continent and California regions; to assess all of the available field and laboratory data which has a bearing on recovering oil by micellar-polymer projects in order to help identify and resolve both the technical and economic constraints relating thereto; and to design and analyze improved field pilots and tests and to develop a micellar-polymer applications matrix for use by the potential technology users; i.e., owner/operators. The report includes the following: executive summary and project objectives; development of a predictive model for economic evaluation of reservoirs; reservoir data bank for micellar-polymer recovery evaluation; PECON program for preliminary economic evaluation; ordering of candidate reservoirs for additional data acquisition; validation of predictive model by numerical simulation; and work forecast. Tables, figures and references are included.

  16. Contaminant ingress into multizone buildings: An analytical state-space approach

    DEFF Research Database (Denmark)

    Parker, Simon; Coffey, Chris; Gravesen, Jens

    2014-01-01

    The ingress of exterior contaminants into buildings is often assessed by treating the building interior as a single well-mixed space. Multizone modelling provides an alternative way of representing buildings that can estimate concentration time series in different internal locations. A state...... term maximum concentration and exposure in a multizone building in response to a step-change in concentration. These have considerable potential for practical use. The analytical development is demonstrated using a simple two-zone building with an inner zone and a range of existing multizone models...

  17. Integration of a Multizone Airflow Model into a Thermal simulation Program

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Sørensen, Karl Grau; Heiselberg, Per

    2007-01-01

    An existing computer model for dynamic hygrothermal analysis of buildings has been extended with a multizone airflow model based on loop equations to account for the coupled thermal and airflow in natural and hybrid ventilated buildings.......An existing computer model for dynamic hygrothermal analysis of buildings has been extended with a multizone airflow model based on loop equations to account for the coupled thermal and airflow in natural and hybrid ventilated buildings....

  18. Intradomain Textures in Block Copolymers: Multizone Alignment and Biaxiality

    Science.gov (United States)

    Prasad, Ishan; Seo, Youngmi; Hall, Lisa M.; Grason, Gregory M.

    2017-06-01

    Block copolymer (BCP) melt assembly has been studied for decades, focusing largely on self-organized spatial patterns of periodically ordered segment density. Here, we demonstrate that underlying the well-known composition profiles (i.e., ordered lamella, cylinders, spheres, and networks) are generic and heterogeneous patterns of segment orientation that couple strongly to morphology, even in the absence of specific factors that promote intra or interchain segment alignment. We employ both self-consistent field theory and coarse-grained simulation methods to measure polar and nematic order parameters of segments in a freely jointed chain model of diblock melts. We show that BCP morphologies have a multizone texture, with segments predominantly aligned normal and parallel to interdomain interfaces in the respective brush and interfacial regions of the microdomain. Further, morphologies with anisotropically curved interfaces (i.e., cylinders and networks) exhibit biaxial order that is aligned to the principal curvature axes of the interface.

  19. Summer habitat selection by striped bass, Morone Saxatilis, in Cherokee Reservoir, Tennessee, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Waddle, H.R.; Coutant, C.C.; Wilson, J.L.

    1980-02-01

    Summer habitat selection patterns of 18 adult striped bass (Morone saxatilis) in Cherokee Reservoir were monitored with externally attached temperature-sensing acoustic or radio transmitters from June through September 1977. Mortalities of adult striped bass in this reservoir were hypothesized to be related to high summer temperatures and low dissolved oxygen (DO). The inhabited areas or refuges differed from noninhabited areas by maintaining temperatures less than or equal to 22 C and DO concentrations greater than 5 mg/liter. Total water hardness, pH, and water transparency were not significantly different among refuges and noninhabited areas. Movement of fish outside refuges occurred more frequently and for longer periods during June when the summer pattern of high temperatures and low DO was less severe. Fish experienced temperatures between 15 and 27 C with mean temperatures of individuals ranging from 18.5 to 22.0 C. Several tagged fish migrated outside the refuges and selected the lowest available temperature, generally near 21 C, even though DO concentrations at these temperatures were 3 mg/liter or less. Long-term survival of tagged and nontagged fish outside refuges was undetermined because no fish were tracked outside a refuge for more than 12 days without being lost. This study indicates that temperature strongly influences the behavior of striped bass and that adults of this species may have a thermal preferendum of approximately 21 C.

  20. Trends in precipitation, streamflow, reservoir pool elevations, and reservoir releases in Arkansas and selected sites in Louisiana, Missouri, and Oklahoma, 1951–2011

    Science.gov (United States)

    Wagner, Daniel M.; Krieger, Joshua D.; Merriman, Katherine R.

    2014-01-01

    The U.S. Geological Survey (USGS) and the U.S. Army Corps of Engineers (USACE) conducted a statistical analysis of trends in precipitation, streamflow, reservoir pool elevations, and reservoir releases in Arkansas and selected sites in Louisiana, Missouri, and Oklahoma for the period 1951–2011. The Mann-Kendall test was used to test for trends in annual and seasonal precipitation, annual and seasonal streamflows of 42 continuous-record USGS streamflow-gaging stations, annual pool elevations and releases from 16 USACE reservoirs, and annual releases from 11 dams on the Arkansas River. A statistically significant (p≤0.10) upward trend was observed in annual precipitation for the State, with a Sen slope of approximately 0.10 inch per year. Autumn and winter were the only seasons that had statistically significant trends in precipitation. Five of six physiographic sections and six of seven 4-digit hydrologic unit code (HUC) regions in Arkansas had statistically significant upward trends in autumn precipitation, with Sen slopes of approximately 0.06 to 0.10 inch per year. Sixteen sites had statistically significant upward trends in the annual mean daily streamflow and were located on streams that drained regions with statistically significant upward trends in annual precipitation. Expected annual rates of change corresponding to statistically significant trends in annual mean daily streamflows, which ranged from 0.32 to 0.88 percent, were greater than those corresponding to regions with statistically significant upward trends in annual precipitation, which ranged from 0.19 to 0.28 percent, suggesting that the observed trends in regional annual precipitation do not fully account for the observed trends in annual mean daily streamflows. Trends in annual maximum daily streamflows were similar to trends in the annual mean daily streamflows but were only statistically significant at seven sites. There were more statistically significant trends (28 of 42 sites) in the

  1. Life history trade-offs and relaxed selection can decrease bacterial virulence in environmental reservoirs.

    Directory of Open Access Journals (Sweden)

    Lauri Mikonranta

    Full Text Available Pathogen virulence is usually thought to evolve in reciprocal selection with the host. While this might be true for obligate pathogens, the life histories of opportunistic pathogens typically alternate between within-host and outside-host environments during the infection-transmission cycle. As a result, opportunistic pathogens are likely to experience conflicting selection pressures across different environments, and this could affect their virulence through life-history trait correlations. We studied these correlations experimentally by exposing an opportunistic bacterial pathogen Serratia marcescens to its natural protist predator Tetrahymena thermophila for 13 weeks, after which we measured changes in bacterial traits related to both anti-predator defence and virulence. We found that anti-predator adaptation (producing predator-resistant biofilm caused a correlative attenuation in virulence. Even though the direct mechanism was not found, reduction in virulence was most clearly connected to a predator-driven loss of a red bacterial pigment, prodigiosin. Moreover, life-history trait evolution was more divergent among replicate populations in the absence of predation, leading also to lowered virulence in some of the 'predator absent' selection lines. Together these findings suggest that the virulence of non-obligatory, opportunistic bacterial pathogens can decrease in environmental reservoirs through life history trade-offs, or random accumulation of mutations that impair virulence traits under relaxed selection.

  2. High temperature and bacteriophages can indirectly select for bacterial pathogenicity in environmental reservoirs.

    Directory of Open Access Journals (Sweden)

    Ville-Petri Friman

    2011-03-01

    Full Text Available The coincidental evolution hypothesis predicts that traits connected to bacterial pathogenicity could be indirectly selected outside the host as a correlated response to abiotic environmental conditions or different biotic species interactions. To investigate this, an opportunistic bacterial pathogen, Serratia marcescens, was cultured in the absence and presence of the lytic bacteriophage PPV (Podoviridae at 25°C and 37°C for four weeks (N = 5. At the end, we measured changes in bacterial phage-resistance and potential virulence traits, and determined the pathogenicity of all bacterial selection lines in the Parasemia plantaginis insect model in vivo. Selection at 37°C increased bacterial motility and pathogenicity but only in the absence of phages. Exposure to phages increased the phage-resistance of bacteria, and this was costly in terms of decreased maximum population size in the absence of phages. However, this small-magnitude growth cost was not greater with bacteria that had evolved in high temperature regime, and no trade-off was found between phage-resistance and growth rate. As a result, phages constrained the evolution of a temperature-mediated increase in bacterial pathogenicity presumably by preferably infecting the highly motile and virulent bacteria. In more general perspective, our results suggest that the traits connected to bacterial pathogenicity could be indirectly selected as a correlated response by abiotic and biotic factors in environmental reservoirs.

  3. Contaminant ingress into multizone buildings: An analytical state-space approach

    KAUST Repository

    Parker, Simon

    2013-08-13

    The ingress of exterior contaminants into buildings is often assessed by treating the building interior as a single well-mixed space. Multizone modelling provides an alternative way of representing buildings that can estimate concentration time series in different internal locations. A state-space approach is adopted to represent the concentration dynamics within multizone buildings. Analysis based on this approach is used to demonstrate that the exposure in every interior location is limited to the exterior exposure in the absence of removal mechanisms. Estimates are also developed for the short term maximum concentration and exposure in a multizone building in response to a step-change in concentration. These have considerable potential for practical use. The analytical development is demonstrated using a simple two-zone building with an inner zone and a range of existing multizone models of residential buildings. Quantitative measures are provided of the standard deviation of concentration and exposure within a range of residential multizone buildings. Ratios of the maximum short term concentrations and exposures to single zone building estimates are also provided for the same buildings. © 2013 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  4. Diet Shift and Prey Selection of the Native European Catfish, Silurus glanis, in a Turkish Reservoir

    Directory of Open Access Journals (Sweden)

    Ahmet ALP

    2017-04-01

    Full Text Available Diet and prey selection of European catfish were studied in Menzelet Reservoir in Turkey. Diet of European catfish composed of 6 prey fish species, 1 crab (Potamon sp. and 1 leech (Hirudo sp.. Diet composition was dominated by fish, including Alburnus kotsychyi, Capoeta angorae, Capoeta erhani, Luciobarbus pectoralis, Silurus glanis and the most important prey item was A. kotsychyi. The diet of European catfish was constituted solely by fish in winter and autumn while crab and leech contributed to a small part of the diet in spring and summer. Therefore, feeding was more heterogeneous in spring and summer than winter and autumn. The values of X2 and G statistics indicated a significant difference (P0.05.

  5. Sedimentation and occurrence and trends of selected chemical constituents in bottom sediment of 10 small reservoirs, Eastern Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    2004-01-01

    Many municipalities in Kansas rely on small reservoirs as a source of drinking water and for recreational activities. Because of their significance to the community, management of the reservoirs and the associated basins is important to protect the reservoirs from degradation. Effective reservoir management requires information about water quality, sedimentation, and sediment quality. A combination of bathymetric surveying and bottom-sediment coring during 2002 and 2003 was used to investigate sediment deposition and the occurrence of selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 26 trace elements, 15 organochlorine compounds, and 1 radionuclide in the bottom sediment of 10 small reservoirs in eastern Kansas. Original reservoir water-storage capacities ranged from 23 to 5,845 acre-feet. The mostly agricultural reservoir basins range in area from 0.6 to 14 square miles. The mean annual net volume of deposited sediment, estimated separately for several of the reservoirs, ranged from about 43,600 to about 531,000 cubic feet. The estimated mean annual net mass of deposited sediment ranged from about 1,360,000 to about 23,300,000 pounds. The estimated mean annual net sediment yields from the reservoir basins ranged from about 964,000 to about 2,710,000 pounds per square mile. Compared to sediment yield estimates provided by a statewide study published in 1965, the estimates determined in this study differed substantially and were typically smaller. A statistically significant positive correlation was determined for the relation between sediment yield and mean annual precipitation. Nutrient concentrations in the bottom sediment varied substantially among the 10 reservoirs. Median total nitrogen concentrations ranged from 1,400 to 3,700 milligrams per kilogram. Median total phosphorus concentrations ranged from 550 to 1,300 milligrams per kilogram. A statistically significant positive trend (that is, nutrient concentration increased

  6. The size selectivity of the main body of a sampling pelagic pair trawl in freshwater reservoirs during the night

    Czech Academy of Sciences Publication Activity Database

    Říha, Milan; Jůza, Tomáš; Prchalová, Marie; Mrkvička, Tomáš; Čech, Martin; Draštík, Vladislav; Muška, Milan; Kratochvíl, Michal; Peterka, Jiří; Tušer, Michal; Vašek, Mojmír; Kubečka, Jan

    2012-01-01

    Roč. 127, September (2012), s. 56-60 ISSN 0165-7836 R&D Projects: GA MZe(CZ) QH81046 Institutional support: RVO:60077344 Keywords : quantitative sampling * gear selectivity * trawl * reservoirs Subject RIV: GL - Fishing Impact factor: 1.695, year: 2012

  7. Application of the new Gassmann theory in seismic modeling of selected gas reservoirs, offshore Netherlands

    NARCIS (Netherlands)

    Auduson, A.E.

    2013-01-01

    In the Southern North Sea, Buntsandstein reservoirs which, can be gas- or water-bearing, frequently contain solid (salt) in the pores spaces. Recent literatures on extension of the Gassmann equation investigate the substitution of fluids and solids in the pore space of reservoir rock. Conventional

  8. A distributed control algorithm for internal flow management in a multi-zone climate unit

    NARCIS (Netherlands)

    Persis, C. De; Jessen, J.J.; Izadi-Zamanabadi, R.; Schiøler, H.

    2008-01-01

    We examine a distributed control problem for internal flow management in a multi-zone climate unit. The problem consists of guaranteeing prescribed indoor climate conditions in a cascade connection of an arbitrarily large number of communicating zones, in which air masses are exchanged to redirect

  9. Multi-Zone hybrid model for failure detection of the stable ventilation systems

    DEFF Research Database (Denmark)

    Gholami, Mehdi; Schiøler, Henrik; Soltani, Mohsen

    2010-01-01

    In this paper, a conceptual multi-zone model for climate control of a live stock building is elaborated. The main challenge of this research is to estimate the parameters of a nonlinear hybrid model. A recursive estimation algorithm, the Extended Kalman Filter (EKF) is implemented for estimation...

  10. Stream, Lake, and Reservoir Management.

    Science.gov (United States)

    Dai, Jingjing; Mei, Ying; Chang, Chein-Chi

    2017-10-01

    This review on stream, lake, and reservoir management covers selected 2016 publications on the focus of the following sections: Stream, lake, and reservoir management • Water quality of stream, lake, and reservoirReservoir operations • Models of stream, lake, and reservoir • Remediation and restoration of stream, lake, and reservoir • Biota of stream, lake, and reservoir • Climate effect of stream, lake, and reservoir.

  11. Biotelemetry study of spring and summer habitat selection by striped bass in Cherokee Reservoir, Tennessee, 1978. [Morone saxatilis

    Energy Technology Data Exchange (ETDEWEB)

    Schaich, B.A.; Coutant, C.C.

    1980-08-01

    Habitat selection of 31 adult striped bass was monitored by temperature sensing ultrasonic and radio transmitters in Cherokee Reservoir, Tennessee, from March through October 1978. This study sought to corroborate summer data obtained by Waddle (1979) in 1977 and to examine mechanisms of habitat selection by observing establishment of the summer distribution. During the spring and early summer months the striped bass ranged throughout the study area in the downstream half of the reservoir. Fish stayed near the bottom at the preferred temperatures throughout the whole study, and no individuals were observed in open water. Movement rates of up to 2.6 km/day were estimated, and rates of 1 km/day were common in the spring. By late July they were apparently avoiding low dissolved oxygen (D.O.) concentrations (<3 mg/l) near the bottom of the main reservoir and epilimnion temperatures greater than 22/sup 0/C, and they moved into cool, oxygenated spring or creek channels (refuges). Low movement rates of 0 to 25 m/day within these refuges occurred. The rates of the few migrations between refuges could not be estimated. Tagged fish moved out of the refuges 3 to 4 weeks after the fall overturn when reservoir temperatures approximated 22 to 24/sup 0/C.

  12. Bioaccumulation of selected metals in bivalves (Unionidae) and Phragmites australis inhabiting a municipal water reservoir

    OpenAIRE

    Rzymski, Piotr; Niedzielski, Przemysław; Klimaszyk, Piotr; Poniedziałek, Barbara

    2014-01-01

    Urbanization can considerably affect water reservoirs by, inter alia, input, and accumulation of contaminants including metals. Located in the course of River Cybina, Maltański Reservoir (Western Poland) is an artificial shallow water body built for recreation and sport purposes which undergoes restoration treatment (drainage) every 4 years. In the present study, we demonstrate an accumulation of nine metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in water, sediment, three bivalve species (Anodo...

  13. SCREENING METHODS FOR SELECTION OF SURFACTANT FORMULATIONS FOR IOR FROM FRACTURED CARBONATE RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    William A. Goddard III; Yongchun Tang; Patrick Shuler; Mario Blanco; Yongfu Wu; Seung Soon Jang

    2005-07-01

    This topical report presents details of the laboratory work performed to complete Task 1 of this project; developing rapid screening methods to assess surfactant performance for IOR (Improved Oil Recovery) from fractured carbonate reservoirs. The desired outcome is to identify surfactant formulations that increase the rate and amount of aqueous phase imbibition into oil-rich, oil-wet carbonate reservoir rock. Changing the wettability from oil-wet to water-wet is one key to enhancing this water-phase imbibition process that in turn recovers additional oil from the matrix portion of a carbonate reservoir. The common laboratory test to evaluate candidate surfactant formulations is to measure directly the aqueous imbibition rate and oil recovery from small outcrop or reservoir cores, but this procedure typically requires several weeks. Two methods are presented here for the rapid screening of candidate surfactant formulations for their potential IOR performance in carbonate reservoirs. One promising surfactant screening protocol is based on the ability of a surfactant solution to remove aged crude oil that coats a clear calcite crystal (Iceland Spar). Good surfactant candidate solutions remove the most oil the quickest from the chips, plus change the apparent contact angle of the remaining oil droplets on the surface that thereby indicate increased water-wetting. The other fast surfactant screening method is based on the flotation behavior of powdered calcite in water. In this test protocol, first the calcite power is pre-treated to make the surface oil-wet. The next step is to add the pre-treated powder to a test tube and add a candidate aqueous surfactant formulation; the greater the percentage of the calcite that now sinks to the bottom rather than floats, the more effective the surfactant is in changing the solids to become now preferentially water-wet. Results from the screening test generally are consistent with surfactant performance reported in the literature.

  14. From Target Selection to Post-Stimulation Analysis: Example of an Unconventional Faulted Reservoir

    Science.gov (United States)

    LeCalvez, J. H.; Williams, M.; Xu, W.; Stokes, J.; Moros, H.; Maxwell, S. C.; Conners, S.

    2011-12-01

    As the global balance of supply and demand forces the hydrocarbon industry toward unconventional resources, technology- and economics-driven shale oil and gas production is gaining momentum throughout many basins worldwide. Production from such unconventional plays is facilitated by massive hydraulic fracturing treatments aimed at increasing permeability and reactivating natural fractures. Large-scale faulting and fracturing partly control stress distribution, hence stimulation-derived hydraulically-induced fracture systems development. Therefore, careful integrated approaches to target selection, treatment staging, and stimulation methods need to be used to economically maximize ultimate hydrocarbon recovery. We present a case study of a multistage, multilateral stimulation project in the Fort Worth Basin, Texas. Wells had to be drilled within city limits in a commercially developing building area. Well locations and trajectories were determined in and around large-scale faults using 3D surface seismic with throws varying from seven to thirty meters. As a result, three horizontal wells were drilled in the Lower Barnett Shale section, 150 m apart with the central well landed about 25 m shallower than the outside laterals. Surface seismic indicates that the surface locations are on top of a major fault complex with the lateral sections drilling away from the major fault system and through a smaller fault. Modeling of the borehole-based microseismic monitoring options led to the selection of an optimum set of configurations given the operational restrictions faced: monitoring would mainly take place using a horizontal array to be tractored downhole and moved according to the well and stage to be monitored. Wells were completed using a perf-and-plug approach allowing for each stimulation stage to obtain a precise orientation of the various three-component accelerometers of the monitoring array as well as the calibration of the velocity model used to process the

  15. Prediction and Validation of Heat Release Direct Injection Diesel Engine Using Multi-Zone Model

    Science.gov (United States)

    Anang Nugroho, Bagus; Sugiarto, Bambang; Prawoto; Shalahuddin, Lukman

    2014-04-01

    The objective of this study is to develop simulation model which capable to predict heat release of diesel combustion accurately in efficient computation time. A multi-zone packet model has been applied to solve the combustion phenomena inside diesel cylinder. The model formulations are presented first and then the numerical results are validated on a single cylinder direct injection diesel engine at various engine speed and timing injections. The model were found to be promising to fulfill the objective above.

  16. A parametric investigation of hydrogen hcci combustion using a multi-zone model approach

    International Nuclear Information System (INIS)

    Komninos, N.P.; Hountalas, D.T.; Rakopoulos, C.D.

    2007-01-01

    The purpose of the present study is to examine the effect of various operating variables of a homogeneous charge compression ignition (HCCI) engine fueled with hydrogen, using a multi-zone model developed by the authors. The multi-zone model consists of zones, which are allotted spatial locations within the combustion chamber. The model takes into account heat transfer between the zones and the combustion chamber walls, providing a spatial temperature distribution during the closed part of the engine cycle, i.e. compression, combustion and expansion. Mass transfer between zones is also accounted for, based on the geometric configuration of the zones, and includes the flow of mass in and out of the crevice regions, represented by the crevice zone. Combustion is incorporated using chemical kinetics based on a chemical reaction mechanism for the oxidation of hydrogen. This chemical reaction mechanism also includes the reactions for nitrogen oxides formation. Using the multi-zone model a parametric investigation is conducted, in order to determine the effect of engine speed, equivalence ratio, compression ratio, inlet pressure and inlet temperature, on the performance, combustion characteristics and emissions of an HCCI engine fueled with hydrogen

  17. Selected trace and minor elements in sediments of Itaipu dam reservoir

    Science.gov (United States)

    Facetti-Masulli, J. F.; Kump, P.; de Diaz, Z. V.

    2003-01-01

    The X-ray fluorescence analysis of some minor and trace elements in sediments of Itaipu Dam reservoir was used for a study of geochemical processes and the evolution and history of a water body, which characterise the geological history as well as the present changes in the area. Inter alia good correlation with the Ti and incompatible elements content in whole rock was found and that REEs can be used as provenance indicators.

  18. Selected trace and minor elements in sediments of Itaipu dan reservoir

    International Nuclear Information System (INIS)

    Facetti-Masulli, J. F.; Kump, P.; Villanueva de Diaz, Z.

    2003-01-01

    The X-ray fluorescence analysis of some minor and trace elements in sediments of Itaipu Dam reservoir was used for a study of geochemical processes and the evolution and history of a water body which characterise the geological history as well as the present changes in the area. Inter alia good correlation with the Ti and incompatible elements content in whole rock was found and that REEs can be used as provenance indicators

  19. Application of PLT (Production Loggin Tool) surveys to select a vertical grid refinement in gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Pablo Julian [Petrosynergy Ltda., Sao Paulo, SP (Brazil); Schiozer, Denis Jose [Universidade Estadual de Campinas (UNISIM/UNICAMP), SP (Brazil). Dept. de Engenharia de Petroleo. Pesquisa em Simulacao e Gerenciamento de Reservatorios

    2012-07-01

    Most of the time, the fluid segregation in porous media between gas and water makes water breakthrough reach a well structurally from the bottom, even when coning effect is present. In this paper we describe a real case of a gas reservoir when water breakthrough reach the vertical well from the middle of the perforation, above gas phase. We also expose how to upgrade the geological model to represent the high permeability channels in the numerical simulation model. (author)

  20. Distribution and geochemistry of selected trace elements in the Sacramento River near Keswick Reservoir

    Science.gov (United States)

    Antweiler, Ronald C.; Taylor, Howard E.; Alpers, Charles N.

    2012-01-01

    The effect of heavy metals from the Iron Mountain Mines (IMM) Superfund site on the upper Sacramento River is examined using data from water and bed sediment samples collected during 1996-97. Relative to surrounding waters, aluminum, cadmium, cobalt, copper, iron, lead, manganese, thallium, zinc and the rare-earth elements (REE) were all present in high concentrations in effluent from Spring Creek Reservoir (SCR), which enters into the Sacramento River in the Spring Creek Arm of Keswick Reservoir. SCR was constructed in part to regulate the flow of acidic, metal-rich waters draining the IMM Superfund site. Although virtually all of these metals exist in SCR in the dissolved form, upon entering Keswick Reservoir they at least partially converted via precipitation and/or adsorption to the particulate phase. In spite of this, few of the metals settled out; instead the vast majority was transported colloidally down the Sacramento River at least to Bend Bridge, 67. km from Keswick Dam.The geochemical influence of IMM on the upper Sacramento River was variable, chiefly dependent on the flow of Spring Creek. Although the average flow of the Sacramento River at Keswick Dam is 250m 3/s (cubic meters per second), even flows as low as 0.3m 3/s from Spring Creek were sufficient to account for more than 15% of the metals loading at Bend Bridge, and these proportions increased with increasing Spring Creek flow.The dissolved proportion of the total bioavailable load was dependent on the element but steadily decreased for all metals, from near 100% in Spring Creek to values (for some elements) of less than 1% at Bend Bridge; failure to account for the suspended sediment load in assessments of the effect of metals transport in the Sacramento River can result in estimates which are low by as much as a factor of 100. ?? 2012.

  1. Selection indicates preference in diverse habitats: a ground-nesting bird (Charadrius melodus) using reservoir shoreline.

    Science.gov (United States)

    Anteau, Michael J; Sherfy, Mark H; Wiltermuth, Mark T

    2012-01-01

    Animals use proximate cues to select resources that maximize individual fitness. When animals have a diverse array of available habitats, those selected could give insights into true habitat preferences. Since the construction of the Garrison Dam on the Missouri River in North Dakota, Lake Sakakawea (SAK) has become an important breeding area for federally threatened piping plovers (Charadrius melodus; hereafter plovers). We used conditional logistic regression to examine nest-site selection at fine scales (1, 3, and 10 m) during summers 2006-2009 by comparing characteristics at 351 nests to those of 668 random sites within nesting territories. Plovers selected sites (1 m(2)) that were lower than unused random sites, increasing the risk of nest inundation. Plovers selected nest sites that were flat, had little silt, and at least 1 cobble; they also selected for 3-m radius nest areas that were relatively flat and devoid of vegetation and litter. Ninety percent of nests had <38% coverage of silt and <10% slope at the site, and <15% coverage of vegetation or litter and <31% slope within the 3-m radius. Gravel was selected for at nest sites (11% median), but against in the area 10-m from the nest, suggesting plovers select for patches or strips of gravel. Although elevation is rarely evaluated in studies of ground-nesting birds, our results underscore its importance in habitat-selection studies. Relative to where plovers historically nested, habitat at SAK has more diverse topography, substrate composition, vegetation communities, and greater water-level fluctuations. Accordingly, our results provide an example of how habitat-selection results can be interpreted as habitat preferences because they are not influenced by desired habitats being scarce or absent. Further, our results will be useful for directing habitat conservation for plovers and interpreting other habitat-selection studies.

  2. Selection indicates preference in diverse habitats: a ground-nesting bird (Charadrius melodus using reservoir shoreline.

    Directory of Open Access Journals (Sweden)

    Michael J Anteau

    Full Text Available Animals use proximate cues to select resources that maximize individual fitness. When animals have a diverse array of available habitats, those selected could give insights into true habitat preferences. Since the construction of the Garrison Dam on the Missouri River in North Dakota, Lake Sakakawea (SAK has become an important breeding area for federally threatened piping plovers (Charadrius melodus; hereafter plovers. We used conditional logistic regression to examine nest-site selection at fine scales (1, 3, and 10 m during summers 2006-2009 by comparing characteristics at 351 nests to those of 668 random sites within nesting territories. Plovers selected sites (1 m(2 that were lower than unused random sites, increasing the risk of nest inundation. Plovers selected nest sites that were flat, had little silt, and at least 1 cobble; they also selected for 3-m radius nest areas that were relatively flat and devoid of vegetation and litter. Ninety percent of nests had <38% coverage of silt and <10% slope at the site, and <15% coverage of vegetation or litter and <31% slope within the 3-m radius. Gravel was selected for at nest sites (11% median, but against in the area 10-m from the nest, suggesting plovers select for patches or strips of gravel. Although elevation is rarely evaluated in studies of ground-nesting birds, our results underscore its importance in habitat-selection studies. Relative to where plovers historically nested, habitat at SAK has more diverse topography, substrate composition, vegetation communities, and greater water-level fluctuations. Accordingly, our results provide an example of how habitat-selection results can be interpreted as habitat preferences because they are not influenced by desired habitats being scarce or absent. Further, our results will be useful for directing habitat conservation for plovers and interpreting other habitat-selection studies.

  3. Parameter Estimation of Dynamic Multi-zone Models for Livestock Indoor Climate Control

    DEFF Research Database (Denmark)

    Wu, Zhuang; Stoustrup, Jakob; Heiselberg, Per

    2008-01-01

    and winter at a real scale livestock building in Denmark. The obtained comparative results between the measured data and the simulated output confirm that a very simple multi-zone model can capture the salient dynamical features of the climate dynamics which are needed for control purposes......., the livestock, the ventilation system and the building on the dynamic performance of indoor climate. Some significant parameters employed in the climate model as well as the airflow interaction between each conceptual zone are identified with the use of experimental time series data collected during spring...

  4. Accumulation of Heavy Metals in Crayfish and Fish from Selected Czech Reservoirs

    Directory of Open Access Journals (Sweden)

    Iryna Kuklina

    2014-01-01

    Full Text Available To evaluate the accumulation of aluminium, cadmium, chromium, copper, lead, mercury, nickel, and zinc in crayfish and fish organ tissues, specimens from three drinking water reservoirs (Boskovice, Landštejn, and Nová Říše and one contaminated site (Darkovské moře in the Czech Republic were examined. Crayfish hepatopancreas was confirmed to be the primary accumulating site for the majority of metals (Cu > Zn > Ni > Cd > Cr, while Hg and Cr were concentrated in abdominal muscle, and Al and Pb were concentrated in gill. Metals found in Nová Říše specimens included Cu > Zn > Ni and those found in Boskovice included Zn > Hg > Cr. Cd concentrations were observed only in Landštejn specimens, while contaminated Darkovské moře specimens showed the highest levels of accumulation (Cu > Al > Zn > Pb. The majority of evaluated metals were found in higher concentrations in crayfish: Cu > Al > Zn > Ni > Cr > Cd > Pb, with Hg being the only metal accumulating higher in fish. Due to accumulation similarities of Al in crayfish and fish gill, differences of Hg in muscle, and features noted for the remaining metals in examined tissues, biomonitoring should incorporate both crayfish and fish to produce more relevant water quality surveys.

  5. Semi-analytical solutions of groundwater flow in multi-zone (patchy) wedge-shaped aquifers

    Science.gov (United States)

    Samani, Nozar; Sedghi, Mohammad M.

    2015-03-01

    Alluvial fans are potential sites of potable groundwater in many parts of the world. Characteristics of alluvial fans sediments are changed radially from high energy coarse-grained deposition near the apex to low energy fine-grained deposition downstream so that patchy wedge-shaped aquifers with radial heterogeneity are formed. The hydraulic parameters of the aquifers (e.g. hydraulic conductivity and specific storage) change in the same fashion. Analytical or semi-analytical solutions of the flow in wedge-shaped aquifers are available for homogeneous cases. In this paper we derive semi-analytical solutions of groundwater flow to a well in multi-zone wedge-shaped aquifers. Solutions are provided for three wedge boundary configurations namely: constant head-constant head wedge, constant head-barrier wedge and barrier-barrier wedge. Derivation involves the use of integral transforms methods. The effect of heterogeneity ratios of zones on the response of the aquifer is examined. The results are presented in form of drawdown and drawdown derivative type curves. Heterogeneity has a significant effect on over all response of the pumped aquifer. Solutions help understanding the behavior of heterogeneous multi-zone aquifers for sustainable development of the groundwater resources in alluvial fans.

  6. A numerical model including PID control of a multizone crystal growth furnace

    Science.gov (United States)

    Panzarella, Charles H.; Kassemi, Mohammad

    1992-01-01

    This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.

  7. Designing multi-reservoir system designs via efficient water-energy-food nexus trade-offs - Selecting new hydropower dams for the Blue Nile and Nepal's Koshi Basin

    Science.gov (United States)

    Harou, J. J.; Hurford, A.; Geressu, R. T.

    2015-12-01

    Many of the world's multi-reservoir water resource systems are being considered for further development of hydropower and irrigation aiming to meet economic, political and ecological goals. Complex river basins serve many needs so how should the different proposed groupings of reservoirs and their operations be evaluated? How should uncertainty about future supply and demand conditions be factored in? What reservoir designs can meet multiple goals and perform robustly in a context of global change? We propose an optimized multi-criteria screening approach to identify best performing designs, i.e., the selection, size and operating rules of new reservoirs within multi-reservoir systems in a context of deeply uncertain change. Reservoir release operating rules and storage sizes are optimized concurrently for each separate infrastructure design under consideration across many scenarios representing plausible future conditions. Outputs reveal system trade-offs using multi-dimensional scatter plots where each point represents an approximately Pareto-optimal design. The method is applied to proposed Blue Nile River reservoirs in Ethiopia, where trade-offs between capital costs, total and firm energy output, aggregate storage and downstream irrigation and energy provision for the best performing designs are evaluated. The impact of filling period for large reservoirs is considered in a context of hydrological uncertainty. The approach is also applied to the Koshi basin in Nepal where combinations of hydropower storage and run-of-river dams are being considered for investment. We show searching for investment portfolios that meet multiple objectives provides stakeholders with a rich view on the trade-offs inherent in the nexus and how different investment bundles perform differently under plausible futures. Both case-studies show how the proposed approach helps explore and understand the implications of investing in new dams in a global change context.

  8. Large-scale multi-zone optimal power dispatch using hybrid hierarchical evolution technique

    Directory of Open Access Journals (Sweden)

    Manjaree Pandit

    2014-03-01

    Full Text Available A new hybrid technique based on hierarchical evolution is proposed for large, non-convex, multi-zone economic dispatch (MZED problems considering all practical constraints. Evolutionary/swarm intelligence-based optimisation techniques are reported to be effective only for small/medium-sized power systems. The proposed hybrid hierarchical evolution (HHE algorithm is specifically developed for solving large systems. The HHE integrates the exploration and exploitation capabilities of particle swarm optimisation and differential evolution in a novel manner such that the search efficiency is improved substantially. Most hybrid techniques export or exchange features or operations from one algorithm to the other, but in HHE their entire individual features are retained. The effectiveness of the proposed algorithm has been verified on six-test systems having different sizes and complexity levels. Non-convex MZED solution for such large and complex systems has not yet been reported.

  9. An optimized chemical kinetic mechanism for HCCI combustion of PRFs using multi-zone model and genetic algorithm

    International Nuclear Information System (INIS)

    Neshat, Elaheh; Saray, Rahim Khoshbakhti

    2015-01-01

    Highlights: • A new chemical kinetic mechanism for PRFs HCCI combustion is developed. • New mechanism optimization is performed using genetic algorithm and multi-zone model. • Engine-related combustion and performance parameters are predicted accurately. • Engine unburned HC and CO emissions are predicted by the model properly. - Abstract: Development of comprehensive chemical kinetic mechanisms is required for HCCI combustion and emissions prediction to be used in engine development. The main purpose of this study is development of a new chemical kinetic mechanism for primary reference fuels (PRFs) HCCI combustion, which can be applied to combustion models to predict in-cylinder pressure and exhaust CO and UHC emissions, accurately. Hence, a multi-zone model is developed for HCCI engine simulation. Two semi-detailed chemical kinetic mechanisms those are suitable for premixed combustion are used for n-heptane and iso-octane HCCI combustion simulation. The iso-octane mechanism contains 84 species and 484 reactions and the n-heptane mechanism contains 57 species and 296 reactions. A simple interaction between iso-octane and n-heptane is considered in new mechanism. The multi-zone model is validated using experimental data for pure n-heptane and iso-octane. A new mechanism is prepared by combination of these two mechanisms for n-heptane and iso-octane blended fuel, which includes 101 species and 594 reactions. New mechanism optimization is performed using genetic algorithm and multi-zone model. Mechanism contains low temperature heat release region, which decreases with increasing octane number. The results showed that the optimized chemical kinetic mechanism is capable of predicting engine-related combustion and performance parameters. Also after implementing the optimized mechanism, engine unburned HC and CO emissions predicted by the model are in good agreement with the corresponding experimental data

  10. [Ribosome engineering of streptomyces sp. FJ3 from Three Gorges reservoir area and metabolic product of the selected mutant strain].

    Science.gov (United States)

    Hai, Le; Huang, Yuqi; Liao, Guojian; Hu, Changhua

    2011-07-01

    To explore new resource from inactive actinomycete strains, we screened resistant mutant strains by ribosome engineering, and analyzed the products derived from the selected mutant strains. Three Gorges reservoir area-derived actinomycete strains including BD20, FJ3, WZ20 and FJ5 were used as initial strains, which showed no-antibacterial activities. The streptomycin-resistant (str(R)) mutants and rifampicin-resistant (rif(R)) mutants were screened by single colony isolation on streptomycin-containing plates and rifampicin-containing plates according to the method for obtaining drug-resistant mutants in ribosome engineering. The four initial strains and their str(R)-mutants and rif(R)-mutants were fermented in a liquid medium with the same composition. Mutants with anti-Staphylococcus aureus activity were obtained by paper chromatography. The components of fermentation broth were analyzed by high performance liquid chromatography (HPLC) and high performance liquid chromatography-mass spectrometry (LC-MS). Furthermore, FJ3 strain was identified by 16S rDNA and morphology. The minimal inhibitory concentration (MIC) of streptomycin and rifampicin for FJ3 was: 0.5 microg/mL and 110 microg/mL, respectively. Twenty-four strR-mutant strains and 20 rif(R)-mutant strains of FJ3 mutant strains were selected for bioassay. The result of the antibacterial activity screening demonstrated that six strains inhibited bacteria. Two strains (FJ3-2 and FJ3-6) were screened from the streptomycin-resistance mutants of inactive strain FJ3. The result of bioassay showed that the fermentation broth of FJ3-2 and FJ3-6 exhibited obvious anti-Staphylococcus aureus activity. The assay of paper chromatography showed that the active substance may be nucleic acid class antibiotic via using solvent system Doskochilova. Moreover, the results of HPLC and LC-MS exhibited that this substance may be thiolutin. Ribosome engineering for changing the secondary metabolic function of the inactive wild

  11. Estimated Loads of Suspended Sediment and Selected Trace Elements Transported through Milltown Reservoir in the Upper Clark Fork Basin, Montana, Water Years 2004-07

    Science.gov (United States)

    Lambing, John H.; Sando, Steven K.

    2008-01-01

    The purpose of this report is to present estimated daily and annual loads of suspended sediment and selected trace elements for water years 2004-07 at two sites upstream and one site downstream from Milltown Reservoir. Milltown Reservoir is a National Priorities List Superfund site in the upper Clark Fork basin of western Montana where sediments enriched in trace elements from historical mining and ore processing have been deposited since the construction of Milltown Dam in 1907. The estimated loads were used to quantify annual net gains and losses (mass balance) of suspended sediment and trace elements within Milltown Reservoir before and after June 1, 2006, which was the start of Stage 1 of a permanent drawdown of the reservoir in preparation for removal of Milltown Dam. This study was done in cooperation with the U.S. Environmental Protection Agency. Daily loads of suspended sediment were estimated for water years 2004-07 by using either high-frequency sampling as part of daily sediment monitoring or regression equations relating suspended-sediment discharge to streamflow. Daily loads of unfiltered-recoverable arsenic, cadmium, copper, iron, lead, manganese, and zinc were estimated by using regression equations relating trace-element discharge to suspended-sediment discharge. Regression equations were developed from data for eriodic water-quality samples collected during water years 2004-07. The equations were applied to daily records of either streamflow or suspended-sediment discharge to produce estimated daily loads. Variations in daily suspended-sediment and trace-element loads generally coincided with variations in streamflow. For most of the period before June 1, 2006, differences in daily loads transported to and from Milltown Reservoir were minor or indicated small amounts of deposition; however, losses of suspended sediment and trace elements from the reservoir occurred during temporary drawdowns in July-August 2004 and October-December 2005. After the

  12. Predicting self-pollution inside school buses using a CFD and multi-zone coupled model

    Science.gov (United States)

    Li, Fei; Lee, Eon S.; Liu, Junjie; Zhu, Yifang

    2015-04-01

    The in-cabin environment of a school bus is important for children's health. The pollutants from a bus's own exhaust contribute to children's overall exposure to air pollutants inside the school bus cabin. In this study, we adapted a coupled model originally developed for indoor environment to determine the relative contribution of the bus own exhaust to the in-cabin pollutant concentrations. The coupled model uses CFD (computational fluent dynamics) model to simulate outside concentration and CONTAM (a multi-zone model) for inside the school bus. The model was validated with experimental data in the literature. Using the validated model, we analyzed the effects of vehicle speed and tailpipe location on self-pollution inside the bus cabin. We confirmed that the pollution released from the tailpipe can penetrate into the bus cabin through gaps in the back emergency door. We found the pollution concentration inside school buses was the highest when buses were driven at a medium speed. In addition, locating the tailpipe on the side, behind the rear axle resulted in less self-pollution since there is less time for the suction effect to take place. The developed theoretical framework can be generalized to study other types of buses. These findings can be used in developing policy recommendations for reducing human exposure to air pollution inside buses.

  13. MULTI-ZONE ANTIREFLECTION COATING ON A SUBSTRATE MADE OF OPTICAL ZINC SULPHIDE

    Directory of Open Access Journals (Sweden)

    T. D. Tan

    2014-01-01

    Full Text Available The paper deals with creation technique for a multi-zone antireflection coating on a substrate made of the optical zinc sulphide ZnS. The coating effectively operates simultaneously in the following spectral ranges: visible region of 450 - 700 nm, in the near infrared region of 1000 - 1100 nm, at the wavelength of 1.55 μm, and in the mid-infrared (IR spectrum of 3 - 5 microns. Reflection coefficient in the range of 450 - 700 nm is not more than 2%, in the range of 1000 - 1100 nm is less than 0.5%, in the range of 1500 - 1700 nm is close to 1.5% and in the range of 3 - 5 μm is equal to 0.6%. Analysis results of the deviation impact in the thickness of layers on the value changing of the energy reflection coefficient in the considered areas are given. Deviation in the thickness of the layer, contiguous with the air, is shown to have the greatest effect on the spectral characteristics of the obtained coating. Refractive index deviation for this layer influences the magnitude of the residual reflection.

  14. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neutral reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  15. Preliminary study of the aquatic macrophytes of selected fish ponds and reservoirs in Makurdi, Benue State, Nigeria

    OpenAIRE

    Okayi, R.G.; Abe, O.M.

    2003-01-01

    A five months survey was conducted to identify the aquatic macrophytes in fishponds and reservoirs in Makurdi (Benue State, Nigeria) between August and December 1999. A total of 3-prominent aquatic macrophytes were identified: Ipomoea aquatica, Nymphae lotus and Echinochloa pyramidalis at two-study sites (site 1, receives organic manure effluent from a cattle ranch, site 2, receives inorganic fertilizer through application). Ipomoea aquatica were found restricted to site l, while Nymphae lotu...

  16. Data Assimilation Tools for CO2 Reservoir Model Development – A Review of Key Data Types, Analyses, and Selected Software

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Sullivan, E. C.; Murray, Christopher J.; Last, George V.; Black, Gary D.

    2009-09-30

    Pacific Northwest National Laboratory (PNNL) has embarked on an initiative to develop world-class capabilities for performing experimental and computational analyses associated with geologic sequestration of carbon dioxide. The ultimate goal of this initiative is to provide science-based solutions for helping to mitigate the adverse effects of greenhouse gas emissions. This Laboratory-Directed Research and Development (LDRD) initiative currently has two primary focus areas—advanced experimental methods and computational analysis. The experimental methods focus area involves the development of new experimental capabilities, supported in part by the U.S. Department of Energy’s (DOE) Environmental Molecular Science Laboratory (EMSL) housed at PNNL, for quantifying mineral reaction kinetics with CO2 under high temperature and pressure (supercritical) conditions. The computational analysis focus area involves numerical simulation of coupled, multi-scale processes associated with CO2 sequestration in geologic media, and the development of software to facilitate building and parameterizing conceptual and numerical models of subsurface reservoirs that represent geologic repositories for injected CO2. This report describes work in support of the computational analysis focus area. The computational analysis focus area currently consists of several collaborative research projects. These are all geared towards the development and application of conceptual and numerical models for geologic sequestration of CO2. The software being developed for this focus area is referred to as the Geologic Sequestration Software Suite or GS3. A wiki-based software framework is being developed to support GS3. This report summarizes work performed in FY09 on one of the LDRD projects in the computational analysis focus area. The title of this project is Data Assimilation Tools for CO2 Reservoir Model Development. Some key objectives of this project in FY09 were to assess the current state

  17. Candidate reservoirs for enhanced oil recovery, guidelines for their selection and appraisal of significant tests to date. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cronquist, C.; Portugal, D.

    1977-03-01

    Elements which are keys to the effective management of the ERDA Enhanced Oil Recovery Programs are described. Results of efforts to develop screening criteria to identify reservoir rock-fluid characteristics considered suitable for application of EOR processes which appear to have the best chance for commercial recovery of significant additional volumes of oil are summarized. A review of significant field tests made to develop the management matrices is included. Over a hundred published references describing completed and ongoing tests of EOR processes were reviewed to compile the data reported in the four matrices. The knowledge derived from these and subsequent field tests, plus that derived from laboratory research, serves to continually improve the state-of-the-art, thereby reducing the risk in tests yet to come. As the state-of-the-art improves, and as more data comes into the public domain, the matrices should be updated, and the screening criteria should be revised accordingly. An extensive set of data representing 2,420 reservoirs in the United States which have been identified as potential candidates for enhanced oil recovery is included.

  18. Geological and geophysical investigation of water leakage from two micro-dam reservoirs: Implications for future site selection, northern Ethiopia

    Science.gov (United States)

    Berhane, Gebremedhin; Amare, Mogos; Gebreyohannes, Tesfamichael; Walraevens, Kristine

    2017-05-01

    Water resources are essential to human development activities and to eradicate extreme poverty and hunger. Geological problems of two water harvesting Micro-Dam Reservoirs (MDRs) were evaluated from leakage perspectives in the northern part of Ethiopia, East Africa. Conventional geological mapping, discontinuity and weathering descriptions, test pits and geophysical methods were used to characterize the hydrogeological features of the MDRs. Vertical Electrical Sounding (VES) and Electrical Profiling (EP), were executed using Terrameter SAS (signal averaging system) 1000 manufactured by ABEM, Sweden, with Schlumberger and Wenner array configuration respectively. It was concluded that the foundations of both MDRs, except the right abutment for Adishuhu which is partly composed of dolerite, are pervious due to the presence of thin bedding planes, joints, weathered materials and fault. The presence of water in the downstream toe of the MDRs, at depressions, existing test pits and test pits excavated during the present study which lie within the seepage zone demarcated during surface geological mapping, correspond with the electrical resistivity study. The results of the electrical resistivity survey (EP and VES) were merged with the geological and structural mapping and the observation of seepage zones, for the delineation of weak zones responsible for leakage. Monitoring of the leakage (reservoir water and groundwater levels), both manually and using automatic divers, is recommended, along with monitoring of the stability of the embankments and the discharge or flow downstream of the MDRs.

  19. Modeling Broadband Variability of Blazars with Time-Dependent Multi-Zone Radiative Transfer Simulations

    Science.gov (United States)

    Fossati, Giovanni

    This proposal aims at fully exploiting the large body of X-ray and multiwavelength observational data on TeV gamma-ray bright blazars for a detailed comparison with state- of-the art blazar radiation transfer simulations. The aim of this investigation is to develop diagnostics on critical jet parameters and shock physics, such as the magnetic field, the kinetic energy content in the jets, the characteristics of the shock acceleration mechanisms, and the detailed influence on geometry on the observed spectral variability features. Our project will comprises a systematic, uniform re-analysis of the relevant (in particular, X-ray) data sets. We will extract time-dependent spectral energy distributions, light curves, and intra-band as well as inter-band time lags from the available data. The modeling tasks will start with a quick sweep through parameter space using a semi- analytical internal-shock model. This will help to narrow down parameters such as the Lorentz factors of interacting emission regions, the overall energy requirements, the characteristics of the electron distributions accelerated at internal shocks, and the magnetic field. The parameters of this semi-analytical internal-shock model that allow for a representation of time-dependent SEDs, light curves and inter-band time lags, will form the starting point for our detailed modeling using our state-of-the-art time-dependent multi-zone Monte-Carlo simulation code. Using that code, we will explore in more detail the characteristics of the particle acceleration in active regions and the influence of various geometries on the observable features. By capitalizing on archival data of several NASA space astrophysics missions our proposal is in agreement with the NASA ADAP research objective, "the analysis io NASA space astrophysics data that are archived in the public domain at the time of submission", as stated in the NASA Research announcement.

  20. Dynamic Model of Basic Oxygen Steelmaking Process Based on Multizone Reaction Kinetics: Modeling of Decarburization

    Science.gov (United States)

    Rout, Bapin Kumar; Brooks, Geoffrey; Akbar Rhamdhani, M.; Li, Zushu; Schrama, Frank N. H.; Overbosch, Aart

    2018-03-01

    In a previous study by the authors (Rout et al. in Metall Mater Trans B 49:537-557, 2018), a dynamic model for the BOF, employing the concept of multizone kinetics was developed. In the current study, the kinetics of decarburization reaction is investigated. The jet impact and slag-metal emulsion zones were identified to be primary zones for carbon oxidation. The dynamic parameters in the rate equation of decarburization such as residence time of metal drops in the emulsion, interfacial area evolution, initial size, and the effects of surface-active oxides have been included in the kinetic rate equation of the metal droplet. A modified mass-transfer coefficient based on the ideal Langmuir adsorption equilibrium has been proposed to take into account the surface blockage effects of SiO2 and P2O5 in slag on the decarburization kinetics of a metal droplet in the emulsion. Further, a size distribution function has been included in the rate equation to evaluate the effect of droplet size on reaction kinetics. The mathematical simulation indicates that decarburization of the droplet in the emulsion is a strong function of the initial size and residence time. A modified droplet generation rate proposed previously by the authors has been used to estimate the total decarburization rate by slag-metal emulsion. The model's prediction shows that about 76 pct of total carbon is removed by reactions in the emulsion, and the remaining is removed by reactions at the jet impact zone. The predicted bath carbon by the model has been found to be in good agreement with the industrially measured data.

  1. Tight focusing of a higher-order radially polarized beam transmitting through multi-zone binary phase pupil filters.

    Science.gov (United States)

    Guo, Hanming; Weng, Xiaoyu; Jiang, Man; Zhao, Yanhui; Sui, Guorong; Hu, Qi; Wang, Yang; Zhuang, Songlin

    2013-03-11

    When the pupil filters are used to improve the performance of the imaging system, the conversion efficiency is a critical characteristic for real applications. Here, in order to take full advantage of the subwavelength focusing property of the radially polarized higher-order Laguerre-Gaussian (LG) beam, we introduce the multi-zone binary phase pupil filters into the imaging system to deal with the problem that the focal spot is split along the z axis for the small size parameter of the incident LG beam. We provide an easy-to-perform procedure for the design of multi-zone binary phase pupil filters, where the zone numbers of π phase are uncertain when the optimizing procedure starts. Based on this optimizing procedure, we successfully find the set of optimum structures of a seventeen-belt binary phase pupil filters and generate the excellent focal spot, where the depth of focus, the focal spot transverse size, the Strehl ratio, and the sidelobe intensity are 9.53λ, 0.41λ, 41.75% and 16.35% in vacuum, respectively. Most importantly, even allowing the power loss of the incident LG beam truncated by the pupil of the imaging system, the conversion efficiency is still as high as 37.3%. Theoretical calculations show that we succeed to have sufficient conversion efficiency while utilizing the pupil filters to decrease the focal spot and extend the depth of focus.

  2. Adaptive control of interface by temperature and interface profile feedback in transparent multi-zone crystal growth furnace

    Science.gov (United States)

    Batur, Celal

    1991-01-01

    The objective of this research is to control the dynamics of multizone programmable crystal growth furnaces. Due to the inevitable heat exchange among different heating zones and the transient nature of the process, the dynamics of multizone furnaces is time varying, distributed, and therefore complex in nature. Electrical power to heating zones and the translational speed of the ampoule are employed as inputs to control the dynamics. Structural properties of the crystal is the ultimate aim of this adaptive control system. These properties can be monitored in different ways. Following an order of complexity, these may include: (1) on line measurement of the material optical properties such as the refractive index of crystal; (2) on line x-ray imaging of the interface topology; (3) on line optical quantification of the interface profile such as the determination of concavity or convexity of the interface shape; and (4) on line temperature measurement at points closest to the material such as measurements of the ampoule's outside and inside surface temperatures. The research performed makes use of the temperature and optical measurements, specified in (3) and (4) as the outputs of furnace dynamics. However, if the instrumentation is available, the proposed control methodology can be extended to the measurements listed in (1) and (2).

  3. Feeding Activity, Rate of Consumption, Daily Ration and Prey Selection of Major Predators in John Day Reservoir, 1984 : Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Gerard A.; United States. Bonneville Power Administration; U.S. Fish and Wildlife Service; National Fishery Research Center (U.S.)

    1986-07-01

    The extent of predation on juvenile salmonids in John Day Reservoir was determined. Salmonids were the single most important food item by weight for northern squawfish (Ptychocheilus oregonensis) in the restricted zones at McNary tailrace and John Day forebay during all sampling periods. Salmonids accounted for 18.1% of the weight in the diet of walleyes (Stizostedion vitreum vitreum) in 1984 which was at least twice that found in previous years. In smallmouth bass (Micropterus dolomieui) salmonids contributed little to their diet whereas for channel catfish (Ictalurus punctatus) fish accounted for 64.1% of the weight in their diet with salmonids responsible for approximately half of this weight. An intensive search of the fisheries literature was conducted to review various fish capture and control techniques which might have potential as predation control measures for the major predators of juvenile salmonids in the Columbia River system. Most prey protection measures were judged to have high potential and direct predator control measures were judged to have moderate or low potential.

  4. Failure of the inflatable penile prosthesis due to abnormal folding of a low-profile reservoir – A selected case from an overall series and systematic review

    Directory of Open Access Journals (Sweden)

    Roberto Alejandro Navarrete

    2017-09-01

    Full Text Available We present a case from a running series of inflatable penile prosthesis failure due to improper folding of the Conceal™ reservoir. The Conceal™ Low-Profile reservoir gained popularity due to claims of improved cosmesis and ease of implantation. As the number of patients receiving this and other low-profile reservoirs increases, it is imperative to review and document any novel complications. While the Conceal™ reservoir may be preferred in ectopic placement, it may be more prone to fluid lockout facilitated by conformational change. Our review did not identify prior reports of improper folding, which we believe is unique to these low-profile reservoirs.

  5. Hygro-thermo-aeraulic modeling of multi-zone buildings. Proposal of a strategy for the resolution of the coupled system; Modelisation hygro-thermo-aeraulique des batiments multizones. Proposition d'une strategie de resolution du systeme couple

    Energy Technology Data Exchange (ETDEWEB)

    Woloszyn-Vallon, M.

    1999-11-01

    The two criteria necessary for the thermal design of buildings - user's comfort and energy efficiency - can lead to contradictory recommendations. In the analyses of both aspects, air moisture content can be an important factor. However, in most existing computer software, moisture is either neglected or represented in a very simplified way. Often only the airborne moisture is represented and the interaction with hygroscopic materials is neglected. We are interested hare in the construction of a comprehensive and reliable tool, able to analyse moisture propagation in a multizone space. All physical phenomena important for correct description of the reality should be integrated. The numerical reliability of the tool should also be ensured in order to enable its industrial use. The results of this work will be applied to CLIM2000, a modular building simulation environment developed by EDF (French Electricity Company). Moisture propagation in a multizone space is a complex phenomenon, especially if the interaction with energy and airflow is represented. However, at the scale of a complete building, four main elements can be distinguished: airborne moisture transport; vapour condensation on cold surface and in the air volume; vapour absorption by hygroscopic materials; sources of vapour (metabolism, housekeeping). In respect to the hypothesis of a multizone model, a consistent set of mathematical models is elaborated. Full interaction among moisture, energy and airflow is represented, enabling simulations of the integrated moisture-energy-airflow behaviour of a multizone building. In order to verify the ability of the proposed model to represent the real situations, its predictions are compared to experimental data. The data were obtained in a fully furnished test house belonging to Building Research Establishment (UK). This experimentation permits analysis of moisture spread in the house and especially the importance of the airborne transport and the influence of

  6. Change the number of water reservoirs in the selected cities of the Upper Silesian Agglomeration over the period 1993-2014

    Directory of Open Access Journals (Sweden)

    Dąbrowska Dominika

    2015-06-01

    Full Text Available The Upper Silesian Agglomeration is the most industrialized area in Poland and one of the most in Europe. It is situated in the eastern part of the Upper Silesia and covers nearly 1500 km2. This region is highly diverse in terms of the spatial structure. There are lots of water reservoirs besides built-up areas and industrial facilities. Many of them have also significance for nature. Water reservoirs in the Upper Silesian Agglomeration function under anthropogenic conditions. Water reservoirs have a different size and the genesis. This kind of occurrence conditions influences the water reservoirs` state. There are mainly water reservoirs of anthropogenic character in a study area. A lot of water reservoirs are strictly connected with coal exploitation in this region. Unfortunately, the number of water reservoirs in the cities of the Upper Silesian Agglomeration has lately decreased. Reservoirs are eliminated as a result of changes in industry, progressive land development, changes in environmental conditions. In this paper we present the results of the number of water reservoirs analysis in Katowice, Sosnowiec and Chorzów over the period 1993-2014. Field studies and analysis of topographic maps show a decrease in the number of water reservoirs in this region by tens of percent.

  7. Contrasted patterns of selection on MHC-linked microsatellites in natural populations of the Malagasy plague reservoir.

    Directory of Open Access Journals (Sweden)

    Charlotte Tollenaere

    Full Text Available Plague (Yersinia pestis infection is a highly virulent rodent disease that persists in many natural ecosystems. The black rat (Rattus rattus is the main host involved in the plague focus of the central highlands of Madagascar. Black rat populations from this area are highly resistant to plague, whereas those from areas in which the disease is absent (low altitude zones of Madagascar are susceptible. Various lines of evidence suggest a role for the Major Histocompatibility Complex (MHC in plague resistance. We therefore used the MHC region as a candidate for detecting signatures of plague-mediated selection in Malagasy black rats, by comparing population genetic structures for five MHC-linked microsatellites and neutral markers in two sampling designs. We first compared four pairs of populations, each pair including one population from the plague focus and one from the disease-free zone. Plague-mediated selection was expected to result in greater genetic differentiation between the two zones than expected under neutrality and this was observed for one MHC-class I-linked locus (D20Img2. For this marker as well as for four other MHC-linked loci, a geographic pattern of genetic structure was found at local scale within the plague focus. This pattern would be expected if plague selection pressures were spatially variable. Finally, another MHC-class I-linked locus (D20Rat21 showed evidences of balancing selection, but it seems more likely that this selection would be related to unknown pathogens more widely distributed in Madagascar than plague.

  8. Contrasted patterns of selection on MHC-linked microsatellites in natural populations of the Malagasy plague reservoir.

    Science.gov (United States)

    Tollenaere, Charlotte; Ivanova, Svilena; Duplantier, Jean-Marc; Loiseau, Anne; Rahalison, Lila; Rahelinirina, Soanandrasana; Brouat, Carine

    2012-01-01

    Plague (Yersinia pestis infection) is a highly virulent rodent disease that persists in many natural ecosystems. The black rat (Rattus rattus) is the main host involved in the plague focus of the central highlands of Madagascar. Black rat populations from this area are highly resistant to plague, whereas those from areas in which the disease is absent (low altitude zones of Madagascar) are susceptible. Various lines of evidence suggest a role for the Major Histocompatibility Complex (MHC) in plague resistance. We therefore used the MHC region as a candidate for detecting signatures of plague-mediated selection in Malagasy black rats, by comparing population genetic structures for five MHC-linked microsatellites and neutral markers in two sampling designs. We first compared four pairs of populations, each pair including one population from the plague focus and one from the disease-free zone. Plague-mediated selection was expected to result in greater genetic differentiation between the two zones than expected under neutrality and this was observed for one MHC-class I-linked locus (D20Img2). For this marker as well as for four other MHC-linked loci, a geographic pattern of genetic structure was found at local scale within the plague focus. This pattern would be expected if plague selection pressures were spatially variable. Finally, another MHC-class I-linked locus (D20Rat21) showed evidences of balancing selection, but it seems more likely that this selection would be related to unknown pathogens more widely distributed in Madagascar than plague.

  9. A Method for Optimal Load Dispatch of a Multi-zone Power System with Zonal Exchange Constraints

    Science.gov (United States)

    Hazarika, Durlav; Das, Ranjay

    2018-01-01

    This paper presented a method for economic generation scheduling of a multi-zone power system having inter zonal operational constraints. For this purpose, the generator rescheduling for a multi area power system having inter zonal operational constraints has been represented as a two step optimal generation scheduling problem. At first, the optimal generation scheduling has been carried out for the zone having surplus or deficient generation with proper spinning reserve using co-ordination equation. The power exchange required for the deficit zones and zones having no generation are estimated based on load demand and generation for the zone. The incremental transmission loss formulas for the transmission lines participating in the power transfer process among the zones are formulated. Using these, incremental transmission loss expression in co-ordination equation, the optimal generation scheduling for the zonal exchange has been determined. Simulation is carried out on IEEE 118 bus test system to examine the applicability and validity of the method.

  10. Review of Literature on Terminal Box Control, Occupancy Sensing Technology and Multi-zone Demand Control Ventilation (DCV)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Dasu, Aravind R.; Zhang, Jian

    2012-03-01

    This report presents an overall review of the standard requirement, the terminal box control, occupancy sensing technology and DCV. There is system-specific guidance for single-zone systems, but DCV application guidance for multi-zone variable air volume (VAV) systems is not available. No real-world implementation case studies have been found using the CO2-based DCV. The review results also show that the constant minimum air flow set point causes excessive fan power consumption and potential simultaneous heating and cooling. Occupancy-based control (OBC) is needed for the terminal box in order to achieve deep energy savings. Key to OBC is a technology for sensing the actual occupancy of the zone served in real time. Several technologies show promise, but none currently fully meets the need with adequate accuracy and sufficiently low cost.

  11. Integration of eaves and shading devices for improving the thermal comfort in a multi-zone building

    Directory of Open Access Journals (Sweden)

    Haddam Muhammad Abdalkhalaq Chuayb

    2015-01-01

    Full Text Available This paper introduces a new approach to the description and modelling of multi-zone buildings in Saharan climate. Therefore, nodal method was used to apprehend thermo-aeraulic behavior of air subjected to varied solicitations. A coupling was made between equations proposed by P. Rumianowski and some equations of a building thermal energy model found in the TRNSYS user manual. Runge-Kutta fourth order numerical method was used to solve the obtained system of differential equations. Theses results show that proper design of passive houses in an arid region is based on the control of direct solar gains, temperatures and specific humidities. According to the compactness index, the insersion of solar shading and eaves can provide improved thermo-aeraulic comfort.

  12. Dynamic Model of Basic Oxygen Steelmaking Process Based on Multi-zone Reaction Kinetics: Model Derivation and Validation

    Science.gov (United States)

    Rout, Bapin Kumar; Brooks, Geoff; Rhamdhani, M. Akbar; Li, Zushu; Schrama, Frank N. H.; Sun, Jianjun

    2018-04-01

    A multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the basic oxygen furnace (BOF) operation. The three reaction zones (i) jet impact zone, (ii) slag-bulk metal zone, (iii) slag-metal-gas emulsion zone were considered for the calculation of overall refining kinetics. In the rate equations, the transient rate parameters were mathematically described as a function of process variables. A micro and macroscopic rate calculation methodology (micro-kinetics and macro-kinetics) were developed to estimate the total refining contributed by the recirculating metal droplets through the slag-metal emulsion zone. The micro-kinetics involves developing the rate equation for individual droplets in the emulsion. The mathematical models for the size distribution of initial droplets, kinetics of simultaneous refining of elements, the residence time in the emulsion, and dynamic interfacial area change were established in the micro-kinetic model. In the macro-kinetics calculation, a droplet generation model was employed and the total amount of refining by emulsion was calculated by summing the refining from the entire population of returning droplets. A dynamic FetO generation model based on oxygen mass balance was developed and coupled with the multi-zone kinetic model. The effect of post-combustion on the evolution of slag and metal composition was investigated. The model was applied to a 200-ton top blowing converter and the simulated value of metal and slag was found to be in good agreement with the measured data. The post-combustion ratio was found to be an important factor in controlling FetO content in the slag and the kinetics of Mn and P in a BOF process.

  13. Dynamic Model of Basic Oxygen Steelmaking Process Based on Multi-zone Reaction Kinetics: Model Derivation and Validation

    Science.gov (United States)

    Rout, Bapin Kumar; Brooks, Geoff; Rhamdhani, M. Akbar; Li, Zushu; Schrama, Frank N. H.; Sun, Jianjun

    2018-01-01

    A multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the basic oxygen furnace (BOF) operation. The three reaction zones (i) jet impact zone, (ii) slag-bulk metal zone, (iii) slag-metal-gas emulsion zone were considered for the calculation of overall refining kinetics. In the rate equations, the transient rate parameters were mathematically described as a function of process variables. A micro and macroscopic rate calculation methodology (micro-kinetics and macro-kinetics) were developed to estimate the total refining contributed by the recirculating metal droplets through the slag-metal emulsion zone. The micro-kinetics involves developing the rate equation for individual droplets in the emulsion. The mathematical models for the size distribution of initial droplets, kinetics of simultaneous refining of elements, the residence time in the emulsion, and dynamic interfacial area change were established in the micro-kinetic model. In the macro-kinetics calculation, a droplet generation model was employed and the total amount of refining by emulsion was calculated by summing the refining from the entire population of returning droplets. A dynamic FetO generation model based on oxygen mass balance was developed and coupled with the multi-zone kinetic model. The effect of post-combustion on the evolution of slag and metal composition was investigated. The model was applied to a 200-ton top blowing converter and the simulated value of metal and slag was found to be in good agreement with the measured data. The post-combustion ratio was found to be an important factor in controlling FetO content in the slag and the kinetics of Mn and P in a BOF process.

  14. Field application. Selective stimulation of reservoirs or perforated intervals with use of coiled tubing equipped with real-time data communication system in combination with straddle packer assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Oberascher, R.; Breimer, G. [GDF SUEZ E and P Deutschland GmbH, Lingen (Germany); Jonge, R.M. de [Baker Hughes (Netherlands)

    2013-08-01

    In two German gas wells a decline in production and wellhead pressures had been observed. Production logging data obtained by PLT surveys were evaluated, which showed that certain intervals within the reservoir section did not contribute, or showed a restricted contribution to the overall gas production. The restricted contribution was suspected to be caused by near-wellbore damage. To restore or enhance the production of the perforated intervals an acid treatment was considered in these wells in order to remove skin damage. To restore or enhance the production of the wells, an acid treatment of the perforated intervals was designed. For obtaining the required selective placement of the acid across the zones of interest, the use of coiled tubing (CT) in combination with a resettable straddle packer assembly was selected. The accuracy of the setting depth of the straddle packer was a critical issue for the execution of the well intervention operations. In order to obtain the required depth accuracy, the CT string was equipped with an intelligent CT communication system, which transfers real-time downhole data to surface. For the first time, a reservoir stimulation project was executed by combining CT equipped with a real-time data communication system (TeleCoil) and the Inflatable Straddle Acidizing Packer (ISAP) assembly. Inside the CT an encapsulated monoconductor cable was installed to transmit real-time data from the CT Bottom Hole Assembly (BHA) to surface. The BHA consists of a Casing Collar Locator (CCL) and downhole pressure and temperature gauges. Due to the protective jacket of the monoconductor cable, there are no restrictions in the use of different fluids in combination with the system. Information provided by the CCL monitoring tool ensures accurate depth correlations, whereas differential pressure measurements from the down-hole pressure gauges provide positive information about the setting and sealing conditions of the straddle packer assembly. The

  15. Reservoir Sedimentation Based on Uncertainty Analysis

    Directory of Open Access Journals (Sweden)

    Farhad Imanshoar

    2014-01-01

    Full Text Available Reservoir sedimentation can result in loss of much needed reservoir storage capacity, reducing the useful life of dams. Thus, sufficient sediment storage capacity should be provided for the reservoir design stage to ensure that sediment accumulation will not impair the functioning of the reservoir during the useful operational-economic life of the project. However, an important issue to consider when estimating reservoir sedimentation and accumulation is the uncertainty involved in reservoir sedimentation. In this paper, the basic factors influencing the density of sediments deposited in reservoirs are discussed, and uncertainties in reservoir sedimentation have been determined using the Delta method. Further, Kenny Reservoir in the White River Basin in northwestern Colorado was selected to determine the density of deposits in the reservoir and the coefficient of variation. The results of this investigation have indicated that by using the Delta method in the case of Kenny Reservoir, the uncertainty regarding accumulated sediment density, expressed by the coefficient of variation for a period of 50 years of reservoir operation, could be reduced to about 10%. Results of the Delta method suggest an applicable approach for dead storage planning via interfacing with uncertainties associated with reservoir sedimentation.

  16. 4. International reservoir characterization technical conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  17. Multi-zone modeling of combustion and emissions formation in DI diesel engine operating on ethanol-diesel fuel blends

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.; Hountalas, D.T.

    2008-01-01

    A multi-zone model for calculation of the closed cycle of a direct injection (DI) diesel engine is applied for the interesting case of its operation with ethanol-diesel fuel blends, the ethanol (bio-fuel) being considered recently as a promising extender to petroleum distillates. Although there are many experimental studies, there is an apparent scarcity of theoretical models scrutinizing the formation mechanisms of combustion generated emissions when using bio-fuels. This is a two dimensional, multi-zone model with the issuing fuel jets divided into several discrete volumes, called 'zones', formed along and across the direction of the fuel injection. The model follows each zone, with its own time history, as the spray penetrates into the swirling air environment of the combustion chamber. Droplet evaporation and jet mixing models are used to determine the amount of fuel and entrained air in each zone available for combustion. The mass, energy and state equations are applied in each zone to provide local temperatures and cylinder pressure histories. The concentrations of the various constituents are calculated by adopting a chemical equilibrium scheme for the C-H-O-N system of eleven species considered, together with chemical rate equations for calculation of nitric oxide (NO) and a model for net soot formation. The results from the computer program, implementing the analysis, for the in cylinder pressure, exhaust NO concentration and soot density compare well with the corresponding measurements from an experimental investigation conducted on a fully automated test bed, standard 'Hydra', DI diesel engine located at the authors' laboratory, which is operated with ethanol-diesel fuel blends containing 5%, 10% and 15% (by vol.) ethanol. Iso-contour plots of equivalence ratio, temperature, NO and soot inside the cylinder at various instants of time, when using these ethanol-diesel fuel blends against the diesel fuel (baseline fuel), shed light on the mechanisms

  18. Design architecture for multi-zone HVAC control systems from existing single-zone systems using wireless sensor networks

    Science.gov (United States)

    Redfern, Andrew; Koplow, Michael; Wright, Paul

    2007-01-01

    Most residential heating, ventilating, and air-conditioning (HVAC) systems utilize a single zone for conditioning air throughout the entire house. While inexpensive, these systems lead to wide temperature distributions and inefficient cooling due to the difference in thermal loads in different rooms. The end result is additional cost to the end user because the house is over conditioned. To reduce the total amount of energy used in a home and to increase occupant comfort there is a need for a better control system using multiple temperature zones. Typical multi-zone systems are costly and require extensive infrastructure to function. Recent advances in wireless sensor networks (WSNs) have enabled a low cost drop-in wireless vent register control system. The register control system is controlled by a master controller unit, which collects sensor data from a distributed wireless sensor network. Each sensor node samples local settings (occupancy, light, humidity and temperature) and reports the data back to the master control unit. The master control unit compiles the incoming data and then actuates the vent resisters to control the airflow throughout the house. The control system also utilizes a smart thermostat with a movable set point to enable the user to define their given comfort levels. The new system can reduce the run time of the HVAC system and thus decreasing the amount of energy used and increasing the comfort of the home occupations.

  19. A Study on a Control Method with a Ventilation Requirement of a VAV System in Multi-Zone

    Directory of Open Access Journals (Sweden)

    Hyo-Jun Kim

    2017-11-01

    Full Text Available The objective of this study was to propose a control method with a ventilation requirement of variable air volume (VAV system in multi-zone. In order to control the VAV system inmulti-zone, it is essential to control the terminal unit installed in each zone. A VAV terminal unit with conventional control method using a fixed minimum air flow can cause indoor air quality (IAQ issues depending on the variation in the number of occupants. This research proposes a control method with a ventilation requirement of the VAV terminal unit and AHU inmulti-zone. The integrated control method with an air flow increase model in the VAV terminal unit, AHU, and outdoor air intake rate increase model in the AHU was based on the indoor CO2 concentration. The conventional and proposed control algorithms were compared through a TRNSYS simulation program. The proposed VAV terminal unit control method satisfies all the conditions of indoor temperature, IAQ, and stratification. An energy comparison with the conventional control method showed that the method satisfies not only the indoor thermal comfort, IAQ, and stratification issue, but also reduces the energy consumption.

  20. Evaluation of a Semiempirical, Zero-Dimensional, Multizone Model to Predict Nitric Oxide Emissions in DI Diesel Engines’ Combustion Chamber

    Directory of Open Access Journals (Sweden)

    Nicholas S. Savva

    2016-01-01

    Full Text Available In the present study, a semiempirical, zero-dimensional multizone model, developed by the authors, is implemented on two automotive diesel engines, a heavy-duty truck engine and a light-duty passenger car engine with pilot fuel injection, for various operating conditions including variation of power/speed, EGR rate, fuel injection timing, fuel injection pressure, and boost pressure, to verify its capability for Nitric Oxide (NO emission prediction. The model utilizes cylinder’s basic geometry and engine operating data and measured cylinder pressure to estimate the apparent combustion rate which is then discretized into burning zones according to the calculation step used. The requisite unburnt charge for the combustion in the zones is calculated using the zone equivalence ratio provided from a new empirical formula involving parameters derived from the processing of the measured cylinder pressure and typical engine operating parameters. For the calculation of NO formation, the extended Zeldovich mechanism is used. From this approach, the model is able to provide the evolution of NO formation inside each burned zone and, cumulatively, the cylinder’s NO formation history. As proven from the investigation conducted herein, the proposed model adequately predicts NO emissions and NO trends when the engine settings vary, with low computational cost. These encourage its use for engine control optimization regarding NOx abatement and real-time/model-based NOx control applications.

  1. Estimation of evaporation from open water - A review of selected studies, summary of U.S. Army Corps of Engineers data collection and methods, and evaluation of two methods for estimation of evaporation from five reservoirs in Texas

    Science.gov (United States)

    Harwell, Glenn R.

    2012-01-01

    Organizations responsible for the management of water resources, such as the U.S. Army Corps of Engineers (USACE), are tasked with estimation of evaporation for water-budgeting and planning purposes. The USACE has historically used Class A pan evaporation data (pan data) to estimate evaporation from reservoirs but many USACE Districts have been experimenting with other techniques for an alternative to collecting pan data. The energy-budget method generally is considered the preferred method for accurate estimation of open-water evaporation from lakes and reservoirs. Complex equations to estimate evaporation, such as the Penman, DeBruin-Keijman, and Priestley-Taylor, perform well when compared with energy-budget method estimates when all of the important energy terms are included in the equations and ideal data are collected. However, sometimes nonideal data are collected and energy terms, such as the change in the amount of stored energy and advected energy, are not included in the equations. When this is done, the corresponding errors in evaporation estimates are not quantifiable. Much simpler methods, such as the Hamon method and a method developed by the U.S. Weather Bureau (USWB) (renamed the National Weather Service in 1970), have been shown to provide reasonable estimates of evaporation when compared to energy-budget method estimates. Data requirements for the Hamon and USWB methods are minimal and sometimes perform well with remotely collected data. The Hamon method requires average daily air temperature, and the USWB method requires daily averages of air temperature, relative humidity, wind speed, and solar radiation. Estimates of annual lake evaporation from pan data are frequently within 20 percent of energy-budget method estimates. Results of evaporation estimates from the Hamon method and the USWB method were compared against historical pan data at five selected reservoirs in Texas (Benbrook Lake, Canyon Lake, Granger Lake, Hords Creek Lake, and Sam

  2. Development and validation of a multi-zone combustion model for performance and nitric oxide formation in syngas fueled spark ignition engine

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Michos, C.N.

    2008-01-01

    The development of a zero-dimensional, multi-zone combustion model is presented for predicting the performance and nitric oxide (NO) emissions of a spark ignition (SI) engine. The model is validated against experimental data from a multi-cylinder, four-stroke, turbocharged and aftercooled, SI gas engine running with syngas fuel. This alternative fuel, the combustible part of which consists mainly of CO and H 2 with the rest containing non-combustible gases, has been recently identified as a promising substitute of fossil fuels in view of environmentally friendly engine operation. The basic concept of the model is the division of the burned gas into several distinct zones, unlike the simpler two-zone models, for taking into account the temperature stratification of the burned mixture during combustion. This is especially important for accurate NO emissions predictions, since NO formation is strongly temperature dependent. The multi-zone formulation provides the chemical species concentrations gradient existing in the burned zones, as well as the relative contribution of each burned zone to the total in-cylinder NO formation. The burning rate required as input to the model is expressed as a Wiebe function, fitted to experimentally derived burn rates. All model's constants are calibrated at one operating point and then kept unchanged. Zone-resolved combustion related information is obtained, assisting in the understanding of the complex phenomena occurring during combustion in SI engines. Combustion characteristics of the lean-burn gas engine tested are provided for the complete load range, aiding the interpretation of its performance and knocking tendency. Computed NO emissions from the multi-zone model for various values of the engine load (i.e. air-fuel ratios) are presented and found to be in good agreement with the respective experimental ones, providing confidence for the predictive capability of the model. The superiority of the multi-zone model over its two

  3. Multi-zone modeling of Diesel engine fuel spray development with vegetable oil, bio-diesel or Diesel fuels

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.

    2006-01-01

    This work presents a model of fuel sprays development in the cylinders of Diesel engines that is two-dimensional, multi-zone, with the issuing jet (from the nozzle) divided into several discrete volumes, called 'zones', formed along the direction of the fuel injection as well as across it. The model follows each zone, with its own time history, as the spray penetrates into the swirling air environment of the combustion chamber before and after wall impingement. After the jet break up time, a group of droplets is generated in each zone, with the model following their motion during heating, evaporation and mixing with the in-cylinder air. The model is applied for the interesting case of using vegetable oils or their derived bio-diesels as fuels, which recently are considered as promising alternatives to petroleum distillates since they are derived from biological sources. Although there are numerous experimental studies that show curtailment of the emitted smoke with possible increase of the emitted NO x against the use of Diesel fuel, there is an apparent scarcity of theoretical models scrutinizing the formation mechanisms of combustion generated emissions when using these biologically derived fuels. Thus, in the present work, a theoretical detailed model of spray formation is developed that is limited to the related investigation of the physical processes by decoupling it from the chemical effects after combustion initiation. The analysis results show how the widely differing physical properties of these fuels, against the normal Diesel fuel, affect greatly the spray formation and consequently the combustion mechanism and the related emissions

  4. Data Compression of Hydrocarbon Reservoir Simulation Grids

    KAUST Repository

    Chavez, Gustavo Ivan

    2015-05-28

    A dense volumetric grid coming from an oil/gas reservoir simulation output is translated into a compact representation that supports desired features such as interactive visualization, geometric continuity, color mapping and quad representation. A set of four control curves per layer results from processing the grid data, and a complete set of these 3-dimensional surfaces represents the complete volume data and can map reservoir properties of interest to analysts. The processing results yield a representation of reservoir simulation results which has reduced data storage requirements and permits quick performance interaction between reservoir analysts and the simulation data. The degree of reservoir grid compression can be selected according to the quality required, by adjusting for different thresholds, such as approximation error and level of detail. The processions results are of potential benefit in applications such as interactive rendering, data compression, and in-situ visualization of large-scale oil/gas reservoir simulations.

  5. Geothermal reservoir management

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, C.R.; Golabi, K.

    1978-02-01

    The optimal management of a hot water geothermal reservoir was considered. The physical system investigated includes a three-dimensional aquifer from which hot water is pumped and circulated through a heat exchanger. Heat removed from the geothermal fluid is transferred to a building complex or other facility for space heating. After passing through the heat exchanger, the (now cooled) geothermal fluid is reinjected into the aquifer. This cools the reservoir at a rate predicted by an expression relating pumping rate, time, and production hole temperature. The economic model proposed in the study maximizes discounted value of energy transferred across the heat exchanger minus the discounted cost of wells, equipment, and pumping energy. The real value of energy is assumed to increase at r percent per year. A major decision variable is the production or pumping rate (which is constant over the project life). Other decision variables in this optimization are production timing, reinjection temperature, and the economic life of the reservoir at the selected pumping rate. Results show that waiting time to production and production life increases as r increases and decreases as the discount rate increases. Production rate decreases as r increases and increases as the discount rate increases. The optimal injection temperature is very close to the temperature of the steam produced on the other side of the heat exchanger, and is virtually independent of r and the discount rate. Sensitivity of the decision variables to geohydrological parameters was also investigated. Initial aquifer temperature and permeability have a major influence on these variables, although aquifer porosity is of less importance. A penalty was considered for production delay after the lease is granted.

  6. Multi-zone modelling of partially premixed low-temperature combustion in pilot-ignited natural-gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, S. R.; inivasan, K. K.

    2010-09-14

    Detailed results from a multi-zone phenomenological simulation of partially premixed advanced-injection low-pilot-ignited natural-gas low-temperature combustion are presented with a focus on early injection timings (the beginning of (pilot) injection (BOI)) and very small diesel quantities (2-3 per cent of total fuel energy). Combining several aspects of diesel and spark ignition engine combustion models, the closed-cycle simulation accounted for diesel autoignition, diesel spray combustion, and natural-gas combustion by premixed turbulent flame propagation. The cylinder contents were divided into an unburned zone, several pilot fuel zones (or 'packets') that modelled diesel evaporation and ignition, a flame zone for natural-gas combustion, and a burned zone. The simulation predicted the onset of ignition, cylinder pressures, and heat release rate profiles satisfactorily over a wide range of BOIs (20-60° before top dead centre (before TDC)) but especially well at early BOIs. Strong coupling was observed between pilot spray combustion in the packets and premixed turbulent combustion in the flame zone and, therefore, the number of ignition centres (packets) profoundly affected flame combustion. The highest local peak temperatures (greater than 2000 K) were observed in the packets, while the flame zone was much cooler (about 1650 K), indicating that pilot diesel spray combustion is probably the dominant source of engine-out emissions of nitrogen oxide (NOx). Further, the 60° before TDC BOI yielded the lowest average peak packet temperatures (about 1720 K) compared with the 20° before TDC BOI (about 2480 K) and 40° before TDC BOI (about 2700 K). These trends support experimental NOx trends, which showed the lowest NOx emissions for the 60°, 20°, and 40° before TDC BOIs in that order. Parametric studies showed that increasing the intake charge temperature, pilot quantity, and natural-gas equivalence ratio all led to

  7. Reservoir fisheries of Asia

    International Nuclear Information System (INIS)

    Silva, S.S. De.

    1990-01-01

    At a workshop on reservoir fisheries research, papers were presented on the limnology of reservoirs, the changes that follow impoundment, fisheries management and modelling, and fish culture techniques. Separate abstracts have been prepared for three papers from this workshop

  8. Large reservoirs: Chapter 17

    Science.gov (United States)

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  9. Mercury concentrations in water, and mercury and selenium concentrations in fish from Brownlee Reservoir and selected sites in Boise and Snake Rivers, Idaho and Oregon, 2013

    Science.gov (United States)

    MacCoy, Dorene E.

    2014-01-01

    Mercury (Hg) analyses were conducted on samples of sport fish and water collected from six sampling sites in the Boise and Snake Rivers, and Brownlee Reservoir to meet National Pollution Discharge and Elimination System (NPDES) permit requirements for the City of Boise, Idaho. A water sample was collected from each site during October and November 2013 by the City of Boise personnel and was analyzed by the Boise City Public Works Water Quality Laboratory. Total Hg concentrations in unfiltered water samples ranged from 0.73 to 1.21 nanograms per liter (ng/L) at five river sites; total Hg concentration was highest (8.78 ng/L) in a water sample from Brownlee Reservoir. All Hg concentrations in water samples were less than the EPA Hg chronic aquatic life criterion in Idaho (12 ng/L). The EPA recommended a water-quality criterion of 0.30 milligrams per kilogram (mg/kg) methylmercury (MeHg) expressed as a fish-tissue residue value (wet-weight MeHg in fish tissue). MeHg residue in fish tissue is considered to be equivalent to total Hg in fish muscle tissue and is referred to as Hg in this report. The Idaho Department of Environmental Quality adopted the EPA’s fish-tissue criterion and a reasonable potential to exceed (RPTE) threshold 20 percent lower than the criterion or greater than 0.24 mg/kg based on an average concentration of 10 fish from a receiving waterbody. NPDES permitted discharge to waters with fish having Hg concentrations exceeding 0.24 mg/kg are said to have a reasonable potential to exceed the water-quality criterion and thus are subject to additional permit obligations, such as requirements for increased monitoring and the development of a Hg minimization plan. The Idaho Fish Consumption Advisory Program (IFCAP) issues fish advisories to protect general and sensitive populations of fish consumers and has developed an action level of 0.22 mg/kg wet weight Hg in fish tissue. Fish consumption advisories are water body- and species-specific and are used to

  10. Status of Wheeler Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

  11. Application of oil gas-chromatography in reservoir compartmentalization in a mature Venezuelan oil field

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, N.G.; Mompart, L. [Maraven, Caracas (Venezuela); Talukdar, S.C.

    1996-08-01

    Gas chromatographic oil {open_quotes}fingerprinting{close_quotes} was successfully applied in a multidisciplinary production geology project by Maraven, S.A. to define the extent of vertical and lateral continuity of Eocene and Miocene sandstone reservoirs in the highly faulted Bloque I field, Maracaibo Basin, Venezuela. Seventy-five non-biodegraded oils (20{degrees}-37.4{degrees} API) were analyzed with gas chromatography. Fifty were produced from the Eocene Misoa C-4, C-5, C-6 or C-7 horizons, fifteen from the Miocene basal La Rosa and ten from multizone completions. Gas chromatographic and terpane and sterane biomarker data show that all of the oils are genetically related. They were expelled from a type II, Upper Cretaceous marine La Luna source rock at about 0.80-0.90% R{sub o} maturity. Alteration in the reservoir by gas stripping with or without subsequent light hydrocarbons mixing was observed in some oils. Detailed chromatographic comparisons among the oils shown by star plots and cluster analysis utilizing several naphthenic and aromatic peak height ratios, resulted in oil pool groupings. This led to finding previously unknown lateral and vertical reservoir communication and also helped in checking and updating the scaling character of faults. In the commingled oils, percentages of each contributing zone in the mixture were also determined giving Maraven engineers a proven, rapid and inexpensive tool for production allocation and reservoir management The oil pool compartmentalization defined by the geochemical fingerprinting is in very good agreement with the sequence stratigraphic interpretation of the reservoirs and helped evaluate the influence of structure in oil migration and trapping.

  12. An index of reservoir habitat impairment

    Science.gov (United States)

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  13. Selection of production strategy in heterogeneous reservoirs under uncertainty with emphasis on analysis of wells; Selecao de estrategia de producao em campos com fortes heterogeneidades sob incertezas com enfase na analise de pocos

    Energy Technology Data Exchange (ETDEWEB)

    Botechia, Vinicius E.; Schiozer, Denis J. [Universidade Estadual de Campinas (DEP/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2012-07-01

    The selection of a good production strategy for an oil field is a very important task, because it should enable the field to produce a quantity of hydrocarbons efficiently, in order to maximize the performance of the reservoir. This task, however, is extremely complex due to the large number of variables involved and possible alternatives. In scenarios under uncertainty, this complexity is even greater, since risks increase. The studies that focus on methodologies to select production strategies take into account, in most cases, only field indicators in the process. However, in heterogeneous fields and in scenarios under uncertainty, the behavior of the wells may have a very large range between the scenarios, due mainly to differences in simulation models in these cases. Thus, this paper proposes an approach to analyze the behavior of wells in the selection of production strategy in order to make the optimization process more efficient, increasing the average economic return on the considered scenarios or decreasing the risk involved in the process. The results showed that this type of analysis can provide new alternatives of strategies or can give greater robustness to the chosen strategy. (author)

  14. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...

  15. SILTATION IN RESERVOIRS

    African Journals Online (AJOL)

    Calls have been made to the government through various media to assist its populace in combating this nagging problem. It was concluded that sediment maximum accumulation is experienced in reservoir during the periods of maximum flow. Keywords: reservoir model, siltation, sediment, catchment, sediment transport. 1.

  16. Dynamic reservoir well interaction

    NARCIS (Netherlands)

    Sturm, W.L.; Belfroid, S.P.C.; Wolfswinkel, O. van; Peters, M.C.A.M.; Verhelst, F.J.P.C.M.

    2004-01-01

    In order to develop smart well control systems for unstable oil wells, realistic modeling of the dynamics of the well is essential. Most dynamic well models use a semi-steady state inflow model to describe the inflow of oil and gas from the reservoir. On the other hand, reservoir models use steady

  17. Reservoir Engineering Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.; Schwarz, W.J.

    1977-12-14

    The Reservoir Engineering Management Program being conducted at Lawrence Berkeley Laboratory includes two major tasks: 1) the continuation of support to geothermal reservoir engineering related work, started under the NSF-RANN program and transferred to ERDA at the time of its formation; 2) the development and subsequent implementation of a broad plan for support of research in topics related to the exploitation of geothermal reservoirs. This plan is now known as the GREMP plan. Both the NSF-RANN legacies and GREMP are in direct support of the DOE/DGE mission in general and the goals of the Resource and Technology/Resource Exploitation and Assessment Branch in particular. These goals are to determine the magnitude and distribution of geothermal resources and reduce risk in their exploitation through improved understanding of generically different reservoir types. These goals are to be accomplished by: 1) the creation of a large data base about geothermal reservoirs, 2) improved tools and methods for gathering data on geothermal reservoirs, and 3) modeling of reservoirs and utilization options. The NSF legacies are more research and training oriented, and the GREMP is geared primarily to the practical development of the geothermal reservoirs. 2 tabs., 3 figs.

  18. Significance of selective predation and development of prey protection measures for juvenile salmonids in the Columbia and Snake River reservoirs. Annual progress report, February 1993--February 1994

    International Nuclear Information System (INIS)

    Poe, T.P.

    1994-01-01

    This report addresses the problem of predator-prey interactions of juvenile salmonids in the Columbia and Snake River. Six papers are included on selective predation and prey protection. Attention is focused on monitoring the movements, the distribution, and the behavior of juvenile chinook salmon and northern squawfish

  19. Simulation of California's Major Reservoirs Outflow Using Data Mining Technique

    Science.gov (United States)

    Yang, T.; Gao, X.; Sorooshian, S.

    2014-12-01

    The reservoir's outflow is controlled by reservoir operators, which is different from the upstream inflow. The outflow is more important than the reservoir's inflow for the downstream water users. In order to simulate the complicated reservoir operation and extract the outflow decision making patterns for California's 12 major reservoirs, we build a data-driven, computer-based ("artificial intelligent") reservoir decision making tool, using decision regression and classification tree approach. This is a well-developed statistical and graphical modeling methodology in the field of data mining. A shuffled cross validation approach is also employed to extract the outflow decision making patterns and rules based on the selected decision variables (inflow amount, precipitation, timing, water type year etc.). To show the accuracy of the model, a verification study is carried out comparing the model-generated outflow decisions ("artificial intelligent" decisions) with that made by reservoir operators (human decisions). The simulation results show that the machine-generated outflow decisions are very similar to the real reservoir operators' decisions. This conclusion is based on statistical evaluations using the Nash-Sutcliffe test. The proposed model is able to detect the most influential variables and their weights when the reservoir operators make an outflow decision. While the proposed approach was firstly applied and tested on California's 12 major reservoirs, the method is universally adaptable to other reservoir systems.

  20. Sediment management for reservoir

    International Nuclear Information System (INIS)

    Rahman, A.

    2005-01-01

    All natural lakes and reservoirs whether on rivers, tributaries or off channel storages are doomed to be sited up. Pakistan has two major reservoirs of Tarbela and Managla and shallow lake created by Chashma Barrage. Tarbela and Mangla Lakes are losing their capacities ever since first impounding, Tarbela since 1974 and Mangla since 1967. Tarbela Reservoir receives average annual flow of about 62 MAF and sediment deposits of 0.11 MAF whereas Mangla gets about 23 MAF of average annual flows and is losing its storage at the rate of average 34,000 MAF annually. The loss of storage is a great concern and studies for Tarbela were carried out by TAMS and Wallingford to sustain its capacity whereas no study has been done for Mangla as yet except as part of study for Raised Mangla, which is only desk work. Delta of Tarbala reservoir has advanced to about 6.59 miles (Pivot Point) from power intakes. In case of liquefaction of delta by tremor as low as 0.12g peak ground acceleration the power tunnels I, 2 and 3 will be blocked. Minimum Pool of reservoir is being raised so as to check the advance of delta. Mangla delta will follow the trend of Tarbela. Tarbela has vast amount of data as reservoir is surveyed every year, whereas Mangla Reservoir survey was done at five-year interval, which has now been proposed .to be reduced to three-year interval. In addition suspended sediment sampling of inflow streams is being done by Surface Water Hydrology Project of WAPDA as also some bed load sampling. The problem of Chasma Reservoir has also been highlighted, as it is being indiscriminately being filled up and drawdown several times a year without regard to its reaction to this treatment. The Sediment Management of these reservoirs is essential and the paper discusses pros and cons of various alternatives. (author)

  1. Development and application of multi-zone model for combustion and pollutants formation in direct injection diesel engine running with vegetable oil or its bio-diesel

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.

    2007-01-01

    A multi-zone model for calculation of the closed cycle of a direct injection (DI) Diesel engine is presented and applied for the interesting case of its operation with vegetable oil (cottonseed) or its derived bio-diesel (methyl ester) as fuels, which recently are considered as promising alternatives (bio-fuels) to petroleum distillates. Although there are many experimental studies, there is an apparent scarcity of theoretical models scrutinizing the formation mechanisms of combustion generated emissions when using these fuels. The model is two dimensional, multi-zone with the issuing jets (from the nozzle) divided into several discrete volumes, called 'zones', formed along the direction of the fuel injection and across it. The model follows each zone, with its own time history, as the spray penetrates into the swirling air environment (forming the non-burning zone) of the combustion chamber, before and after wall impingement. Droplet evaporation and jet mixing models are used to determine the amount of fuel and entrained air in each zone available for combustion. The mass, energy and state equations are applied in each zone to yield local temperatures and cylinder pressure histories. The concentrations of the various constituents are calculated by adopting a chemical equilibrium scheme for the C-H-O-N system of 11 species considered, together with the chemical rate equations for the calculation of nitric oxide (NO). A model for evaluation of soot formation and oxidation rates is included. The results from the relevant computer program for the in cylinder pressure, exhaust nitric oxide concentration (NO) and soot density are compared favorably with the corresponding measurements from an experimental investigation conducted on a fully automated test bed, standard 'Hydra', DI Diesel engine installed at the authors' laboratory. Iso-contour plots of equivalence ratio, temperature, NO and soot inside the combustion chamber at various instants of time when using these

  2. Reservoir Model Information System: REMIS

    Science.gov (United States)

    Lee, Sang Yun; Lee, Kwang-Wu; Rhee, Taehyun; Neumann, Ulrich

    2009-01-01

    We describe a novel data visualization framework named Reservoir Model Information System (REMIS) for the display of complex and multi-dimensional data sets in oil reservoirs. It is aimed at facilitating visual exploration and analysis of data sets as well as user collaboration in an easier way. Our framework consists of two main modules: the data access point module and the data visualization module. For the data access point module, the Phrase-Driven Grammar System (PDGS) is adopted for helping users facilitate the visualization of data. It integrates data source applications and external visualization tools and allows users to formulate data query and visualization descriptions by selecting graphical icons in a menu or on a map with step-by-step visual guidance. For the data visualization module, we implemented our first prototype of an interactive volume viewer named REMVR to classify and to visualize geo-spatial specific data sets. By combining PDGS and REMVR, REMIS assists users better in describing visualizations and exploring data so that they can easily find desired data and explore interesting or meaningful relationships including trends and exceptions in oil reservoir model data.

  3. Significance of Selective Predation and Development of Prey Protection Measures for Juvenile Salmonids in the Columbia and Snake River Reservoirs: Annual Progress Report, February 1991-February 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Poe, Thomas P.

    1992-12-31

    This document is the 1991 annual report of progress for the Bonneville Power Administration (BPA) research Project conducted by the US Fish and Wildlife Service (FWS). Our approach was to present the progress achieved during 1991 in a series of separate reports for each major project task. Each report is prepared in the format of a scientific paper and is able to stand alone, whatever the state of progress or completion. This project has two major goals. One is to understand the significance of selective predation and prey vulnerability by determining if substandard juvenile salmonids (dead, injured, stressed, diseased, or naive) are more vulnerable to predation by northern squawfish, than standard or normal juvenile salmonids. The second goal is to develop and test prey protection measures to control predation on juvenile salmonids by reducing predator-smolt encounters or predator capture efficiency.

  4. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.

    1995-02-01

    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  5. Geological Characterisation of Depleted Oil and Gas Reservoirs for ...

    African Journals Online (AJOL)

    Comparison of the derived reservoir and seal properties such as porosity, permeability, thickness and depth with the minimum recommended site selection criteria shows that the reservoirs are potential candidates for carbon geosequestration with a total theoretical storage capacity of 147MM tons. © JASEM ...

  6. Functional age as an indicator of reservoir senescence

    Science.gov (United States)

    Miranda, Leandro E.; Krogman, R. M.

    2015-01-01

    It has been conjectured that reservoirs differ in the rate at which they manifest senescence, but no attempt has been made to find an indicator of senescence that performs better than chronological age. We assembled an indicator of functional age by creating a multimetric scale consisting of 10 metrics descriptive of reservoir environments that were expected to change directionally with reservoir senescence. In a sample of 1,022 U.S. reservoirs, chronological age was not correlated with functional age. Functional age was directly related to percentage of cultivated land in the catchment and inversely related to reservoir depth. Moreover, aspects of reservoir fishing quality and fish population characteristics were related to functional age. A multimetric scale to indicate reservoir functional age presents the possibility for management intervention from multiple angles. If a reservoir is functionally aging at an accelerated rate, action may be taken to remedy the conditions contributing most to functional age. Intervention to reduce scores of selected metrics in the scale can potentially reduce the rate of senescence and increase the life expectancy of the reservoir. This leads to the intriguing implication that steps can be taken to reduce functional age and actually make the reservoir grow younger.

  7. Imaging fluid/solid interactions in hydrocarbon reservoir rocks.

    Science.gov (United States)

    Uwins, P J; Baker, J C; Mackinnon, I D

    1993-08-01

    The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions.

  8. Mercury concentrations in water and mercury and selenium concentrations in fish from Brownlee Reservoir and selected sites in the Boise and Snake Rivers, Idaho and Oregon, 2013–15

    Science.gov (United States)

    Williams, Marshall L.; MacCoy, Dorene E.

    2016-06-30

    Mercury (Hg) analyses were conducted on samples of sport fish and water collected from selected sampling sites in Brownlee Reservoir and the Boise and Snake Rivers to meet National Pollution Discharge and Elimination System (NPDES) permit requirements for the City of Boise, Idaho, between 2013 and 2015. City of Boise personnel collected water samples from six sites between October and November 2013 and 2015, with one site sampled in 2014. Total Hg concentrations in unfiltered water samples ranged from 0.48 to 8.8 nanograms per liter (ng/L), with the highest value in Brownlee Reservoir in 2013. All Hg concentrations in water samples were less than the U.S. Environmental Protection Agency (USEPA) Hg chronic aquatic life criterion of 12 ng/L.The USEPA recommended a water-quality criterion of 0.30 milligrams per kilogram (mg/kg) methylmercury (MeHg) expressed as a fish-tissue residue value (wet-weight MeHg in fish tissue). The Idaho Department of Environmental Quality adopted the USEPA’s fish-tissue criterion and established a reasonable potential to exceed (RPTE) threshold 20 percent lower than the criterion or greater than 0.24 mg/kg Hg based on an average concentration of 10 fish from a receiving waterbody. NPDES permitted discharge to waters with fish having Hg concentrations exceeding 0.24 mg/kg are said to have a reasonable potential to exceed the water-quality criterion and thus are subject to additional permit obligations, such as requirements for increased monitoring and the development of a Hg minimization plan. The Idaho Fish Consumption Advisory Program (IFCAP) issues fish advisories to protect general and sensitive populations of fish consumers and has developed an action level of 0.22 mg/kg Hg in fish tissue. Fish consumption advisories are water body- and species-specific and are used to advise allowable fish consumption from specific water bodies. The geometric mean Hg concentration of 10 fish of a single species collected from a single water body

  9. Characterization of oil and gas reservoir heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  10. Optimising reservoir operation

    DEFF Research Database (Denmark)

    Ngo, Long le

    Anvendelse af optimeringsteknik til drift af reservoirer er blevet et væsentligt element i vandressource-planlægning og -forvaltning. Traditionelt har reservoirer været styret af heuristiske procedurer for udtag af vand, suppleret i en vis udstrækning af subjektive beslutninger. Udnyttelse af...... reservoirer involverer en lang række interessenter med meget forskellige formål (f.eks. kunstig vanding, vandkraft, vandforsyning mv.), og optimeringsteknik kan langt bedre lede frem til afbalancerede løsninger af de ofte modstridende interesser. Afhandlingen foreslår en række tiltag, hvormed traditionelle...... driftsstrategier kan erstattes af optimale strategier baseret på den nyeste udvikling indenfor computer-baserede beregninger. Hovedbidraget i afhandlingen er udviklingen af et beregningssystem, hvori en simuleringsmodel er koblet til en model for optimering af nogle udvalgte beslutningsvariable, der i særlig grad...

  11. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  12. Session: Reservoir Technology

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

  13. Multiyear Plan for Validation of EnergyPlus Multi-Zone HVAC System Modeling using ORNL's Flexible Research Platform

    Energy Technology Data Exchange (ETDEWEB)

    Im, Piljae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bhandari, Mahabir S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); New, Joshua Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    This document describes the Oak Ridge National Laboratory (ORNL) multiyear experimental plan for validation and uncertainty characterization of whole-building energy simulation for a multi-zone research facility using a traditional rooftop unit (RTU) as a baseline heating, ventilating, and air conditioning (HVAC) system. The project’s overarching objective is to increase the accuracy of energy simulation tools by enabling empirical validation of key inputs and algorithms. Doing so is required to inform the design of increasingly integrated building systems and to enable accountability for performance gaps between design and operation of a building. The project will produce documented data sets that can be used to validate key functionality in different energy simulation tools and to identify errors and inadequate assumptions in simulation engines so that developers can correct them. ASHRAE Standard 140, Method of Test for the Evaluation of Building Energy Analysis Computer Programs (ASHRAE 2004), currently consists primarily of tests to compare different simulation programs with one another. This project will generate sets of measured data to enable empirical validation, incorporate these test data sets in an extended version of Standard 140, and apply these tests to the Department of Energy’s (DOE) EnergyPlus software (EnergyPlus 2016) to initiate the correction of any significant deficiencies. The fitness-for-purpose of the key algorithms in EnergyPlus will be established and demonstrated, and vendors of other simulation programs will be able to demonstrate the validity of their products. The data set will be equally applicable to validation of other simulation engines as well.

  14. unconventional natural gas reservoirs

    International Nuclear Information System (INIS)

    Correa G, Tomas F; Osorio, Nelson; Restrepo R, Dora P

    2009-01-01

    This work is an exploration about different unconventional gas reservoirs worldwide: coal bed methane, tight gas, shale gas and gas hydrate? describing aspects such as definition, reserves, production methods, environmental issues and economics. The overview also mentioned preliminary studies about these sources in Colombia.

  15. Parallel reservoir simulator computations

    International Nuclear Information System (INIS)

    Hemanth-Kumar, K.; Young, L.C.

    1995-01-01

    The adaptation of a reservoir simulator for parallel computations is described. The simulator was originally designed for vector processors. It performs approximately 99% of its calculations in vector/parallel mode and relative to scalar calculations it achieves speedups of 65 and 81 for black oil and EOS simulations, respectively on the CRAY C-90

  16. Estimated Loads of Suspended Sediment and Selected Trace Elements Transported through the Milltown Reservoir Project Area Before and After the Breaching of Milltown Dam in the Upper Clark Fork Basin, Montana, Water Year 2008

    Science.gov (United States)

    Lambing, John H.; Sando, Steven K.

    2009-01-01

    This report presents estimated daily and cumulative loads of suspended sediment and selected trace elements transported during water year 2008 at three streamflow-gaging stations that bracket the Milltown Reservoir project area in the upper Clark Fork basin of western Montana. Milltown Reservoir is a National Priorities List Superfund site where sediments enriched in trace elements from historical mining and ore processing have been deposited since the construction of Milltown Dam in 1907. Milltown Dam was breached on March 28, 2008, as part of Superfund remedial activities to remove the dam and contaminated sediment that had accumulated in Milltown Reservoir. The estimated loads transported through the project area during the periods before and after the breaching of Milltown Dam, and for the entire water year 2008, were used to quantify the net gain or loss (mass balance) of suspended sediment and trace elements within the project area during the transition from a reservoir environment to a free-flowing river. This study was done in cooperation with the U.S. Environmental Protection Agency. Streamflow during water year 2008 compared to long-term streamflow, as represented by the record for Clark Fork above Missoula (water years 1930-2008), generally was below normal (long-term median) from about October 2007 through April 2008. Sustained runoff started in mid-April, which increased flows to near normal by mid-May. After mid-May, flows sharply increased to above normal, reaching a maximum daily mean streamflow of 16,800 cubic feet per second (ft3/s) on May 21, which essentially equaled the long-term 10th-exceedance percentile for that date. Flows substantially above normal were sustained through June, then decreased through the summer and reached near-normal by August. Annual mean streamflow during water year 2008 (3,040 ft3/s) was 105 percent of the long-term mean annual streamflow (2,900 ft3/s). The annual peak flow (17,500 ft3/s) occurred on May 21 and was 112

  17. Surrogate reservoir models for CSI well probabilistic production forecast

    Directory of Open Access Journals (Sweden)

    Saúl Buitrago

    2017-09-01

    Full Text Available The aim of this work is to present the construction and use of Surrogate Reservoir Models capable of accurately predicting cumulative oil production for every well stimulated with cyclic steam injection at any given time in a heavy oil reservoir in Mexico considering uncertain variables. The central composite experimental design technique was selected to capture the maximum amount of information from the model response with a minimum number of reservoir models simulations. Four input uncertain variables (the dead oil viscosity with temperature, the reservoir pressure, the reservoir permeability and oil sand thickness hydraulically connected to the well were selected as the ones with more impact on the initial hot oil production rate according to an analytical production prediction model. Twenty five runs were designed and performed with the STARS simulator for each well type on the reservoir model. The results show that the use of Surrogate Reservoir Models is a fast viable alternative to perform probabilistic production forecasting of the reservoir.

  18. APPLICATION OF INTEGRATED RESERVOIR MANAGEMENT AND RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jack Bergeron; Tom Blasingame; Louis Doublet; Mohan Kelkar; George Freeman; Jeff Callard; David Moore; David Davies; Richard Vessell; Brian Pregger; Bill Dixon; Bryce Bezant

    2000-03-01

    Reservoir performance and characterization are vital parameters during the development phase of a project. Infill drilling of wells on a uniform spacing, without regard to characterization does not optimize development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, especially carbonate reservoirs. These reservoirs are typically characterized by: (1) large, discontinuous pay intervals; (2) vertical and lateral changes in reservoir properties; (3) low reservoir energy; (4) high residual oil saturation; and (5) low recovery efficiency. The operational problems they encounter in these types of reservoirs include: (1) poor or inadequate completions and stimulations; (2) early water breakthrough; (3) poor reservoir sweep efficiency in contacting oil throughout the reservoir as well as in the nearby well regions; (4) channeling of injected fluids due to preferential fracturing caused by excessive injection rates; and (5) limited data availability and poor data quality. Infill drilling operations only need target areas of the reservoir which will be economically successful. If the most productive areas of a reservoir can be accurately identified by combining the results of geological, petrophysical, reservoir performance, and pressure transient analyses, then this ''integrated'' approach can be used to optimize reservoir performance during secondary and tertiary recovery operations without resorting to ''blanket'' infill drilling methods. New and emerging technologies such as geostatistical modeling, rock typing, and rigorous decline type curve analysis can be used to quantify reservoir quality and the degree of interwell communication. These results can then be used to develop a 3-D simulation model for prediction of infill locations. The application of reservoir surveillance techniques to identify additional reservoir ''pay'' zones

  19. Characterization of oil and gas reservoir heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  20. Work reservoirs in thermodynamics

    Science.gov (United States)

    Anacleto, Joaquim

    2010-05-01

    We stress the usefulness of the work reservoir in the formalism of thermodynamics, in particular in the context of the first law. To elucidate its usefulness, the formalism is then applied to the Joule expansion and other peculiar and instructive experimental situations, clarifying the concepts of configuration and dissipative work. The ideas and discussions presented in this study are primarily intended for undergraduate students, but they might also be useful to graduate students, researchers and teachers.

  1. Bathymetry and capacity of Blackfoot Reservoir, Caribou County, Idaho, 2011

    Science.gov (United States)

    Wood, Molly S.; Skinner, Kenneth D.; Fosness, Ryan L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Shoshone-Bannock Tribes, surveyed the bathymetry and selected above-water sections of Blackfoot Reservoir, Caribou County, Idaho, in 2011. Reservoir operators manage releases from Government Dam on Blackfoot Reservoir based on a stage-capacity relation developed about the time of dam construction in the early 1900s. Reservoir operation directly affects the amount of water that is available for irrigation of agricultural land on the Fort Hall Indian Reservation and surrounding areas. The USGS surveyed the below-water sections of the reservoir using a multibeam echosounder and real-time kinematic global positioning system (RTK-GPS) equipment at full reservoir pool in June 2011, covering elevations from 6,090 to 6,119 feet (ft) above the North American Vertical Datum of 1988 (NAVD 88). The USGS used data from a light detection and ranging (LiDAR) survey performed in 2000 to map reservoir bathymetry from 6,116 to 6,124 ft NAVD 88, which were mostly in depths too shallow to measure with the multibeam echosounder, and most of the above-water section of the reservoir (above 6,124 ft NAVD 88). Selected points and bank erosional features were surveyed by the USGS using RTK-GPS and a total station at low reservoir pool in September 2011 to supplement and verify the LiDAR data. The stage-capacity relation was revised and presented in a tabular format. The datasets show a 2.0-percent decrease in capacity from the original survey, due to sedimentation or differences in accuracy between surveys. A 1.3-percent error also was detected in the previously used capacity table and measured water-level elevation because of questionable reference elevation at monitoring stations near Government Dam. Reservoir capacity in 2011 at design maximum pool of 6,124 ft above NAVD 88 was 333,500 acre-ft.

  2. Advantageous Reservoir Characterization Technology in Extra Low Permeability Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Yutian Luo

    2017-01-01

    Full Text Available This paper took extra low permeability reservoirs in Dagang Liujianfang Oilfield as an example and analyzed different types of microscopic pore structures by SEM, casting thin sections fluorescence microscope, and so on. With adoption of rate-controlled mercury penetration, NMR, and some other advanced techniques, based on evaluation parameters, namely, throat radius, volume percentage of mobile fluid, start-up pressure gradient, and clay content, the classification and assessment method of extra low permeability reservoirs was improved and the parameter boundaries of the advantageous reservoirs were established. The physical properties of reservoirs with different depth are different. Clay mineral variation range is 7.0%, and throat radius variation range is 1.81 μm, and start pressure gradient range is 0.23 MPa/m, and movable fluid percentage change range is 17.4%. The class IV reservoirs account for 9.56%, class II reservoirs account for 12.16%, and class III reservoirs account for 78.29%. According to the comparison of different development methods, class II reservoir is most suitable for waterflooding development, and class IV reservoir is most suitable for gas injection development. Taking into account the gas injection in the upper section of the reservoir, the next section of water injection development will achieve the best results.

  3. Integration of rock typing methods for carbonate reservoir characterization

    International Nuclear Information System (INIS)

    Aliakbardoust, E; Rahimpour-Bonab, H

    2013-01-01

    Reservoir rock typing is the most important part of all reservoir modelling. For integrated reservoir rock typing, static and dynamic properties need to be combined, but sometimes these two are incompatible. The failure is due to the misunderstanding of the crucial parameters that control the dynamic behaviour of the reservoir rock and thus selecting inappropriate methods for defining static rock types. In this study, rock types were defined by combining the SCAL data with the rock properties, particularly rock fabric and pore types. First, air-displacing-water capillary pressure curues were classified because they are representative of fluid saturation and behaviour under capillary forces. Next the most important rock properties which control the fluid flow and saturation behaviour (rock fabric and pore types) were combined with defined classes. Corresponding petrophysical properties were also attributed to reservoir rock types and eventually, defined rock types were compared with relative permeability curves. This study focused on representing the importance of the pore system, specifically pore types in fluid saturation and entrapment in the reservoir rock. The most common tests in static rock typing, such as electrofacies analysis and porosity–permeability correlation, were carried out and the results indicate that these are not appropriate approaches for reservoir rock typing in carbonate reservoirs with a complicated pore system. (paper)

  4. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    Energy Technology Data Exchange (ETDEWEB)

    Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.; Graumann, L.R.

    2003-02-11

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

  5. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    Energy Technology Data Exchange (ETDEWEB)

    Hitzman, D.O.; Bailey, S.A.; Stepp, A.K.

    2003-02-11

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery.

  6. Rock Physics of Reservoir Rocks with Varying Pore Water Saturation and Pore Water Salinity

    OpenAIRE

    Katika, Konstantina; Fabricius, Ida Lykke

    2016-01-01

    Advanced waterflooding (injection of water with selective ions in reservoirs) is amethod of enhanced oil recovery (EOR) that has attracted the interest of oil and gas companies that exploit the Danish oil and gas reservoirs. This method has been applied successfully in oil reservoirs and in the Smart Water project performed in a laboratory scale in order to evaluate the EOR processes in selected core plugs. A major step towards this evaluation is to identify the composition of the injected wa...

  7. Advances in photonic reservoir computing

    Science.gov (United States)

    Van der Sande, Guy; Brunner, Daniel; Soriano, Miguel C.

    2017-05-01

    We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir's complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  8. Encapsulated microsensors for reservoir interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  9. Reservoir Simulations of Low-Temperature Geothermal Reservoirs

    Science.gov (United States)

    Bedre, Madhur Ganesh

    The eastern United States generally has lower temperature gradients than the western United States. However, West Virginia, in particular, has higher temperature gradients compared to other eastern states. A recent study at Southern Methodist University by Blackwell et al. has shown the presence of a hot spot in the eastern part of West Virginia with temperatures reaching 150°C at a depth of between 4.5 and 5 km. This thesis work examines similar reservoirs at a depth of around 5 km resembling the geology of West Virginia, USA. The temperature gradients used are in accordance with the SMU study. In order to assess the effects of geothermal reservoir conditions on the lifetime of a low-temperature geothermal system, a sensitivity analysis study was performed on following seven natural and human-controlled parameters within a geothermal reservoir: reservoir temperature, injection fluid temperature, injection flow rate, porosity, rock thermal conductivity, water loss (%) and well spacing. This sensitivity analysis is completed by using ‘One factor at a time method (OFAT)’ and ‘Plackett-Burman design’ methods. The data used for this study was obtained by carrying out the reservoir simulations using TOUGH2 simulator. The second part of this work is to create a database of thermal potential and time-dependant reservoir conditions for low-temperature geothermal reservoirs by studying a number of possible scenarios. Variations in the parameters identified in sensitivity analysis study are used to expand the scope of database. Main results include the thermal potential of reservoir, pressure and temperature profile of the reservoir over its operational life (30 years for this study), the plant capacity and required pumping power. The results of this database will help the supply curves calculations for low-temperature geothermal reservoirs in the United States, which is the long term goal of the work being done by the geothermal research group under Dr. Anderson at

  10. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    Energy Technology Data Exchange (ETDEWEB)

    D. O. Hitzman; A. K. Stepp; D. M. Dennis; L. R. Graumann

    2003-03-31

    This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work is underway. Microbial cultures have been isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters with cultures and conditions representative of oil reservoirs. Field pilot studies are underway.

  11. A review of reservoir desiltation

    DEFF Research Database (Denmark)

    Brandt, Anders

    2000-01-01

    physical geography, hydrology, desilation efficiency, reservoir flushing, density-current venting, sediment slucing, erosion pattern, downstream effects, flow characteristics, sedimentation......physical geography, hydrology, desilation efficiency, reservoir flushing, density-current venting, sediment slucing, erosion pattern, downstream effects, flow characteristics, sedimentation...

  12. Reservoir sedimentation; a literature survey

    NARCIS (Netherlands)

    Sloff, C.J.

    1991-01-01

    A survey of literature is made on reservoir sedimentation, one of the most threatening processes for world-wide reservoir performance. The sedimentation processes, their impacts, and their controlling factors are assessed from a hydraulic engineering point of view with special emphasis on

  13. FRACTURED PETROLEUM RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Abbas Firoozabadi

    1999-06-11

    The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly

  14. Reservoir engineering and hydrogeology

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Summaries are included which show advances in the following areas: fractured porous media, flow in single fractures or networks of fractures, hydrothermal flow, hydromechanical effects, hydrochemical processes, unsaturated-saturated systems, and multiphase multicomponent flows. The main thrust of these efforts is to understand the movement of mass and energy through rocks. This has involved treating fracture rock masses in which the flow phenomena within both the fractures and the matrix must be investigated. Studies also address the complex coupling between aspects of thermal, hydraulic, and mechanical processes associated with a nuclear waste repository in a fractured rock medium. In all these projects, both numerical modeling and simulation, as well as field studies, were employed. In the theoretical area, a basic understanding of multiphase flow, nonisothermal unsaturated behavior, and new numerical methods have been developed. The field work has involved reservoir testing, data analysis, and case histories at a number of geothermal projects

  15. Chalk as a reservoir

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    basin, so stylolite formation in the chalk is controlled by effective burial stress. The stylolites are zones of calcite dissolution and probably are the source of calcite for porefilling cementation which is typical in water zone chalk and also affect the reservoirs to different extent. The relatively...... 50% calcite, leaving the remaining internal surface to the fine grained silica and clay. The high specific surface of these components causes clay- and silica rich intervals to have high irreducible water saturation. Although chalks typically are found to be water wet, chalk with mixed wettability...... stabilizes chemically by recrystallization. This process requires energy and is promoted by temperature. This recrystallization in principle does not influence porosity, but only specific surface, which decreases during recrystallization, causing permeability to increase. The central North Sea is a warm...

  16. Pacifiers: a microbial reservoir.

    Science.gov (United States)

    Comina, Elodie; Marion, Karine; Renaud, François N R; Dore, Jeanne; Bergeron, Emmanuelle; Freney, Jean

    2006-12-01

    The permanent contact between the nipple part of pacifiers and the oral microflora offers ideal conditions for the development of biofilms. This study assessed the microbial contamination on the surface of 25 used pacifier nipples provided by day-care centers. Nine were made of silicone and 16 were made of latex. The biofilm was quantified using direct staining and microscopic observations followed by scraping and microorganism counting. The presence of a biofilm was confirmed on 80% of the pacifier nipples studied. This biofilm was mature for 36% of them. Latex pacifier nipples were more contaminated than silicone ones. The two main genera isolated were Staphylococcus and Candida. Our results confirm that nipples can be seen as potential reservoirs of infections. However, pacifiers do have some advantages; in particular, the potential protection they afford against sudden infant death syndrome. Strict rules of hygiene and an efficient antibiofilm cleaning protocol should be established to answer the worries of parents concerning the safety of pacifiers.

  17. Advances in photonic reservoir computing

    Directory of Open Access Journals (Sweden)

    Van der Sande Guy

    2017-05-01

    Full Text Available We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir’s complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  18. Gravity observations for hydrocarbon reservoir monitoring

    NARCIS (Netherlands)

    Glegola, M.A.

    2013-01-01

    In this thesis the added value of gravity observations for hydrocarbon reservoir monitoring and characterization is investigated. Reservoir processes and reservoir types most suitable for gravimetric monitoring are identified. Major noise sources affecting time-lapse gravimetry are analyzed. The

  19. TROPHIC STATE OF SMALL RETENTION RESERVOIRS IN PODLASIE VOIVODESHIP

    Directory of Open Access Journals (Sweden)

    Joanna Szczykowska

    2017-09-01

    Full Text Available The study was carried out using water samples from two small retention reservoirs located in the communes: Czarna Białostocka and Turośń Kościelna in Podlaskie Voivodeship. The main tasks of both reservoirs are to improve the water balance by means of regulating the levels and water outflow. Three characteristic measurement and control points were selected on both reservoirs in accordance to the water flow in the longitudinal section. The first and third points were located near the inflow and outflow of water, while the second in the middle of the reservoirs. Samples of water for the study were collected from the surface layer of the shore zone of the reservoirs once a month from March 2015 to February 2017 (water from two hydrological years was analyzed. Water samples were subject to determination of total phosphorus, total nitrogen, and chlorophyll “a” concentrations, as well as turbidity. Contamination of the water reservoirs with biogenic compounds is a common problem and at the same time difficult to eliminate due to the scattered nature of external sources of pollution, especially in the case of agricultural catchments, as well as the inflow of untreated sewage from areas directly adjacent to the reservoirs. Based on achieved results, high values of TSI (TN, TSI (TP, TSI (Chl, and overall TSI, clearly indicate the progressive degradation of water quality in analyzed reservoirs. Appearing water blooms due to the mass development of phytoplankton adversely affect the quality of water in the reservoirs and biochemical processes occurring both in water and bottom sediments, are conditioned by progressive eutrophication.

  20. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  1. Well testing in gas hydrate reservoirs

    OpenAIRE

    Kome, Melvin Njumbe

    2015-01-01

    Reservoir testing and analysis are fundamental tools in understanding reservoir hydraulics and hence forecasting reservoir responses. The quality of the analysis is very dependent on the conceptual model used in investigating the responses under different flowing conditions. The use of reservoir testing in the characterization and derivation of reservoir parameters is widely established, especially in conventional oil and gas reservoirs. However, with depleting conventional reserves, the ...

  2. Modeling of Turbidity Variation in Two Reservoirs Connected by a Water Transfer Tunnel in South Korea

    Directory of Open Access Journals (Sweden)

    Jae Chung Park

    2017-06-01

    Full Text Available The Andong and Imha reservoirs in South Korea are connected by a water transfer tunnel. The turbidity of the Imha reservoir is much higher than that of the Andong reservoir. Thus, it is necessary to examine the movement of turbidity between the two reservoirs via the water transfer tunnel. The aim of this study was to investigate the effect of the water transfer tunnel on the turbidity behavior of the two connecting reservoirs and to further understand the effect of reservoir turbidity distribution as a function of the selective withdrawal depth. This study applied the CE-QUAL-W2, a water quality and 2-dimensional hydrodynamic model, for simulating the hydrodynamic processes of the two reservoirs. Results indicate that, in the Andong reservoir, the turbidity of the released water with the water transfer tunnel was similar to that without the tunnel. However, in the Imha reservoir, the turbidity of the released water with the water transfer tunnel was lower than that without the tunnel. This can be attributed to the higher capacity of the Andong reservoir, which has double the storage of the Imha reservoir. Withdrawal turbidity in the Imha reservoir was investigated using the water transfer tunnel. This study applied three withdrawal selections as elevation (EL. 141.0 m, 146.5 m, and 152.0 m. The highest withdrawal turbidity resulted in EL. 141.0 m, which indicates that the high turbidity current is located at a vertical depth of about 20–30 m because of the density difference. These results will be helpful for understanding the release and selective withdrawal turbidity behaviors for a water transfer tunnel between two reservoirs.

  3. Understanding the Role of Reservoir Size on Probable Maximum Precipitation

    Science.gov (United States)

    Woldemichael, A. T.; Hossain, F.

    2011-12-01

    This study addresses the question 'Does surface area of an artificial reservoir matter in the estimation of probable maximum precipitation (PMP) for an impounded basin?' The motivation of the study was based on the notion that the stationarity assumption that is implicit in the PMP for dam design can be undermined in the post-dam era due to an enhancement of extreme precipitation patterns by an artificial reservoir. In addition, the study lays the foundation for use of regional atmospheric models as one way to perform life cycle assessment for planned or existing dams to formulate best management practices. The American River Watershed (ARW) with the Folsom dam at the confluence of the American River was selected as the study region and the Dec-Jan 1996-97 storm event was selected for the study period. The numerical atmospheric model used for the study was the Regional Atmospheric Modeling System (RAMS). First, the numerical modeling system, RAMS, was calibrated and validated with selected station and spatially interpolated precipitation data. Best combinations of parameterization schemes in RAMS were accordingly selected. Second, to mimic the standard method of PMP estimation by moisture maximization technique, relative humidity terms in the model were raised to 100% from ground up to the 500mb level. The obtained model-based maximum 72-hr precipitation values were named extreme precipitation (EP) as a distinction from the PMPs obtained by the standard methods. Third, six hypothetical reservoir size scenarios ranging from no-dam (all-dry) to the reservoir submerging half of basin were established to test the influence of reservoir size variation on EP. For the case of the ARW, our study clearly demonstrated that the assumption of stationarity that is implicit the traditional estimation of PMP can be rendered invalid to a large part due to the very presence of the artificial reservoir. Cloud tracking procedures performed on the basin also give indication of the

  4. Sediment Characteristics of Tennessee Streams and Reservoirs

    National Research Council Canada - National Science Library

    Trimble, Stanley W; Carey, William P

    1984-01-01

    Suspended-sediment and reservoir sedimentation data have been analyzed to determine sediment yields and transport characteristics of Tennessee streams Data from 31 reservoirs plus suspended-sediment...

  5. Identification of genetic polymorphism in Mystus cavasius (Hamilton-Buchanan, 1822 from Gandhisagar reservoir and Bansagar reservoir, Madhya Pradesh, India

    Directory of Open Access Journals (Sweden)

    R.K. Garg

    2013-03-01

    Full Text Available Genetic relatedness was estimated among 30 genotypes of two populations of Mystus cavasius i.e., Gandhisagar reservoir (n = 15 and Bansagar reservoir (n = 15 using 5 random amplified polymorphic DNA (RAPD-PCR markers. Ten primers were primarily scored of which, 05 primers showed polymorphism and these were selected for polymerase chain reaction (PCR to be used in the final molecular analyses. 64 scorable loci were generated in genotypes from Gandhisagar reservoir of which 62 loci (70.45% were polymorphic; whereas, 108 loci were obtained in genotypes from Bansagar reservoir out of which 87 (98.86% were polymorphic. RAPD analysis showed that the Bansagar reservoir population had higher genetic polymorphism than the Gandhisagar reservoir population. Analysis of Molecular Variance (AMOVA indicated low genetic diversity (Hpop = 0.2017 ± 0.1836; I = 0.312 ± 0.2599 and relative genetic differentiation among the populations (Gst = 0.2052 and restricted gene flow (Nm = 1.9369. The phylogenetic tree constructed by un-weighted pair-group method of analysis (UPGMA showed that all genotypes formed two major clusters representing their respective geographical locations i.e., Gandhisagar reservoir population and Bansagar reservoir population. Present investigation elucidates effectiveness of balancing approaches to make polymorphism as descriptive and determined for optimum genetic amelioration and successful conservation of its genotypic variability. This study also showed high levels of morphometric and genetic variation in Bansagar reservoir population indicated dynamic evolution as revealed by genetic variations in genotypes.

  6. Changes to the Bakomi Reservoir

    Directory of Open Access Journals (Sweden)

    Kubinský Daniel

    2014-08-01

    Full Text Available This article is focused on the analysis and evaluation of the changes of the bottom of the Bakomi reservoir, the total volume of the reservoir, ecosystems, as well as changes in the riparian zone of the Bakomi reservoir (situated in the central Slovakia. Changes of the water component of the reservoir were subject to the deposition by erosion-sedimentation processes, and were identifed on the basis of a comparison of the present relief of the bottom of reservoir obtained from feld measurements (in 2011 with the relief measurements of the bottom obtained from the 1971 historical maps, (i.e. over a period of 40 years. Changes of landscape structures of the riparian zone have been mapped for the time period of 1949–2013; these changes have been identifed with the analysis of ortophotomaps and the feld survey. There has been a signifcant rise of disturbed shores with low herb grassland. Over a period of 40 years, there has been a deposition of 667 m3 of sediments. The results showed that there were no signifcant changes in the local ecosystems of the Bakomi reservoir in comparison to the other reservoirs in the vicinity of Banská Štiavnica.

  7. TRITIUM RESERVOIR STRUCTURAL PERFORMANCE PREDICTION

    Energy Technology Data Exchange (ETDEWEB)

    Lam, P.S.; Morgan, M.J

    2005-11-10

    The burst test is used to assess the material performance of tritium reservoirs in the surveillance program in which reservoirs have been in service for extended periods of time. A materials system model and finite element procedure were developed under a Savannah River Site Plant-Directed Research and Development (PDRD) program to predict the structural response under a full range of loading and aged material conditions of the reservoir. The results show that the predicted burst pressure and volume ductility are in good agreement with the actual burst test results for the unexposed units. The material tensile properties used in the calculations were obtained from a curved tensile specimen harvested from a companion reservoir by Electric Discharge Machining (EDM). In the absence of exposed and aged material tensile data, literature data were used for demonstrating the methodology in terms of the helium-3 concentration in the metal and the depth of penetration in the reservoir sidewall. It can be shown that the volume ductility decreases significantly with the presence of tritium and its decay product, helium-3, in the metal, as was observed in the laboratory-controlled burst tests. The model and analytical procedure provides a predictive tool for reservoir structural integrity under aging conditions. It is recommended that benchmark tests and analysis for aged materials be performed. The methodology can be augmented to predict performance for reservoir with flaws.

  8. Influence of limnological zones on the spatial distribution of fish assemblages in three Brazilian reservoirs

    Directory of Open Access Journals (Sweden)

    Bárbara Becker

    2015-09-01

    Full Text Available Reservoirs can have both positive and negative effects on differing fish species depending on the species concerned and reservoir morphology, flow regime, and basin location.  We assessed the influence of limnological zones on the ichthyofauna of three large Neotropical reservoirs in two different river basins. We sampled fish through use of gill nets set at 40 systematically selected sites on each reservoir. We used satellite images, algae, and suspended solids concentrations to classify those sites as lacustrine or riverine. We observed significant differences in assemblage composition between riverine and lacustrine zones of each reservoir. We either tested if the same region (lacustrine or riverine showed the same patterns in different reservoirs. In São Simão, the riverine zone produced greater abundances of native species, long-distance migratory species, diversity, and richness, whereas the lacustrine zone supported greater total and non-native species abundances. Conversely, in Três Marias, the riverine zone supported greater total and non-native species abundances, whereas the others traits evaluated did not differ significantly between zones. Only lacustrine sites occurred in Volta Grande Reservoir. The same zones in the three reservoirs usually had significantly different patterns in the traits evaluated. The differences in spatial patterns observed between reservoirs could be explained partly by the differing morphologies (complex versus linear, the differential influence of tributaries of each reservoir and basin positions (presence or absence of upstream dams of the reservoirs.

  9. Improving reservoir conformance using gelled polymer systems

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.

    1993-04-09

    The general objectives are to (1) to identify and develop gelled polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) to determine the performance of these systems in bulk and in porous media, and (3) to develop methods to predict the capability of these systems to recover oil from petroleum reservoirs. This work focuses on three types of gel systems - an aqueous polysaccharide (KUSPI) system that gels as a function of pH, the chromium-based system where polyacrylamide and xanthan are crosslinked by CR(III) and an organic crosslinked system. Development of the KUSPI system and evaluation and identification of a suitable organic crosslinked system will be done. The laboratory research is directed at the fundamental understanding of the physics and chemistry of the gelation process in bulk form and in porous media. This knowledge will be used to develop conceptual and mathematical models of the gelation process. Mathematical models will then be extended to predict the performance of gelled polymer treatments in oil reservoirs. Accomplishments for this period are presented for the following tasks: development and selection of gelled polymer systems, physical and chemical characterization of gel systems; and mathematical modeling of gel systems.

  10. A reservoir simulation approach for modeling of naturally fractured reservoirs

    Directory of Open Access Journals (Sweden)

    H. Mohammadi

    2012-12-01

    Full Text Available In this investigation, the Warren and Root model proposed for the simulation of naturally fractured reservoir was improved. A reservoir simulation approach was used to develop a 2D model of a synthetic oil reservoir. Main rock properties of each gridblock were defined for two different types of gridblocks called matrix and fracture gridblocks. These two gridblocks were different in porosity and permeability values which were higher for fracture gridblocks compared to the matrix gridblocks. This model was solved using the implicit finite difference method. Results showed an improvement in the Warren and Root model especially in region 2 of the semilog plot of pressure drop versus time, which indicated a linear transition zone with no inflection point as predicted by other investigators. Effects of fracture spacing, fracture permeability, fracture porosity, matrix permeability and matrix porosity on the behavior of a typical naturally fractured reservoir were also presented.

  11. Integrated reservoir assessment and characterization: Final report, October 1, 1985--September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Honarpour, M.; Szpakiewicz, M.; Sharma, B.; Chang, Ming-Ming; Schatzinger, R.; Jackson, S.; Tomutsa, L.; Maerefat, N.

    1989-05-01

    This report covers the development of a generic approach to reservoir characterization, the preliminary studies leading to the selection of an appropriate depositional system for detailed study, the application of outcrop studies to quantified reservoir characterization, and the construction of a quantified geological/engineering model used to screen the effects and scales of various geological heterogeneities within a reservoir. These heterogeneities result in large production/residual oil saturation contrasts over small distances. 36 refs., 124 figs., 38 tabs.

  12. THE SURDUC RESERVOIR (ROMANIA

    Directory of Open Access Journals (Sweden)

    Niculae Iulian TEODORESCU

    2008-06-01

    Full Text Available The Surduc reservoir was projected to ensure more water when water is scarce and to thus provide especially the city Timisoara, downstream of it with water.The accumulation is placed on the main affluent of the Bega river, Gladna in the upper part of its watercourse.The dam behind which this accumulation was created is of a frontal type made of enrochements with a masque made of armed concrete on the upstream part and protected/sustained by grass on the downstream. The dam is 130m long on its coping and a constructed height of 34 m. It is also endowed with spillway for high water and two bottom outlets formed of two conduits, at the end of which is the microplant. The second part of my paper deals with the hydrometric analysis of the Accumulation Surduc and its impact upon the flow, especially the maximum run-off. This influence is exemplified through the high flood from the 29th of July 1980, the most significant flood recorded in the basin with an apparition probability of 0.002%.

  13. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    Energy Technology Data Exchange (ETDEWEB)

    Hitzman, D.O.; Stepp, A.K.

    2003-02-11

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery.

  14. Understanding the True Stimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf

    2017-06-06

    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically-induced fractures that connect the wellbore to a larger fracture surface area within the reservoir rock volume. Thus, accurate estimation of the stimulated reservoir volume (SRV) becomes critical for the reservoir performance simulation and production analysis. Micro-seismic events (MS) have been commonly used as a proxy to map out the SRV geometry, which could be erroneous because not all MS events are related to hydraulic fracture propagation. The case studies discussed here utilized a fully 3-D simulation approach to estimate the SRV. The simulation approach presented in this paper takes into account the real-time changes in the reservoir\\'s geomechanics as a function of fluid pressures. It is consisted of four separate coupled modules: geomechanics, hydrodynamics, a geomechanical joint model for interfacial resolution, and an adaptive re-meshing. Reservoir stress condition, rock mechanical properties, and injected fluid pressure dictate how fracture elements could open or slide. Critical stress intensity factor was used as a fracture criterion governing the generation of new fractures or propagation of existing fractures and their directions. Our simulations were run on a Cray XC-40 HPC system. The studies outcomes proved the approach of using MS data as a proxy for SRV to be significantly flawed. Many of the observed stimulated natural fractures are stress related and very few that are closer to the injection field are connected. The situation is worsened in a highly laminated shale reservoir as the hydraulic fracture propagation is significantly hampered. High contrast in the in-situ stresses related strike-slip developed thereby shortens the extent of SRV. However, far field nature fractures that were not connected to

  15. Chickamauga reservoir embayment study - 1990

    Energy Technology Data Exchange (ETDEWEB)

    Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

    1992-12-01

    The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

  16. Reservoir characterization of Pennsylvanian Sandstone Reservoirs. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.

    1992-09-01

    This annual report describes the progress during the second year of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description and scale-up procedures; (ii) outcrop investigation; (iii) in-fill drilling potential. The first section describes the methods by which a reservoir can be characterized, can be described in three dimensions, and can be scaled up with respect to its properties, appropriate for simulation purposes. The second section describes the progress on investigation of an outcrop. The outcrop is an analog of Bartlesville Sandstone. We have drilled ten wells behind the outcrop and collected extensive log and core data. The cores have been slabbed, photographed and the several plugs have been taken. In addition, minipermeameter is used to measure permeabilities on the core surface at six inch intervals. The plugs have been analyzed for the permeability and porosity values. The variations in property values will be tied to the geological descriptions as well as the subsurface data collected from the Glen Pool field. The third section discusses the application of geostatistical techniques to infer in-fill well locations. The geostatistical technique used is the simulated annealing technique because of its flexibility. One of the important reservoir data is the production data. Use of production data will allow us to define the reservoir continuities, which may in turn, determine the in-fill well locations. The proposed technique allows us to incorporate some of the production data as constraints in the reservoir descriptions. The technique has been validated by comparing the results with numerical simulations.

  17. Petroleum reservoir data for testing simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, J.M.; Harrison, W.

    1980-09-01

    This report consists of reservoir pressure and production data for 25 petroleum reservoirs. Included are 5 data sets for single-phase (liquid) reservoirs, 1 data set for a single-phase (liquid) reservoir with pressure maintenance, 13 data sets for two-phase (liquid/gas) reservoirs and 6 for two-phase reservoirs with pressure maintenance. Also given are ancillary data for each reservoir that could be of value in the development and validation of simulation models. A bibliography is included that lists the publications from which the data were obtained.

  18. Gravity observations for hydrocarbon reservoir monitoring

    OpenAIRE

    Glegola, M.A.

    2013-01-01

    In this thesis the added value of gravity observations for hydrocarbon reservoir monitoring and characterization is investigated. Reservoir processes and reservoir types most suitable for gravimetric monitoring are identified. Major noise sources affecting time-lapse gravimetry are analyzed. The added value of gravity data for reservoir monitoring and characterization is analyzed within closed-loop reservoir management concept. Synthetic 2D and 3D numerical experiments are performed where var...

  19. Optimization In Searching Daily Rule Curve At Mosul Regulating Reservoir, North Iraq Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Thair M. Al-Taiee

    2013-05-01

    Full Text Available To obtain optimal operating rules for storage reservoirs, large numbers of simulation and optimization models have been developed over the past several decades, which vary significantly in their mechanisms and applications. Rule curves are guidelines for long term reservoir operation. An efficient technique is required to find the optimal rule curves that can mitigate water shortage in long term operation. The investigation of developed Genetic Algorithm (GA technique, which is an optimization approach base on the mechanics of natural selection, derived from the theory of natural evolution, was carried out to through the application to predict the daily rule curve of  Mosul regulating reservoir in Iraq.  Record daily inflows, outflow, water level in the reservoir for 19 year (1986-1990 and (1994-2007 were used in the developed model for assessing the optimal reservoir operation. The objective function is set to minimize the annual sum of squared deviation from the desired downstream release and desired storage volume in the reservoir. The decision variables are releases, storage volume, water level and outlet (demand from the reservoir. The results of the GA model gave a good agreement during the comparison with the actual rule curve and the designed rating curve of the reservoir. The simulated result shows that GA-derived policies are promising and competitive and can be effectively used for daily reservoir operation in addition to the rational monthly operation and predicting also rating curve of reservoirs.

  20. Preliminary assessment of heavy metal pollution of Opa reservoir, Ile ...

    African Journals Online (AJOL)

    Water samples from the reservoir, and the liver, gills and fillet of six specimens of Tilapia zillii (Gervais, 1848) and six specimens of Momyrus rume (Curvier and Valenciennes, 1846) were analyzed using Flame Atomic Absorption Spectrophotometer (FAAS) for the selected metals. The mass order of the metals in the samples ...

  1. Microbial Life in an Underground Gas Storage Reservoir

    Science.gov (United States)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In

  2. A hybrid framework for reservoir characterization using fuzzy ranking and an artificial neural network

    Science.gov (United States)

    Wang, Baijie; Wang, Xin; Chen, Zhangxin

    2013-08-01

    Reservoir characterization refers to the process of quantitatively assigning reservoir properties using all available field data. Artificial neural networks (ANN) have recently been introduced to solve reservoir characterization problems dealing with the complex underlying relationships inherent in well log data. Despite the utility of ANNs, the current limitation is that most existing applications simply focus on directly implementing existing ANN models instead of improving/customizing them to fit the specific reservoir characterization tasks at hand. In this paper, we propose a novel intelligent framework that integrates fuzzy ranking (FR) and multilayer perceptron (MLP) neural networks for reservoir characterization. FR can automatically identify a minimum subset of well log data as neural inputs, and the MLP is trained to learn the complex correlations from the selected well log data to a target reservoir property. FR guarantees the selection of the optimal subset of representative data from the overall well log data set for the characterization of a specific reservoir property; and, this implicitly improves the modeling and predication accuracy of the MLP. In addition, a growing number of industrial agencies are implementing geographic information systems (GIS) in field data management; and, we have designed the GFAR solution (GIS-based FR ANN Reservoir characterization solution) system, which integrates the proposed framework into a GIS system that provides an efficient characterization solution. Three separate petroleum wells from southwestern Alberta, Canada, were used in the presented case study of reservoir porosity characterization. Our experiments demonstrate that our method can generate reliable results.

  3. Reservoir-induced seismicity at Castanhao reservoir, NE Brazil

    Science.gov (United States)

    Nunes, B.; do Nascimento, A.; Ferreira, J.; Bezerra, F.

    2012-04-01

    Our case study - the Castanhão reservoir - is located in NE Brazil on crystalline rock at the Borborema Province. The Borborema Province is a major Proterozoic-Archean terrain formed as a consequence of convergence and collision of the São Luis-West Africa craton and the São Francisco-Congo-Kasai cratons. This reservoir is a 60 m high earth-filled dam, which can store up to 4.5 billion m3 of water. The construction begun in 1990 and finished in October 2003.The first identified reservoir-induced events occurred in 2003, when the water level was still low. The water reached the spillway for the first time in January 2004 and, after that, an increase in seismicity occured. The present study shows the results of a campaign done in the period from November 19th, 2009 to December 31th, 2010 at the Castanhão reservoir. We deployed six three-component digital seismographic station network around one of the areas of the reservoir. We analyzed a total of 77 events which were recorded in at least four stations. To determine hypocenters and time origin, we used HYPO71 program (Lee & Lahr, 1975) assuming a half-space model with following parameters: VP= 5.95 km/s and VP/VS=1.73. We also performed a relocation of these events using HYPODD (Waldhauser & Ellsworth, 2000) programme. The input data used we used were catalogue data, with all absolute times. The results from the spatio-temporal suggest that different clusters at different areas and depths are triggered at different times due to a mixture of: i - pore pressure increase due to diffusion and ii - increase of pore pressure due to the reservoir load.

  4. Citronelle Dome: A giant opportunity for multizone carbon storage and enhanced oil recovery in the Mississippi Interior Salt Basin of Alabama

    Science.gov (United States)

    Esposito, R.A.; Pashin, J.C.; Walsh, P.M.

    2008-01-01

    The Citronelle Dome is a giant, salt-cored anticline in the eastern Mississippi Interior Salt Basin of southern Alabama that is located near several large-scale, stationary, carbon-emitting sources in the greater Mobile area. The dome forms an elliptical, four-way structural closure containing opportunities for CO2-enhanced oil recovery (CO2-EOR) and large-capacity saline reservoir CO2 sequestration. The Citronelle oil field, located on the crest of the dome, has produced more than 169 million bbl of 42-46?? API gravity oil from sandstone bodies in the Lower Cretaceous Rodessa Formation. The top seal for the oil accumulation is a thick succession of shale and anhydrite, and the reservoir is underfilled such that oil-water contacts are typically elevated 30-60 m (100-200 ft) above the structural spill point. Approximately 31-34% of the original oil in place has been recovered by primary and secondary methods, and CO2-EOR has the potential to increase reserves by up to 20%. Structural contour maps of the dome demonstrate that the area of structural closure increases upward in section. Sandstone units providing prospective carbon sinks include the Massive and Pilot sands of the lower Tuscaloosa Group, as well as several sandstone units in the upper Tuscaloosa Group and the Eutaw Formation. Many of these sandstone units are characterized by high porosity and permeability with low heterogeneity. The Tuscaloosa-Eutaw interval is capped by up to 610 m (2000 ft) of chalk and marine shale that are proven reservoir seals in nearby oil fields. Therefore, the Citronelle Dome can be considered a major geologic sink where CO2 can be safely stored while realizing the economic benefits associated with CO2-EOR. Copyright ?? 2008. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  5. TDT monitors gas saturation in heterogeneous reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, G.M.; Al-Awad, M.N.J. [King Saud Univ., Riyadh (Saudi Arabia)

    1998-05-25

    Thermal decay time (TDT) logs were used for determining the gas/oil contact in wells in the Zeit Bay field in Egypt. Gas/oil contact in the field was revised using the results from the model that was developed. The analysis followed the Polyachenko model of functional relationship between count rates and gas saturation. Several crossplots were made for the same range of porosity and connate water saturation. These crossplots included: formation capture cross section; total selected near detector counts; total selected far detector counts; capture cross section of the borehole; and inelastic far detector counts. Each crossplot gave a definite diagnostic shape around the depth of the gas/oil contact. By using these crossplots, it is possible to calculate gas saturation from a stand-alone run. The model was validated by RFT (reservoir formation tester) and open hole log data from infill wells. Also, the analysis was successfully applied in wells without an ambiguous gas/oil contact.

  6. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-01-01

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  7. Cloud computing and Reservoir project

    International Nuclear Information System (INIS)

    Beco, S.; Maraschini, A.; Pacini, F.; Biran, O.

    2009-01-01

    The support for complex services delivery is becoming a key point in current internet technology. Current trends in internet applications are characterized by on demand delivery of ever growing amounts of content. The future internet of services will have to deliver content intensive applications to users with quality of service and security guarantees. This paper describes the Reservoir project and the challenge of a reliable and effective delivery of services as utilities in a commercial scenario. It starts by analyzing the needs of a future infrastructure provider and introducing the key concept of a service oriented architecture that combines virtualisation-aware grid with grid-aware virtualisation, while being driven by business service management. This article will then focus on the benefits and the innovations derived from the Reservoir approach. Eventually, a high level view of Reservoir general architecture is illustrated.

  8. Reservoir effects in radiocarbon dating

    International Nuclear Information System (INIS)

    Head, M.J.

    1997-01-01

    Full text: The radiocarbon dating technique depends essentially on the assumption that atmospheric carbon dioxide containing the cosmogenic radioisotope 14 C enters into a state of equilibrium with all living material (plants and animals) as part of the terrestrial carbon cycle. Terrestrial reservoir effects occur when the atmospheric 14 C signal is diluted by local effects where systems depleted in 14 C mix with systems that are in equilibrium with the atmosphere. Naturally, this can occur with plant material growing close to an active volcano adding very old CO 2 to the atmosphere (the original 14 C has completely decayed). It can also occur in highly industrialised areas where fossil fuel derived CO 2 dilutes the atmospheric signal. A terrestrial reservoir effect can occur in the case of fresh water shells living in rivers or lakes where there is an input of ground water from springs or a raising of the water table. Soluble bicarbonate derived from the dissolution of very old limestone produces a 14 C dilution effect. Land snail shells and stream carbonate depositions (tufas and travertines) can be affected by a similar mechanism. Alternatively, in specific cases, these reservoir effects may not occur. This means that general interpretations assuming quantitative values for these terrestrial effects are not possible. Each microenvironment associated with samples being analysed needs to be evaluated independently. Similarly, the marine environment produces reservoir effects. With respect to marine shells and corals, the water depth at which carbonate growth occurs can significantly affect quantitative 14 C dilution, especially in areas where very old water is uplifted, mixing with top layers of water that undergo significant exchange with atmospheric CO 2 . Hence, generalisations with respect to the marine reservoir effect also pose problems. These can be exacerbated by the mixing of sea water with either terrestrial water in estuaries, or ground water where

  9. Sedimentological and Geomorphological Effects of Reservoir Flushing: The Cachi Reservoir, Costa Rica, 1996

    DEFF Research Database (Denmark)

    Brandt, Anders; Swenning, Joar

    1999-01-01

    Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs......Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs...

  10. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    Energy Technology Data Exchange (ETDEWEB)

    P. K. Pande

    1998-10-29

    Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

  11. SIRIU RESERVOIR, BUZAU RIVER (ROMANIA

    Directory of Open Access Journals (Sweden)

    Daniel Constantin DIACONU

    2008-06-01

    Full Text Available Siriu reservoir, owes it`s creation to the dam built on the river Buzau, in the town which bears the same name. The reservoir has a hydro energetic role, to diminish the maximum flow and to provide water to the localities below. The partial exploitation of the lake, began in 1984; Since that time, the initial bed of the river began to accumulate large quantities of alluvia, reducing the retention capacity of the lake, which had a volume of 125 million m3. The changes produced are determined by many topographic surveys at the bottom of the lake.

  12. Climate Change Assessment of Precipitation in Tandula Reservoir System

    Science.gov (United States)

    Jaiswal, Rahul Kumar; Tiwari, H. L.; Lohani, A. K.

    2018-02-01

    The precipitation is the principle input of hydrological cycle affect availability of water in spatial and temporal scale of basin due to widely accepted climate change. The present study deals with the statistical downscaling using Statistical Down Scaling Model for rainfall of five rain gauge stations (Ambagarh, Bhanpura, Balod, Chamra and Gondli) in Tandula, Kharkhara and Gondli reservoirs of Chhattisgarh state of India to forecast future rainfall in three different periods under SRES A1B and A2 climatic forcing conditions. In the analysis, twenty-six climatic variables obtained from National Centers for Environmental Prediction were used and statistically tested for selection of best-fit predictors. The conditional process based statistical correlation was used to evolve multiple linear relations in calibration for period of 1981-1995 was tested with independent data of 1996-2003 for validation. The developed relations were further used to predict future rainfall scenarios for three different periods 2020-2035 (FP-1), 2046-2064 (FP-2) and 2081-2100 (FP-3) and compared with monthly rainfalls during base period (1981-2003) for individual station and all three reservoir catchments. From the analysis, it has been found that most of the rain gauge stations and all three reservoir catchments may receive significant less rainfall in future. The Thiessen polygon based annual and seasonal rainfall for different catchments confirmed a reduction of seasonal rainfall from 5.1 to 14.1% in Tandula reservoir, 11-19.2% in Kharkhara reservoir and 15.1-23.8% in Gondli reservoir. The Gondli reservoir may be affected the most in term of water availability in future prediction periods.

  13. Biofouling on Reservoir in Sea Water

    Science.gov (United States)

    Yoon, H.; Eom, C.; Kong, M.; Park, Y.; Chung, K.; Kim, B.

    2011-12-01

    The organisms which take part in marine biofouling are primarily the attached or sessile forms occurring naturally in the shallower water along the coast [1]. This is mainly because only those organisms with the ability to adapt to the new situations created by man can adhere firmly enough to avoid being washed off. Chemical and microbiological characteristics of the fouling biofilms developed on various surfaces in contact with the seawater were made. The microbial compositions of the biofilm communities formed on the reservoir polymer surfaces were tested for. The quantities of the diverse microorganisms in the biofilm samples developed on the prohibiting polymer reservoir surface were larger when there was no concern about materials for special selection for fouling. To confirm microbial and formation of biofilm on adsorbents was done CLSM (Multi-photon Confocal Laser Scanning Microscope system) analysis. Microbial identified using 16S rRNA. Experiment results, five species which are Vibrio sp., Pseudoalteromonas, Marinomonas, Sulfitobacter, and Alteromonas discovered to reservoir formed biofouling. There are some microorganism cause fouling and there are the others control fouling. The experimental results offered new specific information, concerning the problems in the application of new material as well as surface coating such as anti-fouling coatings. They showed the important role microbial activity in fouling and corrosion of the surfaces in contact with the any seawater. Acknowledgement : This research was supported by the national research project titled "The Development of Technology for Extraction of Resources Dissolved in Seawater" of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Land, Transport and Maritime Affairs. References [1] M. Y. Diego, K. Soren, and D. J. Kim. Prog. Org. Coat. 50, (2004) p.75-104.

  14. Real-time optimisation of the Hoa Binh reservoir, Vietnam

    DEFF Research Database (Denmark)

    Richaud, Bertrand; Madsen, Henrik; Rosbjerg, Dan

    2011-01-01

    Multi-purpose reservoirs often have to be managed according to conflicting objectives, which requires efficient tools for trading-off the objectives. This paper proposes a multi-objective simulation-optimisation approach that couples off-line rule curve optimisation with on-line real......-time optimisation. First, the simulation-optimisation framework is applied for optimising reservoir operating rules. Secondly, real-time and forecast information is used for on-line optimisation that focuses on short-term goals, such as flood control or hydropower generation, without compromising the deviation...... of the long-term objectives from the optimised rule curves. The method is illustrated for optimisation of the Hoa Binh reservoir in Vietnam. The approach is proven efficient to trade-off conflicting objectives. Selected by a Pareto optimisation method, the preferred optimum is able to mitigate the floods...

  15. Data assimilation in reservoir management

    NARCIS (Netherlands)

    Rommelse, J.R.

    2009-01-01

    The research presented in this thesis aims at improving computer models that allow simulations of water, oil and gas flows in subsurface petroleum reservoirs. This is done by integrating, or assimilating, measurements into physics-bases models. In recent years petroleum technology has developed

  16. Reservoirs in the United States

    Science.gov (United States)

    Harbeck, G. Earl

    1948-01-01

    Man has engaged in the control of flowing water since history began. Among his early recorded efforts were reservoirs for muncipal water-supplies constructed near ancient Jerusalem to store water which was brought there in masonry conduits. 1/  Irrigation was practiced in Egypt as early as 2000 B. C. There the "basin system" was used from ancient times until the 19th century. The land was divided , into basins of approximately 40,000 acres, separated by earthen dikes. 2/  Flood waters of the Nile generally inundated the basins through canals, many of which were built by the Pharaohs. Even then the economic consequences of a deficient annual flood were recognized. Lake Maeris, which according to Herodotus was an ancient storage reservoir, is said to have had an area of 30,000 acres. In India, the British found at the time of their occupancy of the Presidency of Madras about 50,000 reservoirs for irrigation, many believed to be of ancient construction. 3/ During the period 115-130 A. D. reservoirs were built to improve the water-supply of Athens. Much has been written concerning the elaborate collection and distribution system built to supply Rome, and parts of it remain to this day as monuments to the engineering skill employed by the Romans in solving the problem of large-scale municipal water-supplies.

  17. Reasons for reservoir effect variability

    DEFF Research Database (Denmark)

    Philippsen, Bente

    2013-01-01

    , aquatic plants and fish from the rivers Alster and Trave range between zero and about 3,000 radiocarbon years. The reservoir age of water DIC depends to a large extent on the origin of the water and is for example correlated with precipitation amounts. These short-term variations are smoothed out in water...

  18. Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information

    Science.gov (United States)

    Yang, Tiantian; Asanjan, Ata Akbari; Welles, Edwin; Gao, Xiaogang; Sorooshian, Soroosh; Liu, Xiaomang

    2017-04-01

    Reservoirs are fundamental human-built infrastructures that collect, store, and deliver fresh surface water in a timely manner for many purposes. Efficient reservoir operation requires policy makers and operators to understand how reservoir inflows are changing under different hydrological and climatic conditions to enable forecast-informed operations. Over the last decade, the uses of Artificial Intelligence and Data Mining [AI & DM] techniques in assisting reservoir streamflow subseasonal to seasonal forecasts have been increasing. In this study, Random Forest [RF), Artificial Neural Network (ANN), and Support Vector Regression (SVR) are employed and compared with respect to their capabilities for predicting 1 month-ahead reservoir inflows for two headwater reservoirs in USA and China. Both current and lagged hydrological information and 17 known climate phenomenon indices, i.e., PDO and ENSO, etc., are selected as predictors for simulating reservoir inflows. Results show (1) three methods are capable of providing monthly reservoir inflows with satisfactory statistics; (2) the results obtained by Random Forest have the best statistical performances compared with the other two methods; (3) another advantage of Random Forest algorithm is its capability of interpreting raw model inputs; (4) climate phenomenon indices are useful in assisting monthly or seasonal forecasts of reservoir inflow; and (5) different climate conditions are autocorrelated with up to several months, and the climatic information and their lags are cross correlated with local hydrological conditions in our case studies.

  19. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    Science.gov (United States)

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  20. INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

    Energy Technology Data Exchange (ETDEWEB)

    D.O. Hitzman; A.K. Stepp; D.M. Dennis; L.R. Graumann

    2003-09-01

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions and technologies for improving oil production. The goal was to identify and utilize indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work in model sandpack cores was conducted using microbial cultures isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters using cultures and conditions representative of oil reservoirs. Increased oil recovery in multiple model sandpack systems was achieved and the technology and results were verified by successful field studies. Direct application of the research results has lead to the development of a feasible, practical, successful, and cost-effective technology which increases oil recovery. This technology is now being commercialized and applied in numerous field projects to increase oil recovery. Two field applications of the developed technology reported production increases of 21% and 24% in oil recovery.

  1. INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

    Energy Technology Data Exchange (ETDEWEB)

    D.O. Hitzman; S.A. Bailey

    2000-01-01

    This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery.This microbial technology has the capability of producing multiple oil releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery. Research has begun on the program and experimental laboratory work is underway. Polymer-producing cultures have been isolated from produced water samples and initially characterized. Concurrently, a microcosm scale sand-packed column has been designed and developed for testing cultures of interest, including polymer-producing strains. In research that is planned to begin in future work, comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents will be conducted in sand pack and cores with synthetic and natural field waters at concentrations, flooding rates, and with cultures and conditions representative of oil reservoirs.

  2. Reservoir Cathode for Electric Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a reservoir cathode to improve performance in both ion and Hall-effect thrusters. We propose to adapt our existing reservoir cathode technology to this...

  3. 49 CFR 236.792 - Reservoir, equalizing.

    Science.gov (United States)

    2010-10-01

    ... Reservoir, equalizing. An air reservoir connected with and adding volume to the top portion of the equalizing piston chamber of the automatic brake valve, to provide uniform service reductions in brake pipe...

  4. Dissolved methane in Indian freshwater reservoirs

    Digital Repository Service at National Institute of Oceanography (India)

    Narvenkar, G.; Naqvi, S.W.A.; Kurian, S.; Shenoy, D.M.; Pratihary, A.K.; Naik, H.; Patil, S.; Sarkar, A.; Gauns, M.

    Emission of methane (CH4), a potent greenhouse gas, from tropical reservoirs is of interest because such reservoirs experience conducive conditions for CH4 production through anaerobic microbial activities. It has been suggested that Indian...

  5. The Methane Hydrate Reservoir System

    Science.gov (United States)

    Flemings, P. B.; Liu, X.

    2007-12-01

    We use multi phase flow modeling and field examples (Hydrate Ridge, offshore Oregon and Blake Ridge, offshore North Carolina) to demonstrate that the methane hydrate reservoir system links traditional and non- traditional hydrocarbon system components: free gas flow is a fundamental control on this system. As in a traditional hydrocarbon reservoir, gas migrates into the hydrate reservoir as a separate phase (secondary migration) where it is trapped in a gas column beneath the base of the hydrate layer. With sufficient gas supply, buoyancy forces exceed either the capillary entry pressure of the cap rock or the fracture strength of the cap rock, and gas leaks into the hydrate stability zone, or cap rock. When gas enters the hydrate stability zone and forms hydrate, it becomes a very non traditional reservoir. Free gas forms hydrate, depletes water, and elevates salinity until pore water is too saline for further hydrate formation: salinity and hydrate concentration increase upwards from the base of the regional hydrate stability zone (RHSZ) to the seafloor and the base of the hydrate stability zone has significant topography. Gas chimneys couple the free gas zone to the seafloor through high salinity conduits that are maintained at the three-phase boundary by gas flow. As a result, significant amounts of gaseous methane can bypass the RHSZ, which implies a significantly smaller hydrate reservoir than previously envisioned. Hydrate within gas chimneys lie at the three-phase boundary and thus small increases in temperature or decreases in pressure can immediately transport methane into the ocean. This type of hydrate deposit may be the most economical for producing energy because it has very high methane concentrations (Sh > 70%) located near the seafloor, which lie on the three-phase boundary.

  6. Reservoir characterization of the Snorre Field

    OpenAIRE

    Gjestvang, Jørgen

    2016-01-01

    Master's thesis in Petroleum engineering The fluvial sandstone in the Snorre field consists of braided to meander streams deposited in arid and in humid climate that show a clear differences in the sedimentology and reservoir properties, especially the silt content in large part of the reservoir which decrease the reservoir properties and water saturation. The heterogeneity of these fluvial formations combined with the faulting history makes this reservoir highly complex with many local an...

  7. Reservoir resistivity characterization incorporating flow dynamics

    KAUST Repository

    Arango, Santiago

    2016-04-07

    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie\\'s parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  8. Monitoring Reservoirs Using MERIS And LANDSAT Fused Images : A Case Study Of Polyfitos Reservoir - West Macedonia - Greece

    Science.gov (United States)

    Stefouli, M.; Charou, E.; Vasileiou, E.; Stathopoulos, N.; Perrakis, A.

    2012-04-01

    the irrigation network in the area We evaluate the possibility to merge two different resolution satellite data i.e. MERIS/ENVISAT and LANDSAT to facilitate the study of the Polyfitos reservoir. State of the art data fusion techniques, that preserve the best characteristics (spatial, temporal, spectral) of the two types of images are implemented and used to mining information concerning selected parameters. Summer 2011 Landsat and ENVISAT MERIS satellite images are used in order to extract lake water quality parameters such as water clarity -and sediment content. Assessment of the whole watershed of Polyfitos reservoir is carried out for the last 25 years. The methodology presented here can be used to support existing reservoir monitoring programs as it gives regular measurements for the whole of the watershed area of the reservoir. The results can be made available to end-users / reservoir managers, using web/GIS techniques. They can also support environmental awareness of the conditions of watershed of Polyfitos reservoir.

  9. Tenth workshop on geothermal reservoir engineering: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-22

    The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

  10. 32 CFR 644.4 - Reservoir Projects.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Reservoir Projects. 644.4 Section 644.4 National... HANDBOOK Project Planning Civil Works § 644.4 Reservoir Projects. (a) Joint land acquisition policy for reservoir projects. The joint policies of the Department of the Interior and the Department of the Army...

  11. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    International Nuclear Information System (INIS)

    thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" data-affiliation=" (Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" >Nurhandoko, Bagus Endar B.; Susilowati

    2015-01-01

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia

  12. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

    2001-08-07

    This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

  13. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, M.L.; Evans, R.D.; Brown, R.L.; Gupta, A.

    2001-03-28

    This report focuses on integrating geoscience and engineering data to develop a consistent characterization of the naturally fractured reservoirs. During this reporting period, effort was focused on relating seismic data to reservoir properties of naturally fractured reservoirs, scaling well log data to generate interwell descriptors of these reservoirs, enhancing and debugging a naturally fractured reservoir simulator, and developing a horizontal wellbore model for use in the simulator.

  14. Reservoir microseismicity at the Ekofisk Oil Field

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, J.T.; Fairbanks, T.D. [Nambe Geophysical, Inc., Santa Fe, NM (United States); Albright, J.N. [Los Alamos National Lab., NM (United States); Boade, R.R. [Phillips Petroleum Co., Bartlesville, OK (United States); Dangerfield, J.; Landa, G.H. [Phillips Petroleum Co., Tananger (Norway)

    1994-07-01

    A triaxial, downhole geophone was deployed within the Ekofisk oil reservoir for monitoring ambient microseismicity as a test to determine if microearthquake signals generated from discrete shear failure of the reservoir rock could be detected. The results of the test were positive. During 104 hours of monitoring, 572 discrete events were recorded which have been identified as shear-failure microearthquakes. Reservoir microseismicity was detected at large distances (1000 m) from the monitor borehole and at rates (> 5 events per hour) which may allow practical characterization of the reservoir rock and overburden deformation induced by reservoir pressure changes.

  15. Characterization of oil and gas reservoir heterogeneity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a ``heterogeneity matrix`` based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  16. Multi-objective Optimization of the Mississippi Headwaters Reservoir System

    Science.gov (United States)

    Faber, B. A.; Harou, J. J.

    2006-12-01

    The Hydrologic Engineering Center (HEC) of the U.S. Army Corps of Engineers is participating in a re- operation study of the Mississippi Headwaters reservoir system. The study, termed ROPE (Reservoir Operation Plan Evaluation), will develop a new operation policy for the reservoir system in a Shared Vision Planning effort. The current operating plan is 40 years old and does not account for the diverse objectives of the system altered by increased development and resource awareness. Functions of the six-reservoir system include flood damage reduction, recreation, fish and wildlife habitat considerations, tribal resources, water quality, water supply, erosion and sedimentation control, and hydropower production. Experience has shown that a modeling approach using both optimization, which makes decisions based on their value to objectives, and simulation, which makes decisions that follow operating instructions or rules, is an effective way to improve or develop new operating policies. HEC's role in this study was to develop a multi- objective optimization model of the system using HEC-PRM (Prescriptive Reservoir Model), a generalized computer program that performs multi-period deterministic network-flow optimization of reservoir systems. The optimization model's purpose is to enable stakeholders and decision makers to select appropriate tradeoffs between objectives, and have these tradeoffs reflected in proposed rules. Initial single-objective optimizations allow stakeholders to verify that the penalty functions developed by experts accurately represent their interests. Once penalty functions are confirmed, trade-off curves between pairs of system objectives are developed, and stakeholders and decision makers choose a desired balance between the two objectives. These chosen balance points are maintained in optimizations that consider all objectives. Finally, optimal system decisions are studied to infer operating patterns that embody the chosen tradeoffs. The

  17. Smart Waterflooding in Carbonate Reservoirs

    DEFF Research Database (Denmark)

    Zahid, Adeel

    During the last decade, smart waterflooding has been developed into an emerging EOR technology both for carbonate and sandstone reservoirs that does not require toxic or expensive chemicals. Although it is widely accepted that different salinity brines may increase the oil recovery for carbonate...... reservoirs, understanding of the mechanism of this increase is still developing. To understand this smart waterflooding process, an extensive research has been carried out covering a broad range of disciplines within surface chemistry, thermodynamics of crude oil and brine, as well as their behavior...... that a heavy oil (that with a large fraction of heavy components) exhibited viscosity reduction in contact with brine, while a light crude oil exhibited emulsion formation. Most of reported high salinity waterflooding studies were carried out with outcrop chalk core plugs, and by performing spontaneous...

  18. Production Optimization of Oil Reservoirs

    DEFF Research Database (Denmark)

    Völcker, Carsten

    With an increasing demand for oil and diculties in nding new major oil elds, research on methods to improve oil recovery from existing elds is more necessary now than ever. The subject of this thesis is to construct ecient numerical methods for simulation and optimization of oil recovery...... programming (SQP) with line-search and BFGS approximations of the Hessian, and the adjoint method for ecient computation of the gradients. We demonstrate that the application of NMPC for optimal control of smart-wells has the potential to increase the economic value of an oil reservoir....... with emphasis on optimal control of water ooding with the use of smartwell technology. We have implemented immiscible ow of water and oil in isothermal reservoirs with isotropic heterogenous permeability elds. We use the method of lines for solution of the partial differential equation (PDE) system that governs...

  19. Multilevel techniques for Reservoir Simulation

    DEFF Research Database (Denmark)

    Christensen, Max la Cour

    for both variational upscaling and the construction of linear solvers. In particular, it is found to be beneficial (or even necessary) to apply an AMGe based multigrid solver to solve the upscaled problems. It is found that the AMGe upscaling changes the spectral properties of the matrix, which renders...... is extended to include a hybrid strategy, where FAS is combined with Newton’s method to construct a multilevel nonlinear preconditioner. This method demonstrates high efficiency and robustness. Second, an improved IMPES formulated reservoir simulator is implemented using a novel variational upscaling approach...... based on element-based Algebraic Multigrid (AMGe). In particular, an advanced AMGe technique with guaranteed approximation properties is used to construct a coarse multilevel hierarchy of Raviart-Thomas and L2 spaces for the Galerkin coarsening of a mixed formulation of the reservoir simulation...

  20. MIKROMITSETY- MIGRANTS IN MINGECHEVIR RESERVOIR

    Directory of Open Access Journals (Sweden)

    M. A. Salmanov

    2017-01-01

    Full Text Available Aim. It is hardly possible to predict the continued stability of the watercourse ecosystems without the study of biological characteristics and composition of organisms inhabiting them. In the last 35-40 years, environmental conditions of the Mingachevir reservoir are determined by the stationary anthropogenic pressure. It was found that such components of plankton as algae, bacteria and fungi play a leading role in the transformation and migration of pollutants. The role of the three groups of organisms is very important in maintaining the water quality by elimination of pollutants. Among the organisms inhabiting the Mingachevir Reservoir, micromycetes have not yet been studied. Therefore, the study of the species composition and seasonal dynamics, peculiarities of their growth and development in the environment with the presence of some of the pollutants should be considered to date.Methods. In order to determine the role of micromycetes-migrants in the mineralization of organic substrates, as an active participant of self-purification process, we used water samples from the bottom sediments as well as decaying and skeletonized stalks of cane, reeds, algae, macrophytes, exuvia of insects and fish remains submerged in water.Findings. For the first time, we obtained the data on the quality and quantity of microscopic mycelial fungi in freshwater bodies on the example of the Mingachevir water reservoir; we also studied the possibilities for oxygenating the autochthonous organic matter of allochthonous origin with micromycetes-migrants.Conclusions. It was found that the seasonal development of micromycetes-migrants within the Mingachevir reservoir is characterized by an increase in the number of species in the summer and a gradual reduction in species diversity in the fall. 

  1. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  2. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  3. Assessment of conservation practices in the Fort Cobb Reservoir watershed, southwestern Oklahoma

    Science.gov (United States)

    Becker, Carol J.

    2011-01-01

    The Fort Cobb Reservoir watershed encompasses about 813 square kilometers of rural farm land in Caddo, Custer, and Washita Counties in southwestern Oklahoma. The Fort Cobb Reservoir and six stream segments were identified on the Oklahoma 1998 303(d) list as not supporting designated beneficial uses because of impairment by nutrients, suspended solids, sedimentation, pesticides, and unknown toxicity. As a result, State and Federal agencies, in collaboration with conservation districts and landowners, started conservation efforts in 2001 to decrease erosion and transport of sediments and nutrients to the reservoir and improve water quality in tributaries. The U.S. Department of Agriculture selected the Fort Cobb Reservoir watershed in 2003 as 1 of 14 benchmark watersheds under the Conservation Effectiveness Assessment Project with the objective of quantifying the environmental benefits derived from agricultural conservation programs in reducing inflows of sediments and phosphorus to the reservoir. In November 2004, the Biologic, Geographic, Geologic, and Water Disciplines of the U.S. Geological Survey, in collaboration with the Agricultural Research Service, Grazinglands Research Laboratory in El Reno, Oklahoma, began an interdisciplinary investigation to produce an integrated publication to complement this program. This publication is a compilation of 10 report chapters describing land uses, soils, geology, climate, and water quality in streams and the reservoir through results of field and remote sensing investigations from 2004 to 2007. The investigations indicated that targeting best-management practices to small intermittent streams draining to the reservoir and to the Cobb Creek subwatershed may effectively augment efforts to improve eutrophic to hypereutrophic conditions that continue to affect the reservoir. The three major streams flowing into the reservoir contribute nutrients causing eutrophication, but minor streams draining cultivated fields near the

  4. Challenges of reservoir properties and production history matching in a CHOPS reservoir study

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Mahbub [Department of Geoscience, University of Calgary (Canada)

    2011-07-01

    In order to meet increasing world energy demand, wells have to be drilled within very thin reservoir beds. This paper, we present one of the solutions for optimizing the reservoir characterization. Reservoir characterization is the process between the discovery of a property and the reservoir management phase. Principal data for reservoir modeling are: 4D Seismic interpretation, wireline log interpretation, core analysis, and petrophysical analysis. Reservoir conditions, perforation and completion technology are the key issues to the production rate of cold production. Reservoir modeling intends to minimize the risk factor, maximize production, and help determine the location for infill drillings. Cold heavy oil production with sand (CHOPS) is a method for enhancing primary production from heavy oil reservoirs. Gravitational forces, natural fluid pressure gradients and foamy oil flow phenomena are the major driving forces of the CHOPS mechanism. Finally, Reservoir characterization allows better understanding of permeability and porosity prediction.

  5. Intraventricular therapy of cryptococcal meningitis via a subcutaneous reservoir.

    Science.gov (United States)

    Polsky, B; Depman, M R; Gold, J W; Galicich, J H; Armstrong, D

    1986-07-01

    Intraventricular administration of amphotericin B for meningitis due to Cryptococcus neoformans is usually reserved for selected, seriously ill patients with recurrent disease. Between September 1973 and November 1983, 10 of 23 patients treated for cryptococcal meningitis at Memorial Sloan-Kettering Cancer Center received intraventricular amphotericin B through subcutaneous reservoirs, in addition to systemic therapy. The value of intraventricular amphotericin B was assessed in the 13 patients treated for first episodes of meningitis with systemic amphotericin B and flucytosine. Death during therapy occurred in one of six patients with intraventricular and systemic therapy compared with six of seven patients with systemic therapy alone (p = 0.025). The cerebrospinal fluid was sterilized in six of six patients given systemic and intraventricular therapy compared with three of seven given systemic therapy alone (p = 0.049), and the cerebrospinal fluid cryptococcal antigen titer declined in six of six patients given systemic and intraventricular therapy compared with two of seven given systemic therapy alone (p = 0.016). In the 10 patients who received intraventricular therapy, there were no complications related to reservoir insertion; however, complications related to reservoir use requiring replacement or revision occurred in two patients, and bacterial infection occurred in one but was treated successfully without removal of the reservoir. Although these data are retrospective, they suggest that early therapy with intraventricular amphotericin B in combination with systemic therapy may be beneficial and relatively safe in patients with cryptococcal meningitis and a poor prognosis.

  6. Standardized surface engineering design of shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Guangchuan Liang

    2016-01-01

    Full Text Available Due to the special physical properties of shale gas reservoirs, it is necessary to adopt unconventional and standardized technologies for its surface engineering construction. In addition, the surface engineering design of shale gas reservoirs in China faces many difficulties, such as high uncertainty of the gathering and transportation scale, poor adaptability of pipe network and station layout, difficult matching of the process equipments, and boosting production at the late stage. In view of these problems, the surface engineering construction of shale gas reservoirs should follow the principles of “standardized design, modularized construction and skid mounted equipment”. In this paper, standardized surface engineering design technologies for shale gas reservoirs were developed with the “standardized well station layout, universal process, modular function zoning, skid mounted equipment selection, intensive site design, digitized production management” as the core, after literature analysis and technology exploration were carried out. Then its application background and surface technology route were discussed with a typical shale gas field in Sichuan–Chongqing area as an example. Its surface gathering system was designed in a standardized way, including standardized process, the modularized gathering and transportation station, serialized dehydration unit and intensive layout, and remarkable effects were achieved. A flexible, practical and reliable ground production system was built, and a series of standardized technology and modularized design were completed, including cluster well platform, set station, supporting projects. In this way, a system applicable to domestic shale gas surface engineering construction is developed.

  7. Optimization of conventional rule curves coupled with hedging rules for reservoir operation

    DEFF Research Database (Denmark)

    Taghian, Mehrdad; Rosbjerg, Dan; Haghighi, Ali

    2014-01-01

    As a common approach to reservoir operating policies, water levels at the end of each time interval should be kept at or above the rule curve. In this study, the policy is captured using rationing of the target yield to reduce the intensity of severe water shortages. For this purpose, a hybrid...... to achieve the optimal water allocation and the target storage levels for reservoirs. As a case study, a multipurpose, multireservoir system in southern Iran is selected. The results show that the model has good performance in extracting the optimum policy for reservoir operation under both normal...

  8. Are Geotehrmal Reservoirs Stressed Out?

    Science.gov (United States)

    Davatzes, N. C.; Laboso, R. C.; Layland-Bachmann, C. E.; Feigl, K. L.; Foxall, W.; Tabrez, A. R.; Mellors, R. J.; Templeton, D. C.; Akerley, J.

    2017-12-01

    Crustal permeability can be strongly influenced by developing connected networks of open fractures. However, the detailed evolution of a fracture network, its extent, and the persistence of fracture porosity are difficult to analyze. Even in fault-hosted geothermal systems, where heat is brought to the surface from depth along a fault, hydrothermal flow is heterogeneously distributed. This is presumably due to variations in fracture density, connectivity, and attitude, as well as variations in fracture permeability caused by sealing of fractures by precipitated cements or compaction. At the Brady Geothermal field in Nevada, we test the relationship between the modeled local stress state perturbed by dislocations representing fault slip or volume changes in the geothermal reservoir inferred from surface deformation measured by InSAR and the location of successful geothermal wells, hydrothermal activity, and seismicity. We postulate that permeability is favored in volumes that experience positive Coulomb stress changes and reduced compression, which together promote high densities of dilatant fractures. Conversely, permeability can be inhibited in locations where Coulomb stress is reduced, compression promotes compaction, or where the faults are poorly oriented in the stress field and consequently slip infrequently. Over geologic time scales spanning the development of the fault system, these local stress states are strongly influenced by the geometry of the fault network relative to the remote stress driving slip. At shorter time scales, changes in fluid pressure within the fracture network constituting the reservoir cause elastic dilations and contractions. We integrate: (1) direct observations of stress state and fractures in boreholes and the mapped geometry of the fault network; (2) evidence of permeability from surface hydrothermal features, production/injection wells and surface deformations related to pumping history; and (3) seismicity to test the

  9. Nonlinear Multigrid for Reservoir Simulation

    DEFF Research Database (Denmark)

    Christensen, Max la Cour; Eskildsen, Klaus Langgren; Engsig-Karup, Allan Peter

    2016-01-01

    modeled after local linearization, leading to a nonlinear multigrid method in the form of the full-approximation scheme (FAS). It is demonstrated through numerical experiments that, without loss of robustness, the FAS method can outperform the conventional techniques in terms of algorithmic and numerical...... efficiency for a black-oil model. Furthermore, the use of the FAS method enables a significant reduction in memory usage compared with conventional techniques, which suggests new possibilities for improved large-scale reservoir simulation and numerical efficiency. Last, nonlinear multilevel preconditioning...

  10. A reservoir trap for antiprotons

    CERN Document Server

    Smorra, Christian; Franke, Kurt; Nagahama, Hiroki; Schneider, Georg; Higuchi, Takashi; Van Gorp, Simon; Blaum, Klaus; Matsuda, Yasuyuki; Quint, Wolfgang; Walz, Jochen; Yamazaki, Yasunori; Ulmer, Stefan

    2015-01-01

    We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic particles.

  11. Effect of reservoir heterogeneity on air injection performance in a light oil reservoir

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available Air injection is a good option to development light oil reservoir. As well-known that, reservoir heterogeneity has great effect for various EOR processes. This also applies to air injection. However, oil recovery mechanisms and physical processes for air injection in heterogeneous reservoir with dip angle are still not well understood. The reported setting of reservoir heterogeneous for physical model or simulation model of air injection only simply uses different-layer permeability of porous media. In practice, reservoir heterogeneity follows the principle of geostatistics. How much of contrast in permeability actually challenges the air injection in light oil reservoir? This should be investigated by using layered porous medial settings of the classical Dykstra-Parsons style. Unfortunately, there has been no work addressing this issue for air injection in light oil reservoir. In this paper, Reservoir heterogeneity is quantified based on the use of different reservoir permeability distribution according to classical Dykstra-Parsons coefficients method. The aim of this work is to investigate the effect of reservoir heterogeneity on physical process and production performance of air injection in light oil reservoir through numerical reservoir simulation approach. The basic model is calibrated based on previous study. Total eleven pseudo compounders are included in this model and ten complexity of reactions are proposed to achieve the reaction scheme. Results show that oil recovery factor is decreased with the increasing of reservoir heterogeneity both for air and N2 injection from updip location, which is against the working behavior of air injection from updip location. Reservoir heterogeneity sometimes can act as positive effect to improve sweep efficiency as well as enhance production performance for air injection. High O2 content air injection can benefit oil recovery factor, also lead to early O2 breakthrough in heterogeneous reservoir. Well

  12. Sediment deposition and trends and transport of phosphorus and other chemical constituents, Cheney Reservoir watershed, south-central Kansas

    Science.gov (United States)

    Mau, D.P.

    2001-01-01

    Sediment deposition, water-quality trends, and mass transport of phosphorus, nitrogen, selected trace elements, and selected pesticides within the Cheney Reservoir watershed in south-central Kansas were investigated using bathymetric survey data and reservoir bottom-sediment cores. Sediment loads in the reservoir were investigated by comparing 1964 topographic data to 1998 bathymetric survey data. Approximately 7,100 acre-feet of sediment deposition occurred in Cheney Reservoir from 1965 through 1998. As of 1998, sediment had filled 27 percent of the reservoir's inactive conservation storage pool, which is less than the design estimate of 34 percent. Mean annual sediment deposition was 209 acre-feet per year, or 0.22 acre-feet per year per square mile, and the mean annual sediment load was 453 million pounds per year. During the 3-year period from 1997 through 1999, 23 sediment cores were collected from the reservoir, and subsamples were analyzed for nutrients (phosphorus and nitrogen species), selected trace elements, and selected organic pesticides. Mean concentrations of total phosphorus in reservoir bottom sediment ranged from 94 milligrams per kilogram at the upstream end of the reservoir to 710 milligrams per kilogram farther downstream near the reservoir dam. The mean concentration for all sites was 480 milligrams per kilogram. Total phosphorus concentrations were greatest when more silt- and clay-sized particles were present. The implications are that if anoxic conditions (inadequate oxygen) occur near the dam, phosphorus could be released from the sediment and affect the drinking-water supply. Analysis of selected cores also indicates that total phosphorus concentrations in the reservoir sediment increased over time and were probably the result of nonpoint-source activities in the watershed, such as increased fertilizer use and livestock production. Mean annual phosphorus loading to Cheney Reservoir was estimated to be 226,000 pounds per year on the basis

  13. Multiple long-term trends and trend reversals dominate environmental conditions in a man-made freshwater reservoir.

    Science.gov (United States)

    Znachor, Petr; Nedoma, Jiří; Hejzlar, Josef; Seďa, Jaromír; Kopáček, Jiří; Boukal, David; Mrkvička, Tomáš

    2018-05-15

    Man-made reservoirs are common across the world and provide a wide range of ecological services. Environmental conditions in riverine reservoirs are affected by the changing climate, catchment-wide processes and manipulations with the water level, and water abstraction from the reservoir. Long-term trends of environmental conditions in reservoirs thus reflect a wider range of drivers in comparison to lakes, which makes the understanding of reservoir dynamics more challenging. We analysed a 32-year time series of 36 environmental variables characterising weather, land use in the catchment, reservoir hydrochemistry, hydrology and light availability in the small, canyon-shaped Římov Reservoir in the Czech Republic to detect underlying trends, trend reversals and regime shifts. To do so, we fitted linear and piecewise linear regression and a regime shift model to the time series of mean annual values of each variable and to principal components produced by Principal Component Analysis. Models were weighted and ranked using Akaike information criterion and the model selection approach. Most environmental variables exhibited temporal changes that included time-varying trends and trend reversals. For instance, dissolved organic carbon showed a linear increasing trend while nitrate concentration or conductivity exemplified trend reversal. All trend reversals and cessations of temporal trends in reservoir hydrochemistry (except total phosphorus concentrations) occurred in the late 1980s and during 1990s as a consequence of dramatic socioeconomic changes. After a series of heavy rains in the late 1990s, an administrative decision to increase the flood-retention volume of the reservoir resulted in a significant regime shift in reservoir hydraulic conditions in 1999. Our analyses also highlight the utility of the model selection framework, based on relatively simple extensions of linear regression, to describe temporal trends in reservoir characteristics. This approach can

  14. Simulation studies to evaluate the effect of fracture closure on the performance of fractured reservoirs; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Howrie, I.; Dauben, D.

    1994-03-01

    A three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study were to: (1) evaluate the reservoir conditions for which fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. The evaluations of reservoir performance were made by a modern dual porosity simulator, TETRAD. This simulator treats both porosity and permeability as functions of pore pressure. The Austin Chalk in the Pearsall Field in of South Texas was selected as the prototype fractured reservoir for this work. During the first year, simulations of vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure change. Sensitivity runs indicated that the simulator was predicting the effects of critical reservoir parameters in a logical and consistent manner. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. In the second year, the performance of the same vertical and horizontal wells was reevaluated with fracture permeability treated as a function of reservoir pressure. To investigate sensitivity to in situ stress, differing loading conditions were assumed. Simulated natural depletions confirm that pressure sensitive fractures degrade well performance. The severity of degradation worsens when the initial reservoir pressure approaches the average stress condition of the reservoir, such as occurs in over pressured reservoirs. Simulations with water injection indicate that degradation of permeability can be counteracted when reservoir pressure is maintained and oil recovery can be increased when reservoir properties are favorable.

  15. Development of gas and gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    In the study of gas reservoir development, the first year topics are restricted on reservoir characterization. There are two types of reservoir characterization. One is the reservoir formation characterization and the other is the reservoir fluid characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. The results of conditional simulation has higher confidence level than the unconditional simulation because conditional simulation considers the sample location as well as distance correlation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. From the liquid volume fraction with pressure drop, the phase behavior of reservoir fluid can be estimated. The calculation results of fluid recombination, constant composition expansion, and constant volume depletion are matched very well with the experimental data. In swelling test of the reservoir fluid with lean gas, the accuracy of dew point pressure forecast depends on the component characterization. (author). 28 figs., 10 tabs.

  16. Stretch due to Penile Prosthesis Reservoir Migration

    Directory of Open Access Journals (Sweden)

    E. Baten

    2016-03-01

    Full Text Available A 43-year old patient presented to the emergency department with stretch, due to impossible deflation of the penile prosthesis, 4 years after successful implant. A CT-scan showed migration of the reservoir to the left rectus abdominis muscle. Refilling of the reservoir was inhibited by muscular compression, causing stretch. Removal and replacement of the reservoir was performed, after which the prosthesis was well-functioning again. Migration of the penile prosthesis reservoir is extremely rare but can cause several complications, such as stretch.

  17. Global Reservoir and Dam Database, Version 1 (GRanDv1): Reservoirs, Revision 01

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Reservoir and Dam (GRanD) Database, Version 1.1 contains 6,862 records of reservoirs and their associated dams with a cumulative storage capacity of 6,197...

  18. Estimation of Bank Erosion Due To Reservoir Operation in Cascade (Case Study: Citarum Cascade Reservoir

    Directory of Open Access Journals (Sweden)

    Sri Legowo

    2009-11-01

    Full Text Available Sedimentation is such a crucial issue to be noted once the accumulated sediment begins to fill the reservoir dead storage, this will then influence the long-term reservoir operation. The sediment accumulated requires a serious attention for it may influence the storage capacity and other reservoir management of activities. The continuous inflow of sediment to the reservoir will decrease the capacity of reservoir storage, the reservoir value in use, and the useful age of reservoir. Because of that, the rate of the sediment needs to be delayed as possible. In this research, the delay of the sediment rate is considered based on the rate of flow of landslide of the reservoir slope. The rate of flow of the sliding slope can be minimized by way of each reservoir autonomous efforts. This effort can be performed through; the regulation of fluctuating rate of reservoir surface current that does not cause suddenly drawdown and upraising as well. The research model is compiled using the searching technique of Non Linear Programming (NLP.The rate of bank erosion for the reservoir variates from 0.0009 to 0.0048 MCM/year, which is no sigrificant value to threaten the life time of reservoir.Mean while the rate of watershed sediment has a significant value, i.e: 3,02 MCM/year for Saguling that causes to fullfill the storage capacity in 40 next years (from years 2008.

  19. Impact of Reservoir Operation to the Inflow Flood - a Case Study of Xinfengjiang Reservoir

    Science.gov (United States)

    Chen, L.

    2017-12-01

    Building of reservoir shall impact the runoff production and routing characteristics, and changes the flood formation. This impact, called as reservoir flood effect, could be divided into three parts, including routing effect, volume effect and peak flow effect, and must be evaluated in a whole by using hydrological model. After analyzing the reservoir flood formation, the Liuxihe Model for reservoir flood forecasting is proposed. The Xinfengjiang Reservoir is studied as a case. Results show that the routing effect makes peak flow appear 4 to 6 hours in advance, volume effect is bigger for large flood than small one, and when rainfall focus on the reservoir area, this effect also increases peak flow largely, peak flow effect makes peak flow increase 6.63% to 8.95%. Reservoir flood effect is obvious, which have significant impact to reservoir flood. If this effect is not considered in the flood forecasting model, the flood could not be forecasted accurately, particularly the peak flow. Liuxihe Model proposed for Xinfengjiang Reservoir flood forecasting has a good performance, and could be used for real-time flood forecasting of Xinfengjiang Reservoir.Key words: Reservoir flood effect, reservoir flood forecasting, physically based distributed hydrological model, Liuxihe Model, parameter optimization

  20. Risk Decision Making Model for Reservoir Floodwater resources Utilization

    Science.gov (United States)

    Huang, X.

    2017-12-01

    Floodwater resources utilization(FRU) can alleviate the shortage of water resources, but there are risks. In order to safely and efficiently utilize the floodwater resources, it is necessary to study the risk of reservoir FRU. In this paper, the risk rate of exceeding the design flood water level and the risk rate of exceeding safety discharge are estimated. Based on the principle of the minimum risk and the maximum benefit of FRU, a multi-objective risk decision making model for FRU is constructed. Probability theory and mathematical statistics method is selected to calculate the risk rate; C-D production function method and emergy analysis method is selected to calculate the risk benefit; the risk loss is related to flood inundation area and unit area loss; the multi-objective decision making problem of the model is solved by the constraint method. Taking the Shilianghe reservoir in Jiangsu Province as an example, the optimal equilibrium solution of FRU of the Shilianghe reservoir is found by using the risk decision making model, and the validity and applicability of the model are verified.

  1. Facies-constrained FWI: Toward application to reservoir characterization

    KAUST Repository

    Kamath, Nishant

    2017-11-01

    The most common approach to obtaining reservoir properties from seismic data exploits the amplitude variation with offset response of reflected waves. However, structural complexity and errors in the velocity model can severely reduce the quality of the inverted results. Full-waveform inversion (FWI) has shown a lot of promise in obtaining high-resolution velocity models for depth imaging. We propose supplementing FWI with rock-physics constraints obtained from borehole data to invert for reservoir properties. The constraints are imposed by adding appropriately weighted regularization terms to the objective function. The advantages of this technique over conventional FWI algorithms are shown by conducting synthetic tests for both isotropic and VTI (transversely isotropic with a vertical symmetry axis) models. The medium parameterization for FWI is selected using radiation (scattering) patterns of perturbations in the model parameters.

  2. Low permeability Neogene lithofacies in Northern Croatia as potential unconventional hydrocarbon reservoirs

    Science.gov (United States)

    Malvić, Tomislav; Sučić, Antonija; Cvetković, Marko; Resanović, Filip; Velić, Josipa

    2014-06-01

    We present two examples of describing low permeability Neogene clastic lithofacies to outline unconventional hydrocarbon lithofacies. Both examples were selected from the Drava Depression, the largest macrostructure of the Pannonian Basin System located in Croatia. The first example is the Beničanci Field, the largest Croatian hydrocarbon reservoir discovered in Badenian coarse-grained clastics that consists mostly of breccia. The definition of low permeability lithofacies is related to the margins of the existing reservoir, where the reservoir lithology changed into a transitional one, which is mainly depicted by the marlitic sandstones. However, calculation of the POS (probability of success of new hydrocarbons) shows critical geological categories where probabilities are lower than those in the viable reservoir with proven reserves. Potential new hydrocarbon volumes are located in the structural margins, along the oil-water contact, with a POS of 9.375%. These potential reserves in those areas can be classified as probable. A second example was the Cremušina Structure, where a hydrocarbon reservoir was not proven, but where the entire structure has been transferred onto regional migration pathways. The Lower Pontian lithology is described from well logs as fine-grained sandstones with large sections of silty or marly clastics. As a result, the average porosity is low for conventional reservoir classification (10.57%). However, it is still an interesting case for consideration as a potentially unconventional reservoir, such as the "tight" sandstones.

  3. Analysis of formation pressure test results in the Mount Elbert methane hydrate reservoir through numerical simulation

    Science.gov (United States)

    Kurihara, M.; Sato, A.; Funatsu, K.; Ouchi, H.; Masuda, Y.; Narita, H.; Collett, T.S.

    2011-01-01

    Targeting the methane hydrate (MH) bearing units C and D at the Mount Elbert prospect on the Alaska North Slope, four MDT (Modular Dynamic Formation Tester) tests were conducted in February 2007. The C2 MDT test was selected for history matching simulation in the MH Simulator Code Comparison Study. Through history matching simulation, the physical and chemical properties of the unit C were adjusted, which suggested the most likely reservoir properties of this unit. Based on these properties thus tuned, the numerical models replicating "Mount Elbert C2 zone like reservoir" "PBU L-Pad like reservoir" and "PBU L-Pad down dip like reservoir" were constructed. The long term production performances of wells in these reservoirs were then forecasted assuming the MH dissociation and production by the methods of depressurization, combination of depressurization and wellbore heating, and hot water huff and puff. The predicted cumulative gas production ranges from 2.16??106m3/well to 8.22??108m3/well depending mainly on the initial temperature of the reservoir and on the production method.This paper describes the details of modeling and history matching simulation. This paper also presents the results of the examinations on the effects of reservoir properties on MH dissociation and production performances under the application of the depressurization and thermal methods. ?? 2010 Elsevier Ltd.

  4. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  5. Water resources review: Wheeler Reservoir, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.

  6. Time-lapse seismic within reservoir engineering

    NARCIS (Netherlands)

    Oldenziel, T.

    2003-01-01

    Time-lapse 3D seismic is a fairly new technology allowing dynamic reservoir characterisation in a true volumetric sense. By investigating the differences between multiple seismic surveys, valuable information about changes in the oil/gas reservoir state can be captured. Its interpretation involves

  7. Monitoring programme of water reservoir Grliste

    International Nuclear Information System (INIS)

    Vuckovic, M; Milenkovic, P.; Lukic, D.

    2002-01-01

    The quality of surface waters is a very important problem incorporated in the environment protection, especially in water resources. The Timok border-land hasn't got sufficient underground and surface waters. This is certificated by the International Association for Water Resource. That was reason for building the water reservoir 'Grliste'. Drinking water from water reservoir 'Grliste' supplies Zajecar and the surroundings. (author)

  8. 49 CFR 393.50 - Reservoirs required.

    Science.gov (United States)

    2010-10-01

    ... depressing the brake pedal or treadle valve to the limit of its travel. (c) Safeguarding of air and vacuum... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked... driver to make a full service brake application with the engine stopped without depleting the air...

  9. Geothermal reservoir insurance study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-09

    The principal goal of this study was to provide analysis of and recommendations on the need for and feasibility of a geothermal reservoir insurance program. Five major tasks are reported: perception of risk by major market sectors, status of private sector insurance programs, analysis of reservoir risks, alternative government roles, and recommendations.

  10. Electromagnetic Heating Methods for Heavy Oil Reservoirs

    International Nuclear Information System (INIS)

    Sahni, A.; Kumar, M.; Knapp, R.B.

    2000-01-01

    The most widely used method of thermal oil recovery is by injecting steam into the reservoir. A well-designed steam injection project is very efficient in recovering oil, however its applicability is limited in many situations. Simulation studies and field experience has shown that for low injectivity reservoirs, small thickness of the oil-bearing zone, and reservoir heterogeneity limits the performance of steam injection. This paper discusses alternative methods of transferring heat to heavy oil reservoirs, based on electromagnetic energy. They present a detailed analysis of low frequency electric resistive (ohmic) heating and higher frequency electromagnetic heating (radio and microwave frequency). They show the applicability of electromagnetic heating in two example reservoirs. The first reservoir model has thin sand zones separated by impermeable shale layers, and very viscous oil. They model preheating the reservoir with low frequency current using two horizontal electrodes, before injecting steam. The second reservoir model has very low permeability and moderately viscous oil. In this case they use a high frequency microwave antenna located near the producing well as the heat source. Simulation results presented in this paper show that in some cases, electromagnetic heating may be a good alternative to steam injection or maybe used in combination with steam to improve heavy oil production. They identify the parameters which are critical in electromagnetic heating. They also discuss past field applications of electromagnetic heating including technical challenges and limitations

  11. Ichthyofauna of the reservoirs of Central Vietnam

    Directory of Open Access Journals (Sweden)

    I. A. Stolbunov

    2012-01-01

    Full Text Available Species composition, distribution and abundance of fish in the pelagic and littoral zone of four reservoirs of Central Vietnam (Suoi Chau, Kam Lam, Da Ban and Suoi Dau were studied first. According to the research data the fish community of the reservoirs is represented by 43 species of 19 fish families.

  12. Zooplankton of the Zaporiz’ke Reservoir

    Directory of Open Access Journals (Sweden)

    T. V. Mykolaichuk

    2006-01-01

    Full Text Available The paper is devoted to zooplankton species composition in the Zaporiz’ke Reservoir. The greatest species diversity was found in the macrophyte communities of the upper reservoir’s littoral, but the least zooplankton diversity – in the pelagic zone of the lower reservoir.

  13. Carbon emission from global hydroelectric reservoirs revisited.

    Science.gov (United States)

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs.

  14. Incorporating EM Inversion into Reservoir Monitoring

    NARCIS (Netherlands)

    Wirianto, M.; Mulder, W.A.; Slob, E.C.

    2012-01-01

    In the application of controlled source electromagnetics for reservoir monitoring on land, the timelapse signal measured with a surface-to-surface acquisition can reveal the lateral extent on the surface of resistivity changes at depth in a hydrocarbon reservoir under production. However, a direct

  15. Multiscale ensemble filtering for reservoir engineering applications

    NARCIS (Netherlands)

    Lawniczak, W.; Hanea, R.G.; Heemink, A.; McLaughlin, D.

    2009-01-01

    Reservoir management requires periodic updates of the simulation models using the production data available over time. Traditionally, validation of reservoir models with production data is done using a history matching process. Uncertainties in the data, as well as in the model, lead to a nonunique

  16. Economics of Developing Hot Stratigraphic Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mines; Hillary Hanson; Rick Allis; Joseph Moore

    2014-09-01

    Stratigraphic geothermal reservoirs at 3 – 4 km depth in high heat-flow basins are capable of sustaining 100 MW-scale power plants at about 10 c/kWh. This paper examines the impacts on the levelized cost of electricity (LCOE) of reservoir depth and temperature, reservoir productivity, and drillhole/casing options. For a reservoir at 3 km depth with a moderate productivity index by hydrothermal reservoir standards (about 50 L/s/MPa, 5.6 gpm/psi), an LCOE of 10c/kWh requires the reservoir to be at about 200°C. This is the upper temperature limit for pumps. The calculations assume standard hydrothermal drilling costs, with the production interval completed with a 7 inch liner in an 8.5 inch hole. If a reservoir at 4 km depth has excellent permeability characteristics with a productivity index of 100 L/s/MPa (11.3 gpm/psi), then the LCOE is about 11 c/kWh assuming the temperature decline rate with development is not excessive (< 1%/y, with first thermal breakthrough delayed by about 10 years). Completing wells with modest horizontal legs (e.g. several hundred meters) may be important for improving well productivity because of the naturally high, sub-horizontal permeability in this type of reservoir. Reducing the injector/producer well ratio may also be cost-effective if the injectors are drilled as larger holes.

  17. The freshwater reservoir effect in radiocarbon dating

    DEFF Research Database (Denmark)

    Philippsen, Bente

    2013-01-01

    effect on radiocarbon dating in an estuarine environment is examined. Here, freshwater influence causes reservoir ages to vary between 250 and 700 14C years during the period 5400 BC - AD 700. The examples in this study show clearly that the freshwater reservoir effect can seriously corrupt radiocarbon......The freshwater reservoir effect can result in anomalously old radiocarbon ages of samples from lakes and rivers. This includes the bones of people whose subsistence was based on freshwater fish, and pottery in which fish was cooked. Water rich in dissolved ancient calcium carbonates, commonly known...... as hard water, is the most common reason for the freshwater reservoir effect. It is therefore also called hardwater effect. Although it has been known for more than 60 years, it is still less well-recognized by archaeologists than the marine reservoir effect. The aim of this study is to examine the order...

  18. Some practical aspects of reservoir management

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.L.; Young, M.A.; Cole, E.L.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)

    1996-09-01

    The practical essence of reservoir management is the optimal application of available resources-people, equipment, technology, and money to maximize profitability and recovery. Success must include knowledge and consideration of (1) the reservoir system, (2) the technologies available, and (3) the reservoir management business environment. Two Reservoir Management Demonstration projects (one in a small, newly-discovered field and one in a large, mature water-flood) implemented by the Department of Energy through BDM-Oklahoma illustrate the diversity of situations suited for reservoir management efforts. Project teams made up of experienced engineers, geoscientists, and other professionals arrived at an overall reservoir management strategy for each field. in 1993, Belden & Blake Corporation discovered a regionally significant oil reservoir (East Randolph Field) in the Cambrian Rose Run formation in Portage County, Ohio. Project objectives are to improve field operational economics and optimize oil recovery. The team focused on characterizing the reservoir geology and analyzing primary production and reservoir data to develop simulation models. Historical performance was simulated and predictions were made to assess infill drilling, water flooding, and gas repressurization. The Citronelle Field, discovered in 1955 in Mobile County, Alabama, has produced 160 million barrels from fluvial sandstones of the Cretaceous Rodessa formation. Project objectives are to address improving recovery through waterflood optimization and problems related to drilling, recompletions, production operations, and regulatory and environmental issues. Initial efforts focused on defining specific problems and on defining a geographic area within the field where solutions might best be pursued. Geologic and reservoir models were used to evaluate past performance and to investigate improved recovery operations.

  19. The Alphabet Soup of HIV Reservoir Markers.

    Science.gov (United States)

    Sharaf, Radwa R; Li, Jonathan Z

    2017-04-01

    Despite the success of antiretroviral therapy in suppressing HIV, life-long therapy is required to avoid HIV reactivation from long-lived viral reservoirs. Currently, there is intense interest in searching for therapeutic interventions that can purge the viral reservoir to achieve complete remission in HIV patients off antiretroviral therapy. The evaluation of such interventions relies on our ability to accurately and precisely measure the true size of the viral reservoir. In this review, we assess the most commonly used HIV reservoir assays, as a clear understanding of the strengths and weaknesses of each is vital for the accurate interpretation of results and for the development of improved assays. The quantification of intracellular or plasma HIV RNA or DNA levels remains the most commonly used tests for the characterization of the viral reservoir. While cost-effective and high-throughput, these assays are not able to differentiate between replication-competent or defective fractions or quantify the number of infected cells. Viral outgrowth assays provide a lower bound for the fraction of cells that can produce infectious virus, but these assays are laborious, expensive and substantially underestimate the potential reservoir of replication-competent provirus. Newer assays are now available that seek to overcome some of these problems, including full-length proviral sequencing, inducible HIV RNA assays, ultrasensitive p24 assays and murine adoptive transfer techniques. The development and evaluation of strategies for HIV remission rely upon our ability to accurately and precisely quantify the size of the remaining viral reservoir. At this time, all current HIV reservoir assays have drawbacks such that combinations of assays are generally needed to gain a more comprehensive view of the viral reservoir. The development of novel, rapid, high-throughput assays that can sensitively quantify the levels of the replication-competent HIV reservoir is still needed.

  20. Reservoir Identification: Parameter Characterization or Feature Classification

    Science.gov (United States)

    Cao, J.

    2017-12-01

    The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601

  1. Microbial conversion of higher hydrocarbons to methane in oil and coal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Martin; Beckmaann, Sabrina; Siegert, Michael; Grundger, Friederike; Richnow, Hans [Geomicrobiology Group, Federal Institute for Geosciences and Natural Resources (Germany)

    2011-07-01

    In recent years, oil production has increased enormously but almost half of the oil now remaining is heavy/biodegraded and cannot be put into production. There is therefore a need for new technology and for diversification of energy sources. This paper discusses the microbial conversion of higher hydrocarbons to methane in oil and coal reservoirs. The objective of the study is to identify microbial and geochemical controls on methanogenesis in reservoirs. A graph shows the utilization of methane for various purposes in Germany from 1998 to 2007. A degradation process to convert coal to methane is shown using a flow chart. The process for converting oil to methane is also given. Controlling factors include elements such as Fe, nitrogen and sulfur. Atmospheric temperature and reservoir pressure and temperature also play an important role. From the study it can be concluded that isotopes of methane provide exploration tools for reservoir selection and alkanes and aromatic compounds provide enrichment cultures.

  2. Influence of oil/gas reservoir driving conditions on reserves estimation using computer simulation

    Directory of Open Access Journals (Sweden)

    Stanisław Rychlicki

    2006-10-01

    Full Text Available One of the methods of assessing reserves is a calibration of a numerical model of a field with assumed driving conditions of the field. The influence of various energy systems assumed for the calculation on the calibration results are presented in the paper. A light oil field was selected for verification of resources on the basis of an analysis of driving conditions. At the first stage of calculations, a „Black Oil” type numerical model was used. The results of a classical „Black – Oil” model made the authors search for an alternative description of energy conditions in the reservoir. Therefore, a modified „Black-Oil” model with „vaporized oil” option, assuming that initially, after evaporation, the condensate in the reservoir was in a gaseous phase was used. The obtained simulation results for the analyzed reservoir prove the accuracy of energy conditions in the reservoir.

  3. Application of magnetic method to assess the extent of high temperature geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Soengkono, S.; Hochstein, M.P.

    1995-01-26

    The extent of thermally altered rocks in high temperature geothermal reservoirs hosted by young volcanic rocks can be assessed from magnetic surveys. Magnetic anomalies associated with many geothermal field in New Zealand and Indonesia can be interpreted in terms of thick (up to 1 km) demagnetized reservoir rocks. Demagnetization of these rocks has been confirmed by core studies and is caused by hydrothermal alteration produced from fluid/rock interactions. Models of the demagnetized Wairakei (NZ) and Kamojang (Indonesia) reservoirs are presented which include the productive areas. Magnetic surveys give fast and economical investigations of high temperature prospects if measurements are made from the air. The magnetic interpretation models can provide important constraints for reservoir models. Magnetic ground surveys can also be used to assess the extent of concealed near surface alteration which can be used in site selection of engineering structures.

  4. Optimized polymer flooding projects via combination of experimental design and reservoir simulation

    Directory of Open Access Journals (Sweden)

    Ali Bengar

    2017-12-01

    Full Text Available The conventional approach for an EOR process is to compare the reservoir properties with those of successful worldwide projects. However, some proper cases may be neglected due to the lack of reliable data. A combination of experimental design and reservoir simulation is an alternative approach. In this work, the fractional factorial design suggests some numerical experiments which their results are analyzed by statistical inference. After determination of the main effects and interactions, the most important parameters of polymer flooding are studied by ANOVA method and Pareto and Tornado charts. Analysis of main effects shows that the oil viscosity, connate water saturation and the horizontal permeability are the 3 deciding factors in oil production. The proposed methodology can help to select the good candidate reservoirs for polymer flooding. Keywords: Polymer flooding, Fractional factorial design, Reservoir simulation, P-value, ANOVA

  5. Reservoir management under geological uncertainty using fast model update

    NARCIS (Netherlands)

    Hanea, R.; Evensen, G.; Hustoft, L.; Ek, T.; Chitu, A.; Wilschut, F.

    2015-01-01

    Statoil is implementing "Fast Model Update (FMU)," an integrated and automated workflow for reservoir modeling and characterization. FMU connects all steps and disciplines from seismic depth conversion to prediction and reservoir management taking into account relevant reservoir uncertainty. FMU

  6. Identification and Assessment of Potential Water Quality Impact Factors for Drinking-Water Reservoirs

    Science.gov (United States)

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-01-01

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources. PMID:24919129

  7. Assessing reservoir operations risk under climate change

    Science.gov (United States)

    Brekke, Levi D.; Maurer, Edwin P.; Anderson, Jamie D.; Dettinger, Michael D.; Townsley, Edwin S.; Harrison, Alan; Pruitt, Tom

    2009-04-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios.

  8. Assessing reservoir operations risk under climate change

    Science.gov (United States)

    Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T.

    2009-01-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios. Copyright 2009 by the American Geophysical Union.

  9. Statistical modeling of geopressured geothermal reservoirs

    Science.gov (United States)

    Ansari, Esmail; Hughes, Richard; White, Christopher D.

    2017-06-01

    Identifying attractive candidate reservoirs for producing geothermal energy requires predictive models. In this work, inspectional analysis and statistical modeling are used to create simple predictive models for a line drive design. Inspectional analysis on the partial differential equations governing this design yields a minimum number of fifteen dimensionless groups required to describe the physics of the system. These dimensionless groups are explained and confirmed using models with similar dimensionless groups but different dimensional parameters. This study models dimensionless production temperature and thermal recovery factor as the responses of a numerical model. These responses are obtained by a Box-Behnken experimental design. An uncertainty plot is used to segment the dimensionless time and develop a model for each segment. The important dimensionless numbers for each segment of the dimensionless time are identified using the Boosting method. These selected numbers are used in the regression models. The developed models are reduced to have a minimum number of predictors and interactions. The reduced final models are then presented and assessed using testing runs. Finally, applications of these models are offered. The presented workflow is generic and can be used to translate the output of a numerical simulator into simple predictive models in other research areas involving numerical simulation.

  10. HIV Persistence in Adipose Tissue Reservoirs.

    Science.gov (United States)

    Couturier, Jacob; Lewis, Dorothy E

    2018-02-01

    The purpose of this review is to examine the evidence describing adipose tissue as a reservoir for HIV-1 and how this often expansive anatomic compartment contributes to HIV persistence. Memory CD4 T cells and macrophages, the major host cells for HIV, accumulate in adipose tissue during HIV/SIV infection of humans and rhesus macaques. Whereas HIV and SIV proviral DNA is detectable in CD4 T cells of multiple fat depots in virtually all infected humans and monkeys examined, viral RNA is less frequently detected, and infected macrophages may be less prevalent in adipose tissue. However, based on viral outgrowth assays, adipose-resident CD4 T cells are latently infected with virus that is replication-competent and infectious. Additionally, adipocytes interact with CD4 T cells and macrophages to promote immune cell activation and inflammation which may be supportive for HIV persistence. Antiviral effector cells, such as CD8 T cells and NK/NKT cells, are abundant in adipose tissue during HIV/SIV infection and typically exceed CD4 T cells, whereas B cells are largely absent from adipose tissue of humans and monkeys. Additionally, CD8 T cells in adipose tissue of HIV patients are activated and have a late differentiated phenotype, with unique TCR clonotypes of less diversity relative to blood CD8 T cells. With respect to the distribution of antiretroviral drugs in adipose tissue, data is limited, but there may be class-specific penetration of fat depots. The trafficking of infected immune cells within adipose tissues is a common event during HIV/SIV infection of humans and monkeys, but the virus may be mostly transcriptionally dormant. Viral replication may occur less in adipose tissue compared to other major reservoirs, such as lymphoid tissue, but replication competence and infectiousness of adipose latent virus are comparable to other tissues. Due to the ubiquitous nature of adipose tissue, inflammatory interactions among adipocytes and CD4 T cells and macrophages, and

  11. Top-Down, Intelligent Reservoir Model

    Science.gov (United States)

    Mohaghegh, Shahab

    2010-05-01

    Conventional reservoir simulation and modeling is a bottom-up approach. It starts with building a geological model of the reservoir that is populated with the best available petrophysical and geophysical information at the time of development. Engineering fluid flow principles are added and solved numerically so as to arrive at a dynamic reservoir model. The dynamic reservoir model is calibrated using the production history of multiple wells and the history matched model is used to strategize field development in order to improve recovery. Top-Down, Intelligent Reservoir Modeling approaches the reservoir simulation and modeling from an opposite angle by attempting to build a realization of the reservoir starting with the measured well production behavior (history). The production history is augmented by core, log, well test and seismic data in order to increase the accuracy of the Top-Down modeling technique. Although not intended as a substitute for the conventional reservoir simulation of large, complex fields, this novel approach to reservoir modeling can be used as an alternative (at a fraction of the cost) to conventional reservoir simulation and modeling in cases where performing conventional modeling is cost (and man-power) prohibitive. In cases where a conventional model of a reservoir already exists, Top-Down modeling should be considered as a compliment to, rather than a competition for the conventional technique, to provide an independent look at the data coming from the reservoir/wells for optimum development strategy and recovery enhancement. Top-Down, Intelligent Reservoir Modeling starts with well-known reservoir engineering techniques such as Decline Curve Analysis, Type Curve Matching, History Matching using single well numerical reservoir simulation, Volumetric Reserve Estimation and calculation of Recovery Factors for all the wells (individually) in the field. Using statistical techniques multiple Production Indicators (3, 6, and 9 months cum

  12. An experimental unification of reservoir computing methods.

    Science.gov (United States)

    Verstraeten, D; Schrauwen, B; D'Haene, M; Stroobandt, D

    2007-04-01

    Three different uses of a recurrent neural network (RNN) as a reservoir that is not trained but instead read out by a simple external classification layer have been described in the literature: Liquid State Machines (LSMs), Echo State Networks (ESNs) and the Backpropagation Decorrelation (BPDC) learning rule. Individual descriptions of these techniques exist, but a overview is still lacking. Here, we present a series of experimental results that compares all three implementations, and draw conclusions about the relation between a broad range of reservoir parameters and network dynamics, memory, node complexity and performance on a variety of benchmark tests with different characteristics. Next, we introduce a new measure for the reservoir dynamics based on Lyapunov exponents. Unlike previous measures in the literature, this measure is dependent on the dynamics of the reservoir in response to the inputs, and in the cases we tried, it indicates an optimal value for the global scaling of the weight matrix, irrespective of the standard measures. We also describe the Reservoir Computing Toolbox that was used for these experiments, which implements all the types of Reservoir Computing and allows the easy simulation of a wide range of reservoir topologies for a number of benchmarks.

  13. Stochastic Reservoir Characterization Constrained by Seismic Data

    Energy Technology Data Exchange (ETDEWEB)

    Eide, Alfhild Lien

    1999-07-01

    In order to predict future production of oil and gas from a petroleum reservoir, it is important to have a good description of the reservoir in terms of geometry and physical parameters. This description is used as input to large numerical models for the fluid flow in the reservoir. With increased quality of seismic data, it is becoming possible to extend their use from the study of large geologic structures such as seismic horizons to characterization of the properties of the reservoir between the horizons. Uncertainties because of the low resolution of seismic data can be successfully handled by means of stochastic modeling, and spatial statistics can provide tools for interpolation and simulation of reservoir properties not completely resolved by seismic data. This thesis deals with stochastic reservoir modeling conditioned to seismic data and well data. Part I presents a new model for stochastic reservoir characterization conditioned to seismic traces. Part II deals with stochastic simulation of high resolution impedance conditioned to measured impedance. Part III develops a new stochastic model for calcite cemented objects in a sandstone background; it is a superposition of a marked point model for the calcites and a continuous model for the background.

  14. Water reservoir characteristics derivation from pubicly available global elevation data

    Science.gov (United States)

    Van De Giesen, N.; van Bemmelen, C.; Mann, M.; de Ridder, M.; Gupta, V.; Rutten, M.

    2017-12-01

    In order to assess human impact on the global hydrological cycle, it is imperative to characterize all major man made reservoirs. One important characteristic is the relationship between the surface area of a reservoir and its stored water volume. Surface areas can readily be determined through optical and radar satellite remote sensing. Once the relationship between the surface area of a reservoir and its stored water volume is known, one can determine the stored volumes over time using remotely sensed surface areas. It has been known for some time that this relationship between surface and stored volume shows a very high level of regional consistency [1]. This implies that if one knows this relationship in a certain region, one can predict the same for any nearby reservoir. We have tried to exploit this fact by examining whether one can build virtual dams in the neighborhood of an existing dam to determine the general relationship between surface area and stored volume. We examined twelve reservoirs around the world and found, generally, very good results. Especially in geomorphologically homogeneous areas, the relationships could reliable be extrapolated over space. Even in very heterogeneous areas, the final results were acceptable and much better than generic relationships used so far. Finally, we have examined to what extent it is possible to select virtual dam sites automatically. The first results for this are promising and show that it may be possible to characterize most major dams in the world according to this approach. It is likely that there will be the need for human detection for a reasonable percentage. For these relatively rare case, some human micro-tasking may be the way forward. It is expected, however, that >90% of the worldś dams can be characterized automatically [1] Liebe, J., N. Van De Giesen, and Marc Andreini. "Estimation of small reservoir storage capacities in a semi-arid environment: A case study in the Upper East Region of Ghana

  15. Local Refinement of the Super Element Model of Oil Reservoir

    Directory of Open Access Journals (Sweden)

    A.B. Mazo

    2017-12-01

    Full Text Available In this paper, we propose a two-stage method for petroleum reservoir simulation. The method uses two models with different degrees of detailing to describe hydrodynamic processes of different space-time scales. At the first stage, the global dynamics of the energy state of the deposit and reserves is modeled (characteristic scale of such changes is km / year. The two-phase flow equations in the model of global dynamics operate with smooth averaged pressure and saturation fields, and they are solved numerically on a large computational grid of super-elements with a characteristic cell size of 200-500 m. The tensor coefficients of the super-element model are calculated using special procedures of upscaling of absolute and relative phase permeabilities. At the second stage, a local refinement of the super-element model is constructed for calculating small-scale processes (with a scale of m / day, which take place, for example, during various geological and technical measures aimed at increasing the oil recovery of a reservoir. Then we solve the two-phase flow problem in the selected area of the measure exposure on a detailed three-dimensional grid, which resolves the geological structure of the reservoir, and with a time step sufficient for describing fast-flowing processes. The initial and boundary conditions of the local problem are formulated on the basis of the super-element solution. This approach allows us to reduce the computational costs in order to solve the problems of designing and monitoring the oil reservoir. To demonstrate the proposed approach, we give an example of the two-stage modeling of the development of a layered reservoir with a local refinement of the model during the isolation of a water-saturated high-permeability interlayer. We show a good compliance between the locally refined solution of the super-element model in the area of measure exposure and the results of numerical modeling of the whole history of reservoir

  16. Reflection Phenomena in Underground Pumped Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    Elena Pummer

    2018-04-01

    Full Text Available Energy storage through hydropower leads to free surface water waves in the connected reservoirs. The reason for this is the movement of water between reservoirs at different elevations, which is necessary for electrical energy storage. Currently, the expansion of renewable energies requires the development of fast and flexible energy storage systems, of which classical pumped storage plants are the only technically proven and cost-effective technology and are the most used. Instead of classical pumped storage plants, where reservoirs are located on the surface, underground pumped storage plants with subsurface reservoirs could be an alternative. They are independent of topography and have a low surface area requirement. This can be a great advantage for energy storage expansion in case of environmental issues, residents’ concerns and an unusable terrain surface. However, the reservoirs of underground pumped storage plants differ in design from classical ones for stability and space reasons. The hydraulic design is essential to ensure their satisfactory hydraulic performance. The paper presents a hybrid model study, which is defined here as a combination of physical and numerical modelling to use the advantages and to compensate for the disadvantages of the respective methods. It shows the analysis of waves in ventilated underground reservoir systems with a great length to height ratio, considering new operational aspects from energy supply systems with a great percentage of renewable energies. The multifaceted and narrow design of the reservoirs leads to complex free surface flows; for example, undular and breaking bores arise. The results show excessive wave heights through wave reflections, caused by the impermeable reservoir boundaries. Hence, their knowledge is essential for a successful operational and constructive design of the reservoirs.

  17. 3D COMPOSITIONAL RESERVOIR SIMULATION IN CONJUNCTION WITH UNSTRUCTURED GRIDS

    Directory of Open Access Journals (Sweden)

    A. L. S. Araújo

    Full Text Available Abstract In the last decade, unstructured grids have been a very important step in the development of petroleum reservoir simulators. In fact, the so-called third generation simulators are based on Perpendicular Bisection (PEBI unstructured grids. Nevertheless, the use of PEBI grids is not very general when full anisotropic reservoirs are modeled. Another possibility is the use of the Element based Finite Volume Method (EbFVM. This approach has been tested for several reservoir types and in principle has no limitation in application. In this paper, we implement this approach in an in-house simulator called UTCOMP using four element types: hexahedron, tetrahedron, prism, and pyramid. UTCOMP is a compositional, multiphase/multi-component simulator based on an Implicit Pressure Explicit Composition (IMPEC approach designed to handle several hydrocarbon recovery processes. All properties, except permeability and porosity, are evaluated in each grid vertex. In this work, four case studies were selected to evaluate the implementation, two of them involving irregular geometries. Results are shown in terms of oil and gas rates and saturated gas field.

  18. Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry

    Energy Technology Data Exchange (ETDEWEB)

    Neupane, Ghanashyam [Idaho National Lab. (INL) and Center for Advanced Energy Studies, Idaho Falls, ID (United States); Mattson, Earl D. [Idaho National Lab. (INL) and Center for Advanced Energy Studies, Idaho Falls, ID (United States); McLing, Travis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Center for Advanced Energy Studies; Palmer, Carl D. [Univ. of Idaho, Idaho Falls, ID (United States); Smith, Robert W. [Univ. of Idaho and Center for Advanced Energy Studies, Idaho Falls, ID (United States); Wood, Thomas R. [Univ. of Idaho and Center for Advanced Energy Studies, Idaho Falls, ID (United States); Podgorney, Robert K. [Idaho National Lab. (INL) and Center for Advanced Energy Studies, Idaho Falls, ID (United States)

    2015-03-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 – 61 ºC/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 ºC) to over 175 ºC. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.

  19. Improving reservoir history matching of EM heated heavy oil reservoirs via cross-well seismic tomography

    KAUST Repository

    Katterbauer, Klemens

    2014-01-01

    Enhanced recovery methods have become significant in the industry\\'s drive to increase recovery rates from oil and gas reservoirs. For heavy oil reservoirs, the immobility of the oil at reservoir temperatures, caused by its high viscosity, limits the recovery rates and strains the economic viability of these fields. While thermal recovery methods, such as steam injection or THAI, have extensively been applied in the field, their success has so far been limited due to prohibitive heat losses and the difficulty in controlling the combustion process. Electromagnetic (EM) heating via high-frequency EM radiation has attracted attention due to its wide applicability in different environments, its efficiency, and the improved controllability of the heating process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase recovery rates. Limited research has been undertaken so far to capture the nonlinear reservoir dynamics and significantly varying flow rates for thermally heated heavy oil reservoir that may notably change production rates and render conventional history matching frameworks more challenging. We present a new history matching framework for EM heated heavy oil reservoirs incorporating cross-well seismic imaging. Interfacing an EM heating solver to a reservoir simulator via Andrade’s equation, we couple the system to an ensemble Kalman filter based history matching framework incorporating a cross-well seismic survey module. With increasing power levels and heating applied to the heavy oil reservoirs, reservoir dynamics change considerably and may lead to widely differing production forecasts and increased uncertainty. We have shown that the incorporation of seismic observations into the EnKF framework can significantly enhance reservoir simulations, decrease forecasting

  20. An analytical framework for extracting hydrological information from time series of small reservoirs in a semi-arid region

    Science.gov (United States)

    Annor, Frank; van de Giesen, Nick; Bogaard, Thom; Eilander, Dirk

    2013-04-01

    small reservoirs in the Upper East Region of Ghana. Reservoirs without obvious large seepage losses (field survey) were selected. To verify this, stable water isotopic samples are collected from groundwater upstream and downstream from the reservoir. By looking at possible enrichment of downstream groundwater, a good estimate of seepage can be made in addition to estimates on evaporation. We estimated the evaporative losses and compared those with field measurements using eddy correlation measurements. Lastly, we determined the cumulative surface runoff curves for the small reservoirs .We will present this analytical framework for extracting hydrological information from time series of small reservoirs and show the first results for our study region of northern Ghana.

  1. The freshwater reservoir effect in radiocarbon dating

    DEFF Research Database (Denmark)

    Philippsen, Bente

    case studies will show the degree of variability of the freshwater reservoir effect over short and long timescales. Radiocarbon dating of recent water samples, aquatic plants and animals, shows that age differences of up to 2000 years can occur within one river. In the Limfjord, freshwater influence...... caused reservoir ages to vary between 250 and 700 years during the period 5400 BC - AD 700. Finally, I will discuss the implications of the freshwater reservoir effect for radiocarbon dating of Mesolithic pottery from inland sites of the Ertebølle culture in Northern Germany....

  2. PHOSPHORUS CONTAMINATION AS A BARRIER TO WATER QUALITY OF SMALL RETENTION RESERVOIRS IN PODLASIE REGION

    Directory of Open Access Journals (Sweden)

    Joanna Ewa Szczykowska

    2016-06-01

    Full Text Available Dam retention reservoirs created on the rivers play a special role as an environmentally friendly forms of stopping and slowing of water runoff. The aim of this study was to evaluate the quality of water flowing into small retention reservoirs in terms of the concentration of total phosphorus and phosphates. The study involved three small retention reservoirs located in the municipalities of: Bransk, Dubicze Cerkiewne and Kleszczele in Podlasie region. Selection of the research facilities was made due to the similarity in the soil management type within catchment of the flowing watercourse, retained water utilization ways, and a small surface of reservoirs. Watercourse reaching the reservoir provides biogens along with water, which directly affect the water quality resulting in high concentrations in water, either indirectly by initiating or accelerating the process of degradation of the reservoir and the loss of its usability. Given the concentration of total phosphorus, it can be said that only in the case of 20.8% of water samples from Nurzec river feeding the Otapy-Kiersnówek reservoir, about 25% of water samples of Orlanka river feeding Bachmaty reservoir, and 17% of samples taken from the watercourse supplying Repczyce reservoir, corresponded to values specified for the second class in the current Regulation of the Minister of the Environment [Regulation 2014]. It can be assumed that this situation is caused by a long-term fertilization using manure, which in consequence led to the oversaturation of soils and phosphorus compounds penetration into the river waters in areas used for agricultural purposes. Especially in the early spring periods, rising temperature together with rainfall caused soil thawing resulting in increasing concentrations of contaminants carried along with the washed soil particles during the surface and subsurface runoff. Values of TSI(TP calculated for Otapy-Kiersnówek reservoir amounted to 112.4 in hydrological

  3. Gasbuggy reservoir evaluation - 1969 report

    International Nuclear Information System (INIS)

    Atkinson, C.H.; Ward, Don C.; Lemon, R.F.

    1970-01-01

    The December 10, 1967, Project Gasbuggy nuclear detonation followed the drilling and testing of two exploratory wells which confirmed reservoir characteristics and suitability of the site. Reentry and gas production testing of the explosive emplacement hole indicated a collapse chimney about 150 feet in diameter extending from the 4,240-foot detonation depth to about 3,900 feet, the top of the 300-foot-thick Pictured Cliffs gas sand. Production tests of the chimney well in the summer of 1968 and during the last 12 months have resulted in a cumulative production of 213 million cubic feet of hydrocarbons, and gas recovery in 20 years is estimated to be 900 million cubic feet, which would be an increase by a factor of at least 5 over estimated recovery from conventional field wells in this low permeability area. At the end of production tests the flow rate was 160,000 cubic feet per day, which is 6 to 7 times that of an average field well in the area. Data from reentry of a pre-shot test well and a new postshot well at distances from the detonation of 300 and 250 feet, respectively, indicate low productivity and consequently low permeability in any fractures at these locations. (author)

  4. Volume 4: Characterization of representative reservoirs -- Gulf of Mexico field, U-8 reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Koperna, G.J. Jr.; Johnson, H.R. [BDM Federal, Inc., McLean, VA (United States); Salamy, S.P.; Reeves, T.K. [BDM-Oklahoma, Inc., Bartlesville, OK (United States); Sawyer, W.K. [Mathematical and Computer Services, Inc., Danville, VA (United States); Kimbrell, W.C.; Schenewerk, P.A. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Petroleum Engineering

    1998-07-01

    A reservoir study was performed using a publicly available black oil simulator to history match and predict the performance of a Gulf of Mexico reservoir. The first objective of this simulation study was to validate the Black Oil Applied Simulation Tool version three for personal computers (BOAST3-PC) model to ensure the integrity of the simulation runs. Once validation was completed, a field history match for the Gulf of Mexico U-8 oil reservoir was attempted. A verbal agreement was reached with the operator of this reservoir to blindcode the name and location of the reservoir. In return, the operator supplied data and assistance in regards to the technical aspects of the research. On the basis of the best history match, different secondary recovery techniques were simulated as a predictive study for enhancing the reservoir productivity.

  5. Zooplankton assemblage of Oyun Reservoir, Offa, Nigeria.

    Science.gov (United States)

    Mustapha, Moshood K

    2009-12-01

    The influence of physico-chemical properties of Oyun Reservoir, Offa, Nigeria (a shallow tropical African reservoir) on its zooplankton composition and abundance were investigated at three stations for two years between January 2002 and December 2003. Diversity is not high: only three groups of zooplankton were found: Rotifera with eight genera; and Cladocera and Copepoda with three genera each. Rotifera dominated numerically (71.02%), followed by Cladocera (16.45%) and Copepoda (12.53%). The zooplankton was more prevalent during the rainy season, and there were variations in the composition and abundance along the reservoir continuum. Factors such as temperature, nutrients, food availability, shape and hydrodynamics of the reservoir, as well as reproductive strategies of the organisms, strongly influence the generic composition and population density of zooplankton. Prevention of ecological deterioration of the water body would greatly should result in a more productive water body, rich in zooplankton and with better fisheries.

  6. Hydrological ensemble predictions for reservoir inflow management

    Science.gov (United States)

    Zalachori, Ioanna; Ramos, Maria-Helena; Garçon, Rémy; Gailhard, Joel

    2013-04-01

    Hydrologic forecasting is a topic of special importance for a variety of users with different purposes. It concerns operational hydrologists interested in forecasting hazardous events (eg., floods and droughts) for early warning and prevention, as well as planners and managers searching to optimize the management of water resources systems at different space-time scales. The general aim of this study is to investigate the benefits of using hydrological ensemble predictions for reservoir inflow management. Ensemble weather forecasts are used as input to a hydrologic forecasting model and daily ensemble streamflow forecasts are generated up to a lead time of 7 days. Forecasts are then integrated into a heuristic decision model for reservoir management procedures. Performance is evaluated in terms of potential gain in energy production. The sensitivity of the results to various reservoir characteristics and future streamflow scenarios is assessed. A set of 11 catchments in France is used to illustrate the added value of ensemble streamflow forecasts for reservoir management.

  7. Measuring the latent reservoir in vivo

    Science.gov (United States)

    Massanella, Marta; Richman, Douglas D.

    2016-01-01

    Current efforts toward achieving a cure for HIV are focused on developing strategies to eliminate latently infected CD4+ T cells, which represent the major barrier to virus eradication. Sensitive, precise, and practical assays that can reliably characterize and measure this HIV reservoir and can reliably measure the impact of a candidate treatment strategy are essential. PCR-based procedures for detecting integrated HIV DNA will overestimate the size of the reservoir by detecting replication-incompetent proviruses; however, viral outgrowth assays underestimate the size of the reservoir. Here, we describe the attributes and limitations of current procedures for measuring the HIV reservoir. Characterizing their relative merits will require rigorous evaluation of their performance characteristics (sensitivity, specificity, reproducibility, etc.) and their relationship to the results of clinical studies. PMID:26829625

  8. Assembling evidence for identifying reservoirs of infection

    Science.gov (United States)

    Mafalda, Viana; Rebecca, Mancy; Roman, Biek; Sarah, Cleaveland; Cross, Paul C.; James O, Lloyd-Smith; Daniel T, Haydon

    2014-01-01

    Many pathogens persist in multihost systems, making the identification of infection reservoirs crucial for devising effective interventions. Here, we present a conceptual framework for classifying patterns of incidence and prevalence, and review recent scientific advances that allow us to study and manage reservoirs simultaneously. We argue that interventions can have a crucial role in enriching our mechanistic understanding of how reservoirs function and should be embedded as quasi-experimental studies in adaptive management frameworks. Single approaches to the study of reservoirs are unlikely to generate conclusive insights whereas the formal integration of data and methodologies, involving interventions, pathogen genetics, and contemporary surveillance techniques, promises to open up new opportunities to advance understanding of complex multihost systems.

  9. The glaciogenic reservoir analogue studies project (GRASP)

    DEFF Research Database (Denmark)

    Moscariello, A.; Moreau, Julien; Vegt, P. van der

    Tunnel galleys are common features in Palaeozoic glacigenic succession in North Afrcica and Middle East and they are amongst the most challenging target for hydrocarbon exploration and developing drilling in these regions. Similarly, these buried valleys form important groundwater reservoirs...

  10. NYC Reservoirs Watershed Areas (HUC 12)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This NYC Reservoirs Watershed Areas (HUC 12) GIS layer was derived from the 12-Digit National Watershed Boundary Database (WBD) at 1:24,000 for EPA Region 2 and...

  11. Understanding the Impact of Reservoir Operations on Temperature Hydrodynamics at Shasta Lake through 2D and 3D Modeling

    Science.gov (United States)

    Hallnan, R.; Busby, D.; Saito, L.; Daniels, M.; Danner, E.; Tyler, S.

    2016-12-01

    Stress on California's salmon fisheries as a result of recent drought highlights a need for effective temperature management in the Sacramento River. Cool temperatures are required for Chinook salmon spawning and rearing. At Shasta Dam in northern California, managers use selective reservoir withdrawals to meet downstream temperature thresholds set for Chinook salmon populations. Shasta Dam is equipped with a temperature control device (TCD) that allows for water withdrawals at different reservoir depths. A two-dimensional CE-QUAL-W2 (W2) model of Shasta Reservoir has been used to understand the impacts of TCD operations on reservoir and discharge dynamics at Shasta. W2 models the entire reservoir based on hydrologic and meteorological inputs, and therefore can be used to simulate various hydroclimatic conditions, reservoir operations, and resulting reservoir conditions. A limitation of the W2 model is that it only captures reservoir conditions in two dimensions (length and depth), which may not represent local hydrodynamic effects of TCD operations that could affect simulation of discharge temperatures. Thus, a three-dimensional (3D) model of the TCD and the immediately adjacent upstream reservoir has been constructed using computational fluid dynamics (CFD) in ANSYS Fluent. This 3D model provides additional insight into the mixing effects of different TCD operations, and resulting reservoir outflow temperatures. The drought conditions of 2015 provide a valuable dataset for assessing the efficacy of modeling the temperature profile of Shasta Reservoir under very low inflow volumes, so the W2 and CFD models are compared for model performance in late 2015. To assist with this assessment, data from a distributed temperature sensing (DTS) deployment at Shasta Lake since August 2015 are used. This presentation describes model results from both W2 as well as the CFD model runs during late 2015, and discuss their efficacy for modeling drought conditions.

  12. Destratification of an impounding reservoir using compressed air??case of Mudi reservoir, Blantyre, Malawi

    Science.gov (United States)

    Chipofya, V. H.; Matapa, E. J.

    This paper reviews the operational and cost effectiveness of a compressed air destratification system that was installed in the Mudi reservoir for destratifying the reservoir. Mudi reservoir is a raw water source for the Blantyre Water Board. It has a capacity of 1,400,000 cubic metres. The reservoir is 15.3 m deep at top water level. In the absence of any artificial circulation of air, the reservoir stratifies into two layers. There is a warm epilimnion in the top 3 m of the reservoir, with temperatures ranging from 23 to 26 °C. There is prolific algal growth in this layer. The bottom layer has much lower temperatures, and is oxygen deficient. Under such anaerobic conditions, ammonia, sulphides, iron and manganese are released from the sediments of the reservoir. As a result of nutrient inflow from the catchments, coupled with tropical ambient temperatures, the reservoir is most times infested with blue-green algae. This results into water treatment problems in respect of taste and odour and iron and manganese soluble salts. To abate such problems, air is artificially circulated in the reservoir, near the intake tower, through a perforated pipe that is connected to an electrically driven compressor. This causes artificial circulation of water in the hypolimnion region of the reservoir. As a result of this circulation, a hostile environment that inhibits the propagation of algae is created. Dissolved oxygen and temperature profiles are practically uniform from top to bottom of reservoir. Concentrations of iron and manganese soluble salts are much reduced at any of the draw-off points available for the water treatment process. The paper concludes by highlighting the significant cost savings in water treatment that are accrued from the use of compressed air destratification in impounding water storage reservoirs for the control of algae and other chemical pollutants.

  13. Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements

    Energy Technology Data Exchange (ETDEWEB)

    Locke, C.D.; Salamy, S.P.

    1991-09-01

    In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

  14. Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Locke, C.D.; Salamy, S.P.

    1991-09-01

    In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

  15. Flow of a stream through a reservoir

    International Nuclear Information System (INIS)

    Sauerwein, K.

    1967-01-01

    If a reservoir is fed from a single source, which may not always be pure, the extent to which the inflowing stream mixes with the water in the reservoir is important for the quality of the water supplied by the reservoir. This question was investigated at the Lingese Reservoir, containing between one and two million cubic metres of water, in the Bergisches Land (North Rhine-Westphalia). The investigation was carried out at four different seasons so that the varying effects of the stream-water temperatures could be studied in relation to the temperature of the reservoir water. The stream was radioactively labelled at the point of inflow into the reservoir, and its flow through the reservoir was measured in length and depth from boats, by means of 1-m-long Geiger counters. In two cases the radioactivity of the outflowing water was also measured at fixed points. A considerable variety of intermixing phenomena were observed; these were mainly of limnological interest. The results of four experiments corresponding to the four different seasons are described in detail. They were as follows: (1) The mid-October experiment where the stream, with a temperature of 8.0 deg. C, was a good 5 deg. C colder than the water of the reservoir, whose temperature was almost uniform, ranging from 13.2 deg. C at the bed to 13.6 deg. C at the surface. (2) The spring experiment (second half of March), when the stream temperature was only 0.3 deg. C below that of the reservoir surface (7.8 deg. C), while the temperature of the bed was 5.8 deg. C. (3) The winter experiment (early December) where at first the temperature of the stream was approximately the same as that of the surface so that, once again, the stream at first flowed 1/2 - 1 m below the surface. During the almost wind-free night a sudden fall in temperature occurred, and the air temperature dropped from 0 deg. C to -12 deg. C. (4) The summer experiment (end of July to mid-August) when the stream was nearly 1 deg. C colder than

  16. Design philosophy and practice of asymmetrical 3D fracturing and random fracturing: A case study of tight sand gas reservoirs in western Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2015-03-01

    Full Text Available At present two technical models are commonly taken in tight gas reservoir stimulation: conventional massive fracturing and SRV fracturing, but how to select a suitable fracturing model suitable for reservoir characteristics is still a question waiting to be answered. In this paper, based on the analysis of geological characteristics and seepage mechanism of tight gas and shale gas reservoirs, the differences between stimulation philosophy of tight gas reservoirs and shale reservoirs are elucidated, and the concept that a suitable stimulation model should be selected based on reservoir geological characteristics and seepage mechanism aiming at maximally improving the seepage capability of a reservoir. Based on this concept, two fracturing design methods were proposed for two tight gas reservoirs in western Sichuan Basin: asymmetrical 3D fracturing design (A3DF for the middle-shallow Upper Jurassic Penglaizhen Fm stacked reservoirs in which the hydraulic fractures can well match the sand spatial distribution and seepage capability of the reservoirs; SRV fracturing design which can increase fracture randomness in the sandstone and shale laminated reservoirs for the 5th Member of middle-deep Upper Triassic Xujiahe Fm. Compared with that by conventional fracturing, the average production of horizontal wells fractured by A3DF increased by 41%, indicating that A3DF is appropriate for gas reservoir development in the Penglaizhen Fm; meanwhile, the average production per well of the 5th Member of the Xujiahe Fm was 2.25 × 104 m3/d after SRV fracturing, showing that the SRV fracturing is a robust technical means for the development of this reservoir.

  17. Oil reservoir properties estimation using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Toomarian, N.B. [California Inst. of Tech., Pasadena, CA (United States); Barhen, J.; Glover, C.W. [Oak Ridge National Lab., TN (United States). Center for Engineering Systems Advanced Research; Aminzadeh, F. [UNOCAL Corp., Sugarland, TX (United States)

    1997-02-01

    This paper investigates the applicability as well as the accuracy of artificial neural networks for estimating specific parameters that describe reservoir properties based on seismic data. This approach relies on JPL`s adjoint operators general purpose neural network code to determine the best suited architecture. The authors believe that results presented in this work demonstrate that artificial neural networks produce surprisingly accurate estimates of the reservoir parameters.

  18. Brittleness index calculation and evaluation for CBM reservoirs based on AVO simultaneous inversion

    Science.gov (United States)

    Wu, Haibo; Dong, Shouhua; Huang, Yaping; Wang, Haolong; Chen, Guiwu

    2016-11-01

    In this paper, a new approach is proposed for coalbed methane (CBM) reservoir brittleness index (BI) calculations. The BI, as a guide for fracture area selection, is calculated by dynamic elastic parameters (dynamic Young's modulus Ed and dynamic Poisson's ratio υd) obtained from an amplitude versus offset (AVO) simultaneous inversion. Among the three different classes of CBM reservoirs distinguished on the basis of brittleness in the theoretical part of this study, class I reservoirs with high BI values are identified as preferential target areas for fracturing. Therefore, we derive the AVO approximation equation expressed by Ed and υd first. This allows the direct inversion of the dynamic elastic parameters through the pre-stack AVO simultaneous inversion, which is based on Bayes' theorem. Thereafter, a test model with Gaussian white noise and a through-well seismic profile inversion is used to demonstrate the high reliability of the inversion parameters. Accordingly, the BI of a CBM reservoir section from the Qinshui Basin is calculated using the proposed method and a class I reservoir section detected through brittleness evaluation. From the outcome of this study, we believe the adoption of this new approach could act as a guide and reference for BI calculations and evaluations of CBM reservoirs.

  19. Impact of Petrophysical Properties on Hydraulic Fracturing and Development in Tight Volcanic Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Yinghao Shen

    2017-01-01

    Full Text Available The volcanic reservoir is an important kind of unconventional reservoir. The aqueous phase trapping (APT appears because of fracturing fluids filtration. However, APT can be autoremoved for some wells after certain shut-in time. But there is significant distinction for different reservoirs. Experiments were performed to study the petrophysical properties of a volcanic reservoir and the spontaneous imbibition is monitored by nuclear magnetic resonance (NMR and pulse-decay permeability. Results showed that natural cracks appear in the samples as well as high irreducible water saturation. There is a quick decrease of rock permeability once the rock contacts water. The pores filled during spontaneous imbibition are mainly the nanopores from NMR spectra. Full understanding of the mineralogical effect and sample heterogeneity benefits the selection of segments to fracturing. The fast flow-back scheme is applicable in this reservoir to minimize the damage. Because lots of water imbibed into the nanopores, the main flow channels become larger, which are beneficial to the permeability recovery after flow-back of hydraulic fracturing. This is helpful in understanding the APT autoremoval after certain shut-in time. Also, Keeping the appropriate production differential pressure is very important in achieving the long term efficient development of volcanic gas reservoirs.

  20. Evaluation of an Empirical Reservoir Shape Function to Define Sediment Distributions in Small Reservoirs

    Directory of Open Access Journals (Sweden)

    Bogusław Michalec

    2015-08-01

    Full Text Available Understanding and defining the spatial distribution of sediment deposited in reservoirs is essential not only at the design stage but also during the operation. The majority of research concerns the distribution of sediment deposition in medium and large water reservoirs. Most empirical methods do not provide satisfactory results when applied to the determination of sediment deposition in small reservoirs. Small reservoir’s volumes do not exceed 5 × 106 m3 and their capacity-inflow ratio is less than 10%. Long-term silting measurements of three small reservoirs were used to evaluate the method described by Rahmanian and Banihashemi for predicting sediment distributions in small reservoirs. Rahmanian and Banihashemi stated that their model of distribution of sediment deposition in water reservoir works well for a long duration operation. In the presented study, the silting rate was used in order to determine the long duration operation. Silting rate is a quotient of volume of the sediment deposited in the reservoir and its original volume. It was stated that when the silting rate had reached 50%, the sediment deposition in the reservoir may be described by an empirical reservoir depth shape function (RDSF.

  1. Application of integrated reservoir management and reservoir characterization to optimize infill drilling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities were identified and tested. The geologically targeted infill drilling program currently being implemented is a result of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

  2. A reservoir operating method for riverine ecosystem protection, reservoir sedimentation control and water supply

    Science.gov (United States)

    Yin, Xin-An; Yang, Zhi-Feng; Petts, Geoffrey E.; Kondolf, G. Mathias

    2014-05-01

    Riverine ecosystem protection requires the maintenance of natural flow and sediment regimes downstream from dams. In reservoir management schedules this requirement should be integrated with sedimentation control and human water supply. However, traditional eco-friendly reservoir operating methods have usually only considered the natural flow regime. This paper seeks to develop a reservoir operating method that accounts for both the natural flow and sediment regimes as well as optimizing the water supply allocations. Herein, reservoir water level (RWL), sediment-occupied ratio of reservoir volume (SOR) and rate of change of SOR (RCSOR) are adopted as three triggers of a drawdown-flushing-based sediment management policy. Two different groups of reservoir operating rule curves (RORCs) are designed for sediment-flushing and non-sediment-flushing years, and the three triggers, RWL, SOR and RCSOR, are used to change the “static” RORCs to “dynamic” ones. The approach is applied to the Wangkuai Reservoir, China to test its effectiveness. This shows that the approach can improve the flexibility of reservoir operators to balance the reservoir management, water supply management and the flow and sediment needs of the downstream riverine ecosystem.

  3. Water in chalk reservoirs: 'friend or foe?'

    International Nuclear Information System (INIS)

    Hjuler, Morten Leth

    2004-01-01

    Most of the petroleum fields in the Norwegian sector of the North Sea are sandstone reservoirs; the oil and gas are trapped in different species of sandstone. But the Ekofisk Field is a chalk reservoir, which really challenges the operator companies. When oil is produced from chalk reservoirs, water usually gets in and the reservoir subsides. The subsidence may be expensive for the oil companies or be used to advantage by increasing the recovery rate. Since 60 per cent of the world's petroleum reserves are located in carbonate reservoirs, it is important to understand what happens as oil and gas are pumped out. Comprehensive studies at the Department of Petroleum Technology and Applied Geophysics at Stavanger University College in Norway show that the mechanical properties of chalk are considerably altered when the pores in the rock become saturated with oil/gas or water under different stress conditions. The processes are extremely complex. The article also maintains that the effects of injecting carbon dioxide from gas power plants into petroleum reservoirs should be carefully studied before this is done extensively

  4. The pollution of the 'iron gate' reservoir

    International Nuclear Information System (INIS)

    Babic-Mladenovic, M.; Varga, S; Popovic, L.; Damjanovic, M.

    2002-01-01

    The paper presents the characteristics of the Iron Gate I (the Djerdap) Water Power and Navigational System, one of the largest in Europe (completed in 1972 by joint efforts of Yugoslavia and Romania). In this paper the attention is devoted to review of the sediment monitoring program and impacts of reservoir sedimentation, as well as to the investigations of water and sediment quality. Special consideration is paid to the issue of sediment pollution research needs. Namely, the hot spot of the 'Iron Gate' sedimentation represents a scarcely known pollution of sediment deposits. The present pollution probably is considerable, since the 'Iron Gate' reservoir drains about 577000 km 2 , with over 80 million inhabitants, and developed municipal and industrial infrastructure. Therefore, in the thirty-year reservoir life various types of sediment-bound pollutants entered and deposited within it. Especially severe incidents happened during 1999 (as a result of NATO bombing campaign) and 2000 (two accidental pollutions in the Tisza river catchment). The study of the 'Iron Gate' reservoir pollution should be prepared in order to enlighten the present state of reservoir sedimentation and pollution. The main objectives of the study are to enhance the government and public awareness of the present environmental state of the 'Iron Gate' reservoir and to serve as a baseline for all future actions. (author)

  5. Comparisons of Simulated Hydrodynamics and Water Quality for Projected Demands in 2046, Pueblo Reservoir, Southeastern Colorado

    Science.gov (United States)

    Ortiz, Roderick F.; Galloway, Joel M.; Miller, Lisa D.; Mau, David P.

    2008-01-01

    Pueblo Reservoir is one of southeastern Colorado's most valuable water resources. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. The reservoir also provides flood control, recreational activities, sport fishing, and wildlife enhancement to the region. The Bureau of Reclamation is working to meet its goal to issue a Final Environmental Impact Statement (EIS) on the Southern Delivery System project (SDS). SDS is a regional water-delivery project that has been proposed to provide a safe, reliable, and sustainable water supply through the foreseeable future (2046) for Colorado Springs, Fountain, Security, and Pueblo West. Discussions with the Bureau of Reclamation and the U.S. Geological Survey led to a cooperative agreement to simulate the hydrodynamics and water quality of Pueblo Reservoir. This work has been completed and described in a previously published report, U.S. Geological Survey Scientific Investigations Report 2008-5056. Additionally, there was a need to make comparisons of simulated hydrodynamics and water quality for projected demands associated with the various EIS alternatives and plans by Pueblo West to discharge treated water into the reservoir. Plans by Pueblo West are fully independent of the SDS project. This report compares simulated hydrodynamics and water quality for projected demands in Pueblo Reservoir resulting from changes in inflow and water quality entering the reservoir, and from changes to withdrawals from the reservoir as projected for the year 2046. Four of the seven EIS alternatives were selected for scenario simulations. The four U.S. Geological Survey simulation scenarios were the No Action scenario (EIS Alternative 1), the Downstream Diversion scenario (EIS Alternative 2), the Upstream Return-Flow scenario (EIS Alternative 4), and the Upstream Diversion scenario (EIS Alternative 7). Additionally, the results of an Existing Conditions scenario (water years 2000 through

  6. Modelling of Hydropower Reservoir Variables for Energy Generation ...

    African Journals Online (AJOL)

    Efficient management of hydropower reservoir can only be realized when there is sufficient understanding of interactions existing between reservoir variables and energy generation. Reservoir inflow, storage, reservoir elevation, turbine release, net generating had, plant use coefficient, tail race level and evaporation losses ...

  7. An environmental data base for all Hydro-Quebec reservoirs

    International Nuclear Information System (INIS)

    Demers, C.

    1988-01-01

    Hydro-Quebec has created two management positions specifically for reservoirs, namely Reservoir Ecology Advisor and Reservoir Management Advisor. To assist management decisions, a means was required of bringing together all existing environmental information for each reservoir operated by Hydro-Quebec, including storage reservoirs, auxiliary reservoirs and forebays. A relational database using Reflex software was developed on a network of Macintosh computers. The database contains five blocks of information: general information, and physical, physiochemical, biologic and socioeconomic characteristics for each reservoir. Data will be collected on over 100 sites, and the tool will form the basis for developing a medium-range study program on reservoir ecology. The program must take into account the physical, biological and socioeconomic aspects of the environment, as well as the concerns of management personnel operating the reservoirs, the local population, reservoir users, and various government departments. 2 figs

  8. Targeted Water Quality Assessment in Small Reservoirs in Brazil, Zimbabwe, Morocco and Burkina Faso

    Science.gov (United States)

    Boelee, Eline; Rodrigues, Lineu; Senzanje, Aidan; Laamrani, Hammou; Cecchi, Philippe

    2010-05-01

    Background Physical and chemical parameters of water in reservoirs can be affected by natural and manmade pollutants, causing damage to the aquatic life and water quality. However, the exact water quality considerations depend on what the water will be used for. Brick making, livestock watering, fisheries, irrigation and domestic uses all have their own specific water quality requirements. In turn, these uses impact on water quality. Methodology Water quality was assessed with a variety of methods in small multipurpose reservoirs in the São Francisco Basin in Brazil, Limpopo in Zimbabwe, Souss Massa in Morocco and Nakambé in Burkina Faso. In each case the first step was to select the reservoirs for which the water quality was to be monitored, then identify the main water uses, followed by a determination of key relevant water quality parameters. In addition, a survey was done in some cases to identify quality perceptions of the users. Samples were taken from the reservoir itself and related water bodies such as canals and wells where relevant. Results Accordingly in the four basins different methods gave different locally relevant results. In the Preto River in the Sao Francisco in Brazil small reservoirs are mainly used for irrigated agriculture. Chemical analysis of various small reservoirs showed that water quality was mainly influenced by geological origins. In addition there was nutrient inflow from surrounding areas of intensive agriculture with high fertilizer use. In the Limpopo basin in Zimbabwe small reservoirs are used for almost all community water needs. Plankton was selected as indicator and sampling was carried out in reservoirs in communal areas and in a national park. Park reservoirs were significantly more diversified in phytoplankton taxa compared to those in the communal lands, but not for zooplankton, though communal lands had the highest zooplankton abundance. In Souss Massa in Morocco a combination of perceptions and scientific water

  9. Comparison of gill nets and fixed-frame trawls for sampling threadfin shad in tropical reservoirs

    Czech Academy of Sciences Publication Activity Database

    Prchalová, Marie; Neal, J. W.; Munoz-Hincapie, M.; Jůza, Tomáš; Říha, Milan; Peterka, Jiří; Kubečka, Jan

    2012-01-01

    Roč. 141, č. 4 (2012), s. 1151-1160 ISSN 0002-8487 R&D Projects: GA ČR(CZ) GPP505/12/P647 Institutional support: RVO:60077344 Keywords : threadfin shad * gillnet * trawl * gear selectivity * catchability * reservoir Subject RIV: EH - Ecology, Behaviour Impact factor: 1.546, year: 2012

  10. Upper Hiwassee River Basin reservoirs 1989 water quality assessment

    International Nuclear Information System (INIS)

    Fehring, J.P.

    1991-08-01

    The water in the Upper Hiwassee River Basin is slightly acidic and low in conductivity. The four major reservoirs in the Upper Hiwassee River Basin (Apalachia, Hiwassee, Chatuge, and Nottely) are not threatened by acidity, although Nottely Reservoir has more sulfates than the other reservoirs. Nottely also has the highest organic and nutrient concentrations of the four reservoirs. This results in Nottely having the poorest water clarity and the most algal productivity, although clarity as measured by color and secchi depths does not indicate any problem with most water use. However, chlorophyll concentrations indicate taste and odor problems would be likely if the upstream end of Nottely Reservoir were used for domestic water supply. Hiwassee Reservoir is clearer and has less organic and nutrient loading than either of the two upstream reservoirs. All four reservoirs have sufficient algal activity to produce supersaturated dissolved oxygen conditions and relatively high pH values at the surface. All four reservoirs are thermally stratified during the summer, and all but Apalachia have bottom waters depleted in oxygen. The very short residence time of Apalachia Reservoir, less than ten days as compared to over 100 days for the other three reservoirs, results in it being more riverine than the other three reservoirs. Hiwassee Reservoir actually develops three distinct water temperature strata due to the location of the turbine intake. The water quality of all of the reservoirs supports designated uses, but water quality complaints are being received regarding both Chatuge and Nottely Reservoirs and their tailwaters

  11. Beyond the replication-competent HIV reservoir: transcription and translation-competent reservoirs.

    Science.gov (United States)

    Baxter, Amy E; O'Doherty, Una; Kaufmann, Daniel E

    2018-02-02

    Recent years have seen a substantial increase in the number of tools available to monitor and study HIV reservoirs. Here, we discuss recent technological advances that enable an understanding of reservoir dynamics beyond classical assays to measure the frequency of cells containing provirus able to propagate a spreading infection (replication-competent reservoir). Specifically, we focus on the characterization of cellular reservoirs containing proviruses able to transcribe viral mRNAs (so called transcription-competent) and translate viral proteins (translation-competent). We suggest that the study of these alternative reservoirs provides complementary information to classical approaches, crucially at a single-cell level. This enables an in-depth characterization of the cellular reservoir, both following reactivation from latency and, importantly, directly ex vivo at baseline. Furthermore, we propose that the study of cellular reservoirs that may not contain fully replication-competent virus, but are able to produce HIV mRNAs and proteins, is of biological importance. Lastly, we detail some of the key contributions that the study of these transcription and translation-competent reservoirs has made thus far to investigations into HIV persistence, and outline where these approaches may take the field next.

  12. Reservoir architecture and tough gas reservoir potential of fluvial crevasse-splay deposits

    NARCIS (Netherlands)

    Van Toorenenburg, K.A.; Donselaar, M.E.; Weltje, G.J.

    2015-01-01

    Unconventional tough gas reservoirs in low-net-to-gross fluvial stratigraphic intervals may constitute a secondary source of fossil energy to prolong the gas supply in the future. To date, however, production from these thin-bedded, fine-grained reservoirs has been hampered by the economic risks

  13. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.

    2001-08-15

    Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.

  14. Application of integrated reservoir management and reservoir characterization to optimize infill drilling, Class II

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Jack; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill; Bezant, Bryce

    2000-03-16

    The major purpose of this project was to demonstrate the use of cost effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability carbonate reservoirs such as the North Robertson (Clearfork) Unit.

  15. PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS.

    Science.gov (United States)

    Dehant, V; Asael, D; Baland, R M; Baludikay, B K; Beghin, J; Belza, J; Beuthe, M; Breuer, D; Chernonozhkin, S; Claeys, Ph; Cornet, Y; Cornet, L; Coyette, A; Debaille, V; Delvigne, C; Deproost, M H; De WInter, N; Duchemin, C; El Atrassi, F; François, C; De Keyser, J; Gillmann, C; Gloesener, E; Goderis, S; Hidaka, Y; Höning, D; Huber, M; Hublet, G; Javaux, E J; Karatekin, Ö; Kodolanyi, J; Revilla, L Lobo; Maes, L; Maggiolo, R; Mattielli, N; Maurice, M; McKibbin, S; Morschhauser, A; Neumann, W; Noack, L; Pham, L B S; Pittarello, L; Plesa, A C; Rivoldini, A; Robert, S; Rosenblatt, P; Spohn, T; Storme, J -Y; Tosi, N; Trinh, A; Valdes, M; Vandaele, A C; Vanhaecke, F; Van Hoolst, T; Van Roosbroek, N; Wilquet, V; Yseboodt, M

    2016-11-01

    The Interuniversity Attraction Pole (IAP) 'PLANET TOPERS' (Planets: Tracing the Transfer, Origin, Preservation, and Evolution of their Reservoirs) addresses the fundamental understanding of the thermal and compositional evolution of the different reservoirs of planetary bodies (core, mantle, crust, atmosphere, hydrosphere, cryosphere, and space) considering interactions and feedback mechanisms. Here we present the first results after 2 years of project work.

  16. Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification

    KAUST Repository

    Katterbauer, Klemens

    2015-04-01

    Reservoir simulations and history matching are critical for fine-tuning reservoir production strategies, improving understanding of the subsurface formation, and forecasting remaining reserves. Production data have long been incorporated for adjusting reservoir parameters. However, the sparse spatial sampling of this data set has posed a significant challenge for efficiently reducing uncertainty of reservoir parameters. Seismic, electromagnetic, gravity and InSAR techniques have found widespread applications in enhancing exploration for oil and gas and monitoring reservoirs. These data have however been interpreted and analyzed mostly separately, rarely exploiting the synergy effects that could result from combining them. We present a multi-data ensemble Kalman filter-based history matching framework for the simultaneous incorporation of various reservoir data such as seismic, electromagnetics, gravimetry and InSAR for best possible characterization of the reservoir formation. We apply an ensemble-based sensitivity method to evaluate the impact of each observation on the estimated reservoir parameters. Numerical experiments for different test cases demonstrate considerable matching enhancements when integrating all data sets in the history matching process. Results from the sensitivity analysis further suggest that electromagnetic data exhibit the strongest impact on the matching enhancements due to their strong differentiation between water fronts and hydrocarbons in the test cases.

  17. POLLUTION OF SMALL RESERVOIRS OF WATER IN BIALYSTOK AGGLOMERATION

    Directory of Open Access Journals (Sweden)

    Janina Piekutin

    2016-05-01

    Full Text Available The aim of the study work was to evaluate the impact of the emissions of heavy metals of roads and streets in the surface water in reservoirs located near the main roads of the Bialystok City. The analysis was conducted for a period of six weeks from March to April 2014. During the study five reservoirs were selected. Two of them, the first and the forth of them are located in Parks. One of them – the third one is a public bathing beach. The second is located near the crossroads in the center of the city and last one – the fifth object is situated within buildings and parking of trucks. Study includes an analysis of indicators such as total suspended solids, BOD5, CODCr, selected heavy metal such as, lead, nickel, copper, cobalt and chromium. All determinations were made in accordance to given methodology, and the evaluation was performed by comparing achieved results to a limit values presented in the Decree of Environment Ministry.

  18. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

    1999-04-28

    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  19. Saturation distributions in heavy oil reservoirs

    Science.gov (United States)

    Staten, Joshua Todd

    Models that describe conventional reservoirs can be used to explore the possibility of heavier-than-water oil. Steam-assisted gravity drainage (SAGD) is a common process in reservoirs with extra heavy oils (oil sands). In some cases, oil that is heavier than water is present in these reservoirs. The segregation of oil and water may cause issues for recovery. It is important to understand the initial saturation distribution of oil and water for proper design of injection. It was found through simulation that the heavy oil would pool towards the bottom of a heavy oil reservoir with water remaining on top of the oil. With capillary pressure, the heavy oil and water will form a transition zone. The extent of the transition zone is dependent on the density gradient of the oil, the density difference between the oil and water, and the slope of the capillary pressure saturation profile. This finding influences the positioning of production piping in steam-assisted gravity drainage (SAGD) as well as possible geological pooling areas for recovery. The possibility of a water zone between oil zones increases the risk of missing oil in the reservoir when drilling or perforating.

  20. Model based management of a reservoir system

    Energy Technology Data Exchange (ETDEWEB)

    Scharaw, B.; Westerhoff, T. [Fraunhofer IITB, Ilmenau (Germany). Anwendungszentrum Systemtechnik; Puta, H.; Wernstedt, J. [Technische Univ. Ilmenau (Germany)

    2000-07-01

    The main goals of reservoir management systems consist of prevention against flood water damages, the catchment of raw water and keeping all of the quality parameters within their limits besides controlling the water flows. In consideration of these goals a system model of the complete reservoir system Ohra-Schmalwasser-Tambach Dietharz was developed. This model has been used to develop optimized strategies for minimization of raw water production cost, for maximization of electrical energy production and to cover flood situations, as well. Therefore a proper forecast of the inflow to the reservoir from the catchment areas (especially flooding rivers) and the biological processes in the reservoir is important. The forecast model for the inflow to the reservoir is based on the catchment area model of Lorent and Gevers. It uses area precipitation, water supply from the snow cover, evapotranspiration and soil wetness data to calculate the amount of flow in rivers. The other aim of the project is to ensure the raw water quality using quality models, as well. Then a quality driven raw water supply will be possible. (orig.)

  1. Mechanisms of HIV persistence in HIV reservoirs.

    Science.gov (United States)

    Mzingwane, Mayibongwe L; Tiemessen, Caroline T

    2017-03-01

    The establishment and maintenance of HIV reservoirs that lead to persistent viremia in patients on antiretroviral drugs remains the greatest challenge of the highly active antiretroviral therapy era. Cellular reservoirs include resting memory CD4+ T lymphocytes, implicated as the major HIV reservoir, having a half-life of approximately 44 months while this is less than 6 hours for HIV in plasma. In some individuals, persistent viremia consists of invariant HIV clones not detected in circulating resting CD4+ T lymphocytes suggesting other possible sources of residual viremia. Some anatomical reservoirs that may harbor such cells include the brain and the central nervous system, the gastrointestinal tract and the gut-associated lymphoid tissue and other lymphoid organs, and the genital tract. The presence of immune cells and other HIV susceptible cells, occurring in differing compositions in anatomical reservoirs, coupled with variable and poor drug penetration that results in suboptimal drug concentrations in some sites, are all likely factors that fuel the continued low-level replication and persistent viremia during treatment. Latently, HIV-infected CD4+ T cells harboring replication-competent virus, HIV cell-to-cell spread, and HIV-infected T cell homeostatic proliferation due to chronic immune activation represent further drivers of this persistent HIV viremia during highly active antiretroviral therapy. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Mercury and methylmercury in reservoirs in Indiana

    Science.gov (United States)

    Risch, Martin R.; Fredericksen, Amanda L.

    2015-01-01

    Mercury (Hg) is an element that occurs naturally, but evidence suggests that human activities have resulted in increased amounts being released to the atmosphere and land surface. When Hg is converted to methylmercury (MeHg) in aquatic ecosystems, MeHg accumulates and increases in the food web so that some fish contain levels which pose a health risk to humans and wildlife that consume these fish. Reservoirs unlike natural lakes, are a part of river systems that are managed for flood control. Data compiled and interpreted for six flood-control reservoirs in Indiana showed a relation between Hg transport, MeHg formation in water, and MeHg in fish that was influenced by physical, chemical, and biological differences among the reservoirs. Existing information precludes a uniform comparison of Hg and MeHg in all reservoirs in the State, but factors and conditions were identified that can indicate where and when Hg and MeHg levels in reservoirs could be highest.

  3. Physical modelling of the Akkajaure reservoir

    Directory of Open Access Journals (Sweden)

    J. Sahlberg

    2003-01-01

    Full Text Available This paper describes the seasonal temperature development in the Akkajaure reservoir, one of the largest Swedish reservoirs. It lies in the headwaters of the river Lulealven in northern Sweden; it is 60 km long and 5 km wide with a maximum depth of 92 m. The maximum allowed variation in surface water level is 30 m. The temperature field in the reservoir is important for many biochemical processes. A one-dimensional lake model of the Akkajaure reservoir is developed from a lake model by Sahlberg (1983 and 1988. The dynamic eddy viscosity is calculated by a two equation turbulence model, a k–ε model and the hypolimnic eddy diffusivity formulation which is a function of the stability frequency (Hondzo et al., 1993. A comparison between calculated and measured temperature profiles showed a maximum discrepancy of 0.5–1.0°C over the period 1999-2002. Except for a few days in summer, the water temperature is vertically homogeneous. Over that period of years, a weak stratification of temperature occurred on only one to two weeks a year on different dates in July and August. This will have biological consequences. Keywords: temperature profile,reservoir, 1-D lake model, stratification, Sweden

  4. Integral cesium reservoir: Design and transient operation

    Science.gov (United States)

    Smith, Joe N., Jr.; Horner, M. Harlan; Begg, Lester L.; Wrobleski, William J.

    An electrically heated thermionic converter has been designed built and successfully tested in air. One of the unique features of this converter was an integral cesium reservoir thermally coupled to the emitter. The reservoir consisted of fifteen cesiated graphite pins located in pockets situated in the emitter lead with thermal coupling to the emitter, collector and the emitter terminal; there were no auxiliary electric heaters on the reservoir. Test results are described for conditions in which the input thermal power to the converter was ramped up and down between 50% and 100% of full power in times as short as 50 sec, with data acquisition occurring every 12 sec. During the ramps the emitter and collector temperature profiles. the reservoir temperature and the electric output into a fixed load resistor are reported. The converter responded promptly to the power ramps without excessive overshoot and with no tendency to develop instabilities. This is the rust demonstration of the performance of a cesium-graphite integral reservoir in a fast transient.

  5. Tracing fluid flow in geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rose, P.E.; Adams, M.C. [Univ. of Utah, Salt Lake City, UT (United States)

    1997-12-31

    A family of fluorescent compounds, the polycyclic aromatic sulfonates, were evaluated for application in intermediate- and high-temperature geothermal reservoirs. Whereas the naphthalene sulfonates were found to be very thermally stable and reasonably detectable, the amino-substituted naphthalene sulfonates were found to be somewhat less thermally stable, but much more detectable. A tracer test was conducted at the Dixie Valley, Nevada, geothermal reservoir using one of the substituted naphthalene sulfonates, amino G, and fluorescein. Four of 9 production wells showed tracer breakthrough during the first 200 days of the test. Reconstructed tracer return curves are presented that correct for the thermal decay of tracer assuming an average reservoir temperature of 227{degrees}C. In order to examine the feasibility of using numerical simulation to model tracer flow, we developed simple, two-dimensional models of the geothermal reservoir using the numerical simulation programs TETRAD and TOUGH2. By fitting model outputs to measured return curves, we show that numerical reservoir simulations can be calibrated with the tracer data. Both models predict the same order of elution, approximate tracer concentrations, and return curve shapes. Using these results, we propose a method for using numerical models to design a tracer test.

  6. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Quarterly progress report, June 13, 1995--September 12, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Pande, P.K.

    1995-09-12

    At this stage of the reservoir characterization research, the main emphasis is on the geostatistics and reservoir simulation. Progress is reported on geological analysis, reservoir simulation, and reservoir management.

  7. [Animal reservoirs of human virulent microsporidian species].

    Science.gov (United States)

    Słodkowicz-Kowalska, Anna

    2009-01-01

    The main objective of the present study was to determined the occurrence of Encephalitozoon intestinalis, E. hellem, E. cuniculi, and Enterocytozoon bieneusi in Poland in animal faecal using the FISH (Fluorescent In Situ Hybridization) and multiplex FISH techniques. Additional objectives included: (1) identification of animal hosts of microsporidia that are infectious to humans amongst free-ranging, captive, livestock and domestic animals; (2) a molecular analysis of randomly selected parasite isolates and determination of their zoonotic potential; (3) evaluation of the role of animals in the dissemination of microsporidia spores in the environment, and an estimation of the potential risk of infection for other animals and humans. A total of 1340 faecal samples collected from 178 species of animals were examined using conventional staining (chromotrope-2R and calcofluor white M2R staining) and molecular techniques (FISH and multiplex FISH techniques). Microsporidian spores were detected in 33 faecal samples (2.5%) obtained from 17 animal species. Microsporidia were demonstrated more often in birds (6.1%) than in mammals (0.7%); the difference was statistically significant (p Varecia variegata rubra) and the ring-tailed lemur (Lemur catta), while the black lemur (Eulemur macaco flavifrons), mongoose lemur (Eulemur mongoz) and the Visayan warty pig (Sus cebifrons negrinus) were first found to carry E. bieneusi. The mammal species that were found to carry E. bieneusi and E. intestinalis are included in The IUCN Red List of Threatened Species. The results of the present study are significant from an epidemiological point of view. The wild, livestock and zoo animals that were found to carry microsporidia live in different conditions, and thus their role as animal reservoirs for these dangerous pathogens varies. Waterfowl birds may be the main source of contamination of surface waters with E. hellem spores and the protection of surface waters is virtually impossible

  8. Characterization of oil and gas reservoir heterogeneity. Annual report, November 1, 1990--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  9. The water-quality monitoring program for the Baltimore reservoir system, 1981-2007—Description, review and evaluation, and framework integration for enhanced monitoring

    Science.gov (United States)

    Koterba, Michael T.; Waldron, Marcus C.; Kraus, Tamara E.C.

    2011-01-01

    The City of Baltimore, Maryland, and parts of five surrounding counties obtain their water from Loch Raven and Liberty Reservoirs. A third reservoir, Prettyboy, is used to resupply Loch Raven Reservoir. Management of the watershed conditions for each reservoir is a shared responsibility by agreement among City, County, and State jurisdictions. The most recent (2005) Baltimore Reservoir Watershed Management Agreement (RWMA) called for continued and improved water-quality monitoring in the reservoirs and selected watershed tributaries. The U.S. Geological Survey (USGS) conducted a retrospective review of the effectiveness of monitoring data obtained and analyzed by the RWMA jurisdictions from 1981 through 2007 to help identify possible improvements in the monitoring program to address RWMA water-quality concerns. Long-term water-quality concerns include eutrophication and sedimentation in the reservoirs, and elevated concentrations of (a) nutrients (nitrogen and phosphorus) being transported from the major tributaries to the reservoirs, (b) iron and manganese released from reservoir bed sediments during periods of deep-water anoxia, (c) mercury in higher trophic order game fish in the reservoirs, and (d) bacteria in selected reservoir watershed tributaries. Emerging concerns include elevated concentrations of sodium, chloride, and disinfection by-products (DBPs) in the drinking water from both supply reservoirs. Climate change and variability also could be emerging concerns, affecting seasonal patterns, annual trends, and drought occurrence, which historically have led to declines in reservoir water quality. Monitoring data increasingly have been used to support the development of water-quality models. The most recent (2006) modeling helped establish an annual sediment Total Maximum Daily Load to Loch Raven Reservoir, and instantaneous and 30-day moving average water-quality endpoints for chlorophyll-a (chl-a) and dissolved oxygen (DO) in Loch Raven and Prettyboy

  10. Oil Reservoir Production Optimization using Optimal Control

    DEFF Research Database (Denmark)

    Völcker, Carsten; Jørgensen, John Bagterp; Stenby, Erling Halfdan

    2011-01-01

    Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using the adjo...... reservoir using water ooding and smart well technology. Compared to the uncontrolled case, the optimal operation increases the Net Present Value of the oil field by 10%.......Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using...

  11. Reservoir characterization and enhanced oil recovery research

    Energy Technology Data Exchange (ETDEWEB)

    Lake, L.W.; Pope, G.A.; Schechter, R.S.

    1992-03-01

    The research in this annual report falls into three tasks each dealing with a different aspect of enhanced oil recovery. The first task strives to develop procedures for accurately modeling reservoirs for use as input to numerical simulation flow models. This action describes how we have used a detail characterization of an outcrop to provide insights into what features are important to fluid flow modeling. The second task deals with scaling-up and modeling chemical and solvent EOR processes. In a sense this task is the natural extension of task 1 and, in fact, one of the subtasks uses many of the same statistical procedures for insight into the effects of viscous fingering and heterogeneity. The final task involves surfactants and their interactions with carbon dioxide and reservoir minerals. This research deals primarily with phenomena observed when aqueous surfactant solutions are injected into oil reservoirs.

  12. Greenhouse gas emissions from hydroelectric reservoirs

    International Nuclear Information System (INIS)

    Rosa, L.P.; Schaeffer, R.

    1994-01-01

    In a recent paper, Rudd et al. have suggested that, per unit of electrical energy produced, greenhouse-gas emissions from some hydroelectric reservoirs in northern Canada may be comparable to emissions from fossil-fuelled power plants. The purpose of this comment is to elaborate these issues further so as to understand the potential contribution of hydroelectric reservoirs to the greenhouse effect. More than focusing on the total budget of carbon emissions (be they in the form of CH 4 or be they in the form of CO 2 ), this requires an evaluation of the accumulated greenhouse effect of gas emissions from hydroelectric reservoirs and fossil-fuelled power plants. Two issues will be considered: (a) global warming potential (GWP) for CH 4 ; and (b) how greenhouse-gas emissions from hydroelectric power plants stand against emissions from fossil-fuelled power plants with respect to global warming

  13. The glaciogenic reservoir analogue studies project (GRASP)

    DEFF Research Database (Denmark)

    Moscariello, A.; Moreau, Julien; Vegt, P. van der

    increasing the risk associated with developing effectively these reservoirs. Therefore a analogue-based predictive stratigraphical and sedimentological model can help to steer drilling strategy and reduce uncertainties and associated risks. For this purpose the GRASP joint industry programme was established......Tunnel galleys are common features in Palaeozoic glacigenic succession in North Afrcica and Middle East and they are amongst the most challenging target for hydrocarbon exploration and developing drilling in these regions. Similarly, these buried valleys form important groundwater reservoirs...... in Quaternary glaciated areas and their nature and sediment composition is critical to drive a sustainable production strategy and assess their vulnerability. Seismic resolution however, often limits the understanding of channel valleys morphology, 3D geometry and internal reservoir distribution, thus...

  14. Mechanical Testing Development for Reservoir Forgings

    Energy Technology Data Exchange (ETDEWEB)

    Wenski, E.G.

    2000-05-22

    The goal of this project was to determine the machining techniques and testing capabilities required for mechanical property evaluation of commercially procured reservoir forgings. Due to the small size of these specific forgings, specialized methods are required to adequately machine and test these sub-miniature samples in accordance with the requirements of ASTM-E8 and ASTM-E9. At the time of project initiation, no capability existed at Federal Manufacturing & Technologies (FM&T) to verify the physical properties of these reservoirs as required on the drawing specifications. The project determined the sample definitions, machining processes, and testing procedures to verify the physical properties of the reservoir forgings; specifically, tensile strength, yield strength, reduction of area, and elongation. In addition, a compression test method was also developed to minimize sample preparation time and provide a more easily machined test sample while maintaining the physical validation of the forging.

  15. Freshwater reservoir effect variability in Northern Germany

    DEFF Research Database (Denmark)

    Philippsen, B.; Heinemeier, J.

    2013-01-01

    The freshwater reservoir effect is a potential problem when radiocarbon dating fish bones, shells, human bones, or food crusts on pottery from sites near rivers or lakes. The reservoir age in hardwater rivers can be up to several thousand years and may be highly variable. Accurate 14C dating of f...... that can also be expected for the past. This knowledge will be applied to the dating of food crusts on pottery from the Mesolithic sites Kayhude at the Alster River and Schlamersdorf at the Trave River, both in Schleswig-Holstein, northern Germany....

  16. Pressure Transient Analysis of Dual Fractal Reservoir

    Directory of Open Access Journals (Sweden)

    Xiao-Hua Tan

    2013-01-01

    Full Text Available A dual fractal reservoir transient flow model was created by embedding a fracture system simulated by a tree-shaped fractal network into a matrix system simulated by fractal porous media. The dimensionless bottom hole pressure model was created using the Laplace transform and Stehfest numerical inversion methods. According to the model's solution, the bilogarithmic type curves of the dual fractal reservoirs are illustrated, and the influence of different fractal factors on pressure transient responses is discussed. This semianalytical model provides a practical and reliable method for empirical applications.

  17. Controls on Cementation in a Chalk Reservoir

    DEFF Research Database (Denmark)

    Meireles, Leonardo Teixeira Pinto; Hussein, A.; Welch, M.J.

    In this study, we identify different controls on cementation in a chalk reservoir. Biot’s coefficient, a measure of cementation, stiffness and strength in porous rocks, is calculated from logging data (bulk density and sonic Pwave velocity). We show that Biot’s coefficient is correlated...... to the water saturation of the Kraka reservoir and is partly controlled by its stratigraphic sub-units. While the direct causal relationship between Biot’s coefficient and water saturation cannot be extended for Biot’s coefficient and porosity, a correlation is also identified between the two, implying...

  18. Nonlinearities in reservoir engineering: Enhancing quantum correlations

    Science.gov (United States)

    Hu, Xiangming; Hu, Qingping; Li, Lingchao; Huang, Chen; Rao, Shi

    2017-12-01

    There are two decisive factors for quantum correlations in reservoir engineering, but they are strongly reversely dependent on the atom-field nonlinearities. One is the squeezing parameter for the Bogoliubov modes-mediated collective interactions, while the other is the dissipative rates for the engineered collective dissipations. Exemplifying two-level atomic ensembles, we show that the moderate nonlinearities can compromise these two factors and thus enhance remarkably two-mode squeezing and entanglement of different spin atomic ensembles or different optical fields. This suggests that the moderate nonlinearities of the two-level systems are more advantageous for applications in quantum networks associated with reservoir engineering.

  19. Chalk reservoirs of the North Sea

    International Nuclear Information System (INIS)

    Hardman, R.F.P.

    1982-01-01

    The amount of clay in the chalk, whether primary or secondary, is the factor of greatest importance in determining whether chalk has the capability of forming a reservoir rock or not. It has been empirically observed that the less the clay content the better the resevoir and as has been remarked earlier, the amount of clay in the Chalk can be closely correlated with sea level. changes. Where other factors are either absent or of only minor importance, the effect of clay is most clearly seen. A good example is well N-2 in Danish waters. It is concluded that in N-2 clay is the dominant control on reservoir quality. (EG)

  20. DIVERSITY OF THE TSI INDICATORS OF THE MIDDLE-FOREST SMALL RETENTION RESERVOIR

    Directory of Open Access Journals (Sweden)

    Joanna Szczykowska

    2015-11-01

    Full Text Available Article describes studies on the trophic status which were carried out using the water samples from the small retention reservoir Topiło located in especially valuable natural forests of Puszcza Białowieska. In order to assess the degree of Topiło reservoir contamination, three measurement and control points were selected for testing, which were situated near the inflow (point No. 1 and outflow (point No. 3 of river Perebel, as well as in the middle part of the reservoir (point No. 2. The selection and placement of measurement and control points on the reservoir was dictated by the ability to capture changes in the study object. Tests of water samples collected from the surface layer of the coastal zone, were carried out once a month during the period from April 2007 to March 2014. The following determinations in collected water samples were performed: total nitrogen, total phosphorus, chlorophyll “a”, and turbidity. The trophic level of Topiło reservoir was also assessed according to the concentration criteria and based on the trophic status indices (TSI calculated after Carlson’s as well as Kratzer and Brezonik’s. Given the annual average value of overall trophic level (Trophic Status Index, the dominant role of the TSI (TP during all years of research attracts some attention. The TSI index values ranged within 78.3–80.26, which allowed to classify the water of Topiło reservoir as hypertrophic. The research indicates an advanced and constantly progressive degradation of water quality in Topiło reservoir. Values of TSI (Chl were in the range of 49.2–77.35 and therefore water status in winter can be defined as eutrophic indicating the hypertrophy in remaining periods under study. Additional investments planned for advance reclamation treatments should be necessarily taken into consideration at the stage of planning and design of new small water retention reservoirs. Topiło reservoir requires modernization and reclamation, it

  1. Characterization of facies and permeability patterns in carbonate reservoirs based on outcrop analogs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kerans, C.; Lucia, F.J.; Senger, R.K.; Fogg, G.E.; Nance, H.S.; Hovorka, S.D.

    1993-07-01

    The primary objective of this research is to develop methods for better describing the three-dimensional geometry of carbonate reservoir flow units as related to conventional or enhanced recovery of oil. San Andres and Grayburg reservoirs were selected for study because of the 13 Bbbl of remaining mobile oil and 17 Bbbl of residual oil in these reservoirs. The key data base is provided by detailed characterization of geologic facies and rock permeability in reservior-scale outcrops of the Permian San Andres Formation in the Guadalupe Mountains of New Mexico. Emphasis is placed on developing an outcrop analog for San Andres strata that can be used as (1) a guide to interpreting the regional and local geologic framework of the subsurface reservoirs (2) a data source illustrating the scales and patterns of variability of rock-fabric facies and petrophysical properties, particularly in lateral dimension, and on scales that cannot be studied during subsurface reservoir characterization. The research approach taken to achieve these objectives utilizes the integration of geologic description, geostatistical techniques, and reservoir flow simulation experiments. Results from this research show that the spatial distribution of facies relative to the waterflood direction can significantly affect how the reservoir produces. Bypassing of unswept oil occurs due to cross flow of injected water from high permeability zones into lower permeability zones were high permeability zones terminate. An area of unswept oil develops because of the slower advance of the water-injection front in the lower permeability zones. When the injection pattern is reversed, the cross-flow effect changes due to the different arrangements of rock-fabric flow units relative to the flow of injected water, and the sweep efficiency is significantly different. Flow across low-permeability mudstones occurs showing that these layers do not necessarily represent flow barriers.

  2. Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs

    Directory of Open Access Journals (Sweden)

    Erica C. Pehrsson

    2013-06-01

    Full Text Available Rates of infection with antibiotic-resistant bacteria have increased precipitously over the past several decades, with far-reaching healthcare and societal costs. Recent evidence has established a link between antibiotic resistance genes in human pathogens and those found in non-pathogenic, commensal, and environmental organisms, prompting deeper investigation of natural and human-associated reservoirs of antibiotic resistance. Functional metagenomic selections, in which shotgun-cloned DNA fragments are selected for their ability to confer survival to an indicator host, have been increasingly applied to the characterization of many antibiotic resistance reservoirs. These experiments have demonstrated that antibiotic resistance genes are highly diverse and widely distributed, many times bearing little to no similarity to known sequences. Through unbiased selections for survival to antibiotic exposure, functional metagenomics can improve annotations by reducing the discovery of false-positive resistance and by allowing for the identification of previously unrecognizable resistance genes. In this review, we summarize the novel resistance functions uncovered using functional metagenomic investigations of natural and human-impacted resistance reservoirs. Examples of novel antibiotic resistance genes include those highly divergent from known sequences, those for which sequence is entirely unable to predict resistance function, bifunctional resistance genes, and those with unconventional, atypical resistance mechanisms. Overcoming antibiotic resistance in the clinic will require a better understanding of existing resistance reservoirs and the dissemination networks that govern horizontal gene exchange, informing best practices to limit the spread of resistance-conferring genes to human pathogens.

  3. Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs.

    Science.gov (United States)

    Pehrsson, Erica C; Forsberg, Kevin J; Gibson, Molly K; Ahmadi, Sara; Dantas, Gautam

    2013-01-01

    Rates of infection with antibiotic-resistant bacteria have increased precipitously over the past several decades, with far-reaching healthcare and societal costs. Recent evidence has established a link between antibiotic resistance genes in human pathogens and those found in non-pathogenic, commensal, and environmental organisms, prompting deeper investigation of natural and human-associated reservoirs of antibiotic resistance. Functional metagenomic selections, in which shotgun-cloned DNA fragments are selected for their ability to confer survival to an indicator host, have been increasingly applied to the characterization of many antibiotic resistance reservoirs. These experiments have demonstrated that antibiotic resistance genes are highly diverse and widely distributed, many times bearing little to no similarity to known sequences. Through unbiased selections for survival to antibiotic exposure, functional metagenomics can improve annotations by reducing the discovery of false-positive resistance and by allowing for the identification of previously unrecognizable resistance genes. In this review, we summarize the novel resistance functions uncovered using functional metagenomic investigations of natural and human-impacted resistance reservoirs. Examples of novel antibiotic resistance genes include those highly divergent from known sequences, those for which sequence is entirely unable to predict resistance function, bifunctional resistance genes, and those with unconventional, atypical resistance mechanisms. Overcoming antibiotic resistance in the clinic will require a better understanding of existing resistance reservoirs and the dissemination networks that govern horizontal gene exchange, informing best practices to limit the spread of resistance-conferring genes to human pathogens.

  4. Simulation of Reservoir Sediment Flushing of the Three Gorges Reservoir Using an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Xueying Li

    2016-05-01

    Full Text Available Reservoir sedimentation and its effect on the environment are the most serious world-wide problems in water resources development and utilization today. As one of the largest water conservancy projects, the Three Gorges Reservoir (TGR has been controversial since its demonstration period, and sedimentation is the major concern. Due to the complex physical mechanisms of water and sediment transport, this study adopts the Error Back Propagation Training Artificial Neural Network (BP-ANN to analyze the relationship between the sediment flushing efficiency of the TGR and its influencing factors. The factors are determined by the analysis on 1D unsteady flow and sediment mathematical model, mainly including reservoir inflow, incoming sediment concentration, reservoir water level, and reservoir release. Considering the distinguishing features of reservoir sediment delivery in different seasons, the monthly average data from 2003, when the TGR was put into operation, to 2011 are used to train, validate, and test the BP-ANN model. The results indicate that, although the sample space is quite limited, the whole sediment delivery process can be schematized by the established BP-ANN model, which can be used to help sediment flushing and thus decrease the reservoir sedimentation.

  5. A New Method for Fracturing Wells Reservoir Evaluation in Fractured Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2014-01-01

    Full Text Available Natural fracture is a geological phenomenon widely distributed in tight formation, and fractured gas reservoir stimulation effect mainly depends on the communication of natural fractures. Therefore it is necessary to carry out the evaluation of this reservoir and to find out the optimal natural fractures development wells. By analyzing the interactions and nonlinear relationships of the parameters, it establishes three-level index system of reservoir evaluation and proposes a new method for gas well reservoir evaluation model in fractured gas reservoir on the basis of fuzzy logic theory and multilevel gray correlation. For this method, the Gaussian membership functions to quantify the degree of every factor in the decision-making system and the multilevel gray relation to determine the weight of each parameter on stimulation effect. Finally through fuzzy arithmetic operator between multilevel weights and fuzzy evaluation matrix, score, rank, the reservoir quality, and predicted production will be gotten. Result of this new method shows that the evaluation of the production coincidence rate reaches 80%, which provides a new way for fractured gas reservoir evaluation.

  6. Sensitivity Analysis of Methane Hydrate Reservoirs: Effects of Reservoir Parameters on Gas Productivity and Economics

    Science.gov (United States)

    Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.

    2008-12-01

    This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP

  7. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  8. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  9. Developing an integrated 3D-hydrodynamic and emerging contaminant model for assessing water quality in a Yangtze Estuary Reservoir.

    Science.gov (United States)

    Xu, Cong; Zhang, Jingjie; Bi, Xiaowei; Xu, Zheng; He, Yiliang; Gin, Karina Yew-Hoong

    2017-12-01

    An integrated 3D-hydrodynamic and emerging contaminant model was developed for better understanding of the fate and transport of emerging contaminants in Qingcaosha Reservoir. The reservoir, which supplies drinking water for nearly half of Shanghai's population, is located in Yangtze Delta. The integrated model was built by Delft3D suite, a fully integrated multidimensional modeling software. Atrazine and Bisphenol A (BPA) were selected as two representative emerging contaminants for the study in this reservoir. The hydrodynamic model was calibrated and validated against observations from 2011 to 2015 while the integrated model was calibrated against observations from 2014 to 2015 and then applied to explore the potential risk of high atrazine concentrations in the reservoir driven by agriculture activities. Our results show that the model is capable of describing the spatial and temporal patterns of water temperature, salinity and the dynamic distributions of two representative emerging contaminants (i.e. atrazine and BPA) in the reservoir. The physical and biodegradation processes in this study were found to play a crucial role in determining the fate and transport of atrazine and BPA in the reservoir. The model also provides an insight into the potential risk of emerging contaminants and possible mitigation thresholds. The integrated approach can be a very useful tool to support policy-makers in the future management of Qingcaosha Reservoir. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY; APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Matthias G. Imhof; James W. Castle

    2003-11-01

    The objective of the project is to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study is performed at West Coalinga Field in California. We continued our investigation on the nature of seismic reactions from heterogeneous reservoirs. We began testing our algorithm to infer parameters of object-based reservoir models from seismic data. We began integration of seismic and geologic data to determine the deterministic limits of conventional seismic data interpretation. Lastly, we began integration of seismic and geologic heterogeneity using stochastic models conditioned both on wireline and seismic data.

  11. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  12. Impact of a Thermocline on Water Dynamics in Reservoirs – Dobczyce Reservoir Case

    Directory of Open Access Journals (Sweden)

    Hachaj Paweł S.

    2017-06-01

    Full Text Available While modeling water dynamics in dam reservoirs, it is usually assumed that the flow involves the whole water body. It is true for shallow reservoirs (up to several meters of depth but may be false for deeper ones. The possible presence of a thermocline creates an inactive bottom layer that does not move, causing all the discharge to be carried by the upper strata. This study compares the results of hydrodydynamic simulations performed for the whole reservoir to the ones carried out for the upper strata only. The validity of a non-stratified flow approximation is then discussed.

  13. Assessment of Climate Change Effects on Shahcheraghi Reservoir Inflow

    Directory of Open Access Journals (Sweden)

    M. E. Banihabib

    2016-10-01

    compared to BPD. The best ANN sub-model has minimum Mean Absolute Relative Error (MARE index (0.27 in test phases and maximum correlation coefficient (ρ (0.82 in test phases. Results and Discussion: The tested climate change scenarios revealed that climate change has more impact on rainfall and temperature than solar radiation. The utmost growth of monthly rainfall occurred in May under all the three tested climate change scenarios. But, rainfall under A1B scenario had the maximum growth (52% whereas the most decrease occurred (–21.5% during January under the A2 climate change scenario. Rainfall dropped over the period of June to October under the three tested climate change scenarios. Furthermore, in all three scenarios, the maximum temperature increased about 2.2 to 2.6°C in May but the lowest increase of temperature occurred in January under A2 and B1 scenarios as 0.3 and 0.5°C, respectively. The maximum temperature usually increased in all months compared to the baseline period. Minimum and maximum temperatures enlarged likewise in all months, with 2.05°C in September under A2 climate change scenario. Conversely, solar radiation change was comparatively low and the most decreases occurred in February under A1B and A2 climate change scenarios as –4.2% and –4.3% , respectively, and in August under the B1 scenario as –4.2%. The greatest increase of solar radiation occurs in April, November, and March by 3.1%, 3.2%, and 4.9% for A1B, A2, and B1 scenarios, respectively. The impact of climate change on rainfall and temperature can origin changes on reservoir inflow and need new strategies to adapt reservoir operation for change inflows. Therefore, first, reservoir inflow in future period (after climate change impact should be anticipated for the adaptation of the reservoir. A Feed-Forward (FF Multilayer-Perceptron (MLP Artificial Neural Network (ANN model was nominated for the seven tested ANN models based on minimization of error function. The selected model had

  14. Derivation of Optimal Operating Rules for Large-scale Reservoir Systems Considering Multiple Trade-off

    Science.gov (United States)

    Zhang, J.; Lei, X.; Liu, P.; Wang, H.; Li, Z.

    2017-12-01

    Flood control operation of multi-reservoir systems such as parallel reservoirs and hybrid reservoirs often suffer from complex interactions and trade-off among tributaries and the mainstream. The optimization of such systems is computationally intensive due to nonlinear storage curves, numerous constraints and complex hydraulic connections. This paper aims to derive the optimal flood control operating rules based on the trade-off among tributaries and the mainstream using a new algorithm known as weighted non-dominated sorting genetic algorithm II (WNSGA II). WNSGA II could locate the Pareto frontier in non-dominated region efficiently due to the directed searching by weighted crowding distance, and the results are compared with those of conventional operating rules (COR) and single objective genetic algorithm (GA). Xijiang river basin in China is selected as a case study, with eight reservoirs and five flood control sections within four tributaries and the mainstream. Furthermore, the effects of inflow uncertainty have been assessed. Results indicate that: (1) WNSGA II could locate the non-dominated solutions faster and provide better Pareto frontier than the traditional non-dominated sorting genetic algorithm II (NSGA II) due to the weighted crowding distance; (2) WNSGA II outperforms COR and GA on flood control in the whole basin; (3) The multi-objective operating rules from WNSGA II deal with the inflow uncertainties better than COR. Therefore, the WNSGA II can be used to derive stable operating rules for large-scale reservoir systems effectively and efficiently.

  15. Uncertainty Assessment: Reservoir Inflow Forecasting with Ensemble Precipitation Forecasts and HEC-HMS

    Directory of Open Access Journals (Sweden)

    Sheng-Chi Yang

    2014-01-01

    Full Text Available During an extreme event, having accurate inflow forecasting with enough lead time helps reservoir operators decrease the impact of floods downstream. Furthermore, being able to efficiently operate reservoirs could help maximize flood protection while saving water for drier times of the year. This study combines ensemble quantitative precipitation forecasts and a hydrological model to provide a 3-day reservoir inflow in the Shihmen Reservoir, Taiwan. A total of six historical typhoons were used for model calibration, validation, and application. An understanding of cascaded uncertainties from the numerical weather model through the hydrological model is necessary for a better use for forecasting. This study thus conducted an assessment of forecast uncertainty on magnitude and timing of peak and cumulative inflows. It found that using the ensemble-mean had less uncertainty than randomly selecting individual member. The inflow forecasts with shorter length of cumulative time had a higher uncertainty. The results showed that using the ensemble precipitation forecasts with the hydrological model would have the advantage of extra lead time and serve as a valuable reference for operating reservoirs.

  16. Ascent of neotropical migratory fish in the Itaipu Reservoir fish pass

    Science.gov (United States)

    Makrakis, S.; Miranda, L.E.; Gomes, L.C.; Makrakis, M.C.; Junior, H.M.F.

    2011-01-01

    The Piracema Canal is a complex 10-km fish pass system that climbs 120m to connect the Paran?? River to the Itaipu Reservoir along the Brazil-Paraguay border. The canal was constructed to allow migratory fishes to reach suitable habitats for reproduction and feeding in tributaries upstream from the reservoir. The Piracema Canal attracted 17 of the 19 long-distance migratory species that have been recorded in the Paran?? River Basin and Paraguay-Paran?? Basin. However, the incidence of migratory fish decreased from downstream to upstream, with the pattern of decrease depending on species. Overall, 0.5% of the migratory fish that entered the Piracema Canal and segment 1, eventually were able to reach segment 5 and potentially Itaipu Reservoir. Ascension rate was examined relative to various physical attributes of canal segments; maximum water velocity emerged as the most influential variable affecting fish passage. Water velocity may be manipulated by controlling water discharge, and by re-engineering critical sections of the canal. Because the Itaipu Reservoir flooded a set of falls that separated two distinct biogeographical regions, facilitating fish movements through the Piracema Canal into the Itaipu Reservoir presents a management dilemma that requires deliberation in the context of the fish assemblages rather than on selected migratory species. ?? 2010 John Wiley & Sons, Ltd.

  17. Small reservoir effects on headwater water quality in the rural-urban fringe, Georgia Piedmont, USA

    Directory of Open Access Journals (Sweden)

    Dr.. Amber R. Ignatius, Geographer

    2016-12-01

    Full Text Available Small reservoirs are prevalent landscape features that affect the physical, chemical, and biological characteristics of headwater streams. Tens of thousands of small reservoirs, often less than a hectare in size, were constructed over the past century within the United States. While remote-sensing and geographic-mapping technologies assist in identifying and quantifying these features, their localized influence on water quality is uncertain. We report a year-long physicochemical study of nine small reservoirs (0.15–2.17 ha within the Oconee and Broad River Watersheds in the Georgia Piedmont. Study sites were selected along an urban-rural gradient with differing amounts of agricultural, forested, and developed land covers. Sites were sampled monthly for discharge and inflow/outflow water quality parameters (temperature, specific conductance, pH, dissolved oxygen, turbidity, alkalinity, total phosphorus, total nitrogen, nitrate, ammonium. While the proportion of developed land cover within watersheds had positive correlations with reservoir specific conductivity values, agricultural and forested land covers showed correlations (positive and negative, respectively with reservoir alkalinity, total nitrogen, nitrate, and specific conductivity. The majority of outflow temperatures were warmer than inflows for all land uses throughout the year, especially in the summer. Outflows had lower nitrate concentrations, but higher ammonium. The type of outflow structure was also influential; top-release dams showed higher dissolved oxygen and pH than bottom-release dams. Water quality effects were still evident 250 m below the dam, albeit reduced.

  18. Selected Properties of Flotation Tailings Wastes Deposited in the Gilów and Żelazny Most Waste Reservoirs Regarding Their Potential Environmental Management / Wybrane Właściwości Odpadów Poflotacyjnych Zdeponowanych W Zbiornikach Gilów I Żelazny Most W Aspekcie Możliwości Ich Zagospodarowania Przyrodniczego

    Science.gov (United States)

    Baran, Agnieszka; Śliwka, Małgorzata; Lis, Marcin

    2013-09-01

    Wastes originating from copper mining, particularly generated during the ore enrichment process constitute a considerable percentage of industrial wastes in Poland, which theoretically are supposed to provide a raw material base but remain wholly unmanaged. Wastes from copper flotation are deposited on the waste dumps which pose a significant eco-toxicological hazard. The paper discussed the results of analysis of selected post-floatation waste properties deposited in the Żelazny Most and Gilów reservoirs from the perspective of their environmental management. Odpady pochodzące z górnictwa miedzi, szczególnie powstające w procesie wzbogacania rudy, stanowią znaczny odsetek odpadów przemysłowych w naszym kraju, które teoretycznie zasilić mają bazę surowcową i w całości pozostają niezagospodarowane. Odpady z procesu flotacji miedzi są deponowane na składowiskach i stanowią zagrożeniem ekologicznym i ekotoksykologicznym dla środowiska przyrodniczego i człowieka. Niekorzystne oddziaływanie składowisk odpadów poflotacyjnych na środowisko to przede wszystkim deformacje terenu, zanieczyszczenia gleb zanieczyszczeń roślinności metalami ciężkimi, oraz zanieczyszczenie wód powierzchniowych i podziemnych. W artykule zostały omówione niektóre właściwości fizykochemiczne oraz ekotoksykologiczne odpadów poflotacyjnych deponowanych w zbiornikach Żelazny Most i Gilów pod kątem ich biologicznego zagospodarowania. Próbki pobranych osadów, po odpowiednim przygotowaniu, poddano ocenie wybranych parametrów fizycznych, analizie chemicznej oraz serii testów ekotoksykologicznych. Właściwości ekotoksykologiczne osadów oceniono przy użyciu baterii biotestów składającej się z dwóch biotestów pracujących na pięciu organizmach (tab. 1). W teście Phytotoxkit do pomiaru toksyczności osadu wykorzystano trzy rośliny: Sorghum saccharatum, Lepidium sativum i Sinapis alba. Mierzonym parametrem było zahamowanie kiełkowania nasion oraz d

  19. Adsorption of hydrocarbons in chalk reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, L.

    1996-12-31

    The present work is a study on the wettability of hydrocarbon bearing chalk reservoirs. Wettability is a major factor that influences flow, location and distribution of oil and water in the reservoir. The wettability of the hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. Organic compounds such as carboxylic acids are found in formation waters from various hydrocarbon reservoirs and in crude oils. In the present investigation the wetting behaviour of chalk is studied by the adsorption of the carboxylic acids onto synthetic calcite, kaolinite, quartz, {alpha}-alumina, and chalk dispersed in an aqueous phase and an organic phase. In the aqueous phase the results clearly demonstrate the differences between the adsorption behaviour of benzoic acid and hexanoic acid onto the surfaces of oxide minerals and carbonates. With NaCl concentration of 0.1 M and with pH {approx_equal} 6 the maximum adsorption of benzoic acid decreases in the order: quartz, {alpha}-alumina, kaolinite. For synthetic calcite and chalk no detectable adsorption was obtaind. In the organic phase the order is reversed. The maximum adsorption of benzoic acid onto the different surfaces decreases in the order: synthetic calcite, chalk, kaolinite and quartz. Also a marked difference in adsorption behaviour between probes with different functional groups onto synthetic calcite from organic phase is observed. The maximum adsorption decreases in the order: benzoic acid, benzyl alcohol and benzylamine. (au) 54 refs.

  20. Accounting for Greenhouse Gas Emissions from Reservoirs ...

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used as a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. In the U.S., research approaches include: 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane em

  1. Probing magma reservoirs to improve volcano forecasts

    Science.gov (United States)

    Lowenstern, Jacob B.; Sisson, Thomas W.; Hurwitz, Shaul

    2017-01-01

    When it comes to forecasting eruptions, volcano observatories rely mostly on real-time signals from earthquakes, ground deformation, and gas discharge, combined with probabilistic assessments based on past behavior [Sparks and Cashman, 2017]. There is comparatively less reliance on geophysical and petrological understanding of subsurface magma reservoirs.

  2. Fourteenth workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-01-01

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  3. Fourteenth workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-12-31

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  4. Sidi Saâd reservoir

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-01-12

    Jan 12, 2012 ... with environmental factors in a semi arid area: Sidi. Saâd reservoir .... between changes in environmental parameters, biological factors and ..... Dinophyceae. Copepoda. Anabaena sp. Gonyaulax sp. Acanthocyclops robustus Acanthocyclops viridis. Chroococcus sp. Gonyaulax spinifera. Gloeothece sp.

  5. Freshwater reservoir effect variability in Northern Germany

    DEFF Research Database (Denmark)

    Philippsen, Bente; Heinemeier, Jan

    2012-01-01

    Kayhude at the river Alster and Schlamersdorf at the river Trave, both in Schleswig-Holstein, Northern Germany. Measurements on modern materials from these rivers may not give a single reservoir age correction that can be applied to archaeological samples, but they will show the order of magnitude...

  6. Borehole radar modeling for reservoir monitoring applications

    NARCIS (Netherlands)

    Miorali, M.; Slob, E.C.; Arts, R.J.

    2010-01-01

    The use of down-hole sensors and remotely controlled valves in wells provide enormous benefits to reservoir management and oil production. We suggest borehole radar measurements as a promising technique capable of monitoring the arrival of undesired fluids in the proximity of production wells. The

  7. Do cyanobacterial picoplankton exist in eutrophic reservoirs?

    Czech Academy of Sciences Publication Activity Database

    Komárková, Jaroslava

    2002-01-01

    Roč. 28, - (2002), s. 497-500 ISSN 0368-0770 R&D Projects: GA AV ČR IBS6017004; GA AV ČR IAA6017803; GA AV ČR KSK2005601 Keywords : reservoir * colonial picocynobacteria Subject RIV: DA - Hydrology ; Limnology

  8. Novel Synechococcus genomes reconstructed from freshwater reservoirs

    Czech Academy of Sciences Publication Activity Database

    Cabello-Yeves, P.J.; Haro-Moreno, J.M.; Martin-Cuadrado, A.B.; Ghai, Rohit; Picazo, A.; Camacho, A.; Rodriguez-Valera, F.

    2017-01-01

    Roč. 8, June (2017), č. článku 1151. ISSN 1664-302X R&D Projects: GA ČR(CZ) GA17-04828S Institutional support: RVO:60077344 Keywords : Synechococcus * picocyanobacteria * freshwater reservoirs * metagenomics * abundance Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.076, year: 2016

  9. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  10. Sinusoidal cycling swimming pattern of reservoir fishes

    Czech Academy of Sciences Publication Activity Database

    Čech, Martin; Kubečka, Jan

    2002-01-01

    Roč. 61, č. 2 (2002), s. 456-471 ISSN 0022-1112 R&D Projects: GA AV ČR IAA6017901; GA AV ČR IAA6017201; GA ČR GA206/02/0520 Keywords : sinusoidal swimming * echosounder * reservoir Subject RIV: EH - Ecology, Behaviour Impact factor: 1.186, year: 2002

  11. Can Dams and Reservoirs Cause Earthquakes?

    Indian Academy of Sciences (India)

    indirect investigations of these regions are subject to inevitable multiple interpretations. Still, a measure of understanding about reservoir induced earthquakes has been achieved. It is my aim to put the phenomenon in a perspective on this basis. I saw the Koyna Earthquake Recorded. Koyna earthquake of December 10, ...

  12. Analysis of Sedimentation in Wonogiri Reservoir

    Directory of Open Access Journals (Sweden)

    Tri Joko Inti Budi Santosa

    2016-01-01

    Full Text Available The Wonogiri reservoir which has 730 million cubic meters of total storage, 90 square kilometers of water area, and 1260 square kilometers of catchment area, is located in the Wonogiri Regency, Central Java Province. It was first established in 1981 and began its operation in 1982 with the expectation that it would last for about 100 years. Today (2002 the reservoir has got a serious problem of sedimentation. The sedimentation is so large that it would decrease the capacity storage of the reservoir and would shorten the length of operation. Therefore, it is necessary to predict the sediment that comes into the reservoir. This research would be based on the total sediment calculation of the sedimentation, through some methods, such as echo sounding measured data, land erosion (USLE, the calculation of the sediment in rivers. This research calculates the sediment capacities based on the water flow data and the sediment rating curves in rivers of Keduang, Tirtomoyo, Temon, upstream reach of Bengawan Solo, Alang, and Wuryantoro. The suspended load was calculated based on the sediment rating curves, whereas the bed load was computed as the percentage of the suspended load. The sum of both calculation results would be the total sediment. The calculation result showed that the total sediment which has come into the reservoir is 6.68 million cubic meters per year. As a comparison, the writer noted that the former researcher using echo sounding method done by the Faculty of Geography of the Universitas Gadjah Mada in 1985, it found that the total sediment capacity which came into the reservoir was 6.60 million cubic meters per year or 5.40 mm per year of sheet erosion. The other research using echo sounding method done by JICA in 2000 found that the total sediment which had come into the reservoir was 4.50 million cubic meters per year or 3.50 mm per year of sheet erosion. By knowing the results of calculation of the total sediment, we can learn that

  13. Design and Operation of Decentralized Reservoirs in Urban Drainage Systems

    Directory of Open Access Journals (Sweden)

    Eui Hoon Lee

    2017-03-01

    Full Text Available Poor drainage of urban storm water can lead to urban inundation which presents a risk to people and property. Previous research has presented various measures to prevent and reduce urban flooding and these measures can be classified into costly but effective structural measures, and economical but less effective non-structural measures. This study suggests a new approach to reduce urban flooding by combining structural and non-structural measures in a target watershed in Seoul, South Korea. Inlet design modification in a detention reservoir (Decentralized Reservoir, DR is examined in conjunction with combined inlet/outlet management for the DR. Monitoring nodes used to control DR inlet/outlet operations are selected by locating the first flooding node, maximum flooding node and DR inlet node. This new approach demonstrates outstanding flood volume reduction for historical flooding events that occurred in Seoul during 2010 and 2011. Flood volumes during the 2010 event using the combined inlet/outlet operation in the DR were between 1656 m3 and 1815 m3 compared to a flood volume of 6617 m3 using current DR operation. Finally, the suggested operating level for the DR based on the best hydraulic section, system resilience index, and local regulations is 1.2 m.

  14. Performance Analysis of Depleted Oil Reservoirs for Underground Gas Storage

    Directory of Open Access Journals (Sweden)

    Dr. C.I.C. Anyadiegwu

    2014-02-01

    Full Text Available The performance of underground gas storage in depleted oil reservoir was analysed with reservoir Y-19, a depleted oil reservoir in Southern region of the Niger Delta. Information on the geologic and production history of the reservoir were obtained from the available field data of the reservoir. The verification of inventory was done to establish the storage capacity of the reservoir. The plot of the well flowing pressure (Pwf against the flow rate (Q, gives the deliverability of the reservoir at various pressures. Results of the estimated properties signified that reservoir Y-19 is a good candidate due to its storage capacity and its flow rate (Q of 287.61 MMscf/d at a flowing pressure of 3900 psig

  15. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    Science.gov (United States)

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  16. Reservoir Cathode for Electric Space Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a hollow reservoir cathode to improve performance in ion and Hall thrusters. We will adapt our existing reservoir cathode technology to this purpose....

  17. Reservoir pressure evolution model during exploration drilling

    Directory of Open Access Journals (Sweden)

    Korotaev B. A.

    2017-03-01

    Full Text Available Based on the analysis of laboratory studies and literature data the method for estimating reservoir pressure in exploratory drilling has been proposed, it allows identify zones of abnormal reservoir pressure in the presence of seismic data on reservoir location depths. This method of assessment is based on developed at the end of the XX century methods using d- and σ-exponentials taking into account the mechanical drilling speed, rotor speed, bit load and its diameter, lithological constant and degree of rocks' compaction, mud density and "regional density". It is known that in exploratory drilling pulsation of pressure at the wellhead is observed. Such pulsation is a consequence of transferring reservoir pressure through clay. In the paper the mechanism for transferring pressure to the bottomhole as well as the behaviour of the clay layer during transmission of excess pressure has been described. A laboratory installation has been built, it has been used for modelling pressure propagation to the bottomhole of the well through a layer of clay. The bulge of the clay layer is established for 215.9 mm bottomhole diameter. Functional correlation of pressure propagation through the layer of clay has been determined and a reaction of the top clay layer has been shown to have bulge with a height of 25 mm. A pressure distribution scheme (balance has been developed, which takes into account the distance from layers with abnormal pressure to the bottomhole. A balance equation for reservoir pressure evaluation has been derived including well depth, distance from bottomhole to the top of the formation with abnormal pressure and density of clay.

  18. Enhancement of seismic monitoring in hydrocarbon reservoirs

    Science.gov (United States)

    Caffagni, Enrico; Bokelmann, Götz

    2017-04-01

    Hydraulic Fracturing (HF) is widely considered as one of the most significant enablers of the successful exploitation of hydrocarbons in North America. Massive usage of HF is currently adopted to increase the permeability in shale and tight-sand deep reservoirs, despite the economical downturn. The exploitation success is less due to the subsurface geology, but in technology that improves exploration, production, and decision-making. This includes monitoring of the reservoir, which is vital. Indeed, the general mindset in the industry is to keep enhancing seismic monitoring. It allows understanding and tracking processes in hydrocarbon reservoirs, which serves two purposes, a) to optimize recovery, and b) to help minimize environmental impact. This raises the question of how monitoring, and especially seismic techniques could be more efficient. There is a pressing demand from seismic service industry to evolve quickly and to meet the oil-gas industry's changing needs. Nonetheless, the innovative monitoring techniques, to achieve the purpose, must enhance the characterization or the visualization of a superior-quality images of the reservoir. We discuss recent applications of seismic monitoring in hydrocarbon reservoirs, detailing potential enhancement and eventual limitations. The aim is to test the validity of these seismic monitoring techniques, qualitatively discuss their potential application to energy fields that are not only limited to HF. Outcomes from our investigation may benefit operators and regulators in case of future massive HF applications in Europe, as well. This work is part of the FracRisk consortium (www.fracrisk.eu), funded by the Horizon2020 research programme, whose aims is to help minimize the environmental footprint of the shale-gas exploration and exploitation.

  19. First assessment of the ecological status of Karaoun reservoir, Lebanon

    International Nuclear Information System (INIS)

    Fadel, A.; Lemaire, B.; Vinc on Leite, B.; Tassin, B.; Amacha, N.; Slim, K.; Atoui, A.

    2014-01-01

    Many reservoirs have been constructed throughout the world during the 20th century, with many also suffering from eutrophication. The resulting increased phytoplankton biomass in reservoirs impairs their use. Except for Lake Kinneret, the environmental status of lakes and reservoirs in the Middle East is poorly documented. Karaoun reservoir, also known as Qaroun, Qaraoun or Qarun, is the largest water body in Lebanon, having been constructed for irrigation and hydropower production. This present study reviews Karaoun reservoir, including its characteristics, uses, water quality and phytoplankton succession, to assess the environmental status of the reservoir on the basis of the few existing previous publications about the reservoir. Since 2004, which is 39 years after its construction, the reservoir is considered to be hypereutrophic, with low phytoplankton biodiversity and regular blooms of toxic cyanobacteria. The nutrient and trace metal concentrations would not prevent use of the reservoir for a drinking water supply for Beirut, as is currently being planned, although not all the micropollutants in the lake were documented. Karaoun reservoir is compared to other monitored lakes and reservoirs around the Mediterranean Sea. They share annual toxic cyanobacteria blooms of Aphanizomenon ovalisporum and of Microcystis aeruginosa. The phytoplankton composition and succession of Karaoun reservoir is more similar to El Gergal reservoir (Spain) than nearby natural lakes such as Lake Kinneret (Israel) and Lake Trichonis (Greece). Phytoplankton diversity in Karaoun reservoir was the lowest, due to higher nutrient concentrations and a larger decrease in water level in the dry season. Karaoun reservoir represents an interesting example of the potential response of the phytoplankton community in other lakes and reservoirs during the drought periods expected to occur as a result of global climate change. (author)

  20. Calculation of reservoir capacity loss due to sediment deposition in the `Muela reservoir, Northern Lesotho

    Directory of Open Access Journals (Sweden)

    Liphapang Khaba

    2017-06-01

    Full Text Available Bathymetry survey records of the `Muela Reservoir in northern Lesotho were obtained from the Lesotho Highlands Development Authority (LHDA with the aim of identifying reservoir storage capacity loss due to sediment deposition, between 1985 and 2015. For this purpose, data from eight surveys completed between 1985 and January 2015 were analyzed to quantify bathymetric change between each survey. Four interpolation methods (inverse distance weighting, Kriging, natural neighbor, and spline, were used to create digital terrain models from each survey data-set. In addition, a triangulated irregular network (TIN surface was created from each data-set. The average reservoir storage capacity loss of 15,400 m3/year was determined across the whole period between 1985 and early 2015, based on Kriging. Whilst the results indicate high inter-annual variability in the rate of reservoir capacity reduction, consideration of errors in the surveying and reservoir volumetric calculation methods suggest that rates of reservoir volume reduction can vary between 11,400 m3/year and 18,200 m3/year.

  1. Sudden water pollution accidents and reservoir emergency operations: impact analysis at Danjiangkou Reservoir.

    Science.gov (United States)

    Zheng, Hezhen; Lei, Xiaohui; Shang, Yizi; Duan, Yang; Kong, Lingzhong; Jiang, Yunzhong; Wang, Hao

    2018-03-01

    Danjiangkou Reservoir is the source reservoir of the Middle Route of the South-to-North Water Diversion Project (MRP). Any sudden water pollution accident in the reservoir would threaten the water supply of the MRP. We established a 3-D hydrodynamic and water quality model for the Danjiangkou Reservoir, and proposed scientific suggestions on the prevention and emergency management for sudden water pollution accidents based on simulated results. Simulations were performed on 20 hypothetical pollutant discharge locations and 3 assumed amounts, in order to model the effect of pollutant spreading under different reservoir operation types. The results showed that both the location and mass of pollution affected water quality; however, different reservoir operation types had little effect. Five joint regulation scenarios, which altered the hydrodynamic processes of water conveyance for the Danjiangkou and Taocha dams, were considered for controlling pollution dispersion. The results showed that the spread of a pollutant could be effectively controlled through the joint regulation of the two dams and that the collaborative operation of the Danjiangkou and Taocha dams is critical for ensuring the security of water quality along the MRP.

  2. Analysis of Fluvial Sediment Discharges into Kubanni Reservoir ...

    African Journals Online (AJOL)

    The sediment discharges into the Kubanni Reservoir (KR) has been measured and analysed in this study. The predominant sandy-clay sediment in the reservoir has an estimated total sediment load of 20,387,000 kg/year. The depth and area coverage of the reservoir was surveyed using a defined distributed grid line ...

  3. Time-lapse seismic imaging of the Reykjanes geothermal reservoir

    NARCIS (Netherlands)

    Weemstra, C.; Obermann, Anne; Blanck, Hanna; Verdel, Arie; Paap, B; Guðnason, Egill Árni; Hersir, Gylfi Páll; Jousset, Philippe; Sigurðsson, Ömar

    2016-01-01

    We report on the results obtained from a dense seismic deployment over a geothermal reservoir. The reservoir has been producing continuously for almost a decade and is located on the tip of the Reykjanes peninsula, SW Iceland. The seismic stations on top of the reservoir have continuously recorded

  4. 49 CFR 229.51 - Aluminum main reservoirs.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Aluminum main reservoirs. 229.51 Section 229.51... Aluminum main reservoirs. (a) Aluminum main reservoirs used on locomotives shall be designed and fabricated as follows: (1) The heads and shell shall be made of Aluminum Association Alloy No. 5083-0, produced...

  5. WATER LOSS OF KOKA RESERVOIR, ETHIOPIA: COMMENTS ON

    African Journals Online (AJOL)

    ABSTRACT: Water balance evaluation of Koka Reservoir was attempted by different authors, and different leakage rates were estimated. However, the water balance equation that the previous authors used does not take into account ground. water inflow into the reservoir. Koka Reservoir is known to receive groundwater ...

  6. Mathematical and field analysis of longitudinal reservoir infill

    Science.gov (United States)

    Ke, W. T.; Capart, H.

    2016-12-01

    In reservoirs, severe problems are caused by infilled sediment deposits. In long term, the sediment accumulation reduces the capacity of reservoir storage and flood control benefits. In the short term, the sediment deposits influence the intakes of water-supply and hydroelectricity generation. For the management of reservoir, it is important to understand the deposition process and then to predict the sedimentation in reservoir. To investigate the behaviors of sediment deposits, we propose a one-dimensional simplified theory derived by the Exner equation to predict the longitudinal sedimentation distribution in idealized reservoirs. The theory models the reservoir infill geomorphic actions for three scenarios: delta progradation, near-dam bottom deposition, and final infill. These yield three kinds of self-similar analytical solutions for the reservoir bed profiles, under different boundary conditions. Three analytical solutions are composed by error function, complementary error function, and imaginary error function, respectively. The theory is also computed by finite volume method to test the analytical solutions. The theoretical and numerical predictions are in good agreement with one-dimensional small-scale laboratory experiment. As the theory is simple to apply with analytical solutions and numerical computation, we propose some applications to simulate the long-profile evolution of field reservoirs and focus on the infill sediment deposit volume resulting the uplift of near-dam bottom elevation. These field reservoirs introduced here are Wushe Reservoir, Tsengwen Reservoir, Mudan Reservoir in Taiwan, Lago Dos Bocas in Puerto Rico, and Sakuma Dam in Japan.

  7. Reservoir management under consideration of stratification and hydraulic phenomena

    NARCIS (Netherlands)

    Nandalal, K.D.W.

    1995-01-01


    Reservoirs are the most important components in a water resources system. They are used to store water to extend its temporal availability. The physical, chemical and biological characteristics of water change when impounded in reservoirs. This implies the possibility of using reservoirs

  8. An Assessment of Sediment Loading into an Agricultural Reservoir ...

    African Journals Online (AJOL)

    komla

    total lack of natural protection against detachment of soil due to sparse vegetation .... The reservoir was surveyed with grid squares of l 5 m by 15 m made over it using ropes. The elevation at each grid on the reservoir embankment was found. The depth of the reservoir at each grid was measured with a long calibrated pole.

  9. Monitoring pharmaceuticals and personal care products in reservoir water used for drinking water supply.

    Science.gov (United States)

    Aristizabal-Ciro, Carolina; Botero-Coy, Ana María; López, Francisco J; Peñuela, Gustavo A

    2017-03-01

    In this work, the presence of selected emerging contaminants has been investigated in two reservoirs, La Fe (LF) and Rio Grande (RG), which supply water to two drinking water treatment plants (DWTPs) of Medellin, one of the most populated cities of Colombia. An analytical method based on solid-phase extraction (SPE) of the sample followed by measurement by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was developed and validated for this purpose. Five monitoring campaigns were performed in each reservoir, collecting samples from 7 sites (LF) and 10 sites (RG) at 3 different depths of the water column. In addition, water samples entering in the DWTPs and treated water samples from these plans were also analysed for the selected compounds. Data from this work showed that parabens, UV filters and the pharmaceutical ibuprofen were commonly present in most of the reservoir samples. Thus, methyl paraben was detected in around 90% of the samples collected, while ibuprofen was found in around 60% of the samples. Water samples feeding the DWTPs also contained these two compounds, as well as benzophenone at low concentrations, which was in general agreement with the results from the reservoir samples. After treatment in the DWTPs, these three compounds were still present in the samples although at low concentrations (water are still unknown. Further research is needed to evaluate the effect of chronic exposure to these compounds via consumption of drinking water.

  10. Third workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P. (eds.)

    1977-12-15

    The Third Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 14, 1977, with 104 attendees from six nations. In keeping with the recommendations expressed by the participants at the Second Workshop, the format of the Workshop was retained, with three days of technical sessions devoted to reservoir physics, well and reservoir testing, field development, and mathematical modeling of geothermal reservoirs. The program presented 33 technical papers, summaries of which are included in these Proceedings. Although the format of the Workshop has remained constant, it is clear from a perusal of the Table of Contents that considerable advances have occurred in all phases of geothermal reservoir engineering over the past three years. Greater understanding of reservoir physics and mathematical representations of vapor-dominated and liquid-dominated reservoirs are evident; new techniques for their analysis are being developed, and significant field data from a number of newer reservoirs are analyzed. The objectives of these workshops have been to bring together researchers active in the various physical and mathematical disciplines comprising the field of geothermal reservoir engineering, to give the participants a forum for review of progress and exchange of new ideas in this rapidly developing field, and to summarize the effective state of the art of geothermal reservoir engineering in a form readily useful to the many government and private agencies involved in the development of geothermal energy. To these objectives, the Third Workshop and these Proceedings have been successfully directed. Several important events in this field have occurred since the Second Workshop in December 1976. The first among these was the incorporation of the Energy Research and Development Administration (ERDA) into the newly formed Department of Energy (DOE) which continues as the leading Federal agency in geothermal reservoir engineering research. The Third

  11. An Intelligent Systems Approach to Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shahab D. Mohaghegh; Jaime Toro; Thomas H. Wilson; Emre Artun; Alejandro Sanchez; Sandeep Pyakurel

    2005-08-01

    Today, the major challenge in reservoir characterization is integrating data coming from different sources in varying scales, in order to obtain an accurate and high-resolution reservoir model. The role of seismic data in this integration is often limited to providing a structural model for the reservoir. Its relatively low resolution usually limits its further use. However, its areal coverage and availability suggest that it has the potential of providing valuable data for more detailed reservoir characterization studies through the process of seismic inversion. In this paper, a novel intelligent seismic inversion methodology is presented to achieve a desirable correlation between relatively low-frequency seismic signals, and the much higher frequency wireline-log data. Vertical seismic profile (VSP) is used as an intermediate step between the well logs and the surface seismic. A synthetic seismic model is developed by using real data and seismic interpretation. In the example presented here, the model represents the Atoka and Morrow formations, and the overlying Pennsylvanian sequence of the Buffalo Valley Field in New Mexico. Generalized regression neural network (GRNN) is used to build two independent correlation models between; (1) Surface seismic and VSP, (2) VSP and well logs. After generating virtual VSP's from the surface seismic, well logs are predicted by using the correlation between VSP and well logs. The values of the density log, which is a surrogate for reservoir porosity, are predicted for each seismic trace through the seismic line with a classification approach having a correlation coefficient of 0.81. The same methodology is then applied to real data taken from the Buffalo Valley Field, to predict inter-well gamma ray and neutron porosity logs through the seismic line of interest. The same procedure can be applied to a complete 3D seismic block to obtain 3D distributions of reservoir properties with less uncertainty than the geostatistical

  12. Natural soil reservoirs for human pathogenic and fecal indicator bacteria

    Science.gov (United States)

    Boschiroli, Maria L; Falkinham, Joseph; Favre-Bonte, Sabine; Nazaret, Sylvie; Piveteau, Pascal; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Delaquis, Pascal; Hartmann, Alain

    2016-01-01

    Soils receive inputs of human pathogenic and indicator bacteria through land application of animal manures or sewage sludge, and inputs by wildlife. Soil is an extremely heterogeneous substrate and contains meso- and macrofauna that may be reservoirs for bacteria of human health concern. The ability to detect and quantify bacteria of human health concern is important in risk assessments and in evaluating the efficacy of agricultural soil management practices that are protective of crop quality and protective of adjacent water resources. The present chapter describes the distribution of selected Gram-positive and Gram-negative bacteria in soils. Methods for detecting and quantifying soilborne bacteria including extraction, enrichment using immunomagnetic capture, culturing, molecular detection and deep sequencing of metagenomic DNA to detect pathogens are overviewed. Methods for strain phenotypic and genotypic characterization are presented, as well as how comparison with clinical isolates can inform the potential for human health risk.

  13. Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations

    Science.gov (United States)

    Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.

    2011-12-01

    HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of

  14. Geothermal prospection in the Greater Geneva Basin (Switzerland and France): Structural and reservoir quality assessment

    Science.gov (United States)

    Rusillon, Elme; Clerc, Nicolas; Makhloufi, Yasin; Brentini, Maud; Moscariello, Andrea

    2017-04-01

    A reservoir assessment was performed in the Greater Geneva Basin to evaluate the geothermal resources potential of low to medium enthalpy (Moscariello, 2016). For this purpose, a detail structural analysis of the basin was performed (Clerc et al., 2016) simultaneously with a reservoir appraisal study including petrophysical properties assessment in a consistent sedimentological and stratigraphical frame (Brentini et al., 2017). This multi-disciplinary study was organised in 4 steps: (1) investigation of the surrounding outcrops to understand the stratigraphy and lateral facies distribution of the sedimentary sequence from Permo-Carboniferous to Lower Cretaceous units; (2) development of 3D geological models derived from 2D seismic and well data focusing on the structural scheme of the basin to constrain better the tectonic influence on facies distribution and to assess potential hydraulic connectivity through faults between reservoir units ; (3) evaluation of the distribution, geometry, sedimentology and petrophysical properties of potential reservoir units from well data; (4) identification and selection of the most promising reservoir units for in-depth rock type characterization and 3D modeling. Petrophysical investigations revealed that the Kimmeridgian-Tithonian Reef Complex and the underlying Calcaires de Tabalcon units are the most promising geothermal reservoir targets (porosity range 10-20%; permeability to 1mD). Best reservoir properties are measured in patch reefs and high-energy peri-reefal depositional environments, which are surrounded by synchronous tight lagoonal deposits. Associated highly porous dolomitized intervals reported in the western part of the basin also provide enhanced reservoir quality. The distribution and geometry of best reservoir bodies is complex and constrained by (1) palaeotopography, which can be affected by synsedimentary fault activity during Mesozoic times, (2) sedimentary factors such as hydrodynamics, sea level variations

  15. Modeling reservoir geomechanics using discrete element method : Application to reservoir monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Alassi, Haitham Tayseer

    2008-09-15

    Understanding reservoir geomechanical behavior is becoming more and more important for the petroleum industry. Reservoir compaction, which may result in surface subsidence and fault reactivation, occurs during reservoir depletion. Stress changes and possible fracture development inside and outside a depleting reservoir can be monitored using time-lapse (so-called '4D') seismic and/or passive seismic, and this can give valuable information about the conditions of a given reservoir during production. In this study we will focus on using the (particle-based) Discrete Element Method (DEM) to model reservoir geomechanical behavior during depletion and fluid injection. We show in this study that DEM can be used in modeling reservoir geomechanical behavior by comparing results obtained from DEM to those obtained from analytical solutions. The match of the displacement field between DEM and the analytical solution is good, however there is mismatch of the stress field which is related to the way stress is measured in DEM. A good match is however obtained by measuring the stress field carefully. We also use DEM to model reservoir geomechanical behavior beyond the elasticity limit where fractures can develop and faults can reactivate. A general technique has been developed to relate DEM parameters to rock properties. This is necessary in order to use correct reservoir geomechanical properties during modeling. For any type of particle packing there is a limitation that the maximum ratio between P- and S-wave velocity Vp/Vs that can be modeled is 3 . The static behavior for a loose packing is different from the dynamic behavior. Empirical relations are needed for the static behavior based on numerical test observations. The dynamic behavior for both dense and loose packing can be given by analytical relations. Cosserat continuum theory is needed to derive relations for Vp and Vs. It is shown that by constraining the particle rotation, the S-wave velocity can be

  16. Oil-source correlation for the paleo-reservoir in the Majiang area and remnant reservoir in the Kaili area, South China

    Science.gov (United States)

    Fang, Yunxin; Liao, Yuhong; Wu, Liangliang; Geng, Ansong

    2011-05-01

    There are different viewpoints on the oil-source correlation of the Majiang paleo-reservoir and the neighbouring Kaili remnant reservoir in the Southern Guizhou Depression of China. Three potential source rocks in this depression could be inferred: the Lower-Cambrian marine mudstone, Lower-Silurian shale and Lower-Permian mudstone. Most of the potential source rocks are of high maturity. The solid bitumens and oil seepages in the Southern Guizhou Depression suffered severe secondary alterations, such as thermal degradation and biodegradation. The solid bitumens of the Majiang paleo-reservoir are also of high maturity. The oil seepages and soft bitumen of the Kaili remnant reservoir were severely biodegraded. All these secondary alterations may obscure oil-source correlations by routine biomarkers. Thus, it is very important to select appropriate biomarker parameters for the oil-source correlation. In this work, biomarkers resistant to thermal degradation and biodegradation and the data of organic carbon isotopic compositions were used for the correlation. The δ 13C values of n-alkanes in asphaltene pyrolysates were also used to make oil-oil and oil-source correlations between severely biodegraded oils. The results indicate that the Lower-Cambrian marine mudstones are the main source for the Ordovician-Silurian (O-S) solid bitumens of the Majiang area and the Ordovician-Silurian oil seepages and soft bitumens of the Kaili area. Remnant reservoir in the eastern Kaili area might have been charged at least twice by the oil generated from the Lower-Cambrian marine source rocks.

  17. Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Mella, Michael [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geoscience Inst.

    2016-08-31

    The objective of this project was to develop and demonstrate an approach for tracking the evolution of circulation immediately following a hydraulic stimulation in an EGS reservoir. Series of high-resolution tracer tests using conservative and thermally reactive tracers were designed at recently created EGS reservoirs in order to track changes in fluid flow parameters such as reservoir pore volume, flow capacity, and effective reservoir temperature over time. Data obtained from the project would be available for the calibration of reservoir models that could serve to predict EGS performance following a hydraulic stimulation.

  18. Optimization of the Infrastructure of Reinforced Concrete Reservoirs by a Particle Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Kia Saeed

    2015-03-01

    Full Text Available Optimization techniques may be effective in finding the best modeling and shapes for reinforced concrete reservoirs (RCR to improve their durability and mechanical behavior, particularly for avoiding or reducing the bending moments in these structures. RCRs are one of the major structures applied for reserving fluids to be used in drinking water networks. Usually, these structures have fixed shapes which are designed and calculated based on input discharges, the conditions of the structure's topology, and geotechnical locations with various combinations of static and dynamic loads. In this research, the elements of reservoir walls are first typed according to the performance analyzed; then the range of the membrane based on the thickness and the minimum and maximum cross sections of the bar used are determined in each element. This is done by considering the variable constraints, which are estimated by the maximum stress capacity. In the next phase, based on the reservoir analysis and using the algorithm of the PARIS connector, the related information is combined with the code for the PSO algorithm, i.e., an algorithm for a swarming search, to determine the optimum thickness of the cross sections for the reservoir membrane’s elements and the optimum cross section of the bar used. Based on very complex mathematical linear models for the correct embedding and angles related to achain of peripheral strengthening membranes, which optimize the vibration of the structure, a mutual relation is selected between the modeling software and the code for a particle swarm optimization algorithm. Finally, the comparative weight of the concrete reservoir optimized by the peripheral strengthening membrane is analyzed using common methods. This analysis shows a 19% decrease in the bar’s weight, a 20% decrease in the concrete’s weight, and a minimum 13% saving in construction costs according to the items of a checklist for a concrete reservoir at 10,000 m3.

  19. Remotely Sensed Based Lake/Reservoir Routing in Congo River Basin

    Science.gov (United States)

    Raoufi, R.; Beighley, E.; Lee, H.

    2017-12-01

    Lake and reservoir dynamics can influence local to regional water cycles but are often not well represented in hydrologic models. One challenge that limits their inclusion in models is the need for detailed storage-discharge behavior that can be further complicated in reservoirs where specific operation rules are employed. Here, the Hillslope River Routing (HRR) model is combined with a remotely sensed based Reservoir Routing (RR) method and applied to the Congo River Basin. Given that topographic data are often continuous over the entire terrestrial surface (i.e., does not differentiate between land and open water), the HRR-RR model integrates topographic derived river networks and catchment boundaries (e.g., HydroSHEDs) with water boundary extents (e.g., Global Lakes and Wetlands Database) to develop the computational framework. The catchments bordering lakes and reservoirs are partitioned into water and land portions, where representative flowpath characteristics are determined and vertical water balance and lateral routings is performed separately on each partition based on applicable process models (e.g., open water evaporation vs. evapotranspiration). To enable reservoir routing, remotely sensed water surface elevations and extents are combined to determine the storage change time series. Based on the available time series, representative storage change patterns are determined. Lake/reservoir routing is performed by combining inflows from the HRR-RR model and the representative storage change patterns to determine outflows. In this study, a suite of storage change patterns derived from remotely sensed measurements are determined representative patterns for wet, dry and average conditions. The HRR-RR model dynamically selects and uses the optimal storage change pattern for the routing process based on these hydrologic conditions. The HRR-RR model results are presented to highlight the importance of lake attenuation/routing in the Congo Basin.

  20. A coupled FE and scaled boundary FE-approach for the earthquake response analysis of arch dam-reservoir-foundation system

    International Nuclear Information System (INIS)

    Wang Yi; Lin Gao; Hu Zhiqiang

    2010-01-01

    For efficient and accurate modelling of arch dam-reservoir-foundation system a coupled Finite Element method (FEM) and Scaled Boundary Finite Element method (SBFEM) is developed. Both the dam-foundation interaction and the dam-reservoir interaction including the effect of reservoir boundary absorption are taken into account. The arch dam is modelled by FEM, while the reservoir domain and the unbounded foundation are modelled by SBFEM. In order to make comparison with the results available in the literature, the Morrow Point arch dam is selected for numerical analysis. The analyses are carried out in the frequency domain, and then the time-domain response of the dam-reservoir-foundation system is obtained by Inverse Fourier Transform.

  1. Mathematical simulation of oil reservoir properties

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A. [Instituto Politecnico Nacional (SEPI-ESQIE-UPALM-IPN), Unidad Profesional Zacatenco, Laboratorio de Analisis Met., Edif. ' Z' y Edif. 6 planta baja., Mexico City c.p. 07300 (Mexico)], E-mail: adalop123@mailbanamex.com; Romero, A.; Chavez, F. [Instituto Politecnico Nacional (SEPI-ESQIE-UPALM-IPN), Unidad Profesional Zacatenco, Laboratorio de Analisis Met., Edif. ' Z' y Edif. 6 planta baja., Mexico City c.p. 07300 (Mexico); Carrillo, F. [Instituto Politecnico Nacional (CICATA-IPN, Altamira Tamaulipas) (Mexico); Lopez, S. [Instituto Mexicano del Petroleo - Molecular Engineering Researcher (Mexico)

    2008-11-15

    The study and computational representation of porous media properties are very important for many industries where problems of fluid flow, percolation phenomena and liquid movement and stagnation are involved, for example, in building constructions, ore processing, chemical industries, mining, corrosion sciences, etc. Nevertheless, these kinds of processes present a noneasy behavior to be predicted and mathematical models must include statistical analysis, fractal and/or stochastic procedures to do it. This work shows the characterization of sandstone berea core samples which can be found as a porous media (PM) in natural oil reservoirs, rock formations, etc. and the development of a mathematical algorithm for simulating the anisotropic characteristics of a PM based on a stochastic distribution of some of their most important properties like porosity, permeability, pressure and saturation. Finally a stochastic process is used again to simulated the topography of an oil reservoir.

  2. Nuclear stimulation of oil-reservoirs

    International Nuclear Information System (INIS)

    Delort, F.; Supiot, F.

    1970-01-01

    Underground nuclear explosions in the Hoggar nuclear test site have shown that the geological effects may increase the production of oil or gas reservoirs. By studying the permanent liquid flow-rate with approximate DUPUIT's equation, or with a computer code, it is shown that the conventional well flow-rate may be increased by a factor between 3 and 50, depending on the medium and explosion conditions. (author)

  3. Modelling phosphorus retention in lakes and reservoirs

    Czech Academy of Sciences Publication Activity Database

    Hejzlar, Josef; Šámalová, K.; Boers, P.; Kronvang, B.

    2006-01-01

    Roč. 6, 5-6 (2006), s. 487-494 ISSN 1567-7230 R&D Projects: GA AV ČR IAA3017301; GA AV ČR 1QS600170504 Grant - others:EU(XE) EVK1-CT-2001-00096; MSM(CZ) 6007665801 Institutional research plan: CEZ:AV0Z60170517 Keywords : phosphorus * retention * reservoir Subject RIV: DA - Hydrology ; Limnology

  4. The Calculation Of Ngancar Batuwarna Reservoir, Wonogiri, Central Java

    Directory of Open Access Journals (Sweden)

    Azura Ulfa

    2018-01-01

    Full Text Available Evaluation of reservoir capacity is needed to find out how big the effective volume change of Ngancar Reservoir from the beginning of measurement until 2016. The purpose of this research is measuring volume of Ngancar Reservoir using bathymetry method with echosounder and calculating the remaining relative age of Ngancar Reservoir. Measurement topography of Ngancar Reservoir is done by bathymetry method of aquatic systematic random sampling method through certain path using echosounder. Analysis of reservoir capacity is done by calculating the volumes of Ngancar Reservoir and calculating the residual life of the reservoir relative. Fluctuation analysis of volume change was done by calculating the effective volume of reservoirs 1946-2016 and graphs. The calculation of the volume of the Ngancar Reservoir from the topographic map produces an effective volume value of 2016 is 1269905 m3 and the effective puddle area is 1393416 m2. An increase in sedimentation volume from 2011-2016 amounted to 296119.75 m3 with sedimentation rate was 59223.95 / year. With the assumption that the same landuse and sedimentation rate tend to be stable then the remaining age of Ngancar Reservoir is 21 years and 95 years old.

  5. Risk Analysis of Extreme Rainfall Effects on the Shihmen Reservoir

    Science.gov (United States)

    Ho, Y.; Lien, W.; Tung, C.

    2009-12-01

    Typhoon Morakot intruded Taiwan during 7th and 8th of August 2009, brought about 2,700 mm of total rainfall which caused serious flood and debris to the southern region of Taiwan. One of the serious flooded areas is in the downstream of Zengwen reservoir. People believed that the large amount of floodwater released from Zengwen reservoir led to the severe inundation. Therefore, the Shihmen reservoir is one of the important reservoirs in northern Taiwan. The Taipei metropolis, which is in downstream of Shihmen reservoir, is the political and economical center of Taiwan. If heavy rainfall as those brought by Typhoon Marakot falls in the Shihmen reservoir watershed, it may create a bigger disaster. This study focused on the impacts of a typhoon, like Morakot, in Shihmen reservoir. The hydrological model is used to simulate the reservoir inflows under different rainfall conditions. The reservoir water balance model is developed to calculate reservoir’s storage and outflows under the inflows and operational rules. The ability of flood mitigation is also evaluated. Besides, the released floodwater from reservoir and the inflows from different tributaries are used to determine whether or not the river stage will overtop levee. Also, the maximum released floodwater and other inflows which could lead to damages will be stated. Lastly, the criteria of rainfall conditions and initial stages of reservoir will be analyzed in this study.

  6. A Study of the Optimal Planning Model for Reservoir Sustainable Management- A Case Study of Shihmen Reservoir

    Science.gov (United States)

    Chen, Y. Y.; Ho, C. C.; Chang, L. C.

    2017-12-01

    The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.

  7. Geomechanical Properties of Unconventional Shale Reservoirs

    Directory of Open Access Journals (Sweden)

    Mohammad O. Eshkalak

    2014-01-01

    Full Text Available Production from unconventional reservoirs has gained an increased attention among operators in North America during past years and is believed to secure the energy demand for next decades. Economic production from unconventional reservoirs is mainly attributed to realizing the complexities and key fundamentals of reservoir formation properties. Geomechanical well logs (including well logs such as total minimum horizontal stress, Poisson’s ratio, and Young, shear, and bulk modulus are secured source to obtain these substantial shale rock properties. However, running these geomechanical well logs for the entire asset is not a common practice that is associated with the cost of obtaining these well logs. In this study, synthetic geomechanical well logs for a Marcellus shale asset located in southern Pennsylvania are generated using data-driven modeling. Full-field geomechanical distributions (map and volumes of this asset for five geomechanical properties are also created using general geostatistical methods coupled with data-driven modeling. The results showed that synthetic geomechanical well logs and real field logs fall into each other when the input dataset has not seen the real field well logs. Geomechanical distributions of the Marcellus shale improved significantly when full-field data is incorporated in the geostatistical calculations.

  8. Permeability restoration in underground disposal reservoirs

    International Nuclear Information System (INIS)

    Grubbs, D.M.; Haynes, C.D.; Whittle, G.P.

    1973-09-01

    The aim of the research performed was to explore methods of permeability restoration in underground disposal reservoirs that may improve the receptive capacity of a well to a level that will allow continued use of the disposal zone without resorting to elevated injection pressures. The laboratory investigation employed a simulated open-hole completion in a disposal well wherein the entire formation face is exposed to the well bore. Cylindrical core samples from representative reservoir rocks through which a central vertical opening or borehole had been drilled were injected with a liquid waste obtained from a chemical manufacturing plant. This particular waste material was found to have a moderate plugging effect when injected into samples of reservoir rocks in a prior study. A review was made of the chemical considerations that might account for the reduction of permeability in waste injection. Purpose of this study was to ascertain the conditions under which the precipitation of certain compounds might occur in the injection of the particular waste liquid employed. A summary of chemical calculations is contained in Appendix B. The data may be useful in the treatment of wastes prior to injection and in the design of restoration procedures where analyses of waste liquids and interstitial materials are available. The results of permeability restoration tests were analyzed mathematically by curve-fitting techniques performed by a digital computer. A summary of the analyses is set forth in the discussion of test results and examples of computer printouts are included in Appendix A

  9. Revitalizing a mature oil play: Strategies for finding and producing oil in Frio Fluvial-Deltaic Sandstone reservoirs of South Texas

    Energy Technology Data Exchange (ETDEWEB)

    Knox, P.R.; Holtz, M.H.; McRae, L.E. [and others

    1996-09-01

    Domestic fluvial-dominated deltaic (FDD) reservoirs contain more than 30 Billion barrels (Bbbl) of remaining oil, more than any other type of reservoir, approximately one-third of which is in danger of permanent loss through premature field abandonments. The U.S. Department of Energy has placed its highest priority on increasing near-term recovery from FDD reservoirs in order to prevent abandonment of this important strategic resource. To aid in this effort, the Bureau of Economic Geology, The University of Texas at Austin, began a 46-month project in October, 1992, to develop and demonstrate advanced methods of reservoir characterization that would more accurately locate remaining volumes of mobile oil that could then be recovered by recompleting existing wells or drilling geologically targeted infill. wells. Reservoirs in two fields within the Frio Fluvial-Deltaic Sandstone (Vicksburg Fault Zone) oil play of South Texas, a mature play which still contains 1.6 Bbbl of mobile oil after producing 1 Bbbl over four decades, were selected as laboratories for developing and testing reservoir characterization techniques. Advanced methods in geology, geophysics, petrophysics, and engineering were integrated to (1) identify probable reservoir architecture and heterogeneity, (2) determine past fluid-flow history, (3) integrate fluid-flow history with reservoir architecture to identify untapped, incompletely drained, and new pool compartments, and (4) identify specific opportunities for near-term reserve growth. To facilitate the success of operators in applying these methods in the Frio play, geologic and reservoir engineering characteristics of all major reservoirs in the play were documented and statistically analyzed. A quantitative quick-look methodology was developed to prioritize reservoirs in terms of reserve-growth potential.

  10. Integrated Approach to Drilling Project in Unconventional Reservoir Using Reservoir Simulation

    Science.gov (United States)

    Stopa, Jerzy; Wiśniowski, Rafał; Wojnarowski, Paweł; Janiga, Damian; Skrzypaszek, Krzysztof

    2018-03-01

    Accumulation and flow mechanisms in unconventional reservoir are different compared to conventional. This requires a special approach of field management with drilling and stimulation treatments as major factor for further production. Integrated approach of unconventional reservoir production optimization assumes coupling drilling project with full scale reservoir simulation for determine best well placement, well length, fracturing treatment design and mid-length distance between wells. Full scale reservoir simulation model emulate a part of polish shale - gas field. The aim of this paper is to establish influence of technical factor for gas production from shale gas field. Due to low reservoir permeability, stimulation treatment should be direct towards maximizing the hydraulic contact. On the basis of production scenarios, 15 stages hydraulic fracturing allows boost gas production over 1.5 times compared to 8 stages. Due to the possible interference of the wells, it is necessary to determine the distance between the horizontal parts of the wells trajectories. In order to determine the distance between the wells allowing to maximize recovery factor of resources in the stimulated zone, a numerical algorithm based on a dynamic model was developed and implemented. Numerical testing and comparative study show that the most favourable arrangement assumes a minimum allowable distance between the wells. This is related to the volume ratio of the drainage zone to the total volume of the stimulated zone.

  11. An Effective Reservoir Parameter for Seismic Characterization of Organic Shale Reservoir

    Science.gov (United States)

    Zhao, Luanxiao; Qin, Xuan; Zhang, Jinqiang; Liu, Xiwu; Han, De-hua; Geng, Jianhua; Xiong, Yineng

    2017-12-01

    Sweet spots identification for unconventional shale reservoirs involves detection of organic-rich zones with abundant porosity. However, commonly used elastic attributes, such as P- and S-impedances, often show poor correlations with porosity and organic matter content separately and thus make the seismic characterization of sweet spots challenging. Based on an extensive analysis of worldwide laboratory database of core measurements, we find that P- and S-impedances exhibit much improved linear correlations with the sum of volume fraction of organic matter and porosity than the single parameter of organic matter volume fraction or porosity. Importantly, from the geological perspective, porosity in conjunction with organic matter content is also directly indicative of the total hydrocarbon content of shale resources plays. Consequently, we propose an effective reservoir parameter (ERP), the sum of volume fraction of organic matter and porosity, to bridge the gap between hydrocarbon accumulation and seismic measurements in organic shale reservoirs. ERP acts as the first-order factor in controlling the elastic properties as well as characterizing the hydrocarbon storage capacity of organic shale reservoirs. We also use rock physics modeling to demonstrate why there exists an improved linear correlation between elastic impedances and ERP. A case study in a shale gas reservoir illustrates that seismic-derived ERP can be effectively used to characterize the total gas content in place, which is also confirmed by the production well.

  12. Optimizing withdrawal from drinking water reservoirs to reduce downstream temperature pollution and reservoir hypoxia.

    Science.gov (United States)

    Weber, M; Rinke, K; Hipsey, M R; Boehrer, B

    2017-07-15

    Sustainable management of drinking water reservoirs requires balancing the demands of water supply whilst minimizing environmental impact. This study numerically simulates the effect of an improved withdrawal scheme designed to alleviate the temperature pollution downstream of a reservoir. The aim was to identify an optimal withdrawal strategy such that water of a desirable discharge temperature can be supplied downstream without leading to unacceptably low oxygen concentrations within the reservoir. First, we calibrated a one-dimensional numerical model for hydrodynamics and oxygen dynamics (GLM-AED2), verifying that the model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, the model was extended to include an adaptive withdrawal functionality, allowing for a prescribed withdrawal temperature to be found, with the potential constraint of hypolimnetic oxygen concentration. Scenario simulations on epi-/metalimnetic withdrawal demonstrate that the model is able to autonomously determine the best withdrawal height depending on the thermal structure and the hypolimnetic oxygen concentration thereby optimizing the ability to supply a desirable discharge temperature to the downstream river during summer. This new withdrawal strategy also increased the hypolimnetic raw water volume to be used for drinking water supply, but reduced the dissolved oxygen concentrations in the deep and cold water layers (hypolimnion). Implications of the results for reservoir management are discussed and the numerical model is provided for operators as a simple and efficient tool for optimizing the withdrawal strategy within different reservoir contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Tailoring dam structures to water quality predictions in new reservoir projects: assisting decision-making using numerical modeling.

    Science.gov (United States)

    Marcé, Rafael; Moreno-Ostos, Enrique; García-Barcina, José Ma; Armengol, Joan

    2010-06-01

    Selection of reservoir location, the floodable basin forest handling, and the design of dam structures devoted to water supply (e.g. water outlets) constitute relevant features which strongly determine water quality and frequently demand management strategies to be adopted. Although these crucial aspects should be carefully examined during dam design before construction, currently the development of ad hoc limnological studies tailoring dam location and dam structures to the water quality characteristics expected in the future reservoir is not typical practice. In this study, we use numerical simulation to assist on the design of a new dam project in Spain with the aim of maximizing the quality of the water supplied by the future reservoir. First, we ran a well-known coupled hydrodynamic and biogeochemical dynamic numerical model (DYRESM-CAEDYM) to simulate the potential development of anoxic layers in the future reservoir. Then, we generated several scenarios corresponding to different potential hydraulic conditions and outlet configurations. Second, we built a simplified numerical model to simulate the development of the hypolimnetic oxygen content during the maturation stage after the first reservoir filling, taking into consideration the degradation of the terrestrial organic matter flooded and the adoption of different forest handling scenarios. Results are discussed in terms of reservoir design and water quality management. The combination of hypolimnetic withdrawal from two deep outlets and the removal of all the valuable terrestrial vegetal biomass before flooding resulted in the best water quality scenario. (c) 2010 Elsevier Ltd. All rights reserved.

  14. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1983-1987 Methods and Data Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Ian

    1989-12-01

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin. The authorized purpose of the dam is to provide power, flood control, and navigation and other benefits. Research began in May 1983 to determine how operations of Libby dam impact the reservoir fishery and to suggest ways to lessen these impacts. This study is unique in that it was designed to accomplish its goal through detailed information gathering on every trophic level in the reservoir system and integration of this information into a quantitative computer model. The specific study objectives are to: quantify available reservoir habitat, determine abundance, growth and distribution of fish within the reservoir and potential recruitment of salmonids from Libby Reservoir tributaries within the United States, determine abundance and availability of food organisms for fish in the reservoir, quantify fish use of available food items, develop relationships between reservoir drawdown and reservoir habitat for fish and fish food organisms, and estimate impacts of reservoir operation on the reservoir fishery. 115 refs., 22 figs., 51 tabs.

  15. Revised Comparisons of Simulated Hydrodynamics and Water Quality for Projected Demands in 2046, Pueblo Reservoir, Southeastern Colorado

    Science.gov (United States)

    Ortiz, Roderick F.; Miller, Lisa D.

    2009-01-01

    Pueblo Reservoir is one of southeastern Colorado's most valuable water resources. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. The reservoir also provides flood control, recreational activities, sport fishing, and wildlife enhancement to the region. The Southern Delivery System (SDS) project is a regional water-delivery project that has been proposed to provide a safe, reliable, and sustainable water supply through the foreseeable future (2046) for Colorado Springs, Fountain, Security, and Pueblo West. Discussions with the Bureau of Reclamation and the U.S. Geological Survey led to a cooperative agreement to simulate the hydrodynamics and water quality of Pueblo Reservoir. This work has been completed and described in a previously published report, U.S. Geological Survey Scientific Investigations Report 2008-5056. Additionally, there was a need to make comparisons of simulated hydrodynamics and water quality for projected demands associated with the various Environmental Impact Statements (EIS) alternatives and plans by Pueblo West to discharge treated wastewater into the reservoir. Wastewater plans by Pueblo West are fully independent of the SDS project. This report compares simulated hydrodynamics and water quality for projected demands in Pueblo Reservoir resulting from changes in inflow and water quality entering the reservoir, and from changes to withdrawals from the reservoir as projected for the year 2046. Four of the seven EIS alternatives were selected for scenario simulations. The four U.S. Geological Survey simulation scenarios were the No Action scenario (EIS Alternative 1), the Downstream Diversion scenario (EIS Alternative 2), the Upstream Return-Flow scenario (EIS Alternative 4), and the Upstream Diversion scenario (EIS Alternative 7). Additionally, the results of an Existing Conditions scenario (year 2006 demand conditions) were compared to the No Action scenario (projected demands in

  16. Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone Systems

    Science.gov (United States)

    2017-10-26

    13693, Planning for Federal Sustainability in the Next Decade, 19 March 2015 • 2006/2007 Defense Science Board Key Facility Energy Strategy ...25 5.3.1 Data Collection Equipment...28 3 6.1.2 Collection Of UMCS Trend Data In Baseline And Retrofit Modes

  17. SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY: APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Matthias G. Imhof; James W. Castle

    2005-02-01

    The objective of the project was to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study focused on West Coalinga Field in California. The project initially attempted to build reservoir models based on different geologic and geophysical data independently using different tools, then to compare the results, and ultimately to integrate them all. We learned, however, that this strategy was impractical. The different data and tools need to be integrated from the beginning because they are all interrelated. This report describes a new approach to geostatistical modeling and presents an integration of geology and geophysics to explain the formation of the complex Coalinga reservoir.

  18. Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-01-13

    are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonard Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

  19. Improved efficiency of miscible CO2 floods and enhanced prospects for CO2 flooding heterogeneous reservoirs. Final report, April 17, 1991--May 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, R.B.; Schechter, D.S.

    1998-02-01

    From 1986 to 1996, oil recovery in the US by gas injection increased almost threefold, to 300,000 bbl/day. Carbon dioxide (CO{sub 2}) injection projects make up three-quarters of the 191,139 bbl/day production increase. This document reports experimental and modeling research in three areas that is increasing the number of reservoirs in which CO{sub 2} can profitably enhance oil recovery: (1) foams for selective mobility reduction (SMR) in heterogeneous reservoirs, (2) reduction of the amount of CO{sub 2} required in CO{sub 2} floods, and (3) low interfacial tension (97) processes and the possibility of CO{sub 2} flooding in naturally fractured reservoirs. CO{sub 2} injection under miscible conditions can effectively displace oil, but due to differences in density and viscosity the mobility of CO{sub 2} is higher than either oil or water. High CO{sub 2} mobility causes injection gas to finger through a reservoir, causing such problems as early gas breakthrough, high gas production rates, excessive injection gas recycling, and bypassing of much of the reservoir oil. These adverse effects are exacerbated by increased reservoir heterogeneity, reaching an extreme in naturally fractured reservoirs. Thus, many highly heterogeneous reservoirs have not been considered for CO{sub 2} injection or have had disappointing recoveries. One example is the heterogeneous Spraberry trend in west Texas, where only 10% of its ten billion barrels of original oil in place (OOIP) are recoverable by conventional methods. CO{sub 2} mobility can be reduced by injecting water (brine) alternated with CO{sub 2} (WAG) and then further reduced by adding foaming agents-surfactants. In Task 1, we studied a unique foam property, selective mobility reduction (SMR), that effectively reduces the effects of reservoir heterogeneity. Selective mobility reduction creates a more uniform displacement by decreasing CO{sub 2} mobility in higher permeability zones more than in lower permeability zones.

  20. Analysis of Proppant Hydraulic Fracturing in a Sand Oil Reservoir in Southwest of Iran

    OpenAIRE

    Reza Masoomi; Iniko Bassey; Dolgow Sergie Viktorovich; Hosein Dehghani

    2015-01-01

    Hydraulic fracturing is one way to increase the productivity of oil and gas wells. One of the most fundamental successes of hydraulic fracturing operation is selecting the proper size and type of proppants which are used during the process. The aim of this study is optimizing the type and size of used propant in hydraulic fracturing operation in a sand oil reservoir in southwest of Iran. In this study sand and ceramic (sintered bauxite) have been considered as proppant type. Also the various ...

  1. Characteristics of volcanic reservoirs and distribution rules of effective reservoirs in the Changling fault depression, Songliao Basin

    Directory of Open Access Journals (Sweden)

    Pujun Wang

    2015-11-01

    Full Text Available In the Songliao Basin, volcanic oil and gas reservoirs are important exploration domains. Based on drilling, logging, and 3D seismic (1495 km2 data, 546 sets of measured physical properties and gas testing productivity of 66 wells in the Changling fault depression, Songliao Basin, eruptive cycles and sub-lithofacies were distinguished after lithologic correction of the 19,384 m volcanic well intervals, so that a quantitative analysis was conducted on the relation between the eruptive cycles, lithologies and lithofacies and the distribution of effective reservoirs. After the relationship was established between lithologies, lithofacies & cycles and reservoir physical properties & oil and gas bearing situations, an analysis was conducted on the characteristics of volcanic reservoirs and the distribution rules of effective reservoirs. It is indicated that 10 eruptive cycles of 3 sections are totally developed in this area, and the effective reservoirs are mainly distributed at the top cycles of eruptive sequences, with those of the 1st and 3rd Members of Yingcheng Formation presenting the best reservoir properties. In this area, there are mainly 11 types of volcanic rocks, among which rhyolite, rhyolitic tuff, rhyolitic tuffo lava and rhyolitic volcanic breccia are the dominant lithologies of effective reservoirs. In the target area are mainly developed 4 volcanic lithofacies (11 sub-lithofacies, among which upper sub-lithofacies of effusive facies and thermal clastic sub-lithofacies of explosion lithofacies are predominant in effective reservoirs. There is an obvious corresponding relationship between the physical properties of volcanic reservoirs and the development degree of effective reservoirs. The distribution of effective reservoirs is controlled by reservoir physical properties, and the formation of effective reservoirs is influenced more by porosity than by permeability. It is concluded that deep volcanic gas exploration presents a good

  2. Climate variability and sedimentation of a hydropower reservoir

    International Nuclear Information System (INIS)

    Riedel, M.

    2008-01-01

    As part of the relicensing of a large Hydroelectric Project in the central Appalachians, large scale watershed and reservoir sedimentation models were developed to forecast potential sedimentation scenarios. The GIS based watershed model was spatially explicit and calibrated to long term observed data. Potential socio/economic development scenarios were used to construct future watershed land cover scenarios. Climatic variability and potential change analysis were used to identify future climate regimes and shifts in precipitation and temperature patterns. Permutations of these development and climate changes were forecasted over 50 years and used to develop sediment yield regimes to the project reservoir. Extensive field work and reservoir survey, including current and wave instrumentation, were used to characterize the project watershed, rivers and reservoir hydrodynamics. A fully 3 dimensional hydrodynamic reservoir sedimentation model was developed for the project and calibrated to observed data. Hydrologic and sedimentation results from watershed forecasting provided boundary conditions for reservoir inputs. The calibrated reservoir model was then used to forecast changes in reservoir sedimentation and storage capacity under different future climate scenarios. Results indicated unique zones of advancing sediment deltas and temporary storage areas. Forecasted changes in reservoir bathymetry and sedimentation patterns were also developed for the various climate change scenarios. The warmer and wetter scenario produced sedimentation impacts similar to extensive development under no climate change. The results of these analyses are being used to develop collaborative watershed and soil conservation partnerships to reduce future soil losses and reservoir sedimentation from projected development. (author)

  3. Mrica Reservoir Sedimentation: Current Situation and Future Necessary Management

    Directory of Open Access Journals (Sweden)

    Puji Utomo

    2017-09-01

    Full Text Available Mrica Reservoir is one of many reservoirs located in Central Java that experienced a considerably high sedimentation during the last ten years. This condition has caused a rapid decrease in reservoir capacity. Various countermeasures have been introduced to reduce the rate of the reservoir sedimentation through catchment management and reservoir operation by means of flushing and/or dredging. However, the sedimentation remains intensive so that the fulfillment of water demand for electrical power generation was seriously affected. This paper presents the results of evaluation on the dynamics of the purpose of this research is to evaluate the sediment balance of the Mrica Reservoir based on two different scenarios, i.e. the existing condition and another certain type of reservoir management. The study on sediment balance was carried out by estimating the sediment inflow applying sheet erosion method in combination with the analysis of sediment rating curve. The measurement of the deposited sediment rate in the reservoir was conducted through the periodic echo sounding, whereas identification of the number of sediment that has been released from the reservoir was carried out through the observation on both flushing and dredging activities. The results show that during the last decade, the rate of the sediment inflow was approximately 5.869 MCM/year, whereas the released sediment from the reservoir was 4.097 MCM/year. In order to maintain the reservoir capacity, therefore, at least 1.772 MCM/year should be released from the reservoir by means of either flushing or dredging. Sedimentation management may prolong the reservoir’s service life to exceed the design life. Without sediment management, the lifetime of the reservoir would have finished by 2016, whereas with the proper management the lifetime may be extended to 2025.

  4. [Research progress on phosphorus budgets and regulations in reservoirs].

    Science.gov (United States)

    Shen, Xiao; Li, Xu; Zhang, Wang-shou

    2014-12-01

    Phosphorus is an important limiting factor of water eutrophication. A clear understanding of its budget and regulated method is fundamental for reservoir ecological health. In order to pro- mote systematic research further and improve phosphorus regulation system, the budget balance of reservoir phosphorus and its influencing factors were concluded, as well as conventional regulation and control measures. In general, the main phosphorus sources of reservoirs include upstream input, overland runoff, industrial and domestic wastewater, aquaculture, atmospheric deposition and sediment release. Upstream input is the largest phosphorus source among them. The principal output path of phosphorus is the flood discharge, the emission load of which is mainly influenced by drainage patterns. In addition, biological harvest also can export a fraction of phosphorus. There are some factors affecting the reservoir phosphorus balance, including reservoirs' function, hydrological conditions, physical and chemical properties of water, etc. Therefore, the phosphorus budgets of different reservoirs vary greatly, according to different seasons and regions. In order to reduce the phosphorus loading in reservoirs, some methods are carried out, including constructed wetlands, prefix reservoir, sediment dredging, biomanipulation, etc. Different methods need to be chosen and combined according to different reservoirs' characteristics and water quality management goals. Thus, in the future research, it is reasonable to highlight reservoir ecological characteristics and proceed to a complete and systematic analysis of the inherent complexity of phosphorus budget and its impact factors for the reservoirs' management. Besides, the interaction between phosphorus budget and other nutrients in reservoirs also needs to be conducted. It is fundamental to reduce the reservoirs' phosphorus loading to establish a scientific and improved management system based on those researches.

  5. A simple multistage closed-(box+reservoir model of chemical evolution

    Directory of Open Access Journals (Sweden)

    Caimmi R.

    2011-01-01

    Full Text Available Simple closed-box (CB models of chemical evolution are extended on two respects, namely (i simple closed-(box+reservoir (CBR models allowing gas outflow from the box into the reservoir (Hartwick 1976 or gas inflow into the box from the reservoir (Caimmi 2007 with rate proportional to the star formation rate, and (ii simple multistage closed-(box+reservoir (MCBR models allowing different stages of evolution characterized by different inflow or outflow rates. The theoretical differential oxygen abundance distribution (TDOD predicted by the model maintains close to a continuous broken straight line. An application is made where a fictitious sample is built up from two distinct samples of halo stars and taken as representative of the inner Galactic halo. The related empirical differential oxygen abundance distribution (EDOD is represented, to an acceptable extent, as a continuous broken line for two viable [O/H]-[Fe/H] empirical relations. The slopes and the intercepts of the regression lines are determined, and then used as input parameters to MCBR models. Within the errors (-+σ, regression line slopes correspond to a large inflow during the earlier stage of evolution and to low or moderate outflow during the subsequent stages. A possible inner halo - outer (metal-poor bulge connection is also briefly discussed. Quantitative results cannot be considered for applications to the inner Galactic halo, unless selection effects and disk contamination are removed from halo samples, and discrepancies between different oxygen abundance determination methods are explained.

  6. Soil erosion and deposition in the new shorelines of the Three Gorges Reservoir.

    Science.gov (United States)

    Su, Xiaolei; Nilsson, Christer; Pilotto, Francesca; Liu, Songping; Shi, Shaohua; Zeng, Bo

    2017-12-01

    During the last few decades, the construction of storage reservoirs worldwide has led to the formation of many new shorelines in former upland areas. After the formation of such shorelines, a dynamic phase of soil erosion and deposition follows. We explored the factors regulating soil dynamics in the shorelines of the Three Gorges Reservoir (TGR) on the Yangtze River in China. We selected four study sites on the main stem and three on the tributaries in the upstream parts of the reservoir, and evaluated whether the sites close to the backwater tail (the point at which the river meets the reservoir) had more soil deposition than the sites far from the backwater tail. We also tested whether soil erosion differed between the main stem and the tributaries and across shorelines. We found that soil deposition in the new shorelines was higher close to the backwater tail and decreased downstream. Soil erosion was higher in the main stem than in the tributaries and higher at lower compared to higher shoreline altitudes. In the tributaries, erosion did not differ between higher and lower shoreline levels. Erosion increased with increasing fetch length, inundation duration and distance from the backwater tail, and decreased with increasing soil particle fineness. Our results provide a basis for identifying shorelines in need of restorative or protective measures. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A numerical index for evaluating phytoplankton response to changes in nutrient levels in deep mediterranean reservoirs

    Directory of Open Access Journals (Sweden)

    Nicola SECHI

    2009-02-01

    Full Text Available This paper proposes a new ecological index based on phytoplankton (MedPTI as suggested by the European Directive 2000/60/CE, Water Framework Directive (WFD. The index is a useful tool to verify the impacts of eutrophication in Mediterranean reservoirs belonging to different categories of the WFD. Multiple data sets were employed to develop the MedPTI index. The calibration data set included data collected from 30 Sardinian reservoirs in 1994. A list of 44 selected taxa was obtained and used for index calculation. A second dataset including 48 averaged annual values from 10 reservoirs was used. Results showed good correlation between MedPTI and concentration of total phosphorus, which was the limiting nutrient in these reservoirs. The trophic classifications determined using the index agreed with the results from the OECD probabilistic model on the same series of data. Finally, the index was included in an international exercise to compare the definition of reference conditions and quality class boundaries against indices used in other Mediterranean countries.

  8. Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dilley, Lorie M. [Hattenburg Dilley & Linnell, LLC, Anchorage, AL (United States)

    2015-04-13

    The purpose of this project was to: 1) evaluate the relationship between geothermal fluid processes and the compositions of the fluid inclusion gases trapped in the reservoir rocks; and 2) develop methodologies for interpreting fluid inclusion gas data in terms of the chemical, thermal and hydrological properties of geothermal reservoirs. Phase 1 of this project was designed to conduct the following: 1) model the effects of boiling, condensation, conductive cooling and mixing on selected gaseous species; using fluid compositions obtained from geothermal wells, 2) evaluate, using quantitative analyses provided by New Mexico Tech (NMT), how these processes are recorded by fluid inclusions trapped in individual crystals; and 3) determine if the results obtained on individual crystals can be applied to the bulk fluid inclusion analyses determined by Fluid Inclusion Technology (FIT). Our initial studies however, suggested that numerical modeling of the data would be premature. We observed that the gas compositions, determined on bulk and individual samples were not the same as those discharged by the geothermal wells. Gases discharged from geothermal wells are CO2-rich and contain low concentrations of light gases (i.e. H2, He, N, Ar, CH4). In contrast many of our samples displayed enrichments in these light gases. Efforts were initiated to evaluate the reasons for the observed gas distributions. As a first step, we examined the potential importance of different reservoir processes using a variety of commonly employed gas ratios (e.g. Giggenbach plots). The second technical target was the development of interpretational methodologies. We have develop methodologies for the interpretation of fluid inclusion gas data, based on the results of Phase 1, geologic interpretation of fluid inclusion data, and integration of the data. These methodologies can be used in conjunction with the relevant geological and hydrological information on the system to

  9. Multi-objective nested algorithms for optimal reservoir operation

    Science.gov (United States)

    Delipetrev, Blagoj; Solomatine, Dimitri

    2016-04-01

    . These algorithms have been denoted as multi-objective nDP (MOnDP), multi-objective nSDP (MOnSDP) and multi-objective nRL (MOnRL). The MOnDP, MOnSDP and MOnRL algorithms were tested at the multipurpose reservoir Knezevo of the Zletovica hydro-system located in the Republic of Macedonia, with eight objectives, including urban water supply, agriculture, ensuring ecological flow, and generation of hydropower. The MOnSDP and MOnRL derived/learned the optimal reservoir policy using 45 (1951-1995) years and were tested on 10 (1995-2005) years historical data, and compared with MOnDP optimal reservoir operation in the same period. The found solutions form the Pareto optimal set in eight dimensional objective function space (since the eight different objectives were considered). The MOnDP was used as a scanning algorithm with 10 sets of varying weights that can identify the most desirable multi-objective solutions and was selected because it is much quicker than MOnSDP and MOnRL. From the 10 sets of weights and their MOnDP results, three sets were selected to be used by MOnSDP and MOnRL. The solutions of both MOnSDP and MOnSDP were compared and the conclusion is that the MOnRL were found to be much better than those of the MOnSDP.

  10. Dredged Material Management Plan and Environmental Impact Statement. McNary Reservoir and Lower Snake River Reservoirs. Appendix C: Economic Analysis

    National Research Council Canada - National Science Library

    2002-01-01

    ...; for managment of dredged material from these reservoirs; and for maintenance of flow conveyance capacity at the most upstream extent of the Lower Granite reservoir for the remaining economic life of the dam and reservoir project (to year 2074...

  11. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches: UPH. Appendix A: Upper reservoir

    Science.gov (United States)

    1981-04-01

    Overriding considerations including operating range, volume and lining of reservoir, embankment design, intake/outlet arrangements and filling and make up water provisions were studied within the context of minimizing facility costs and optimizing the plant layout. The study led to the selection of a reservoir formed by embankment of compacted rockfill together with an intake/outlet structure located in the embankment. The reservoir floor and upstream slopes of the embankment will have an asphalt lining to prevent leakage. The material and cost estimates presented are based on the requirements for a 2000 MW plant providing 20,000 MWh of storage with a nominal head of 4600 ft.

  12. Improved efficiency of miscible CO{sub 2} floods and enhanced prospects for CO{sub 2} flooding heterogeneous reservoirs. Annual report, April 14, 1994--April 13, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, R.; Heller, J.; Schechter, D.

    1995-09-01

    The overall goal of this project is to improve the efficiency of miscible CO{sub 2} floods and enhance the prospects for flooding heterogeneous reservoirs. This objective is being accomplished by extending experimental research in three task areas: (1) foams for selective mobility control in heterogeneous reservoirs, (2) reduction of the amount of CO{sub 2} required in CO{sub 2} floods, and (3) miscible CO{sub 2} flooding in fractured reservoirs. This report provides results of the first year of the three-year project for each of the three task areas.

  13. Exploration and reservoir characterization; Technology Target Areas; TTA2 - Exploration and reservoir characterisation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    In future, research within exploration and reservoir characterization will play an even more important role for Norway since resources are decreasing and new challenges like deep sea, harsh environment and last but not least environmental issues have to be considered. There are two major fields which have to be addressed within exploration and reservoir characterization: First, replacement of reserves by new discoveries and ultimate field recoveries in mature basins at the Norwegian Continental shelf, e.g. at the Halten Terrace has to be addressed. A wealth of data exists in the more mature areas. Interdisciplinary integration is a key feature of reservoir characterization, where available data and specialist knowledge need to be combined into a consistent reservoir description. A systematic approach for handling both uncertainties in data sources and uncertainties in basic models is needed. Fast simulation techniques are necessary to generate models spanning the event space, covering both underground based and model-based uncertainties. Second, exploration in frontier areas like the Barents Sea region and the deeper Voering Basin has to be addressed. The scarcity of wells in these frontier areas leads to uncertainties in the geological understanding. Basin- and depositional modelling are essential for predicting where source rocks and reservoir rocks are deposited, and if, when and which hydrocarbons are generated and trapped. Predictive models and improved process understanding is therefore crucial to meet these issues. Especially the challenges related to the salt deposits e.g. sub-salt/sub-basalt reservoir definitions in the Nordkapp Basin demands up-front research and technology developments. TTA2 stresses the need to focus on the development of new talents. We also see a strong need to push cooperation as far as possible in the present competitive environment. Projects that may require a substantial financial commitment have been identified. The following

  14. Seventeenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1992-01-31

    PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

  15. Zooplankton assemblage of Oyun Reservoir, Offa, Nigeria

    Directory of Open Access Journals (Sweden)

    Moshood K Mustapha

    2009-12-01

    Full Text Available The influence of physico-chemical properties of Oyun Reservoir, Offa, Nigeria (a shallow tropical African reservoir on its zooplankton composition and abundance were investigated at three stations for two years between January 2002 and December 2003. Diversity is not high: only three groups of zooplankton were found: Rotifera with eight genera; and Cladocera and Copepoda with three genera each. Rotifera dominated numerically (71.02%, followed by Cladocera (16.45% and Copepoda (12.53%. The zooplankton was more prevalent during the rainy season, and there were variations in the composition and abundance along the reservoir continuum. Factors such as temperature, nutrients, food availability, shape and hydrodynamics of the reservoir, as well as reproductive strategies of the organisms, strongly influence the generic composition and population density of zooplankton. Prevention of ecological deterioration of the water body would greatly should result in a more productive water body, rich in zooplankton and with better fisheries. Rev. Biol. Trop. 57 (4: 1027-1047. Epub 2009 December 01.La influencia de las propiedades fisicoquímicas del Reservorio Oyun, Offa, Nigeria (un embalse tropical somero sobre la composición y abundancia del zooplancton fue investigada en tres estaciones entre enero de 2002 y diciembre de 2003. La diversidad no resultó muy alta con tres grupos de zooplancton: Rotifera con ocho géneros, y Cladocera y Copepoda con tres géneros cada uno. Rotifera dominó (71.02%, seguido de Cladocera (16.45% y Copepoda (12.53%. El zooplancton fue más común durante la temporada de lluvias, y hubo variaciones en su composición y abundancia a lo largo del embalse. Factores tales como la temperatura, los nutrientes, la disponibilidad de alimentos, la forma y la hidrodinámica del embalse, así como las estrategias reproductivas de los organismos, influyen fuertemente en la composición genérica y la densidad poblacional del zooplancton. La

  16. Studies of Reservoir Hosts for Marburg virus

    DEFF Research Database (Denmark)

    Swanepoel, Robert; Smit, Sheilagh B; Rollin, Pierre E

    2007-01-01

    To determine reservoir hosts for Marburg virus (MARV), we examined the fauna of a mine in northeastern Democratic Republic of the Congo. The mine was associated with a protracted outbreak of Marburg hemorrhagic fever during 1998-2000. We found MARV nucleic acid in 12 bats, comprising 3.0%-3.6% of 2...... species of insectivorous bat and 1 species of fruit bat. We found antibody to the virus in the serum of 9.7% of 1 of the insectivorous species and in 20.5% of the fruit bat species, but attempts to isolate virus were unsuccessful. ...

  17. NMPC for Oil Reservoir Production Optimization

    DEFF Research Database (Denmark)

    Völcker, Carsten; Jørgensen, John Bagterp; Thomsen, Per Grove

    2011-01-01

    In this paper, we use nonlinear model predictive control (NMPC) to maximize secondary oil recovery from an oil reservoir by controlling two-phase subsurface porous flow using adjustable down-hole control valves. The resulting optimal control problem is nonlinear and large-scale. We solve...... this problem numerically using a single shooting sequential quadratic programming (SQP) based optimization method. Explicit singly diagonally implicit Runge-Kutta (ESDIRK) methods are used for integration of the stiff system of differential equations describing the two-phase flow, and the adjoint method...

  18. Reservoirs of Non-baumannii Acinetobacter Species

    Science.gov (United States)

    Al Atrouni, Ahmad; Joly-Guillou, Marie-Laure; Hamze, Monzer; Kempf, Marie

    2016-01-01

    Acinetobacter spp. are ubiquitous gram negative and non-fermenting coccobacilli that have the ability to occupy several ecological niches including environment, animals and human. Among the different species, Acinetobacter baumannii has evolved as global pathogen causing wide range of infection. Since the implementation of molecular techniques, the habitat and the role of non-baumannii Acinetobacter in human infection have been elucidated. In addition, several new species have been described. In the present review, we summarize the recent data about the natural reservoir of non-baumannii Acinetobacter including the novel species that have been described for the first time from environmental sources and reported during the last years. PMID:26870013

  19. Flood risk management for large reservoirs

    International Nuclear Information System (INIS)

    Poupart, M.

    2006-01-01

    Floods are a major risk for dams: uncontrolled reservoir water level may cause dam overtopping, and then its failure, particularly for fill dams. Poor control of spillway discharges must be taken into consideration too, as it can increase the flood consequences downstream. In both cases, consequences on the public or on properties may be significant. Spillway design to withstand extreme floods is one response to these risks, but must be complemented by strict operating rules: hydrological forecasting, surveillance and periodic equipment controls, operating guides and the training of operators are mandatory too, in order to guarantee safe operations. (author)

  20. Monitoring gas reservoirs by seismic interferometry

    Science.gov (United States)

    Grigoli, Francesco; Cesca, Simone; Sens-Schoenfelder, Christoph; Priolo, Enrico

    2014-05-01

    Ambient seismic noise can be used to image spatial anomalies in the subsurface, without the need of recordings from seismic sources, such as earthquakes or explosions. Furthermore, the temporal variation of ambient seismic noise's can be used to infer temporal changes of the seismic velocities in the investigated medium. Such temporal variations can reflect changes of several physical properties/conditions in the medium. For example, they may be consequence of stress changes, variation of hydrogeological parameters, pore pressure and saturation changes due to fluid injection or extraction. Passive image interferometry allows to continuously monitor small temporal changes of seismic velocities in the subsurface, making it a suitable tool to monitor time-variant systems such as oil and gas reservoirs or volcanic environments. The technique does not require recordings from seismic sources in the classical sense, but is based on the processing of noise records. Moreover, it requires only data from one or two seismic stations, their locations constraining the sampled target area. Here we apply passive image interferometry to monitor a gas storage reservoir in northern Italy. The Collalto field (Northern Italy) is a depleted gas reservoir located at 1500 m depth, now used as a gas storage facility. The reservoir experience a significant temporal variation in the amount of stored gas: the injection phases mainly occur in the summer, while the extraction take place mostly in winter. In order to monitor induced seismicity related to gas storage operations, a seismic network (the Collalto Seismic Network) has been deployed in 2011. The Collalto Seismic Network is composed by 10 broadband stations, deployed within an area of about 20 km x 20 km, and provides high-quality continuous data since January 1st, 2012. In this work we present preliminary results from ambient noise interferometry using a two-months sample of continuous seismic data, i.e. from October 1st, 2012, to the

  1. Geothermal Reservoir Well Stimulation Program: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

  2. Recent earthquakes in the Orlik reservoir region

    Czech Academy of Sciences Publication Activity Database

    Hanžlová, R.; Hudová, Zuzana; Málek, Jiří; Novotný, O.; Pazdírková, J.; Zedník, Jan

    2007-01-01

    Roč. 7, č. 2 (2007), s. 189-195 ISSN 1213-1962. [Nové poznatky a měření v seizmologii, inženýrské geofyzice a geotechnice/16./. Ostrava, 17.04.2007-19.04.2007] R&D Projects: GA AV ČR IAA300460602 Institutional research plan: CEZ:AV0Z30120515; CEZ:AV0Z30860518; CEZ:AV0Z30460519 Keywords : shallow earthquake * Orlík reservoir * seismological stations Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  3. Phytoplankton and water quality in a Mediterranean drinking-water reservoir (Marathonas Reservoir, Greece).

    Science.gov (United States)

    Katsiapi, Matina; Moustaka-Gouni, Maria; Michaloudi, Evangelia; Kormas, Konstantinos Ar

    2011-10-01

    Phytoplankton and water quality of Marathonas drinking-water Reservoir were examined for the first time. During the study period (July-September 2007), phytoplankton composition was indicative of eutrophic conditions although phytoplankton biovolume was low (max. 2.7 mm³ l⁻¹). Phytoplankton was dominated by cyanobacteria and diatoms, whereas desmids and dinoflagellates contributed with lower biovolume values. Changing flushing rate in the reservoir (up to 0.7% of reservoir's water volume per day) driven by water withdrawal and occurring in pulses for a period of 15-25 days was associated with phytoplankton dynamics. Under flushing pulses: (1) biovolume was low and (2) both 'good' quality species and the tolerant to flushing 'nuisance' cyanobacterium Microcystis aeruginosa dominated. According to the Water Framework Directive, the metrics of phytoplankton biovolume and cyanobacterial percentage (%) contribution indicated a moderate ecological water quality. In addition, the total biovolume of cyanobacteria as well as the dominance of the known toxin-producing M. aeruginosa in the reservoir's phytoplankton indicated a potential hazard for human health according to the World Health Organization.

  4. Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs

    NARCIS (Netherlands)

    Wisser, D.; Frolking, S.; Hagen, Stephen; Bierkens, M.F.P.|info:eu-repo/dai/nl/125022794

    2013-01-01

    Water storage is an important way to cope with temporal variation in water supply anddemand. The storage capacity and the lifetime of water storage reservoirs can besignificantly reduced by the inflow of sediments. A global, spatially explicit assessment ofreservoir storage loss in conjunction with

  5. Phosphorus cycling in a dimictic reservoir - the Seč Reservoir (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Borovec, Jakub; Hejzlar, Josef; Vyhnálek, Vojtěch

    1998-01-01

    Roč. 83, Special Issue (1998), s. 295-302 ISSN 1434-2944. [International Conference on Reservoir Limnology and Water Quality /3./. České Budějovice, 11.08.1997-15.08.1997] Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.632, year: 1997

  6. Statistical analysis and experiment planning in reservoir engineering; Analyse statistique et planification d'experience en ingenierie de reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza-Mezghani, I.

    2000-05-24

    The aim of this thesis first part is the prediction of simulated production responses, when controlled or uncontrolled parameters act on them. The specificity of our work was to study an uncontrolled parameter: the geostatistical seed, which leads to an hetero-scedastic response behavior. In this context, a joint modelling of both mean and variance of the response was essential to get an efficient prediction. We have proposed two prediction intervals of the response, which either resorted to bootstrap re-sampling or not, and which were very efficient to predict the response accounting for the hetero-scedastic framework. Another aim of this part was to use the available information on gradient response to improve prediction. We have suggested a Bayesian prediction, that involves both response and gradients, in order to highlight the significance of gradient information to reach safe predictions. In the second part, which deals. with history matching problem, the originality of our work was the resort to experimental designs. This problem, which consists in calibrating a reservoir model with respect to dynamic data, fits the description of an objective function minimization. As the objective function behavior is non-linear and therefore cannot fit a polynomial function, we suggest to combine the simplex method, which permits to select a domain where the objective function reveals simple behavior, and experimental design theory, which allows to build an analytical model of the objective function. A minimization of this analytical model makes it possible to reach the parameter values that ensure dynamic data respect. In this way, this methodology highlights the efficiency of experimental designs for history matching, particularly when optimization methods are inadequate because of non-differentiability, as for the calibration of geostatistical facies models. Several reservoir application cases illustrate the efficiency of the approaches we have proposed in this thesis

  7. Ecological-geochemical characteristics of bottom sediments of Sophiivske reservoir

    Directory of Open Access Journals (Sweden)

    Тетяна Миколаївна Альохіна

    2014-09-01

    Full Text Available Results of the investigation of the chemical composition of the bottom sediments Sophiivske reservoir located on the Ingul River was presented in this article. The most significant factor of differential sedimentation chemical compounds can be facies factor that reflects the impact of geomorphic parameters and hydrological characteristics of the reservoir. There are a change of environment sedimentogenesis from oxidative to reductive on sites near reservoir dam.

  8. HIV Reservoir Characterization Symposium: 19 September 2016, Ghent, Belgium.

    Science.gov (United States)

    Malatinkova, Eva; De Spiegelaere, Ward; Vandekerckhove, Linos; Sips, Magdalena

    2017-01-01

    The HIV Cure Research Center (HCRC) in Ghent organised the first HIV Reservoir Characterization Symposium, and brought together virologists, molecular biologists, immunologists and clinicians to discuss the most recent developments in HIV reservoir characterisation with a view to achieving an HIV cure. The one-day symposium covered new developments in the field of HIV reservoir and HIV cure research, with the latest news on the European HIV cure trials. This report summarises the major themes discussed during the symposium.

  9. Dynamic modeling of surfactant flooding in low permeable argillaceous reservoirs

    Science.gov (United States)

    Kuznetsova, A. N.; Gunkin, A. S.; Rogachev, M. К

    2017-10-01

    This article reveals the current state and problems of the Russian oil production sector. Physicochemical enhanced oil recovery methods are proposed as a solution. The investigation of surfactant treatment efficiency and their integrated effect on oil and reservoir rock is conducted as well as its applicability analysis for low permeable poly-mineral reservoir. The results of dynamic modeling of oil displacement by the developed surfactant composition in a low permeable reservoir are presented.

  10. A review on hydraulic fracturing of unconventional reservoir

    OpenAIRE

    Quanshu Li; Huilin Xing; Jianjun Liu; Xiangchon Liu

    2015-01-01

    Hydraulic fracturing is widely accepted and applied to improve the gas recovery in unconventional reservoirs. Unconventional reservoirs to be addressed here are with very low permeability, complicated geological settings and in-situ stress field etc. All of these make the hydraulic fracturing process a challenging task. In order to effectively and economically recover gas from such reservoirs, the initiation and propagation of hydraulic fracturing in the heterogeneous fractured/porous media u...

  11. Numerical simulation of hydraulic fracture propagation in heterogeneous unconventional reservoir

    Science.gov (United States)

    Liu, Chunting; Li, Mingzhong; Hao, Lihua; Hu, Hang

    2017-10-01

    The distribution of the unconventional reservoir fracture network is influenced by many factors. For the natural fracture undeveloped reservoir, the reservoir heterogeneity, construction factors (fracturing fluid flow rate, fluid viscosity, perforation clusters spacing), horizontal stress difference and stress different coefficient are the main factors that affect the fracture propagation. In the study, first, calculate the reservoir physics mechanics parameters that affect the fracture propagation on the base of the logging date from one actual horizontal well. Set the formation parameters according to the calculation that used to simulate the reservoir heterogeneity. Then, using damage mechanics method, the 2D fracture propagation model with seepage-stress-damage coupling of multi-fracture tight sand reservoir was established. Study the influences of different fracturing ways (open whole fracturing and oriented perforation fracturing) and the position of the perforation clusters to the fracture propagation for heterogeneity reservoir. Analyze the effects of flow rate, fracturing fluid viscosity, perforation clusters spacing, horizontal stress difference and stress different coefficient to fracture morphology for the heterogeneity reservoir and contrast with the homogeneous reservoir. The simulation results show that: the fracture morphology is more complexity formed by oriented perforation crack than open whole crack; For natural fracture undeveloped reservoir, as the flow rate or the fracturing fluid viscosity increases within a certain range, the fracture network tends to be more complexity and the effect is more obvious to heterogeneous reservoir than homogeneous reservoir; As the perforation clusters spacing decreases, the interaction of each fracture will increase, it tends to form more complexity fracture network but with short major fracture; If the horizontal stress difference and stress different coefficient is large (The stress different coefficient >0

  12. Deriving Area-storage Curves of Global Reservoirs

    Science.gov (United States)

    Mu, M.; Tang, Q.

    2017-12-01

    Basic information including capacity, dam height, and largest water area on global reservoirs and dams is well documented in databases such as GRanD (Global Reservoirs and Dams), ICOLD (International Commission on Large Dams). However, though playing a critical role in estimating reservoir storage variations from remote sensing or hydrological models, area-storage (or elevation-storage) curves of reservoirs are not publicly shared. In this paper, we combine Landsat surface water extent, 1 arc-minute global relief model (ETOPO1) and GRanD database to derive area-storage curves of global reservoirs whose area is larger than 1 km2 (6,000 more reservoirs are included). First, the coverage polygon of each reservoir in GRanD is extended to where water was detected by Landsat during 1985-2015. Second, elevation of each pixel in the reservoir is extracted from resampled 30-meter ETOPO1, and then relative depth and frequency of each depth value is calculated. Third, cumulative storage is calculated with increasing water area by every one percent of reservoir coverage area and then the uncalibrated area-storage curve is obtained. Finally, the area-storage curve is linearly calibrated by the ratio of calculated capacity over reported capacity in GRanD. The derived curves are compared with in-situ reservoir data collected in Great Plains Region in US, and the results show that in-situ records are well captured by the derived curves even in relative small reservoirs (several square kilometers). The new derived area-storage curves have the potential to be employed in global monitoring or modelling of reservoirs storage and area variations.

  13. A Comparative Study of Reservoir Computing for Temporal Signal Processing

    OpenAIRE

    Goudarzi, Alireza; Banda, Peter; Lakin, Matthew R.; Teuscher, Christof; Stefanovic, Darko

    2014-01-01

    Reservoir computing (RC) is a novel approach to time series prediction using recurrent neural networks. In RC, an input signal perturbs the intrinsic dynamics of a medium called a reservoir. A readout layer is then trained to reconstruct a target output from the reservoir's state. The multitude of RC architectures and evaluation metrics poses a challenge to both practitioners and theorists who study the task-solving performance and computational power of RC. In addition, in contrast to tradit...

  14. Mathematical models of a liquid filtration from reservoirs

    Directory of Open Access Journals (Sweden)

    Anvarbek Meirmanov

    2014-02-01

    Full Text Available This article studies the filtration from reservoirs into porous media under gravity. We start with the exact mathematical model at the microscopic level, describing the joint motion of a liquid in reservoir and the same liquid and the elastic solid skeleton in the porous medium. Then using a homogenization procedure we derive the chain of macroscopic models from the poroelasticity equations up to the simplest Darcy's law in the porous medium and hydraulics in the reservoir.

  15. Physical Model-Based Investigation of Reservoir Sedimentation Processes

    Directory of Open Access Journals (Sweden)

    Cheng-Chia Huang

    2018-03-01

    Full Text Available Sedimentation is a serious problem in the operations of reservoirs. In Taiwan, the situation became worse after the Chi-Chi Earthquake recorded on 21 September 1999. The sediment trap efficiency in several regional reservoirs has been sharply increased, adversely affecting the operations on water supplies. According to the field record, the average annual sediment deposition observed in several regional reservoirs in Taiwan has been increased. For instance, the typhoon event recorded in 2008 at the Wushe Reservoir, Taiwan, produced a 3 m sediment deposit upstream of the dam. The remaining storage capacity in the Wushe Reservoir was reduced to 35.9% or a volume of 53.79 million m3 for flood water detention in 2010. It is urgent that research should be conducted to understand the sediment movement in the Wushe Reservoir. In this study, a scale physical model was built to reproduce the flood flow through the reservoir, investigate the long-term depositional pattern, and evaluate sediment trap efficiency. This allows us to estimate the residual life of the reservoir by proposing a modification of Brune’s method. It can be presented to predict the lifespan of Taiwan reservoirs due to higher applicability in both the physical model and the observed data.

  16. Towards an HIV-1 cure: measuring the latent reservoir

    Science.gov (United States)

    Bruner, Katherine M.; Hosmane, Nina N.; Siliciano, Robert F.

    2015-01-01

    The latent reservoir of HIV-1 in resting memory CD4+ T cells serves as a major barrier to curing HIV-1 infection. While many PCR- and culture-based assays have been used to measure the size of the latent reservoir, correlation between results of different assays is poor and recent studies indicate that no available assay provides an accurate measurement of reservoir size. The discrepancies between assays are a hurdle to clinical trials that aim to measure the efficacy of HIV-1 eradication strategies. Here we describe the advantages and disadvantages of various approaches to measure the latent reservoir. PMID:25747663

  17. Reservoir sizing using inert and chemically reacting tracers

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, B.A.; Tester, J.W.; Brown, L.F.

    1984-01-01

    Non-reactive tracer tests in prototype hot dry rock (HDR) geothermal reservoirs indicate multiple fracture flow paths that show increases in volume due to energy extraction. Tracer modal volumes correlate roughly with estimated reservoir heat-transfer capacity. Chemically reactive tracers are proposed which will map the rate of advance of the cooled region of an HDR reservoir, providing advanced warning of thermal drawdown. Critical parameters are examined using a simplified reservoir model for screening purposes. Hydrolysis reactions are a promising class of reactions for this purpose.

  18. Reservoir Routing on Double-Peak Design Flood

    Directory of Open Access Journals (Sweden)

    Andrea Gioia

    2016-11-01

    Full Text Available This work investigates the routing effect provided by an artificial reservoir to a double-peak flood of a given return period. The present paper introduces a dimensionless form of the reservoir balance equation that describes the hydrologic-hydraulic processes that may occur and allows for the evaluation of the reservoir routing coefficient (RC. Exploiting this equation, an extensive sensitivity analysis based on the use of two simple parametric indices that depend on the storage capacity (SC of the reservoir, the discharge capacity (DC of the spillway (with fixed-crest and the hydrologic behavior of the basin was performed.

  19. Overtopping of Rubble Mound Breakwaters with Front Reservoir

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke

    2007-01-01

    The design and performance of breakwaters with front reservoir are discussed on the basis of physical 2-D model tests with a number of cross sections, in which vertopping discharge and spatial distribution, wave forces on inner parapet walls, and stability of reservoir armour were studied....... The sensitivity of these quantities to the width of the reservoir is discussed. It is demonstrated that front reservoir solutions are more economical than conventional cross section solutions, such as bermed structures and mild slope structures, in cases where low crests and small overtopping discharges...

  20. Constrained genetic algorithms for optimizing multi-use reservoir operation

    Science.gov (United States)

    Chang, Li-Chiu; Chang, Fi-John; Wang, Kuo-Wei; Dai, Shin-Yi

    2010-08-01

    To derive an optimal strategy for reservoir operations to assist the decision-making process, we propose a methodology that incorporates the constrained genetic algorithm (CGA) where the ecological base flow requirements are considered as constraints to water release of reservoir operation when optimizing the 10-day reservoir storage. Furthermore, a number of penalty functions designed for different types of constraints are integrated into reservoir operational objectives to form the fitness function. To validate the applicability of this proposed methodology for reservoir operations, the Shih-Men Reservoir and its downstream water demands are used as a case study. By implementing the proposed CGA in optimizing the operational performance of the Shih-Men Reservoir for the last 20 years, we find this method provides much better performance in terms of a small generalized shortage index (GSI) for human water demands and greater ecological base flows for most of the years than historical operations do. We demonstrate the CGA approach can significantly improve the efficiency and effectiveness of water supply capability to both human and ecological base flow requirements and thus optimize reservoir operations for multiple water users. The CGA can be a powerful tool in searching for the optimal strategy for multi-use reservoir operations in water resources management.

  1. Impact of socioeconomic and meteorological factors on reservoirs' air quality: a case in the Three Gorges Reservoir of Chongqing (TGRC), China over a 10-year period.

    Science.gov (United States)

    Peng, Ying; Zhou, Fengwu; Cui, Jian; Du, Ke; Leng, Qiangmei; Yang, Fumo; Chan, Andy; Zhao, Hongting

    2017-07-01

    The Three Gorges Dam's construction and industrial transfer have resulted in a new air pollution pattern with the potential to threaten the reservoir eco-environment. To assess the impact of socioeconomic factors on the pattern of air quality vairation and economical risks, concentrations of SO 2 , NO 2 , and PM 10 , industry genres, and meteorological conditions were selected in the Three Gorges Reservoir of Chongqing (TGRC) during 2006-2015. Results showed that air quality had improved to some extent, but atmospheric NO 2 showed an increased trend during 2011-2015. Spatially, higher atmospheric NO 2 extended to the surrounding area. The primary industry, especially for agriculture, had shown to be responsible for the remarkable increase of atmospheric NO 2 (p air pollutant reductions, but construction industries had inhibited the improvement of regional air quality. In the tertiary industry, the cargo industry at ports had significantly decreased atmospheric NO 2 as a result of eliminating the obsoleted small ships. Contrarily, the highway transportation had brought more air pollutants. The relative humidity was shown to be the main meteorological factor, which had an extremely remarkable relation with atmospheric SO 2 (p air quality improvement difficult, and atmospheric SO 2 , NO 2 , and PM 10 deposition would aggravate regional soil and water acidification and reactivate heavy metal in soil and sediment, further to pose a high level of ecological risk in the TGRC and other countries with reservoirs in the world.

  2. Artisanal fisheries in a Brazilian hypereutrophic reservoir: Barra Bonita reservoir, middle Tietê river

    Directory of Open Access Journals (Sweden)

    JLC. Novaes

    Full Text Available This study examines the qualitative and quantitative aspects of fishery landings at the hypereutrophic Barra Bonita reservoir, Brazil. Data were collected each month (July/2004-June/2006 at three localities and the reported catch, fishing effort and fishing techniques were recorded from 745 landings, comprising a total fish catch of 86,691.9 kg. The most caught species were exotic tilapias, especially the Nile tilapia (Oreochromis niloticus L., which represented 82.5% of the total biomass. The reservoir's fishery productivity was 11.1 kg/ha-1/day-1 with a Catch Per Unit Effort of 62.4 kg/fisher-1/day-1. Five fishing techniques were identified: cast net, gill net, trawl net, beating gill net, and beating gill net + gill net. The analysis of DCA related the active strategies for the tilapia catch, to the passive strategies for the Pimelodus maculatus (Lacepède and Triportheus angulatus catches (Spix & Agassiz, and the mixed strategies for the tilapia, catfish and Prochilodus lineatus (Valenciennes catches. ANCOVA results were significant for all the variables analysed (season, fishing location and fishing technique. The results showed that fishing for "corvina" Plagioscion squamosissimus (Heckel, predominant in the 1990s, had been replaced by fishing focused on the Nile tilapia. This substitution appears to be due to the increasing levels of eutrophication in the reservoir, combined with changes in fishing techniques. The pattern of the fisheries in Barra Bonita Reservoir follow those in other eutrophic Brazilian reservoirs, with catches of the exotic Nile tilapia predominating.

  3. [Hematophagous bats as reservoirs of rabies].

    Science.gov (United States)

    Scheffer, Karin Corrêa; Iamamoto, Keila; Asano, Karen Miyuki; Mori, Enio; Estevez Garcia, Andrea Isabel; Achkar, Samira M; Fahl, Williande Oliveira

    2014-04-01

    Rabies continues to be a challenge for public health authorities and a constraint to the livestock industry in Latin America. Wild and domestic canines and vampire bats are the main transmitter species and reservoirs of the disease. Currently, variations observed in the epidemiological profile of rabies, where the species of hematophagous bat Desmodus rotundus constitutes the main transmitting species. Over the years, knowledge has accumulated about the ecology, biology and behavior of this species and the natural history of rabies, which should lead to continuous development of methods of population control of d. Rotundus as well as prevention and diagnostic tools for rabies. Ecological relationships of this species with other hematophagous and non-hematophagous bats is unknown, and there is much room for improvement in reporting systems and surveillance, as well as creating greater awareness among the farming community. Understanding the impact of human-induced environmental changes on the rabies virus in bats should be cause for further investigation. This will require a combination of field studies with mathematical models and new diagnostic tools. This review aims to present the most relevant issues on the role of hematophagous bats as reservoirs and transmitters of the rabies virus.

  4. Advances in carbonate exploration and reservoir analysis

    Science.gov (United States)

    Garland, J.; Neilson, J.; Laubach, S.E.; Whidden, Katherine J.

    2012-01-01

    The development of innovative techniques and concepts, and the emergence of new plays in carbonate rocks are creating a resurgence of oil and gas discoveries worldwide. The maturity of a basin and the application of exploration concepts have a fundamental influence on exploration strategies. Exploration success often occurs in underexplored basins by applying existing established geological concepts. This approach is commonly undertaken when new basins ‘open up’ owing to previous political upheavals. The strategy of using new techniques in a proven mature area is particularly appropriate when dealing with unconventional resources (heavy oil, bitumen, stranded gas), while the application of new play concepts (such as lacustrine carbonates) to new areas (i.e. ultra-deep South Atlantic basins) epitomizes frontier exploration. Many low-matrix-porosity hydrocarbon reservoirs are productive because permeability is controlled by fractures and faults. Understanding basic fracture properties is critical in reducing geological risk and therefore reducing well costs and increasing well recovery. The advent of resource plays in carbonate rocks, and the long-standing recognition of naturally fractured carbonate reservoirs means that new fracture and fault analysis and prediction techniques and concepts are essential.

  5. Twentieth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-01-26

    PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technical sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager

  6. Nutrition: a reservoir for integrative science.

    Science.gov (United States)

    Zeisel, S H; Allen, L H; Coburn, S P; Erdman, J W; Failla, M L; Freake, H C; King, J C; Storch, J

    2001-04-01

    In the last twenty years, powerful new molecular techniques were introduced that made it possible to advance knowledge in human biology using a reductionist approach. Now, the need for scientists to deal with complexity should drive a movement toward an integrationist approach to science. We propose that nutritional science is one of the best reservoirs for this approach. The American Society for Nutritional Sciences can play an important role by developing and delivering a cogent message that convinces the scientific establishment that nutrition fills this valuable niche. The society must develop a comprehensive strategy to develop our image as the reservoir for life sciences integration. Our efforts can start with our national meeting and publications, with the research initiatives for which we advocate, with our graduate training programs and with the public relations image we project for ourselves. Defining the image and future directions of nutrition as the discipline that can integrate scientific knowledge from the cell and molecule to the whole body and beyond to populations can be the most important task that our society undertakes. If we do not effectively meet this challenge, a golden opportunity will pass to others and nutritional scientists will be left to follow them.

  7. Environmental impact analysis of mine tailing reservoir

    Science.gov (United States)

    Gong, J. Z.

    2016-08-01

    Under certain conditions landscape topography which utilizes mine tailing reservoir construction using is likely to increase lateral recharge source regions, resulting in dramatic changes to the local hydrological dynamic field and recharge of downstream areas initiated by runoff, excretion state, elevated groundwater depth, shallow groundwater, rainfall direct communication, and thinning of the vadose zone. Corrosive leaching of topsoil over many years of exposure to chemical fertilizers and pesticides may result in their dissolution into the groundwater system, which may lead to excessive amounts of many harmful chemicals, therby affecting the physical and mental health of human residents and increase environmental vulnerability and risk associated with the water and soil. According to field survey data from Yujiakan, Qian'an City, and Hebei provinces, this paper analyzes the hydrogeological environmental mechanisms of areas adjacent to mine tailing reservoirs and establishes a conceptual model of the local groundwater system and the concentration-response function between NO3 - content in groundwater and the incidence of cancer in local residents.

  8. Spatial Stochastic Point Models for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Syversveen, Anne Randi

    1997-12-31

    The main part of this thesis discusses stochastic modelling of geology in petroleum reservoirs. A marked point model is defined for objects against a background in a two-dimensional vertical cross section of the reservoir. The model handles conditioning on observations from more than one well for each object and contains interaction between objects, and the objects have the correct length distribution when penetrated by wells. The model is developed in a Bayesian setting. The model and the simulation algorithm are demonstrated by means of an example with simulated data. The thesis also deals with object recognition in image analysis, in a Bayesian framework, and with a special type of spatial Cox processes called log-Gaussian Cox processes. In these processes, the logarithm of the intensity function is a Gaussian process. The class of log-Gaussian Cox processes provides flexible models for clustering. The distribution of such a process is completely characterized by the intensity and the pair correlation function of the Cox process. 170 refs., 37 figs., 5 tabs.

  9. Bacterial pathogens in a reactor cooling reservoir

    International Nuclear Information System (INIS)

    Kasweck, K.L.; Fliermans, C.B.

    1978-01-01

    The results of the sampling in both Par Pond and Clark Hill Reservoir are given. The frequency of isolation is a qualitative parameter which indicates how often the specified bacterium was isolated from each habitat. Initial scoping experiments demonstrated that a wider variety of pathogenic bacteria occur in Par Pond than in Clark Hill Reservoir. Such findings are interesting because Par Pond does not receive any human wastes directly, yet bacteria generally associated with human wastes are more frequently isolated from Par Pond. Previous studies have demonstrated that certain non-spore-forming enteric bacteria do not survive the intense heat associated with the cooling water when the reactor is operating. However, even when the reactor is not operating, cooling water, consisting of 10% makeup water from Savannah River, continues to flow into Par Pond. This flow provides a source of bacteria which inoculate Par Pond. Once the reactor is again operating, these same bacteria appear to be able to survive and grow within the Par Pond system. Thus, Par Pond and the associated lakes and canals of the Par Pond system provide a pool of pathogens that normally would not survive in natural waters

  10. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SANANDRES RESERVOIR

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-01-15

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; (7) Mobility control agents.

  11. Assessment of heavy metal pollution risks in Yonki Reservoir environmental matrices affected by gold mining activity.

    Science.gov (United States)

    Kapia, Samuel; Rao, B K Rajashekhar; Sakulas, Harry

    2016-10-01

    This study reports the heavy metal (Hg, Cd, Cr, Cu, and Pb) contamination risks to and safety of two species of fresh water fish (tilapia, Oreochromis mossambicus and carp, Cyprinus carpio) that are farmed in the Yonki Reservoir in the Eastern Highlands of Papua New Guinea (PNG). The upper reaches of the reservoir are affected by alluvial and large-scale gold mining activities. We also assessed heavy metal levels in the surface waters and sediments and in selected aquatic plant species from the reservoir and streams that intersect the gold mining areas. The water quality was acceptable, except for the Cr concentration, which exceeded the World Health Organization (WHO) standard for water contamination. The sediments were contaminated with Cd and Cu in most of the sampling stations along the upstream waters and the reservoir. The Cd concentration in the sediments exceeded the US Environmental Protection Agency's Sediment Quality Guideline (SQG) values, and the geoaccumulation index (Igeo) values indicated heavy to extreme pollution. In addition, the Cd, Cu, and Pb concentrations in aquatic plants exceeded the WHO guidelines for these contaminants. Between the fish species, tilapia accumulated significantly higher (P < 0.05) Cu in their organ tissues than carp, confirming the bioaccumulation of some metals in the aquatic fauna. The edible muscles of the fish specimens had metal concentrations below the maximum permissible levels established by statutory guidelines. In addition, a human health risk assessment, performed using the estimated weekly intake (EWI) values, indicated that farmed fish from the Yonki Reservoir are safe for human consumption.

  12. Influence of stormwater runoff on macroinvertebrates in a small urban river and a reservoir.

    Science.gov (United States)

    Gołdyn, Ryszard; Szpakowska, Barbara; Świerk, Dariusz; Domek, Piotr; Buxakowski, Jan; Dondajewska, Renata; Barałkiewicz, Danuta; Sajnóg, Adam

    2018-06-01

    The impact of stormwater on benthic macroinvertebrates was studied in two annual cycles. Five small catchments drained by stormwater sewers to a small urban river and a small and shallow reservoir situated in its course were selected. These catchments were located in residential areas with single-family houses or blocks of flats as well as industrial areas, i.e., a car factory, a glassworks and showroom as well as the parking lots of a car dealer and servicing company. In addition to the five stations situated in the vicinity of the stormwater outlets, three stations not directly influenced by stormwater were also established. Macroinvertebrates were sampled in every season, four times per year. Both abundance and biomass were assessed. Stormwater from industrial areas associated with cars, whose catchments showed a high percentage of impervious areas, had the greatest impact on benthic macroinvertebrates. This was due to a large amount of stormwater and its contamination, including heavy metals. Stormwater outflow from residential multi-family houses exerted the least influence. Macroinvertebrates in the water reservoir were found to undergo more extensive changes than those in the river. The cascade of four reservoirs resulted in a marked improvement of water quality in the river, which was confirmed by species composition, abundance and biomass of macroinvertebrates and indicators calculated on their basis for the stations below the cascade in comparison to the stations above and in the first reservoir. These reservoirs replaced constructed wetlands or other measures, which should be undertaken for stormwater management prior to its discharge into urban rivers and other water bodies. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Potosi Reservoir Modeling; History and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    As a part of a larger project co-funded by the United States Department of Energy (US DOE) to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon as potential targets for carbon sequestration in the Illinois and Michigan Basins, the Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and carbon dioxide (CO₂) plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data from two projects: the US DOE-funded Illinois Basin–Decatur Project being conducted by the Midwest Geological Sequestration Consortium in Macon County, Illinois, as well as data from the Illinois – Industrial Carbon Capture and Sequestration (IL-ICCS) project funded through the American Recovery and Reinvestment Act. In 2010, technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the Verification Well 1 (VW1) and the Injection Well (CCS1), structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for the Potosi Formation. The intention was for two million tonnes per annum (MTPA) of CO₂ to be injected for 20 years into the Potosi Formation. In 2013, updated reservoir models for the Cambrian Potosi Formation were evaluated. The data included formation tops from mud logs, well logs from the CCS1, VW1, and Verification Well 2 (VW2) wells, structural and stratigraphic formation from a larger 3D seismic survey, and field data from several waste water injection wells for Potosi Formation. The objective is to simulate the injection of CO₂ at a rate 3.5 million tons per annum (3.2 million tonnes per annum [MTPA]) for 30 years 106 million tons (96 MT total) into the Potosi Formation. The Potosi geomodeling efforts have evolved

  14. Optimal Complexity in Reservoir Modeling of an Eolian Sandstone for Carbon Sequestration Simulation

    Science.gov (United States)

    Li, S.; Zhang, Y.; Zhang, X.

    2011-12-01

    permeability, relative permeability, capillary pressure, rock compressibility, salinity, and reservoir temperature), while assuming identical production scenario (i.e., well configuration, rate, bottomhole pressure constraint) and boundary condition (i.e., model is part of a larger semi-infinite system where the injected gas can flow out). Results are compared among models to identify parameters that have 1st order influence on selected outcomes (i.e., CO2 storage ratio). The comparison indicates that, to capture the key sensitivity factors of the most complex model, an optimal reservoir model is the facies model ignoring soft-data conditioning. Based on these results, a response-surface prediction uncertainty analysis is underway to identify prediction envelope for each outcome, which will be further compared. Future work with also assess other depositional environments in an attempt to derive a set of geological modeling guidelines, one for each environment.

  15. Comparative analysis of hydroacoustic lakebed classification in three different Brazilian reservoirs

    Science.gov (United States)

    Hilgert, Stephan; Sotiri, Klajdi; Fuchs, Stephan

    2017-04-01

    Until today, the surface of artificial water bodies around the world reached an area of around 500,000 km2 equaling one third of the surface of natural water bodies. Most of the constructed waster bodies are reservoirs with a variety of usage purposes, reaching from drinking water supply, electricity production, flood protection to recreation. All reservoirs have in common, that they disrupt riverine systems and their biochemical cycles and promote the accumulation of sediments upstream of the dam. The accumulated sediments contain organic matter, nutrients and/or pollutants which have a direct influence on the water quality within the impoundment. Consequently, detailed knowledge about the amount and the quality of accumulated sediments is an essential information for reservoir management. In many cases the extensive areas covered by the impoundments make it difficult and expensive to assess sediment characteristics with a high spatial resolution. Spatial extrapolations and mass balances based on point information may suffer from strong deviations. We combined sediment point measurements (core and grab sampling) with hydroacoustic sediment classification in order to precisely map sediment parameters. Three different reservoirs (Vossoroca, Capivari, Passauna) in the south-east of Brazil were investigated between 2011 and 2015. A single beam echosounder (EA 400, Kongsberg) with two frequencies (200 & 38 kHz) was used for the hydroacoustic classification. Over 50 core samples and 30 grab samples were taken for physical and chemical analysis to serve as ground truthing of the hydroacoustic measurements. All three reservoirs were covered with dense measurement transects allowing for a lakebed classification of the entire sediment surface. Significant correlations of physical parameters like grain size distribution and density as well chemical parameters like organic carbon content and total phosphorous with a selection of hydroacoustic parameters were obtained. They

  16. Soil-air greenhouse gas fluxes influenced by farming practices in reservoir drawdown area: A case at the Three Gorges Reservoir in China.

    Science.gov (United States)

    Li, Zhe; Zhang, Zengyu; Lin, Chuxue; Chen, Yongbo; Wen, Anbang; Fang, Fang

    2016-10-01

    The Three Gorges Reservoir (TGR) in China has large water level variations, creating about 393 km(2) of drawdown area seasonally. Farming practices in drawdown area during the low water level period is common in the TGR. Field experiments on soil-air greenhouse gas (GHG) emissions in fallow grassland, peanut field and corn field in reservoir drawdown area at Lijiaba Bay of the Pengxi River, a tributary of the Yangtze River in the TGR were carried out from March through September 2011. Experimental fields in drawdown area had the same land use history. They were adjacent to each other horizontally at a narrow range of elevation i.e. 167-169 m, which assured that they had the same duration of reservoir inundation. Unflooded grassland with the same land-use history was selected as control for study. Results showed that mean value of soil CO2 emissions in drawdown area was 10.38 ± 0.97 mmol m(-2) h(-1). The corresponding CH4 fluxes and N2O fluxes were -8.61 ± 2.15 μmol m(-2) h(-1) and 3.42 ± 0.80 μmol m(-2) h(-1). Significant differences and monthly variations among land uses in treatments of drawdown area and unflooded grassland were evident. These were impacted by the change in soil physiochemical properties which were alerted by reservoir operation and farming. Particularly, N-fertilization in corn field stimulated N2O emissions from March to May. In terms of global warming potentials (GWP), corn field in drawdown area had the maximum GWP mainly due to N-fertilization. Gross GWP in peanut field in drawdown area was about 7% lower than that in fallow grassland. Compared to unflooded grassland, reservoir operation created positive net effect on GHG emissions and GWPs in drawdown area. However, selection of crop species, e.g. peanut, and best practices in farming, e.g. prohibiting N-fertilization, could potentially mitigate GWPs in drawdown area. In the net GHG emissions evaluation in the TGR, farming practices in the drawdown area shall be taken

  17. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Annual report, June 13, 1994--June 12, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Pande, P.K.

    1996-11-01

    This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period have consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities are being identified and tested. The geologically targeted infill drilling program will be implemented using the results of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

  18. Environmental flows in the context of small reservoirs in Ghana

    Science.gov (United States)

    Gao, Y.; Kirshen, P.; Vogel, R.; Walker, P.

    2009-04-01

    Modification of rivers by dams reduces the magnitude and frequency of floods, and impacts the entire flow regime. In many cases, these modifications have adversely affected the ecological and hydrological integrity of the watershed as well as impacting food security and livelihood choices of the local community. There is now an increasing consensus that modification to river flows needs to be balanced with maintenance of essential water-dependent ecological services. Many small multi-purpose reservoirs have been built in West Africa, where rainfall is highly variable, and droughts and flash floods are frequent. These small reservoirs are an important source of water for domestic use, livestock watering, small-scale irrigation and other beneficial uses in rural communities. The small reservoirs are hydrologically linked by their associated stream network. The reservoirs alter the hydrology of the streams and the groundwater resources within the region. When an individual reservoir is considered, alteration to the entire watershed is usually not significant. However, when considered as a system, together the small reservoirs store a significant quantity of water and influence downstream flows. The small reservoirs have rarely been considered as a system, thus little consideration has been given to their collective impact on the natural environment and livelihoods of the local population in the long term. Furthermore, the impact is difficult to quantify given the diffuse nature of the small reservoirs. Therefore, a comprehensive environmental flow assessment is needed to investigate the effect of the small reservoirs as a system on the watershed, and appropriate water policy should be formulated to implement the finding from the assessment. Our project is specifically aimed at addressing this topic. We will present a case study conducted in the Upper East Region of Ghana and will discuss the findings on the hydrological, ecological and socio-economic implications of

  19. Modelling of Reservoir Operations using Fuzzy Logic and ANNs

    Science.gov (United States)

    Van De Giesen, N.; Coerver, B.; Rutten, M.

    2015-12-01

    Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, , was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.

  20. Ninth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Gudmundsson, J.S. (Stanford Geothermal Program)

    1983-12-15

    (Reservoir Chemistry), Malcolm Mossman (Reservoir Chemistry), Greg Raasch (Production), Manny Nathenson (Injection), Susan Petty (Injection), Subir Sanyal (Simulation), Marty Molloy (Petrothermal), and Allen Moench (Reservoir Physics). The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Jean Cook, Joanne Hartford, Terri Ramey, Amy Osugi, and Marilyn King for their valued help with the Workshop arrangements and the Proceedings. We also owe thanks to the program students who arranged and operated the audio-visual equipment. The Ninth Workshop was supported by the Geothermal and Hydropower Technologies Division of the U . S . Department of Energy through contract DE-AT03-80SF11459. We deeply appreciate this continued support. H. J. Ramey, Jr., R. N. Horne, P. Kruger, W. E. Brigham, F. G. Miller, J. S . Gudmundsson -vii

  1. Reactive Tracers for Characterizing Fractured Geothermal Reservoirs

    Science.gov (United States)

    Hawkins, Adam J.

    Multi-component tracer tests were conducted at a 10 x 10 m well field located in the Altona Flat Rocks of northern New York. Temperature advancement between two wells separated by 14 m was monitored throughout the well field during progressive heating of the reservoir over 6 d. Multiple approaches to predicting heat transport were applied to field data and compared to temperature rise recorded during reservoir heat-up. Tracer analysis incorporated both an analytical one-dimensional model and a two-dimensional numerical model for non-uniform fractures experiencing "flow-channeling." Modeling efforts demonstrated that estimating heat transfer surface area using a combined inert/adsorbing tracer (cesium-iodide) could provide accurate forecasting of premature thermal breakthrough. In addition, thermally degrading tracer tests were used to monitor inter-well temperature during progressive reservoir heating. Inert tracers alone were, in general, inadequate in forecasting thermal performance. In fact, moment analysis shows that, mathematically, thermal breakthrough is independent of parameters that primarily influence inert tracers. The most accurate prediction of thermal breakthrough using inert tracer alone was produced by treating hydrodynamic dispersion as a truly Fickian process with known and accurate mathematical models. Under this assumption, inert tracer data was matched by solving an inverse problem for non-uniform fracture aperture. Early arrival of the thermal front was predicted at the production, but was less accurate than using a combined inert/adsorbing tracer test. The spatial distribution of fluid flow paths in the plane of the fracture were identified using computational models, Fiber-Optic Distributed Temperature Sensing (FO-DTS), and Ground Penetrating Radar (GPR) imaging of saline tracer flow paths in the target fracture. Without exception, fluid flow was found to be concentrated in a roughly 1 m wide flow channel directly between the two wells. The

  2. Integrated reservoir characterization of a heterogeneous channel sandstone : the Duchess Lower Manville X pool

    Energy Technology Data Exchange (ETDEWEB)

    Potocki, D.; Raychaudhuri, I.; Thorburn, L. [PanCanadian Petroleum Ltd. (Canada); Galas, C.; King, H.

    1999-01-01

    The Basal Quartz formation of the Duchess Lower Mannville X pool located in southern Alberta was characterized to determine if the reservoir was a good candidate for waterflooding. Twenty performance predictions were run. The Basal Quartz reservoir sandstones have large unanticipated intrawell and interwell variations in log derived porosity and resistivity. An extensive gas cap was also found in most of the wells. Most wells were producing with a high GOR despite the thick oil zone. It was concluded that conversion of selected wells to injection and horizontal infill wells would increase the oil recovery, but due to geological heterogeneity, the gas cap and a high in situ oil viscosity, the pool could not be considered to be a good candidate for waterflooding. 3 refs., 12 figs.

  3. Functional characterization of the antibiotic resistance reservoir in the human microflora

    DEFF Research Database (Denmark)

    Sommer, Morten; Church, George M; Dantas, Gautam

    2010-01-01

    The increasing levels of multi-drug resistance in human pathogenic bacteria are compromising our ability to treat infectious disease. Since antibiotic resistance determinants are readily exchanged between bacteria through lateral gene transfer, there is an increasing interest in investigating...... reservoirs of antibiotic resistance accessible to pathogens. Due to the high likelihood of contact and genetic exchange with pathogens during disease progression, the human microflora warrants special attention as perhaps the most accessible reservoir of resistance genes. Indeed, numerous previous studies...... have demonstrated substantial antibiotic resistance in cultured isolates from the human microflora. By applying metagenomic functional selections, we recently demonstrated that the functional repertoire of resistance genes in the human microbiome is much more diverse than suggested using previous...

  4. Impact of real-time measurements for data assimilation in reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Riegert, R.; Krosche, M. [Scandpower Petroleum Technology GmbH, Hamburg (Germany); Pajonk, O. [TU Braunschweig (Germany). Inst. fuer Wissenschaftliches Rechnen; Myrland, T. [Morges Teknisk-Naturvitenskapelige Univ. (NTNU), Trondheim (Germany)

    2008-10-23

    This paper gives an overview on the conceptual background of data assimilation techniques. The framework of sequential data assimilation as described for the ensemble Kalman filter implementation allows a continuous integration of new measurement data. The initial diversity of ensemble members will be critical for the assimilation process and the ability to successfully assimilate measurement data. At the same time the initial ensemble will impact the propagation of uncertainties with crucial consequences for production forecasts. Data assimilation techniques have complimentary features compared to other optimization techniques built on selection or regression schemes. Specifically, EnKF is applicable to real field cases and defines an important perspective for facilitating continuous reservoir simulation model updates in a reservoir life cycle. (orig.)

  5. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    Energy Technology Data Exchange (ETDEWEB)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; William Raatz; Cari Breton; Stephen C. Ruppel; Charles Kerans; Mark H. Holtz

    2003-04-01

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Information System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

  6. Temporal-spatial distribution of non-point source pollution in a drinking water source reservoir watershed based on SWAT

    Directory of Open Access Journals (Sweden)

    M. Wang

    2015-05-01

    Full Text Available The conservation of drinking water source reservoirs has a close relationship between regional economic development and people’s livelihood. Research on the non-point pollution characteristics in its watershed is crucial for reservoir security. Tang Pu Reservoir watershed was selected as the study area. The non-point pollution model of Tang Pu Reservoir was established based on the SWAT (Soil and Water Assessment Tool model. The model was adjusted to analyse the temporal-spatial distribution patterns of total nitrogen (TN and total phosphorus (TP. The results showed that the loss of TN and TP in the reservoir watershed were related to precipitation in flood season. And the annual changes showed an "M" shape. It was found that the contribution of loss of TN and TP accounted for 84.5% and 85.3% in high flow years, and for 70.3% and 69.7% in low flow years, respectively. The contributions in normal flow years were 62.9% and 63.3%, respectively. The TN and TP mainly arise from Wangtan town, Gulai town, and Wangyuan town, etc. In addition, it was found that the source of TN and TP showed consistency in space.

  7. Arrow Lakes Reservoir Fertilization Experiment; Years 4 and 5, Technical Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, E.

    2007-02-01

    This report presents the fourth and fifth year (2002 and 2003, respectively) of a five-year fertilization experiment on the Arrow Lakes Reservoir. The goal of the experiment was to increase kokanee populations impacted from hydroelectric development on the Arrow Lakes Reservoir. The impacts resulted in declining stocks of kokanee, a native land-locked sockeye salmon (Oncorhynchus nerka), a key species of the ecosystem. Arrow Lakes Reservoir, located in southeastern British Columbia, has undergone experimental fertilization since 1999. It is modeled after the successful Kootenay Lake fertilization experiment. The amount of fertilizer added in 2002 and 2003 was similar to the previous three years. Phosphorus loading from fertilizer was 52.8 metric tons and nitrogen loading from fertilizer was 268 metric tons. As in previous years, fertilizer additions occurred between the end of April and the beginning of September. Surface temperatures were generally warmer in 2003 than in 2002 in the Arrow Lakes Reservoir from May to September. Local tributary flows to Arrow Lakes Reservoir in 2002 and 2003 were generally less than average, however not as low as had occurred in 2001. Water chemistry parameters in select rivers and streams were similar to previous years results, except for dissolved inorganic nitrogen (DIN) concentrations which were significantly less in 2001, 2002 and 2003. The reduced snow pack in 2001 and 2003 would explain the lower concentrations of DIN. The natural load of DIN to the Arrow system ranged from 7200 tonnes in 1997 to 4500 tonnes in 2003; these results coincide with the decrease in DIN measurements from water samples taken in the reservoir during this period. Water chemistry parameters in the reservoir were similar to previous years of study except for a few exceptions. Seasonal averages of total phosphorus ranged from 2.11 to 7.42 {micro}g/L from 1997 through 2003 in the entire reservoir which were indicative of oligo-mesotrophic conditions

  8. Modelling of sedimentation processes inside Roseires Reservoir (Sudan) (abstract)

    NARCIS (Netherlands)

    Ali, Y.S.A.; Omer, A.Y.A.; Crosato, A.

    2013-01-01

    Roseires Reservoir is located on the Blue Nile River, in Sudan (figure 1). It is the first trap to the sediments coming from the upper catchment in Ethiopia, which suffers from high erosion and desertification problems. The reservoir lost already more than one third of its storage capacity due to

  9. Modelling of sedimentation processes inside Roseires Reservoir (Sudan) (discussion)

    NARCIS (Netherlands)

    Omer, A.Y.A.; Ali, Y.S.A.; Roelvink, J.A.; Dastgheib, A.; Paron, P.; Crosato, A.

    2014-01-01

    Discussion paper. Roseires Reservoir, located on the Blue Nile River, in Sudan, is the first trap to the sediments coming from the upper catchment in Ethiopia, which suffers from high erosion and desertification problems. The reservoir lost already more than one third of its 5 storage capacity due

  10. Sustaining reservoir use through sediment trapping in NW Ethiopia

    NARCIS (Netherlands)

    Getahun, Mulatie Mekonnen

    2016-01-01

    To increase crop production and improve food self-sufficiency, rain-fed agriculture need to be supplemented with irrigated agriculture. To this end, a large number of reservoirs had been constructed in Ethiopia. However, reservoirs are suffering from sedimentation. This study was conducted in Minizr

  11. Modelling of sedimentation processes inside Roseires Reservoir (Sudan)

    NARCIS (Netherlands)

    Omer, A.Y.A.; Ali, Y.S.A.; Roelvink, J.A.; Dastgheib, A.; Paron, P.; Crosato, A.

    2015-01-01

    Roseires Reservoir, located on the Blue Nile River in Sudan, is the first trap to the sediments coming from the vast upper river catchment in Ethiopia, which suffers from high erosion and desertification problems. The reservoir has already lost more than one-third of its storage capacity due to

  12. BEKWAAM, a model fit for reservoir design and management

    NARCIS (Netherlands)

    Benoist, A.P.; Brinkman, A.G.; Diepenbeek, van P.M.J.A.; Waals, J.M.J.

    1998-01-01

    In the Province of Limburg in the Netherlands a new reservoir will be used for the drinking water production of 20 million m3 per annum from the year 2002. With the use of this reservoir the WML is shifting towards the use of surface water (River Meuse) as primary source instead of ground water.

  13. Modeling of Reservoir Inflow for Hydropower Dams Using Artificial ...

    African Journals Online (AJOL)

    The stream flow at the three hydropower reservoirs in Nigeria were modeled using hydro-meteorological parameters and Artificial Neural Network (ANN). The model revealed positive relationship between the observed and the modeled reservoir inflow with values of correlation coefficient of 0.57, 0.84 and 0.92 for Kainji, ...

  14. Petrophysical Charaterization of the Kwale Field Reservoir Sands ...

    African Journals Online (AJOL)

    Similarly, the average permeability values vary between 3.2 and 28.0 mD. This study is a first attempt to make available Petrophysical data for the reservoir sands in the Kwale field of the Niger delta basin. The results of this study will also enhance the proper characterization of the reservoir sands. However, other sources of ...

  15. The role of rainfall variability in reservoir storage management at ...

    African Journals Online (AJOL)

    Reservoir operation and management is usually patterned after the background of long standing water resources management experience. Reservoir management for optimum power production at any hydropower station requires constant assessment of the quantity of available water. The hydrographic responses of flow ...

  16. Reservoir Complete Denture in a Patient with Xerostomia ...

    African Journals Online (AJOL)

    Reservoir Complete Denture in a Patient with Xerostomia Secondary to Radiotherapy for Oral Carcinoma: A Case Report and Review of Literature. ... In severe xerostomia salivary substitutes can be used and if the xerostomic patient is edentulous, then reservoir space for artificial salivary substitute can be created in partial ...

  17. Petrophysical evaluation of reservoir sand bodies in Kwe Field ...

    African Journals Online (AJOL)

    Reservoir sand bodies in Kwe Field, coastal swamp depobelt, onshore eastern Niger Delta Basin were evaluated from a composite log suite comprising gamma ray, resistivity, density and neutron logs of five (5) wells with core photographs of one (1) reservoir of one well. The aim of the study was to evaluate the ...

  18. Intermittent reservoir daily-inflow prediction using lumped and ...

    Indian Academy of Sciences (India)

    cations such as flood control, drought manage- ment, optimal reservoir operation and hydropower generation. There are many studies pertaining to .... est, 49% cultivated area, 6% waste land and 4% of others (CDO 1992). The water spread area at full reservoir level is 115.36 km2 which is about 13% of the total catchment ...

  19. Fisheries in small reservoirs in Northern Ghana: Incidental Benefit or ...

    African Journals Online (AJOL)

    Fisheries in small reservoirs in the Upper East Region are perceived to be an incidental benefit and the potential of this livelihood strategy is neglected. However, in some communities fishing in small reservoirs is part of their livelihood strategies. Several participatory appraisal tools provided entry points for investigations, ...

  20. Investigation of Ojirami reservoir, Akoko-Edo, Southsouth, Nigeria ...

    African Journals Online (AJOL)

    Ojirami Reservoir was constructed between 1971 and 1974 for the purpose of supplying potable water to Edo North senatorial zone, Nigeria. The reservoir is aging, with evidence of siltation but relatively free of any anthropogenic activities. A study was carried out between January 2009 and December 2010 to monitor the ...

  1. Liquid oil production from shale gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, James J.

    2018-04-03

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  2. Reservoir and injection technology and Heat Extraction Project

    Energy Technology Data Exchange (ETDEWEB)

    Horne, R.N.; Ramey, H.H. Jr.; Miller, F.G.; Brigham, W.E.; Kruger, P.

    1989-12-31

    For the Stanford Geothermal Program in the fiscal year 1989, the task areas include predictive modeling of reservoir behavior and tracer test interpretation and testing. Major emphasis is in reservoir technology, reinjection technology, and heat extraction. Predictive modeling of reservoir behavior consists of a multi-pronged approach to well test analysis under a variety of conditions. The efforts have been directed to designing and analyzing well tests in (1) naturally fractured reservoirs; (2) fractured wells; (3) complex reservoir geometries; and, (4) gas reservoirs including inertial and other effects. The analytical solutions for naturally fractured reservoirs are determined using fracture size distribution. In the study of fractured wells, an elliptical coordinate system is used to obtain semi-analytical solutions to finite conductivity fractures. Effort has also been directed to the modeling and creation of a user friendly computer program for steam/gas reservoirs including wellbore storage, skin and non-Darcy flow effects. This work has a complementary effort on modeling high flow rate wells including inertial effects in the wellbore and fractures. In addition, work on gravity drainage systems is being continued.

  3. Pelagic behaviour of reservoir fishes: sinusoidal swimming and associated behaviour

    OpenAIRE

    JAROLÍM, Oldřich

    2009-01-01

    Annotation Long-term fixed-location hydroacoustic study with uplooking transducer was performed during 2005 in Římov reservoir, Czech Republic. It dealt mainly with fish behaviour in the open water of reservoir, especially with sinusoidal swimming behaviour. The dependence of pelagic fish behaviour on environmental conditions was also studied.

  4. Seasonal and diurnal stratification in two small Zimbabwean reservoirs

    African Journals Online (AJOL)

    The shallow nature of small reservoirs and the considerable fluctuations in their water levels makes them more vulnerable to external fluxes such as daily changes in incoming short-wave solar radiation and wind runs, and hence the prevalence of diel stratification regimes. Consequently, small reservoirs are characterised ...

  5. Fisheries and limnology of two reservoirs in Northern Ghana ...

    African Journals Online (AJOL)

    forage feeding habits were the major feeding group in Libga Reservoir. The forage-carnivore ratios of 1.60 and 2.12 for Bontanga and Libga reservoirs, respectively, suggest a suitable ecological balance between carnivorous fishes and their prey populations. The estimated potential fish yield per year for the Bontanga ...

  6. Geomechanical production optimization in faulted and fractured reservoirs

    NARCIS (Netherlands)

    Heege, J.H. ter; Pizzocolo, F.; Osinga, S.; Veer, E.F. van der

    2016-01-01

    Faults and fractures in hydrocarbon reservoirs are key to some major production issues including (1) varying productivity of different well sections due to intersection of preferential flow paths with the wellbore, (2) varying hydrocarbon column heights in different reservoir compartments due to

  7. Organic fertilizer decomposition and nutrient loads in water reservoir ...

    African Journals Online (AJOL)

    Decomposition in aquatic ecosystems is controlled by various factors. The study investigated the trend of decomposition and the potential nutrients loaded in reservoir water. Analysis of water samples and organic fertilizer composition was according to APHA (1995) and Klute (1986) respectively. Reservoir water ...

  8. Fisheries and Limnology of Two Reservoirs in Northern Ghana

    African Journals Online (AJOL)

    komla

    Clarias anguillaris. Mudfish. *. = Present·. TABLE 1 cont'd. Family/Species. Common Name. Bontanga. Libga. Cyprinidae. Barbus macrops. Blackstripe barb. *. *. Labeo coubie. African carp ..... in the Bontanga Reservoir due to food availability in the reservoir and successful reproduction. The prominence of Heterotis ...

  9. Cyanobacteria species identified in the Weija and Kpong reservoirs ...

    African Journals Online (AJOL)

    The Kpong and Weija reservoirs supply drinking water to Accra, Ghana. This study was conducted to identify the cyanobacteria present in these reservoirs and to ascertain whether current treatment processes remove whole cyanobacteria cells from the drinking water produced. Cyanotoxins are mostly cell bound and could ...

  10. Optimizing the Benefits of Conversion of Depleted Oil Reservoirs for ...

    African Journals Online (AJOL)

    Optimizing the Benefits of Conversion of Depleted Oil Reservoirs for Underground Natural Gas Storage in Nigeria. ... (1) utilization of the abandoned oil wells of known production histories; (2) recovery of substantial quantities of oil that otherwise might not have been recovered; (3) converting partially depleted oil reservoirs ...

  11. Determination of volume and direction of flow of Kainji Reservoir ...

    African Journals Online (AJOL)

    geomatics techniques. ... river bed were produced to create a 3D effect of Kainji reservoir flow direction. A depth of 23.50m was obtained during the sounding field operation. Keywords: Kainji Dam, Reservoir, Bathymetry, Volume, Direction of flow ...

  12. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    Science.gov (United States)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  13. The Role of Rainfall Variability in Reservoir Storage Management at ...

    African Journals Online (AJOL)

    Bheema

    The objective is to develop functional hydrological relationship between (rainfall, inflow, reservoir storage and turbine releases) over the dam. This will provide scientific basis for operational decisions which can lead to optimum power plant utilization. 1.1. The Study Area. The study area is the Shiroro dam reservoir.

  14. Reservoir site evaluation through routing | Ogunlela | Journal of ...

    African Journals Online (AJOL)

    Reservoir routing was conducted for site evaluation of a proposed surface reservoir to be located in an ungauged watershed. The study was part of an integrated approach to the development of the watershed. Nash's synthetic hydrograph technique was used in developing the unit hydrograph, from which the 25-yr, 24-hr ...

  15. Multi Data Reservoir History Matching using the Ensemble Kalman Filter

    KAUST Repository

    Katterbauer, Klemens

    2015-05-01

    Reservoir history matching is becoming increasingly important with the growing demand for higher quality formation characterization and forecasting and the increased complexity and expenses for modern hydrocarbon exploration projects. History matching has long been dominated by adjusting reservoir parameters based solely on well data whose spatial sparse sampling has been a challenge for characterizing the flow properties in areas away from the wells. Geophysical data are widely collected nowadays for reservoir monitoring purposes, but has not yet been fully integrated into history matching and forecasting fluid flow. In this thesis, I present a pioneering approach towards incorporating different time-lapse geophysical data together for enhancing reservoir history matching and uncertainty quantification. The thesis provides several approaches to efficiently integrate multiple geophysical data, analyze the sensitivity of the history matches to observation noise, and examine the framework’s performance in several settings, such as the Norne field in Norway. The results demonstrate the significant improvements in reservoir forecasting and characterization and the synergy effects encountered between the different geophysical data. In particular, the joint use of electromagnetic and seismic data improves the accuracy of forecasting fluid properties, and the usage of electromagnetic data has led to considerably better estimates of hydrocarbon fluid components. For volatile oil and gas reservoirs the joint integration of gravimetric and InSAR data has shown to be beneficial in detecting the influx of water and thereby improving the recovery rate. Summarizing, this thesis makes an important contribution towards integrated reservoir management and multiphysics integration for reservoir history matching.

  16. Pareja limno-reservoir (Guadalajara, Spain): environmental and hydrologic aspects

    International Nuclear Information System (INIS)

    Molina Navarro, E.; Martinez Perez, S.; Sastre Merlin, A.

    2010-01-01

    The construction of small reservoir on the edge of large ones is an innovative idea designed to counteract some of the negative impacts caused by the construction and use of reservoirs. The denomination Limno-reservoirs is proposed here, as these water bodies are created to maintain a natural lake dynamics. Pareja's limno-reservoir is among the first limno-reservoirs in Spain, and its construction raises some questions about hydrological viability and siltation risk. The proposition of the methodologies to solve them and the evaluation of the first results is the aim of this study. A detailed water balance makes possible to affirm that, in a firs approach, the limno-reservoir is viable from the hydrological point of view, because the Ompolveda basin -Tajo's tributary at Entrepenas reservoir- has enough water resources to guarantee the permanence of the water body, even during dry years. To assess the siltation risk, a soil loss observation network will be monitoring the Ompolveda basin for the next three years to evaluate the net erosion in the watershed and the sediment delivery to the reservoir. (Author)

  17. Naturally fractured tight gas reservoir detection optimization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

  18. Foodborne Campylobacter: Infections, Metabolism, Pathogenesis and Reservoirs

    Science.gov (United States)

    Epps, Sharon V. R.; Harvey, Roger B.; Hume, Michael E.; Phillips, Timothy D.; Anderson, Robin C.; Nisbet, David J.

    2013-01-01

    Campylobacter species are a leading cause of bacterial-derived foodborne illnesses worldwide. The emergence of this bacterial group as a significant causative agent of human disease and their propensity to carry antibiotic resistance elements that allows them to resist antibacterial therapy make them a serious public health threat. Campylobacter jejuni and Campylobacter coli are considered to be the most important enteropathogens of this genus and their ability to colonize and survive in a wide variety of animal species and habitats make them extremely difficult to control. This article reviews the historical and emerging importance of this bacterial group and addresses aspects of the human infections they cause, their metabolism and pathogenesis, and their natural reservoirs in order to address the need for appropriate food safety regulations and interventions. PMID:24287853

  19. Endophytic Fungi: A Reservoir of Antibacterials

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Deshmukh

    2015-01-01

    Full Text Available Multidrug drug resistant bacteria are becoming increasingly problematic particularly in the undeveloped countries of the world. The most important microorganisms that have seen a geometric rise in are Methicillin resistant Staphylococcus aureus, Vancomycin resistant Enterococcus faecium, Penicillin resistant Streptococcus pneumonia and multiple drug resistant tubercule bacteria to name a just few. New drug scaffolds are essential to tackle this every increasing problem. These scaffolds can be sourced from nature itself. Endophytic fungi are an important reservoir of therapeutically active compounds. This review attempts to present some data relavent to the problem. New, very specific and effective antibiotics are needed but also at the affordable price!!!. Herculean task for researcher all over the world. In the Asian subcontinent indigenous therapeutics that has been practiced over the centuries such as Ayurveda that has been effective as ‘handed down data’ in family generations. May need a second, third and more in-depth investigations?

  20. Endophytic fungi: a reservoir of antibacterials

    Science.gov (United States)

    Deshmukh, Sunil K.; Verekar, Shilpa A.; Bhave, Sarita V.

    2015-01-01

    Multidrug drug resistant bacteria are becoming increasingly problematic particularly in the under developed countries of the world. The most important microorganisms that have seen a geometric rise in numbers are Methicillin resistant Staphylococcus aureus, Vancomycin resistant Enterococcus faecium, Penicillin resistant Streptococcus pneumonia and multiple drug resistant tubercule bacteria to name a just few. New drug scaffolds are essential to tackle this every increasing problem. These scaffolds can be sourced from nature itself. Endophytic fungi are an important reservoir of therapeutically active compounds. This review attempts to present some data relevant to the problem. New, very specific and effective antibiotics are needed but also at an affordable price! A Herculean task for researchers all over the world! In the Asian subcontinent indigenous therapeutics that has been practiced over the centuries such as Ayurveda have been effective as “handed down data” in family generations. May need a second, third and more “in-depth investigations?” PMID:25620957