WorldWideScience

Sample records for reservoir watershed southwestern

  1. Fort Cobb Reservoir Watershed, Oklahoma and Thika River Watershed, Kenya Twinning Pilot Project

    Science.gov (United States)

    Moriasi, D.; Steiner, J.; Arnold, J.; Allen, P.; Dunbar, J.; Shisanya, C.; Gathenya, J.; Nyaoro, J.; Sang, J.

    2007-12-01

    The Fort Cobb Reservoir Watershed (FCRW) (830 km2) is a watershed within the HELP Washita Basin, located in Caddo and Washita Counties, OK. It is also a benchmark watershed under USDA's Conservation Effects Assessment Project, a national project to quantify environmental effects of USDA and other conservation programs. Population in south-western Oklahoma, in which FCRW is located, is sparse and decreasing. Agricultural focuses on commodity production (beef, wheat, and row crops) with high costs and low margins. Surface and groundwater resources supply public, domestic, and irrigation water. Fort Cobb Reservoir and contributing stream segments are listed on the Oklahoma 303(d) list as not meeting water quality standards based on sedimentation, trophic level of the lake associated with phosphorus loads, and nitrogen in some stream segments in some seasons. Preliminary results from a rapid geomorphic assessment results indicated that unstable stream channels dominate the stream networks and make a significant but unknown contribution to suspended-sediment loadings. Impairment of the lake for municipal water supply, recreation, and fish and wildlife are important factors in local economies. The Thika River Watershed (TRW) (867 km2) is located in central Kenya. Population in TRW is high and increasing, which has led to a poor land-population ratio with population densities ranging from 250 people/km2 to over 500 people/km2. The poor land-population ratio has resulted in land sub-division, fragmentation, over- cultivation, overgrazing, and deforestation which have serious implications on soil erosion, which poses a threat to both agricultural production and downstream reservoirs. Agricultural focuses mainly on subsistence and some cash crops (dairy cattle, corn, beans, coffee, floriculture and pineapple) farming. Surface and groundwater resources supply domestic, public, and hydroelectric power generation water. Thika River supplies 80% of the water for the city of

  2. NYC Reservoirs Watershed Areas (HUC 12)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This NYC Reservoirs Watershed Areas (HUC 12) GIS layer was derived from the 12-Digit National Watershed Boundary Database (WBD) at 1:24,000 for EPA Region 2 and...

  3. Small Reservoir Impact on Simulated Watershed-Scale Nutrient Yield

    Directory of Open Access Journals (Sweden)

    Shane J. Prochnow

    2007-01-01

    Full Text Available The soil and water assessment tool (SWAT is used to assess the influence of small upland reservoirs (PL566 on watershed nutrient yield. SWAT simulates the impact of collectively increasing and decreasing PL566 magnitudes (size parameters on the watershed. Totally removing PL566 reservoirs results in a 100% increase in total phosphorus and an 82% increase in total nitrogen, while a total maximum daily load (TMDL calling for a 50% reduction in total phosphorus can be achieved with a 500% increase in the magnitude of PL566s in the watershed. PL566 reservoirs capture agriculture pollution in surface flow, providing long-term storage of these constituents when they settle to the reservoir beds. A potential strategy to reduce future downstream nutrient loading is to enhance or construct new PL566 reservoirs in the upper basin to better capture agricultural runoff.

  4. Fena Valley Reservoir watershed and water-balance model updates and expansion of watershed modeling to southern Guam

    Science.gov (United States)

    Rosa, Sarah N.; Hay, Lauren E.

    2017-12-01

    In 2014, the U.S. Geological Survey, in cooperation with the U.S. Department of Defense’s Strategic Environmental Research and Development Program, initiated a project to evaluate the potential impacts of projected climate-change on Department of Defense installations that rely on Guam’s water resources. A major task of that project was to develop a watershed model of southern Guam and a water-balance model for the Fena Valley Reservoir. The southern Guam watershed model provides a physically based tool to estimate surface-water availability in southern Guam. The U.S. Geological Survey’s Precipitation Runoff Modeling System, PRMS-IV, was used to construct the watershed model. The PRMS-IV code simulates different parts of the hydrologic cycle based on a set of user-defined modules. The southern Guam watershed model was constructed by updating a watershed model for the Fena Valley watersheds, and expanding the modeled area to include all of southern Guam. The Fena Valley watershed model was combined with a previously developed, but recently updated and recalibrated Fena Valley Reservoir water-balance model.Two important surface-water resources for the U.S. Navy and the citizens of Guam were modeled in this study; the extended model now includes the Ugum River watershed and improves upon the previous model of the Fena Valley watersheds. Surface water from the Ugum River watershed is diverted and treated for drinking water, and the Fena Valley watersheds feed the largest surface-water reservoir on Guam. The southern Guam watershed model performed “very good,” according to the criteria of Moriasi and others (2007), in the Ugum River watershed above Talofofo Falls with monthly Nash-Sutcliffe efficiency statistic values of 0.97 for the calibration period and 0.93 for the verification period (a value of 1.0 represents perfect model fit). In the Fena Valley watershed, monthly simulated streamflow volumes from the watershed model compared reasonably well with the

  5. [Coupling SWAT and CE-QUAL-W2 models to simulate water quantity and quality in Shanmei Reservoir watershed].

    Science.gov (United States)

    Liu, Mei-Bing; Chen, Dong-Ping; Chen, Xing-Wei; Chen, Ying

    2013-12-01

    A coupled watershed-reservoir modeling approach consisting of a watershed distributed model (SWAT) and a two-dimensional laterally averaged model (CE-QUAL-W2) was adopted for simulating the impact of non-point source pollution from upland watershed on water quality of Shanmei Reservoir. Using the daily serial output from Shanmei Reservoir watershed by SWAT as the input to Shanmei Reservoir by CE-QUAL-W2, the coupled modeling was calibrated for runoff and outputs of sediment and pollutant at watershed scale and for elevation, temperature, nitrate, ammonium and total nitrogen in Shanmei Reservoir. The results indicated that the simulated values agreed fairly well with the observed data, although the calculation precision of downstream model would be affected by the accumulative errors generated from the simulation of upland model. The SWAT and CE-QUAL-W2 coupled modeling could be used to assess the hydrodynamic and water quality process in complex watershed comprised of upland watershed and downstream reservoir, and might further provide scientific basis for positioning key pollution source area and controlling the reservoir eutrophication.

  6. Evaluating watershed protection programs in New York City's Cannonsville Reservoir source watershed using SWAT-HS

    Science.gov (United States)

    Hoang, L.; Mukundan, R.; Moore, K. E.; Owens, E. M.; Steenhuis, T. S.

    2017-12-01

    New York City (NYC)'s reservoirs supply over one billion gallons of drinking water each day to over nine million consumers in NYC and upstate communities. The City has invested more than $1.5 billion in watershed protection programs to maintain a waiver from filtration for the Catskill and Delaware Systems. In the last 25 years, the NYC Department of Environmental Protection (NYCDEP) has implemented programs in cooperation with upstate communities that include nutrient management, crop rotations, improvement of barnyards and manure storage, implementing tertiary treatment for Phosphorus (P) in wastewater treatment plants, and replacing failed septic systems in an effort to reduce P loads to water supply reservoirs. There have been several modeling studies evaluating the effect of agricultural Best Management Practices (BMPs) on P control in the Cannonsville watershed in the Delaware System. Although these studies showed that BMPs would reduce dissolved P losses, they were limited to farm-scale or watershed-scale estimates of reduction factors without consideration of the dynamic nature of overland flow and P losses from variable source areas. Recently, we developed the process-based SWAT-Hillslope (SWAT-HS) model, a modified version of the Soil and Water Assessment Tool (SWAT) that can realistically predict variable source runoff processes. The objective of this study is to use the SWAT-HS model to evaluate watershed protection programs addressing both point and non-point sources of P. SWAT-HS predicts streamflow very well for the Cannonsville watershed with a daily Nash Sutcliffe Efficiency (NSE) of 0.85 at the watershed outlet and NSE values ranging from 0.56 - 0.82 at five other locations within the watershed. Based on good hydrological prediction, we applied the model to predict P loads using detailed P inputs that change over time due to the implementation of watershed protection programs. Results from P model predictions provide improved projections of P

  7. The hydrological calibration and validation of a complexly-linked watershed reservoir model for the Occoquan watershed, Virginia

    Science.gov (United States)

    Xu, Zhongyan; Godrej, Adil N.; Grizzard, Thomas J.

    2007-10-01

    SummaryRunoff models such as HSPF and reservoir models such as CE-QUAL-W2 are used to model water quality in watersheds. Most often, the models are independently calibrated to observed data. While this approach can achieve good calibration, it does not replicate the physically-linked nature of the system. When models are linked by using the model output from an upstream model as input to a downstream model, the physical reality of a continuous watershed, where the overland and waterbody portions are parts of the whole, is better represented. There are some additional challenges in the calibration of such linked models, because the aim is to simulate the entire system as a whole, rather than piecemeal. When public entities are charged with model development, one of the driving forces is to use public-domain models. This paper describes the use of two such models, HSPF and CE-QUAL-W2, in the linked modeling of the Occoquan watershed located in northern Virginia, USA. The description of the process is provided, and results from the hydrological calibration and validation are shown. The Occoquan model consists of six HSPF and two CE-QUAL-W2 models, linked in a complex way, to simulate two major reservoirs and the associated drainage areas. The overall linked model was calibrated for a three-year period and validated for a two-year period. The results show that a successful calibration can be achieved using the linked approach, with moderate additional effort. Overall flow balances based on the three-year calibration period at four stream stations showed agreement ranging from -3.95% to +3.21%. Flow balances for the two reservoirs, compared via the daily water surface elevations, also showed good agreement ( R2 values of 0.937 for Lake Manassas and 0.926 for Occoquan Reservoir), when missing (un-monitored) flows were included. Validation of the models ranged from poor to fair for the watershed models and excellent for the waterbody models, thus indicating that the

  8. Sediment deposition and trends and transport of phosphorus and other chemical constituents, Cheney Reservoir watershed, south-central Kansas

    Science.gov (United States)

    Mau, D.P.

    2001-01-01

    Sediment deposition, water-quality trends, and mass transport of phosphorus, nitrogen, selected trace elements, and selected pesticides within the Cheney Reservoir watershed in south-central Kansas were investigated using bathymetric survey data and reservoir bottom-sediment cores. Sediment loads in the reservoir were investigated by comparing 1964 topographic data to 1998 bathymetric survey data. Approximately 7,100 acre-feet of sediment deposition occurred in Cheney Reservoir from 1965 through 1998. As of 1998, sediment had filled 27 percent of the reservoir's inactive conservation storage pool, which is less than the design estimate of 34 percent. Mean annual sediment deposition was 209 acre-feet per year, or 0.22 acre-feet per year per square mile, and the mean annual sediment load was 453 million pounds per year. During the 3-year period from 1997 through 1999, 23 sediment cores were collected from the reservoir, and subsamples were analyzed for nutrients (phosphorus and nitrogen species), selected trace elements, and selected organic pesticides. Mean concentrations of total phosphorus in reservoir bottom sediment ranged from 94 milligrams per kilogram at the upstream end of the reservoir to 710 milligrams per kilogram farther downstream near the reservoir dam. The mean concentration for all sites was 480 milligrams per kilogram. Total phosphorus concentrations were greatest when more silt- and clay-sized particles were present. The implications are that if anoxic conditions (inadequate oxygen) occur near the dam, phosphorus could be released from the sediment and affect the drinking-water supply. Analysis of selected cores also indicates that total phosphorus concentrations in the reservoir sediment increased over time and were probably the result of nonpoint-source activities in the watershed, such as increased fertilizer use and livestock production. Mean annual phosphorus loading to Cheney Reservoir was estimated to be 226,000 pounds per year on the basis

  9. Erosion index formulation with respect to reservoir life in the upper Citarum watershed

    Directory of Open Access Journals (Sweden)

    Bakhtiar

    2018-01-01

    Full Text Available This study aimed to formulate erosion index in the upper Citarum watershed with respect to the Saguling reservoir life. Soil and Water Assessment Tool model was incorporated to simulate hydrological processes in the catchment. From the calibration and validation results, the model is considerably of good performance. The simulated sediment inflow at Nanjung outlet was then extrapolated to determine the sediment inflow into the reservoir. The study revealed that the average value of sediment inflow into the reservoir is 29.24 tonnes/ha/year just below the tolerable erosion limit of 30 tonnes/ha/year assumed by Hammer (1981. It was also found that the relationship between sediment yield and sediment inflow is non linear. Erosion index is formulated as the ratio between the mean annual sediment yield generated in the watershed and the mean annual sediment yield that leads dead storage to be full in the designated life of the reservoir. Erosion index equals to 1.0 indicates that the dead storage will be full in the designated life of the reservoir. A classification of erosion index can be subsequently be made based on erosion index and reservoir life relationship.

  10. Multi-objective game-theory models for conflict analysis in reservoir watershed management.

    Science.gov (United States)

    Lee, Chih-Sheng

    2012-05-01

    This study focuses on the development of a multi-objective game-theory model (MOGM) for balancing economic and environmental concerns in reservoir watershed management and for assistance in decision. Game theory is used as an alternative tool for analyzing strategic interaction between economic development (land use and development) and environmental protection (water-quality protection and eutrophication control). Geographic information system is used to concisely illustrate and calculate the areas of various land use types. The MOGM methodology is illustrated in a case study of multi-objective watershed management in the Tseng-Wen reservoir, Taiwan. The innovation and advantages of MOGM can be seen in the results, which balance economic and environmental concerns in watershed management and which can be interpreted easily by decision makers. For comparison, the decision-making process using conventional multi-objective method to produce many alternatives was found to be more difficult. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Physical and chemical parameters affecting transport of 137Cs in arid watersheds

    International Nuclear Information System (INIS)

    McHenry, J.R.; Ritchie, J.C.

    1977-01-01

    The occurrence and amount of fallout 137 Cs were determined in 12 watersheds in the arid southwestern United States. The factors believed to influence the distribution of 137 Cs in the watershed soils and in the reservoir sediments were investigated by using stepwise regression techniques. Seventeen parameters, in the case of soils, and 21 parameters, in the case of sediments, were used in the study. Ninety percent of the variation in the 137 Cs content of soils, per unit weight, could be predicted in terms of the percentage of soil nitrogen, the R factor (rainfall intensity) of the universal soil loss equation, the percentage of sand in the soils, and the soil cation exchange capacity. Also, 90% of the variation in the content of 137 Cs in the watershed soils, per unit area, could be predicted in terms of the fallout intensity, the percentages of silt and clay, and the cation exchange capacity. For reservoir sediments the equivalent predictors of 137 Cs accumulation in the sediment profile, per unit weight, were the soil cation exchange capacity, the January-March average precipitation, and the soil contents of total P and N. The distribution of 137 Cs in sediments per unit area was similarly predicted by watershed area, percentage of total soil C, reservoir surface area, areal concentration of 137 Cs in the watershed soils, and soil organic matter

  12. Game theory and fuzzy programming approaches for bi-objective optimization of reservoir watershed management: a case study in Namazgah reservoir.

    Science.gov (United States)

    Üçler, N; Engin, G Onkal; Köçken, H G; Öncel, M S

    2015-05-01

    In this study, game theory and fuzzy programming approaches were used to balance economic and environmental impacts in the Namazgah reservoir, Turkey. The main goals identified were to maximize economic benefits of land use and to protect water quality of reservoir and land resources. Total phosphorous load (kg ha(-1) year(-1)) and economic income (USD ha(-1) year(-1)) from land use were determined as environmental value and economic value, respectively. The surface area of existing land use types, which are grouped under 10 headings according to the investigations on the watershed area, and the constraint values for the watershed were calculated using aerial photos, master plans, and basin slope map. The results of fuzzy programming approach were found to be very close to the results of the game theory model. It was concluded that the amount of fertilizer used in the current situation presents a danger to the reservoir and, therefore, unnecessary fertilizer use should be prevented. Additionally, nuts, fruit, and vegetable cultivation, instead of wheat and corn cultivation, was found to be more suitable due to their high economic income and low total phosphorus (TP) load. Apart from agricultural activities, livestock farming should also be considered in the area as a second source of income. It is believed that the results obtained in this study will help decision makers to identify possible problems of the watershed.

  13. Remote sensing characterization of the Animas River watershed, southwestern Colorado, by AVIRIS imaging spectroscopy

    Science.gov (United States)

    Dalton, J.B.; Bove, D.J.; Mladinich, C.S.

    2005-01-01

    Visible-wavelength and near-infrared image cubes of the Animas River watershed in southwestern Colorado have been acquired by the Jet Propulsion Laboratory's Airborne Visible and InfraRed Imaging Spectrometer (AVIRIS) instrument and processed using the U.S. Geological Survey Tetracorder v3.6a2 implementation. The Tetracorder expert system utilizes a spectral reference library containing more than 400 laboratory and field spectra of end-member minerals, mineral mixtures, vegetation, manmade materials, atmospheric gases, and additional substances to generate maps of mineralogy, vegetation, snow, and other material distributions. Major iron-bearing, clay, mica, carbonate, sulfate, and other minerals were identified, among which are several minerals associated with acid rock drainage, including pyrite, jarosite, alunite, and goethite. Distributions of minerals such as calcite and chlorite indicate a relationship between acid-neutralizing assemblages and stream geochemistry within the watershed. Images denoting material distributions throughout the watershed have been orthorectified against digital terrain models to produce georeferenced image files suitable for inclusion in Geographic Information System databases. Results of this study are of use to land managers, stakeholders, and researchers interested in understanding a number of characteristics of the Animas River watershed.

  14. Temporal-spatial distribution of non-point source pollution in a drinking water source reservoir watershed based on SWAT

    Directory of Open Access Journals (Sweden)

    M. Wang

    2015-05-01

    Full Text Available The conservation of drinking water source reservoirs has a close relationship between regional economic development and people’s livelihood. Research on the non-point pollution characteristics in its watershed is crucial for reservoir security. Tang Pu Reservoir watershed was selected as the study area. The non-point pollution model of Tang Pu Reservoir was established based on the SWAT (Soil and Water Assessment Tool model. The model was adjusted to analyse the temporal-spatial distribution patterns of total nitrogen (TN and total phosphorus (TP. The results showed that the loss of TN and TP in the reservoir watershed were related to precipitation in flood season. And the annual changes showed an "M" shape. It was found that the contribution of loss of TN and TP accounted for 84.5% and 85.3% in high flow years, and for 70.3% and 69.7% in low flow years, respectively. The contributions in normal flow years were 62.9% and 63.3%, respectively. The TN and TP mainly arise from Wangtan town, Gulai town, and Wangyuan town, etc. In addition, it was found that the source of TN and TP showed consistency in space.

  15. Mercury deposition and methylmercury formation in Narraguinnep Reservoir, southwestern Colorado, USA

    Science.gov (United States)

    Gray, John E.; Hines, Mark E.; Goldstein, Harland L.; Reynolds, Richard L.

    2014-01-01

    Narraguinnep Reservoir in southwestern Colorado is one of several water bodies in Colorado with a mercury (Hg) advisory as Hg in fish tissue exceed the 0.3 μg/g guideline to protect human health recommended by the State of Colorado. Concentrations of Hg and methyl-Hg were measured in reservoir bottom sediment and pore water extracted from this sediment. Rates of Hg methylation and methyl-Hg demethylation were also measured in reservoir bottom sediment. The objective of this study was to evaluate potential sources of Hg in the region and evaluate the potential of reservoir sediment to generate methyl-Hg, a human neurotoxin and the dominant form of Hg in fish. Concentrations of Hg (ranged from 1.1 to 5.8 ng/L, n = 15) and methyl-Hg (ranged from 0.05 to 0.14 ng/L, n = 15) in pore water generally were highest at the sediment/water interface, and overall, Hg correlated with methyl-Hg in pore water (R2 = 0.60, p = 0007, n = 15). Net Hg methylation flux in the top 3 cm of reservoir bottom sediment varied from 0.08 to 0.56 ng/m2/day (mean = 0.28 ng/m2/day, n = 5), which corresponded to an overall methyl-Hg production for the entire reservoir of 0.53 g/year. No significant point sources of Hg contamination are known to this reservoir or its supply waters, although several coal-fired power plants in the region emit Hg-bearing particulates. Narraguinnep Reservoir is located about 80 km downwind from two of the largest power plants, which together emit about 950 kg-Hg/year. Magnetic minerals separated from reservoir sediment contained spherical magnetite-bearing particles characteristic of coal-fired electric power plant fly ash. The presence of fly-ash magnetite in post-1970 sediment from Narraguinnep Reservoir indicates that the likely source of Hg to the catchment basin for this reservoir has been from airborne emissions from power plants, most of which began operation in the late-1960s and early 1970s in this region.

  16. Multiscale Modeling of Radioisotope Transfers in Watersheds, Rivers, Reservoirs and Ponds of Fukushima Prefecture

    Science.gov (United States)

    Zheleznyak, M.; Kivva, S.; Nanba, K.; Wakiyama, Y.; Konoplev, A.; Onda, Y.; Gallego, E.; Papush, L.; Maderych, V.

    2015-12-01

    The highest densities of the radioisotopes in fallout from the Fukushima Daiichi NPP in March 2011 were measured at the north eastern part of Fukushima Prefecture. The post-accidental aquatic transfer of cesium -134/137 includes multiscale processes: wash-off from the watersheds in solute and with the eroded soil, long-range transport in the rivers, deposition and resuspension of contaminated sediments in reservoirs and floodplains. The models of EU decision support system RODOS are used for predicting dynamics of 137Cs in the Fukushima surface waters and for assessing efficiency of the remediation measures. The transfer of 137Cs through the watershed of Niida River was simulated by DHSVM -R model that includes the modified code of the distributed hydrological and sediment transport model DHSVM (Lettenmayer, Wigmosta et al.) and new module of radionuclide transport. DHSMV-R was tested by modelling the wash-off from the USLE experimental plots in Fukushima prefecture. The model helps to quantify the influence of the differentiators of Fukushima and Chernobyl watersheds, - intensity of extreme precipitation and steepness of watershed, on the much higher values of the ratio "particulated cesium /soluted cesium" in Fukushima rivers than in Chernobyl rivers. Two dimensional model COASTOX and three dimensional model THREETOX are used to simulate the fate of 137Cs in water and sediments of reservoirs in the Manogawa River, Otagawa River, Mizunashigawa River, which transport 137Cs from the heavy contaminated watersheds to the populated areas at the Pacific coast. The modeling of the extreme floods generated by typhoons shows the resuspension of the bottom sediments from the heavy contaminated areas in reservoirs at the mouths of inflowing rivers at the peaks of floods and then re-deposition of 137Cs downstream in the deeper areas. The forecasts of 137Cs dynamics in bottom sediments of the reservoirs were calculated for the set of the scenarios of the sequences of the high

  17. Soil erosion and sediment fluxes analysis: a watershed study of the Ni Reservoir, Spotsylvania County, VA, USA.

    Science.gov (United States)

    Pope, Ian C; Odhiambo, Ben K

    2014-03-01

    Anthropogenic forces that alter the physical landscape are known to cause significant soil erosion, which has negative impact on surface water bodies, such as rivers, lakes/reservoirs, and coastal zones, and thus sediment control has become one of the central aspects of catchment management planning. The revised universal soil loss equation empirical model, erosion pins, and isotopic sediment core analyses were used to evaluate watershed erosion, stream bank erosion, and reservoir sediment accumulation rates for Ni Reservoir, in central Virginia. Land-use and land cover seems to be dominant control in watershed soil erosion, with barren land and human-disturbed areas contributing the most sediment, and forest and herbaceous areas contributing the least. Results show a 7 % increase in human development from 2001 (14 %) to 2009 (21.6 %), corresponding to an increase in soil loss of 0.82 Mg ha(-1) year(-1) in the same time period. (210)Pb-based sediment accumulation rates at three locations in Ni Reservoir were 1.020, 0.364, and 0.543 g cm(-2) year(-1) respectively, indicating that sediment accumulation and distribution in the reservoir is influenced by reservoir configuration and significant contributions from bedload. All three locations indicate an increase in modern sediment accumulation rates. Erosion pin results show variability in stream bank erosion with values ranging from 4.7 to 11.3 cm year(-1). These results indicate that urban growth and the decline in vegetative cover has increased sediment fluxes from the watershed and poses a significant threat to the long-term sustainability of the Ni Reservoir as urbanization continues to increase.

  18. Upstream-downstream cooperation approach in Guanting Reservoir watershed.

    Science.gov (United States)

    Yang, Zhi-Feng; Zhang, Wen-Guo

    2005-01-01

    A case study is introduced and discussed concerning water dispute of misuse and pollution between up- and down-stream parts. The relations between water usage and local industrial structures are analyzed. Results show it is important to change industrial structures of the target region along with controlling water pollution by technical and engineering methods. Three manners of upstream-downstream cooperation are presented and discussed based on the actual conditions of Guangting Reservoir watershed. Two typical scenarios are supposed and studied along with the local plan on water resources development. The best solution for this cooperation presents a good way to help the upstream developing in a new pattern of eco-economy.

  19. The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA.

    Science.gov (United States)

    Cho, Kyung Hwa; Pachepsky, Yakov A; Kim, Joon Ha; Kim, Jung-Woo; Park, Mi-Hyun

    2012-10-01

    This study assessed fecal coliform contamination in the Wachusett Reservoir Watershed in Massachusetts, USA using Soil and Water Assessment Tool (SWAT) because bacteria are one of the major water quality parameters of concern. The bacteria subroutine in SWAT, considering in-stream bacteria die-off only, was modified in this study to include solar radiation-associated die-off and the contribution of wildlife. The result of sensitivity analysis demonstrates that solar radiation is one of the most significant fate factors of fecal coliform. A water temperature-associated function to represent the contribution of beaver activity in the watershed to fecal contamination improved prediction accuracy. The modified SWAT model provides an improved estimate of bacteria from the watershed. Our approach will be useful for simulating bacterial concentrations to provide predictive and reliable information of fecal contamination thus facilitating the implementation of effective watershed management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The modified SWAT model for predicting fecal coliform in the Wachusett Reservoir Watershed, USA

    Science.gov (United States)

    Fecal contamination has been an issue for water quality because fecal coliform bacteria are used as an indicator organism to detect pathogens in water. In order to assess fecal contamination in the Wachusett Reservoir Watershed in Massachusetts, USA, the Soil and Water Assessment Tool (SWAT), a comm...

  1. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China.

    Science.gov (United States)

    Liu, Renzhi; Liu, Jing; Zhang, Zhijiao; Borthwick, Alistair; Zhang, Ke

    2015-12-02

    Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA), designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the "source-pathway-target" in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing) in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River). Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method.

  2. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China

    Science.gov (United States)

    Liu, Renzhi; Liu, Jing; Zhang, Zhijiao; Borthwick, Alistair; Zhang, Ke

    2015-01-01

    Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA), designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the “source-pathway-target” in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing) in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River). Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method. PMID:26633450

  3. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China

    Directory of Open Access Journals (Sweden)

    Renzhi Liu

    2015-12-01

    Full Text Available Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA, designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the “source-pathway-target” in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River. Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method.

  4. Optimal Reoperation of Multi-Reservoirs for Integrated Watershed Management with Multiple Benefits

    Directory of Open Access Journals (Sweden)

    Xinyi Xu

    2014-04-01

    Full Text Available Constructing reservoirs can make more efficient use of water resources for human society. However, the negative impacts of these projects on the environment are often ignored. Optimal reoperation of reservoirs, which considers not only in socio-economic values but also environmental benefits, is increasingly important. A model of optimal reoperation of multi-reservoirs for integrated watershed management with multiple benefits was proposed to alleviate the conflict between water use and environmental deterioration. The social, economic, water quality and ecological benefits were respectively taken into account as the scheduling objectives and quantified according to economic models. River minimum ecological flows and reservoir water levels based on flood control were taken as key constraint conditions. Feasible search discrete differential dynamic programming (FS-DDDP was used to run the model. The proposed model was used in the upstream of the Nanpan River, to quantitatively evaluate the difference between optimal reoperation and routine operation. The results indicated that the reoperation could significantly increase the water quality benefit and have a minor effect on the benefits of power generation and irrigation under different hydrological years. The model can be readily adapted to other multi-reservoir systems for water resources management.

  5. A comparison of single- and multi-site calibration and validation: a case study of SWAT in the Miyun Reservoir watershed, China

    Science.gov (United States)

    Bai, Jianwen; Shen, Zhenyao; Yan, Tiezhu

    2017-09-01

    An essential task in evaluating global water resource and pollution problems is to obtain the optimum set of parameters in hydrological models through calibration and validation. For a large-scale watershed, single-site calibration and validation may ignore spatial heterogeneity and may not meet the needs of the entire watershed. The goal of this study is to apply a multi-site calibration and validation of the Soil andWater Assessment Tool (SWAT), using the observed flow data at three monitoring sites within the Baihe watershed of the Miyun Reservoir watershed, China. Our results indicate that the multi-site calibration parameter values are more reasonable than those obtained from single-site calibrations. These results are mainly due to significant differences in the topographic factors over the large-scale area, human activities and climate variability. The multi-site method involves the division of the large watershed into smaller watersheds, and applying the calibrated parameters of the multi-site calibration to the entire watershed. It was anticipated that this case study could provide experience of multi-site calibration in a large-scale basin, and provide a good foundation for the simulation of other pollutants in followup work in the Miyun Reservoir watershed and other similar large areas.

  6. A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed.

    Science.gov (United States)

    Qiu, Jiali; Shen, Zhenyao; Wei, Guoyuan; Wang, Guobo; Xie, Hui; Lv, Guanping

    2018-03-01

    The assessment of peak flow rate, total runoff volume, and pollutant loads during rainfall process are very important for the watershed management and the ecological restoration of aquatic environment. Real-time measurements of rainfall-runoff and pollutant loads are always the most reliable approach but are difficult to carry out at all desired location in the watersheds considering the large consumption of material and financial resources. An integrated environmental modeling approach for the estimation of flash streamflow that combines the various hydrological and quality processes during rainstorms within the agricultural watersheds is essential to develop targeted management strategies for the endangered drinking water. This study applied the Hydrological Simulation Program-Fortran (HSPF) to simulate the spatial and temporal variation in hydrological processes and pollutant transport processes during rainstorm events in the Miyun Reservoir watershed, a drinking water resource area in Beijing. The model performance indicators ensured the acceptable applicability of the HSPF model to simulate flow and pollutant loads in the studied watershed and to establish a relationship between land use and the parameter values. The proportion of soil and land use was then identified as the influencing factors of the pollution intensities. The results indicated that the flush concentrations were much higher than those observed during normal flow periods and considerably exceeded the limits of Class III Environmental Quality Standards for Surface Water (GB3838-2002) for the secondary protection zones of the drinking water resource in China. Agricultural land and leached cinnamon soils were identified as the key sources of sediment, nutrients, and fecal coliforms. Precipitation volume was identified as a driving factor that determined the amount of runoff and pollutant loads during rainfall processes. These results are useful to improve the streamflow predictions, provide

  7. The simulation research of dissolved nitrogen and phosphorus non-point source pollution in Xiao-Jiang watershed of Three Gorges Reservoir area.

    Science.gov (United States)

    Wu, Lei; Long, Tian-Yu; Li, Chong-Ming

    2010-01-01

    Xiao-jiang, with a basin area of almost 5,276 km(2) and a length of 182.4 km, is located in the center of the Three Gorges Reservoir Area, and is the largest tributary of the central section in Three Gorges Reservoir Area, farmland accounts for a large proportion of Xiao-jiang watershed, and the hilly cropland of purple soil is much of the farmland of the watershed. After the second phase of water storage in the Three Gorges Reservoir, the majority of sub-rivers in the reservoir area experienced eutrophication phenomenon frequently, and non-point source (NPS) pollution has become an important source of pollution in Xiao-jiang Watershed. Because dissolved nitrogen and phosphorus non-point source pollution are related to surface runoff and interflow, using climatic, topographic and land cover data from the internet and research institutes, the Semi-Distributed Land-use Runoff Process (SLURP) hydrological model was introduced to simulate the complete hydrological cycle of the Xiao-jiang Watershed. Based on the SLURP distributed hydrological model, non-point source pollution annual output load models of land use and rural residents were respectively established. Therefore, using GIS technology, considering the losses of dissolved nitrogen and phosphorus in the course of transport, a dissolved non-point source pollution load dynamic model was established by the organic coupling of the SLURP hydrological model and land-use output model. Through the above dynamic model, the annual dissolved non-point source nitrogen and phosphorus pollution output as well as the load in different types were simulated and quantitatively estimated from 2001 to 2008, furthermore, the loads of Xiao-jiang Watershed were calculated and expressed by temporal and spatial distribution in the Three Gorges Reservoir Area. The simulation results show that: the temporal changes of dissolved nitrogen and phosphorus load in the watershed are close to the inter-annual changes of rainfall runoff, and the

  8. Biogeochemical characterization of the Cointzio reservoir (Morelia, Mexico) and identification of a watershed-dependent cycling of nutrients

    Science.gov (United States)

    Némery, J.; Alvarado, R.; Gratiot, N.; Duvert, C.; Mahé, F.; Duwig, C.; Bonnet, M.; Prat, C.; Esteves, M.

    2009-12-01

    The Cointzio reservoir (capacity 70 Mm3) is an essential component of the drinking water supply (20 %) of Morelia city (1 M inhabitants, Michoacán, Mexico). The watershed is 627 km2 and mainly forested (45 %) and cultivated (43 %) with recent increase of avocados plantations. The mean population density is 65 inh./km2 and there are no waste water treatment plants in the villages leading locally to high levels of organic and nutritive pollution. Soils are mostly volcanic and recent deforestations have led to important processes of erosion especially during the wet season (from June to October). As a result the reservoir presents a high turbidity level (Secchi turbidity renders the water potabilization processes difficult. Moreover, eutrophication and development of undesirable algae such as Cyanobacteria may even increase the water treatment cost. A weekly composite sampling was realized in 2009 at the reservoir entry and exit in order to determine nutrients mass balance. At the reservoir entrance, discharges were measured continuously. At the exit, discharges were obtained from the Comición Nacional Del Agua (CNA). The water residence time in the reservoir is lower than one year. Nutrients fluxes entering and exiting the reservoir were calculated as the product of water discharges and weekly concentrations of nutrients. Within the reservoir, the vertical distributions of temperature, oxygen, turbidity, pH (with a Hydrolab probe), nutrients (PO43-, NH4+, NO3-), Dissolved Organic Carbon, chlorophyll a (laboratory analysis with a Hach Lange spectrophotometer), phytoplankton and zooplankton (variety and abundance) were measured every month to determine its seasonal dynamics. Samples of deposited sediments were also taken to assess phosphorus (P) stock. Nutrient inputs revealed to be strongly conditioned by the watershed hydrology. During low flow period (November to May), the baseflow is much more concentrated in dissolved nutrients. On the contrary, the high flows

  9. Climate variability and sedimentation of a hydropower reservoir

    International Nuclear Information System (INIS)

    Riedel, M.

    2008-01-01

    As part of the relicensing of a large Hydroelectric Project in the central Appalachians, large scale watershed and reservoir sedimentation models were developed to forecast potential sedimentation scenarios. The GIS based watershed model was spatially explicit and calibrated to long term observed data. Potential socio/economic development scenarios were used to construct future watershed land cover scenarios. Climatic variability and potential change analysis were used to identify future climate regimes and shifts in precipitation and temperature patterns. Permutations of these development and climate changes were forecasted over 50 years and used to develop sediment yield regimes to the project reservoir. Extensive field work and reservoir survey, including current and wave instrumentation, were used to characterize the project watershed, rivers and reservoir hydrodynamics. A fully 3 dimensional hydrodynamic reservoir sedimentation model was developed for the project and calibrated to observed data. Hydrologic and sedimentation results from watershed forecasting provided boundary conditions for reservoir inputs. The calibrated reservoir model was then used to forecast changes in reservoir sedimentation and storage capacity under different future climate scenarios. Results indicated unique zones of advancing sediment deltas and temporary storage areas. Forecasted changes in reservoir bathymetry and sedimentation patterns were also developed for the various climate change scenarios. The warmer and wetter scenario produced sedimentation impacts similar to extensive development under no climate change. The results of these analyses are being used to develop collaborative watershed and soil conservation partnerships to reduce future soil losses and reservoir sedimentation from projected development. (author)

  10. Water- and air-quality and surficial bed-sediment monitoring of the Sweetwater Reservoir watershed, San Diego County, California, 2003-09

    Science.gov (United States)

    Mendez, Gregory O.; Majewski, Michael S.; Foreman, William T.; Morita, Andrew Y.

    2015-01-01

    In 1998, the U.S. Geological Survey, in cooperation with the Sweetwater Authority, began a study to assess the overall health of the Sweetwater watershed in San Diego County, California. This study was designed to provide a data set that could be used to evaluate potential effects from the construction and operation of State Route 125 within the broader context of the water quality and air quality in the watershed. The study included regular sampling of water, air, and surficial bed sediment at Sweetwater Reservoir (SWR) for chemical constituents, including volatile organic compounds (VOCs), base-neutral and acid- extractable organic compounds (BNAs) that include polycyclic aromatic hydrocarbons (PAHs), pesticides, and metals. Additionally, water samples were collected for anthropogenic organic indicator compounds in and around SWR. Background water samples were collected at Loveland Reservoir for VOCs, BNAs, pesticides, and metals. Surficial bed-sediment samples were collected for PAHs, organochlorine pesticides, and metals at Sweetwater and Loveland Reservoirs.

  11. Influence of watershed activities on the water quality and fish assemblages of a tropical African reservoir.

    Science.gov (United States)

    Mustapha, Moshood K

    2009-09-01

    Agricultural and fisheries activities around the watershed of an African tropical reservoir (Oyun reservoir, Offa, Nigeria) were found to contribute significantly to water quality deterioration of the dam axis of the reservoir, leading to eutrophication of that part of the reservoir. This is evident from the high amount of nitrate (6.4 mg/l), phosphate (2.2 mg/l) and sulphate (16.9 mg/l) in the water body which was higher than most other reservoirs in Nigeria. These nutrients originate in fertilizer run-offs from nearby farmlands and were found in higher concentrations in the rainy season which is usually the peak of agricultural activities in the locality. The eutrophication was more pronounced on the dam axis because it is the point of greatest human contact where pressure and run-off of sediments were high. The eutrophication altered the food web cycle which consequently affected the fish species composition and abundance with the dominance of cichlids (planktivorous group) and decline of some species in the fish population. Best management practices (BMP) to control and reduce the eutrophication and improve water quality and fish assemblages should be adopted and adapted to suit the situation in the reservoir.

  12. Calculation and analysis of the non-point source pollution in the upstream watershed of the Panjiakou Reservoir, People's Republic of China

    Science.gov (United States)

    Zhang, S.; Tang, L.

    2007-05-01

    Panjiakou Reservoir is an important drinking water resource in Haihe River Basin, Hebei Province, People's Republic of China. The upstream watershed area is about 35,000 square kilometers. Recently, the water pollution in the reservoir is becoming more serious owing to the non-point pollution as well as point source pollution on the upstream watershed. To effectively manage the reservoir and watershed and develop a plan to reduce pollutant loads, the loading of non-point and point pollution and their distribution on the upstream watershed must be understood fully. The SWAT model is used to simulate the production and transportation of the non-point source pollutants in the upstream watershed of the Panjiakou Reservoir. The loadings of non-point source pollutants are calculated for different hydrologic years and the spatial and temporal characteristics of non-point source pollution are studied. The stream network and topographic characteristics of the stream network and sub-basins are all derived from the DEM by ArcGIS software. The soil and land use data are reclassified and the soil physical properties database file is created for the model. The SWAT model was calibrated with observed data of several hydrologic monitoring stations in the study area. The results of the calibration show that the model performs fairly well. Then the calibrated model was used to calculate the loadings of non-point source pollutants for a wet year, a normal year and a dry year respectively. The time and space distribution of flow, sediment and non-point source pollution were analyzed depending on the simulated results. The comparison of different hydrologic years on calculation results is dramatic. The loading of non-point source pollution in the wet year is relatively larger but smaller in the dry year since the non-point source pollutants are mainly transported through the runoff. The pollution loading within a year is mainly produced in the flood season. Because SWAT is a

  13. Hybrid Multi-Objective Optimization of Folsom Reservoir Operation to Maximize Storage in Whole Watershed

    Science.gov (United States)

    Goharian, E.; Gailey, R.; Maples, S.; Azizipour, M.; Sandoval Solis, S.; Fogg, G. E.

    2017-12-01

    The drought incidents and growing water scarcity in California have a profound effect on human, agricultural, and environmental water needs. California experienced multi-year droughts, which have caused groundwater overdraft and dropping groundwater levels, and dwindling of major reservoirs. These concerns call for a stringent evaluation of future water resources sustainability and security in the state. To answer to this call, Sustainable Groundwater Management Act (SGMA) was passed in 2014 to promise a sustainable groundwater management in California by 2042. SGMA refers to managed aquifer recharge (MAR) as a key management option, especially in areas with high variation in water availability intra- and inter-annually, to secure the refill of underground water storage and return of groundwater quality to a desirable condition. The hybrid optimization of an integrated water resources system provides an opportunity to adapt surface reservoir operations for enhancement in groundwater recharge. Here, to re-operate Folsom Reservoir, objectives are maximizing the storage in the whole American-Cosumnes watershed and maximizing hydropower generation from Folsom Reservoir. While a linear programing (LP) module tends to maximize the total groundwater recharge by distributing and spreading water over suitable lands in basin, a genetic based algorithm, Non-dominated Sorting Genetic Algorithm II (NSGA-II), layer above it controls releases from the reservoir to secure the hydropower generation, carry-over storage in reservoir, available water for replenishment, and downstream water requirements. The preliminary results show additional releases from the reservoir for groundwater recharge during high flow seasons. Moreover, tradeoffs between the objectives describe that new operation performs satisfactorily to increase the storage in the basin, with nonsignificant effects on other objectives.

  14. Case studies of riparian and watershed restoration in the southwestern United States—Principles, challenges, and successes

    Science.gov (United States)

    Ralston, Barbara E.; Sarr, Daniel A.; Ralston, Barbara E.; Sarr, Daniel A.

    2017-07-18

    Globally, rivers and streams are highly altered by impoundments, diversions, and stream channelization associated with agricultural and water delivery needs. Climate change imposes additional challenges by further reducing discharge, introducing variability in seasonal precipitation patterns, and increasing temperatures. Collectively, these changes in a river or stream’s annual hydrology affects surface and groundwater dynamics, fluvial processes, and the linked aquatic and riparian responses, particularly in arid regions. Recognizing the inherent ecosystem services that riparian and aquatic habitats provide, society increasingly supports restoring the functionality of riparian and aquatic ecosystems.Given the wide range in types and scales of riparian impacts, approaches to riparian restoration can range from tactical, short-term, and site-specific efforts to strategic projects and long-term collaborations best pursued at the watershed scale. In the spirit of sharing information, the U.S. Geological Survey’s Grand Canyon Monitoring and Research Center convened a workshop June 23-25, 2015, in Flagstaff, Ariz. for practitioners in restoration science to share general principles, successful restoration practices, and discuss the challenges that face those practicing riparian restoration in the southwestern United States. Presenters from the Colorado River and the Rio Grande basins, offered their perspectives and experiences in restoration at the local, reach and watershed scale. Outcomes of the workshop include this Proceedings volume, which is composed of extended abstracts of most of the presentations given at the workshop, and recommendations or information needs identified by participants. The organization of the Proceedings follows a general progression from local scale restoration to river and watershed scale approaches, and finishes with restoration assessments and monitoring.

  15. Monitoring Reservoirs Using MERIS And LANDSAT Fused Images : A Case Study Of Polyfitos Reservoir - West Macedonia - Greece

    Science.gov (United States)

    Stefouli, M.; Charou, E.; Vasileiou, E.; Stathopoulos, N.; Perrakis, A.

    2012-04-01

    Research and monitoring is essential to assess baseline conditions in reservoirs and their watershed and provide necessary information to guide decision-makers. Erosion and degradation of mountainous areas can lead to gradual aggradation of reservoirs reducing their lifetime. Collected measurements and observations have to be communicated to the managers of the reservoirs so as to achieve a common / comprehensive management of a large watershed and reservoir system. At this point Remote Sensing could help as the remotely sensed data are repeatedly and readily available to the end users. Aliakmon is the longest river in Greece, it's length is about 297 km and the surface of the river basin is 9.210 km2.The flow of the river starts from Northwest of Greece and ends in Thermaikos Gulf. The riverbed is not natural throughout the entire route, because constructed dams restrict water and create artificial lakes, such as lake of Polyfitos, that prevent flooding. This lake is used as reservoir, for covering irrigational water needs and the water is used to produce energy from the hydroelectric plant of Public Power Corporation-PPC. The catchment basin of Polyfitos' reservoir covers an area of 847.76 km2. Soil erosion - degradation in the mountainous watershed of streams of Polyfitos reservoir is taking place. It has been estimated that an annual volume of sediments reaching the reservoir is of the order of 244 m3. Geomatic based techniques are used in processing multiple data of the study area. A data inventory was formulated after the acquisition of topographic maps, compilation of geological and hydro-geological maps, compilation of digital elevation model for the area of interest based on satellite data and available maps. It also includes the acquisition of various hydro-meteorological data when available. On the basis of available maps and satellite data, digital elevation models are used in order to delineate the basic sub-catchments of the Polyfytos basin as well as

  16. Hydrography - HYDROGRAPHY_HIGHRES_WATERBODYDISCRETE_NHD_USGS: Lakes, Ponds, Reservoirs, Swamps, and Marshes in Watersheds of Indiana (U. S. Geological Survey, 1:24,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — HYDROGRAPHY_HIGHRES_WATERBODYDISCRETE_NHD_USGS.SHP is a polygon shapefile that contains features of lakes, ponds, reservoirs, swamps and marshes in watersheds in and...

  17. Delineating groundwater/surface water interaction in a karst watershed: Lower Flint River Basin, southwestern Georgia, USA

    Directory of Open Access Journals (Sweden)

    Kathleen Rugel

    2016-03-01

    Full Text Available Study region: Karst watershed in Lower Flint River Basin (LFRB, southwestern Georgia, USA. Study focus: Baseflow discharges in the LFRB have declined for three decades as regional irrigation has increased; yet, the location and nature of connectivity between groundwater and surface water in this karstic region are poorly understood. Because growing water demands will likely be met by further development of regional aquifers, an important management concern is the nature of interactions between groundwater and surface water components under natural and anthropogenic perturbations. We conducted coarse and fine-scale stream sampling on a major tributary of the Lower Flint River (Ichawaynochaway Creek in southwestern Georgia, USA, to identify locations and patterns of enhanced hydrologic connectivity between this stream and the Upper Floridan Aquifer. New hydrological insights for the region: Prior water resource studies in the LFRB were based on regional modeling that neglected local heterogeneities in groundwater/surface water connectivity. Our results demonstrated groundwater inputs were concentrated around five of fifty sampled reaches, evidenced by increases in multiple groundwater indicators at these sites. These five reaches contributed up to 42% of the groundwater detected along the entire 50-km sampling section, with ∼24% entering through one groundwater-dominated tributary, Chickasawhatchee Creek. Intermittent flows occurred in two of these upstream reaches during extreme drought and heavy groundwater pumping, suggesting reach-scale behaviors should be considered in resource management and policy. Keywords: Karst hydrogeology, Hydrologic connectivity, Groundwater/surface water interaction, Upper Floridan Aquifer, Groundwater Irrigation

  18. Impacts of boreal hydroelectric reservoirs on seasonal climate and precipitation recycling as simulated by the CRCM5: a case study of the La Grande River watershed, Canada

    Science.gov (United States)

    Irambona, C.; Music, B.; Nadeau, D. F.; Mahdi, T. F.; Strachan, I. B.

    2018-02-01

    Located in northern Quebec, Canada, eight hydroelectric reservoirs of a 9782-km2 maximal area cover 6.4% of the La Grande watershed. This study investigates the changes brought by the impoundment of these reservoirs on seasonal climate and precipitation recycling. Two 30-year climate simulations, corresponding to pre- and post-impoundment conditions, were used. They were generated with the fifth-generation Canadian Regional Climate Model (CRCM5), fully coupled to a 1D lake model (FLake). Seasonal temperatures and annual energy budget were generally well reproduced by the model, except in spring when a cold bias, probably related to the overestimation of snow cover, was seen. The difference in 2-m temperature shows that reservoirs induce localized warming in winter (+0.7 ± 0.02 °C) and cooling in the summer (-0.3 ± 0.02 °C). The available energy at the surface increases throughout the year, mostly due to a decrease in surface albedo. Fall latent and sensible heat fluxes are enhanced due to additional energy storage and availability in summer and spring. The changes in precipitation and runoff are within the model internal variability. At the watershed scale, reservoirs induce an additional evaporation of only 5.9 mm year-1 (2%). We use Brubaker's precipitation recycling model to estimate how much of the precipitation is recycled within the watershed. In both simulations, the maximal precipitation recycling occurs in July (less than 6%), indicating weak land-atmosphere coupling. Reservoirs do not seem to affect this coupling, as precipitation recycling only decreased by 0.6% in July.

  19. Trends in precipitation and streamwater chemistry in East Creek watershed in southwestern British Columbia, 1971–2008

    Directory of Open Access Journals (Sweden)

    Michael C. FELLER

    2010-08-01

    Full Text Available Bulk precipitation and streamwater in a small, undisturbed, forested watershed in southwestern British Columbia were sampled regularly and analyzed for dissolved chemical constituents from 1971 to 2008. Concentrations and fluxes of most chemicals in precipitation and streamwater have exhibited considerable yearly variation. Temporal trends, when they have occurred, have rarely been consistent for the entire 1972–2008 time period. Precipitation has exhibited a decline in electrical conductivity, a decline in NH4, inorganic-N, and total-N concentrations and fluxes since the 1980s, an increase in pH, a decline in acid H fluxes since ~1990, and a decrease in SO4 concentrations and fluxes from 1980 until the late 1990s. Streamwater has exhibited an increase in NO3 concentrations and fluxes until the late 1990s, an increase in pH and decrease in acid H fluxes since the early 1990s, a decrease in SO4 concentrations and fluxes from ~1980 until ~2000, and increases in Na and Cl concentrations and fluxes until ~2000. Critical precipitation SO4 and inorganic-N loads have probably been exceeded for most years. East Ck. watershed has continuously experienced net inflows of all forms of N and acid H, and net outflows of dissolved Si, Na, Mg, and Ca. Net inflows of inorganic forms of N and total-N have decreased since the early 1980s. Net acid H inflows have decreased since the early 1990s, while net Na and Cl outflows increased until ~2000. The contribution of nutrient cycling processes within the watershed to the changes is currently unknown.

  20. Assessments on landslide susceptibility in the Tseng-wen reservoir watershed, Taiwan

    Science.gov (United States)

    Chen, Yu-Chin; Chen, Yung-Chau; Chen, Wen-Fu

    2014-05-01

    Typhoon Morakot under the strong influence of southwestern monsoon wind struck Taiwan on 8 August 2009, and dumped record-breaking rains in southern Taiwan. It triggered enormous landslides in mountains and severe flooding in low-lying areas. In addition, it destroyed or damaged houses, agricultural fields, roads, bridges, and other infrastructure facilities, causing massive economic loss and, more tragically, human casualties. In order to evaluate landslide hazard and risk assessment, it is important to understand the potential sites of landslide and their spatial distribution. Multi-temporal satellite images and geo-spatial data are used to build landslide susceptibility map for the post-disaster in the Tseng-wen reservoir watershed in this research. Elevation, slope, aspect, NDVI (normalized differential vegetation index), relief, roughness, distance to river, and distance to road are the considered factors for estimating landslide susceptibility. Maximum hourly rainfall and total rainfall, accompanied with typhoon event, are selected as the trigger factors of landslide events. Logistic regression analysis is adopted as the statistical method to model landslide susceptibility. The assessed susceptibility is represented in 4 levels which are high, high-intermediate, intermediate, and low level, respectively. Landslide spatial distribution can be depicted as a landslide susceptibility map with respect to each considered influence factors for a specified susceptible level. The landslide areas are about 358 ha and 1,485 ha before and after typhoon Morakot. The new landslide area, induced by typhoon Morakot, is as almost 4 times as the landslide area before typhoon Morakot. In addition, there is about 44.56% landslide area elevation ranging from 500m to 1000m and about 57.22% average slope ranging from 30° to 45° of landslide area. Furthermore, the devastating landslides were happened at those sites close to rivers, exposed area, and area with big land cover change

  1. Simulation of Sediment Transport Caused by Landslide at Nanhua Reservoir Watershed in Southern Taiwan

    Science.gov (United States)

    Lee, Ming-Hsi; Huang, Cong-Gi; Lin, Huan-Hsuan

    2016-04-01

    As a result of heavy rainfall, steep topography, young and weak geological formations, earthquakes, loose soils, slope land cultivation and other human disturbance, much area in Taiwan are prone to the occurrence of disastrous mass movements such as landslides and sediment disasters. During recent years, the extreme rainfall events brought huge amounts of rainfall and triggered severe changes in watershed environments. Typhoon Morakot in August 2009 caused severe landslides, debris flow, flooding and sediment disasters induced by record-break rainfall. The maximum rainfall of mountain area in Chiayi, Tainan, Kaohsiung and Pingtung County were over 2,900 mm. The study area is located at Nanhua reservoir watershed in southern Taiwan. The numerical model (HEC-RAS 4.1 and FLO-2D) will be used to simulate the sediment transport caused by landslide and the study will find out the separating location of erosion and deposition in the river, the danger area of riverbank, and the safety of the river terrace village under the return period of 50-year, 100-year and 200-year (such as Typhoon Morakot). The results of this study can provide for the disaster risk management of administrative decisions to lessen the impacts of natural hazards and may also be useful for time-space variation of sediment disasters caused by Climate Change.

  2. Watershed memory at the Coweeta Hydrologic Laboratory: the effect of past precipitation and storage on hydrologic response

    Science.gov (United States)

    Fabian Nippgen; Brian L. McGlynn; Ryan E. Emanuel; James M. Vose

    2016-01-01

    The rainfall-runoff response of watersheds is affected by the legacy of past hydroclimatic conditions. We examined how variability in precipitation affected streamflow using 21 years of daily streamflow and precipitation data from five watersheds at the Coweeta Hydrologic Laboratory in southwestern North Carolina, USA. The gauged watersheds contained both...

  3. [Aquatic insects and water quality in Peñas Blancas watershed and reservoir].

    Science.gov (United States)

    Mora, Meyer Guevara

    2011-06-01

    The aquatic insects have been used to evaluate water quality of aquatic environments. The population of aquatic insects and the water quality of the area were characterized according to the natural and human alterations present in the study site. During the monthly-survey, pH, DO, temperature, water level, DBO, PO4 and NO3 were measured. Biological indexes (abundance, species richness and the BMWP-CR) were used to evaluate the water quality. No relation between environmental and aquatic insects was detected. Temporal and spatial differences attributed to the flow events (temporal) and the presence of Peñas Blancas reservoir (spatial). In the future, the investigations in Peñas Blancas watershed need to be focused on determining the real influence of the flows, sediment release and the possible water quality degradation because of agriculture activities.

  4. A Watershed Cooperative Addresses Short and Long-Term Perspectives for the Management of Harmful Algae at a Southwestern Ohio Drinking Water Reservoir

    Science.gov (United States)

    The multi-agency East Fork Watershed Cooperative (EFWCoop) has focused discussion and consequent leveraged monitoring efforts to understand how to ensure water safety in the short term. The EFWCoop is also collecting the dense data sets required to consider potential options for...

  5. Tsengwen Reservoir Watershed Hydrological Flood Simulation Under Global Climate Change Using the 20 km Mesh Meteorological Research Institute Atmospheric General Circulation Model (MRI-AGCM

    Directory of Open Access Journals (Sweden)

    Nobuaki Kimura

    2014-01-01

    Full Text Available Severe rainstorms have occurred more frequently in Taiwan over the last decade. To understand the flood characteristics of a local region under climate change, a hydrological model simulation was conducted for the Tsengwen Reservoir watershed. The model employed was the Integrated Flood Analysis System (IFAS, which has a conceptual, distributed rainfall-runoff analysis module and a GIS data-input function. The high-resolution rainfall data for flood simulation was categorized into three terms: 1979 - 2003 (Present, 2015 - 2039 (Near-future, and 2075 - 2099 (Future, provided by the Meteorological Research Institute atmospheric general circulation model (MRI-AGCM. Ten extreme rainfall (top ten events were selected for each term in descending order of total precipitation volume. Due to the small watershed area the MRI-AGCM3.2S data was downsized into higher resolution data using the Weather Research and Forecasting Model. The simulated discharges revealed that most of the Near-future and Future peaks caused by extreme rainfall increased compared to the Present peak. These ratios were 0.8 - 1.6 (Near-future/Present and 0.9 - 2.2 (Future/Present, respectively. Additionally, we evaluated how these future discharges would affect the reservoir¡¦s flood control capacity, specifically the excess water volume required to be stored while maintaining dam releases up to the dam¡¦s spillway capacity or the discharge peak design for flood prevention. The results for the top ten events show that the excess water for the Future term exceeded the reservoir¡¦s flood control capacity and was approximately 79.6 - 87.5% of the total reservoir maximum capacity for the discharge peak design scenario.

  6. Potential accumulation of contaminated sediments in a reservoir of a high-Andean watershed: Morphodynamic connections with geochemical processes

    Science.gov (United States)

    Contreras, María. Teresa; Müllendorff, Daniel; Pastén, Pablo; Pizarro, Gonzalo E.; Paola, Chris; Escauriaza, Cristián.

    2015-05-01

    Rapid changes due to anthropic interventions in high-altitude environments, such as the Altiplano region in South America, require new approaches to understand the connections between physical and geochemical processes. Alterations of the water quality linked to the river morphology can affect the ecosystems and human development in the long term. The future construction of a reservoir in the Lluta River, located in northern Chile, will change the spatial distribution of arsenic-rich sediments, which can have significant effects on the lower parts of the watershed. In this investigation, we develop a coupled numerical model to predict and evaluate the interactions between morphodynamic changes in the Lluta reservoir, and conditions that can potentially desorb arsenic from the sediments. Assuming that contaminants are mobilized under anaerobic conditions, we calculate the oxygen concentration within the sediments to study the interactions of the delta progradation with the potential arsenic release. This work provides a framework for future studies aimed to analyze the complex connections between morphodynamics and water quality, when contaminant-rich sediments accumulate in a reservoir. The tool can also help to design effective risk management and remediation strategies in these extreme environments. This article was corrected on 15 JUNE 2015. See the end of the full text for details.

  7. Large reservoirs: Chapter 17

    Science.gov (United States)

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  8. Priority River Metrics for Residents of an Urbanized Arid Watershed

    Science.gov (United States)

    What indicators to use is a persistent question in river and stream assessment and management. We employ qualitative research techniques to identify features of rivers and streams important to the general public in an urbanized watershed of the Southwestern U.S. Transcriptions an...

  9. Daily Streamflow Predictions in an Ungauged Watershed in Northern California Using the Precipitation-Runoff Modeling System (PRMS): Calibration Challenges when nearby Gauged Watersheds are Hydrologically Dissimilar

    Science.gov (United States)

    Dhakal, A. S.; Adera, S.

    2017-12-01

    Accurate daily streamflow prediction in ungauged watersheds with sparse information is challenging. The ability of a hydrologic model calibrated using nearby gauged watersheds to predict streamflow accurately depends on hydrologic similarities between the gauged and ungauged watersheds. This study examines daily streamflow predictions using the Precipitation-Runoff Modeling System (PRMS) for the largely ungauged San Antonio Creek watershed, a 96 km2 sub-watershed of the Alameda Creek watershed in Northern California. The process-based PRMS model is being used to improve the accuracy of recent San Antonio Creek streamflow predictions generated by two empirical methods. Although San Antonio Creek watershed is largely ungauged, daily streamflow data exists for hydrologic years (HY) 1913 - 1930. PRMS was calibrated for HY 1913 - 1930 using streamflow data, modern-day land use and PRISM precipitation distribution, and gauged precipitation and temperature data from a nearby watershed. The PRMS model was then used to generate daily streamflows for HY 1996-2013, during which the watershed was ungauged, and hydrologic responses were compared to two nearby gauged sub-watersheds of Alameda Creek. Finally, the PRMS-predicted daily flows between HY 1996-2013 were compared to the two empirically-predicted streamflow time series: (1) the reservoir mass balance method and (2) correlation of historical streamflows from 80 - 100 years ago between San Antonio Creek and a nearby sub-watershed located in Alameda Creek. While the mass balance approach using reservoir storage and transfers is helpful for estimating inflows to the reservoir, large discrepancies in daily streamflow estimation can arise. Similarly, correlation-based predicted daily flows which rely on a relationship from flows collected 80-100 years ago may not represent current watershed hydrologic conditions. This study aims to develop a method of streamflow prediction in the San Antonio Creek watershed by examining PRMS

  10. Eliciting stakeholder values for coral reef management tasks in the Guánica Bay watershed, Puerto Rico

    Science.gov (United States)

    The EPA is developing a valuation protocol for southwest Puerto Rico that will support the US Coral Reef Task Force’s (USCRTF) Partnership Initiative in the Guánica Bay/Rio Loco (GB/RL) Watershed. The GB/RL watershed is located in southwestern Puerto Rico and includes the urbaniz...

  11. Radioactive fallout reconstruction from contemporary measurements of reservoir sediments

    International Nuclear Information System (INIS)

    Krey, P.W.; Heit, M.; Miller, K.M.

    1990-01-01

    The temporal history of atmospheric deposition to a watershed area can be preserved in the sediment of a lake or reservoir that is supplied by the watershed. The 137 Cs and isotopic Pu concentrations with depth were determined in the sediments of two reservoirs, Enterprise and Deer Creek, which are located in widely separated regions of the state of Utah. Our data not only reconstruct the history of the total radioactive fallout in the area, but also permit estimating the contributions from global sources and from the Nevada Test Site detonations in the 1950s

  12. Watershed Models for Decision Support for Inflows to Potholes Reservoir, Washington

    Science.gov (United States)

    Mastin, Mark C.

    2009-01-01

    A set of watershed models for four basins (Crab Creek, Rocky Ford Creek, Rocky Coulee, and Lind Coulee), draining into Potholes Reservoir in east-central Washington, was developed as part of a decision support system to aid the U.S. Department of the Interior, Bureau of Reclamation, in managing water resources in east-central Washington State. The project is part of the U.S. Geological Survey and Bureau of Reclamation collaborative Watershed and River Systems Management Program. A conceptual model of hydrology is outlined for the study area that highlights the significant processes that are important to accurately simulate discharge under a wide range of conditions. The conceptual model identified the following factors as significant for accurate discharge simulations: (1) influence of frozen ground on peak discharge, (2) evaporation and ground-water flow as major pathways in the system, (3) channel losses, and (4) influence of irrigation practices on reducing or increasing discharge. The Modular Modeling System was used to create a watershed model for the four study basins by combining standard Precipitation Runoff Modeling System modules with modified modules from a previous study and newly modified modules. The model proved unreliable in simulating peak-flow discharge because the index used to track frozen ground conditions was not reliable. Mean monthly and mean annual discharges were more reliable when simulated. Data from seven USGS streamflow-gaging stations were used to compare with simulated discharge for model calibration and evaluation. Mean annual differences between simulated and observed discharge varied from 1.2 to 13.8 percent for all stations used in the comparisons except one station on a regional ground-water discharge stream. Two thirds of the mean monthly percent differences between the simulated mean and the observed mean discharge for these six stations were between -20 and 240 percent, or in absolute terms, between -0.8 and 11 cubic feet per

  13. An Integrated Mobile Application to Improve the Watershed Management in Taiwan

    Science.gov (United States)

    Chou, T. Y.; Chen, M. H.; Lee, C. Y.

    2015-12-01

    This study aims to focus on the application of information technology on the reservoir watershed management. For the civil and commercial water usage, reservoirs and its upstream plays a significant role due to water scarcity and inequality, especially in Taiwan. Due to the progress of information technology, apply it can improve the efficiency and accuracy of daily affairs significantly which already proved by previous researches. Taipei Water Resource District (TWRD) is selected as study area for this study, it is the first reservoir watershed which authorized as special protection district by urban planning act. This study has designed a framework of mobile application, which addressed three types of public affairs relate to watershed management, includes building management, illegal land-use investigation, and a dashboard of real time stream information. This mobile application integrated a dis-connected map and interactive interface to collect, record and calculate field information which helps the authority manage the public affairs more efficiency.

  14. Effects of climate variability and accelerated forest thinning on watershed-scale runoff in southwestern USA ponderosa pine forests.

    Directory of Open Access Journals (Sweden)

    Marcos D Robles

    Full Text Available The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres of ponderosa pine (Pinus ponderosa forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment and modest when compared to mean annual runoff from the study watersheds (0-3%. Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide.

  15. Effects of climate variability and accelerated forest thinning on watershed-scale runoff in southwestern USA ponderosa pine forests.

    Science.gov (United States)

    Robles, Marcos D; Marshall, Robert M; O'Donnell, Frances; Smith, Edward B; Haney, Jeanmarie A; Gori, David F

    2014-01-01

    The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0-3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide.

  16. Effects of Climate Variability and Accelerated Forest Thinning on Watershed-Scale Runoff in Southwestern USA Ponderosa Pine Forests

    Science.gov (United States)

    Robles, Marcos D.; Marshall, Robert M.; O'Donnell, Frances; Smith, Edward B.; Haney, Jeanmarie A.; Gori, David F.

    2014-01-01

    The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0–3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide. PMID

  17. Identifying the Relationships between Water Quality and Land Cover Changes in the Tseng-Wen Reservoir Watershed of Taiwan

    Directory of Open Access Journals (Sweden)

    Hone-Jay Chu

    2013-01-01

    Full Text Available The effects on water quality of land use and land cover changes, which are associated with human activities and natural factors, are poorly identified. Fine resolution satellite imagery provides opportunities for land cover monitoring and assessment. The multiple satellite images after typhoon events collected from 2001 to 2010 covering land areas and land cover conditions are evaluated by the Normalized Difference Vegetation Index (NDVI. The relationship between land cover and observed water quality, such as suspended solids (SS and nitrate-nitrogens (NO3-N, are explored in the study area. Results show that the long-term variations in water quality are explained by NDVI data in the reservoir buffer zones. Suspended solid and nitrate concentrations are related to average NDVI values on multiple spatial scales. Annual NO3-N concentrations are positively correlated with an average NDVI with a 1 km reservoir buffer area, and the SS after typhoon events associated with landslides are negatively correlated with the average NDVI in the entire watershed. This study provides an approach for assessing the influences of land cover on variations in water quality.

  18. Historical deposition and fluxes of mercury in Narraguinnep Reservoir, southwestern Colorado, USA

    International Nuclear Information System (INIS)

    Gray, John E.; Fey, David L.; Holmes, Charles W.; Lasorsa, Brenda K.

    2005-01-01

    Narraguinnep Reservoir has been identified as containing fish with elevated Hg concentrations and has been posted with an advisory recommending against consumption of fish. There are presently no point sources of significant Hg contamination to this reservoir or its supply waters. To evaluate potential historical Hg sources and deposition of Hg to Narraguinnep Reservoir, the authors measured Hg concentrations in sediment cores collected from this reservoir. The cores were dated by the 137 Cs method and these dates were further refined by relating water supply basin hydrological records with core sedimentology. Rates of historical Hg flux were calculated (ng/cm 2 /a) based on the Hg concentrations in the cores, sediment bulk densities, and sedimentation rates. The flux of Hg found in Narraguinnep Reservoir increased by approximately a factor of 2 after about 1970. The 3 most likely sources of Hg to Narraguinnep Reservoir are surrounding bedrocks, upstream inactive Au-Ag mines, and several coal-fired electric power plants in the Four Corners region. Patterns of Hg flux do not support dominant Hg derivation from surrounding bedrocks or upstream mining sources. There are 14 coal-fired power plants within 320 km of Narraguinnep Reservoir that produce over 80 x 10 6 MWH of power and about 1640 kg-Hg/a are released through stack emissions, contributing significant Hg to the surrounding environment. Two of the largest power plants, located within 80 km of the reservoir, emit about 950 kg-Hg/a. Spatial and temporal patterns of Hg fluxes for sediment cores collected from Narraguinnep Reservoir suggest that the most likely source of Hg to this reservoir is from atmospheric emissions from the coal-fired electric power plants, the largest of which began operation in this region in the late-1960s and early 1970s

  19. Linking Decisions to Stakeholder Values in the Guanica Bay Watershed, Puerto Rico

    Science.gov (United States)

    This presentation lays the foundation for the session by introducing the Structured Decision-Making (SDM) approach that is being used by the Environmental Protection Agency (EPA) in the Guánica Bay watershed of southwestern Puerto Rico. EPA is working with other agencies i...

  20. Impact of Water Usage on the Hydrology of Streams in the Mill River Watershed, Massachusetts

    Science.gov (United States)

    Newton, R. M.; Rhodes, A. L.; Pufall, A.; Bradstreet, E.; Katchpole, S.; Mattison, E.; Woods, R.

    2001-05-01

    Removal of surface water for municipal water supplies has reduced base flow in two tributary streams to the Mill River in Whately Massachusetts. This reduction in the flow of high quality water from these tributaries reduces the amount of dilution of high anthropogenic chemical loads in the main branch of the Mill River leading to high concentrations of chloride and sulfate. The city of Northampton, operates a reservoir on West Brook that removes an average of 5,700 m3/day. West Brook occupies a 28.4 km2 watershed underlain by Paleozoic igneous and metamorphic rocks that are mainly overlain by thin deposits of Pleistocene till. There are isolated areas of stratified drift in the area of the reservoir and where West Brook enters into the area formerly occupied by Glacial Lake Hitchcock. The reservoir (0.35 km2 in area) lies within the upper third of the subcatchment and is primarily fed by Avery Brook (7.6 km2 watershed). Although the reservoirs watershed represent about one third of the West Brook watershed, high water demands limit the release of water from the reservoir to periods of high flow associated with intense rainfall or snowmelt events. A comparison of unit hydrographs from Avery Brook, upstream of the reservoir with those from West Brook near where it enters the Mill River show significant lower discharges downstream (1mm/day). A comparison of flow duration curves show that discharges below the reservoir are dramatically lower during low flow conditions. The town of South Deerfield operates a reservoir on Roaring Brook that removes approximately 3,800 m3/day. Roaring Brook occupies a 14.0 km2 watershed that is similar in geology to West Brook. The reservoir is located on the downstream section of the brook just above where it enters the Mill River. Unlike the Northampton reservoir, water is almost continually released from the reservoir although the rate does fluctuate greatly. Data from a gage station located just downstream of the dam show rapid

  1. Seasonal assessment, treatment and removal of heavy metal concentrations in a tropical drinking water reservoir

    Directory of Open Access Journals (Sweden)

    Mustapha Moshood Keke

    2016-06-01

    Full Text Available Heavy metals are present in low concentrations in reservoirs, but seasonal anthropogenic activities usually elevate the concentrations to a level that could become a health hazard. The dry season concentrations of cadmium, copper, iron, lead, mercury, nickel and zinc were assessed from three sites for 12 weeks in Oyun reservoir, Offa, Nigeria. Triplicate surface water samples were collected and analysed using atomic absorption spectrophotometry. The trend in the level of concentrations in the three sites is site C > B > A, while the trend in the levels of the concentrations in the reservoir is Ni > Fe > Zn > Pb > Cd > Cu > Hg. Ni, Cd, Pb and Hg were found to be higher than the WHO guidelines for the metals in drinking water. The high concentration of these metals was from anthropogenic watershed run-off of industrial effluents, domestic sewages and agricultural materials into the reservoir coming from several human activities such as washing, bathing, fish smoking, especially in site C. The health effects of high concentration of these metals in the reservoir were highlighted. Methods for the treatment and removal of the heavy metals from the reservoir during water purification such as active carbon adsorption, coagulation-flocculation, oxidation-filtration, softening treatment and reverse osmosis process were highlighted. Other methods that could be used include phytoremediation, rhizofiltration, bisorption and bioremediation. Watershed best management practices (BMP remains the best solution to reduce the intrusion of the heavy metals from the watershed into the reservoir.

  2. A pragmatic method for estimating seepage losses for small reservoirs with application in rural India

    Science.gov (United States)

    Oblinger, Jennifer A.; Moysey, Stephen M. J.; Ravindrinath, Rangoori; Guha, Chiranjit

    2010-05-01

    SummaryThe informal construction of small dams to capture runoff and artificially recharge ground water is a widespread strategy for dealing with water scarcity. A lack of technical capacity for the formal characterization of these systems, however, is often an impediment to the implementation of effective watershed management practices. Monitoring changes in reservoir storage provides a conceptually simple approach to quantify seepage, but does not account for the losses occurring when seepage is balanced by inflows to the reservoir and the stage remains approximately constant. To overcome this problem we evaluate whether a physically-based volume balance model that explicitly represents watershed processes, including reservoir inflows, can be constrained by a limited set of data readily collected by non-experts, specifically records of reservoir stage, rainfall, and evaporation. To assess the impact of parameter non-uniqueness associated with the calibration of the non-linear model, we perform a Monte Carlo analysis to quantify uncertainty in the total volume of water contributed to the subsurface by the 2007 monsoon for a dam located in the Deccan basalts near the village of Salri in Madhya Pradesh, India. The Monte Carlo analysis demonstrated that subsurface losses from the reservoir could be constrained with the available data, but additional measurements are required to constrain reservoir inflows. Our estimate of seepage from the reservoir (7.0 ± 0.6 × 10 4 m 3) is 3.5 times greater than the recharge volume estimated by considering reservoir volume changes alone. This result suggests that artificial recharge could be significantly underestimated when reservoir inflows are not explicitly included in models. Our seepage estimate also accounts for about 11% of rainfall occurring upstream of the dam and is comparable in magnitude to natural ground water recharge, thereby indicating that the reservoir plays a significant role in the hydrology of this small

  3. Reconstructing depositional processes and history from reservoir stratigraphy: Englebright Lake, Yuba River, northern California

    Science.gov (United States)

    Snyder, N.P.; Wright, S.A.; Alpers, Charles N.; Flint, L.E.; Holmes, C.W.; Rubin, D.M.

    2006-01-01

    Reservoirs provide the opportunity to link watershed history with its stratigraphic record. We analyze sediment cores from a northern California reservoir in the context of hydrologic history, watershed management, and depositional processes. Observations of recent depositional patterns, sediment-transport calculations, and 137CS geochronology support a conceptual model in which the reservoir delta progrades during floods of short duration (days) and is modified during prolonged (weeks to months) drawdowns that rework topset beds and transport sand from topsets to foresets. Sediment coarser than 0.25-0.5 mm. deposits in foresets and topsets, and finer material falls out of suspension as bottomset beds. Simple hydraulic calculations indicate that fine sand (0.063-0.5 mm) is transported into the distal bottomset area only during floods. The overall stratigraphy suggests that two phases of delta building occurred in the reservoir. The first, from dam construction in 1940 to 1970, was heavily influenced by annual, prolonged >20 m drawdowns of the water level. The second, built on top of the first, reflects sedimentation from 1970 to 2002 when the influence of drawdowns was less. Sedimentation rates in the central part of the reservoir have declined ???25% since 1970, likely reflecting a combination of fewer large floods, changes in watershed management, and winnowing of stored hydraulic mining sediment. Copyright 2006 by the American Geophysical Union.

  4. Sedimentation control in the reservoirs by using an obstacle

    Indian Academy of Sciences (India)

    2Faculty of Water Sciences Engineering, Shahid Chamran University, Ahwaz, Iran. 3Department of ... some experiments were carried out without an obstacle. Results showed ..... Design and management of dams, reservoirs and watersheds ...

  5. Estimation of Bank Erosion Due To Reservoir Operation in Cascade (Case Study: Citarum Cascade Reservoir

    Directory of Open Access Journals (Sweden)

    Sri Legowo

    2009-11-01

    Full Text Available Sedimentation is such a crucial issue to be noted once the accumulated sediment begins to fill the reservoir dead storage, this will then influence the long-term reservoir operation. The sediment accumulated requires a serious attention for it may influence the storage capacity and other reservoir management of activities. The continuous inflow of sediment to the reservoir will decrease the capacity of reservoir storage, the reservoir value in use, and the useful age of reservoir. Because of that, the rate of the sediment needs to be delayed as possible. In this research, the delay of the sediment rate is considered based on the rate of flow of landslide of the reservoir slope. The rate of flow of the sliding slope can be minimized by way of each reservoir autonomous efforts. This effort can be performed through; the regulation of fluctuating rate of reservoir surface current that does not cause suddenly drawdown and upraising as well. The research model is compiled using the searching technique of Non Linear Programming (NLP.The rate of bank erosion for the reservoir variates from 0.0009 to 0.0048 MCM/year, which is no sigrificant value to threaten the life time of reservoir.Mean while the rate of watershed sediment has a significant value, i.e: 3,02 MCM/year for Saguling that causes to fullfill the storage capacity in 40 next years (from years 2008.

  6. Analysis, Evaluation and Measures to Reduce Environmental Risk within Watershed Areas of the Eastern Zauralye District Lakes

    Science.gov (United States)

    Rasskasova, N. S.; Bobylev, A. V.; Malaev, A. V.

    2017-11-01

    The authors have performed an analysis for the use of watershed areas of the lakes of the Eastern Zauralye district (the territory to the east of Ural) for national economic purposes. The analysis gave a possibility to assess the impact of watersheds depending on the applied technologies on the dump of various runoff into the reservoir waters. The watershed areas of all lakes have been found to be actively used as pastures, farmland and recreational resources. Some of the main sources of solid and liquid industrial waste are cattle farms and agricultural land using outdated equipment and technologies. The study of 26 km of the watershed line areas showed that pollutants (household garbage, fuels and lubricants) and organic substances (phosphorus and nitrogen) got into the waters of the reservoirs. The maximum runoff of solid and liquid waste into the waters of the lakes happens in summer which leads to increased concentrations of organic substances, an increase in productivity of alga and higher aquatic flora determining the degree of eutrophication and trophy in the reservoirs. The average annual trophic status of TSI lakes of the Eastern Zauralye district is 56 which corresponds to the typical phase of eutrophy. The reduced transparency of lakes is also the evidence of an increase in biological productivity of reservoirs, their eutrophication and, as a result, the water quality deterioration. The intensive eutrophication of reservoirs, in its turn, most significantly affects the concentration of the ammonium form of nitrogen, total phosphorus and total nitrogen, increase in pH and deterioration of oxygen condition. The authors have developed various activities to reduce a technogenic risk in the watershed areas of the lakes in the Eastern Zauralye district which can be applied to other areas using the analogy method.

  7. Reservoir Sedimentation and Upstream Sediment Sources: Perspectives and Future Research Needs on Streambank and Gully Erosion

    Science.gov (United States)

    Fox, G. A.; Sheshukov, A.; Cruse, R.; Kolar, R. L.; Guertault, L.; Gesch, K. R.; Dutnell, R. C.

    2016-05-01

    The future reliance on water supply and flood control reservoirs across the globe will continue to expand, especially under a variable climate. As the inventory of new potential dam sites is shrinking, construction of additional reservoirs is less likely compared to simultaneous flow and sediment management in existing reservoirs. One aspect of this sediment management is related to the control of upstream sediment sources. However, key research questions remain regarding upstream sediment loading rates. Highlighted in this article are research needs relative to measuring and predicting sediment transport rates and loading due to streambank and gully erosion within a watershed. For example, additional instream sediment transport and reservoir sedimentation rate measurements are needed across a range of watershed conditions, reservoir sizes, and geographical locations. More research is needed to understand the intricate linkage between upland practices and instream response. A need still exists to clarify the benefit of restoration or stabilization of a small reach within a channel system or maturing gully on total watershed sediment load. We need to better understand the intricate interactions between hydrological and erosion processes to improve prediction, location, and timing of streambank erosion and failure and gully formation. Also, improved process-based measurement and prediction techniques are needed that balance data requirements regarding cohesive soil erodibility and stability as compared to simpler topographic indices for gullies or stream classification systems. Such techniques will allow the research community to address the benefit of various conservation and/or stabilization practices at targeted locations within watersheds.

  8. The regional and global significance of nitrogen removal in lakes and reservoirs

    Science.gov (United States)

    Harrison, J.A.; Maranger, R.J.; Alexander, Richard B.; Giblin, A.E.; Jacinthe, P.-A.; Mayorga, Emilio; Seitzinger, S.P.; Sobota, D.J.; Wollheim, W.M.

    2009-01-01

    Human activities have greatly increased the transport of biologically available nitrogen (N) through watersheds to potentially sensitive coastal ecosystems. Lentic water bodies (lakes and reservoirs) have the potential to act as important sinks for this reactive N as it is transported across the landscape because they offer ideal conditions for N burial in sediments or permanent loss via denitrification. However, the patterns and controls on lentic N removal have not been explored in great detail at large regional to global scales. In this paper we describe, evaluate, and apply a new, spatially explicit, annual-scale, global model of lentic N removal called NiRReLa (Nitrogen Retention in Reservoirs and Lakes). The NiRReLa model incorporates small lakes and reservoirs than have been included in previous global analyses, and also allows for separate treatment and analysis of reservoirs and natural lakes. Model runs for the mid-1990s indicate that lentic systems are indeed important sinks for N and are conservatively estimated to remove 19.7 Tg N year-1 from watersheds globally. Small lakes (<50 km2) were critical in the analysis, retaining almost half (9.3 Tg N year -1) of the global total. In model runs, capacity of lakes and reservoirs to remove watershed N varied substantially at the half-degree scale (0-100%) both as a function of climate and the density of lentic systems. Although reservoirs occupy just 6% of the global lentic surface area, we estimate they retain ~33% of the total N removed by lentic systems, due to a combination of higher drainage ratios (catchment surface area:lake or reservoir surface area), higher apparent settling velocities for N, and greater average N loading rates in reservoirs than in lakes. Finally, a sensitivity analysis of NiRReLa suggests that, on-average, N removal within lentic systems will respond more strongly to changes in land use and N loading than to changes in climate at the global scale. ?? 2008 Springer Science

  9. How do we know how much groundwater is stored in south-western Cape mountains?

    CSIR Research Space (South Africa)

    Midgley, JJ

    2001-07-01

    Full Text Available Isotopes of water (D, O-18) in rain and streams were used to obtain an estimate of the amount of ground water in the south-western Cape Mountains. It was assumed that the groundwater reservoir is well-mixed and that the water isotope signals...

  10. Quantification of Interbasin Transfers into the Addicks Reservoir during Hurricane Harvey

    Science.gov (United States)

    Sebastian, A.; Juan, A.; Gori, A.; Maulsby, F.; Bedient, P. B.

    2017-12-01

    Between August 25 and 30, Hurricane Harvey dropped unprecedented rainfall over southeast Texas causing widespread flooding in the City of Houston. Water levels in the Addicks and Barker reservoirs, built in the 1940s to protect downtown Houston, exceeded previous records by approximately 2 meters. Concerns regarding structural integrity of the dams and damage to neighbourhoods in within the reservoir pool resulted in controlled releases into Buffalo Bayou, flooding an estimated 4,000 additional structures downstream of the dams. In 2016, during the Tax Day it became apparent that overflows from Cypress Creek in northern Harris County substantially contribute to water levels in Addicks. Prior to this event, little was known about the hydrodynamics of this overflow area or about the additional stress placed on Addicks and Barker reservoirs due to the volume of overflow. However, this information is critical for determining flood risk in Addicks Watershed, and ultimately Buffalo Bayou. In this study, we utilize the recently developed HEC-RAS 2D model the interbasin transfer that occurs between Cypress Creek Watershed and Addicks Reservoir to quantify the volume and rate at which water from Cypress enters the reservoir during extreme events. Ultimately, the results of this study will help inform the official hydrologic models used by HCFCD to determine reservoir operation during future storm events and better inform residents living in or above the reservoir pool about their potential flood risk.

  11. An index of reservoir habitat impairment

    Science.gov (United States)

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  12. Redistribution of cesium-137 in southeastern watersheds

    International Nuclear Information System (INIS)

    McHenry, J.R.; Ritchie, J.C.

    1975-01-01

    Sediment samples from 14 southeastern agricultural reservoirs and surface samples from representative soils from the contributing water shed areas were analyzed for 137 Cs. The concentrations of 137 Cs measured reflect the nature of the watershed, its cover, its use, and man's activities. Since the redistribution of 137 Cs was assumed to result from soil erosion, recent erosion rates can be calculated from the measured 137 Cs accumulations in sediments and from the decreases in the 137 Cs calculated to have been deposited on upland soils. Measured concentrations of 137 Cs ranged from 14 to 158 nCi/m 2 in surface soils. As much as 525 nCi/m 2 of 137 Cs was measured in the deposited sediment profile. Watershed budgets for 137 Cs were calculated for three representative watersheds using available sediment survey information and the measured 137 Cs concentrations

  13. The water-quality monitoring program for the Baltimore reservoir system, 1981-2007—Description, review and evaluation, and framework integration for enhanced monitoring

    Science.gov (United States)

    Koterba, Michael T.; Waldron, Marcus C.; Kraus, Tamara E.C.

    2011-01-01

    The City of Baltimore, Maryland, and parts of five surrounding counties obtain their water from Loch Raven and Liberty Reservoirs. A third reservoir, Prettyboy, is used to resupply Loch Raven Reservoir. Management of the watershed conditions for each reservoir is a shared responsibility by agreement among City, County, and State jurisdictions. The most recent (2005) Baltimore Reservoir Watershed Management Agreement (RWMA) called for continued and improved water-quality monitoring in the reservoirs and selected watershed tributaries. The U.S. Geological Survey (USGS) conducted a retrospective review of the effectiveness of monitoring data obtained and analyzed by the RWMA jurisdictions from 1981 through 2007 to help identify possible improvements in the monitoring program to address RWMA water-quality concerns. Long-term water-quality concerns include eutrophication and sedimentation in the reservoirs, and elevated concentrations of (a) nutrients (nitrogen and phosphorus) being transported from the major tributaries to the reservoirs, (b) iron and manganese released from reservoir bed sediments during periods of deep-water anoxia, (c) mercury in higher trophic order game fish in the reservoirs, and (d) bacteria in selected reservoir watershed tributaries. Emerging concerns include elevated concentrations of sodium, chloride, and disinfection by-products (DBPs) in the drinking water from both supply reservoirs. Climate change and variability also could be emerging concerns, affecting seasonal patterns, annual trends, and drought occurrence, which historically have led to declines in reservoir water quality. Monitoring data increasingly have been used to support the development of water-quality models. The most recent (2006) modeling helped establish an annual sediment Total Maximum Daily Load to Loch Raven Reservoir, and instantaneous and 30-day moving average water-quality endpoints for chlorophyll-a (chl-a) and dissolved oxygen (DO) in Loch Raven and Prettyboy

  14. Dynamics and ecological risk assessment of chromophoric dissolved organic matter in the Yinma River Watershed: Rivers, reservoirs, and urban waters.

    Science.gov (United States)

    Li, Sijia; Zhang, Jiquan; Guo, Enliang; Zhang, Feng; Ma, Qiyun; Mu, Guangyi

    2017-10-01

    The extensive use of a geographic information system (GIS) and remote sensing in ecological risk assessment from a spatiotemporal perspective complements ecological environment management. Chromophoric dissolved organic matter (CDOM), which is a complex mixture of organic matter that can be estimated via remote sensing, carries and produces carcinogenic disinfection by-products and organic pollutants in various aquatic environments. This paper reports the first ecological risk assessment, which was conducted in 2016, of CDOM in the Yinma River watershed including riverine waters, reservoir waters, and urban waters. Referring to the risk formation theory of natural disaster, the entropy evaluation method and DPSIR (driving force-pressure-state-impact-response) framework were coupled to establish a hazard and vulnerability index with multisource data, i.e., meteorological, remote sensing, experimental, and socioeconomic data, of this watershed. This ecological vulnerability assessment indicator system contains 23 indicators with respect to ecological sensitivity, ecological pressure, and self-resilience. The characteristics of CDOM absorption parameters from different waters showed higher aromatic content and molecular weights in May because of increased terrestrial inputs. The assessment results indicated that the overall ecosystem risk in the study area was focused in the extremely, heavily, and moderately vulnerable regions. The ecological risk assessment results objectively reflect the regional ecological environment and demonstrate the potential of ecological risk assessment of pollutants over traditional chemical measurements. Copyright © 2017. Published by Elsevier Inc.

  15. SWAT-based streamflow and embayment modeling of Karst-affected Chapel branch watershed, South Carolina

    Science.gov (United States)

    Devendra Amatya; M. Jha; A.E. Edwards; T.M. Williams; D.R. Hitchcock

    2011-01-01

    SWAT is a GIS-based basin-scale model widely used for the characterization of hydrology and water quality of large, complex watersheds; however, SWAT has not been fully tested in watersheds with karst geomorphology and downstream reservoir-like embayment. In this study, SWAT was applied to test its ability to predict monthly streamflow dynamics for a 1,555 ha karst...

  16. Pareja limno-reservoir (Guadalajara, Spain): environmental and hydrologic aspects

    International Nuclear Information System (INIS)

    Molina Navarro, E.; Martinez Perez, S.; Sastre Merlin, A.

    2010-01-01

    The construction of small reservoir on the edge of large ones is an innovative idea designed to counteract some of the negative impacts caused by the construction and use of reservoirs. The denomination Limno-reservoirs is proposed here, as these water bodies are created to maintain a natural lake dynamics. Pareja's limno-reservoir is among the first limno-reservoirs in Spain, and its construction raises some questions about hydrological viability and siltation risk. The proposition of the methodologies to solve them and the evaluation of the first results is the aim of this study. A detailed water balance makes possible to affirm that, in a firs approach, the limno-reservoir is viable from the hydrological point of view, because the Ompolveda basin -Tajo's tributary at Entrepenas reservoir- has enough water resources to guarantee the permanence of the water body, even during dry years. To assess the siltation risk, a soil loss observation network will be monitoring the Ompolveda basin for the next three years to evaluate the net erosion in the watershed and the sediment delivery to the reservoir. (Author)

  17. Evaluation of synthetic rainfall application with respect to the flow volume at upstream Brantas watershed, East Java Province of Indonesia

    Directory of Open Access Journals (Sweden)

    Limantara Lily Montarcih

    2017-12-01

    Full Text Available Indonesian Technical Implementation Unit (UPT of Synthetic Rainfall has modified climate by generating synthetic rainfall from 9th May until 4th June 2013. This unit has cooperated with the Department of Technological Study and Application (BPPT of Indonesia and Perum Jasa Tirta I and TNI AU Lanud Abdulrachman Saleh. This study intended to increase reservoirs water level in upstream Brantas watershed, one of them is Sutami reservoir. Successive grade evaluation of synthetic rainfall used the method of Double Ratio and Flow Discharge. The target area is upstream Brantas watershed that is represented by 12 rainfall stations and the control area is in the distance of ±30 km from the boundary of upstream Brantas watershed and is represented by 5 rainfall stations. Results show rainfall increasing by 152.05% according to the Double Ratio method and the increase of flow discharge from Sutami reservoir by 74.19% according to the Flow Discharge method.

  18. Southwestern Power Administration Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-01-01

    “Renewable energy” isn’t just a catchphrase at Southwestern Power Administration (Southwestern). It describes the hydroelectric energy we market, and the energy that Southwestern’s employees bring to work every day, constantly challenging themselves to become more eff ective and effi cient in providing aff ordable, environmentally clean power to the American people. As Southwestern’s new Administrator, I have had the opportunity to view our operations from a fresh perspective, and I’m proud to share with you how a focus on continual improvement has been evident in accomplishments throughout the agency during fi scal year (FY) 2007. When the North American Electric Reliability Corporation (NERC) implemented new reliability standards, we met applicable implementation dates and exceeded NERC’s control performance standards throughout the year. When tasked with reducing the agency’s carbon footprint, we found ways to achieve an 8.7% reduction in energy intensity from last year without impacting our operational capabilities. And when faced with record-breaking infl ows into the reservoir projects from which we market power, we capitalized on the opportunity to provide customers with signifi cant quantities of supplemental energy. Our supplemental sales this year not only saved customers over $122 million, but increased Southwestern’s revenues -- a huge win-win for Southwestern’s ratepayers and the Nation’s taxpayers alike. Southwestern is proud of its role in protecting National and economic security by contributing to the diverse supply of domestically produced energy, operating and maintaining a safe and reliable transmission system, and ensuring good stewardship of our Nation’s water resources and environment. In FY 2007, Southwestern continued to repay all power costs to the American taxpayers by marketing and delivering approximately 5.6 billion kilowatthours of hydropower at cost-based rates to customers in our six-state region. This energy

  19. Managing Watersheds as Couple Human-Natural Systems: A Review of Research Opportunities

    Science.gov (United States)

    Cai, X.

    2011-12-01

    Many watersheds around the world are impaired with severe social and environmental problems due to heavy anthropogenic stresses. Humans have transformed hydrological and biochemical processes in watersheds from a stationary to non-stationary status through direct (e.g., water withdrawals) and indirect (e.g., altering vegetation and land cover) interferences. It has been found that in many watersheds that socio-economic drivers, which have caused increasingly intensive alteration of natural processes, have even overcome natural variability to become the dominant factor affecting the behavior of watershed systems. Reversing this trend requires an understanding of the drivers of this intensification trajectory, and needs tremendous policy reform and investment. As stressed by several recent National Research Council (NRC) reports, watershed management will pose an enormous challenge in the coming decades. Correspondingly, the focus of research has started an evolution from the management of reservoir, stormwater and aquifer systems to the management of integrated watershed systems, to which policy instruments designed to make more rational economic use of water resources are likely to be applied. To provide a few examples: reservoir operation studies have moved from a local to a watershed scale in order to consider upstream best management practices in soil conservation and erosion control and downstream ecological flow requirements and water rights; watersheds have been modeled as integrated hydrologic-economic systems with multidisciplinary modeling efforts, instead of traditional isolated physical systems. Today's watershed management calls for a re-definition of watersheds from isolated natural systems to coupled human-natural systems (CHNS), which are characterized by the interactions between human activities and natural processes, crossing various spatial and temporal scales within the context of a watershed. The importance of the conceptual innovation has been

  20. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States.

    Science.gov (United States)

    Anning, David W

    2011-10-01

    Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from Salton Sea accounting unit.

  1. Seasonal effect on trace metal elements behaviour in a reservoir of northern Thailand.

    Science.gov (United States)

    Grellier, S; Janeau, J L; Thothong, W; Boonsaner, A; Bonnet, M P; Lagane, C; Seyler, P

    2013-07-01

    Trace metal elements (TME) can be real threats for living organisms. However, few studies dealt with TME in reservoirs in rural areas where farming practises could induce negative effects. Mae Thang reservoir (northern Thailand) has been studied for 3 years to understand the seasonal behaviour of dissolved TME: Fe, Mn, Cd, Al, Pb, V, Cr, Co, Ni, Cu, Zn, Mo, U and As and associated physicochemical parameters. In situ measurements of these parameters were done during the dry and the wet seasons as well as water samples along the water column for further analyses and TME determination by inductively coupled plasma-mass spectrometry (ICP-MS). In the dry season, the water column was characterized by a strong stratification and anoxic conditions in the hypolimnion. High rain and water input from the watershed during the wet season induced mixing of the water. All TME, except Ni, Co and Cr were less concentrated in the wet season indicating a dilution effect by water input. There was thus no important dissolved pollution coming from the watershed. The anoxic conditions in the dry season enhanced the reduction of Fe and Mn and the desorption processes. Depth, and thus oxic-anoxic conditions were the main drivers of TME in the dry season, while in the wet season, dissolution processes from parent rocks of watershed were favoured. The average concentrations of TME in the reservoir were in the limit of the international and Thai standards. Only localized values in the bottom of the reservoir for Fe and Mn were higher than the limits.

  2. Mapping the Geothermal System Using AMT and MT in the Mapamyum (QP Field, Lake Manasarovar, Southwestern Tibet

    Directory of Open Access Journals (Sweden)

    Lanfang He

    2016-10-01

    Full Text Available Southwestern Tibet plays a crucial role in the protection of the ecological environment and biodiversity of Southern Asia but lacks energy in terms of both power and fuel. The widely distributed geothermal resources in this region could be considered as potential alternative sources of power and heat. However, most of the known geothermal fields in Southwestern Tibet are poorly prospected and currently almost no geothermal energy is exploited. Here we present a case study mapping the Mapamyum (QP geothermal field of Southwestern Tibet using audio magnetotellurics (AMT and magnetotellurics (MT methods. AMT in the frequency range 11.5–11,500 Hz was used to map the upper part of this geothermal reservoir to a depth of 1000 m, and MT in the frequency range 0.001–320 Hz was used to map the heat source, thermal fluid path, and lower part of the geothermal reservoir to a depth greater than 1000 m. Data from 1300 MT and 680 AMT stations were acquired around the geothermal field. Bostick conversion with electromagnetic array profiling (EMAP filtering and nonlinear conjugate gradient inversion (NLCGI was used for data inversion. The AMT and MT results presented here elucidate the geoelectric structure of the QP geothermal field, and provide a background for understanding the reservoir, the thermal fluid path, and the heat source of the geothermal system. We identified a low resistivity anomaly characterized by resistivity in the range of 1–8 Ω∙m at a depth greater than 7 km. This feature was interpreted as a potential reflection of the partially melted magma in the upper crust, which might correlate to mantle upwelling along the Karakorum fault. It is likely that the magma is the heat source of the QP geothermal system, and potentially provides new geophysical evidence to understand the occurrence of the partially melted magmas in the upper crust in Southwestern Tibet.

  3. A land-use and water-quality history of White Rock Lake Reservoir, Dallas, Texas, based on paleolimnological analyses

    Science.gov (United States)

    Platt, Bradbury J.; Van Metre, P.C.

    1997-01-01

    White Rock Lake reservoir in Dallas, Texas contains a 150-cm sediment record of silty clay that documents land-use changes since its construction in 1912. Pollen analysis corroborates historical evidence that between 1912 and 1950 the watershed was primarily agricultural. Land disturbance by plowing coupled with strong and variable spring precipitation caused large amounts of sediment to enter the lake during this period. Diatoms were not preserved at this time probably because of low productivity compared to diatom dissolution by warm, alkaline water prior to burial in the sediments. After 1956, the watershed became progressively urbanized. Erosion decreased, land stabilized, and pollen of riparian trees increased as the lake water became somewhat less turbid. By 1986 the sediment record indicates that diatom productivity had increased beyond rates of diatom destruction. Neither increased nutrients nor reduced pesticides can account for increased diatom productivity, but grain size studies imply that before 1986 diatoms were light limited by high levels of turbidity. This study documents how reservoirs may relate to land-use practices and how watershed management could extend reservoir life and improve water quality.

  4. Budgeting suspended sediment fluxes in tropical monsoonal watersheds with limited data: the Lake Tana basin

    Directory of Open Access Journals (Sweden)

    Zimale Fasikaw A.

    2018-03-01

    Full Text Available Soil erosion decreases soil fertility of the uplands and causes siltation of lakes and reservoirs; the lakes and reservoirs in tropical monsoonal African highlands are especially affected by sedimentation. Efforts in reducing loads by designing management practices are hampered by lack of quantitative data on the relationship of erosion in the watersheds and sediment accumulation on flood plains, lakes and reservoirs. The objective of this study is to develop a prototype quantitative method for estimating sediment budget for tropical monsoon lakes with limited observational data. Four watersheds in the Lake Tana basin were selected for this study. The Parameter Efficient Distributed (PED model that has shown to perform well in the Ethiopian highlands is used to overcome the data limitations and recreate the missing sediment fluxes. PED model parameters are calibrated using daily discharge data and the occasionally collected sediment concentration when establishing the sediment rating curves for the major rivers. The calibrated model parameters are then used to predict the sediment budget for the 1994-2009 period. Sediment retained in the lake is determined from two bathymetric surveys taken 20 years apart whereas the sediment leaving the lake is calculated based on measured discharge and observed sediment concentrations. Results show that annually on average 34 t/ha/year of sediment is removed from the gauged part of the Lake Tana watersheds. Depending on the up-scaling method from the gauged to the ungauged part, 21 to 32 t/ha/year (equivalent to 24-38 Mt/year is transported from the upland watersheds of which 46% to 65% is retained in the flood plains and 93% to 96% is trapped on the flood plains and in the lake. Thus, only 4-7% of all sediment produced in the watersheds leaves the Lake Tana Basin.

  5. Future reservoir management under climate change for the Mississippi River

    International Nuclear Information System (INIS)

    Asnaashari, Ahmad; Gharabaghi, Bahram; McBean, Edward A.; Kunjikutty, Sobhalatha; Lehman, Paul; Wade, Winston

    2010-01-01

    This paper is part of an ongoing research project designed to evaluate the effect of climate change on reservoir operation policies in the Mississippi Valley Conservation Authority. The study used the results from a first paper, including projected daily temperature and precipitation, for future streamflow calculation. This paper presented the development, calibration and validation of a rainfall-runoff NAM model for the Mississippi River watershed. The calibrated Mike11/NAM model was fed with predicted climatic data to generate long term future streamflow in the basin. Forecast flows were run in a Mike 11/HD model to estimate the corresponding lake levels. The storages and flows at Shabomeka Lake, Mazinaw Lake and Marble Lake were simulated. The results showed that climate change is likely to have implications for reservoir operations in the Mississippi River watershed, which will include changed water level regimes due to modifications in the projected future streamflow hydrograph to meet desired lake levels.

  6. Hydrologic effects of large southwestern USA wildfires significantly increase regional water supply: fact or fiction?

    Science.gov (United States)

    Wine, M. L.; Cadol, D.

    2016-08-01

    In recent years climate change and historic fire suppression have increased the frequency of large wildfires in the southwestern USA, motivating study of the hydrological consequences of these wildfires at point and watershed scales, typically over short periods of time. These studies have revealed that reduced soil infiltration capacity and reduced transpiration due to tree canopy combustion increase streamflow at the watershed scale. However, the degree to which these local increases in runoff propagate to larger scales—relevant to urban and agricultural water supply—remains largely unknown, particularly in semi-arid mountainous watersheds co-dominated by winter snowmelt and the North American monsoon. To address this question, we selected three New Mexico watersheds—the Jemez (1223 km2), Mogollon (191 km2), and Gila (4807 km2)—that together have been affected by over 100 wildfires since 1982. We then applied climate-driven linear models to test for effects of fire on streamflow metrics after controlling for climatic variability. Here we show that, after controlling for climatic and snowpack variability, significantly more streamflow discharged from the Gila watershed for three to five years following wildfires, consistent with increased regional water yield due to enhanced infiltration-excess overland flow and groundwater recharge at the large watershed scale. In contrast, we observed no such increase in discharge from the Jemez watershed following wildfires. Fire regimes represent a key difference between the contrasting responses of the Jemez and Gila watersheds with the latter experiencing more frequent wildfires, many caused by lightning strikes. While hydrologic dynamics at the scale of large watersheds were previously thought to be climatically dominated, these results suggest that if one fifth or more of a large watershed has been burned in the previous three to five years, significant increases in water yield can be expected.

  7. Classification of the Relationship between Household Welfare and Ecosystem Reliance in the Miyun Reservoir Watershed, China

    Directory of Open Access Journals (Sweden)

    Fengchun Wang

    2017-12-01

    Full Text Available Household welfare is inseparable from the environment because of its dependence on ecosystems and their services. However, linking household welfare and ecosystems in order to inform differentiated household livelihood development in spatially heterogeneous regions is still a great challenge. Based on a field survey of 1754 households, we grouped the relationships between household welfare (defined by total income and ecosystem reliance (expressed by an index of dependence on ecosystem services in the Watershed of Miyun Reservoir, the only source of surface water for domestic use in Beijing, China. The relationships can be grouped into four types: high welfare and high dependency; low welfare and low dependency; high welfare and low dependence; and low welfare and high dependency. Family structure, households’ education and skill level, and the proximity to Beijing have significant impacts on household welfare, while the quantity of natural capital and eco-compensation fund significantly contribute to the ecosystem dependence. Maintaining suitable family size and age structure, improving education and skill levels, and strengthening payment for ecosystem services within low welfare households would be effective approaches to their welfare improvement. The above classification can help design tailored policy and management options to promote sustainable livelihoods based on different household subgroups.

  8. Post-depositional redistribution of trace metals in reservoir sediments of a mining/smelting-impacted watershed (the Lot River, SW France)

    International Nuclear Information System (INIS)

    Audry, Stephane; Grosbois, Cecile; Bril, Hubert; Schaefer, Joerg; Kierczak, Jakub; Blanc, Gerard

    2010-01-01

    Mining/smelting wastes and reservoir sediment cores from the Lot River watershed were studied using mineralogical (XRD, SEM-EDS, EMPA) and geochemical (redox dynamics, selective extractions) approaches to characterize the main carrier phases of trace metals. These two approaches permitted determining the role of post-depositional redistribution processes in sediments and their effects on the fate and mobility of trace metals. The mining/smelting wastes showed heterogeneous mineral compositions with highly variable contents of trace metals. The main trace metal-bearing phases include spinels affected by secondary processes, silicates and sulfates. The results indicate a clear change in the chemical partitioning of trace metals between the reservoir sediments upstream and downstream of the mining/smelting activities, with the downstream sediments showing a 2-fold to 5-fold greater contribution of the oxidizable fraction. This increase was ascribed to stronger post-depositional redistribution of trace metals related to intense early diagenetic processes, including dissolution of trace metal-bearing phases and precipitation of authigenic sulfide phases through organic matter (OM) mineralization. This redistribution is due to high inputs (derived from mining/smelting waste weathering) at the water-sediment interface of (i) dissolved SO 4 promoting more efficient OM mineralization, and (ii) highly reactive trace metal-bearing particles. As a result, the main trace metal-bearing phases in the downstream sediments are represented by Zn- and Fe-sulfides, with minor occurrence of detrital zincian spinels, sulfates and Fe-oxyhydroxides. Sequestration of trace metals in sulfides at depth in reservoir sediments does not represent long term sequestration owing to possible resuspension of anoxic sediments by natural (floods) and/or anthropogenic (dredging, dam flush) events that might promote trace metal mobilization through sulfide oxidation. It is estimated that, during a major

  9. Trapping Efficiency of Fine Sediments in Reservoir Lake in Fukushima Rivers as Revealed by Radiocaesium attached in Suspended Sediment

    Science.gov (United States)

    Taniguchi, K.; Onda, Y.; Kuramoto, T.; Smith, H.; Blake, W.; Onuma, S.; Sato, T.; Arai, H.; Blake, W.

    2017-12-01

    Radiocaesium released from Fukushima Daiichi Nuclear Power Plant were widely distributed in the surrounded area. The radiocaesium deposited inland area were adsorbed to fine particles of the surface soils such as silt and clay particles. The contaminated particles were eroded by rainfall events, and then transported through river systems. The purpose of this research is to investigate the impact of existence of large reservoirs on the riverine transport of fine sediments by using the 137Cs as a kind of tracer. At 30 monitoring sites located in 9 river systems in the area affected by the accident, suspended sediments (SS) ware collected by time-integrated SS samplers. The particulate radiocaesium activity concentration was measured by germanium detector. The water discharge and SS flux each site were calculated by the water level and turbidity data every 10 minutes obtained by monitoring. The 137Cs flux was calculated by multiplying the activity concentration and the SS flux. The Cs-137 flux normalized by the water discharge and initial deposition of 137Cs in the watershed (L/QD) showed a correlation with the coverages of land use types in the watershed in the case of monitoring sites where there was no large reservoir in the watershed. However, at the sites that have large reservoir in the watershed, the value of L/QD were 6.5 -21 % of the values estimated by the coverage of land use types. This result implies that approximately more than 80 % of the fine SS is trapped by the reservoirs.

  10. Water use and supply concerns for utility-scale solar projects in the Southwestern United States.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara Denise.; Zemlick, Katie M.; Macknick, Jordan

    2013-07-01

    As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

  11. Contrasting watershed-scale trends in runoff and sediment yield complicate rangeland water resources planning

    Science.gov (United States)

    Berg, Matthew D.; Marcantonio, Franco; Allison, Mead A.; McAlister, Jason; Wilcox, Bradford P.; Fox, William E.

    2016-06-01

    Rangelands cover a large portion of the earth's land surface and are undergoing dramatic landscape changes. At the same time, these ecosystems face increasing expectations to meet growing water supply needs. To address major gaps in our understanding of rangeland hydrologic function, we investigated historical watershed-scale runoff and sediment yield in a dynamic landscape in central Texas, USA. We quantified the relationship between precipitation and runoff and analyzed reservoir sediment cores dated using cesium-137 and lead-210 radioisotopes. Local rainfall and streamflow showed no directional trend over a period of 85 years, resulting in a rainfall-runoff ratio that has been resilient to watershed changes. Reservoir sedimentation rates generally were higher before 1963, but have been much lower and very stable since that time. Our findings suggest that (1) rangeland water yields may be stable over long periods despite dramatic landscape changes while (2) these same landscape changes influence sediment yields that impact downstream reservoir storage. Relying on rangelands to meet water needs demands an understanding of how these dynamic landscapes function and a quantification of the physical processes at work.

  12. Applicability of WRF-Lake System in Studying Reservoir-Induced Impacts on Local Climate: Case Study of Two Reservoirs with Contrasting Characteristics

    Science.gov (United States)

    Wang, F.; Zhu, D.; Ni, G.; Sun, T.

    2017-12-01

    Large reservoirs play a key role in regional hydrological cycles as well as in modulating the local climate. The emerging large reservoirs in concomitant with rapid hydropower exploitation in southwestern China warrant better understanding of their impacts on local and regional climates. One of the crucial pathways through which reservoirs impact the climate is lake-atmospheric interaction. Although such interactions have been widely studied with numeric weather prediction (NWP) models, an outstanding limitation across various NWPs resides on the poor thermodynamic representation of lakes. The recent version of Weather Research and Forecasting (WRF) system has been equipped with a one-dimensional lake model to better represent the thermodynamics of large water body and has been shown to enhance the its predication skill in the lake-atmospheric interaction. In this study, we further explore the applicability of the WRF-Lake system in two reservoirs with contrasting characteristics: Miyun Reservoir with an average depth of 30 meters in North China Plain, and Nuozhadu Reservoir with an average depth of 200 meters in the Tibetan Plateau Region. Driven by the high spatiotemporal resolution meteorological forcing data, the WRF-Lake system is used to simulate the water temperature and surface energy budgets of the two reservoirs after the evaluation against temperature observations. The simulated results show the WRF-Lake model can well predict the vertical profile of water temperature in Miyun Reservoir, but underestimates deep water temperature and overestimates surface temperature in the deeper Nuozhadu Reservoir. In addition, sensitivity analysis indicates the poor performance of the WRF-Lake system in Nuozhadu Reservoir could be attributed to the weak vertical mixing in the model, which can be improved by tuning the eddy diffusion coefficient ke . Keywords: reservoir-induced climatic impact; lake-atmospheric interaction; WRF-Lake system; hydropower exploitation

  13. Impacts of land use change and climate variations on annual inflow into the Miyun Reservoir, Beijing, China

    Science.gov (United States)

    Jiangkun Zheng; Ge Sun; Wenhong Li; Xinxiao Yu; Chi Zhang; Yuanbo Gong; Lihua Tu

    2016-01-01

    The Miyun Reservoir, the only surface water source for Beijing city, has experienced water supply decline in recent decades. Previous studies suggest that both land use change and climate contribute to the changes of water supply in this critical watershed. However, the specific causes of the decline in the Miyun Reservoir are debatable under a non-stationary climate...

  14. Assessment of terrain slope influence in SWAT modeling of Andean watersheds

    Science.gov (United States)

    Yacoub, C.; Pérez-Foguet, A.

    2009-04-01

    Hydrological processes in the Andean Region are difficult to model. Large range of altitudes involved (from over 4000 meters above sea level, masl, to zero) indicates the high variability of rainfall, temperature and other climate variables. Strong runoff and extreme events as landslides and floods are the consequence of high slopes of terrain, especially in the upper part of the basins. Strong seasonality of rain and complex ecosystems (vulnerable to climate changes and anthropogenic activities) helps these processes. Present study focuses in a particular watershed from Peruvian Andes, the Jequetepeque River. The distributed watershed simulation model, Soil and Water Assessment Tool (SWAT) is applied to model run-off and sediments transport through the basin with data from 1997 to 2006. Specifically, the study focuses in the assessment of the influence of considering terrain slope variation in the definition of Hydrographical Response Units within SWAT. The Jequetepeque watershed (4 372.5 km2) is located in the north part of Peru. River flows east to west, to the Pacific Ocean. Annual average precipitation ranges from 0 to 1100 mm and altitude from 0 to 4188 masl. The "Gallito Ciego" reservoir (400 masl) separates upper-middle part from lower part of the watershed. It stores water for supplying the people from the big cities on the coast and for extensive agriculture uses. Upper-middle part of the watershed covers 3564.8 km2. It ranges from 400 to 4188 masl in no more that 80 km, with slopes up to 20%. Main activities are agricultural and livestock and mining and about 80% of the population are rural. Annual mean temperature drops from 25.4 °C at the reservoir to less than 4 °C in the upper part. Also the highest rainfall variability is found in the upper-middle part of the watershed. Erosion produced by extreme events like 1997/98 "el Niño" Phenomenon is silting the reservoir faster than expected. Moreover, anthropogenic activities like agriculture and

  15. Helminth Infections of Rodents and Their Zoonotic Importance in Boyer-Ahmad District, Southwestern Iran

    OpenAIRE

    RANJBAR, Mohammad Javad; SARKARI, Bahador; MOWLAVI, Gholam Reza; SEIFOLLAHI, Zeinab; MOSHFE, Abdolali; ABDOLAHI KHABISI, Samaneh; MOBEDI, Iraj

    2017-01-01

    AbstractBackground: Rodents are considered as reservoirs of various zoonotic diseases including helminthic infections. The current study aimed to evaluate the prevalence of helminth infections in rodents, in Boyer-Ahmad district, Southwestern Iran.Methods: Overall, 52 rodents were captured from various areas of the district by Sherman live traps. The animals were then euthanized and dissected. During necropsy, each organ was examined macroscopically for presence of any cyst or visible parasit...

  16. Simulated effects of existing and proposed surface-water impoundments and gas-well pads on streamflow and suspended sediment in the Cypress Creek watershed, Arkansas

    Science.gov (United States)

    Hart, Rheannon M.

    2014-01-01

    Cypress Creek is located in central Arkansas and is the main tributary to Brewer Lake, which serves as the primary water supply for Conway, Arkansas, and the surrounding areas. A model of the Cypress Creek watershed was developed and calibrated in cooperation with Southwestern Energy Company using detailed precipitation, streamflow, and discrete suspended-sediment data collected from 2009 through 2012. These data were used with a Hydrologic Simulation Program—FORTRAN model to address different potential gas-extraction activities within the watershed.

  17. Multi-objective Operation Chart Optimization for Aquatic Species Habitat Conservation of Cascaded Hydropower System on Yuan River, Southwestern China

    Science.gov (United States)

    Wen, X.; Lei, X.; Fang, G.; Huang, X.

    2017-12-01

    Extensive cascading hydropower exploitation in southwestern China has been the subject of debate and conflict in recent years. Introducing limited ecological curves, a novel approach for derivation of hydropower-ecological joint operation chart of cascaded hydropower system was proposed, aiming to optimize the general hydropower and ecological benefits, and to alleviate the ecological deterioration in specific flood/dry conditions. The physical habitat simulation model is proposed initially to simulate the relationship between streamflow and physical habitat of target fish species and to determine the optimal ecological flow range of representative reach. The ecological—hydropower joint optimization model is established to produce the multi-objective operation chart of cascaded hydropower system. Finally, the limited ecological guiding curves were generated and added into the operation chart. The JS-MDS cascaded hydropower system on the Yuan River in southwestern China is employed as the research area. As the result, the proposed guiding curves could increase the hydropower production amount by 1.72% and 5.99% and optimize ecological conservation degree by 0.27% and 1.13% for JS and MDS Reservoir, respectively. Meanwhile, the ecological deterioration rate also sees a decrease from 6.11% to 1.11% for JS Reservoir and 26.67% to 3.89% for MDS Reservoir.

  18. Hydrological modeling of a watershed affected by acid mine drainage (Odiel River, SW Spain). Assessment of the pollutant contributing areas

    Science.gov (United States)

    Galván, L.; Olías, M.; Cánovas, C. R.; Sarmiento, A. M.; Nieto, J. M.

    2016-09-01

    The Odiel watershed drains materials belonging to the Iberian Pyrite Belt, where significant massive sulfide deposits have been mined historically. As a result, a huge amount of sulfide-rich wastes are deposited in the watershed, which suffer from oxidation, releasing acidic lixiviates with high sulfate and metal concentrations. In order to reliably estimate the metal loadings along the watershed a complete series of discharge and hydrochemical data are essential. A hydrological model was performed with SWAT (Soil and Water Assessment Tool) to solve the scarcity of gauge stations along the watershed. The model was calibrated and validated from daily discharge data (from 1980 to 2010) at the outlet of the watershed, river inputs into an existent reservoir, and a flow gauge station close to the northern area of the watershed. Discharge data obtained from the hydrological model, together with analytical data, allowed the estimation of the dissolved pollutant load delivered annually by the Odiel River (e.g. 9140 t of Al, 2760 t of Zn). The pollutant load is influenced strongly by the rainfall regime, and can even double during extremely rainy years. Around 50% of total pollution comes from the Riotinto Mining District, so the treatment of Riotinto lixiviates reaching the Odiel watershed would reduce the AMD (Acid Mine Drainages) in a remarkable way, improving the water quality downstream, especially in the reservoir of Alcolea, currently under construction. The information obtained in this study will allow the optimization of remediation efforts in the watershed, in order to improve its water quality.

  19. Bull trout (Salvelinus confluentus) telemetry and associated habitat data collected in a geodatabase from the upper Boise River, southwestern Idaho

    Science.gov (United States)

    MacCoy, Dorene E.; Shephard, Zachary M.; Benjamin, Joseph R.; Vidergar, Dmitri T.; Prisciandaro, Anthony F.

    2017-03-23

    Bull trout (Salvelinus confluentus), listed as threatened under the Endangered Species Act, are among the more thermally sensitive of coldwater species in North America. The Boise River upstream of Arrowrock Dam in southwestern Idaho (including Arrowrock Reservoir) provides habitat for one of the southernmost populations of bull trout. The presence of the species in Arrowrock Reservoir poses implications for dam and reservoir operations. From 2011 to 2014, the Bureau of Reclamation and the U.S. Geological Survey collected fish telemetry data to improve understanding of bull trout distribution and movement in Arrowrock Reservoir and in the upper Boise River tributaries. The U.S. Geological Survey compiled the telemetry (fish location) data, along with reservoir elevation, river discharge, precipitation, and water-quality data in a geodatabase. The geodatabase includes metadata compliant with Federal Geographic Data Committee content standards. The Bureau of Reclamation plans to incorporate the data in a decision‑support tool for reservoir management.

  20. Effects of polders on the course of floods in the watershed of the Tichá Orlice river

    Directory of Open Access Journals (Sweden)

    Vladimír Pavlík

    2008-01-01

    Full Text Available Polders show an important water-management function in the flood-control protection of watersheds. The course of actual floods in recent decades and effects of the water works on flood flows have proved the suitability of the construction within integrated flood-control measures in particular watersheds of the Czech Republic. To determine the transformation effect of flood-control measures in watersheds mathematical modelling is an important method, which is used not only in the preparation and design of retention areas but also in dealing with the flood protection of towns and villages. Easy verification of other measures in watersheds is also useful. Their implementation can be thus prepared for the future or it is possible to back off the intentions. In our case, a fact is advantageous that the model is ope­ra­ted in the workplace of the Elbe Basin water-management dispatching centre, which is compatible with assessed polders in the partial Elbe watershed, namely in the Tichá Orlice watershed and its partial Třebovka watershed. The polders assessed are situated on the Třebovka stream, which is the lar­gest tributary of the Tichá Orlice river. These dry reservoirs and the increased protective function of the Hvězda pond affect runoff from about 80 km2. Within research activities, possibilities were studied to obtain necessary retention areas in existing small water reservoirs. It became evident that the only rea­lis­tic solution was to increase protective functions of the pond Hvězda. Its present total retention space of 1.4 million m3 can be increased only by 0.35 million m3, however, in combination with the sophisticated lay-out of a new emergency spillway and outlet the whole retention space can be used much more effectively. To obtain other retention areas localities were found out in the whole upper watershed of the Třebovka stream, which fulfilled requirements for placing the adequate capacity of polders. Subsequent

  1. Assessment of water supply as an ecosystem service in a rural-urban watershed in southwestern Mexico City.

    Science.gov (United States)

    Jujnovsky, Julieta; González-Martínez, Teresa Margarita; Cantoral-Uriza, Enrique Arturo; Almeida-Leñero, Lucia

    2012-03-01

    Studies from the ecosystem services perspective can provide a useful framework because they allow us to fully examine the benefits that humans obtain from socio-ecological systems. Mexico City, the second largest city in the world, has faced severe problems related to water shortages, which have worsened due to increasing population. Demand for space has forced changes in land cover, including covering areas that are essential for groundwater recharge. The city has 880 km(2) of forest areas that are crucial for the water supply. The Magdalena River Watershed was chosen as a model because it is a well-preserved zone within Mexico City and it provides water for the population. The general aim of this study was to assess the ecosystem service of the water supply in the Magdalena River Watershed by determining its water balance (SWAT model) and the number of beneficiaries of the ecosystem services. The results showed that the watershed provides 18.4 hm(3) of water per year. Baseflow was dominant, with a contribution of 85%, while surface runoff only accounted for 15%. The zone provides drinking water to 78,476 inhabitants and could supply 153,203 potential beneficiaries. This work provides an example for understanding how ecosystem processes determine the provision of ecosystem services and benefits to the population in a rural-urban watershed in Mexico City.

  2. An establishment on the hazard mitigation system of large scale landslides for Zengwen reservoir watershed management in Taiwan

    Science.gov (United States)

    Tsai, Kuang-Jung; Lee, Ming-Hsi; Chen, Yie-Ruey; Huang, Meng-Hsuan; Yu, Chia-Ching

    2016-04-01

    hazard mitigation program operated by local government and reservoir watershed management in southern Taiwan. Keywords: large scale landslide, disaster prevention, hazard mitigation, watershed management

  3. Agricultural non-point source pollution management in a reservoir watershed based on ecological network analysis of soil nitrogen cycling.

    Science.gov (United States)

    Xu, Wen; Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Li, Chunhui; Wang, Xuan

    2018-03-01

    The Miyun Reservoir plays a pivotal role in providing drinking water for the city of Beijing. In this research, ecological network analysis and scenario analysis were integrated to explore soil nitrogen cycling of chestnut and Chinese pine forests in the upper basin of the Miyun Reservoir, as well as to seek favorable fertilization modes to reduce agricultural non-point source pollution. Ecological network analysis results showed that (1) the turnover time was 0.04 to 0.37 year in the NH 4 + compartment and were 15.78 to 138.36 years in the organic N compartment; (2) the Finn cycling index and the ratio of indirect to direct flow were 0.73 and 11.92 for the chestnut forest model, respectively. Those of the Chinese pine forest model were 0.88 and 29.23, respectively; and (3) in the chestnut forest model, NO 3 - accounted for 96% of the total soil nitrogen loss, followed by plant N (2%), NH 4 + (1%), and organic N (1%). In the Chinese pine forest, NH 4 + accounted for 56% of the total soil nitrogen loss, followed by organic N (34%) and NO 3 - (10%). Fertilization mode was identified as the main factor affecting soil N export. To minimize NH 4 + and NO 3 - outputs while maintaining the current plant yield (i.e., 7.85e0 kg N/year), a fertilization mode of 162.50 kg N/year offered by manure should be adopted. Whereas, to achieve a maximum plant yield (i.e., 3.35e1 kg N/year) while reducing NH 4 + and NO 3 - outputs, a fertilization mode of 325.00 kg N/year offered by manure should be utilized. This research is of wide suitability to support agricultural non-point source pollution management at the watershed scale.

  4. Small reservoir effects on headwater water quality in the rural-urban fringe, Georgia Piedmont, USA

    Directory of Open Access Journals (Sweden)

    Dr.. Amber R. Ignatius, Geographer

    2016-12-01

    Full Text Available Small reservoirs are prevalent landscape features that affect the physical, chemical, and biological characteristics of headwater streams. Tens of thousands of small reservoirs, often less than a hectare in size, were constructed over the past century within the United States. While remote-sensing and geographic-mapping technologies assist in identifying and quantifying these features, their localized influence on water quality is uncertain. We report a year-long physicochemical study of nine small reservoirs (0.15–2.17 ha within the Oconee and Broad River Watersheds in the Georgia Piedmont. Study sites were selected along an urban-rural gradient with differing amounts of agricultural, forested, and developed land covers. Sites were sampled monthly for discharge and inflow/outflow water quality parameters (temperature, specific conductance, pH, dissolved oxygen, turbidity, alkalinity, total phosphorus, total nitrogen, nitrate, ammonium. While the proportion of developed land cover within watersheds had positive correlations with reservoir specific conductivity values, agricultural and forested land covers showed correlations (positive and negative, respectively with reservoir alkalinity, total nitrogen, nitrate, and specific conductivity. The majority of outflow temperatures were warmer than inflows for all land uses throughout the year, especially in the summer. Outflows had lower nitrate concentrations, but higher ammonium. The type of outflow structure was also influential; top-release dams showed higher dissolved oxygen and pH than bottom-release dams. Water quality effects were still evident 250 m below the dam, albeit reduced.

  5. Potential urban runoff impacts and contaminant distributions in shoreline and reservoir environments of Lake Havasu, southwestern United States.

    Science.gov (United States)

    Wilson, Doyle C

    2018-04-15

    Heavy metal, nutrient, and hydrocarbon levels in and adjacent to Lake Havasu, a regionally significant water supply reservoir with a highly controlled, dynamic flow regime, are assessed in relation to possible stormwater runoff impacts from an arid urban center. Shallow groundwater and sediment analyses from ephemeral drainage (wash) mouths that convey stormwater runoff from Lake Havasu City, Arizona to the reservoir, provided contaminant control points and correlation ties with the reservoir environment. Fine-grain sediments tend to contain higher heavy metal concentrations whereas nutrients are more evenly distributed, except low total organic carbon levels from young wash mouth surfaces devoid of vegetation. Heavy metal and total phosphate sediment concentrations in transects from wash mouths into the reservoir have mixed and decreasing trends, respectively. Both series may indicate chemical depositional influences from urban runoff, yet no statistically significant concentration differences occur between specific wash mouths and corresponding offshore transects. Heavy metal pollution indices of all sediments indicate no discernible to minor contamination, indicating that runoff impacts are minimal. Nevertheless, several heavy metal concentrations from mid-reservoir sediment sites increase southward through the length of the reservoir. Continual significant water flow through the reservoir may help to disperse locally derived runoff particulates, which could mix and settle down gradient with chemical loads from upriver sources and local atmospheric deposition. Incorporating the shoreline environment with the reservoir investigation provides spatial continuity in assessing contaminant sources and distribution patterns. This is particularly acute in the investigation of energetic, flow-through reservoirs in which sources may be overlooked if solely analyzing the reservoir environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Soil Phosphorus Compositional Characteristics as a Function of Land-Use Practice in the Upper Eau Galle River Watershed, Wisconsin

    National Research Council Canada - National Science Library

    James, William F; Eakin, Harry L; Ruiz, Carlos E; Barko, John W

    2004-01-01

    The purpose of this research was to quantify biologically labile and refractory phosphorus species in source soils of an agricultural watershed that drains into a eutrophic Corps of Engineers reservoir...

  7. Distinguishing Natural and Anthropogenic Sources of Chemical Loading on a Watershed-Scale, Mill River Watershed, Massachusetts

    Science.gov (United States)

    Rhodes, A. L.; Newton, R. M.; Pufall, A.

    2001-05-01

    The Mill River Watershed (MRW), a 125 km2 catchment of the Connecticut River, possesses heterogeneous topography, geology, and human settlement patterns suitable for distinguishing natural sources of chemical loading to rivers from anthropogenic sources. The MRW is divided into catchments by drainage patterns of dominant tributaries. Catchments are further classified into land-use zones, defined by intensity of human activity. Water chemistry in Zone I areas, where human activity is minimal to absent, serves as a baseline for assessing human impacts on water quality from within the watershed. Zone II areas are primarily affected by water removal from drinking water reservoirs on two tributaries ( ~9500 m3 per day, combined). Zone III regions receive runoff from agricultural, residential, and transportation areas. Since 1997, water samples collected from 13 sites in MRW have been analyzed for specific conductance, temperature, pH, ANC, base cations (Ca, Mg, Na, K, NH4), anions (Cl, SO4, NO3, PO4), and dissolved silica. GIS software was used to calculate percent area of different land uses that drain to each sample site. For the majority of sample sites in MRW, average concentrations of both NO3 and SO4 show a positive, linear relationship with percent area of anthropogenic land (R2> 0.91). Concentrations of Cl increase linearly with road density (R2= 0.95). However, two Zone III sites receiving additional point-source pollution show higher NO3 and SO4 concentrations than predicted by land use; concentrations reflect 20 and 50% more anthropogenic area than actually exists. Removal of drinking water from the larger reservoir also produces 20 and 30% more NO3 and SO4 than predicted by land use, showing that water removal concentrates pollution. Low-gradient, Zone III sites that receive highway runoff show elevated salt concentrations that persist throughout the year. Salt-impacted regions show a strong correlation between Na and Cl (R2 = 0.86 to 0.95). Cl typically

  8. HESS Opinions: Linking Darcy's equation to the linear reservoir

    Science.gov (United States)

    Savenije, Hubert H. G.

    2018-03-01

    In groundwater hydrology, two simple linear equations exist describing the relation between groundwater flow and the gradient driving it: Darcy's equation and the linear reservoir. Both equations are empirical and straightforward, but work at different scales: Darcy's equation at the laboratory scale and the linear reservoir at the watershed scale. Although at first sight they appear similar, it is not trivial to upscale Darcy's equation to the watershed scale without detailed knowledge of the structure or shape of the underlying aquifers. This paper shows that these two equations, combined by the water balance, are indeed identical provided there is equal resistance in space for water entering the subsurface network. This implies that groundwater systems make use of an efficient drainage network, a mostly invisible pattern that has evolved over geological timescales. This drainage network provides equally distributed resistance for water to access the system, connecting the active groundwater body to the stream, much like a leaf is organized to provide all stomata access to moisture at equal resistance. As a result, the timescale of the linear reservoir appears to be inversely proportional to Darcy's conductance, the proportionality being the product of the porosity and the resistance to entering the drainage network. The main question remaining is which physical law lies behind pattern formation in groundwater systems, evolving in a way that resistance to drainage is constant in space. But that is a fundamental question that is equally relevant for understanding the hydraulic properties of leaf veins in plants or of blood veins in animals.

  9. The Effect of Model Grid Resolution on the Distributed Hydrologic Simulations for Forecasting Stream Flows and Reservoir Storage

    Science.gov (United States)

    Turnbull, S. J.

    2017-12-01

    Within the US Army Corps of Engineers (USACE), reservoirs are typically operated according to a rule curve that specifies target water levels based on the time of year. The rule curve is intended to maximize flood protection by specifying releases of water before the dominant rainfall period for a region. While some operating allowances are permissible, generally the rule curve elevations must be maintained. While this operational approach provides for the required flood control purpose, it may not result in optimal reservoir operations for multi-use impoundments. In the Russian River Valley of California a multi-agency research effort called Forecast-Informed Reservoir Operations (FIRO) is assessing the application of forecast weather and streamflow predictions to potentially enhance the operation of reservoirs in the watershed. The focus of the study has been on Lake Mendocino, a USACE project important for flood control, water supply, power generation and ecological flows. As part of this effort the Engineer Research and Development Center is assessing the ability of utilizing the physics based, distributed watershed model Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to simulate stream flows, reservoir stages, and discharges while being driven by weather forecast products. A key question in this application is the effect of watershed model resolution on forecasted stream flows. To help resolve this question, GSSHA models of multiple grid resolutions, 30, 50, and 270m, were developed for the upper Russian River, which includes Lake Mendocino. The models were derived from common inputs: DEM, soils, land use, stream network, reservoir characteristics, and specified inflows and discharges. All the models were calibrated in both event and continuous simulation mode using measured precipitation gages and then driven with the West-WRF atmospheric model in prediction mode to assess the ability of the model to function in short term, less than one week

  10. Fuzzy Multicriteria Decision Analysis for Adaptive Watershed Management

    Science.gov (United States)

    Chang, N.

    2006-12-01

    The dramatic changes of societal complexity due to intensive interactions among agricultural, industrial, and municipal sectors have resulted in acute issues of water resources redistribution and water quality management in many river basins. Given the fact that integrated watershed management is more a political and societal than a technical challenge, there is a need for developing a compelling method leading to justify a water-based land use program in some critical regions. Adaptive watershed management is viewed as an indispensable tool nowadays for providing step-wise constructive decision support that is concerned with all related aspects of the water consumption cycle and those facilities affecting water quality and quantity temporally and spatially. Yet the greatest challenge that decision makers face today is to consider how to leverage ambiguity, paradox, and uncertainty to their competitive advantage of management policy quantitatively. This paper explores a fuzzy multicriteria evaluation method for water resources redistribution and subsequent water quality management with respect to a multipurpose channel-reservoir system--the Tseng- Wen River Basin, South Taiwan. Four fuzzy operators tailored for this fuzzy multicriteria decision analysis depict greater flexibility in representing the complexity of various possible trade-offs among management alternatives constrained by physical, economic, and technical factors essential for adaptive watershed management. The management strategies derived may enable decision makers to integrate a vast number of internal weirs, water intakes, reservoirs, drainage ditches, transfer pipelines, and wastewater treatment facilities within the basin and bring up the permitting issue for transboundary diversion from a neighboring river basin. Experience gained indicates that the use of different types of fuzzy operators is highly instructive, which also provide unique guidance collectively for achieving the overarching goals

  11. Artificial intelligent techniques for optimizing water allocation in a reservoir watershed

    Science.gov (United States)

    Chang, Fi-John; Chang, Li-Chiu; Wang, Yu-Chung

    2014-05-01

    This study proposes a systematical water allocation scheme that integrates system analysis with artificial intelligence techniques for reservoir operation in consideration of the great uncertainty upon hydrometeorology for mitigating droughts impacts on public and irrigation sectors. The AI techniques mainly include a genetic algorithm and adaptive-network based fuzzy inference system (ANFIS). We first derive evaluation diagrams through systematic interactive evaluations on long-term hydrological data to provide a clear simulation perspective of all possible drought conditions tagged with their corresponding water shortages; then search the optimal reservoir operating histogram using genetic algorithm (GA) based on given demands and hydrological conditions that can be recognized as the optimal base of input-output training patterns for modelling; and finally build a suitable water allocation scheme through constructing an adaptive neuro-fuzzy inference system (ANFIS) model with a learning of the mechanism between designed inputs (water discount rates and hydrological conditions) and outputs (two scenarios: simulated and optimized water deficiency levels). The effectiveness of the proposed approach is tested on the operation of the Shihmen Reservoir in northern Taiwan for the first paddy crop in the study area to assess the water allocation mechanism during drought periods. We demonstrate that the proposed water allocation scheme significantly and substantially avails water managers of reliably determining a suitable discount rate on water supply for both irrigation and public sectors, and thus can reduce the drought risk and the compensation amount induced by making restrictions on agricultural use water.

  12. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - Near-term, Class I

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; Reynolds, Rodney R.; McCune, A. Dwayne; Michnick, Michael J.; Walton, Anthony W.; Watney, W. Lynn

    2000-06-08

    This project involved two demonstration projects, one in a Marrow reservoir located in the southwestern part of the state and the second in the Cherokee Group in eastern Kansas. Morrow reservoirs of western Kansas are still actively being explored and constitute an important resource in Kansas. Cumulative oil production from the Morrow in Kansas is over 400,000,000 bbls. Much of the production from the Morrow is still in the primary stage and has not reached the mature declining state of that in the Cherokee. The Cherokee Group has produced about 1 billion bbls of oil since the first commercial production began over a century ago. It is a billion-barrel plus resource that is distributed over a large number of fields and small production units. Many of the reservoirs are operated close to the economic limit, although the small units and low production per well are offset by low costs associated with the shallow nature of the reservoirs (less than 1000 ft. deep).

  13. Phytoplankton assemblage of a small, shallow, tropical African reservoir.

    Science.gov (United States)

    Mustapha, Moshood K

    2009-12-01

    I measured physico-chemical properties and phytoplankton in the small, shallow tropical reservoir of Oyun (Offa, Nigeria) between January 2002 and December 2003. I identified 25 phytoplankton genera in three sampling stations. Bacillariophyceae dominated (75.3%), followed by Chlorophyceae (12.2%), Cyanobacteria (11.1%) and Desmidiaceae (0.73%). The high amount of nutrients (e.g. nitrate, phosphate, sulphate and silica) explain phytoplankton heterogeneity (p<0.05). Phytoplankton was abundant during the rainy season, but the transition period had the richest assemblage and abundance. Fluctuations in phytoplankton density were a result of seasonal changes in concentration of nutrients, grazing pressure and reservoir hydrology. The reservoir is eutrophic with excellent water quality and a diverse phytoplankton assemblage: fish production would be high. These conditions resulted from strategies such as watershed best management practices (BMPs) to control eutrophication and sedimentation, and priorities for water usage established through legislation. Additional measures are recommended to prevent oligotrophy, hypereutrophy, excessive phytoplankton bloom, toxic cyanobacteria, and run-off of organic waste and salts.

  14. Quantifying nutrient export and deposition with a dynamic landscape evolution model for the lake Bolsena watershed, Italy

    Science.gov (United States)

    Pelorosso, Raffaele; Temme, Arnoud; Gobattoni, Federica; Leone, Antonio

    2010-05-01

    Excessive nutrient loads from upstream watershed activities such as agriculture, hydrological modifications, and urban runoff, have been identified as the leading cause of deterioration in assessed lakes and reservoirs (USEPA, 2000; Leone et al., 2001; Leone et al., 2003). Excessive nutrient transport into lakes and reservoirs may accelerate eutrophication rates, causing negative impacts on aesthetic and water quality. As reservoirs become eutrophic, they are depleted in oxygen and enriched in suspended solids, with heavy consequences for ecosystems and natural habitats. Management of nutrient loads into reservoirs requires knowledge of nutrient transport and delivery from the watershed-stream system (Ripa, 2003). Managing uncultivated lands in watersheds may be a cost effective way to improve water quality in agricultural landscapes, and recent advances in landscape ecology highlight important relationships between the structural configuration of these lands and nutrient redistribution (e.g., Forman 1987; Barrett and others 1990). Many studies have been carried out to underline and explain how landscape characteristics and structure may affect these processes. In these studies, relations between land cover and nutrient storage were analyzed using geographic information systems (GIS) (e.g. Lucas, 2002). Nutrients are generally transported from the landscape into streams during runoff events; however, they may also enter stream flow from other sources such as groundwater recharge and point source effluent discharges (Lucas, 2002; Nielsen, 2007; Waldron, 2008; Castillo, 2009). Water moves nutrients and delivers them to downstream water bodies such as lakes and reservoirs so that erosion phenomena play an essential role in determining nutrients fluxes and deposition. On the one hand, several hydrological models take into account nutrients reactions, movements and deposition - coupling soil erosion processes with transport equations (Bartley, 2004; Lű, 2010). On the

  15. Seasonal change of non-point source pollution-induced bioavailable phosphorus loss: A case study of Southwestern China

    Science.gov (United States)

    Gao, Yang; Zhu, Bo; Wang, Tao; Wang, Yafeng

    2012-02-01

    SummaryBioavailable phosphorus (P) losses due to agriculture activity in a purple soil watershed in the Sichuan Basin of Southwestern China were monitored to define the hydrological controls of P transport. Our results indicate that the proportion of P that was transported in particulate form increased in the rainy season, and that the mass of total bioavailable P (BAP) loads exhibited seasonal fluctuations, wherein the majority (over 90%) was observed to have been exported between June and September. The proportion of bioavailable dissolved P (BDP) in the BAP discharge budget in the watershed varied between 11% and 15% during the monitoring period. The bioavailable particulate P (BPP) and BDP concentrations of stream water under rainstorm events increased by over 40% in comparison to their annual mean concentrations, and the annual BAP load was primarily dominated by the loads that occurred during rainstorm events in the study year. BAP concentration in groundwater significantly fluctuated with the seasons, and the ratio of total BAP in groundwater to that in surface water gradually increased during the rainy season. Thus, the impact of agriculture on the water quality of this watershed becomes clearly evident.

  16. Impacts of channel deposition on the risk of flooding in a watershed

    Science.gov (United States)

    Ting-Yue, Hong; Chia-Ling, Chang

    2017-04-01

    Taiwan is located in East Asian where is always hit by typhoons. Typhoons usually bring huge amounts of rainfall and result in the problems of channel deposition. Deposition influences the functions of channel and increases the risk of flooding. The Luliao Reservoir Watershed is the case area in this study. It is the major water source for agricultural activity and domestic use. The objective of this study is to assess the possible impacts of channel deposition on the watershed environment. This study applies the Storm Water Management Model (SWMM) to predict the hydrologic responses and evaluate the risk of flooding. The results show that the decrease of cross section induced by deposition in a channel may increase the risk of flooding and impact the safety of watershed environment. Therefore, canal desilting is important in channel regulation. The discussion and analysis can be useful references for channel regulation.

  17. Evaluating Vegetation Potential for Wildfire Impacted Watershed Using a Bayesian Network Modeling Approach

    Science.gov (United States)

    Jaramillo, L. V.; Stone, M. C.; Morrison, R. R.

    2017-12-01

    Decision-making for natural resource management is complex especially for fire impacted watersheds in the Southwestern US because of the vital importance of water resources, exorbitant cost of fire management and restoration, and the risks of the wildland-urban interface (WUI). While riparian and terrestrial vegetation are extremely important to ecosystem health and provide ecosystem services, loss of vegetation due to wildfire, post-fire flooding, and debris flows can lead to further degradation of the watershed and increased vulnerability to erosion and debris flow. Land managers are charged with taking measures to mitigate degradation of the watershed effectively and efficiently with limited time, money, and data. For our study, a Bayesian network (BN) approach is implemented to understand vegetation potential for Kashe-Katuwe Tent Rocks National Monument in the fire-impacted Peralta Canyon Watershed, New Mexico, USA. We implement both two-dimensional hydrodynamic and Bayesian network modeling to incorporate spatial variability in the system. Our coupled modeling framework presents vegetation recruitment and succession potential for three representative plant types (native riparian, native terrestrial, and non-native) under several hydrologic scenarios and management actions. In our BN model, we use variables that address timing, hydrologic, and groundwater conditions as well as recruitment and succession constraints for the plant types based on expert knowledge and literature. Our approach allows us to utilize small and incomplete data, incorporate expert knowledge, and explicitly account for uncertainty in the system. Our findings can be used to help land managers and local decision-makers determine their plan of action to increase watershed health and resilience.

  18. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale.

    Science.gov (United States)

    Wang, Xixi; Shang, Shiyou; Qu, Zhongyi; Liu, Tingxi; Melesse, Assefa M; Yang, Wanhong

    2010-07-01

    Wetlands are one of the most important watershed microtopographic features that affect hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models such as the Soil and Water Assessment Tool (SWAT), enhanced by the hydrologic equivalent wetland (HEW) concept developed by Wang [Wang, X., Yang, W., Melesse, A.M., 2008. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Trans. ASABE 51 (1), 55-72.], can be a best resort. However, there is a serious lack of information about simulated effects using this kind of integrated modeling approach. The objective of this study was to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota. The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes and wetland characteristics (e.g., size and morphology) to be accurately represented in the models. The loss of the first 10-20% of the wetlands in the Minnesota study area would drastically increase the peak discharge and loadings of sediment, total phosphorus (TP), and total nitrogen (TN). On the other hand, the justifiable reductions of the peak discharge and loadings of sediment, TP, and TN in the Manitoba study area may require that 50-80% of the lost wetlands be restored. Further, the comparison between the predicted restoration and conservation effects revealed that wetland conservation seems to deserve a higher priority

  19. Effects of mountain agriculture on nutrient cycling at upstream watersheds

    Science.gov (United States)

    Lin, T.-C.; Shaner, P. L.; Wang, L.-J.; Shih, Y.-T.; Wang, C.-P.; Huang, G.-H.; Huang, J.-C.

    2015-05-01

    The expansion of agriculture to rugged mountains can exacerbate negative impacts of agriculture activities on ecosystem function. In this study, we monitored streamwater chemistry of four watersheds with varying proportions of agricultural lands (0.4, 3, 17, 22%) and rainfall chemistry of two of the four watersheds at Feitsui Reservoir Watershed in northern Taiwan to examine the effects of agriculture on watershed nutrient cycling. We found that the greater the proportions of agricultural lands, the higher the ion concentrations, which is evident for fertilizer-associated ions (NO3-, K+) but not for ions that are rich in soils (SO42-, Ca2+, Mg2+), suggesting that agriculture enriched fertilizer-associated nutrients in streamwater. The watershed with the highest proportion of agricultural lands had higher concentrations of ions in rainfall and lower nutrient retention capacity (i.e. higher output-input ratio of ions) compared to the relatively pristine watershed, suggesting that agriculture can influence atmospheric deposition of nutrients and a system's ability to retain nutrients. Furthermore, we found that a forested watershed downstream of agricultural activities can dilute the concentrations of fertilizer-associated ions (NO3-, K+) in streamwater by more than 70%, indicating that specific landscape configurations help mitigate nutrient enrichment to aquatic systems. We estimated that agricultural lands at our study site contributed approximately 400 kg ha-1 yr-1 of NO3-N and 260 kg ha-1 yr-1 of PO4-P output via streamwater, an order of magnitude greater than previously reported around the globe and can only be matched by areas under intense fertilizer use. Furthermore, we re-constructed watershed nutrient fluxes to show that excessive leaching of N and P, and additional loss of N to the atmosphere via volatilization and denitrification, can occur under intense fertilizer use. In summary, this study demonstrated the pervasive impacts of agriculture activities

  20. Human Activity Determines the Presence of Integron-Associated and Antibiotic Resistance Genes in Southwestern British Columbia

    Directory of Open Access Journals (Sweden)

    Miguel I. Uyaguari-Díaz

    2018-05-01

    Full Text Available The dissemination of antibiotic resistant bacteria from anthropogenic sources into the environment poses an emerging public health threat. Antibiotic resistance genes (ARGs and gene-capturing systems such as integron-associated integrase genes (intI play a key role in alterations of microbial communities and the spread of antibiotic resistant bacteria into the environment. In order to assess the effect of anthropogenic activities on watersheds in southwestern British Columbia, the presence of putative antibiotic resistance and integrase genes was analyzed in the microbiome of agricultural, urban influenced, and protected watersheds. A metagenomics approach and high-throughput quantitative PCR (HT qPCR were used to screen for elements of resistance including ARGs and intI. Metagenomic sequencing of bacterial genomic DNA was used to characterize the resistome of microbial communities present in watersheds over a 1-year period. There was a low prevalence of ARGs relative to the microbial population (<1%. Analysis of the metagenomic sequences detected a total of 60 elements of resistance including 46 ARGs, intI1, and groEL/intI1 genes and 12 quaternary ammonium compounds (qac resistance genes across all watershed locations. The relative abundance and richness of ARGs was found to be highest in agriculture impacted watersheds compared to urban and protected watersheds. A downstream transport pattern was observed in the impacted watersheds (urban and agricultural during dry months. Similar to other reports, this study found a strong association between intI1 and ARGs (e.g., sul1, an association which may be used as a proxy for anthropogenic activities. Chemical analysis of water samples for three major groups of antibiotics was below the detection limit. However, the high richness and gene copy numbers (GCNs of ARGs in impacted sites suggest that the effects of effluents on microbial communities are occurring even at low concentrations of

  1. Human Activity Determines the Presence of Integron-Associated and Antibiotic Resistance Genes in Southwestern British Columbia.

    Science.gov (United States)

    Uyaguari-Díaz, Miguel I; Croxen, Matthew A; Luo, Zhiyao; Cronin, Kirby I; Chan, Michael; Baticados, Waren N; Nesbitt, Matthew J; Li, Shaorong; Miller, Kristina M; Dooley, Damion; Hsiao, William; Isaac-Renton, Judith L; Tang, Patrick; Prystajecky, Natalie

    2018-01-01

    The dissemination of antibiotic resistant bacteria from anthropogenic sources into the environment poses an emerging public health threat. Antibiotic resistance genes (ARGs) and gene-capturing systems such as integron-associated integrase genes ( intI ) play a key role in alterations of microbial communities and the spread of antibiotic resistant bacteria into the environment. In order to assess the effect of anthropogenic activities on watersheds in southwestern British Columbia, the presence of putative antibiotic resistance and integrase genes was analyzed in the microbiome of agricultural, urban influenced, and protected watersheds. A metagenomics approach and high-throughput quantitative PCR (HT qPCR) were used to screen for elements of resistance including ARGs and intI . Metagenomic sequencing of bacterial genomic DNA was used to characterize the resistome of microbial communities present in watersheds over a 1-year period. There was a low prevalence of ARGs relative to the microbial population (<1%). Analysis of the metagenomic sequences detected a total of 60 elements of resistance including 46 ARGs, intI1 , and groEL/ intI1 genes and 12 quaternary ammonium compounds ( qac ) resistance genes across all watershed locations. The relative abundance and richness of ARGs was found to be highest in agriculture impacted watersheds compared to urban and protected watersheds. A downstream transport pattern was observed in the impacted watersheds (urban and agricultural) during dry months. Similar to other reports, this study found a strong association between intI1 and ARGs (e.g., sul1 ), an association which may be used as a proxy for anthropogenic activities. Chemical analysis of water samples for three major groups of antibiotics was below the detection limit. However, the high richness and gene copy numbers (GCNs) of ARGs in impacted sites suggest that the effects of effluents on microbial communities are occurring even at low concentrations of antimicrobials

  2. Effects of mountain tea plantations on nutrient cycling at upstream watersheds

    Science.gov (United States)

    Lin, T.-C.; Shaner, P.-J. L.; Wang, L.-J.; Shih, Y.-T.; Wang, C.-P.; Huang, G.-H.; Huang, J.-C.

    2015-11-01

    The expansion of agriculture to rugged mountains can exacerbate negative impacts of agricultural activities on ecosystem function. In this study, we monitored streamwater and rainfall chemistry of mountain watersheds at the Feitsui Reservoir Watershed in northern Taiwan to examine the effects of agriculture on watershed nutrient cycling. We found that the greater the proportion of tea plantation cover, the higher the concentrations of fertilizer-associated ions (NO3-, K+) in streamwater of the four mountain watersheds examined; on the other hand, the concentrations of the ions that are rich in soils (SO42-, Ca2+, Mg2+) did not increase with the proportion of tea plantation cover, suggesting that agriculture enriched fertilizer-associated nutrients in streamwater. Of the two watersheds for which rainfall chemistry was available, the one with higher proportion of tea plantation cover had higher concentrations of ions in rainfall and retained less nitrogen in proportion to input compared to the more pristine watershed, suggesting that agriculture can influence atmospheric deposition of nutrients and a system's ability to retain nutrients. As expected, we found that a forested watershed downstream of agricultural activities can dilute the concentrations of NO3- in streamwater by more than 70 %, indicating that such a landscape configuration helps mitigate nutrient enrichment in aquatic systems even for watersheds with steep topography. We estimated that tea plantation at our study site contributed approximately 450 kg ha-1 yr-1 of NO3-N via streamwater, an order of magnitude greater than previously reported for agricultural lands around the globe, which can only be matched by areas under intense fertilizer use. Furthermore, we constructed watershed N fluxes to show that excessive leaching of N, and additional loss to the atmosphere via volatilization and denitrification can occur under intense fertilizer use. In summary, this study demonstrated the pervasive impacts of

  3. Occurrence of Ceratium furcoides (Levander Langhans 1925 (Dinophyceae: Ceratiaceae in Two Reservoirs of the Capibaribe Watershed Located in Semiarid Region | Ocorrência de Ceratium furcoides (Levander Langhans 1925 (Dinophyceae: Ceratiaceae em Dois Reservatórios da Baía de Capibaribe Localizada na Região Semiárida

    Directory of Open Access Journals (Sweden)

    Indira Maria Estolano Macedo

    2016-06-01

    Full Text Available (Occurrence of Ceratium furcoides (Levander Langhans 1925 (Dinophyceae: Ceratiaceae in Two Reservoirs of the Capibaribe Watershed Located in Semiarid Region. This study reported the first occurrence of Ceratium furcoides (Levander Langhans 1925 species in two eutrophic in the Capibaribe river basin (Pernambuco-Brazil, located in semiarid region. Fortnightly, samples were collected in the sub-surface reservoirs. The following abiotic variables were analyzed: pH, apparent color, turbidity, conductivity, total hardness, chlorides, ammonia, nitrate, nitrite, inorganic phosphate, iron, copper, manganese and zinc.  Phytoplankton biomass was quantified through its density. C. furcoides occurred in 17% of the samples in both reservoirs, and also presented high biomass (2.14 mm3.L-1 in Jucazinho and 4.04 mm3.L-1 in Toritama. The studied reservoirs are eutrophic and showed high concentrations of nutrients, particularly nitrite, as well as high conductivity and total hardness values.

  4. Sources of suspended-sediment flux in streams of the chesapeake bay watershed: A regional application of the sparrow model

    Science.gov (United States)

    Brakebill, J.W.; Ator, S.W.; Schwarz, G.E.

    2010-01-01

    We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain. ?? 2010 American Water Resources Association. No claim to original U.S. government works.

  5. Historical effects of dissolved organic carbon export and land management decisions on the watershed-scale forest carbon budget of a coastal British Columbia Douglas-fir-dominated landscape

    Directory of Open Access Journals (Sweden)

    B. P. Smiley

    2017-07-01

    Full Text Available Abstract Background To address how natural disturbance, forest harvest, and deforestation from reservoir creation affect landscape-level carbon (C budgets, a retrospective C budget for the 8500 ha Sooke Lake Watershed (SLW from 1911 to 2012 was developed using historical spatial inventory and disturbance data. To simulate forest C dynamics, data was input into a spatially-explicit version of the Carbon Budget Model-Canadian Forest Sector (CBM-CFS3. Transfers of terrestrial C to inland aquatic environments need to be considered to better capture the watershed scale C balance. Using dissolved organic C (DOC and stream flow measurements from three SLW catchments, DOC load into the reservoir was derived for a 17-year period. C stocks and stock changes between a baseline and two alternative management scenarios were compared to understand the relative impact of successive reservoir expansions and sustained harvest activity over the 100-year period. Results Dissolved organic C flux for the three catchments ranged from 0.017 to 0.057 Mg C ha−1 year−1. Constraining CBM-CFS3 to observed DOC loads required parameterization of humified soil C losses of 2.5, 5.5, and 6.5%. Scaled to the watershed and assuming none of the exported terrestrial DOC was respired to CO2, we hypothesize that over 100 years up to 30,657 Mg C may have been available for sequestration in sediment. By 2012, deforestation due to reservoir creation/expansion resulted in the watershed forest lands sequestering 14 Mg C ha−1 less than without reservoir expansion. Sustained harvest activity had a substantially greater impact, reducing forest C stores by 93 Mg C ha−1 by 2012. However approximately half of the C exported as merchantable wood during logging (~176,000 Mg C may remain in harvested wood products, reducing the cumulative impact of forestry activity from 93 to 71 Mg C ha−1. Conclusions Dissolved organic C flux from temperate forest ecosystems is a

  6. Historical effects of dissolved organic carbon export and land management decisions on the watershed-scale forest carbon budget of a coastal British Columbia Douglas-fir-dominated landscape.

    Science.gov (United States)

    Smiley, B P; Trofymow, J A

    2017-12-01

    To address how natural disturbance, forest harvest, and deforestation from reservoir creation affect landscape-level carbon (C) budgets, a retrospective C budget for the 8500 ha Sooke Lake Watershed (SLW) from 1911 to 2012 was developed using historical spatial inventory and disturbance data. To simulate forest C dynamics, data was input into a spatially-explicit version of the Carbon Budget Model-Canadian Forest Sector (CBM-CFS3). Transfers of terrestrial C to inland aquatic environments need to be considered to better capture the watershed scale C balance. Using dissolved organic C (DOC) and stream flow measurements from three SLW catchments, DOC load into the reservoir was derived for a 17-year period. C stocks and stock changes between a baseline and two alternative management scenarios were compared to understand the relative impact of successive reservoir expansions and sustained harvest activity over the 100-year period. Dissolved organic C flux for the three catchments ranged from 0.017 to 0.057 Mg C ha -1  year -1 . Constraining CBM-CFS3 to observed DOC loads required parameterization of humified soil C losses of 2.5, 5.5, and 6.5%. Scaled to the watershed and assuming none of the exported terrestrial DOC was respired to CO 2 , we hypothesize that over 100 years up to 30,657 Mg C may have been available for sequestration in sediment. By 2012, deforestation due to reservoir creation/expansion resulted in the watershed forest lands sequestering 14 Mg C ha -1 less than without reservoir expansion. Sustained harvest activity had a substantially greater impact, reducing forest C stores by 93 Mg C ha -1 by 2012. However approximately half of the C exported as merchantable wood during logging (~176,000 Mg C) may remain in harvested wood products, reducing the cumulative impact of forestry activity from 93 to 71 Mg C ha -1 . Dissolved organic C flux from temperate forest ecosystems is a small but persistent C flux which may have long term

  7. Assessing ways to combat eutrophication in a Chinese drinking water reservoir using SWAT

    DEFF Research Database (Denmark)

    Nielsen, Anders; Trolle, Dennis; Me, W

    2013-01-01

    Across China, nutrient losses associated with agricultural production and domestic sewage have triggered eutrophication, and local managers are challenged to comply with drinking water quality requirements. Evidently, the improvement of water quality should be targeted holistically and encompass...... in land and livestock management and sewage treatment on nutrient export and derived consequences for water quality in the Chinese subtropical Kaiping (Dashahe) drinking water reservoir (supplying 0.4 million people). The critical load of TP was estimated to 13.5 tonnes yr–1 in order to comply...... both point sources and surface activities within the watershed of a reservoir. We expanded the ordinary Soil Water Assessment Tool – (SWAT) with a widely used empirical equation to estimate total phosphorus (TP) concentrations in lakes and reservoirs. Subsequently, we examined the effects of changes...

  8. Sediment and solute transport in a mountainous watershed in Valle del Cauca, Colombia

    Science.gov (United States)

    Guzman, Christian; Hoyos Villada, Fanny; Morales Vargas, Amalia; Rivera, Baudelino; Da Silva, Mayesse; Moreno Padilla, Pedro; Steenhuis, Tammo

    2015-04-01

    Sediment samples and solute concentrations were measured from the La Vega micro watershed in the southwestern region of the Colombian Andes. A main goal of this study was to improve prediction of soil surface and soil nutrient changes, based on field measurements, within small basin of the Aguaclara watershed network receiving different types of conservation measures. Two modeling approaches for stream discharge and sediment transport predictions were used with one of these based on infiltration-excess and the other on saturation-excess runoff. These streams are a part of a recent initiative from a water fund established by Asobolo, Asocaña, and Cenicaña in collaboration with the Natural Capital Project to improve conservation efforts and monitor their effects. On-site soil depth changes, groundwater depth measurements, and soil nutrient concentrations were also monitored to provide more information about changes within this mountainous watershed during one part of the yearly rainy season. This information is being coupled closely with the outlet sediment concentration and solute concentration patterns to discern correlations between scales. Lateral transects in the upper, middle, and lower part of the hillsides in the La Vega micro watershed showed differences in soil nutrient status and soil surface depth changes. The model based on saturation-excess, semi-distributed hydrology was able to reproduce discharge and sediment transport rates as well as the initially used infiltration excess model indicating available options for comparison of conservation changes in the future.

  9. Minnesota Watersheds

    Data.gov (United States)

    Minnesota Department of Natural Resources — Statewide minor watershed delineations with major/minor watershed identifiers and names for provinces, major watersheds, and basins. Also included are watershed...

  10. Rainfall prediction of Cimanuk watershed regions with canonical correlation analysis (CCA)

    Science.gov (United States)

    Rustiana, Shailla; Nurani Ruchjana, Budi; Setiawan Abdullah, Atje; Hermawan, Eddy; Berliana Sipayung, Sinta; Gede Nyoman Mindra Jaya, I.; Krismianto

    2017-10-01

    Rainfall prediction in Indonesia is very influential on various development sectors, such as agriculture, fisheries, water resources, industry, and other sectors. The inaccurate predictions can lead to negative effects. Cimanuk watershed is one of the main pillar of water resources in West Java. This watersheds divided into three parts, which is a headwater of Cimanuk sub-watershed, Middle of Cimanuk sub-watershed and downstream of Cimanuk sub- watershed. The flow of this watershed will flow through the Jatigede reservoir and will supply water to the north-coast area in the next few years. So, the reliable model of rainfall prediction is very needed in this watershed. Rainfall prediction conducted with Canonical Correlation Analysis (CCA) method using Climate Predictability Tool (CPT) software. The prediction is every 3months on 2016 (after January) based on Climate Hazards group Infrared Precipitation with Stations (CHIRPS) data over West Java. Predictors used in CPT were the monthly data index of Nino3.4, Dipole Mode (DMI), and Monsoon Index (AUSMI-ISMI-WNPMI-WYMI) with initial condition January. The initial condition is chosen by the last data update. While, the predictant were monthly rainfall data CHIRPS region of West Java. The results of prediction rainfall showed by skill map from Pearson Correlation. High correlation of skill map are on MAM (Mar-Apr-May), AMJ (Apr-May-Jun), and JJA (Jun-Jul-Aug) which means the model is reliable to forecast rainfall distribution over Cimanuk watersheds region (over West Java) on those seasons. CCA score over those season prediction mostly over 0.7. The accuracy of the model CPT also indicated by the Relative Operating Characteristic (ROC) curve of the results of Pearson correlation 3 representative point of sub-watershed (Sumedang, Majalengka, and Cirebon), were mostly located in the top line of non-skill, and evidenced by the same of rainfall patterns between observation and forecast. So, the model of CPT with CCA method

  11. Wood Export and Deposition Dynamics in Mountain Watersheds

    Science.gov (United States)

    Senter, Anne Elizabeth

    Wood dynamics that store, transport, break down, and ultimately export wood pieces through watershed networks are key elements of stream complexity and ecosystem health. Efforts to quantify wood processes are advancing rapidly as technological innovations in field data collection, remotely sensed data acquisition, and data analyses become increasingly sophisticated. The ability to extend the temporal and spatial scales of wood data acquisition has been particularly useful to the investigations presented herein. The primary contributions of this dissertation are focused on two aspects of wood dynamics: watershed-scale wood export processes as identified using the depositional environment of a mountain reservoir, and wood deposition mechanisms in a bedrock-dominated mountain river. Three chapters present this work: In Chapter 1, continuous video monitoring of wood in transport revealed seasonal and diurnal hydrologic cycle influences on the variable rates at which wood transports. This effort supports the efficacy of utilizing continuous data collection methods for wood transport studies. Annual wood export data were collected via field efforts and aerial image analyses from New Bullards Bar Reservoir on the North Yuba River, Sierra Nevada, California. Examination of data revealed linkages between decadal-scale climatic patterns, large flood events, and episodic wood export quantities. A watershed-specific relation between wood export quantities and annual peak discharge contributes to the notion that peak discharge is a primary control on wood export, and yielded prediction of annual wood export quantities where no data were available. Linkages between seasonality, climatic components, and hydrologic events that exert variable control on watershed scale wood responses are presented as a functional framework. An accompanying conceptual model supports the framework presumption that wood responses are influenced by seasonal variations in Mediterranean-montane climate

  12. Hydrological Response Unit Analysis Using AVSWAT 2000 for Keuliling Reservoir Watershed, Aceh Province, Indonesia

    Directory of Open Access Journals (Sweden)

    . Azmeri

    2015-04-01

    Full Text Available Sediments deposition derived from the erosion in upstream areas can lead to river siltation or canals downstream irrigation. According to the complexity of erosion problem at Keuliling reservoir, it is essential that topography, hydrology, soil type and land use to be analyzed comprehensively. Software used to analyze is AVSWAT 2000 (Arc View Soil and Water Assessment Tools-2000, one of the additional tool of ArcView program. The results obtained are the watershed delineation map, soil type map to produce soil erodibility factor (K which indicates the resistance of soil particles toward exfoliation, land use map to produce crop management factor (C and soil conservation and its management factors (P. Hydrology analysis includes soil type, land use and utility for the erosion rate analysis through Hydrologic Response Unit (HRU. The biggest HRU value of sub-basin is on area 5 and the lowest one is on area 10. All four HRU in sub-basin area 5 are potentially donating high value for HRU. In short, this area has the longest slope length so that it has a large LS factor. About 50% of the land was covered by bushes which gain higher C factor rather than forest. Moreover, it has contour crop conservation technique with 9-20 % declivity resulting in having dominant factor of P. Soil type is dominated by Meucampli Formation which has soil erodibility factor with high level of vulnerable toward the rainfall kinetic energy. All in all, the vast majority of HRU parameters in this sub-basin area obtain the highest HRU value. Hydrology analysis, soil type, and use-land are useful for land area analysis that is susceptible to erosion which was identified through Hydrologic Response Unit (HRU using GIS. As the matter of fact, spatially studies constructed with GIS can facilitate the agency to determine critical areas which are needed to be aware or fully rehabilitated.

  13. GIBSI: an integrated modelling system for watershed management – sample applications and current developments

    Directory of Open Access Journals (Sweden)

    A. N. Rousseau

    2007-11-01

    Full Text Available Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS. GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes such as evapotranspiration, runoff, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada. They include impact assessments of: (i municipal clean water program; (ii agricultural nutrient management scenarios; (iii past and future land use changes, as well as (iv determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  14. 三峡库区小江流域水环境综合区划%Integrated Water Environment Regionalization in Xiaojiang Watershed in the Three Gorges Reservoir Area, China

    Institute of Scientific and Technical Information of China (English)

    王晶晶; 王文杰; 郎海鸥; 饶胜; 王维; 白雪

    2011-01-01

    In this study, taking Xiaojiang Watershed of the Three Gorges Reservoir Area as the research object, comprehensively considering the effects of land system, aquatic system, and socio-economic system on the water environment, an index system of integrated water environment regionalization was established, and the basic unit of division was developed under the watershed DEM. In accordance with the method of dominant factors and space overlay, combined with GIS software, integrated water environment regionalization in Xiaojiang Watershed was separated into three zones, i.e. water conservation and ecological conservation zonein the north, pollution control zone in the south, and eutrophication control zone on the mainstream area of Xiaojiang Watershed, respectively. And according to the characteristics and the main environmental problems of the region, put forward environmental protection requirements and measures. In the water conservation and ecological conservation zone, vegetation are not high, and degradation is obvious, requesting to protect existing forest, prohibite excessive deforestation, and facilitate afforestation; in the pollution control zone, forest and grass cover is low, soil erosion is very serious, and industrial pollution emission is the most important factor causing changes in water quality, needing to take pollution control as the main approach; Xiaojiang Watershed is the largest fluctuation band in Three Gorges Reservoir eutrophication control area, requiring proper resettlement, while focusing on strengthening eutrophication management. By exploring the integrated environmental management approach in Xiaojiang Watershed, we proposed zone management of water environment as a new idea, in order to improve the management of water environment in China

  15. Usle systematization of the factors in gis to the quantification the of laminate erosion in the jirau river watershed

    Directory of Open Access Journals (Sweden)

    Elisete Guimarães

    2005-12-01

    Full Text Available The present paper demonstrates the use of USLE (Universal Equation of Soil Losses in GIS (Geographic Information System as a tool for the quantification of soil losses by laminate erosion. The study area is the Jirau River watershed, which is located in the district of Dois Vizinhos, Southwestern Parana. Our results present a contribution to the development and implementation of automated methodologies focused on the characterization, quantification, and control of the laminate erosion process.

  16. Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: a case study of the Xinfengjiang reservoir in southern China

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2013-01-01

    The ever-increasing demand for water due to growth of population and socioeconomic development in the past several decades has posed a worldwide threat to water supply security and to the environmental health of rivers. This study aims to derive reservoir operating rules through establishing a multi-objective optimization model for the Xinfengjiang (XFJ) reservoir in the East River Basin in southern China to minimize water supply deficit and maximize hydropower generation. Additionally, to enhance the estimation of irrigation water demand from the downstream agricultural area of the XFJ reservoir, a conventional method for calculating crop water demand is improved using hydrological model simulation results. Although the optimal reservoir operating rules are derived for the XFJ reservoir with three priority scenarios (water supply only, hydropower generation only, and equal priority), the river environmental health is set as the basic demand no matter which scenario is adopted. The results show that the new rules derived under the three scenarios can improve the reservoir operation for both water supply and hydropower generation when comparing to the historical performance. Moreover, these alternative reservoir operating policies provide the flexibility for the reservoir authority to choose the most appropriate one. Although changing the current operating rules may influence its hydropower-oriented functions, the new rules can be significant to cope with the increasingly prominent water shortage and degradation in the aquatic environment. Overall, our results and methods (improved estimation of irrigation water demand and formulation of the reservoir optimization model) can be useful for local watershed managers and valuable for other researchers worldwide.

  17. A hybrid framework for reservoir characterization using fuzzy ranking and an artificial neural network

    Science.gov (United States)

    Wang, Baijie; Wang, Xin; Chen, Zhangxin

    2013-08-01

    Reservoir characterization refers to the process of quantitatively assigning reservoir properties using all available field data. Artificial neural networks (ANN) have recently been introduced to solve reservoir characterization problems dealing with the complex underlying relationships inherent in well log data. Despite the utility of ANNs, the current limitation is that most existing applications simply focus on directly implementing existing ANN models instead of improving/customizing them to fit the specific reservoir characterization tasks at hand. In this paper, we propose a novel intelligent framework that integrates fuzzy ranking (FR) and multilayer perceptron (MLP) neural networks for reservoir characterization. FR can automatically identify a minimum subset of well log data as neural inputs, and the MLP is trained to learn the complex correlations from the selected well log data to a target reservoir property. FR guarantees the selection of the optimal subset of representative data from the overall well log data set for the characterization of a specific reservoir property; and, this implicitly improves the modeling and predication accuracy of the MLP. In addition, a growing number of industrial agencies are implementing geographic information systems (GIS) in field data management; and, we have designed the GFAR solution (GIS-based FR ANN Reservoir characterization solution) system, which integrates the proposed framework into a GIS system that provides an efficient characterization solution. Three separate petroleum wells from southwestern Alberta, Canada, were used in the presented case study of reservoir porosity characterization. Our experiments demonstrate that our method can generate reliable results.

  18. Stochastic reservoir operation under drought with fuzzy objectives

    International Nuclear Information System (INIS)

    Parent, E.; Duckstein, L.

    1993-01-01

    Biojective reservoir operation under drought conditions is investigated using stochastic dynamic programming. As both objectives (irrigation water supply, water quality) can only be defined imprecisely, a fuzzy set approach is used to encode the decision maker (DM)'s preferences. The nature driven components are modeled by means of classical stage-state system analysis. The state is three dimensional (inflow memory, drought irrigation index, reservoir level); the decision vector elements are release and irrigation allocation. Stochasticity stems from the random nature of inflows and irrigation demands. The transition function includes a lag one inflow Markov model and mass balance equations. The human driven component is designed as a confluence of fuzzy objectives and constraints after Bellman and Zadeh. Fuzzy numbers are assessed to represent the DM's objectives by two different techniques, the direct one and indirect pairwise comparison. The real case study of the Neste river system in southwestern France is used to illustrate the approach; the result are compared to a classical sequential decision theoretical model derived earlier from the viewpoints of ease of modeling, computational efforts, plausibility and robustness of results

  19. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    International Nuclear Information System (INIS)

    Green, Don W.; McCune, A.D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite, G. Paul

    1999-01-01

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) Identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2

  20. Silt and gas accumulation beneath an artificial recharge spreading basin, Southwestern Utah, U.S.A.

    Science.gov (United States)

    Heilweil, V.M.; Solomon, D.K.; Ortiz, G.

    2009-01-01

    Sand Hollow Reservoir in southwestern Utah, USA, is operated for both surface-water storage and artificial recharge to the underlying Navajo Sandstone. The total volume of estimated artificial recharge between 2002 and 2007 is 85 million cubic meters (69,000 acre-feet). Since 2002, artificial recharge rates have generally been declining and are inversely correlated with the increasing surface area of the reservoir. Permeability testing of core samples retrieved from beneath the reservoir indicates that this decline may not be due to silt accumulation. Artificial recharge rates also show much seasonal variability. Calculations of apparent intrinsic permeability show that these variations can only partly be explained by variation in water viscosity associated with seasonal changes in water temperature. Sporadic seasonal trends in recharge rates and intrinsic permeability during 2002-2004 could be associated with the large fluctuations in reservoir elevation and wetted area. From 2005 through 2007, the reservoir was mostly full and there has been a more consistent seasonal pattern of minimum recharge rates during the summer and maximum rates during the autumn. Total dissolved-gas pressure measurements indicate the presence of biogenic gas bubbles in the shallow sediments beneath the shallower parts of Sand Hollow Reservoir when the water is warmer. Permeability reduction associated with this gas clogging may contribute to the decrease in artificial recharge rates during the spring and summer, with a subsequently increasing recharge rates in the autumn associated with a decline in volume of gas bubbles. Other possible causes for seasonal variation in artificial recharge rates require further investigation.

  1. Impacts of forest to urban land conversion and ENSO phase on water quality of a public water supply reservoir

    Science.gov (United States)

    We used coupled watershed and reservoir models to evaluate the impacts of deforestation and ENSO phase on drinking water quality. Source water total organic carbon (TOC) is especially important due to the potential for production of carcinogenic disinfection byproducts (DBPs). The Environmental Flui...

  2. Decision Support System for Reservoir Management and Operation in Africa

    Science.gov (United States)

    Navar, D. A.

    2016-12-01

    Africa is currently experiencing a surge in dam construction for flood control, water supply and hydropower production, but ineffective reservoir management has caused problems in the region, such as water shortages, flooding and loss of potential hydropower generation. Our research aims to remedy ineffective reservoir management by developing a novel Decision Support System(DSS) to equip water managers with a technical planning tool based on the state of the art in hydrological sciences. The DSS incorporates a climate forecast model, a hydraulic model of the watershed, and an optimization model to effectively plan for the operation of a system of cascade large-scale reservoirs for hydropower production, while treating water supply and flood control as constraints. Our team will use the newly constructed hydropower plants in the Omo Gibe basin of Ethiopia as the test case. Using the basic HIDROTERM software developed in Brazil, the General Algebraic Modeling System (GAMS) utilizes a combination of linear programing (LP) and non-linear programming (NLP) in conjunction with real time hydrologic and energy demand data to optimize the monthly and daily operations of the reservoir system. We compare the DSS model results with the current reservoir operating policy used by the water managers of that region. We also hope the DSS will eliminate the current dangers associated with the mismanagement of large scale water resources projects in Africa.

  3. Episodic response project: Wet deposition at watersheds in three regions of the eastern United States

    International Nuclear Information System (INIS)

    Barchet, W.R.

    1991-11-01

    During the period from August 1988 to June 1990, wet-only sampling of precipitation was carried out at three Episodic Response Project sites and at one supplemental site. The three watershed sites are Moss Lake, Biscuit Brook, and Linn Run. The supplemental site was the MAP3S site at Pennsylvania State University that characterizes the central group of northern Appalachian streams. The site operators adhered by varying degrees to the sample collection protocol based on the daily sampling protocol of the MAP3S Precipitation Chemistry Network. Sulfate and nitrate ion together accounted for more than 80% of total anions (in μEq/L) in the precipitation at all sites. Wet deposition of sulfate at Moss Lake, Biscuit Brook, Penn State, and Linn Run averaged 223, 230, 253, and 402 mg/m 2 /month, respectively, whereas nitrate wet deposition averaged 197, 195, 160, and 233 mg/m 2 /month, respectively. Sulfate deposition was a factor of 2 to 4 higher in summer than in winter. The seasonal pattern for nitrate deposition was weak; the seasonal contrast was less than a factor of 2.5 at all sites. The association between the wet deposition and precipitation chemistry at the MAP3S monitoring site and the average for the study watersheds was dependent on the distance between the site and watershed and the intervening terrain. Precipitation chemistry at the monitoring site is representative of that at the ERP study watersheds in the Adirondack and Catskill regions and in the south-western group of watersheds in the Appalachian region. High spatial variability in precipitation amounts makes this assumption weaker for wet deposition. Chemical input to watersheds from dry deposition has not been determined at any site but could range from a factor of 0.3 to 1.0 of the wet deposition. 7 refs., 38 figs., 12 tabs

  4. Environmental Impact Assessment of reservoir construction: new perspectives for restoration economy, and development: the Belo Monte Power Plant case study.

    Science.gov (United States)

    Tundisi, J G; Matsumura-Tundisi, T; Tundisi, J E M

    2015-08-01

    The Environmental Impact Assessment of reservoir construction can be viewed as a new strategic perspective for the economic development of a region. Based on the principles of a watershed approach a interdisciplinary and multidisciplinary systemic view including biogeophysiographical, economic and socio environmental studies the new vision of a EIA provides a basic substratum for the restoration economy and an advanced model for the true development much well ahead of the modernization aspects of the project of a reservoir construction.

  5. New distributional records of the stygobitic crayfish Cambarus cryptodytes (Decapoda: Cambaridae) in the Floridan Aquifer System of southwestern Georgia

    Science.gov (United States)

    Fenolio, Dante B.; Niemiller, Matthew L.; Gluesenkamp, Andrew G.; Mckee, Anna; Taylor, Steven J.

    2017-01-01

    Cambarus cryptodytes (Dougherty Plain Cave Crayfish) is an obligate inhabitant of groundwater habitats (i.e., a stygobiont) with troglomorphic adaptations in the Floridan aquifer system of southwestern Georgia and adjacent Florida panhandle, particularly in the Dougherty Plain and Marianna Lowlands. Documented occurrences of Dougherty Plain Cave Crayfish are spatially distributed as 2 primary clusters separated by a region where few caves and springs have been documented; however, the paucity of humanly accessible karst features in this intermediate region has inhibited investigation of the species' distribution. To work around this constraint, we employed bottle traps to sample for Dougherty Plain Cave Crayfish and other groundwater fauna in 18 groundwater-monitoring wells that access the Floridan aquifer system in 10 counties in southwestern Georgia. We captured 32 Dougherty Plain Cave Crayfish in 9 wells in 8 counties between September 2014 and August 2015. We detected crayfish at depths ranging from 17.9 m to 40.6 m, and established new county records for Early, Miller, Mitchell, and Seminole counties in Georgia, increasing the number of occurrences in Georgia from 8 to 17 sites. In addition, a new US Geological Survey (USGS) Hydrologic Unit Code 8 (HUC8) watershed record was established for the Spring Creek watershed. These new records fill in the distribution gap between the 2 previously known clusters in Georgia and Jackson County, FL. Furthermore, this study demonstrates that deployment of bottle traps in groundwater-monitoring wells can be an effective approach to presence—absence surveys of stygobionts, especially in areas where surface access to groundwater is limited.

  6. Environmental Management Audit: Southwestern Power Administration (Southwestern)

    International Nuclear Information System (INIS)

    1993-03-01

    This report documents the results of the Environmental Management Audit completed for the Southwestern Power Administration. During this Audit, activities and records were reviewed and personnel interviewed. The onsite portion of the Southwestern Audit was conducted from November 30 through December 11, 1992, by the US Department of Energy's Office of Environmental Audit (EH-24). EH-24 carries out independent assessments of Department of Energy (DOE) facilities and activities as part of the Assistant Secretary's Environmental Audit Program. This program is designed to evaluate the status of DOE facilities/activities regarding compliance with laws, regulations, DOE Orders, formal written procedures, compliance agreements, and Best Management Practices (BMPs). This internal oversight function plays an important role in improving the compliance status of DOE operations. The Environmental Management Audit stresses DOE's policy that it is the responsibility of line management to conduct operations in an environmentally sound and safe manner. The Environmental Management Audit focuses on management systems and programs, whereas the Environmental Baseline Audit conducted in March 1991 focused on specific compliance issues. The scope of the Southwestern Environmental Management Audit included a review of all systems and functions necessary for effective environmental management. Specific areas of review included: Organizational Structure; Environmental Commitment; Environmental Protection Programs; Formality of Environmental Programs; Internal and External Communication; Staff Resources, Training, and Development; and Program Evaluation, Reporting, and Corrective Action

  7. The ecological dynamics of Barra Bonita (Tietê River, SP, Brazil reservoir: implications for its biodiversity

    Directory of Open Access Journals (Sweden)

    JG. Tundisi

    Full Text Available Barra Bonita reservoir is located in the Tietê River Basin - São Paulo state - 22° 29" to 22° 44" S and 48° 10° W and it is the first of a series of six large reservoirs in this river. Built up in 1963 with the aim to produce hydroelectricity this reservoir is utilized for several activities such as fish production, irrigation, navigation, tourism and recreation, besides hydroelectricity production. The seasonal cycle of events in this reservoir is driven by the hydrological features of the basin with consequences on the retention time and on the limnological functions of this artificial ecosystem. The reservoir is polymitic with short periods of stability. Hydrology of the basin, retention time of the reservoir and cold fronts have an impact in the vertical and horizontal structure of the system promoting rapid changes in the planktonic community and in the succession of species. Blooms of Microcystis sp. are common during periods of stability. Superimposed to the climatological and hydrological forcing functions the human activities in the watershed produce considerable impact such as the discharge of untreated wastewater, the high suspended material contributions and fertilizers from the sugar cane plantations. The fish fauna of the reservoir has been changed extent due to the introduction of exotic fish species that exploit the pelagic zone of the reservoir. Changes in the primary productivity of phytoplankton in this reservoir, in the zooplankton community in the diversity and organization of trophic structure are a consequence of eutrophication and its increase during the last 20 years. Control of eutrophication by treating wastewater from urban sources, adequate agricultural practices in order to diminish the suspended particulate matter contribution, revegetation of the watershed and riparian forests along the tributaries are some possible restoration measures. Another action that can be effective is the protection of wetlands in

  8. Creating an Erosion Vulnerability Map for the Columbia River Basin to Determine Reservoir Susceptibility to Sedimentation Before and After Wildfires

    Science.gov (United States)

    Ren, J.; Robichaud, P. J. L.; Adam, J. C.

    2017-12-01

    Sedimentation is important issue to most rivers and reservoirs especially in watersheds with extensive agricultural or wildfire activity. These human and natural induced disturbances have the potential to increase runoff-induced erosion and sediment load to rivers; downstream sedimentation can decrease the life expectancy of reservoir and consequently the dam. This is particularly critical in snowmelt-dominant regions because, as rising temperatures reduce snowpack as a natural reservoir, humans will become more reliant on reservoir storage. In the Northwest U.S., the Columbia River Basin (CRB) has more than 60 dams, which were built for irrigation, hydropower, and flood control, all of which are affected by sediment to varying degrees. Determining what dams are most likely to be affected by sedimentation caused by post-fire erosion is important for future management of reservoirs, especially as climate change is anticipated to exacerbate wildfire and its impacts. The objective of this study is to create a sedimentation vulnerability map for reservoirs in the CRB. There are four attributes of a watershed that determine erosion potential; soil type, topography, vegetation (such as forests, shrubs, and grasslands), and precipitation (although precipitation was excluded in this analysis). In this study, a rating system was developed on a scale of 0-90 (with 90 having the greatest erosion potential). The different layers in a Graphical Information System were combined to create an erosion vulnerability map. Results suggest that areas with agriculture have more erosion without a wildfire but that forested areas are most vulnerable to erosion rates following a fire, particularly a high severity fire. Sedimentation in dams is a growing problem that needs to be addressed especially with the likely reduction in snowpack, this vulnerability map will help determine which reservoirs in the CRB are prone to high sedimentation. This information can inform managers where post

  9. Southwestern Power Administration Annual Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-09-01

    Dear Secretary Moniz: I am pleased to present the financial statements and operating data for Southwestern Power Administration (Southwestern) for Fiscal Year (FY) 2012. In FY 2012, Southwestern delivered over 4.1 billion kilowatt-hours of energy to its wholesale customers in Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas, generating $195 million in revenue. In fulfilling its mission to market and reliably deliver renewable Federal hydroelectric power, Southwestern maintains 1,380 miles of high-voltage transmission lines, substations, and communications sites, contributing to the reliability of the regional and National electric grid. Southwestern also actively partners with the Department of Energy, the U.S. Army Corps of Engineers, Southwestern’s customers, and other Federal power stakeholders to most effectively balance their diverse interests with Southwestern’s mission while continuing to maximize Federal assets to repay the Federal investment in the 24 hydropower facilities within Southwestern’s marketing region. Southwestern is proud of its past successes, and we look forward to continuing to serve the Nation’s energy needs in the future. Sincerely, Christopher M. Turner Administrator

  10. Southwestern Power Administration Annual Report 2010

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-09-01

    Dear Secretary Chu: I am pleased to present the financial statements and operating data for Southwestern Power Administration (Southwestern) for Fiscal Year (FY) 2010. In FY 2010, Southwestern delivered nearly 7.6 billion kilowatt-hours of energy to its wholesale customers in Arkansas, Kansas, Louisiana, Missouri, Texas, and Oklahoma, generating $189 million in revenue. In fulfilling its mission to market and reliably deliver renewable Federal hydroelectric power, Southwestern maintains 1,380 miles of high-voltage transmission lines, substations, and communications sites, contributing to the reliability of the regional and National electric grid. Southwestern also actively partners with the Department of Energy, the U.S. Army Corps of Engineers, Southwestern’s customers, and other Federal power stakeholders to most effectively balance their diverse interests with Southwestern’s mission while continuing to maximize Federal assets to repay the Federal investment in the 24 hydropower facilities within Southwestern’s marketing region. Southwestern is proud of its past successes, and we look forward to continuing to serve the Nation’s energy needs in the future. Sincerely, Christopher M. Turner Administrator

  11. Southwestern Power Administration Annual Report 2011

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-01

    Dear Secretary Chu: I am pleased to present the financial statements and operating data for Southwestern Power Administration (Southwestern) for Fiscal Year (FY) 2011. In FY 2011, Southwestern delivered over 4.1 billion kilowatt-hours of energy to its wholesale customers in Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas, generating $167 million in revenue. In fulfilling its mission to market and reliably deliver renewable Federal hydroelectric power, Southwestern maintains 1,380 miles of high-voltage transmission lines, substations, and communications sites, contributing to the reliability of the regional and National electric grid. Southwestern also actively partners with the Department of Energy, the U.S. Army Corps of Engineers, Southwestern’s customers, and other Federal power stakeholders to most effectively balance their diverse interests with Southwestern’s mission while continuing to maximize Federal assets to repay the Federal investment in the 24 hydropower facilities within Southwestern’s marketing region. Southwestern is proud of its past successes, and we look forward to continuing to serve the Nation’s energy needs in the future. Sincerely, Christopher M. Turner Administrator

  12. Hydrology and hydraulics of Cypress Creek watershed, Texas during Hurricane Harvey and Impact of Potential Mitigation Measures.

    Science.gov (United States)

    El Hassan, A.; Fares, A.; Risch, E.

    2017-12-01

    Rain resulting from Hurricane Harvey stated to spread into Harris County late in August 25 and continued until August 31 2017. This high intensity rainfall caused catastrophic flooding across the Greater Houston Area and south Texas. The objectives of this study are to use the USACE Gridded Surface Subsurface Hydrologic Analysis model (GSSHA) to: i) simulate the hydrology and hydraulics of Cypress Creek watershed and quantify the impact of hurricane Harvey on it; and ii) test potential mitigation measures, e.g., construction of a third surface reservoir on the flooding and hydrology of this watershed. Cypress Creek watershed area is 733 km2. Simulations were conducted using precipitation from two sources a) the Multisensory Precipitation Estimator radar products (MPE) and Multi-Radar Multi-Sensor (MRMS) system. Streamflow was downloaded from the USGS gauge at the outlet of the watershed. The models performance using both precipitation data was very reasonable. The construction of an 8 m high embankment at the south central part of the watershed resulted in over 22% reduction of the peak flow of the stream and also reduction of the depth of inundation across the east part of the watershed. These and other mitigation scenarios will be further discussed in details during the presentation.

  13. Effects of residential and agricultural land uses on the chemical quality of baseflow of small streams in the Croton Watershed, southeastern New York

    Science.gov (United States)

    Heisig, Paul M.

    2000-01-01

    Data on the chemical quality of baseflow from 33 small streams that drain basins of differing land-use type and intensity within the Croton watershed were collected seasonally for 1 year to identify and characterize the quality of ground-water contributions to surface water. The watershed includes twelve of New York City's water-supply reservoirs. Baseflow samples were collected a minimum of three days after the most recent precipitation and were analyzed for major ions, boron, and nutrients.

  14. Characterization of phosphorus leaching from phosphate waste rock in the Xiangxi River watershed, Three Gorges Reservoir, China.

    Science.gov (United States)

    Jiang, Li-Guo; Liang, Bing; Xue, Qiang; Yin, Cheng-Wei

    2016-05-01

    Phosphate mining waste rocks dumped in the Xiangxi River (XXR) bay, which is the largest backwater zone of the Three Gorges Reservoir (TGR), are treated as Type I industry solid wastes by the Chinese government. To evaluate the potential pollution risk of phosphorus leaching from phosphate waste rocks, the phosphorus leaching behaviors of six phosphate waste rock samples with different weathering degrees under both neutral and acidic conditions were investigated using a series of column leaching experiments, following the Method 1314 standard of the US EPA. The results indicate that the phosphorus release mechanism is solubility-controlled. Phosphorus release from waste rocks increases as pH decreases. The phosphorus leaching concentration and cumulative phosphorus released in acidic leaching conditions were found to be one order of magnitude greater than that in neutral leaching conditions. In addition, the phosphorus was released faster during the period when environmental pH turned from weak alkalinity to slight acidity, with this accelerated release period appearing when L/S was in the range of 0.5-2.0 mL/g. In both neutral and acidic conditions, the average values of Total Phosphorus (TP), including orthophosphates, polyphosphates and organic phosphate, leaching concentration exceed the availability by regulatory (0.5 mg/L) in the whole L/S range, suggesting that the phosphate waste rocks stacked within the XXR watershed should be considered as Type II industry solid wastes. Therefore, the phosphate waste rocks deposited within the study area should be considered as phosphorus point pollution sources, which could threaten the adjacent surface-water environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Watershed analysis

    Science.gov (United States)

    Alan Gallegos

    2002-01-01

    Watershed analyses and assessments for the Kings River Sustainable Forest Ecosystems Project were done on about 33,000 acres of the 45,500-acre Big Creek watershed and 32,000 acres of the 85,100-acre Dinkey Creek watershed. Following procedures developed for analysis of cumulative watershed effects (CWE) in the Pacific Northwest Region of the USDA Forest Service, the...

  16. Invasive vascular plant species of oxbow lakes in south-western Poland

    Directory of Open Access Journals (Sweden)

    Spałek Krzysztof

    2015-06-01

    Full Text Available Natural water reservoirs are very valuable floristic sites in south-western Poland. Among them, the most important for the preservation of biodiversity of flora are oxbow lakes. The long-term process of human pressure on habitats of this type caused disturbances of their biological balance. Changes in the water regime, industrial development and chemisation of agriculture, especially in the period of the last two hundred years, led to systematic disappearances of localities of many plant species connected with rare habitats and also to the appearance of numerous invasive plant species. They are: Azolla filiculoides, Echinocystis lobata, Erechtites hieraciifolia, Impatiens glandulifera, I. parviflora, Reynoutria japonica, Solidago canadensis, S. gigantea and S. graminifolia. Field works were conducted in years 2005-2012.

  17. Performance assessment model development and parameter acquisition for analysis of the transport of natural radionuclides in a Mediterranean watershed

    International Nuclear Information System (INIS)

    Agueero, Almudena

    2005-01-01

    This paper describes the methodology developed to construct a model for predicting the behaviour of the natural radioisotopes of U, Th and Ra in a Mediterranean watershed. The methodology includes the development of the performance assessment model, obtaining water flow and radiological parameters based on experimental data and analysis of results. The model, which accounts for both water flows and mass balances of the radionuclides in a semi-natural environment, provides assessments of radionuclide behaviour in grassland and agricultural soils, rivers and reservoirs, including the processes of radionuclide migration through land and water and interactions between both. From field and laboratory data, it has been possible to obtain parameters for the driving processes considered in the model, water fluxes, source term definition, soil to plant transfer factors and distribution coefficient values. Ranges of parameter values obtained have shown good agreement with published literature data. This general methodological approach was developed to be extended to other radionuclides for the modelling of a biosphere watershed in the context of performance assessment of a High Level Waste (HLW) repository under Mediterranean climate conditions, as well as for forecasting radionuclide transport under similar Mediterranean conditions that will occur in the future in other areas. The application of sensitivity and uncertainty analysis was intended to identify key uncertainties with the aim of setting priorities for future research. The model results for the activity concentration in the reservoir indicate that for 238 U and 230 Th the most relevant parameter is the initial concentrations of the radionuclides in the reservoir sediments. However, for 226 Ra the most important parameter is the precipitation rate over the whole watershed

  18. Land Capability Analysis on Farming System at Serang Sub-Watershed Kedung Ombo Reservoir Catchment Area

    Directory of Open Access Journals (Sweden)

    Jaka Suyana

    2014-07-01

    Full Text Available Soil conservation in principle is using the land according to its capability and keep them from damage. This study aims at assessing the land capability classes of farming systems at Serang sub-watershed and evaluate their usages. The results showed that the land capability dominated by Class II (12,096.90 ha, 40.6%, followed by Class III (11,598.92 ha, 38.9%, Class IV (2,879.11 ha, 9.7%, Class I (1,333.14 ha, 4.5%, Class VIII (712.57 ha, 2.4%, Class VII (684.97 ha, 2.3% and Class VI (512.84 ha, 1.7%. The main resistance factors are slope and soil deepth for class II; slope, soil deepth, drainage and erosion for class III; slope and erosion for class IV; and slope for class VIII, VII and VI. The results showed that 94% farm lands at Serang sub-watershed was suitable to its land capability and only 6.0% were not suitable.

  19. PEMODELAN DAERAH TANGKAPAN AIR WADUK KELILING DENGAN MODEL SWAT (Keliling Reservoir Catchment Area Modeling Using SWAT Model

    Directory of Open Access Journals (Sweden)

    Teuku Ferijal

    2015-05-01

    Full Text Available This study aimed to model watershed area of Keliling Reservoir using SWAT model. The reservoir is located in Aceh Besar District, Province of Aceh. The model was setup using 90m x 90m digital elevation model, land use data extracted from remote sensing data and soil characteristic obtained from laboratory analysis on soil samples. Model was calibrated using observed daily reservoir volume and the model performance was analyzed using RMSE-observations standard deviation ratio (RSR, Nash-Sutcliffe efficiency (NSE and percent bias (PBIAS. The model delineated the study area into 3,448 Ha having 13 subwatersheds and 76 land units (HRUs. The watershed is mostly covered by forest (53% and grassland (31%. The analysis revealed the 10 most sensitive parameters i.e. GW_DELAY, CN2, REVAPMN, ALPHA_BF, SOL_AWC, GW_REVAP, GWQMN, CH_K2 and ESCO. Model performances were categorized into very good for monthly reservoir volume with ENS 0.95, RSR 0.23, and PBIAS 2.97. The model performance decreased when it used to analyze daily reservoir inflow with ENS 0.55, RSR 0.67, and PBIAS 3.46. Keywords: Keliling Reservoir, SWAT, Watershed   ABSTRAK Penelitian ini bertujuan untuk untuk memodelkan daerah tangkapan air Waduk Keliling dengan menggunakan Model SWAT. Waduk Keliling terletak di Kabupaten Aceh Besar, Propinsi Aceh. Dalam penelitian ini Model SWAT dikembangkan berdasarkan data digital elevasi model resolusi 90 m x90 m, tata guna lahan yang diperoleh dari intepretasi citra satelit dan data soil dari hasil analisa sampel tanah yang diperoleh di daerah penelitian. Model dikalibrasi dengan data volume waduk dan kinerja model dianalisa menggunakan parameter rasio akar rata-rata kuadrat error dan standard deviasi observasi (RSR, efesiensi Nash-Sutcliffe (NSE dan persentase bias (PBIAS. Hasil deleniasi untuk daerah penelitian menghasilkan suatu DAS dengan luas 3,448 Ha dan memiliki 13 Sub DAS yang dikelompokkan menjadi 76 unit lahan. Sebagian besar wilayah study

  20. Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and Climate Warming

    Science.gov (United States)

    Rheinheimer, David Emmanuel

    Hydropower systems and other river regulation often harm instream ecosystems, partly by altering the natural flow and temperature regimes that ecosystems have historically depended on. These effects are compounded at regional scales. As hydropower and ecosystems are increasingly valued globally due to growing values for clean energy and native species as well as and new threats from climate warming, it is important to understand how climate warming might affect these systems, to identify tradeoffs between different water uses for different climate conditions, and to identify promising water management solutions. This research uses traditional simulation and optimization to explore these issues in California's upper west slope Sierra Nevada mountains. The Sierra Nevada provides most of the water for California's vast water supply system, supporting high-elevation hydropower generation, ecosystems, recreation, and some local municipal and agricultural water supply along the way. However, regional climate warming is expected to reduce snowmelt and shift runoff to earlier in the year, affecting all water uses. This dissertation begins by reviewing important literature related to the broader motivations of this study, including river regulation, freshwater conservation, and climate change. It then describes three substantial studies. First, a weekly time step water resources management model spanning the Feather River watershed in the north to the Kern River watershed in the south is developed. The model, which uses the Water Evaluation And Planning System (WEAP), includes reservoirs, run-of-river hydropower, variable head hydropower, water supply demand, and instream flow requirements. The model is applied with a runoff dataset that considers regional air temperature increases of 0, 2, 4 and 6 °C to represent historical, near-term, mid-term and far-term (end-of-century) warming. Most major hydropower turbine flows are simulated well. Reservoir storage is also

  1. Southwestern Power Administration Update, October- December 2004

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-12-01

    On October 29, 2004, Southwestern and Southwest Power Pool, Inc. (SPP) reached agreement on interim arrangements to be implemented after the October 31, 2004, expiration of the membership agreement between the two parties. According to Jim McDonald, Director of Southwestern’s Division of Customer Service, the interim agreement forged between Southwestern and SPP seeks to minimize impacts to SPP as well as to Southwestern and its customers while Southwestern and SPP work on a seams/coordination agreement to succeed the expired membership agreement.

  2. Nitrogen and phosphorus budget in reservoirs Medio Flumendosa and Mulargia (Sardinia, Italy)

    International Nuclear Information System (INIS)

    Sechi, N.; Luglie, A.; Mosello, R.

    1996-01-01

    The nutrient loads of the reservoirs Mulargia and Medio Flumendosa (Centre-South Sardinia) were studied in the framework of an interdisciplinary study on the causes of phytoplankton blooms (in particular of Cyanophyta Oscillatoria rubescens D. C.). The sources considered were the tributaries and atmospheric deposition on the lake surface. The study period (July 1991-June 1992) was characterized by amounts of precipitation and discharge lower than the pluriannual means. The atmospheric load resulted significant for N but negligible for P. The P load from the watershed was 10.6 and 10.8 t a -1 for lakes Medio Flumendosa and Mulargia, respectively; the values for N were 51.8 and 108 t a -1 . Nutrient loads are discussed both in relation to population and economic activity in the watersheds and as regards their effects on the lake trophic level

  3. Comparison of the Prevalences and Diversities of Listeria Species and Listeria monocytogenes in an Urban and a Rural Agricultural Watershed.

    Science.gov (United States)

    Stea, Emma C; Purdue, Laura M; Jamieson, Rob C; Yost, Chris K; Truelstrup Hansen, Lisbeth

    2015-06-01

    Foods and related processing environments are commonly contaminated with the pathogenic Listeria monocytogenes. To investigate potential environmental reservoirs of Listeria spp. and L. monocytogenes, surface water and point source pollution samples from an urban and a rural municipal water supply watershed in Nova Scotia, Canada, were examined over 18 months. Presumptive Listeria spp. were cultured from 72 and 35% of rural and urban water samples, respectively, with 24% of the positive samples containing two or three different Listeria spp. The L. innocua (56%) and L. welshimeri (43%) groups were predominant in the rural and urban watersheds, respectively. Analysis by the TaqMan assay showed a significantly (P monocytogenes of 62% versus 17% by the culture-based method. Both methods revealed higher prevalences in the rural watershed and during the fall and winter seasons. Elevated Escherichia coli (≥ 100 CFU/100 ml) levels were not associated with the pathogen regardless of the detection method. Isolation of Listeria spp. were associated with 70 times higher odds of isolating L. monocytogenes (odds ratio = 70; P monocytogenes isolates, followed by IVb (16.1%), IIb (15.8%), and IIc (0.4%). L. monocytogenes was detected in cow feces and raw sewage but not in septic tank samples. Pulsotyping of representative water (n = 54) and local human (n = 19) isolates suggested genetic similarities among some environmental and human L. monocytogenes isolates. In conclusion, temperate surface waters contain a diverse Listeria species population and could be a potential reservoir for L. monocytogenes, especially in rural agricultural watersheds. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. 50 years of change at 14 headwater snowmelt-dominated watersheds in Wyoming

    Science.gov (United States)

    Voutchkova, D. D.; Miller, S. N.

    2017-12-01

    Wyoming is a headwater state contributing to the water resources of four major US basins: Columbia River, Colorado River, Great Basin, and Missouri River. Most of the annual precipitation in this semi-arid state is received at high elevations as snow. Water availability for drinking water supply, reservoir storage, industrial, agricultural, and ecological needs - all depends on the variable and potentially changing annual snowmelt. Thus, characterizing snowmelt and snowmelt-dominated runoff variability and change at high-elevation headwater watersheds in Wyoming is of utmost importance. Next to quantifying variability and changes in total precipitation, snow-water equivalent (SWE), annual runoff and low flows at 14 selected and representative high-elevation watersheds during the previous 50 years, we also explore past watershed disturbances. Wildfires, forest management (e.g. timber harvest), and recent bark beetle outbakes have altered the vegetation and potentially the hydrology of these high-elevation watersheds. We present a synthesis and trend analysis of 49-75 complete water years (wy) of daily streamflow data for 14 high-elevation watersheds, 25-36 complete wy of daily SWE and precipitation data for the closest SNOTEL stations, and spatiotemporal data on burned areas for 20 wy, tree mortality for 18 wy, timber harvest during the 20th century, as well as overview on legacy tie-drive related distrbances. These results are discussed with respect to the differing watershed characteristics in order to present a spectrum of possible hydrologic responses. The importance of our work lies in extending our understanding of snowmelt headwater annual runoff and low-flow dynamics in Wyoming specifically. Such regional synthesis would inform and facilitate water managers and planners both at local state-wide level, but also in the intermountain US West.

  5. Quantifying Hillslope to Watershed Erosional Response Following Wildfire

    Science.gov (United States)

    Vega, S.; Pierson, F. B.; Williams, C. J.; Brooks, E. S.; Strand, E. K.; Seyfried, M. S.; Murdock, M.; Pierce, J. L.; Roehner, C.; Lindsay, K.; Robichaud, P. R.; Brown, R. E.

    2017-12-01

    Across the western US, wildfires in sagebrush vegetation are occurring at a more frequent rate and higher severity. This has resulted in a decline of sagebrush rangeland. The changing fire regime can be attributed to invasive plant species and warming climate conditions. As the result of wildfire, protective vegetation cover is removed leaving the soil bare and exposed to erosion. Erosion following wildfire is a main concern among land managers due to the threat it poses to resources, infrastructure, and human health. Numerous studies have used artificial rainfall to assess post-fire runoff and erosion and rehabilitation treatment effectiveness. These results have found that high intensity rain events typical of summer convective storms drive post-fire erosion. The purpose of this study is to improve scientific understanding of how site-specific physical and biological attributes affect hillslope to watershed scale sediment yield on a mountainous burned sagebrush landscape. This study uses natural rainfall and a network of silt fences to quantify hillslope to watershed scale erosion response. The erosional drivers over various spatial scales were evaluated in context with vegetation recovery for a 2 year post-fire period. A network of silt fences was installed over long and short hillslope distances and in swales within the 130 ha Murphy Creek catchment in the Reynolds Creek Experimental Watershed in southwestern Idaho. We evaluated: 1) vegetation, soils, and sediment delivery across multiple spatial scales associated with 30 silt fences spanning north and south facing aspects, 2) precipitation input at two meteorological stations, and 3) watershed streamflow and sediment discharge from an existing weir. During the first and second year post-fire, the swales on both aspects produced more sediment than the short and long hillslopes. The results suggest that significant amounts of sediment and organic matter were deposited in the swales creating drifts. Sediment

  6. Prediction in Ungauged Basins (PUB) for estimating water availability during water scarcity conditions: rainfall-runoff modelling of the ungauged diversion inflows to the Ridracoli water supply reservoir

    Science.gov (United States)

    Toth, Elena

    2013-04-01

    The Ridracoli reservoir is the main drinking water supply reservoir serving the whole Romagna region, in Northern Italy. Such water supply system has a crucial role in an area where the different characteristics of the communities to be served, their size, the mass tourism and the presence of food industries highlight strong differences in drinking water needs. Its operation allows high quality drinking water supply to a million resident customers, plus a few millions of tourists during the summer of people and it reduces the need for water pumping from underground sources, and this is particularly important since the coastal area is subject also to subsidence and saline ingression into aquifers. The system experienced water shortage conditions thrice in the last decade, in 2002, in 2007 and in autumn-winter 2011-2012, when the reservoir water storage fell below the attention and the pre-emergency thresholds, thus prompting the implementation of a set of mitigation measures, including limitations to the population's water consumption. The reservoir receives water not only from the headwater catchment, closed at the dam, but also from four diversion watersheds, linked to the reservoir through an underground water channel. Such withdrawals are currently undersized, abstracting only a part of the streamflow exceeding the established minimum flows, due to the design of the water intake structures; it is therefore crucial understanding how the reservoir water availability might be increased through a fuller exploitation of the existing diversion catchment area. Since one of the four diversion catchment is currently ungauged (at least at the fine temporal scale needed for keeping into account the minimum flow requirements downstream of the intakes), the study first presents the set up and parameterisation of a continuous rainfall-runoff model at hourly time-step for the three gauged diversion watersheds and for the headwater catchment: a regional parameterisation

  7. Watershed management in Myanmar

    International Nuclear Information System (INIS)

    Choi, K.S.

    1993-01-01

    Watershed degradation, watershed management, background of watershed management in Myanmar (condition of watershed, manpower), discussion and recommendation (proposed administrative structure, the need for watershed survey and planning, bottom-up approach) are emphasized. Watershed management, after all can be seen that it is the interphase between the forest, agriculture, soil, wildlife and the local communities

  8. Watershed management in Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K S

    1993-10-01

    Watershed degradation, watershed management, background of watershed management in Myanmar (condition of watershed, manpower), discussion and recommendation (proposed administrative structure, the need for watershed survey and planning, bottom-up approach) are emphasized. Watershed management, after all can be seen that it is the interphase between the forest, agriculture, soil, wildlife and the local communities

  9. Southwestern Power Administration annual site environmental report CY 1997

    International Nuclear Information System (INIS)

    1998-01-01

    This report provides a synopsis of Southwestern Power Administration's (Southwestern's) effectiveness in managing its operations in an environmentally responsible manner. In CY 1997, the Office of Environmental, Safety, and Health was reorganized and incorporated into the Division of Acquisition and Property. The Division of Acquisition, Property, and Environmental Management maintains responsibility for development, oversight, and implementation of environmental programs. Senior Management at Southwestern has taken actions to increase environmental awareness throughout the organization. During CY 1997, (Southwestern) was not involved in any known programs or activities that had adverse impacts on the environment. The 1997 Environmental Appraisal, a portion of Southwestern's Self-Assessment and Appraisal Program, indicated approximately 90% compliance with Southwestern's written environmental programs. Southwestern continued to function throughout CY 1997 in an operations and maintenance posture with minor substation projects

  10. Assessment of nutrient loadings of a large multipurpose prairie reservoir

    Science.gov (United States)

    Morales-Marín, L. A.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-07-01

    The relatively low water flow velocities in reservoirs cause them to have high capacities for retaining sediments and pollutants, which can lead to a reduction in downstream nutrient loading. Hence, nutrients can progressively accumulate in reservoirs, resulting in the deterioration of aquatic ecosystems and water quality. Lake Diefenbaker (LD) is a large multipurpose reservoir, located on the South Saskatchewan River (SSR), that serves as a major source of freshwater in Saskatchewan, Canada. Over the past several years, changes in land use (e.g. expansion of urban areas and industrial developments) in the reservoir's catchment have heightened concerns about future water quality in the catchment and in the reservoir. Intensification of agricultural activities has led to an increase in augmented the application of manure and fertilizer for crops and pasture. Although previous research has attempted to quantify nutrient retention in LD, there is a knowledge gap related to the identification of major nutrient sources and quantification of nutrient export from the catchment at different spatial scales. Using the SPAtially Referenced Regression On Watershed (SPARROW) model, this gap has been addressed by assessing water quality regionally, and identifying spatial patterns of factors and processes that affect water quality in the LD catchment. Model results indicate that LD retains about 70% of the inflowing total nitrogen (TN) and 90% of the inflowing total phosphorus (TP) loads, of which fertilizer and manure applied to agricultural fields contribute the greatest proportion. The SPARROW model will be useful as a tool to guide the optimal implementation of nutrient management plans to reduce nutrient inputs to LD.

  11. [Multiple time scales analysis of spatial differentiation characteristics of non-point source nitrogen loss within watershed].

    Science.gov (United States)

    Liu, Mei-bing; Chen, Xing-wei; Chen, Ying

    2015-07-01

    Identification of the critical source areas of non-point source pollution is an important means to control the non-point source pollution within the watershed. In order to further reveal the impact of multiple time scales on the spatial differentiation characteristics of non-point source nitrogen loss, a SWAT model of Shanmei Reservoir watershed was developed. Based on the simulation of total nitrogen (TN) loss intensity of all 38 subbasins, spatial distribution characteristics of nitrogen loss and critical source areas were analyzed at three time scales of yearly average, monthly average and rainstorms flood process, respectively. Furthermore, multiple linear correlation analysis was conducted to analyze the contribution of natural environment and anthropogenic disturbance on nitrogen loss. The results showed that there were significant spatial differences of TN loss in Shanmei Reservoir watershed at different time scales, and the spatial differentiation degree of nitrogen loss was in the order of monthly average > yearly average > rainstorms flood process. TN loss load mainly came from upland Taoxi subbasin, which was identified as the critical source area. At different time scales, land use types (such as farmland and forest) were always the dominant factor affecting the spatial distribution of nitrogen loss, while the effect of precipitation and runoff on the nitrogen loss was only taken in no fertilization month and several processes of storm flood at no fertilization date. This was mainly due to the significant spatial variation of land use and fertilization, as well as the low spatial variability of precipitation and runoff.

  12. Evaluating channel morphology in small watersheds of oak savannas Southeastern New Mexico, USA: Do seasonal prescribed burn treatments have a significant impact on sediment processes?

    Science.gov (United States)

    Koestner, Karen; Neary, Daniel; Gottfried, Gerald; Tecle, Aregai

    2010-05-01

    Oak-savannas comprise over 80,000 km2 of the southwestern United States and northern Mexico. However, there is a paucity of data to assist in the management of this vast ecotype. Fire, which was once the most important natural disturbance in this system, has been excluded due to over-grazing and fire suppression practices. This has resulted in ecosystem changes and fuel accumulations. Prescribed fire is one management technique to restore natural processes within southwestern oak-savannas by reducing woody species density, increasing herbaceous plant production, and creating vegetative mosaics on the landscape. However, questions concerning the seasonality of burn treatments and the overall effects of these treatments on physical and ecological processes need to be addressed prior to broad management application. The Cascabel Watershed Study is a collaborative effort between multiple government agencies, universities, local land managers, and environmental interest groups to evaluate the impacts of warm and cool season burn treatments on an array of ecosystem processes. Established in 2000, the Cascabel Watershed study takes an "ecosystem approach" to watershed research by examining an array of physical and biological components, including geomorphologic, climatologic, hydrologic, and biologic (flora and fauna) data to determine ecosystem response to prescribed fire. The 182.6 ha study area is located in the eastern Peloncillo Mountains, New Mexico at about the 1,640 m elevation. It consists of 12 small watersheds dominated by an oak (Quercus spp.) overstory and bunch-grass (Bouteloua spp.), savanna component. The parent material is fine-grained Tertiary rhyolite that is part of an extensive lava field that was formed about 25 to 27 M ybp. A US Forest Service soil survey in the area classified 45% of the soils as Typic Haplustolls, coarse-loamy, mixed, mesic, 25% as Typic Haplustalfs, and 15% rock outcrops. Here, we evaluate within-channel processes to establish

  13. Wet Deposition of Trace Metals at a Typical Urban Site in Southwestern China: Fluxes, Sources and Contributions to Aquatic Environments

    Directory of Open Access Journals (Sweden)

    Liuyi Zhang

    2017-12-01

    Full Text Available In this study, we quantified the atmospheric wet deposition (AWD of 13 trace metals (TMs and estimated their potential effects on the surface water of the Three Gorges Reservoir in China. Precipitation was collected in Wanzhou in southwestern China from March 2015 to February 2016. The concentrations and fluxes of the 13 TMs were in the ranges of 0.16–9.44 µg L−1 and 0.18–10.22 mg m−2 yr−1, respectively, in the order Al > Zn > Fe > Ba > Pb > Mn > Ti > Cd > Cu > As > V > Ni ≈ Cr. Using principal component analysis, it was found that Al, Ba, Cu, Fe, Mn and Zn were mainly derived from a mixture of soil and road dust, As, Cd, Cr, Pb and Ti primarily originated from the local industries, and Ni and V were related to diesel and gasoline combustion, including both vehicle exhaust emissions and ship emissions from the nearby Yangtze River. The estimated TM inputs to the Three Gorges Reservoir were 11.1, 11.0, 5.7, 5.3, 4.5, 2.7, 2.5, 1.5, 1.0, 0.7, 0.5, 0.2, and 0.2 t yr−1 for Al, Zn, Fe, Ba, Pb, Mn, Ti, Cd, Cu, As, V, Ni and Cr, respectively. The AWD TM fluxes in Wanzhou were lower than those in metropolises and their inputs were limited for surface water of the Three Gorges Reservoir. However, Cd was strongly enriched in precipitation and rainstorms greatly increased the surface water concentrations of Cd and Pb. Therefore, the behavior of Cd and Pb in southwestern mountain areas of China, including emission, transport, transformation, and their ecological effects, should be given more attention in future studies.

  14. Sedimentation and the Economics of Selecting an Optimum Reservoir Size

    Science.gov (United States)

    Miltz, David; White, David C.

    1987-08-01

    This paper attempts to develop an easily reproducible methodology for the economic selection of an optimal reservoir size given an annual sedimentation rate. The optimal capacity is that at which the marginal cost of constructing additional storage capacity is equal to the dredging costs avoided by having that additional capacity available to store sediment. The cost implications of misestimating dredging costs, construction costs, and sediment delivery rates are investigated. In general, it is shown that oversizing is a rational response to uncertainty in the estimation of parameters. The sensitivity of the results to alternative discount rates is also discussed. The theoretical discussion is illustrated with a case study drawn from Highland Silver Lake in southwestern Illinois.

  15. Estimating hydrologic budgets for six Persian Gulf watersheds, Iran

    Science.gov (United States)

    Hosseini, Majid; Ghafouri, Mohammad; Tabatabaei, MahmoudReza; Goodarzi, Masoud; Mokarian, Zeinab

    2017-10-01

    Estimation of the major components of the hydrologic budget is important for determining the impacts on the water supply and quality of either planned or proposed land management projects, vegetative changes, groundwater withdrawals, and reservoir management practices and plans. As acquisition of field data is costly and time consuming, models have been created to test various land use practices and their concomitant effects on the hydrologic budget of watersheds. To simulate such management scenarios realistically, a model should be able to simulate the individual components of the hydrologic budget. The main objective of this study is to perform the SWAT2012 model for estimation of hydrological budget in six subbasin of Persian Gulf watershed; Golgol, Baghan, Marghab Shekastian, Tangebirim and Daragah, which are located in south and south west of Iran during 1991-2009. In order to evaluate the performance of the model, hydrological data, soil map, land use map and digital elevation model (DEM) are obtained and prepared for each catchment to run the model. SWAT-CUP with SUFI2 program was used for simulation, uncertainty and validation with 95 Percent Prediction Uncertainty. Coefficient of determination ( R 2) and Nash-Sutcliffe coefficient (NS) were used for evaluation of the model simulation results. Comparison of measured and predicted values demonstrated that each component of the model gave reasonable output and that the interaction among components was realistic. The study has produced a technique with reliable capability for annual and monthly water budget components in Persian Gulf watershed.

  16. Modeling the Influence of Variable Tributary Inflow on Circulation and Contaminant Transport in a Water Supply Reservoir

    Science.gov (United States)

    Nguyen, L. H.; Wildman, R.

    2012-12-01

    This study characterizes quantitatively the flow and mixing regimes of a water supply reservoir, while also conducting numerical tracer experiments on different operation scenarios. We investigate the effects of weather events on water quality via storm water inflows. Our study site the Kensico Reservoir, New York, the penultimate reservoir of New York City's water supply, is never filtered and thus dependent on stringent watershed protection. This reservoir must meet federal drinking water standards under changing conditions such as increased suburban, commercial, and highway developments that are much higher than the rest of the watershed. Impacts from these sources on water quality are magnified by minor tributary flows subject to contaminants from development projects as other tributaries providing >99% of water to this reservoir are exceedingly clean due to management practices upstream. These threats, coupled with possible changes in the frequency/intensity of weather events due to climate change, increase the potential for contaminants to enter the reservoir and drinking water intakes. This situation provides us with the unique ability to study the effects of weather events on water quality via insignificant storm water inflows, without influence from the major tributaries due to their pristine water quality characteristics. The concentration of contaminants at the drinking water intake depends partially on transport from their point of entry in the reservoir. Thus, it is crucial to understand water circulation in this reservoir and to estimate residence times and water ages at different locations and under different hydrologic scenarios. We described water age, residence time, thermal structure, and flow dynamics of tributary plumes in Kensico Reservoir during a 22-year simulation period using a two-dimensional hydrodynamic and water quality model (CE-QUAL-W2). Our estimates of water age can reach a maximum of ~300 days in deep-reservoir-cells, with

  17. SWAT Model Prediction of Phosphorus Loading in a South Carolina Karst Watershed with a Downstream Embayment

    Science.gov (United States)

    Devendra M. Amatya; Manoj K. Jha; Thomas M. Williams; Amy E. Edwards; Daniel R.. Hitchcock

    2013-01-01

    The SWAT model was used to predict total phosphorus (TP) loadings for a 1555-ha karst watershed—Chapel Branch Creek (CBC)—which drains to a lake via a reservoir-like embayment (R-E). The model was first tested for monthly streamflow predictions from tributaries draining three potential source areas as well as the downstream R-E, followed by TP loadings using data...

  18. Multitemporal analysis of estimated soil loss for the river Mourão watershed, Paraná - Brazil.

    Science.gov (United States)

    Graça, C H; Passig, F H; Kelniar, A R; Piza, M A; Carvalho, K Q; Arantes, E J

    2015-12-01

    The multitemporal behavior of soil loss by surface water erosion in the hydrographic basin of the river Mourão in the center-western region of the Paraná state, Brazil, is analyzed. Forecast was based on the application of the Universal Soil Loss Equation (USLE) with the data integration and estimates within an Geography Information System (GIS) environment. Results had shown high mean annual rain erosivity (10,000 MJ.mm.ha(-1).h(-1).year(-1)), with great concentration in January and December. As a rule, soils have average erodibilities, exception of Dystroferric Red Latisol (low class) and Dystrophic Red Argisol (high class). Although the topographic factor was high (>20), rates lower than 1 were predominant. Main land uses comprise temporal crops and pasture throughout the years. The watershed showed a natural potential for low surface erosion. When related to usage types, yearly soil loss was also low (Soil loss over the years did not provide great distinctions in distribution standards, although it becames rather intensified in some sectors, especially in the center-eastern and southwestern sections of the watershed.

  19. Development of a national, dynamic reservoir-sedimentation database

    Science.gov (United States)

    Gray, J.R.; Bernard, J.M.; Stewart, D.W.; McFaul, E.J.; Laurent, K.W.; Schwarz, G.E.; Stinson, J.T.; Jonas, M.M.; Randle, T.J.; Webb, J.W.

    2010-01-01

    The importance of dependable, long-term water supplies, coupled with the need to quantify rates of capacity loss of the Nation’s re servoirs due to sediment deposition, were the most compelling reasons for developing the REServoir- SEDimentation survey information (RESSED) database and website. Created under the auspices of the Advisory Committee on Water Information’s Subcommittee on Sedimenta ion by the U.S. Geological Survey and the Natural Resources Conservation Service, the RESSED database is the most comprehensive compilation of data from reservoir bathymetric and dry-basin surveys in the United States. As of March 2010, the database, which contains data compiled on the 1950s vintage Soil Conservation Service’s Form SCS-34 data sheets, contained results from 6,616 surveys on 1,823 reservoirs in the United States and two surveys on one reservoir in Puerto Rico. The data span the period 1755–1997, with 95 percent of the surveys performed from 1930–1990. The reservoir surface areas range from sub-hectare-scale farm ponds to 658 km2 Lake Powell. The data in the RESSED database can be useful for a number of purposes, including calculating changes in reservoir-storage characteristics, quantifying sediment budgets, and estimating erosion rates in a reservoir’s watershed. The March 2010 version of the RESSED database has a number of deficiencies, including a cryptic and out-of-date database architecture; some geospatial inaccuracies (although most have been corrected); other data errors; an inability to store all data in a readily retrievable manner; and an inability to store all data types that currently exist. Perhaps most importantly, the March 2010 version of RESSED database provides no publically available means to submit new data and corrections to existing data. To address these and other deficiencies, the Subcommittee on Sedimentation, through the U.S. Geological Survey and the U.S. Army Corps of Engineers, began a collaborative project in

  20. Development of a management tool for reservoirs in Mediterranean environments based on uncertainty analysis

    Science.gov (United States)

    Gómez-Beas, R.; Moñino, A.; Polo, M. J.

    2012-05-01

    In compliance with the development of the Water Framework Directive, there is a need for an integrated management of water resources, which involves the elaboration of reservoir management models. These models should include the operational and technical aspects which allow us to forecast an optimal management in the short term, besides the factors that may affect the volume of water stored in the medium and long term. The climate fluctuations of the water cycle that affect the reservoir watershed should be considered, as well as the social and economic aspects of the area. This paper shows the development of a management model for Rules reservoir (southern Spain), through which the water supply is regulated based on set criteria, in a sustainable way with existing commitments downstream, with the supply capacity being well established depending on demand, and the probability of failure when the operating requirements are not fulfilled. The results obtained allowed us: to find out the reservoir response at different time scales, to introduce an uncertainty analysis and to demonstrate the potential of the methodology proposed here as a tool for decision making.

  1. Ensemble seasonal forecast of extreme water inflow into a large reservoir

    Directory of Open Access Journals (Sweden)

    A. N. Gelfan

    2015-06-01

    Full Text Available An approach to seasonal ensemble forecast of unregulated water inflow into a large reservoir was developed. The approach is founded on a physically-based semi-distributed hydrological model ECOMAG driven by Monte-Carlo generated ensembles of weather scenarios for a specified lead-time of the forecast (3 months ahead in this study. Case study was carried out for the Cheboksary reservoir (catchment area is 374 000 km2 located on the middle Volga River. Initial watershed conditions on the forecast date (1 March for spring freshet and 1 June for summer low-water period were simulated by the hydrological model forced by daily meteorological observations several months prior to the forecast date. A spatially distributed stochastic weather generator was used to produce time-series of daily weather scenarios for the forecast lead-time. Ensemble of daily water inflow into the reservoir was obtained by driving the ECOMAG model with the generated weather time-series. The proposed ensemble forecast technique was verified on the basis of the hindcast simulations for 29 spring and summer seasons beginning from 1982 (the year of the reservoir filling to capacity to 2010. The verification criteria were used in order to evaluate an ability of the proposed technique to forecast freshet/low-water events of the pre-assigned severity categories.

  2. Geothermometry Mapping of Deep Hydrothermal Reservoirs in Southeastern Idaho: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, Earl D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Conrad, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Neupane, Ghanashayam [Idaho National Lab. (INL), Idaho Falls, ID (United States); McLing, Travis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wood, Thomas [Univ. of Idaho, Moscow, ID (United States); Cannon, Cody [Univ. of Idaho, Moscow, ID (United States)

    2016-08-01

    . Geothermometric calculations based on principle of multicomponent equilibrium geothermometry with inverse geochemical modeling capability (e.g., Reservoir Temperature Estimator, RTEst) have been useful for evaluation of reservoir temperatures. Similarly, sulfate-water oxygen isotope geothermometry was also applied to several samples in tandem with RTEst. In summary, geothermometric calculations of ESRP thermal water samples indicated numerous potential geothermal areas with elevated reservoir temperatures. Specifically, areas around southern/southwestern side of the Mount Bennet Hills and within the Camas Prairie in the southwestern portion of the ESRP suggest temperatures 140-190 °C. In the northern portion of the ESRP, Lidy Hot Springs, Ashton, Newdale, and areas east of Idaho Falls have expected reservoir temperature ?140 °C. In the southern ERSP, areas near Buhl and Twin Falls are found to have elevated temperatures as high as 160 °C. These areas are likely to host potentially economic geothermal resources; however, further detailed study is warranted to each site to evaluate hydrothermal suitability for economic use.

  3. A watershed-scale approach to tracing metal contamination in the environment

    Science.gov (United States)

    Church, Stanley E

    1996-01-01

    watersheds in the western U.S. A different approach to the scope of the abandoned mine problem (Church et al., 1996a) is shown by the water quality data collected by the States under the Clean Water Act, section 305(b). These data document the stream reaches affected by metals from naturally occurring sources as well as from mining, or mineral resource extraction. Permitted discharges from active industrial and mine sites are not covered in the 305(b) data base.Local citizens and state and federal agencies are all part of the collaborative decision process used to select the drainage basins chosen for the AML Initiative pilot studies. Data gathered by these three entities were brought to bear on the watershed selection process. The USGS prepared data available from Federal data bases in the form of interpretative GIS products. Maps of the states of Colorado (Plumlee et al., 1995) and a similar study of the state of Montana (USGS, unpublished data) were used to select the Animas watershed in southwestern Colorado and the Boulder watershed southwest of Helena Montana as the pilot study areas for the AML Initiative. Thus, the watersheds selected for study were public decisions made on the basis of available scientific data. The role of the U.S. Geological Survey in the Abandoned Mine Land Initiative is outlined in Buxton et al. (1997).The watershed approach to metals contamination in the environment has been studied in several drainage basins (Church et al., 1993, 1994, 1995, 1996b; Kimball et al., 1995). The underlying principles used to successfully discriminate between sources and to quantify the impact of these sources on the environment are the subject of this report.

  4. Water Age Responses to Weather Conditions in a Hyper-Eutrophic Channel Reservoir in Southern China

    Directory of Open Access Journals (Sweden)

    Wei Du

    2016-08-01

    Full Text Available Channel reservoirs have the characteristics of both rivers and lakes, in which hydrodynamic conditions and the factors affecting the eutrophication process are complex and highly affected by weather conditions. Water age at any location in the reservoir is used as an indicator for describing the spatial and temporal variations of water exchange and nutrient transport. The hyper-eutrophic Changtan Reservoir (CTR in Southern China was investigated. Three weather conditions including wet, normal, and dry years were considered for assessing the response of water age by using the coupled watershed model Soil Water Assessment Tool (SWAT and the three-dimensional hydrodynamic model Environmental Fluid Hydrodynamic Code (EFDC. The results showed that the water age in CTR varied tremendously under different weather conditions. The averaged water ages at the downstream of CTR were 3 d, 60 d, and 110 d, respectively in the three typical wet, normal, and dry years. The highest water ages at the main tributary were >70 d, >100 d, and >200 d, respectively. The spatial distribution of water ages in the tributaries and the reservoir were mainly affected by precipitation. This paper provides useful information on water exchange and transport pathways in channel reservoir, which will be helpful in understanding nutrient dynamics for controlling algal blooms.

  5. Management Optimization of Saguling Reservoir with Bellman Dynamic Programming and “Du Couloir” Iterative Method

    Directory of Open Access Journals (Sweden)

    Mariana Marselina

    2016-08-01

    Full Text Available The increasingly growth of population and industry sector have lead to an enhanced demand for electrical energy. One of the electricity providers in the area of Java-Madura Bali (Jamali is Saguling Reservoir. Saguling Reservoir is one of the three reservoirs that stem the flow of Citarum River in advance of to Jatiluhur and Cirata Reservoir. The average electricity production of Saguling Reservoir was 2,334,318.138 MWh/year in the period of 1986-2014. The water intake of Saguling Reservoir is the upstream Citarum Watershed with an area of 2340.88 km2 which also serves as the irrigation, inland fisheries, recreation, and other activities. An effort to improve the function of Saguling Reservoir in producing electrical energy is by optimizing the reservoir management. The optimization of Saguling Reservoir management in this study refers to Government Regulation No. 37/2010 on Dam/Reservoir Article 44 which states that the system of reservoir management consisting of the operation system in dry years, normal years, and wet years. In this research, the determination of the trajectory guideline in Saguling operation was divided in dry, normal and wet years. Trajectory guideline was conducted based on the electricity price of turbine inflow that various in every month. The determination of the trajectory guideline in various electricity price was done by using Program Dynamic Bellman (PD Bellman and “Du Couloir” iterative method which the objective to optimize the gain from electricity production. and “Du Couloir” iterative method was development of PD Bellman that can calculate the value of gain with a smaller discretization until 0,1 juta m3 effectively where PD Bellman just calculate until 10 million m3.  Smaller discretization can give maximum benefit from electricity production and the trajectory guideline will be closer to trajectory actual so optimization of Saguling operation will be achieved.

  6. A Stochastic Multi-Objective Chance-Constrained Programming Model for Water Supply Management in Xiaoqing River Watershed

    Directory of Open Access Journals (Sweden)

    Ye Xu

    2017-05-01

    Full Text Available In this paper, a stochastic multi-objective chance-constrained programming model (SMOCCP was developed for tackling the water supply management problem. Two objectives were included in this model, which are the minimization of leakage loss amounts and total system cost, respectively. The traditional SCCP model required the random variables to be expressed in the normal distributions, although their statistical characteristics were suitably reflected by other forms. The SMOCCP model allows the random variables to be expressed in log-normal distributions, rather than general normal form. Possible solution deviation caused by irrational parameter assumption was avoided and the feasibility and accuracy of generated solutions were ensured. The water supply system in the Xiaoqing River watershed was used as a study case for demonstration. Under the context of various weight combinations and probabilistic levels, many types of solutions are obtained, which are expressed as a series of transferred amounts from water sources to treated plants, from treated plants to reservoirs, as well as from reservoirs to tributaries. It is concluded that the SMOCCP model could reflect the sketch of the studied region and generate desired water supply schemes under complex uncertainties. The successful application of the proposed model is expected to be a good example for water resource management in other watersheds.

  7. Pareja's limno-reservoir (Guadalajara, Spain): environmental and hydrologic aspects; El limnoembalse de Cola de Pareja (Guadalajara): aspectos medioambientales e hidrologicos

    Energy Technology Data Exchange (ETDEWEB)

    Molina Navarro, E.; Martinez Perez, S.; Sastre Merlin, A.

    2010-07-01

    The construction of small reservoir on the edge of large ones is an innovative idea designed to counteract some of the negative impacts caused by the construction and use of reservoirs. The denomination Limno-reservoirs is proposed here, as these water bodies are created to maintain a natural lake dynamics. Pareja's limno-reservoir is among the first limno-reservoirs in Spain, and its construction raises some questions about hydrological viability and siltation risk. The proposition of the methodologies to solve them and the evaluation of the first results is the aim of this study. A detailed water balance makes possible to affirm that, in a firs approach, the limno-reservoir is viable from the hydrological point of view, because the Ompolveda basin -Tajo's tributary at Entrepenas reservoir- has enough water resources to guarantee the permanence of the water body, even during dry years. To assess the siltation risk, a soil loss observation network will be monitoring the Ompolveda basin for the next three years to evaluate the net erosion in the watershed and the sediment delivery to the reservoir. (Author)

  8. Influence of eutrophication on the distribution of total mercury and methylmercury in hydroelectric reservoirs.

    Science.gov (United States)

    Meng, Bo; Feng, X B; Chen, C X; Qiu, G L; Sommar, J; Guo, Y N; Liang, P; Wan, Q

    2010-01-01

    The distribution of mercury (Hg) and the characteristics of its methylation were investigated in Wujiangdu (WJD) and Yinzidu (YZD) reservoirs in Guizhou province, China. The two reservoirs are characterized by high and low levels of primary productivity, respectively. Mercury species in water samples from depth profiles in both reservoirs and from interface water in the WJD were analyzed each season during 2007. The concentrations of total Hg (HgT(unf)) and methylmercury (MeHgT(unf)) in unfiltered water samples from the WJD varied from 3.0 to 18 pmol dm(-3) and from 0.17 to 15 pmol dm(-3), respectively; ranges were 2.0 to 9.5 pmol dm(-3) for HgT(unf) and 0.14 to 2.2 pmol dm(-3) for MeHgT(unf) in the YZD. Elevated methylmercury concentrations in water samples from the bottom water and water-sediment interface demonstrated an active net Hg methylation in the downstream reach of the WJD. There was no discernable Hg methylation occurring in the YZD, nor in the upstream and middle reaches of the WJD. The results suggest that high primary productivity resulting from cage aquaculture activities in the WJD is an important control on Hg methylation in the reservoir, increasing the concentrations of MeHg in water in the Wujiang River basin Southwestern China.

  9. Simulated effects of hydrologic, water quality, and land-use changes of the Lake Maumelle watershed, Arkansas, 2004–10

    Science.gov (United States)

    Hart, Rheannon M.; Green, W. Reed; Westerman, Drew A.; Petersen, James C.; DeLanois, Jeanne L.

    2012-01-01

    Lake Maumelle, located in central Arkansas northwest of the cities of Little Rock and North Little Rock, is one of two principal drinking-water supplies for the Little Rock, and North Little Rock, Arkansas, metropolitan areas. Lake Maumelle and the Maumelle River (its primary tributary) are more pristine than most other reservoirs and streams in the region with 80 percent of the land area in the entire watershed being forested. However, as the Lake Maumelle watershed becomes increasingly more urbanized and timber harvesting becomes more extensive, concerns about the sustainability of the quality of the water supply also have increased. Two hydrodynamic and water-quality models were developed to examine the hydrology and water quality in the Lake Maumelle watershed and changes that might occur as the watershed becomes more urbanized and timber harvesting becomes more extensive. A Hydrologic Simulation Program–FORTRAN watershed model was developed using continuous streamflow and discreet suspended-sediment and water-quality data collected from January 2004 through 2010. A CE–QUAL–W2 model was developed to simulate reservoir hydrodynamics and selected water-quality characteristics using the simulated output from the Hydrologic Simulation Program–FORTRAN model from January 2004 through 2010. The calibrated Hydrologic Simulation Program–FORTRAN model and the calibrated CE–QUAL–W2 model were developed to simulate three land-use scenarios and to examine the potential effects of these land-use changes, as defined in the model, on the water quality of Lake Maumelle during the 2004 through 2010 simulation period. These scenarios included a scenario that simulated conversion of most land in the watershed to forest (scenario 1), a scenario that simulated conversion of potentially developable land to low-intensity urban land use in part of the watershed (scenario 2), and a scenario that simulated timber harvest in part of the watershed (scenario 3). Simulated land

  10. Eutrophication study at the Panjiakou-Daheiting Reservoir system, northern Hebei Province, People's Republic of China: Chlorophyll-a model and sources of phosphorus and nitrogen

    Science.gov (United States)

    Domagalski, Joseph L.; Lin, Chao; Luo, Yang; Kang, Jie; Wang, Shaoming; Brown, Larry R.; Munn, Mark D.

    2007-01-01

    Concentrations, loads, and sources of nitrate and total phosphorus were investigated at the Panjiakou and Daheiting Reservoir system in northern Hebei Province, People's Republic of China. The Luan He River is the primary source of water to these reservoirs, and the upstream watershed has a mix of land uses including agriculture, forest, and one large urban center. The reservoirs have a primary use for storage of drinking water and partially supply Tianjin City with its annual needs. Secondary uses include flood control and aqua culture (fish cages). The response of the reservoir system from phosphorus input, with respect to chlorophyll-a production from algae, was fitted to a model of normalized phosphorus loading that regresses the average summer-time chlorophyll-a concentration to the average annual phosphorus concentration of the reservoir. Comparison of the normalized phosphorus loading and chlorophyll-a response of this system to other reservoirs throughout the world indicate a level of eutrophication that will require up to an approximate 5–10-fold decrease in annual phosphorus load to bring the system to a more acceptable level of algal productivity. Isotopes of nitrogen and oxygen in dissolved nitrate were measured from the headwater streams and at various locations along the major rivers that provide the majority of water to these reservoirs. Those isotopic measurements indicate that the sources of nitrate change from natural background in the rivers to animal manure and septic waste upstream of the reservoir. Although the isotopic measurements suggest that animal and septic wastes are a primary source of nutrients, measurements of the molar ratio of nitrogen to phosphorus are more indicative of row-cropping practices. Options for reduction of nutrient loads include changing the management practices of the aqua culture, installation of new sewage treatment systems in the large urbanized area of the upper watershed, and agricultural management practices

  11. Completion of potential conflicts of interest through optimization of Rukoh reservoir operation in Pidie District, Aceh Province, Indonesia

    Science.gov (United States)

    Azmeri, Hadihardaja, Iwan K.; Shaskia, Nina; Admaja, Kamal Surya

    2017-11-01

    Rukoh Reservoir's construction was planned to be built in Krueng Rukoh Watershed with supplet ion from Krueng Tiro River. Rukoh Reservoir operating system as a multipurpose reservoir raised potential conflict of interest between raw water and irrigation water. In this study, the operating system of Rukoh Reservoirs was designed to supply raw water in Titeu Sub-District and replenish water shortage in Baro Irrigation Area which is not able to be served by the Keumala Weir. Reservoir operating system should be planned optimally so that utilization of water in accordance with service area demands. Reservoir operation method was analyzed by using optimization technique with nonlinear programming. Optimization of reservoir operation is intended to minimize potential conflicts of interest in the operation. Suppletion discharge from Krueng Tiro River amounted to 46.62%, which was calculated based on ratio of Baro and Tiro irrigation area. However, during dry seasons, water demands could not be fully met, so there was a shortage of water. By considering the rules to minimize potential conflicts of interest between raw water and irrigation water, it would require suppletion from Krueng Tiro amounted to 52.30%. The increment of suppletion volume could minimize conflicts of interest. It produced l00% reservoir reliability for raw water and irrigation demands. Rukoh reservoir could serve raw water demands of Titeu Sub-District and irrigation demands of Baro irrigation area which is covering an area of 6,047 hectars. Reservoir operation guidelines can specify reservoir water release to balance the demands and the target storage.

  12. Evaluating Hydrologic Transience in Watershed Delineation, Numerical Modeling and Solute Transport in the Great Basin. Clayton Valley, Nevada

    Science.gov (United States)

    Underdown, C. G.; Boutt, D. F.; Hynek, S. A.; Munk, L. A.

    2017-12-01

    Importance of transience in managed groundwater systems is generally determined by timeframe of management decisions. Watersheds with management times shorter than the aquifer (watershed) response time, or the time it takes a watershed to recover from a change in hydrologic state, would not include the new state and are treated as steady-state. However, these watersheds will experience transient response between hydrologic states. Watershed response time is a function of length. Therefore flat, regional watersheds characteristic of the Great Basin have long response times. Defining watershed extents as the area in which the water budget is balanced means inputs equal outputs. Steady-state budgets in the Great Basin have been balanced by extending watershed boundaries to include more area for recharge; however, the length and age of requisite flow paths are poorly constrained and often unrealistic. Inclusion of stored water in hydrologic budget calculations permits water balance within smaller contributing areas. As groundwater flow path lengths, depths, and locations differ between steady-state and transient systems, so do solute transport mechanisms. To observe how transience affects response time and solute transport, a refined (transient) version of the USGS steady-state groundwater flow model of the Great Basin is evaluated. This model is used to assess transient changes in contributing area for Clayton Valley, a lithium-brine producing endorheic basin in southwestern Nevada. Model runs of various recharge, discharge and storage bounds are created from conceptual models based upon historical climate data. Comparing results of the refined model to USGS groundwater observations allows for model validation and comparison against the USGS steady-state model. The transient contributing area to Clayton Valley is 85% smaller than that calculated from the steady-state solution, however several long flow paths important to both water and solute budgets at Clayton Valley

  13. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Jha

    2011-06-01

    Full Text Available This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science Integrating Point and Nonpoint Sources (BASINS. Meteorological input, including precipitation and temperature from six weather stations located in and around the watershed, and measured streamflow data at the watershed outlet, were used in the simulation. A sensitivity analysis was performed using an influence coefficient method to evaluate surface runoff and baseflow variations in response to changes in model input hydrologic parameters. The curve number, evaporation compensation factor, and soil available water capacity were found to be the most sensitive parameters among eight selected parameters. Model calibration, facilitated by the sensitivity analysis, was performed for the period 1988 through 1993, and validation was performed for 1982 through 1987. The model was found to explain at least 86% and 69% of the variability in the measured streamflow data for calibration and validation periods, respectively. This initial hydrologic assessment will facilitate future modeling applications using SWAT to the Maquoketa River watershed for various watershed analyses, including watershed assessment for water quality management, such as total maximum daily loads, impacts of land use and climate change, and impacts of alternate management practices.

  14. Cancer mortality and radioactive fallout in southwestern Utah

    International Nuclear Information System (INIS)

    Machado, S.G.; Land, C.E.; McKay, F.W.

    1987-01-01

    Cancer mortality was compared between a three-county region in southwestern Utah and the remainder of Utah in an investigation of reported excess cancer risks associated with residence in southwestern Utah during the period of above-ground nuclear tests at the Nevada Test Site. Because most of the fallout in southwestern Utah was deposited during 1953-1957, comparisons were limited to persons born before 1958, and deaths from leukemia and bone cancer during 1955-1980 and from other cancers during 1964-1980. There was no excess risk of cancer mortality in southwestern Utah, for single or grouped sites, with the single exception of leukemia which showed statistically significant odds ratios of 1.45 based on 62 deaths at all ages, and 2.84 based on nine deaths at ages 0-14. The finding for childhood leukemia was based on different time periods and geographic comparisons from those of two earlier studies in which no such excess was found. Mortality from all cancer sites combined was significantly lower in southwestern Utah than in the remainder of the state, even after adjustment for the higher proportion of (lower risk) Mormons in southwestern Utah. The present results, including the positive association for leukemia, are inconsistent with the high excess risks reported by Johnson (JAMA 1984;251:230-6) based on an interview survey of cancer incidence among long-term Mormon residents of southwestern Utah

  15. PREDICTION OF RESERVOIR FLOW RATE OF DEZ DAM BY THE PROBABILITY MATRIX METHOD

    Directory of Open Access Journals (Sweden)

    Mohammad Hashem Kanani

    2012-12-01

    Full Text Available The data collected from the operation of existing storage reservoirs, could offer valuable information for the better allocation and management of fresh water rates for future use to mitigation droughts effect. In this paper the long-term Dez reservoir (IRAN water rate prediction is presented using probability matrix method. Data is analyzed to find the probability matrix of water rates in Dez reservoir based on the previous history of annual water entrance during the past and present years(40 years. The algorithm developed covers both, the overflow and non-overflow conditions in the reservoir. Result of this study shows that in non-overflow conditions the most exigency case is equal to 75%. This means that, if the reservoir is empty (the stored water is less than 100 MCM this year, it would be also empty by 75% next year. The stored water in the reservoir would be less than 300 MCM by 85% next year if the reservoir is empty this year. This percentage decreases to 70% next year if the water of reservoir is less than 300 MCM this year. The percentage also decreases to 5% next year if the reservoir is full this year. In overflow conditions the most exigency case is equal to 75% again. The reservoir volume would be less than 150 MCM by 90% next year, if it is empty this year. This percentage decreases to 70% if its water volume is less than 300 MCM and 55% if the water volume is less than 500 MCM this year. Result shows that too, if the probability matrix of water rates to a reservoir is multiplied by itself repeatedly; it converges to a constant probability matrix, which could be used to predict the long-term water rate of the reservoir. In other words, the probability matrix of series of water rates is changed to a steady probability matrix in the course of time, which could reflect the hydrological behavior of the watershed and could be easily used for the long-term prediction of water storage in the down stream reservoirs.

  16. Radiocarbon reservoir effect from shell and plant pairs in Holocene sediments around the Yeongsan River in Korea

    International Nuclear Information System (INIS)

    Nakanishi, Toshimichi; Hong, Wan; Sung, Ki Suk; Lim, Jaesoo

    2013-01-01

    The marine reservoir effect was measured by comparing the radiocarbon ages of shell and plant pairs obtained from the same horizons of a sediment core around the Yeongsan River in the southwestern part of the Korean Peninsula. The Holocene sediment formed in five environments: tidal flat, inner bay, shallow marine, flood plain, and embankment from bottom to top. The tidal flat and shallow marine sediments should be good indicators of marine reservoir effect, as they formed in coastal environments where it was easy to access not only marine shells but also terrestrial plants. Some old detritus could be identified and removed, based on reliable accumulation curves and sedimentological interpretation. Hence, the age differences between the plants and shells could be successfully evaluated, and they indicated that the marine reservoir effect varied over time between 0 and 500 years. There was an increase of this effect at ca. 8000 cal year BP and a decrease at ca. 5000 cal year BP, possibly linked with coastal environment changes induced by sea level changes and by changes in the circulation of seawater.

  17. Radiocarbon reservoir effect from shell and plant pairs in Holocene sediments around the Yeongsan River in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Toshimichi [Korea Institute of Geoscience and Mineral Resources, Gwahang-no 124, Yuseong-gu, Daejeon (Korea, Republic of); Hong, Wan, E-mail: whong@kigam.re.kr [Korea Institute of Geoscience and Mineral Resources, Gwahang-no 124, Yuseong-gu, Daejeon (Korea, Republic of); Sung, Ki Suk; Lim, Jaesoo [Korea Institute of Geoscience and Mineral Resources, Gwahang-no 124, Yuseong-gu, Daejeon (Korea, Republic of)

    2013-01-15

    The marine reservoir effect was measured by comparing the radiocarbon ages of shell and plant pairs obtained from the same horizons of a sediment core around the Yeongsan River in the southwestern part of the Korean Peninsula. The Holocene sediment formed in five environments: tidal flat, inner bay, shallow marine, flood plain, and embankment from bottom to top. The tidal flat and shallow marine sediments should be good indicators of marine reservoir effect, as they formed in coastal environments where it was easy to access not only marine shells but also terrestrial plants. Some old detritus could be identified and removed, based on reliable accumulation curves and sedimentological interpretation. Hence, the age differences between the plants and shells could be successfully evaluated, and they indicated that the marine reservoir effect varied over time between 0 and 500 years. There was an increase of this effect at ca. 8000 cal year BP and a decrease at ca. 5000 cal year BP, possibly linked with coastal environment changes induced by sea level changes and by changes in the circulation of seawater.

  18. Land use patterns, ecoregion, and microcystin relationships in U.S. lakes and reservoirs: a preliminary evaluation

    Science.gov (United States)

    Beaver, John R.; Manis, Erin E.; Loftin, Keith A.; Graham, Jennifer L.; Pollard, Amina I.; Mitchell, Richard M.

    2014-01-01

    A statistically significant association was found between the concentration of total microcystin, a common class of cyanotoxins, in surface waters of lakes and reservoirs in the continental U.S. with watershed land use using data from 1156 water bodies sampled between May and October 2007 as part of the USEPA National Lakes Assessment. Nearly two thirds (65.8%) of the samples with microcystin concentrations ≥1.0 μg/L (n = 126) were limited to three nutrient and water quality-based ecoregions (Corn Belt and Northern Great Plains, Mostly Glaciated Dairy Region, South Central Cultivated Great Plains) in watersheds with strong agricultural influence. canonical correlation analysis (CCA) indicated that both microcystin concentrations and cyanobacteria abundance were positively correlated with total nitrogen, dissolved organic carbon, and temperature; correlations with total phosphorus and water clarity were not as strong. This study supports a number of regional lake studies that suggest that land use practices are related to cyanobacteria abundance, and extends the potential impacts of agricultural land use in watersheds to include the production of cyanotoxins in lakes.

  19. Effect of land use land cover change on soil erosion potential in an agricultural watershed.

    Science.gov (United States)

    Sharma, Arabinda; Tiwari, Kamlesh N; Bhadoria, P B S

    2011-02-01

    Universal soil loss equation (USLE) was used in conjunction with a geographic information system to determine the influence of land use and land cover change (LUCC) on soil erosion potential of a reservoir catchment during the period 1989 to 2004. Results showed that the mean soil erosion potential of the watershed was increased slightly from 12.11 t ha(-1) year(-1) in the year 1989 to 13.21 t ha(-1) year(-1) in the year 2004. Spatial analysis revealed that the disappearance of forest patches from relatively flat areas, increased in wasteland in steep slope, and intensification of cultivation practice in relatively more erosion-prone soil were the main factors contributing toward the increased soil erosion potential of the watershed during the study period. Results indicated that transition of other land use land cover (LUC) categories to cropland was the most detrimental to watershed in terms of soil loss while forest acted as the most effective barrier to soil loss. A p value of 0.5503 obtained for two-tailed paired t test between the mean erosion potential of microwatersheds in 1989 and 2004 also indicated towards a moderate change in soil erosion potential of the watershed over the studied period. This study revealed that the spatial location of LUC parcels with respect to terrain and associated soil properties should be an important consideration in soil erosion assessment process.

  20. Status, ecology, and conservation of the southwestern willow flycatcher

    Science.gov (United States)

    Deborah M. Finch; Scott H. Stoleson

    2000-01-01

    This publication was prepared in response to a need expressed by southwestern agencies and organizations for a comprehensive assessment of the population status, history, biology, ecology, habitats, threats, and conservation of the southwestern willow flycatcher (Empidonax traillii extimus). The southwestern willow flycatcher was federally listed as...

  1. Simulation of relationship between river discharge and sediment yield in the semi-arid river watersheds

    Science.gov (United States)

    Khaleghi, Mohammad Reza; Varvani, Javad

    2018-02-01

    Complex and variable nature of the river sediment yield caused many problems in estimating the long-term sediment yield and problems input into the reservoirs. Sediment Rating Curves (SRCs) are generally used to estimate the suspended sediment load of the rivers and drainage watersheds. Since the regression equations of the SRCs are obtained by logarithmic retransformation and have a little independent variable in this equation, they also overestimate or underestimate the true sediment load of the rivers. To evaluate the bias correction factors in Kalshor and Kashafroud watersheds, seven hydrometric stations of this region with suitable upstream watershed and spatial distribution were selected. Investigation of the accuracy index (ratio of estimated sediment yield to observed sediment yield) and the precision index of different bias correction factors of FAO, Quasi-Maximum Likelihood Estimator (QMLE), Smearing, and Minimum-Variance Unbiased Estimator (MVUE) with LSD test showed that FAO coefficient increases the estimated error in all of the stations. Application of MVUE in linear and mean load rating curves has not statistically meaningful effects. QMLE and smearing factors increased the estimated error in mean load rating curve, but that does not have any effect on linear rating curve estimation.

  2. Southwestern Power Administration site environmental report for calendar year 1993

    International Nuclear Information System (INIS)

    1994-01-01

    During CY 93, Southwestern was not involved in any programs that had a direct effect on the environment, involving endangered species, protection of wetlands, or increased electromagnetic radiation. Southwestern continued to function throughout the year in an operations and maintenance posture with minor substation projects. Southwestern received an environmental management audit by the Department of Energy's Office of Environmental Audit (EH-24), during CY 1992. The purpose of the audit was to give Southwestern, DOE headquarters, and the Secretary an indication of the status of Southwestern management's effectiveness in discharging its duties in an environmentally responsible manner. The audit identified 17 findings. An action plan was developed and remediation of the findings has been accomplished. Several strengths were identified during the audit with regard to the environmental programs at Southwestern. Most importantly, senior management at Southwestern has taken actions to increase environmental awareness throughout the organization which is evidenced by the creation of the Environmental, Safety, Health, and Security Office

  3. Watershed assessment-watershed analysis: What are the limits and what must be considered

    Science.gov (United States)

    Robert R. Ziemer

    2000-01-01

    Watershed assessment or watershed analysis describes processes and interactions that influence ecosystems and resources in a watershed. Objectives and methods differ because issues and opportunities differ.

  4. APPLICATION OF INTEGRATED RESERVOIR MANAGEMENT AND RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jack Bergeron; Tom Blasingame; Louis Doublet; Mohan Kelkar; George Freeman; Jeff Callard; David Moore; David Davies; Richard Vessell; Brian Pregger; Bill Dixon; Bryce Bezant

    2000-03-01

    Reservoir performance and characterization are vital parameters during the development phase of a project. Infill drilling of wells on a uniform spacing, without regard to characterization does not optimize development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, especially carbonate reservoirs. These reservoirs are typically characterized by: (1) large, discontinuous pay intervals; (2) vertical and lateral changes in reservoir properties; (3) low reservoir energy; (4) high residual oil saturation; and (5) low recovery efficiency. The operational problems they encounter in these types of reservoirs include: (1) poor or inadequate completions and stimulations; (2) early water breakthrough; (3) poor reservoir sweep efficiency in contacting oil throughout the reservoir as well as in the nearby well regions; (4) channeling of injected fluids due to preferential fracturing caused by excessive injection rates; and (5) limited data availability and poor data quality. Infill drilling operations only need target areas of the reservoir which will be economically successful. If the most productive areas of a reservoir can be accurately identified by combining the results of geological, petrophysical, reservoir performance, and pressure transient analyses, then this ''integrated'' approach can be used to optimize reservoir performance during secondary and tertiary recovery operations without resorting to ''blanket'' infill drilling methods. New and emerging technologies such as geostatistical modeling, rock typing, and rigorous decline type curve analysis can be used to quantify reservoir quality and the degree of interwell communication. These results can then be used to develop a 3-D simulation model for prediction of infill locations. The application of reservoir surveillance techniques to identify additional reservoir ''pay'' zones

  5. Application of Watershed Scale Models to Predict Nitrogen Loading From Coastal Plain Watersheds

    Science.gov (United States)

    George M. Chescheir; Glenn P Fernandez; R. Wayne Skaggs; Devendra M. Amatya

    2004-01-01

    DRAINMOD-based watershed models have been developed and tested using data collected from an intensively instrumented research site on Kendricks Creek watershed near Plymouth. NC. These models were applied to simulate the hydrology and nitrate nitrogen (NO3-N) loading from two other watersheds in the Coastal Plain of North Carolina, the 11600 ha Chicod Creek watershed...

  6. A GIS based watershed information system for water resources management and planning in semi-arid areas

    Science.gov (United States)

    Tzabiras, John; Spiliotopoulos, Marios; Kokkinos, Kostantinos; Fafoutis, Chrysostomos; Sidiropoulos, Pantelis; Vasiliades, Lampros; Papaioannou, George; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-04-01

    The overall objective of this work is the development of an Information System which could be used by stakeholders for the purposes of water management as well as for planning and strategic decision-making in semi-arid areas. An integrated modeling system has been developed and applied to evaluate the sustainability of water resources management strategies in Lake Karla watershed, Greece. The modeling system, developed in the framework of "HYDROMENTOR" research project, is based on a GIS modelling approach which uses remote sensing data and includes coupled models for the simulation of surface water and groundwater resources, the operation of hydrotechnical projects (reservoir operation and irrigation works) and the estimation of water demands at several spatial scales. Lake Karla basin was the region where the system was tested but the methodology may be the basis for future analysis elsewhere. Τwo (2) base and three (3) management scenarios were investigated. In total, eight (8) water management scenarios were evaluated: i) Base scenario without operation of the reservoir and the designed Lake Karla district irrigation network (actual situation) • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation ii) Base scenario including the operation of the reservoir and the Lake Karla district irrigation network • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation The results show that, under the existing water resources management, the water deficit of Lake Karla watershed is very large. However, the operation of the reservoir and the cooperative Lake Karla district irrigation network coupled with water demand management measures, like reduction of water distribution system losses and alteration of irrigation methods, could alleviate the problem and lead to sustainable and ecological use of water resources in the study area. Acknowledgements: This study

  7. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    OpenAIRE

    Manoj Kumar Jha

    2011-01-01

    This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT) model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science...

  8. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager"

    Science.gov (United States)

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.

    2012-01-01

    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development…

  9. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.

    1995-02-01

    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  10. Occurrence, Distribution, and Risk Assessment of Antibiotics in a Subtropical River-Reservoir System

    Directory of Open Access Journals (Sweden)

    Yihan Chen

    2018-01-01

    Full Text Available Antibiotic pollutions in the aquatic environment have attracted widespread attention due to their ubiquitous distribution and antibacterial properties. The occurrence, distribution, and ecological risk assessment of 17 common antibiotics in this study were preformed in a vital drinking water source represented as a river-reservoir system in South China. In general, 15 antibiotics were detected at least once in the watershed, with the total concentrations of antibiotics in the water samples ranging from 193.6 to 863.3 ng/L and 115.1 to 278.2 μg/kg in the sediment samples. For the water samples, higher rain runoff may contribute to the levels of total concentration in the river system, while perennial anthropic activity associated with the usage pattern of antibiotics may be an important factor determining similar sources and release mechanisms of antibiotics in the riparian environment. Meanwhile, the reservoir system could act as a stable reactor to influence the level and composition of antibiotics exported from the river system. For the sediment samples, hydrological factor in the reservoir may influence the antibiotic distributions along with seasonal variation. Ecological risk assessment revealed that tetracycline and ciprofloxacin could pose high risks in the aquatic environment. Taken together, further investigations should be performed to elaborate the environmental behaviors of antibiotics in the river-reservoir system, especially in drinking water sources.

  11. A Probabilistic Assessment of Threats to Surface Water Resources in Watersheds of the Lower Colorado River Basin

    Science.gov (United States)

    Murphy, K. W.; Ellis, A. W.

    2012-12-01

    The Salt and Verde River watersheds in the Lower Colorado River Basin are a very important surface water resource in the Southwest United States. Their runoff is captured by a downstream reservoir system serving approximately 40% of the water demand and providing hydroelectric power to the Phoenix, Arizona area. Concerns have been expressed over the risks associated with their highly variable climate dependencies under the realization that the short, historical stream flow record was but one of many possible temporal and volumetric outcome sequences. A characterization of the possible range of flow deficits arising from natural variability beyond those evident in the instrumental record can facilitate sustainability planning as well as adaptation to future climate change scenarios. Methods were developed for this study to generate very long seasonal time series of net reservoir inflows by Monte Carlo simulations of the Salt and Verde watersheds which can be analyzed for detailed probabilistic insights. Other efforts to generate stochastic flow representations for impact assessments have been limited by normality distribution assumptions, inability to represent the covariance of flow contributions from multiple watersheds, complexities of different seasonal origins of precipitation and runoff dependencies, and constraints from spectral properties of the observational record. These difficulties were overcome in this study through stationarity assessments and development of joint probability distributions with highly skewed discrete density functions characteristic of the different watershed-season behaviors derived from a 123 year record. As well, methods of introducing season-to-season correlations owing to antecedent precipitation runoff efficiency enhancements have been incorporated. Representative 10,000 year time series have been stochastically generated which reflect a full range of temporal variability in flow volume distributions. Extreme value statistical

  12. Watershed-based survey designs

    Science.gov (United States)

    Detenbeck, N.E.; Cincotta, D.; Denver, J.M.; Greenlee, S.K.; Olsen, A.R.; Pitchford, A.M.

    2005-01-01

    Watershed-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification of impaired water bodies or watersheds to meet Section 303(d), and development of empirical relationships between causes or sources of impairment and biological responses. Creation of GIS databases for hydrography, hydrologically corrected digital elevation models, and hydrologic derivatives such as watershed boundaries and upstream–downstream topology of subcatchments would provide a consistent seamless nationwide framework for these designs. The elements of a watershed-based sample framework can be represented either as a continuous infinite set defined by points along a linear stream network, or as a discrete set of watershed polygons. Watershed-based designs can be developed with existing probabilistic survey methods, including the use of unequal probability weighting, stratification, and two-stage frames for sampling. Case studies for monitoring of Atlantic Coastal Plain streams, West Virginia wadeable streams, and coastal Oregon streams illustrate three different approaches for selecting sites for watershed-based survey designs.

  13. GIS model-based real-time hydrological forecasting and operation management system for the Lake Balaton and its watershed

    Science.gov (United States)

    Adolf Szabó, János; Zoltán Réti, Gábor; Tóth, Tünde

    2017-04-01

    Today, the most significant mission of the decision makers on integrated water management issues is to carry out sustainable management for sharing the resources between a variety of users and the environment under conditions of considerable uncertainty (such as climate/land-use/population/etc. change) conditions. In light of this increasing water management complexity, we consider that the most pressing needs is to develop and implement up-to-date GIS model-based real-time hydrological forecasting and operation management systems for aiding decision-making processes to improve water management. After years of researches and developments the HYDROInform Ltd. has developed an integrated, on-line IT system (DIWA-HFMS: DIstributed WAtershed - Hydrologyc Forecasting & Modelling System) which is able to support a wide-ranging of the operational tasks in water resources management such as: forecasting, operation of lakes and reservoirs, water-control and management, etc. Following a test period, the DIWA-HFMS has been implemented for the Lake Balaton and its watershed (in 500 m resolution) at Central-Transdanubian Water Directorate (KDTVIZIG). The significant pillars of the system are: - The DIWA (DIstributed WAtershed) hydrologic model, which is a 3D dynamic water-balance model that distributed both in space and its parameters, and which was developed along combined principles but its mostly based on physical foundations. The DIWA integrates 3D soil-, 2D surface-, and 1D channel-hydraulic components as well. - Lakes and reservoir-operating component; - Radar-data integration module; - fully online data collection tools; - scenario manager tool to create alternative scenarios, - interactive, intuitive, highly graphical user interface. In Vienna, the main functions, operations and results-management of the system will be presented.

  14. Watershed Central: Harnessing a social media tool to organize local technical knowledge and find the right watershed resources for your watershed

    Science.gov (United States)

    Watershed Central was developed to be a bridge between sharing and searching for information relating to watershed issues. This is dependent upon active user support through additions and updates to the Watershed Central Wiki. Since the wiki is user driven, the content and applic...

  15. Twelve Years of Monitoring Phosphorus and Suspended-Solids Concentrations and Yields in the North Fork Ninnescah River above Cheney Reservoir, South-Central Kansas 1997-2008

    Science.gov (United States)

    Stone, Mandy L.; Graham, Jennifer L.; Ziegler, Andrew C.

    2009-01-01

    Cheney Reservoir, located on the North Fork Ninnescah River in south-central Kansas, is the primary water supply for the city of Wichita and an important recreational resource. Concerns about taste-and-odor occurrences in Cheney Reservoir have drawn attention to potential pollutants, including total phosphorus (TP) and total suspended solids (TSS). July 2009 was the 15th anniversary of the establishment of the Cheney Reservoir Watershed pollution management plan. The U.S. Geological Survey (USGS), in cooperation with the city of Wichita, has collected water-quality data in the basin since 1996, and has monitored water quality continuously on the North Fork Ninnescah River since 1998. This fact sheet describes 12 years (1997-2008) of computed TP and TSS data and compares these data with water-quality goals for the North Fork Ninnescah River, the main tributary to Cheney Reservoir.

  16. People and dams: environmental and socio-economic changes induced by a reservoir in Fincha'a watershed, western Ethiopia

    NARCIS (Netherlands)

    Bezuayehu, T.O.

    2006-01-01

    Dams that store water for electricity, irrigation, domestic water supply or flood control have been constructed for thousands of years worldwide. In too many cases, an unacceptable and often unnecessary price has been paid by watershed inhabitants to secure dam benefits, especially in social and

  17. Application of the Precipitation Runoff Modeling System to measure impacts of forest fire on watershed hydrology

    Science.gov (United States)

    Driscoll, J. M.

    2015-12-01

    Precipitation in the southwestern United States falls primarily in areas of higher elevation. Drought conditions over the past five years have limited snowpack and rainfall, increasing the vulnerability to and frequency of forest fires in these montane regions. In June 2012, the Little Bear fire burned approximately 69 square miles (44,200 acres) in high-elevation forests of the Rio Hondo headwater catchments, south-central New Mexico. Burn severity was high or moderate on 53 percent of the burn area. The Precipitation Runoff Modeling System (PRMS) is a publically-available watershed model developed by the U.S. Geological Survey (USGS). PRMS data are spatially distributed using a 'Geospatial Fabric' developed at a national scale to define Hydrologic Response Units (HRUs), based on topography and points of interest (such as confluences and streamgages). The Little Bear PRMS study area is comprised of 22 HRUs over a 587 square-mile area contributing to the Rio Hondo above Chavez Canyon streamgage (USGS ID 08390020), in operation from 2008 to 2014. Model input data include spatially-distributed climate data from the National Aeronautics and Space Administration (NASA) DayMet and land cover (such as vegetation and soil properties) data from the USGS Geo Data Portal. Remote sensing of vegetation over time has provided a spatial distribution of recovery and has been applied using dynamic parameters within PRMS on the daily timestep over the study area. Investigation into the source and timing of water budget components in the Rio Hondo watershed may assist water planners and managers in determining how the surface-water and groundwater systems will react to future land use/land cover changes. Further application of PRMS in additional areas will allow for comparison of streamflow before and following wildfire conditions, and may lead to better understanding of the changes in watershed-scale hydrologic processes in the Southwest through post-fire watershed recovery.

  18. Understanding the Role of Reservoir Size on Probable Maximum Precipitation

    Science.gov (United States)

    Woldemichael, A. T.; Hossain, F.

    2011-12-01

    This study addresses the question 'Does surface area of an artificial reservoir matter in the estimation of probable maximum precipitation (PMP) for an impounded basin?' The motivation of the study was based on the notion that the stationarity assumption that is implicit in the PMP for dam design can be undermined in the post-dam era due to an enhancement of extreme precipitation patterns by an artificial reservoir. In addition, the study lays the foundation for use of regional atmospheric models as one way to perform life cycle assessment for planned or existing dams to formulate best management practices. The American River Watershed (ARW) with the Folsom dam at the confluence of the American River was selected as the study region and the Dec-Jan 1996-97 storm event was selected for the study period. The numerical atmospheric model used for the study was the Regional Atmospheric Modeling System (RAMS). First, the numerical modeling system, RAMS, was calibrated and validated with selected station and spatially interpolated precipitation data. Best combinations of parameterization schemes in RAMS were accordingly selected. Second, to mimic the standard method of PMP estimation by moisture maximization technique, relative humidity terms in the model were raised to 100% from ground up to the 500mb level. The obtained model-based maximum 72-hr precipitation values were named extreme precipitation (EP) as a distinction from the PMPs obtained by the standard methods. Third, six hypothetical reservoir size scenarios ranging from no-dam (all-dry) to the reservoir submerging half of basin were established to test the influence of reservoir size variation on EP. For the case of the ARW, our study clearly demonstrated that the assumption of stationarity that is implicit the traditional estimation of PMP can be rendered invalid to a large part due to the very presence of the artificial reservoir. Cloud tracking procedures performed on the basin also give indication of the

  19. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neural reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers, geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  20. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neutral reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  1. The experimental watersheds in Slovenia

    International Nuclear Information System (INIS)

    Sraj, M; Rusjan, S; Petan, S; Vidmar, A; Mikos, M; Globevnik, L; Brilly, M

    2008-01-01

    Experimental watersheds are critical to the advancement of hydrological science. By setting up three experimental watersheds, Slovenia also obtained its grounds for further development of the science and discipline. In the Dragonja experimental watershed the studies are focused on the afforestation of the watershed in a mediterranean climate, on the Reka river the water balance in a partly karstic area is examined, and on the case of the Glinscica stream the implications of the urban environment are studied. We have obtained valuable experience and tested new measuring equipment on all three experimental watersheds. Measurements and analysis on the experimental watersheds improved the current understanding of hydrological processes. They resulted in several PhD Theses, Master Theses and scientific articles. At the same time the experimental watersheds provide support to the teaching and studying process.

  2. Understanding Urban Watersheds through Digital Interactive Maps, San Francisco Bay Area, California

    Science.gov (United States)

    Sowers, J. M.; Ticci, M. G.; Mulvey, P.

    2014-12-01

    Dense urbanization has resulted in the "disappearance" of many local creeks in urbanized areas surrounding the San Francisco Bay. Long reaches of creeks now flow in underground pipes. Municipalities and water agencies trying to reduce non-point-source pollution are faced with a public that cannot see and therefore does not understand the interconnected nature of the drainage system or its ultimate discharge to the bay. Since 1993, we have collaborated with the Oakland Museum, the San Francisco Estuary Institute, public agencies, and municipalities to create creek and watershed maps to address the need for public understanding of watershed concepts. Fifteen paper maps are now published (www.museumca.org/creeks), which have become a standard reference for educators and anyone working on local creek-related issues. We now present digital interactive creek and watershed maps in Google Earth. Four maps are completed covering urbanized areas of Santa Clara and Alameda Counties. The maps provide a 3D visualization of the watersheds, with cartography draped over the landscape in transparent colors. Each mapped area includes both Present and Past (circa 1800s) layers which can be clicked on or off by the user. The Present layers include the modern drainage network, watershed boundaries, and reservoirs. The Past layers include the 1800s-era creek systems, tidal marshes, lagoons, and other habitats. All data are developed in ArcGIS software and converted to Google Earth format. To ensure the maps are interesting and engaging, clickable icons pop-up provide information on places to visit, restoration projects, history, plants, and animals. Maps of Santa Clara Valley are available at http://www.valleywater.org/WOW.aspx. Maps of western Alameda County will soon be available at http://acfloodcontrol.org/. Digital interactive maps provide several advantages over paper maps. They are seamless within each map area, and the user can zoom in or out, and tilt, and fly over to explore

  3. Lessons From Watershed-Based Climate Smart Agricultural Practices In Jogo-Gudedo Watershed Ethiopia

    Directory of Open Access Journals (Sweden)

    Abera Assefa

    2015-08-01

    Full Text Available Abstract Land degradation is the most chronic problem in the Ethiopia. Soil erosion and denudation of vegetation covers are tending to enlarge the area of degraded and west land in semi-arid watersheds. It is therefore watershed management is believed as a holistic approach to create a climate smart landscape that integrate forestry agriculture pasture and soil water management with an objective of sustainable management of natural resources to improve livelihood. This approach pursues to promote interactions among multiple stakeholders and their interests within and between the upstream and downstream locations of a watershed. Melkassa Agricultural Research Centre MARC has been implementing integrated watershed management research project in the Jogo-gudedo watershed from 2010-2014 and lessons from Jogo-gudedo watershed are presented in this research report. Participatory action research PAR was implemented on Soil and Water Conservation SWC area enclosure Agroforestry AF Conservation Tillage CT energy saving stove drought resistance crop varieties in the Jogo-gudedo watershed. Empirical research and action research at plot level and evaluation of introduced technologies with farmers through experimental learning approach and documentation were employed. The participatory evaluation and collective action of SWC and improved practices brought high degree of acceptance of the practices and technologies. This had been ratified by the implementation of comprehensive watershed management action research which in turn enabled to taste and exploit benefits of climate-smart agricultural practices. Eventually significant reduction on soil loss and fuel wood consumption improvements on vegetation cover and crop production were quantitatively recorded as a good indicator and success. Field visit meetings trainings and frequent dialogues between practitioners and communities at watershed level have had a help in promoting the climate smart agriculture

  4. Application of Ant-Colony-Based Algorithms to Multi-Reservoir Water Resources Problems

    Directory of Open Access Journals (Sweden)

    Alireza Borhani Darian

    2011-01-01

    Full Text Available In this paper, the continuous Ant Colony Optimization Algorithm (ACOR is used to investigate the optimum operation of complex multi-reservoir systems. The results are compared with those of the well-known Genetic Algorithm (GA. For this purpose, GA and ACOR are used to solve the long-term operation of a three-reservoir system in Karkheh Basin, southwestern Iran. The solution must determine monthly releases from the three reservoirs and their optimum allocations among the four agricultural demand areas. Meanwhile, a minimum discharge must be maintained within the river reaches for environmental concerns. Review of past research shows that only a few applications of Ant Colony have been generally made in water resources system problems; however, up to the time of initiating this paper, we found no other application of the ACOR in this area. Therefore, unlike GA, application of Ant-Colony-based algorithms in water resources systems has not been thoroughly evaluated and deserves  serious study. In this paper, the ACOR is stuided as the most recent Ant-Colony-based algorithm and its application in a multi-reservoir system is evaluated. The results indicate that with when the number of decision variables increases, a longer computational time is required and the optimum solutions found are inferior. Therefore, the ACOR would be unable to solve complex water resources problems unless some modifications are considered. To overcome a part of these drawbacks, a number of techniques are introduced in this paper that considerably improve the quality of the method by decreasing the required computation time and by enhancing optimum solutions found.

  5. Adopt Your Watershed

    Data.gov (United States)

    U.S. Environmental Protection Agency — Adopt Your Watershed is a Website that encourages stewardship of the nation's water resources and serves as a national inventory of local watershed groups and...

  6. Carbon dioxide emissions from the flat bottom and shallow Nam Theun 2 Reservoir: drawdown area as a neglected pathway to the atmosphere

    Science.gov (United States)

    Deshmukh, Chandrashekhar; Guérin, Frédéric; Vongkhamsao, Axay; Pighini, Sylvie; Oudone, Phetdala; Sopraseuth, Saysoulinthone; Godon, Arnaud; Rode, Wanidaporn; Guédant, Pierre; Oliva, Priscia; Audry, Stéphane; Zouiten, Cyril; Galy-Lacaux, Corinne; Robain, Henri; Ribolzi, Olivier; Kansal, Arun; Chanudet, Vincent; Descloux, Stéphane; Serça, Dominique

    2018-03-01

    Freshwater reservoirs are a significant source of CO2 to the atmosphere. CO2 is known to be emitted at the reservoir surface by diffusion at the air-water interface and downstream of dams or powerhouses by degassing and along the river course. In this study, we quantified total CO2 emissions from the Nam Theun 2 Reservoir (Lao PDR) in the Mekong River watershed. The study started in May 2009, less than a year after flooding and just a few months after the maximum level was first reached and lasted until the end of 2013. We tested the hypothesis that soils from the drawdown area would be a significant contributor to the total CO2 emissions.Total inorganic carbon, dissolved and particulate organic carbon and CO2 concentrations were measured in 4 pristine rivers of the Nam Theun watershed, at 9 stations in the reservoir (vertical profiles) and at 16 stations downstream of the monomictic reservoir on a weekly to monthly basis. CO2 bubbling was estimated during five field campaigns between 2009 and 2011 and on a weekly monitoring, covering water depths ranging from 0.4 to 16 m and various types of flooded ecosystems in 2012 and 2013. Three field campaigns in 2010, 2011 and 2013 were dedicated to the soils description in 21 plots and the quantification of soil CO2 emissions from the drawdown area. On this basis, we calculated total CO2 emissions from the reservoir and carbon inputs from the tributaries. We confirm the importance of the flooded stock of organic matter as a source of carbon (C) fuelling emissions. We show that the drawdown area contributes, depending on the year, from 40 to 75 % of total annual gross emissions in this flat and shallow reservoir. Since the CO2 emissions from the drawdown zone are almost constant throughout the years, the large interannual variations result from the significant decrease in diffusive fluxes and downstream emissions between 2010 and 2013. This overlooked pathway in terms of gross emissions would require an in-depth evaluation

  7. Carbon dioxide emissions from the flat bottom and shallow Nam Theun 2 Reservoir: drawdown area as a neglected pathway to the atmosphere

    Directory of Open Access Journals (Sweden)

    C. Deshmukh

    2018-03-01

    Full Text Available Freshwater reservoirs are a significant source of CO2 to the atmosphere. CO2 is known to be emitted at the reservoir surface by diffusion at the air–water interface and downstream of dams or powerhouses by degassing and along the river course. In this study, we quantified total CO2 emissions from the Nam Theun 2 Reservoir (Lao PDR in the Mekong River watershed. The study started in May 2009, less than a year after flooding and just a few months after the maximum level was first reached and lasted until the end of 2013. We tested the hypothesis that soils from the drawdown area would be a significant contributor to the total CO2 emissions.Total inorganic carbon, dissolved and particulate organic carbon and CO2 concentrations were measured in 4 pristine rivers of the Nam Theun watershed, at 9 stations in the reservoir (vertical profiles and at 16 stations downstream of the monomictic reservoir on a weekly to monthly basis. CO2 bubbling was estimated during five field campaigns between 2009 and 2011 and on a weekly monitoring, covering water depths ranging from 0.4 to 16 m and various types of flooded ecosystems in 2012 and 2013. Three field campaigns in 2010, 2011 and 2013 were dedicated to the soils description in 21 plots and the quantification of soil CO2 emissions from the drawdown area. On this basis, we calculated total CO2 emissions from the reservoir and carbon inputs from the tributaries. We confirm the importance of the flooded stock of organic matter as a source of carbon (C fuelling emissions. We show that the drawdown area contributes, depending on the year, from 40 to 75 % of total annual gross emissions in this flat and shallow reservoir. Since the CO2 emissions from the drawdown zone are almost constant throughout the years, the large interannual variations result from the significant decrease in diffusive fluxes and downstream emissions between 2010 and 2013. This overlooked pathway in terms of gross emissions would require

  8. Experiments with Interaction between the National Water Model and the Reservoir System Simulation Model: A Case Study of Russian River Basin

    Science.gov (United States)

    Kim, J.; Johnson, L.; Cifelli, R.; Chandra, C. V.; Gochis, D.; McCreight, J. L.; Yates, D. N.; Read, L.; Flowers, T.; Cosgrove, B.

    2017-12-01

    NOAA National Water Center (NWC) in partnership with the National Centers for Environmental Prediction (NCEP), the National Center for Atmospheric Research (NCAR) and other academic partners have produced operational hydrologic predictions for the nation using a new National Water Model (NWM) that is based on the community WRF-Hydro modeling system since the summer of 2016 (Gochis et al., 2015). The NWM produces a variety of hydrologic analysis and prediction products, including gridded fields of soil moisture, snowpack, shallow groundwater levels, inundated area depths, evapotranspiration as well as estimates of river flow and velocity for approximately 2.7 million river reaches. Also included in the NWM are representations for more than 1,200 reservoirs which are linked into the national channel network defined by the USGS NHDPlusv2.0 hydrography dataset. Despite the unprecedented spatial and temporal coverage of the NWM, many known deficiencies exist, including the representation of lakes and reservoirs. This study addresses the implementation of a reservoir assimilation scheme through coupling of a reservoir simulation model to represent the influence of managed flows. We examine the use of the reservoir operations to dynamically update lake/reservoir storage volume states, characterize flow characteristics of river reaches flowing into and out of lakes and reservoirs, and incorporate enhanced reservoir operating rules for the reservoir model options within the NWM. Model experiments focus on a pilot reservoir domain-Lake Mendocino, CA, and its contributing watershed, the East Fork Russian River. This reservoir is modeled using United States Army Corps of Engineers (USACE) HEC-ResSim developed for application to examine forecast informed reservoir operations (FIRO) in the Russian River basin.

  9. Spatial and temporal dynamics of sediment in contrasted mountainous watersheds (Mexican transvolcanic belt and French Southern Alps) combining river gauging, elemental geochemistry and fallout radionuclides

    Science.gov (United States)

    Evrard, O.; Navratil, O.; Gratiot, N.; Némery, J.; Duvert, C.; Ayrault, S.; Lefèvre, I.; Legout, C.; Bonté, P.; Esteves, M.

    2009-12-01

    In mountainous environments, an excessive fine sediment supply to the rivers typically leads to an increase in water turbidity, contaminant transport and a rapid filling of reservoirs. This situation is particularly problematic in regions where water reservoirs are used to provide drinking water to large cities (e.g. in central Mexico) or where stream water is used to run hydroelectric power plants (e.g. in the French Southern Alps). In such areas, sediment source areas first need to be delineated and sediment fluxes between hillslopes and the river system must be better understood before implementing efficient erosion control measures. In this context, the STREAMS (« Sediment Transport and Erosion Across MountainS ») project funded by the French National Research Agency (ANR) aims at understanding the spatial and temporal dynamics of sediment at the scale of mountainous watersheds (between 500 - 1000 km2) located in contrasted environments. This 3-years study is carried out simultaneously in a volcanic watershed located in the Mexican transvolcanic belt undergoing a subhumid tropical climate, as well as in a sedimentary watershed of the French Southern Alps undergoing a transitional climate with Mediterranean and continental influences. One of the main specificities of this project consists in combining traditional monitoring techniques (i.e. installation of river gauges, turbidimeters and sediment samplers in several sub-catchments) and sediment fingerprinting using elemental geochemistry (measured by Instrumental Neutron Activation Analysis - INAA - and Inductively Coupled Plasma - Mass Spectrometry - ICP-MS) and fallout radionuclides (measured by gamma spectrometry). In the French watershed, geochemical analysis allows outlining different sediment sources (e.g. the contribution of calcareous vs. marl-covered sub-watersheds). Radionuclide ratios (e.g.Be-7/Cs-137) allow identifying the dominant erosion processes occurring within the watershed. Areas mostly

  10. The relationship between young brown trout density and water quality in tributary streams to lakes in three acidic watersheds; Effekter av vannkvalitet og habitat paa tettheten av aureunger i tilloepsbekker til innsjoeer i tre forsuringsomraader

    Energy Technology Data Exchange (ETDEWEB)

    Hesthagen, Trygve; Larsen, Bjoern M.; Berger, Hans M.; Forseth, Torbjoern

    1998-09-01

    This publication examines the relationship between young brown trout densities in lake tributaries, and water chemistry and habitat variables. The study was carried out during the autumn in three acidic, freshwater river systems in western and southwestern Norway. The variability in brown trout density in the three watersheds in relation to varying concentrations of calcium and inorganic Al, were investigated. Water chemistry variables seem to limit the density. 38 refs., 3 figs., 5 tabs.

  11. Diagnosis and analysis of water quality and trophic state of Barra Bonita reservoir, SP

    Directory of Open Access Journals (Sweden)

    Giovanna Moreti Buzelli

    2013-04-01

    Full Text Available As a consequence of the intensification of environmental degradation, we observed a decrease in water availability and a change in water quality. Therefore, the integrated management of watersheds is an issue of extreme importance. Limnological monitoring is an important tool for environmental management, providing information on the quality of inland waters and indicating the main factors responsible for the degradation of water resources. The Barra Bonita reservoir is located in the central region of São Paulo State, in the Superior Middle Tietê Basin, and the adjacent areas of the reservoir are subject to several human activities potentially impacting the environment. In this context, there is a need to determine the nature of negative human impacts on water resources. The present study aimed to analyze and diagnose the water quality of Barra Bonita reservoir using the water quality index (WQI and the trophic state index (TSI. To this end, measurements of specific limnological variables were made in situ and laboratory and an analysis of data from CETESB annual reports was conducted. The results found that the waters of the reservoir were relatively healthy, but hyper eutrophic for the period from2007 to 2012, indicating the importance of environmental management for the restoration and preservation of natural resources in this region. The estimated indices and the land use map of adjacent areas of the Barra Bonita reservoir showed that agriculture was the largest category of land use and that it contributes directly to the degradation of water quality due to contamination by run-off from fertilizers.

  12. The role of interior watershed processes in improving parameter estimation and performance of watershed models.

    Science.gov (United States)

    Yen, Haw; Bailey, Ryan T; Arabi, Mazdak; Ahmadi, Mehdi; White, Michael J; Arnold, Jeffrey G

    2014-09-01

    Watershed models typically are evaluated solely through comparison of in-stream water and nutrient fluxes with measured data using established performance criteria, whereas processes and responses within the interior of the watershed that govern these global fluxes often are neglected. Due to the large number of parameters at the disposal of these models, circumstances may arise in which excellent global results are achieved using inaccurate magnitudes of these "intra-watershed" responses. When used for scenario analysis, a given model hence may inaccurately predict the global, in-stream effect of implementing land-use practices at the interior of the watershed. In this study, data regarding internal watershed behavior are used to constrain parameter estimation to maintain realistic intra-watershed responses while also matching available in-stream monitoring data. The methodology is demonstrated for the Eagle Creek Watershed in central Indiana. Streamflow and nitrate (NO) loading are used as global in-stream comparisons, with two process responses, the annual mass of denitrification and the ratio of NO losses from subsurface and surface flow, used to constrain parameter estimation. Results show that imposing these constraints not only yields realistic internal watershed behavior but also provides good in-stream comparisons. Results further demonstrate that in the absence of incorporating intra-watershed constraints, evaluation of nutrient abatement strategies could be misleading, even though typical performance criteria are satisfied. Incorporating intra-watershed responses yields a watershed model that more accurately represents the observed behavior of the system and hence a tool that can be used with confidence in scenario evaluation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Sedimentation in Rio La Venta Canyon in Netzahualcoyotl Reservoir, Chiapas, Mexico

    Science.gov (United States)

    de La Fuente, J. A.; Lisle, T.; Velasquez, J.; Allison, B. L.; Miller, A.

    2002-12-01

    Sedimentation of Rio La Venta as it enters the Netzahualcoyotl Reservoir in Chiapas, Mexico, threatens a unique part of the aquatic ecosystem. Rio La Venta enters the reservoir via a narrow canyon about 16 km long with spectacular, near-vertical limestone bluffs up to 320 m high and inhabited by the flora and fauna of a pristine tropical forest. Karst terrain underlies most of the Rio La Venta basin in the vicinity of the reservoir, while deeply weathered granitic terrain underlies the Rio Negro basin, and the headwaters of the Rio La Venta to the south. The Rio Negro joins Rio La Venta 3 km downstream of the upper limit of the reservoir and delivers the bulk of the total clastic sediment (mostly sand and finer material). The canyon and much of the contributing basin lie within the Reserva de la Biosfera, Selva El Ocote, administered by the Comision Nacional de Areas Naturales Protegidas, part of the Secretaria de Medioambiente y Recursos Naturales. The Klamath National Forest Forest has cooperated with its Mexican counterparts since 1993 in natural resource management, neo-tropical bird inventories, wildfire management, and more recently in watershed analyses. Rates of sedimentation are estimated from bathymetric surveys conducted in March, 2002. A longitudinal profile down the inundated canyon during a high reservoir level shows an inflection from a slope of 0.0017 to one of 0.0075 at 7.2 km downstream of the mouth of Rio Negro. The bed elevation at this point corresponds to the lowest reservoir level, suggesting that the gentler sloping bed upstream is formed by fluvial processes during drawdown and that downstream by pluvial processes. Using accounts that boats could access Rio Negro during low water levels in 1984, we estimate an annual sedimentation rate of roughly 3 million cubic meters per year. This suggests that boats might no longer be able to access the most spectacular section of canyon upstream of Rio Negro within a decade, depending on how the

  14. Use of a hydrogeochemical approach in determining hydraulic connection between porous heat reservoirs in Kaifeng area, Henan, China

    International Nuclear Information System (INIS)

    Lin Xueyu; Taboure, Aboubacar; Wang Xinyi; Liao Zisheng

    2007-01-01

    In this paper a case study of hydraulic connectivity in a 300-1600 m deep, low temperature, sedimentary geothermal system in Kaifeng area, Henan province, China is presented. Based on lithologic data from 52 geothermal wells and chemical data on geothermal water (GW) from six depth-specific and representative wells, the system was chemically grouped into two main hot reservoirs (300-1300 m and 1300-1600 m deep), which were in turn, divided into six sub-reservoirs (SRs). Data on stable isotope ( 2 H and 18 O) ratios, radioactive isotope ( 14 C) radiation in conjunction with computation of mineral-fluid chemical equilibria were used to establish the recharge source (a mountainous region in the southwestern part of Zhengzhou, 60 km away); evaluate groundwater age which varied with well depth from 15630 ± 310 a to 24970 ± 330 a; and assess the chemical equilibrium state within the system. The results of different analysis did not suggest an obvious hydraulic connection between the two main hot reservoirs. The location of the recharge zone and the geohydrologic characteristics of the study area demonstrate that the GW utilized from the system is mainly derived from confined waters of meteoric origin

  15. Operational Precipitation prediction in Support of Real-Time Flash Flood Prediction and Reservoir Management

    Science.gov (United States)

    Georgakakos, K. P.

    2006-05-01

    The presentation will outline the implementation and performance evaluation of a number of national and international projects pertaining to operational precipitation estimation and prediction in the context of hydrologic warning systems and reservoir management support. In all cases, uncertainty measures of the estimates and predictions are an integral part of the precipitation models. Outstanding research issues whose resolution is likely to lead to improvements in the operational environment are presented. The presentation draws from the experience of the Hydrologic Research Center (http://www.hrc-lab.org) prototype implementation projects at the Panama Canal, Central America, Northern California, and South-Central US. References: Carpenter, T.M, and K.P. Georgakakos, "Discretization Scale Dependencies of the Ensemble Flow Range versus Catchment Area Relationship in Distributed Hydrologic Modeling," Journal of Hydrology, 2006, in press. Carpenter, T.M., and K.P. Georgakakos, "Impacts of Parametric and Radar Rainfall Uncertainty on the Ensemble Streamflow Simulations of a Distributed Hydrologic Model," Journal of Hydrology, 298, 202-221, 2004. Georgakakos, K.P., Graham, N.E., Carpenter, T.M., Georgakakos, A.P., and H. Yao, "Integrating Climate- Hydrology Forecasts and Multi-Objective Reservoir Management in Northern California," EOS, 86(12), 122,127, 2005. Georgakakos, K.P., and J.A. Sperfslage, "Operational Rainfall and Flow Forecasting for the Panama Canal Watershed," in The Rio Chagres: A Multidisciplinary Profile of a Tropical Watershed, R.S. Harmon, ed., Kluwer Academic Publishers, The Netherlands, Chapter 16, 323-334, 2005. Georgakakos, K. P., "Analytical results for operational flash flood guidance," Journal of Hydrology, doi:10.1016/j.jhydrol.2005.05.009, 2005.

  16. Watershed Fact Sheet: Improving Utah's Water Quality, Upper Bear River Watershed

    OpenAIRE

    Extension, USU

    2012-01-01

    The Upper Watershed of the Bear River Basin extends from the river's headwaters to Pixley Dam in Wyoming. This is the largest watershed in the Bear River Basin, with an area of about 2,000 square miles.

  17. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir.

    Science.gov (United States)

    Jeznach, Lillian C; Hagemann, Mark; Park, Mi-Hyun; Tobiason, John E

    2017-10-01

    Extreme precipitation events are of concern to managers of drinking water sources because these occurrences can affect both water supply quantity and quality. However, little is known about how these low probability events impact organic matter and nutrient loads to surface water sources and how these loads may impact raw water quality. This study describes a method for evaluating the sensitivity of a water body of interest from watershed input simulations under extreme precipitation events. An example application of the method is illustrated using the Wachusett Reservoir, an oligo-mesotrophic surface water reservoir in central Massachusetts and a major drinking water supply to metropolitan Boston. Extreme precipitation event simulations during the spring and summer resulted in total organic carbon, UV-254 (a surrogate measurement for reactive organic matter), and total algae concentrations at the drinking water intake that exceeded recorded maximums. Nutrient concentrations after storm events were less likely to exceed recorded historical maximums. For this particular reservoir, increasing inter-reservoir transfers of water with lower organic matter content after a large precipitation event has been shown in practice and in model simulations to decrease organic matter levels at the drinking water intake, therefore decreasing treatment associated oxidant demand, energy for UV disinfection, and the potential for formation of disinfection byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Some lessons in artificial regeneration from southwestern Oregon.

    Science.gov (United States)

    William I. Stein

    1955-01-01

    Natural reproduction has often proved undependable for restocking cutovers and burns in the mixed-conifer forest types of southwestern Oregon. These types, covering 6,000 square miles of productive forest land in the five southwestern Oregon counties, are composed of many species--principally Douglas fir, Pseudotsuga menziesii (Mirb.) Franco;...

  19. Full field reservoir modeling of shale assets using advanced data-driven analytics

    Directory of Open Access Journals (Sweden)

    Soodabeh Esmaili

    2016-01-01

    Full Text Available Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism (sorption process and flow behavior in complex fracture systems - induced or natural leaves much to be desired. In this paper, we present and discuss a novel approach to modeling, history matching of hydrocarbon production from a Marcellus shale asset in southwestern Pennsylvania using advanced data mining, pattern recognition and machine learning technologies. In this new approach instead of imposing our understanding of the flow mechanism, the impact of multi-stage hydraulic fractures, and the production process on the reservoir model, we allow the production history, well log, completion and hydraulic fracturing data to guide our model and determine its behavior. The uniqueness of this technology is that it incorporates the so-called “hard data” directly into the reservoir model, so that the model can be used to optimize the hydraulic fracture process. The “hard data” refers to field measurements during the hydraulic fracturing process such as fluid and proppant type and amount, injection pressure and rate as well as proppant concentration. This novel approach contrasts with the current industry focus on the use of “soft data” (non-measured, interpretive data such as frac length, width, height and conductivity in the reservoir models. The study focuses on a Marcellus shale asset that includes 135 wells with multiple pads, different landing targets, well length and reservoir properties. The full field history matching process was successfully completed using this data driven approach thus capturing the production behavior with acceptable accuracy for individual wells and for the entire asset.

  20. Spatial characterization of long-term hydrological change in the Arkavathy watershed adjacent to Bangalore, India

    Science.gov (United States)

    Penny, Gopal; Srinivasan, Veena; Dronova, Iryna; Lele, Sharachchandra; Thompson, Sally

    2018-01-01

    The complexity and heterogeneity of human water use over large spatial areas and decadal timescales can impede the understanding of hydrological change, particularly in regions with sparse monitoring of the water cycle. In the Arkavathy watershed in southern India, surface water inflows to major reservoirs decreased over a 40-year period during which urbanization, groundwater depletion, modification of the river network, and changes in agricultural practices also occurred. These multiple, interacting drivers combined with limited hydrological monitoring make attribution of the causes of diminishing water resources in the watershed challenging and impede effective policy responses. To mitigate these challenges, we developed a novel, spatially distributed dataset to understand hydrological change by characterizing the residual trends in surface water extent that remain after controlling for precipitation variations and comparing the trends with historical land use maps to assess human drivers of change. Using an automated classification approach with subpixel unmixing, we classified water extent in nearly 1700 man-made lakes, or tanks, in Landsat images from 1973 to 2010. The classification results compared well with a reference dataset of water extent of tanks (R2 = 0.95). We modeled the water extent of 42 clusters of tanks in a multiple regression on simple hydrological covariates (including precipitation) and time. Inter-annual variability in precipitation accounted for 63 % of the predicted variability in water extent. However, precipitation did not exhibit statistically significant trends in any part of the watershed. After controlling for precipitation variability, we found statistically significant temporal trends in water extent, both positive and negative, in 13 of the clusters. Based on a water balance argument, we inferred that these trends likely reflect a non-stationary relationship between precipitation and watershed runoff. Independently of

  1. Typhoon impacts on chemical weathering source provenance of a High Standing Island watershed, Taiwan

    Science.gov (United States)

    Meyer, Kevin J.; Carey, Anne E.; You, Chen-Feng

    2017-10-01

    Chemical weathering source provenance changes associated with Typhoon Mindulle (2004) were identified for the Choshui River Watershed in west-central Taiwan using radiogenic Sr isotope (87Sr/86Sr) and major ion chemistry analysis of water samples collected before, during, and following the storm event. Storm water sampling over 72 h was conducted in 3 h intervals, allowing for novel insight into weathering regime changes in response to intense rainfall events. Chemical weathering sources were determined to be bulk silicate and disseminated carbonate minerals at the surface and silicate contributions from deep thermal waters. Loss on ignition analysis of collected rock samples indicate disseminated carbonate can compose over 25% by weight of surface mineralogy, but typically makes up ∼2-3% of watershed rock. 87Sr/86Sr and major element molar ratios indicate that Typhoon Mindulle caused a weathering regime switch from normal flow incorporating a deep thermal signature to that of a system dominated by surface weathering. The data suggest release of silicate solute rich soil pore waters during storm events, creating a greater relative contribution of silicate weathering to the solute load during periods of increased precipitation and runoff. Partial depletion of this soil solute reservoir and possible erosion enhanced carbonate weathering lead to increased importance of carbonates to the weathering regime as the storm continues. Major ion data indicate that complex mica weathering (muscovite, biotite, illite, chlorite) may represent an important silicate weathering pathway in the watershed. Deep thermal waters represent an important contribution to river solutes during normal non-storm flow conditions. Sulfuric acid sourced from pyrite weathering is likely a major weathering agent in the Choshui River watershed.

  2. Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, southwestern China

    Science.gov (United States)

    Du, Jianguo; Liu, Congqiang; Fu, Bihong; Ninomiya, Yoshiki; Zhang, Youlian; Wang, Chuanyuan; Wang, Hualiu; Sun, Zigang

    2005-04-01

    Geothermal variations, origins of carbon-bearing components and reservoir temperatures in the Rehai geothermal field (RGF) of Tengchong volcanic area, Yunnan Province, southwestern China, are discussed on the basis of carbon isotope compositions, combined with helium isotope ratios and geothermal data from 1973 to 2000. δ 13C values of CO 2, CH 4, HCO 3-, CO 3= and travertine in the hot springs range from -7.6‰ to -1.18‰, -56.9‰ to -19.48‰, -6.7‰ to -4.2‰, -6.4‰ to -4.2‰ and -27.1‰ to +0.6‰, respectively. The carbon dioxide probably has a mantle/magma origin, but CH 4 and He have multiple origins. HCO 3- and CO 3= in RGF thermal fluids are predominantly derived from igneous carbon dioxide, but other ions originate from rocks through which the fluids circulate. The 13C values of CO 2, HCO 3- (aq) and CO 3= (aq) illustrate that isotopic equilibriums between CO 2 and HCO 3- (aq), and CO 3= (aq) and between DIC and travertine were not achieved, and no carbon isotope fractionation between HCO 3- (aq) and CO 3= (aq) of the hot springs in RGF was found. Using various geothermometers, temperatures of the geothermal reservoirs are estimated in a wide range from 69 °C to 450 °C that fluctuated from time to time. The best estimate of subsurface reservoir temperature may be 250-300 °C. Contributions of mantle fluids and shallow crust fluids in Rehai geothermal field varied with time, which resulted in variations of chemical and isotopic compositions and reservoir temperatures.

  3. Reservoir and contaminated sediments impacts in high-Andean environments: Morphodynamic interactions with biogeochemical processes

    Science.gov (United States)

    Escauriaza, C. R.; Contreras, M. T.; Müllendorff, D. A.; Pasten, P.; Pizarro, G. E.

    2014-12-01

    Rapid changes due to anthropic interventions in high-altitude environments, such as the Altiplano region in South America, require new approaches to understand the connections between physical and biogeochemical processes. Alterations of the water quality linked to the river morphology can affect the ecosystems and human development in the long-term. The future construction of a reservoir in the Lluta river, located in northern Chile, will change the spatial distribution of arsenic-rich sediments, which can have significant effects on the lower parts of the watershed. In this investigation we develop a coupled numerical model to predict and evaluate the interactions between morphodynamic changes in the Lluta reservoir, and conditions that can potentially desorb arsenic from the sediments. Assuming that contaminants are mobilized under anaerobic conditions, we calculate the oxygen concentration within the sediments to study the interactions of the delta progradation with the potential arsenic release. This work provides a framework for future studies aimed to analyze the complex connections between morphodynamics and water quality, when contaminant-rich sediments accumulate in a reservoir. The tool can also help to design effective risk management and remediation strategies in these extreme environments. Research has been supported by Fondecyt grant 1130940 and CONICYT/FONDAP Grant 15110017

  4. Casuses of deforestation in southwestern Madagascar

    DEFF Research Database (Denmark)

    Casse, Thorkil; Milhøj, Anders; Ranaivoson, Socrate

    2004-01-01

    Causes of deforestation are discussed in the case of southwestern Madagascar. Distinction is made between direct and indirect causes. The article ends up with an estimation of the value of agricultural land vs. an estimation of benefits from utilisation of non-timber forest products......Causes of deforestation are discussed in the case of southwestern Madagascar. Distinction is made between direct and indirect causes. The article ends up with an estimation of the value of agricultural land vs. an estimation of benefits from utilisation of non-timber forest products...

  5. Dating of Barra Bonita (Rio Tiete - Sao Paulo State, Brazil) reservoir sediments with 210 Pb: historical distribution of heavy metals

    International Nuclear Information System (INIS)

    Cazotti, Raul I.; Silverio, Patricia F.; Mozeto, Antonio A.; Nascimento, Marcos R.L. do

    2002-01-01

    This work presents data on 210 Pb dating and heavy metal contamination of sediment cores collected from the Barra Bonita reservoir, one of the hydroelectric reservoir built in the Tiete River, SE Brazil about 40 years ago. Age calculations were done through the CRS (constant rate of supply) and CIC (constant initial concentration) models. It is well known that dating of lake sediment which are ≥ 100 years old poses no problem as atmospheric 210 Pb activity decreases to almost zero with sediment depth. In this work we present considerations and suggestions towards the applicability of these two models for reservoir dating as a study-case and for lakes in general with ages ≤ 100 years. The results show a good agreement between the CRS and CIC models. In addition, it was also evaluated the historical contamination of heavy metals (total and acid-extractable fraction). Cr, Cu, Ni, Pb and Zn showed an increase in concentration from the bottom to the top part of the cores. This would probably reflect an increase in land use of the Barra Bonita reservoir watershed for the last 40 years. (author)

  6. Long-term trend analysis of reservoir water quality and quantity at the landscape scale in two major river basins of Texas, USA.

    Science.gov (United States)

    Patino, Reynaldo; Asquith, William H.; VanLandeghem, Matthew M.; Dawson, D.

    2016-01-01

    Trends in water quality and quantity were assessed for 11 major reservoirs of the Brazos and Colorado river basins in the southern Great Plains (maximum period of record, 1965–2010). Water quality, major contributing-stream inflow, storage, local precipitation, and basin-wide total water withdrawals were analyzed. Inflow and storage decreased and total phosphorus increased in most reservoirs. The overall, warmest-, or coldest-monthly temperatures increased in 7 reservoirs, decreased in 1 reservoir, and did not significantly change in 3 reservoirs. The most common monotonic trend in salinity-related variables (specific conductance, chloride, sulfate) was one of no change, and when significant change occurred, it was inconsistent among reservoirs. No significant change was detected in monthly sums of local precipitation. Annual water withdrawals increased in both basins, but the increase was significant (P < 0.05) only in the Colorado River and marginally significant (P < 0.1) in the Brazos River. Salinity-related variables dominated spatial variability in water quality data due to the presence of high- and low-salinity reservoirs in both basins. These observations present a landscape in the Brazos and Colorado river basins where, in the last ∼40 years, reservoir inflow and storage generally decreased, eutrophication generally increased, and water temperature generally increased in at least 1 of 3 temperature indicators evaluated. Because local precipitation remained generally stable, observed reductions in reservoir inflow and storage during the study period may be attributable to other proximate factors, including increased water withdrawals (at least in the Colorado River basin) or decreased runoff from contributing watersheds.

  7. 2014 annual site environmental report, Southwestern Power Administration

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-12-31

    Southwestern Power Administration’s Annual Site Environmental Report (ASER) serves as the chief reporting mechanism for site environmental performance information within the Department of Energy and as a valuable resource for shared and collaborative environmental protection and performance information to Agency stakeholders and members of the public living near Southwestern Power Administration’s (Southwestern) facilities and transmission line rights-of-ways. This ASER meets the requirements of Department of Energy (DOE) Order 231.B. Southwestern’s key environmental involvement includes an emphasis on the protection of ecological resources which is effectively accomplished through environmental program elements such as protecting water resources, generation of clean hydropower energy, oil spill prevention practices, elimination of green-house gas emissions, and comprehensive project reviews to ensure the protection of living organisms, migratory birds, Federally threatened or endangered species, and historic or cultural resources. Southwestern continues to actively minimize effects to natural resources and strive for continual improvement in the area of environmental compliance and sustainability while achieving the agency mission to market and deliver Federal hydroelectric power.

  8. The land use patterns for soil organic carbon conservation at Endanga watershed Southeast Sulawesi Indonesia

    Science.gov (United States)

    Leomo, S.; Ginting, S.; Sabaruddin, L.; Tufaila, M.; Muhidin

    2018-02-01

    The Endanga basin is one part of the Konaweeha watershed located in South Konawe, Southeast Sulawesi Province, covering an area of 1,353.67 hectares. The land use patterns in Endanga Watershed contained forests, shrubs, oil palm plantations, pepper fields, and cultivated fields of field rice, corn monoculture and intercropping of peanuts and corn. This watershed needs serious attention because most of its territory is on slope of 15-40%, with erosion hazard levels (EHL) varying from mild erosion to severe erosion. The loss of organic carbon (C-organic) soil is measured from the soil carried along with the surface stream and into the reservoir on various land uses. The result measurement of C-organic soil loss on forest land use is 14.02 kg ha-1, shrubs land 22.71 kg ha-1, oil palm 151.32 kg ha-1, pepper garden 93.69 kg ha-1, field rice 313.80 kg.ha-1, monoculture of maize 142.44 kg ha-1, intercropped maize and corn 51.10 kg ha-1 and open land 1,909.16 kg ha-1. The forest land and shrubs is best in conserving soil C-organic, but economically unfavorable for the community, so land use pattern for intercropping and pepper plantation can be used for soil C-organic conservation

  9. Effects of Climate Change in the Water Balance of a Modified River Watershed System in Central Illinois

    Science.gov (United States)

    Honings, J.; Seyoum, W. M.

    2017-12-01

    Understanding the response of water cycle dynamics to climate change and human activity is essential for best management of water resources. This study used the USDA Soil-Water Assessment Tool (SWAT) to measure and predict major water balance variables including stream discharge, potential aquifer recharge, and surface storage in a small-scale watershed ( 2,930 km²) in Central Illinois. The Mackinaw River drains the study watershed, which is predominantly tile-drained agricultural land. Two reservoirs, Evergreen Lake and Lake Bloomington, and the Mahomet Aquifer in the watershed are used for public water supply. Tiles modify watershed hydrology by efficiently draining water from saturated soil to streams, which increases total streamflow and reduces direct aquifer recharge from precipitation. To assess how the watershed is affected by future climate change, this study used high-resolution climate projection data ( 12 km) in a calibrated and validated SWAT hydrologic model. Using General Circulation Models, four (4) representative concentration pathways (RCPs) developed by the IPCC Coupled Model Intercomparison Project Fifth Assessment Report (CMIP5) were used for prediction of precipitation, mean, minimum, and maximum temperature for the watershed. Temperature predictions for 2050 were warmer for RCPs 2.6 and 8.0 (+0.69°C and +1.8°C), coinciding with increased precipitation rates (+2.5% and +4.3%). End of century projections indicate warmer mean temperatures (+0.66°C and +4.9°C) for RCPs 2.6 and 8.0. By 2099, precipitation predictions are wetter for RCP 8.0 (+10%), but drier for RCP 2.6 (-2%) from the baseline. Preliminary model calibration (R2 value = 0.7) results showed an annual average watershed yield of 32.8 m³/s at the outlet with average potential recharge of 18% of total precipitation. Tile flow comprises 10 to 30% of total flow in the watershed simulations. Predicted hydrologic variables for the extreme scenarios at mid- and end of century indicate

  10. Historical Streamflow Series Analysis Applied to Furnas HPP Reservoir Watershed Using the SWAT Model

    Directory of Open Access Journals (Sweden)

    Viviane de Souza Dias

    2018-04-01

    Full Text Available Over the last few years, the operation of the Furnas Hydropower Plant (HPP reservoir, located in the Grande River Basin, has been threatened due to a significant reduction in inflow. In the region, hydrological modelling tools are being used and tested to support decision making and water sustainability. In this study, the streamflow was modelled in the area of direct influence of the Furnas HPP reservoir, and the Soil and Water Assessment Tool (SWAT model performance was verified for studies in the region. Analyses of sensitivity and uncertainty were undertaken using the Sequential Uncertainty Fitting algorithm (SUFI-2 with a Calibration Uncertainty Program (SWAT-CUP. The hydrological modelling, at a monthly scale, presented good results in the calibration (NS 0.86, with a slight reduction of the coefficient in the validation period (NS 0.64. The results suggested that this tool could be applied in future hydrological studies in the region of study. With the consideration that special attention should be given to the historical series used in the calibration and validation of the models. It is important to note that this region has high demands for water resources, primarily for agricultural use. Water demands must also be taken into account in future hydrological simulations. The validation of this methodology led to important contributions to the management of water resources in regions with tropical climates, whose climatological and geological reality resembles the one studied here.

  11. Multitemporal analysis of estimated soil loss for the river Mourão watershed, Paraná – Brazil

    Directory of Open Access Journals (Sweden)

    C. H. Graça

    Full Text Available The multitemporal behavior of soil loss by surface water erosion in the hydrographic basin of the river Mourão in the center-western region of the Paraná state, Brazil, is analyzed. Forecast was based on the application of the Universal Soil Loss Equation (USLE with the data integration and estimates within an Geography Information System (GIS environment. Results had shown high mean annual rain erosivity (10,000 MJ.mm.ha–1.h–1.year–1, with great concentration in January and December. As a rule, soils have average erodibilities, exception of Dystroferric Red Latisol (low class and Dystrophic Red Argisol (high class. Although the topographic factor was high (>20, rates lower than 1 were predominant. Main land uses comprise temporal crops and pasture throughout the years. The watershed showed a natural potential for low surface erosion. When related to usage types, yearly soil loss was also low (<50 ton.ha–1.year–1, with more critical scores that reach rates higher than 150 ton.ha–1.year–1. Soil loss over the years did not provide great distinctions in distribution standards, although it becames rather intensified in some sectors, especially in the center-eastern and southwestern sections of the watershed.

  12. The energy behind the power. Southwestern Power Administration 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This is the Southwestern Power Administration 1994 annual report. The topics of the report include a letter to the secretary; an overview including the mission statement, a description of the Southwestern Federal Power System, financial statement, performance measurements, national performance review; year in review, summary of results, financial and statistical data and the Southwestern Power Administration Organization.

  13. Fortescue reservoir development and reservoir studies

    Energy Technology Data Exchange (ETDEWEB)

    Henzell, S.T.; Hicks, G.J.; Horden, M.J.; Irrgang, H.R.; Janssen, E.J.; Kable, C.W.; Mitchell, R.A.H.; Morrell, N.W.; Palmer, I.D.; Seage, N.W.

    1985-03-01

    The Fortescue field in the Gippsland Basin, offshore southeastern Australia is being developed from two platforms (Fortescue A and Cobia A) by Esso Australia Ltd. (operator) and BHP Petroleum. The Fortescue reservoir is a stratigraphic trap at the top of the Latrobe Group of sediments. It overlies the western flank of the Halibut and Cobia fields and is separated from them by a non-net sequence of shales and coals which form a hydraulic barrier between the two systems. Development drilling into the Fortescue reservoir commenced in April 1983 with production coming onstream in May 1983. Fortescue, with booked reserves of 44 stock tank gigalitres (280 million stock tank barrels) of 43/sup 0/ API oil, is the seventh major oil reservoir to be developed in the offshore Gippsland Basin by Esso/BHP. In mid-1984, after drilling a total of 20 exploration and development wells, and after approximately one year of production, a detailed three-dimensional, two-phase reservoir simulation study was performed to examine the recovery efficiency, drainage patterns, pressure performance and production rate potential of the reservoir. The model was validated by history matching an extensive suite of Repeat Formation Test (RFT) pressure data. The results confirmed the reserves basis, and demonstrated that the ultimate oil recovery from the reservoir is not sensitive to production rate. This result is consistent with studies on other high quality Latrobe Group reservoirs in the Gippsland Basin which contain undersaturated crudes and receive very strong water drive from the Basin-wide aquifer system. With the development of the simulation model during the development phase, it has been possible to more accurately define the optimal well pattern for the remainder of the development.

  14. Retrospective Review of Watershed Characteristics and a Framework for Future Research in the Sarasota Bay Watershed, Florida

    Science.gov (United States)

    Kish, George R.; Harrison, Arnell S.; Alderson, Mark

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Sarasota Bay Estuary Program conducted a retrospective review of characteristics of the Sarasota Bay watershed in west-central Florida. This report describes watershed characteristics, surface- and ground-water processes, and the environmental setting of the Sarasota Bay watershed. Population growth during the last 50 years is transforming the Sarasota Bay watershed from rural and agriculture to urban and suburban. The transition has resulted in land-use changes that influence surface- and ground-water processes in the watershed. Increased impervious cover decreases recharge to ground water and increases overland runoff and the pollutants carried in the runoff. Soil compaction resulting from agriculture, construction, and recreation activities also decreases recharge to ground water. Conventional approaches to stormwater runoff have involved conveyances and large storage areas. Low-impact development approaches, designed to provide recharge near the precipitation point-of-contact, are being used increasingly in the watershed. Simple pollutant loading models applied to the Sarasota Bay watershed have focused on large-scale processes and pollutant loads determined from empirical values and mean event concentrations. Complex watershed models and more intensive data-collection programs can provide the level of information needed to quantify (1) the effects of lot-scale land practices on runoff, storage, and ground-water recharge, (2) dry and wet season flux of nutrients through atmospheric deposition, (3) changes in partitioning of water and contaminants as urbanization alters predevelopment rainfall-runoff relations, and (4) linkages between watershed models and lot-scale models to evaluate the effect of small-scale changes over the entire Sarasota Bay watershed. As urbanization in the Sarasota Bay watershed continues, focused research on water-resources issues can provide information needed by water

  15. Evaluating the Effectiveness of Agricultural Management Practices under Climate Change for Water Quality Improvement in a Rural Agricultural Watershed of Oklahoma, USA

    Science.gov (United States)

    Rasoulzadeh Gharibdousti, S.; Kharel, G.; Stoecker, A.; Storm, D.

    2016-12-01

    One of the main causes of water quality impairment in the United States is human induced Non-Point Source (NPS) pollution through intensive agriculture. Fort Cobb Reservoir (FCR) watershed located in west-central Oklahoma, United States is a rural agricultural catchment with known issues of NPS pollution including suspended solids, siltation, nutrients, and pesticides. The FCR watershed with an area of 813 km2 includes one major lake fed by four tributaries. Recently, several Best Management Practices (BMPs) have been implemented in the watershed (such as no-tillage and cropland to grassland conversion) to improve water quality. In this study we aim to estimate the effectiveness of different BMPs in improving watershed health under future climate projections. We employed the Soil and Water Assessment Tool (SWAT) to develop the hydrological model of the FCR watershed. The watershed was delineated using the 10 m USGS Digital Elevation Model and divided into 43 sub-basins with an average area of 8 km2 (min. 0.2 km2 - max. 28 km2). Through a combination of Soil Survey Geographic Database- SSURGO soil data, the US Department of Agriculture crop layer and the slope information, the watershed was further divided into 1,217 hydrologic response units. The historical climate pattern in the watershed was represented by two different weather stations. The model was calibrated (1991 - 2000) and validated (2001 - 2010) against the monthly USGS observations of streamflow recorded at the watershed outlet using three statistical matrices: coefficient of determination (R2), Nash-Sutcliffe efficiency (NS) and percentage bias (PB). Model parametrization resulted into satisfactory values of R2 (0.56) and NS (0.56) in calibration period and an excellent model performance (R2 = 0.75; NS = 0.75; PB = water and sediment yields under a combination of three Coupled Model Intercomparison Project-5 Global Climate Model projections and two concentration pathways (4.5 and 8.5) downscaled to the

  16. Influence of Land Use and Watershed Characteristics on Protozoa Contamination in a Potential Drinking Water Resources Reservoir

    Science.gov (United States)

    Relative changes in the microbial quality of Lake Texoma, on the border of Texas and Oklahoma, were investigated by monitoring protozoan pathogens, fecal indicators, and factors influencing the intensity of the microbiological contamination of surface water reservoirs. The waters...

  17. Advantageous Reservoir Characterization Technology in Extra Low Permeability Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Yutian Luo

    2017-01-01

    Full Text Available This paper took extra low permeability reservoirs in Dagang Liujianfang Oilfield as an example and analyzed different types of microscopic pore structures by SEM, casting thin sections fluorescence microscope, and so on. With adoption of rate-controlled mercury penetration, NMR, and some other advanced techniques, based on evaluation parameters, namely, throat radius, volume percentage of mobile fluid, start-up pressure gradient, and clay content, the classification and assessment method of extra low permeability reservoirs was improved and the parameter boundaries of the advantageous reservoirs were established. The physical properties of reservoirs with different depth are different. Clay mineral variation range is 7.0%, and throat radius variation range is 1.81 μm, and start pressure gradient range is 0.23 MPa/m, and movable fluid percentage change range is 17.4%. The class IV reservoirs account for 9.56%, class II reservoirs account for 12.16%, and class III reservoirs account for 78.29%. According to the comparison of different development methods, class II reservoir is most suitable for waterflooding development, and class IV reservoir is most suitable for gas injection development. Taking into account the gas injection in the upper section of the reservoir, the next section of water injection development will achieve the best results.

  18. An integrated approach to dam safety evaluation. A case study: Upper Lake Falls Dam, Nova Scotia, Canada

    International Nuclear Information System (INIS)

    Pelletier, P.M.; Rattue, D.A.; Brown, E.R.

    1990-01-01

    Upper Lake Falls Dam is located in southwestern Nova Scotia. It is the uppermost hydroelectric development in a series of six developments on the Mersey River. The total capacity of the Mersey River system is 42 MW. The reservoir of Upper Lake Falls, Lake Rossignol, is the largest in Nova Scotia with a total area of 66 square miles and a gross storage of 800,000 acre-feet. An overview is presented of the hydrologic and hydraulic investigations carried out for the dam, which is classified as having high hazard potential because of permanent village and urban developments located downstream. The general methodology adopted in the study consisted of the following: gathering and verifying all meteorologic and hydrologic data; evaluating the Probable Maximum Precipitation (PMP) assumed to occur over the basin, and of the antecedent conditions prior to the PMP; calibrating a watershed model on flood events generated by rainfall, and by a combination of snowmelt and rainfall, and verifying the model using additional hydrologic events; deriving the Probable Maximum Flood (PMF) using the PMP results simulated on the calibrated watershed model; hydrodynamic routing of the flood hydrograph through all the developments; dambreak analysis, following sequential or independent failures; and flood inundation mapping. Details are given of safety analysis of the earthfill and concrete dam structures, reservoir management and cost-benefit analyses. 7 refs., 8 figs., 1 tab

  19. Retrospective Analysis of Low Flows at Headwater Watersheds in Wyoming

    Science.gov (United States)

    Voutchkova, D. D.; Miller, S. N.

    2016-12-01

    Understanding summer low-flow variability and change in the mountainous West has important implications for water allocations downstream and for maintaining water availability for drinking water supply, reservoir storage, industrial, agricultural, and ecological needs. Wildfires and insect infestations are classical disturbance hydrology topics. It is unclear, however, what are their effects on streamflow and in particular low-flows, when vegetation disturbances are overlapping in time and combined with highly variable and potentially changing local climate. The purpose of this study, therefore, is to quantify changes in low-flows resulting from disturbance in headwater streams. Here we present a retrospective analysis based on: (1) 49-75 complete water years (wy) of daily streamflow data (USGS) for 14 high-elevation headwater watersheds with varying areas (60-1730 km2, 86-100% of watershed area >2000masl) and evergreen forest cover (15-82%), (2) 25-36 complete wy of daily snow-water equivalent accumulation (SWE) and precipitation data from Wyoming SNOTEL stations, (3) burned area boundaries for 20wy (MTBS project), (4) aerial surveys by R1, R2, R4 Forest Service Regions for 18wy (data on tree mortality). We quantify the change in various low-flow characteristics (e.g. post-snowmelt baseflow, Q90 and Q95, 3-,7-, 30- and 90-day annual minima etc.) while accounting for local inter- and multi-annual climate variability by using SWE accumulation data, as it integrates both temperature and precipitation changes. Our approach differs from typical before-after field-based investigation for paired watersheds, as it provides a synthesis over large temporal and spatial scales, resulting in spectrum of possible hydrologic responses due to varying disturbance severity. Quantifying the changes in low-flows and low-flow variability will improve our understanding and will facilitate water management and planning at local state-wide level.

  20. Forecast Informed Reservoir Operations: Bringing Science and Decision-Makers Together to Explore Use of Hydrometeorological Forecasts to Support Future Reservoir Operations

    Science.gov (United States)

    Ralph, F. M.; Jasperse, J.

    2017-12-01

    Forecast Informed Reservoir Operations (FIRO) is a proposed strategy that is exploring inorporation of improved hydrometeorological forecasts of land-falling atmospheric rivers on the U.S. West Coast into reservoir operations. The first testbed for this strategy is Lake Mendocino, which is located in the East Fork of the 1485 mi2 Russian River Watershed in northern California. This project is guided by the Lake Mendocino FIRO Steering Committee (SC). The SC is an ad hoc committee that consists of water managers and scientists from several federal, state, and local agencies, and universities who have teamed to evaluate whether current or improved technology and scientific understanding can be utilized to improve water supply reliability, enhance flood mitigation and support recovery of listed salmon for the Russian River of northern California. In 2015, the SC created a detailed work plan, which included a Preliminary Viability Assessment, which has now been completed. The SC developed a vision that operational efficiency would be improved by using forecasts to inform decisions about releasing or storing water. FIRO would use available reservoir storage in an efficient manner by (1) better forecasting inflow (or lack of inflow) with enhanced technology, and (2) adapting operation in real time to meet the need for storage, rather than making storage available just in case it is needed. The envisioned FIRO strategy has the potential to simultaneously improve water supply reliability, flood protection, and ecosystem outcomes through a more efficient use of existing infrastructure while requiring minimal capital improvements in the physical structure of the dam. This presentation will provide an overview of the creation of the FIRO SC and how it operates, and describes the lessons learned through this partnership. Results in the FIRO Preliminary Viability Assessment will be summarized and next steps described.

  1. THE BEAR BROOK WATERSHED MANIPULATION PROJECT: WATERSHED SCIENCE IN A POLICY PERSPECTIVE

    Science.gov (United States)

    The Bear Brook Watershed Manipulation in Maine is a paired watershed experiment. Monitoring of the paired catchments (East Bear Brook - reference; West Bear Brook - experimental) began in early 1987. Chemical manipulation of West Bear Brook catchment began in November 1989. Proce...

  2. Effect to groundwater recharge caused by land use change, comparative filed observation in forest and grassland watersheds, Southwestern Japan

    Science.gov (United States)

    Kudo, K.; Shimada, J.; Tanaka, N.

    2011-12-01

    City of Kumamoto and their surrounding area are totally supported by the local groundwater as their tap water source, which is quite unique as comparing to the other large cities in Japan because Japanese large cities are mostly supplied by the surface water which is relatively easy to access for their tap water. Because of this, prefecture government of the Kumamoto City has much concern about the sustainable use of groundwater resources for their future generations. In Japan, for the sustainable use of groundwater resources, the forestation in the groundwater recharge area believed to increase the groundwater recharge to the local groundwater aquifer. It is true that the forestation surely works to reduce the direct runoff rate during the flooding period and also works to maintain a bit higher base flow rate during the low flow period than without forestation. However, the effect to the groundwater recharge rate by the forestation is not well understood because of the increase of evapo-transpiration by the tree itself. In order to understand the change of the groundwater recharge rate by the forestation, a paired catchments field observation has been conducted in two adjacent forest (0.088km2) and grassland (0.14km2) watersheds at the western foot of Mt. Aso known as recharge area of major local aquifer of Kumamoto region. The study sites are located at 32°53'N, 130°57'E with elevation ranging from 500 to 800m. The forest watershed consists mainly of around 30 year aged Japanese cypress plantations surrounded by Japanese cedar and mixture forest. The grassland watershed consists mainly of pasture and Japanese silver grass. Both catchments develop on the mountain foot slope consists of the Aso-2 pyroclastic sediments. As for the hydrometric observation system for each catchments, parshall flume runoff weir for the river discharge, meteoric tower for the evapo-transpiration monitoring purpose, and precipitation gage are installed to calculate groundwater recharge

  3. Seismic imaging of the Formosa Ridge cold seep site offshore of southwestern Taiwan

    Science.gov (United States)

    Hsu, Ho-Han; Liu, Char-Shine; Morita, Sumito; Tu, Shu-Lin; Lin, Saulwood; Machiyama, Hideaki; Azuma, Wataru; Ku, Chia-Yen; Chen, Song-Chuen

    2017-12-01

    Multi-scale reflection seismic data, from deep-penetration to high-resolution, have been analyzed and integrated with near-surface geophysical and geochemical data to investigate the structures and gas hydrate system of the Formosa Ridge offshore of southwestern Taiwan. In 2007, dense and large chemosynthetic communities were discovered on top of the Formosa Ridge at water depth of 1125 m by the ROV Hyper-Dolphin. A continuous and strong BSR has been observed on seismic profiles from 300 to 500 ms two-way-travel-time below the seafloor of this ridge. Sedimentary strata of the Formosa Ridge are generally flat lying which suggests that this ridge was formed by submarine erosion processes of down-slope canyon development. In addition, some sediment waves and mass wasting features are present on the ridge. Beneath the cold seep site, a vertical blanking zone, or seismic chimney, is clearly observed on seismic profiles, and it is interpreted to be a fluid conduit. A thick low velocity zone beneath BSR suggests the presence of a gas reservoir there. This "gas reservoir" is shallower than the surrounding canyon floors along the ridge; therefore as warm methane-rich fluids inside the ridge migrate upward, sulfate carried by cold sea water can flow into the fluid system from both flanks of the ridge. This process may drive a fluid circulation system and the active cold seep site which emits both hydrogen sulfide and methane to feed the chemosynthetic communities.

  4. Evaluation of potential gas clogging associated with managed aquifer recharge from a spreading basin, southwestern Utah, U.S.A.

    Science.gov (United States)

    Heilweil, Victor M.; Marston, Thomas

    2013-01-01

    Sand Hollow Reservoir in southwestern Utah, USA, is operated for both surface-water storage and managed aquifer recharge via infiltration from surface basin spreading to the underlying Navajo Sandstone. The total volume of estimated recharge from 2002 through 2011 was 131 Mm3., resulting in groundwater levels rising as much as 40 m. Hydraulic and hydrochemical data from the reservoir and various monitoring wells in Sand Hollow were used to evaluate the timing and location or reservoir recharge moving through the aquifer, along either potential clogging from trapped gases in pore throats, siltation, or algal mats. Several hyrdochemical tracers indicated this recharge had arrived at four monitoring wells located within about 300 m of the reservoir by 2012. At these wells, peak total dissolved-gas pressures exceeded two atmospheres (>1,500 mm mercury) and dissolved oxygen approached three times atmospherically equilibrated concentrations (>25 mg/L). these field parameters indicate that large amounts of gas trapped in pore spaces beneath the water table have dissolved. Lesser but notable increases in these dissolved-gas parameters (without increases in other indicators such as chloride-to-bromide ratios) at monitoring wells farther away (>300 m) indicate moderate amounts of in-situ sir entrapment and dissolution caused by the rise in regional groundwater levels. This is confirmed by hydrochemical difference between these sites and wells closer to the reservoir where recharge had already arrived. As the reservoir was being filled by 2002, managed aquifer recharge rates were initially very high (1.5 x 10-4 cm/s) with the vadose zone becoming saturated beneath and surrounding the reservoir. These rates declined to less than 3.5 x 10-6 cm/s during 2008. The 2002-08 decrease was likely associated with a declining regional hydraulic gradient and clogging. Increasing recharge rates during mid-2009 through 2010 may have been partly caused by dissolution of air bubbles

  5. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    Energy Technology Data Exchange (ETDEWEB)

    P. K. Pande

    1998-10-29

    Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

  6. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  7. 75 FR 11837 - Chesapeake Bay Watershed Initiative

    Science.gov (United States)

    2010-03-12

    ... DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Chesapeake Bay Watershed Initiative AGENCY...: Notice of availability of program funds for the Chesapeake Bay Watershed Initiative. SUMMARY: The... through the Chesapeake Bay Watershed Initiative for agricultural producers in the Chesapeake Bay watershed...

  8. Flood hydrology and dam-breach hydraulic analyses of four reservoirs in the Black Hills, South Dakota

    Science.gov (United States)

    Hoogestraat, Galen K.

    2011-01-01

    Extensive information about the construction of dams or potential downstream hazards in the event of a dam breach is not available for many small reservoirs within the Black Hills National Forest. In 2009, the U.S. Forest Service identified the need for reconnaissance-level dam-breach assessments for four of these reservoirs within the Black Hills National Forest (Iron Creek, Horsethief, Lakota, and Mitchell Lakes) with the potential to flood downstream structures. Flood hydrology and dam-breach hydraulic analyses for the four selected reservoirs were conducted by the U.S. Geological Survey in cooperation with the U.S. Forest service to estimate the areal extent of downstream inundation. Three high-flow breach scenarios were considered for cases when the dam is in place (overtopped) and when a dam break (failure) occurs: the 100-year recurrence 24-hour precipitation, 500-year recurrence peak flow, and the probable maximum precipitation. Inundation maps were developed that show the estimated extent of downstream floodwaters from simulated scenarios. Simulation results were used to determine the hazard classification of a dam break (high, significant, or low), based primarily on the potential for loss of life or property damage resulting from downstream inundation because of the flood surge.The inflow design floods resulting from the two simulated storm events (100-year 24-hour and probable maximum precipitation) were determined using the U.S. Army Corps of Engineers Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS). The inflow design flood for the 500-year recurrence peak flow was determined by using regional regression equations developed for streamflow-gaging stations with similar watershed characteristics. The step-backwater hydraulic analysis model, Hydrologic Engineering Center's River Analysis System (HEC-RAS), was used to determine water-surface profiles of in-place and dam-break scenarios for the three inflow design floods that were

  9. Water volume reduction increases eutrophication risk in tropical semi-arid reservoirs

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Nascimento da Rocha Junior

    2018-04-01

    Full Text Available Abstract Aim Global patterns of temperature and precipitation have significantly changed over the last century and nearly all predictions point to even greater changes by the end of 2100. Long periods of drought in semi-arid regions generally reduce reservoirs and lakes water level, increasing the nutrients concentrations in the water. Our principal hypothesis is that water volume reduction, driven by prolonged droughts, will increase reservoirs susceptibility to eutrophication and accordingly an increase in trophic state. To test this hypothesis, we used a comparative analysis of ecosystems in a space-for-time substitution approach, in a Brazilian semi-arid region, to predict the consequences of reservoirs water volume reduction on key limnological variables. Methods We sampled 16 reservoirs located in two sub-basins with contrasting rainfall regimes, inserted on Piranhas-Açu watershed. The Seridó River basin (SB is dry and the Piancó River basin (SB is humid, with annual mean precipitation of 500 and 700 mm, respectively. Linear regressions analyzes were performed to assess whether the percentage of maximum volume stored (%MVS is a good predictor for total phosphorus (TP, total nitrogen (TN and chlorophyll-a (CHLA. In addition, a two factorial analysis of variance (two-way ANOVA was performed to test for period (dry, very dry and extremely dry, basin (SB and PB and their interactions effects on TP, TN, CHLA, conductivity, turbidity, and Secchi depth. Results The results showed a reduction in the reservoirs %MVS both for PB and SB regions. At the extremely dry period, all reservoirs were classified as eutrophic, but TP concentrations reached much higher values in SB than in PB. The linear regressions analyses showed that the TP and TN were negatively related to %MVS during all periods sampled. The two-way ANOVA showed that there were significant basin and period effects on TP, TN, Secchi depth and turbidity, whereas for CHLA and conductivity

  10. A mathematical model of reservoir sediment quality prediction based on land-use and erosion processes in watershed

    Science.gov (United States)

    Junakova, N.; Balintova, M.; Junak, J.

    2017-10-01

    The aim of this paper is to propose a mathematical model for determining of total nitrogen (N) and phosphorus (P) content in eroded soil particles with emphasis on prediction of bottom sediment quality in reservoirs. The adsorbed nutrient concentrations are calculated using the Universal Soil Loss Equation (USLE) extended by the determination of the average soil nutrient concentration in top soils. The average annual vegetation and management factor is divided into five periods of the cropping cycle. For selected plants, the average plant nutrient uptake divided into five cropping periods is also proposed. The average nutrient concentrations in eroded soil particles in adsorbed form are modified by sediment enrichment ratio to obtain the total nutrient content in transported soil particles. The model was designed for the conditions of north-eastern Slovakia. The study was carried out in the agricultural basin of the small water reservoir Klusov.

  11. Southwestern Avian Community Organization in Exotic Tamarix: Current Patterns and Future Needs

    Science.gov (United States)

    H. A. Walker

    2006-01-01

    Tamarisk (saltcedar: Tamarix), an invasive exotic tree native to the Eastern Hemisphere, is currently the dominant plant species in most southwestern riparian ecosystems at elevations below 1500 m. Tamarisk alters abiotic conditions and the floral composition of native southwestern riparian ecosystems and, in turn, affects native southwestern animal communities....

  12. Hydrological Effects of Chashm Dam on the Downstream of Talar River Watershed

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Khaleghi

    2017-02-01

    rights users' requirement and downstream environmental requirements are 4.54, 2.164 and 2.448 million m3, respectively. This is despite the fact that the volume of annual input water is slightly lower than this figure in normal. Conclusion: Simulation of the study area hydrological behavior shows that the Chashm Dam average water discharge is near to 8.6 million m3. This figure will be significant changes during wet and drought periods. The minimum and maximum monthly discharge of the Chashm Dam watershed in August and February is equal to 0.31 and 0.55 m3/s respectively. The minimum and maximum monthly water demand in turn in October and August is equal to 0.015 and 0.4 m3/s respectively, and this shows that the river discharge in June is lower than the downstream water demand. Based on confirmed studies of the Kamandab Consulting Engineers, drinking water requirement of Semnan province, water rights users' requirement and downstream environmental requirements are 4.54, 2.164 and 2.448 million m3, respectively. This is despite the fact that the volume of annual input water is slightly lower than this figure in normal. In addition, the Chashm Dam area is about 110 hectares and given the minimum annual actual evaporation equal to 700 mm, about seven hundred thousand cubic meters of water stored in the reservoir will be lost. Due to the simultaneous occurrence of the maximum water requirement, maximum evaporation and a minimum of water inlet to the Chashm Dam reservoir in warm seasons, it seemsthat, it is not possible to provide needs based on these studies and no doubt, in the case of water supply in Semnan province, we have to stop the flow of the river in downstream of the dam. The results of this study suggest that on many rivers large headwater dams have reduced the frequency and duration of floodplain inundation downstream and these changes lead to changes in downstream ecosystems. The results from the simulation and analysis of the Chashm Dam in downstream are as

  13. Using {sup 137}Cs to quantify the sediment delivery ratio in a small watershed

    Energy Technology Data Exchange (ETDEWEB)

    Li Mian, E-mail: hnli-mian@163.com [Yellow River Institute of Hydraulic Research, Key Laboratory of Sediment Research of Yellow River of Ministry of Water Resources, Zhengzhou, Henan 450003 (China); Yao Wenyi [Yellow River Institute of Hydraulic Research, Key Laboratory of Sediment Research of Yellow River of Ministry of Water Resources, Zhengzhou, Henan 450003 (China); Li Zhanbin [Xi' an University of Technology, Xi' an, Shaanxi 710048 (China); Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100 (China); Liu Puling [Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100 (China); Yang Er; Shen Zhenzhou [Yellow River Institute of Hydraulic Research, Key Laboratory of Sediment Research of Yellow River of Ministry of Water Resources, Zhengzhou, Henan 450003 (China)

    2012-01-15

    Understanding the sediment delivery ratio (SDR) is important in controlling sediments for the sustainable development of natural resources and in the design of the construction such as dams and reservoirs. The purpose of this investigation is to determine the SDR by the {sup 137}Cs tracing method in a small watershed in the Sichuan Hilly Basin of China. In the study watershed, different land plots are divided according to the land use type, and 97 sampling sites were selected from these plots. The results show that the average net soil loss rates from the forest land and sloping cultivated land are 1759 and 4468 t/km{sup 2} a, respectively. No {sup 137}Cs was detectable on the bare rock surfaces and previous work showed that the erosion rate from the bare rock area was 14,260 t/km{sup 2} a. In the depositional zone, the sedimentation rates in the Caoto (a kind of cultivated land located at the foot of hills) and paddy field are 3113 and 3562 t/km{sup 2} a, respectively. Combining the area of each land use in the small watershed, the SDR of 0.40 is obtained in the past four decades. The {sup 137}Cs technique was shown to provide an effective and rapid means of estimating the SDR within the small watershed. - Highlights: Black-Right-Pointing-Pointer The erosion and deposition rates can be easily obtained by the {sup 137}Cs tracing method. Black-Right-Pointing-Pointer The {sup 137}Cs method provides an effective means for estimating the SDR. Black-Right-Pointing-Pointer The {sup 137}Cs method is more convenient and rapid than other methods for the SDR research.

  14. Upland and in-stream controls on baseflow nutrient dynamics in tile-drained agroecosystem watersheds

    Science.gov (United States)

    Ford, William I.; King, Kevin; Williams, Mark R.

    2018-01-01

    In landscapes with low residence times (e.g., rivers and reservoirs), baseflow nutrient concentration dynamics during sensitive timeframes can contribute to deleterious environmental conditions downstream. This study assessed upland and in-stream controls on baseflow nutrient concentrations in a low-gradient, tile-drained agroecosystem watershed. We conducted time-series analysis using Empirical mode decomposition of seven decade-long nutrient concentration time-series in the agricultural Upper Big Walnut Creek watershed (Ohio, USA). Four tributaries of varying drainage areas and three main-stem sites were monitored, and nutrient grab samples were collected weekly from 2006 to 2016 and analyzed for dissolved reactive phosphorus (DRP), nitrate-nitrogen (NO3-N), total nitrogen (TN), and total phosphorus (TP). Statistically significant seasonal fluctuations were compared with seasonality of baseflow, watershed characteristics (e.g., tile-drain density), and in-stream water quality parameters (pH, DO, temperature). Findings point to statistically significant seasonality of all parameters with peak P concentrations in summer and peak N in late winter-early spring. Results suggest that upland processes exert strong control on DRP concentrations in the winter and spring months, while coupled upland and in-stream conditions control watershed baseflow DRP concentrations during summer and early fall. Conversely, upland flow sources driving streamflow exert strong control on baseflow NO3-N, and in-stream attenuation through transient and permanent pathways impacts the magnitude of removal. Regarding TN and TP, we found that TN was governed by NO3-N, while TP was governed by DRP in summer and fluvial erosion of P-rich benthic sediments during higher baseflow conditions. Findings of the study highlight the importance of coupled in-stream and upland management for mitigating eutrophic conditions during environmentally sensitive timeframes.

  15. Impacts of Forest to Urban Land Conversion and ENSO Phase on Water Quality of a Public Water Supply Reservoir

    Directory of Open Access Journals (Sweden)

    Emile Elias

    2016-01-01

    Full Text Available We used coupled watershed and reservoir models to evaluate the impacts of deforestation and l Niño Southern Oscillation (ENSO phase on drinking water quality. Source water total organic carbon (TOC is especially important due to the potential for production of carcinogenic disinfection byproducts (DBPs. The Environmental Fluid Dynamics Code (EFDC reservoir model is used to evaluate the difference between daily pre- and post- urbanization nutrients and TOC concentration. Post-disturbance (future reservoir total nitrogen (TN, total phosphorus (TP, TOC and chlorophyll-a concentrations were found to be higher than pre-urbanization (base concentrations (p < 0.05. Predicted future median TOC concentration was 1.1 mg·L−1 (41% higher than base TOC concentration at the source water intake. Simulations show that prior to urbanization, additional water treatment was necessary on 47% of the days between May and October. However, following simulated urbanization, additional drinking water treatment might be continuously necessary between May and October. One of six ENSO indices is weakly negatively correlated with the measured reservoir TOC indicating there may be higher TOC concentrations in times of lower streamflow (La Niña. There is a positive significant correlation between simulated TN and TP concentrations with ENSO suggesting higher concentrations during El Niño.

  16. Spatial and Temporal Water Quality Dynamics in the Lake Maumelle Reservoir (Arkansas): Geochemical and Planktonic Variance in a Drinking Water Source

    Science.gov (United States)

    Carey, M. D.; Ruhl, L. S.

    2017-12-01

    The Lake Maumelle reservoir is Central Arkansas's main water supply. Maintaining a high standard of water quality is important to the over 400,000 residents of this area whom rely on this mesotrophic waterbody for drinking water. Lake Maumelle is also a scenic attraction for recreational boating and fishing. Past research has focused primarily on watershed management with land use/land cover modeling and quarterly water sampling of the 13.91mi2 reservoir. The surrounding land within the watershed is predominately densely forested, with timber farms and the Ouachita National Forest. This project identifies water quality changes spatially and temporally, which have not been as frequently observed, over a 6-month timespan. Water samples were collected vertically throughout the water column and horizontally throughout the lake following reservoir zonation. Parameters collected vertically for water quality profiles are temperature, dissolved oxygen, electrical conductivity, salinity, and pH. Soft sediment samples were collected and pore water was extracted by centrifuge. Cation and anion concentrations in the water samples were determined using ion chromatography, and trace element concentrations were determined using ICPMS. Planktonic abundances were determined using an inverted microscope and a 5ml counting chamber. Trace element, cation, and anion concentrations have been compared with planktonic abundance and location to determine microorganismal response to geochemical variance. During June 2017 sampling, parameters varied throughout the water column (temperature decreased 4 degrees Celsius and dissolved oxygen decreased from 98% to 30% from surface to bottom depths), revealing that the reservoir was becoming stratified. Collected plankton samples revealed the presence of copepod, daphnia, and dinoflagellate algae. Utricularia gibba was present in the littoral zone. Low electrical conductivity readings and high water clarity are consistent with the lake

  17. Spatial characterization of long-term hydrological change in the Arkavathy watershed adjacent to Bangalore, India

    Directory of Open Access Journals (Sweden)

    G. Penny

    2018-01-01

    Full Text Available The complexity and heterogeneity of human water use over large spatial areas and decadal timescales can impede the understanding of hydrological change, particularly in regions with sparse monitoring of the water cycle. In the Arkavathy watershed in southern India, surface water inflows to major reservoirs decreased over a 40-year period during which urbanization, groundwater depletion, modification of the river network, and changes in agricultural practices also occurred. These multiple, interacting drivers combined with limited hydrological monitoring make attribution of the causes of diminishing water resources in the watershed challenging and impede effective policy responses. To mitigate these challenges, we developed a novel, spatially distributed dataset to understand hydrological change by characterizing the residual trends in surface water extent that remain after controlling for precipitation variations and comparing the trends with historical land use maps to assess human drivers of change. Using an automated classification approach with subpixel unmixing, we classified water extent in nearly 1700 man-made lakes, or tanks, in Landsat images from 1973 to 2010. The classification results compared well with a reference dataset of water extent of tanks (R2  =  0.95. We modeled the water extent of 42 clusters of tanks in a multiple regression on simple hydrological covariates (including precipitation and time. Inter-annual variability in precipitation accounted for 63 % of the predicted variability in water extent. However, precipitation did not exhibit statistically significant trends in any part of the watershed. After controlling for precipitation variability, we found statistically significant temporal trends in water extent, both positive and negative, in 13 of the clusters. Based on a water balance argument, we inferred that these trends likely reflect a non-stationary relationship between precipitation and watershed

  18. Applying soil property information for watershed assessment.

    Science.gov (United States)

    Archer, V.; Mayn, C.; Brown, S. R.

    2017-12-01

    The Forest Service uses a priority watershed scheme to guide where to direct watershed restoration work. Initial assessment was done across the nation following the watershed condition framework process. This assessment method uses soils information for a three step ranking across each 12 code hydrologic unit; however, the soil information used in the assessment may not provide adequate detail to guide work on the ground. Modern remote sensing information and terrain derivatives that model the environmental gradients hold promise of showing the influence of soil forming factors on watershed processes. These small scale data products enable the disaggregation of coarse scale soils mapping to show continuous soil property information across a watershed. When this information is coupled with the geomorphic and geologic information, watershed specialists can more aptly understand the controlling influences of drainage within watersheds and focus on where watershed restoration projects can have the most success. A case study on the application of this work shows where road restoration may be most effective.

  19. Prevalence and characterization of Escherichia coli isolated from the Upper Oconee Watershed in Northeast Georgia.

    Directory of Open Access Journals (Sweden)

    Sohyun Cho

    Full Text Available Surface waters are important sources of water for drinking, industrial, agricultural, and recreational uses; hence, contamination of water by fecal, pathogenic, or antimicrobial resistant (AR bacteria is a major environmental and public health concern. However, very little data is available on prevalence of these bacteria in surface water throughout a watershed. This study aimed to characterize Escherichia coli present in the Upper Oconee Watershed, a mixed-use watershed in Athens, GA, USA for potential pathogenicity and AR. E. coli were enumerated by colony counts, cultured by enrichment and direct plating, and characterized by phylo-groups, diarrheagenic pathotypes, and antimicrobial susceptibility. From the analysis, 99.3% (455/458 of the total samples were positive for E. coli resulting in 496 isolates. E. coli counts were as high as 1.2×104 CFU/100 ml, which is above the United States Environmental Protection Agency (U.S. EPA threshold for recreational water (235 CFU/100 ml based on a one-time measurement. Phylo-groups B2 (31.7%; 157/496 and B1 (30.8%; 153/496 were the most prevalent among the isolates. Enteropathogenic E. coli (EPEC (19/496 and Shiga toxin-producing E. coli (STEC (1/496 were the only diarrheagenic pathotypes detected. AR was observed in 6.9% (34/496 of the isolates, 15 of which were multidrug resistant (MDR; resistance to two or more classes of antimicrobials. Tetracycline resistance was most often detected (76.5%; 26/34, followed by ampicillin (32.4%; 11/34, streptomycin (23.5%; 8/34, sulfisoxazole (23.5%; 8/34, and nalidixic acid (14.7%; 5/34. Results from this study showed that E. coli is prevalent in high levels in the Upper Oconee Watershed, suggesting possible widespread fecal contamination. The presence of pathogenic, AR E. coli in the watershed indicates that environmental water can serve as a reservoir of resistant bacteria that may be transferred to humans through drinking and recreational activities.

  20. Prevalence and characterization of Escherichia coli isolated from the Upper Oconee Watershed in Northeast Georgia.

    Science.gov (United States)

    Cho, Sohyun; Hiott, Lari M; Barrett, John B; McMillan, Elizabeth A; House, Sandra L; Humayoun, Shaheen B; Adams, Eric S; Jackson, Charlene R; Frye, Jonathan G

    2018-01-01

    Surface waters are important sources of water for drinking, industrial, agricultural, and recreational uses; hence, contamination of water by fecal, pathogenic, or antimicrobial resistant (AR) bacteria is a major environmental and public health concern. However, very little data is available on prevalence of these bacteria in surface water throughout a watershed. This study aimed to characterize Escherichia coli present in the Upper Oconee Watershed, a mixed-use watershed in Athens, GA, USA for potential pathogenicity and AR. E. coli were enumerated by colony counts, cultured by enrichment and direct plating, and characterized by phylo-groups, diarrheagenic pathotypes, and antimicrobial susceptibility. From the analysis, 99.3% (455/458) of the total samples were positive for E. coli resulting in 496 isolates. E. coli counts were as high as 1.2×104 CFU/100 ml, which is above the United States Environmental Protection Agency (U.S. EPA) threshold for recreational water (235 CFU/100 ml based on a one-time measurement). Phylo-groups B2 (31.7%; 157/496) and B1 (30.8%; 153/496) were the most prevalent among the isolates. Enteropathogenic E. coli (EPEC) (19/496) and Shiga toxin-producing E. coli (STEC) (1/496) were the only diarrheagenic pathotypes detected. AR was observed in 6.9% (34/496) of the isolates, 15 of which were multidrug resistant (MDR; resistance to two or more classes of antimicrobials). Tetracycline resistance was most often detected (76.5%; 26/34), followed by ampicillin (32.4%; 11/34), streptomycin (23.5%; 8/34), sulfisoxazole (23.5%; 8/34), and nalidixic acid (14.7%; 5/34). Results from this study showed that E. coli is prevalent in high levels in the Upper Oconee Watershed, suggesting possible widespread fecal contamination. The presence of pathogenic, AR E. coli in the watershed indicates that environmental water can serve as a reservoir of resistant bacteria that may be transferred to humans through drinking and recreational activities.

  1. Adaptive Management Fitness of Watersheds

    Directory of Open Access Journals (Sweden)

    Ignacio Porzecanski

    2012-09-01

    Full Text Available Adaptive management (AM promises to improve our ability to cope with the inherent uncertainties of managing complex dynamic systems such as watersheds. However, despite the increasing adherence and attempts at implementation, the AM approach is rarely successful in practice. A one-size-fits-all AM strategy fails because some watersheds are better positioned at the outset to succeed at AM than others. We introduce a diagnostic tool called the Index of Management Condition (IMC and apply it to twelve diverse watersheds in order to determine their AM "fitness"; that is, the degree to which favorable adaptive management conditions are in place in a watershed.

  2. A Watershed Integrity Definition and Assessment Approach to Support Strategic Management of Watersheds

    Science.gov (United States)

    Although defined hydrologically as a drainage basin, watersheds are systems that physically link the individual social and ecological attributes that comprise them. Hence the structure, function, and feedback systems of watersheds are dependent on interactions between these soci...

  3. Identification of antibiotic resistant bacteria community and a GeoChip based study of resistome in urban watersheds.

    Science.gov (United States)

    Low, Adrian; Ng, Charmaine; He, Jianzhong

    2016-12-01

    Urban watersheds from point sources are potential reservoirs of antibiotic resistance genes (ARGs). However, few studies have investigated urban watersheds of non-point sources. To understand the type of ARGs and bacteria that might carry such genes, we investigated two non-point source urban watersheds with different land-use profiles. Antibiotic resistance levels of two watersheds (R1, R3) were examined using heterotrophic plate counts (HPC) as a culturing method to obtain counts of bacteria resistant to seven antibiotics belonging to different classes (erythromycin, kanamycin, lincomycin, norfloxacin, sulfanilamide, tetracycline and trimethoprim). From the HPC study, 239 antibiotic resistant bacteria were characterized for resistance to more antibiotics. Furthermore, ARGs and antimicrobial biosynthesis genes were identified using GeoChip version 5.0 to elucidate the resistomes of surface waters in watersheds R1 and R3. The HPC study showed that water samples from R1 had significantly higher counts of bacteria resistant to erythromycin, kanamycin, norfloxacin, sulfanilamide, tetracycline and trimethoprim than those from R3 (Analysis of Similarity (ANOSIM), R = 0.557, p antibiotics tested, lincomycin and trimethoprim resistant bacteria are greater in abundances. The 239 antibiotic resistant isolates represent a subset of resistant bacterial populations, including bacteria not previously known for resistance. Majority of the isolates had resistance to ampicillin, vancomycin, lincomycin and trimethoprim. GeoChip revealed similar ARGs in both watersheds, but with significantly higher intensities for tetX and β-lactamase B genes in R1 than R3. The genes with the highest average normalized intensities in R1 and R3 were tetracycline (tet) and fosfomycin (fosA) resistance genes, respectively. The higher abundance of tetX genes in R1 is congruent with the higher abundance of tetracycline resistant HPC observed in R1 samples. Strong correlations (r ≥ 0.8) of efflux

  4. Development of a "Hydrologic Equivalent Wetland" Concept for Modeling Cumulative Effects of Wetlands on Watershed Hydrology

    Science.gov (United States)

    Wang, X.; Liu, T.; Li, R.; Yang, X.; Duan, L.; Luo, Y.

    2012-12-01

    Wetlands are one of the most important watershed microtopographic features that affect, in combination rather than individually, hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models, such as the Soil and Water Assessment Tool (SWAT), can be a best resort if wetlands can be appropriately represented in the models. However, the exact method that should be used to incorporate wetlands into hydrologic models is the subject of much disagreement in the literature. In addition, there is a serious lack of information about how to model wetland conservation-restoration effects using such kind of integrated modeling approach. The objectives of this study were to: 1) develop a "hydrologic equivalent wetland" (HEW) concept; and 2) demonstrate how to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba of Canada, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota of the United States. The HEWs were defined in terms of six calibrated parameters: the fraction of the subbasin area that drains into wetlands (WET_FR), the volume of water stored in the wetlands when filled to their normal water level (WET_NVOL), the volume of water stored in the wetlands when filled to their maximum water level (WET_MXVOL), the longest tributary channel length in the subbasin (CH_L1), Manning's n value for the tributary channels (CH_N1), and Manning's n value for the main channel (CH_N2). The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes

  5. Return on investment from fuel treatments to reduce severe wildfire and erosion in a watershed investment program in Colorado.

    Science.gov (United States)

    Jones, Kelly W; Cannon, Jeffery B; Saavedra, Freddy A; Kampf, Stephanie K; Addington, Robert N; Cheng, Antony S; MacDonald, Lee H; Wilson, Codie; Wolk, Brett

    2017-08-01

    A small but growing number of watershed investment programs in the western United States focus on wildfire risk reduction to municipal water supplies. This paper used return on investment (ROI) analysis to quantify how the amounts and placement of fuel treatment interventions would reduce sediment loading to the Strontia Springs Reservoir in the Upper South Platte River watershed southwest of Denver, Colorado following an extreme fire event. We simulated various extents of fuel mitigation activities under two placement strategies: (a) a strategic treatment prioritization map and (b) accessibility. Potential fire behavior was modeled under each extent and scenario to determine the impact on fire severity, and this was used to estimate expected change in post-fire erosion due to treatments. We found a positive ROI after large storm events when fire mitigation treatments were placed in priority areas with diminishing marginal returns after treating >50-80% of the forested area. While our ROI results should not be used prescriptively they do show that, conditional on severe fire occurrence and precipitation, investments in the Upper South Platte could feasibly lead to positive financial returns based on the reduced costs of dredging sediment from the reservoir. While our analysis showed positive ROI focusing only on post-fire erosion mitigation, it is important to consider multiple benefits in future ROI calculations and increase monitoring and evaluation of these benefits of wildfire fuel reduction investments for different site conditions and climates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Evaluating the Least Cost Selection of Agricultural Management Practices in the Five Mile Creek area of Fort Cobb Watershed, Oklahoma, USA

    Science.gov (United States)

    Rasoulzadeh Gharibdousti, S.; Stoecker, A.; Storm, D.

    2017-12-01

    One of the main causes of water quality impairment in the United States is human induced Non-Point Source (NPS) pollution through intensive agriculture. The Fort Cobb Reservoir (FCR) watershed located in west-central Oklahoma, United States is a rural agricultural catchment with known issues of NPS pollution including suspended solids, siltation, nutrients, and pesticides. Recently, several Best Management Practices (BMPs) have been implemented in the watershed (such as no-tillage and cropland to grassland conversion) to improve water quality. The objective in this study is to estimate the most cost effective selection and placement of BMPs on farmlands to mitigate soil erosion and the delivery of sediment and nutrient loads to the FCR from Five Mile Creek (FMC) area of the FCR watershed. We employed the Soil and Water Assessment Tool (SWAT) to develop the hydrological model of the study area. The watershed was delineated using the 10 m National Elevation Dataset and divided into 43 sub-basins with an average area of 8 km2. Through a combination of Soil Survey Geographic Database- SSURGO soil data, the US Department of Agriculture crop layer and the slope information, the watershed was further divided into 15,217 hydrologic response units (HRUs). The historical climate pattern in the watershed was represented by two different weather stations. The model was calibrated for the 1991 - 2000 period and validated over the 2001 - 2010 period against the monthly USGS observations of streamflow and suspended sediment concentration recorded at the watershed outlet. Model parametrization resulted in satisfactory values for the R2 (0.64, 0.35) and NS (0.61, 0.34) in calibration period and an excellent model performance (R2 = 0.79, 0.38; NS = 0.75, 0.43) in validation period for streamflow and sediment concentration respectively. We have selected 20 BMPs to estimate their efficacy in terms of water, sediment, and crop yields. Linear Programming (LP) was used to determine the

  7. The impacts of climatologically-driven megadrought, past and future, on semi-arid watersheds and the water resource system they support in central Arizona, USA.

    Science.gov (United States)

    Murphy, K. W.; Ellis, A. W.

    2017-12-01

    The sustainability of water resource systems in the western United States has previously been brought into question by drought concerns and how it will be influenced by future climate change. Although decadal droughts are observed in instrumental records, the data are typically too short and the droughts too few to render the range of hydroclimatic variability that might impact modern water resource systems in the future. Natural modes of variability are not well represented in climate models, which limits the applicability of their downscaled projections in a region of interest since drought risk would be understated. Paleoclimate data have provided evidence of megadroughts from centuries ago whose hydrologic manifestations of climate variability could readily reoccur again in the future. These can be applied to research into watershed hydrologic response and resource system resilience - past, present, and future. A 645-year tree ring reconstruction of stream flow for the Salt and Verde River watersheds in central Arizona has revealed several drought periods, some more severe than seen in the 129-year instrumental record, including a late 16th century megadrought which affected large portions of the United States. This research study translated the tree ring record into net basin water supply which drives a reservoir operations simulation model to assess how the resource system performs under such severe drought. Regional climate change scenarios were developed from the observation that watershed climate sensitivity has been twice the global warming response. These were applied to the watersheds' temperature sensitivities and precipitation elasticities (reported at AGU2014) to obtain detailed renditions of hydrologic response should megadrought reoccur in a future climate. This provided one of the first rigorous projections of surface water supply under future climate change that amplifies the impact of megadrought arising from modes of climate variability often

  8. Biomarkers and bioindicators of the environmental condition using a fish species (Pimelodus maculatus Lacepède, 1803 in a tropical reservoir in Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    F. G. Araújo

    2017-08-01

    Full Text Available Abstract The Funil Reservoir receives a large amount of xenobiotics from the Paraíba do Sul River (PSR from large number of industries and municipalities in the watershed. This study aimed to assess environmental quality along the longitudinal profile of the Paraíba do Sul River–Funil Reservoir system, by using biomarkers and bioindicators in a selected fish species. The raised hypothesis is that Funil Reservoir acts as a filter for the xenobiotics of the PSR waters, improving river water quality downstream the dam. Two biomarkers, the ethoxyresorufin–O–deethylase activity (EROD, measured as fluorimetricly in S9 hepatic fraction, and the micronuclei frequency (MN, observed in erythrocytes of the cytoplasm, and three bioindicators, the hepatosomatic index (HSI, gonadosomatic index (GSI and condition factor (CF were used in Pimelodus maculatus, a fish species widely distributed in the system. Four zones were searched through a longitudinal gradient: 1, river upstream from the reservoir; 2, upper reservoir; 3, lower reservoir; 4, river downstream of the reservoir. EROD activity and HSI and GSI had significant differences among the zones (P<0.05. The upper reservoir had the lowest EROD activity and HSI, whereas the river downstream of the reservoir had the highest EROD and lowest GSI. The river upstream from the reservoir showed the highest HSI and GSI. It is suggested that the lowest environmental condition occur at the river downstream of the reservoir, where it seems to occur more influence of xenobiotics, which could be associated with hydroelectric plant operation. The hypothesis that Funil reservoir acts as a filter decanting pollution from the Paraíba do Sul River waters was rejected. These results are novel information on this subject for a native fish species and could be useful for future comparisons with other environments.

  9. Watershed Analysis of Nitrate Transport as a Result of Agricultural Inputs for Varying Land Use/Land Cover and Soil Type

    Science.gov (United States)

    Scott, M. E.; Sykes, J. F.

    2006-12-01

    The Grand River Watershed is one of the largest watersheds in southwestern Ontario with an area of approximately 7000 square kilometers. Ninety percent of the watershed is classified as rural, and 80 percent of the watershed population relies on groundwater as their source of drinking water. Management of the watershed requires the determination of the effect of agricultural practices on long-term groundwater quality and to identify locations within the watershed that are at a higher risk of contamination. The study focuses on the transport of nitrate through the root zone as a result of agricultural inputs with attenuation due to biodegradation. The driving force for transport is spatially and temporally varying groundwater recharge that is a function of land use/land cover, soil and meteorological inputs that yields 47,229 unique soil columns within the watershed. Fertilizer sources are determined from Statistics Canada's Agricultural Census and include livestock manure and a popular commercial fertilizer, urea. Accounting for different application rates yields 60,066 unique land parcels of which 22,809 are classified as croplands where manure and inorganic fertilizes are directly applied. The transport for the croplands is simulated over a 14-year period to investigate the impact of seasonal applications of nitrate fertilizers on the concentration leaching from the root zone to the water table. Based on land use/land cover maps, ArcView GIS is used to define the location of fertilizer applications within the watershed and to spatially visualize data and analyze results. The large quantity of input data is stored and managed using MS-Access and a relational database management system. Nitrogen transformations and ammonium and nitrate uptake by plants and transport through the soil column are simulated on a daily basis using Visual Basic for Applications (VBA) within MS-Access modules. Nitrogen transformations within the soil column were simplified using

  10. Assessment of the water quality in a large reservoir in semiarid region of Brazil

    Directory of Open Access Journals (Sweden)

    Fernando B. Lopes

    2014-04-01

    Full Text Available The aim of this study was to identify spatial and temporal variations in water quality of Orós reservoir, Ceará, Brazil, as well as the sources of contamination. To get this information the Principal Component Analysis (PCA and Cluster Analysis (CA was used. Water samples were collected at seven (geo-referenced points, from April 2008 to March 2011, totalling 4,032 samples. The following attributes of the waters were analysed: temperature, pH, CE, Ca2+, Mg2+, Na+, K+, Cl-, HCO3-, SO4--, turbidity, colour, Sechi transparency, TS, TVS, TFS, TSS, VSS, FSS, TDS, DO, BO5D, total phosphorus, soluble orthophosphate, EC, TTC, total ammonia, TKN, nitrate, SAR and chlorophyll-a. The PCA promoted the reduction from the 32 initial variables to 14, accounting for 84.39% of the total variance. The major factors responsible for water quality composition are: the natural weathering of geological soil components; the entrainment of suspended solids through surface runoff from agricultural areas; and anthropogenic action in the Upper Jaguaribe basin in Ceará. The similarity of the water of the Orós reservoir allows a reduction in the number of sampling points, which may result in significant cost savings without sacrificing the water quality monitoring. The similarity of the waters was influenced by anthropic activities being carried out near the reservoir and all along the watershed.

  11. Equations for estimating synthetic unit-hydrograph parameter values for small watersheds in Lake County, Illinois

    Science.gov (United States)

    Melching, C.S.; Marquardt, J.S.

    1997-01-01

    Design hydrographs computed from design storms, simple models of abstractions (interception, depression storage, and infiltration), and synthetic unit hydrographs provide vital information for stormwater, flood-plain, and water-resources management throughout the United States. Rainfall and runoff data for small watersheds in Lake County collected between 1990 and 1995 were studied to develop equations for estimation of synthetic unit-hydrograph parameters on the basis of watershed and storm characteristics. The synthetic unit-hydrograph parameters of interest were the time of concentration (TC) and watershed-storage coefficient (R) for the Clark unit-hydrograph method, the unit-graph lag (UL) for the Soil Conservation Service (now known as the Natural Resources Conservation Service) dimensionless unit hydrograph, and the hydrograph-time lag (TL) for the linear-reservoir method for unit-hydrograph estimation. Data from 66 storms with effective-precipitation depths greater than 0.4 inches on 9 small watersheds (areas between 0.06 and 37 square miles (mi2)) were utilized to develop the estimation equations, and data from 11 storms on 8 of these watersheds were utilized to verify (test) the estimation equations. The synthetic unit-hydrograph parameters were determined by calibration using the U.S. Army Corps of Engineers Flood Hydrograph Package HEC-1 (TC, R, and UL) or by manual analysis of the rainfall and run-off data (TL). The relation between synthetic unit-hydrograph parameters, and watershed and storm characteristics was determined by multiple linear regression of the logarithms of the parameters and characteristics. Separate sets of equations were developed with watershed area and main channel length as the starting parameters. Percentage of impervious cover, main channel slope, and depth of effective precipitation also were identified as important characteristics for estimation of synthetic unit-hydrograph parameters. The estimation equations utilizing area

  12. PENDEKATAN MULTI DIMENSIONAL SCALING UNTUK EVALUASI KEBERLANJUTAN WADUK CIRATA - PROPINSI JAWA BARAT (Multidimensional Scaling Approach to Evaluate Sustainability of Cirata Reservoir – West Java Province

    Directory of Open Access Journals (Sweden)

    Kholil Kholil

    2015-03-01

    Full Text Available ABSTRAK Waduk Cirata merupakan salah satu waduk di Indonesia yang memiliki peran sangat besar bagi pembangunan ekonomi, sebagai Pembangkit Listrik Tenaga Air (PLTA. Pertumbuhan Keramba Jaring Apung (KJA dan perkembangan permukiman di sekitar waduk, serta perubahan tataruang di DAS Citarum untuk kegiatan permukiman, industri, pertanian, dan peternakan menyebabkan peningkatan sedimentasi dan penurunan kualitas air waduk, sehingga berpengaruh terhadap kinerja dan keberlajutan waduk. Kajian ini bertujuan untuk mengetahui tingkat keberlanjutan waduk dengan menggunakan metode Multidimesional Scaling berdasarkan 5 dimensi yaitu ekologi dan tata ruang, ekonomi, sosial dan budaya, peraturan dan kelembagaan, dan infrastruktur dan teknologi. Hasil analisis MDS menunjukkan bahwa dimensi ekologi dan tataruang, dan peraturan dan kelembagaan kurang berlanjut dengan nilai indeks keberlanjutan masing-masing 45,76 dan 42,24. Sementara untuk dimensi ekonomi, sosial dan budaya, dan infrastruktur dan teknologi memiliki nilai indeks keberlanjutan masing-masing 63,12; 64,42 dan 68,64 yang berarti hanya masuk kategori cukup berlanjut. Atribut yang paling sensitif yang mempengaruhi indeks keberlanjutan ekologi dan tataruang adalah laju sedimentasi, jumlah KJA dan kualitas air waduk. Pada dimensi peraturan dan kelembagaan adalah lemahnya koordinasi, perijinan dan penegakan hukum. Untuk menjamin keberlanjutan kinerja Waduk Cirata perlu dilakukan pengendalian penggunaan lahan di DAS Citarum dan permukiman di sekitar waduk, pengetatan perijinan, dan penegakan hukum. ABSTRACT Cirata reservoir is one of the reservoirs in Indonesia, that plays an important role for economic development as a Hydroelectric Power Plant. The development of settlement around the dam, and land use change of Citarum’s watershed for industrial activities, agriculture, and animal husbandry have increased the erosion, sedimentation and degradation water quality of reservoir. This paper will discuss

  13. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin

    Science.gov (United States)

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  14. Natural Recharge to the Unconfined Aquifer System on the Hanford Site from the Greater Cold Creek Watershed: Progress Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Waichler, Scott R.; Wigmosta, Mark S.; Coleman, Andre M.

    2004-09-14

    Movement of contaminants in groundwater at the Hanford Site is heavily dependent on recharge to the unconfined aquifer. As the effects of past artificial discharges dissipate, the water table is expected to return to more natural conditions, and natural recharge will become the driving force when evaluating future groundwater flow conditions and related contaminant transport. Previous work on the relationship of natural recharge to groundwater movement at the Hanford Site has focused on direct recharge from infiltrating rainfall and snowmelt within the area represented by the Sitewide Groundwater Model (SGM) domain. However, part of the groundwater recharge at Hanford is provided by flow from Greater Cold Creek watershed (GCC), a large drainage area on the western boundary of the Hanford Site that includes Cold Creek Valley, Dry Creek Valley, and the Hanford side of Rattlesnake Mountain. This study was undertaken to estimate the recharge from GCC, which is believed to enter the unconfined aquifer as both infiltrating streamflow and shallow subsurface flow. To estimate recharge, the Distributed Hydrology-Soil-Vegetation Model (DHSVM) was used to simulate a detailed water balance of GCC from 1956 to 2001 at a spatial resolution of 200~m and a temporal resolution of one hour. For estimating natural recharge to Hanford from watersheds along its western and southwestern boundaries, the most important aspects that need to be considered are 1)~distribution and relative magnitude of precipitation and evapotranspiration over the watershed, 2)~streamflow generation at upper elevations and infiltration at lower elevations during rare runoff events, and 3)~permeability of the basalt bedrock surface underlying the soil mantle.

  15. Spatiotemporal variation of watershed health propensity through reliability-resilience-vulnerability based drought index (case study: Shazand Watershed in Iran).

    Science.gov (United States)

    Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab

    2017-06-01

    Quantitative response of the watershed health to climate variability is of critical importance for watershed managers. However, existing studies seldom considered the impact of climate variability on watershed health. The present study therefore aimed to analyze the temporal and spatial variability of reliability (R el ), resilience (R es ) and vulnerability (V ul ) indicators in node years of 1986, 1998, 2008 and 2014 in connection with Standardized Precipitation Index (SPI) for 24 sub-watersheds in the Shazand Watershed of Markazi Province in Iran. The analysis was based on rainfall variability as one of the main climatic drivers. To achieve the study purposes, the monthly rainfall time series of eight rain gauge stations distributed across the watershed or neighboring areas were analyzed and corresponding SPIs and R el R es V ul indicators were calculated. Ultimately, the spatial variation of SPI oriented R el R es V ul was mapped for the study watershed using Geographic Information System (GIS). The average and standard deviation of SPI-R el R es V ul index for the study years of 1986, 1998, 2008 and 2014 was obtained 0.240±0.025, 0.290±0.036, 0.077±0.0280 and 0.241±0.081, respectively. In overall, the results of the study proved the spatiotemporal variations of SPI-R el R es V ul watershed health index in the study area. Accordingly, all the sub-watersheds of the Shazand Watershed were grouped in unhealthy and very unhealthy conditions in all the study years. For 1986 and 1998 all the sub-watersheds were assessed in unhealthy status. Whilst, it declined to very unhealthy condition in 2008 and then some 75% of the watershed ultimately referred again to unhealthy and the rest still remained under very unhealthy conditions in 2014. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Southwestern Power Administration Annual Report 2004-2006

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-01-01

    Confidence Commitment Cooperation These are words that spring to mind regarding Southwestern Power Administration’s performance during fiscal years (FY) 2004-2006 By offering innovative, customer-oriented service, working to improve system reliability and efficiency, and partnering with customers and other Federal power stakeholders, Southwestern has certainly exhibited all three of these qualities during these challenging yet productive years In fact, our cooperative working relationships were critical to our success during the severe and widespread drought conditions which prevailed throughout Southwestern’s marketing area for much of 2005-2006 When we proposed a temporary energy deferral program, our customers came on board by voluntarily taking less Federal hydropower than they were entitled to, enabling us to preserve system storage and fulfill our contract obligations during the crucial summer months of 2006 The U S Army Corps of Engineers (Corps) also helped improve our drought situation by allowing Southwestern more operational flexibility on a regional level Despite the challenges this critical drought period presented, Southwestern remained committed to fulfilling our mission and strategic goals From FY 2004 through FY 2006, we marketed and delivered all available Federal hydropower while meeting and even exceeding the reliability standards of the North American Electric Reliability Corporation (NERC) Our Power Operations Training Center in Springfield, Missouri, was cited as an “Example of Excellence” during a NERC readiness audit in October 2006; and as we have every year since NERC began measuring, Southwestern far exceeded the accepted NERC compliance ratings for power system operations reliability Our commitment to excellence and accountability has kept our repayment goals on target as well Revenues were sufficient to repay all annual expenses and the required principal investment in the Federal hydropower facilities Furthermore, the original

  17. Climate change and watershed mercury export in a Coastal Plain watershed

    Science.gov (United States)

    Heather Golden; Christopher D. Knightes; Paul A. Conrads; Toby D. Feaster; Gary M. Davis; Stephen T. Benedict; Paul M. Bradley

    2016-01-01

    Future changes in climatic conditions may affect variations in watershed processes (e.g., hydrological, biogeochemical) and surface water quality across a wide range of physiographic provinces, ecosystems, and spatial scales. How such climatic shifts will impact watershed mercury (Hg) dynamics and hydrologically-driven Hg transport is a significant concern.

  18. Spatio-temporal spawning and larval dynamics of a zebra mussel (Dreissena polymorpha) population in a North Texas Reservoir: implications for invasions in the southern United States

    Science.gov (United States)

    Churchill, Christopher John

    2013-01-01

    Zebra mussels were first observed in Texas in 2009 in a reservoir (Lake Texoma) on the Texas-Oklahoma border. In 2012, an established population was found in a near-by reservoir, Ray Roberts Lake, and in June 2013, settled mussels were detected in a third north Texas reservoir, Lake Lewisville. An established population was detected in Belton Lake in September 2013. With the exception of Louisiana, these occurrences in Texas mark the current southern extent of the range of this species in the United States. Previous studies indicate that zebra mussel populations could be affected by environmental conditions, especially increased temperatures and extreme droughts, which are characteristic of surface waters of the southern and southwestern United States. Data collected during the first three years (2010–12) of a long-term monitoring program were analyzed to determine if spatio-temporal zebra mussel spawning and larval dynamics were related to physicochemical water properties in Lake Texoma. Reproductive output of the local population was significantly related to water temperature and lake elevation. Estimated mean date of first spawn in Lake Texoma was approximately 1.5 months earlier and peak veliger densities were observed two months earlier than in Lake Erie. Annual maximum veliger density declined significantly during the study period (p mussels in littoral zones. Veliger spatial distributions were associated with physicochemical stratification characteristics. Veligers were observed in the deepest oxygenated water after lake stratification, which occurred in late spring. Results of this study indicate environmental conditions can influence variability of population sizes and spatial distributions of zebra mussels along the current southern frontier of their geographic range. Although the future population size trajectory and geographic range are uncertain, increased temperatures and intermittent, extreme droughts likely will affect spatio-temporal dynamics of

  19. Southwestern Power Administration Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-12-01

    Dear Secretary Chu, I am pleased to present the financial statements and operating data for Southwestern Power Administration (Southwestern) for Fiscal Year (FY) 2008. In FY 2008, Southwestern delivered over 7.3 billion kilowatt-hours of energy to its wholesale customers – nearly 31% more than average due to numerous record rainfall amounts in the southwest region. These record amounts produced revenues which exceeded the average annual revenue requirement by nearly $20 million and resulted in over $200 million in economic benefits to the region. Yet even as Southwestern exceeded its goals of marketing and delivering Federal hydroelectric power to our customers, we stayed focused on safety, security, and reliability. For example, we maintained our nearly 1,400 miles of high-voltage transmission lines, substations, and communications sites while achieving a Recordable Accident Frequency Rate of 0.0, a record that reflects Southwestern’s safety achievement of no recordable injuries for every 200,000 hours worked. We kept our rights-of-way secure from vegetation and other obstacles, work that not only supports our mission but also promotes reliability of the regional and National grid. We exceeded all North American Electric Reliability Corporation (NERC) Control Performance Standards (CPS- 1 and CPS-2), and maintained regulation and reserve obligations and reactive reserve margins to ensure the reliability of the bulk electric system, even during extended periods of restricted hydro operations due to unusually high project inflows. Finally, we continued our partnerships with the Department of Energy, the U.S. Army Corps of Engineers, our customers, and other Federal power stakeholders, partnerships that are vital to our continued success in marketing and delivering carbon-free, renewable, and domestically produced energy to our customers and to the Nation. Sincerely, Jon Worthington Administrator

  20. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  1. Watershed Adaptation Measures to Climate Change Impacts: A case of Kiha Watershed in Albertine Graben

    Science.gov (United States)

    Zizinga, A.

    2017-12-01

    Watershed Adaptation Measures to Climate Change Impacts: A case of Kiha Watershed in Albertine GrabenAlex Zizinga1, Moses Tenywa2, Majaliwa Jackson Gilbert1, 1Makerere University, Department of Environmental Sciences, O Box 7062, Kampala, Uganda 1Makerere University, Department of Agricultural Production, P.O Box 7062, Kampala, Uganda Corresponding author: azizinga@caes.mak.ac.ug AbstractThe most pressing issues local communities in Uganda are facing result from land-use and land cover changes exacerbated by climate change impacts. A key issue is the documentation of land-cover changes visible with the ongoing clearance of remaining forests, bush-lands and wetlands for expanding farmland for sugarcane production, producing charcoal and collecting firewood for local distilleries using imported molasses. Decision-makers, resource managers, farmers and practitioners must build their capacity for adaptive measures. Here we present the potential impacts of climate change on watershed hydrological processes in the River Kiha Watershed, located in Western Uganda, Lake Albert Water Management Zone, by using social learning techniques incorporating water users, local stakeholders and researchers. The research team examined different farming and economic activities within the watershed to assess their impacts on catchment water resources, namely on water quality and discharge of river Kiha. We present the impacts of locally induced climate change, which are already manifested in increasing seasonal variability of rainfall. The study aims at answering questions posed by local communities and stakeholders about climate change and its effects on livelihood and key resources, specifically water and soils within the Kiha watershed. Key words: Climate change impacts, Social Learning and Watershed Management

  2. Social Exclusion in Watershed Development: Evidence From the Indo-German Watershed Development Project in Maharashtra

    Directory of Open Access Journals (Sweden)

    Eshwer Kale

    2011-09-01

    Full Text Available The concept of social exclusion is context-specific and there is no uniform paradigm of exclusion across the world. This paper attempts to analyse exclusion of resource-poor groups in watershed development programmes in the Indian context. It aims to explore excluded community groups from the perspective of people’s equal opportunity and equal access to newly generated economic benefits in watershed development programmes. The paper also traces the determinant factors responsible for denial and exclusion of resource-poor groups and describes the detailed processes involved in their exclusion from institutional and livelihood opportunities in watershed programmes. At the same time, the paper also explores suggestions and views of resource-poor groups about their meaningful social inclusion in watershed programme. The Gadiwat Indo-German Watershed Development Project in Aurangabad district in the State of Maharashtra is studied in detail in terms of its social, economic and political realities through mix-method and multi-stakeholder approaches. The key findings of the paper are that landownership, caste, gender, membership in village institutions and/or watershed institutions or close relationship with members, as well as the limitations of the programme guidelines, are the major determinants of institutional inclusion and the extent of resulting economic benefits. The exclusion of resource-poor groups mainly takes the form of their exclusion from institutional representation. In order to promote meaningful social inclusion of resource-poor groups, there is need for a more livelihood-oriented focus and their equal representation and participation in watershed institutions.

  3. Watershed Management: Lessons from Common Property Theory

    Directory of Open Access Journals (Sweden)

    John Kerr

    2007-10-01

    Full Text Available Watershed development is an important component of rural development and natural resource management strategies in many countries. A watershed is a special kind of common pool resource: an area defined by hydrological linkages where optimal management requires coordinated use of natural resources by all users. Management is difficult because natural resources comprising the watershed system have multiple, conflicting uses, so any given management approach will spread benefits and costs unevenly among users. To address these challenges, watershed approaches have evolved from more technocratic to a greater focus on social organization and participation. However, the latter cannot necessarily be widely replicated. In addition, participatory approaches have worked better at a small scale, but hydrological relationships cover a larger scale and some projects have faced tradeoffs in choosing between the two. Optimal approaches for future efforts are not clear, and theories from common property research do not support the idea that complex watershed management can succeed everywhere. Solutions may include simplifying watershed projects, pursuing watershed projects where conditions are favorable, and making other investments elsewhere, including building the organizational capacity that can facilitate watershed management.

  4. Water and Poverty in Two Colombian Watersheds

    Directory of Open Access Journals (Sweden)

    Nancy Johnson

    2009-02-01

    Full Text Available Watersheds, especially in the developing world, are increasingly being managed for both environmental conservation and poverty alleviation. How complementary are these objectives? In the context of a watershed, the actual and potential linkages between land and water management and poverty are complex and likely to be very site specific and scale dependent. This study analyses the importance of watershed resources in the livelihoods of the poor in two watersheds in the Colombian Andes. Results of the participatory poverty assessment reveal significant decreases in poverty in both watersheds over the past 25 years, which was largely achieved by the diversification of livelihoods outside of agriculture. Water is an important resource for household welfare. However, opportunities for reducing poverty by increasing the quantity or quality of water available to the poor may be limited. While improved watershed management may have limited direct benefits in terms of poverty alleviation, there are important indirect linkages between watershed management and poverty, mainly through labour and service markets. The results suggest that at the level of the watershed the interests of the rich and the poor are not always in conflict over water. Sectoral as well as socio-economic differences define stakeholder groups in watershed management. The findings have implications for policymakers, planners and practitioners in various sectors involved in the implementation of integrated water resources management (IWRM.

  5. Multi-Scale Drought Analysis using Thermal Remote Sensing: A Case Study in Georgia’s Altamaha River Watershed

    Science.gov (United States)

    Jacobs, J. M.; Bhat, S.; Choi, M.; Mecikalski, J. R.; Anderson, M. C.

    2009-12-01

    The unprecedented recent droughts in the Southeast US caused reservoir levels to drop dangerously low, elevated wildfire hazard risks, reduced hydropower generation and caused severe economic hardships. Most drought indices are based on recent rainfall or changes in vegetation condition. However in heterogeneous landscapes, soils and vegetation (type and cover) combine to differentially stress regions even under similar weather conditions. This is particularly true for the heterogeneous landscapes and highly variable rainfall in the Southeastern United States. This research examines the spatiotemperal evolution of watershed scale drought using a remotely sensed stress index. Using thermal-infrared imagery, a fully automated inverse model of Atmosphere-Land Exchange (ALEXI), GIS datasets and analysis tools, modeled daily surface moisture stress is examined at a 10-km resolution grid covering central to southern Georgia. Regional results are presented for the 2000-2008 period. The ALEXI evaporative stress index (ESI) is compared to existing regional drought products and validated using local hydrologic measurements in Georgia’s Altamaha River watershed at scales from 10 to 10,000 km2.

  6. Understanding the True Stimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf

    2017-06-06

    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically-induced fractures that connect the wellbore to a larger fracture surface area within the reservoir rock volume. Thus, accurate estimation of the stimulated reservoir volume (SRV) becomes critical for the reservoir performance simulation and production analysis. Micro-seismic events (MS) have been commonly used as a proxy to map out the SRV geometry, which could be erroneous because not all MS events are related to hydraulic fracture propagation. The case studies discussed here utilized a fully 3-D simulation approach to estimate the SRV. The simulation approach presented in this paper takes into account the real-time changes in the reservoir\\'s geomechanics as a function of fluid pressures. It is consisted of four separate coupled modules: geomechanics, hydrodynamics, a geomechanical joint model for interfacial resolution, and an adaptive re-meshing. Reservoir stress condition, rock mechanical properties, and injected fluid pressure dictate how fracture elements could open or slide. Critical stress intensity factor was used as a fracture criterion governing the generation of new fractures or propagation of existing fractures and their directions. Our simulations were run on a Cray XC-40 HPC system. The studies outcomes proved the approach of using MS data as a proxy for SRV to be significantly flawed. Many of the observed stimulated natural fractures are stress related and very few that are closer to the injection field are connected. The situation is worsened in a highly laminated shale reservoir as the hydraulic fracture propagation is significantly hampered. High contrast in the in-situ stresses related strike-slip developed thereby shortens the extent of SRV. However, far field nature fractures that were not connected to

  7. Jordan Lake Watershed Protection District

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — Polygon representing the area of the Jordan Lake Watershed Protection District. The Watershed Protection District (PDF) is a sensitive area of land that drains to...

  8. Hydrological modeling of the Simly Dam watershed (Pakistan using GIS and SWAT model

    Directory of Open Access Journals (Sweden)

    Shimaa M. Ghoraba

    2015-09-01

    Full Text Available Modern mathematical models have been developed for studying the complex hydrological processes of a watershed and their direct relation to weather, topography, geology and land use. In this study the hydrology of Simly Dam watershed located in Saon River basin at the north-east of Islamabad is modeled, using the Soil and Water Assessment Tool (SWAT. It aims to simulate the stream flow, establish the water balance and estimate the monthly volume inflow to Simly Dam in order to help the managers to plan and handle this important reservoir. The ArcSWAT interface implemented in the ArcGIS software was used to delineate the study area and its sub-components, combine the data layers and edit the model database. The model was calibrated from 1990 to 2001 and evaluated from 2002 to 2011. Based on four recommended statistical coefficients, the evaluation indicates a good performance for both calibration and validation periods and acceptable agreement between measured and simulated values of both annual and monthly scale discharge. The water balance components were correctly estimated and the Simly Dam inflow was successfully reproduced with Coefficient of Determination (R2 of 0.75. These results revealed that if properly calibrated, SWAT model can be used efficiently in semi-arid regions to support water management policies.

  9. Population dynamics of caribou herds in southwestern Alaska

    Directory of Open Access Journals (Sweden)

    Patrick Valkenburg

    2003-04-01

    Full Text Available The five naturally occurring and one transplanted caribou (Rangifer tarandus granti herd in southwestern Alaska composed about 20% of Alaska's caribou population in 2001. All five of the naturally occurring herds fluctuated considerably in size between the late 1800s and 2001 and for some herds the data provide an indication of long-term periodic (40-50 year fluctuations. At the present time, the Unimak (UCH and Southern Alaska Peninsula (SAP are recovering from population declines, the Northern Alaska Peninsula Herd (NAP appears to be nearing the end of a protracted decline, and the Mulchatna Herd (MCH appears to now be declining after 20 years of rapid growth. The remaining naturally occurring herd (Kilbuck has virtually disappeared. Nutrition had a significant effect on the size of 4-month-old and 10-month-old calves in the NAP and the Nushagak Peninsula Herd (NPCH and probably also on population growth in at least 4 (SAP, NAP, NPCH, and MCH of the six caribou herds in southwestern Alaska. Predation does not appear to be sufficient to keep caribou herds in southwestern Alaska from expanding, probably because rabies is endemic in red foxes (Vulpes vulpes and is periodically transferred to wolves (Canis lupus and other canids. However, we found evidence that pneumonia and hoof rot may result in significant mortality of caribou in southwestern Alaska, whereas there is no evidence that disease is important in the dynamics of Interior herds. Cooperative conservation programs, such as the Kilbuck Caribou Management Plan, can be successful in restraining traditional harvest and promoting growth in caribou herds. In southwestern Alaska we also found evidence that small caribou herds can be swamped and assimilated by large herds, and fidelity to traditional calving areas can be lost.

  10. Transformational Leadership and Teacher Motivation in Southwestern Arizona High Schools

    Science.gov (United States)

    Reynolds, Catherine L.

    2009-01-01

    The purpose of this study was to explore the relationship between transformational leadership and teacher motivation in Southwestern Arizona high schools. Teachers in a school district in Southwestern Arizona comprised of high schools were surveyed using two instruments, Leithwood and Jantzi's (1998) The Leadership and Management of Schools in…

  11. Morphological dynamics of gully systems in the subhumid Ethiopian Highlands: the Debre Mawi watershed

    Science.gov (United States)

    Zegeye, Assefa D.; Langendoen, Eddy J.; Stoof, Cathelijne R.; Tilahun, Seifu A.; Dagnew, Dessalegn C.; Zimale, Fasikaw A.; Guzman, Christian D.; Yitaferu, Birru; Steenhuis, Tammo S.

    2016-09-01

    Gully expansion in the Ethiopian Highlands dissects vital agricultural lands with the eroded materials adversely impacting downstream resources, for example as they accumulate in reservoirs. While gully expansion and rehabilitation have been more extensively researched in the semiarid region of Ethiopia, few studies have been conducted in the (sub)humid region. For that reason, we assessed the severity of gully erosion by measuring the expansion of 13 selected permanent gullies in the subhumid Debre Mawi watershed, 30 km south of Lake Tana, Ethiopia. In addition, the rate of expansion of the entire drainage network in the watershed was determined using 0.5 m resolution aerial imagery from flights in 2005 and 2013. About 0.6 Mt (or 127 t ha-1 yr-1) of soil was lost during this period due to actively expanding gullies. The net gully area in the entire watershed increased more than 4-fold from 4.5 ha in 2005 to 20.4 ha in 2013 (> 3 % of the watershed area), indicating the growing severity of gully erosion and hence land degradation in the watershed. Soil losses were caused by upslope migrating gully heads through a combination of gully head collapse and removal of the failed material by runoff. Collapse of gully banks and retreat of headcuts was most severe in locations where elevated groundwater tables saturated gully heads and banks, destabilizing the soils by decreasing the shear strength. Elevated groundwater tables were therefore the most important cause of gully expansion. Additional factors that strongly relate to bank collapse were the height of the gully head and the size of the drainage area. Soil physical properties (e.g., texture and bulk density) only had minor effects. Conservation practices that address factors controlling erosion are the most effective in protecting gully expansion. These consist of lowering water table and regrading the gully head and sidewalls to reduce the occurrence of gravity-induced mass failures. Planting

  12. Research on Structure Innovation of Agricultural Organization in China's Southwestern Mountainous Regions

    OpenAIRE

    Du, Qiang; Luo, Min; Wang, Ping

    2012-01-01

    Taking agricultural organization in China's southwestern mountainous regions as research object, on the basis of analysis of the status quo of agricultural organization development in China's southwestern mountainous regions, we use related theoretical knowledge on economics and organization science, we probe into the process of innovation and mechanism of action concerning the structure of agricultural organization in China's southwestern mountainous regions over the past 30 years. Finally w...

  13. Nitrogen fate and Transport in Diverse Agricultural Watersheds

    Science.gov (United States)

    Essaid, H.; McCarthy, K. A.; Baker, N. T.

    2010-12-01

    Nitrogen mass budgets have been estimated for ten agricultural watersheds located in a range of hydrologic settings in order to understand the factors controlling the fate of nitrogen applied at the surface. The watersheds, study areas of the Agricultural Chemical Sources, Transport and Fate study of the U.S. Geological Survey National Water Quality Assessment Program, are located in Indiana (IN), Iowa (IA), Maryland (MD), Nebraska (NE), Mississippi (MS) and Washington (WA). They range in size from 7 to 1254 km2, with four of the watersheds nested within larger watersheds. Surface water outflow (normalized to watershed area) ranged from 4 to 83 cm/yr. Crops planted include corn, soybean, small grains, rice, cotton, orchards and vegetables. “Surplus nitrogen” was determined for each watershed by subtracting estimates of crop uptake and volatilization from estimates of nitrogen input from atmospheric deposition, plant fixation, and fertilizer and manure applications for the period from 1987 to 2004. This surplus nitrogen is transported though the watershed via surface and subsurface flow paths, while simultaneously undergoing transformations (such as denitrification and in-stream processing) that result in less export of nitrogen from the watershed. Surface-water discharge and concentration data were used to estimate the export of nitrogen from the watersheds (groundwater outflow from the watersheds was minimal). Subtracting nitrogen export from surplus nitrogen provides an estimate of the net amount of nitrogen removal occurring during internal watershed transport. Watershed average nitrogen surplus ranged from 6 to 49 kg-N/ha. The more permeable and/or greater water flux watersheds (MD, NE, and WA) tended to have larger surplus nitrogen, possibly due to less crop uptake caused by greater leaching and runoff of nitrogen. Almost all of the surplus nitrogen in the low permeability (MS) and tile drained watersheds (IA, IN) was exported from the watershed with

  14. Effect of reservoir heterogeneity on air injection performance in a light oil reservoir

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available Air injection is a good option to development light oil reservoir. As well-known that, reservoir heterogeneity has great effect for various EOR processes. This also applies to air injection. However, oil recovery mechanisms and physical processes for air injection in heterogeneous reservoir with dip angle are still not well understood. The reported setting of reservoir heterogeneous for physical model or simulation model of air injection only simply uses different-layer permeability of porous media. In practice, reservoir heterogeneity follows the principle of geostatistics. How much of contrast in permeability actually challenges the air injection in light oil reservoir? This should be investigated by using layered porous medial settings of the classical Dykstra-Parsons style. Unfortunately, there has been no work addressing this issue for air injection in light oil reservoir. In this paper, Reservoir heterogeneity is quantified based on the use of different reservoir permeability distribution according to classical Dykstra-Parsons coefficients method. The aim of this work is to investigate the effect of reservoir heterogeneity on physical process and production performance of air injection in light oil reservoir through numerical reservoir simulation approach. The basic model is calibrated based on previous study. Total eleven pseudo compounders are included in this model and ten complexity of reactions are proposed to achieve the reaction scheme. Results show that oil recovery factor is decreased with the increasing of reservoir heterogeneity both for air and N2 injection from updip location, which is against the working behavior of air injection from updip location. Reservoir heterogeneity sometimes can act as positive effect to improve sweep efficiency as well as enhance production performance for air injection. High O2 content air injection can benefit oil recovery factor, also lead to early O2 breakthrough in heterogeneous reservoir. Well

  15. Morphological, physical and pedogenetic attributes related to water yield in small watersheds in Guarapari/ES, Brazil

    Directory of Open Access Journals (Sweden)

    Alexson de Mello Cunha

    2011-08-01

    Full Text Available Soil characteristics related to the genesis, land use and management are important factors in water dynamics in watersheds. This study evaluated physical, morphological and pedogenetic attributes related to water yield potential in small watersheds in Guarapari, ES, Brazil. The following representative profiles were selected, morphologically described and sampled in area of Atlantic Forest domain: Lithic Udifolists, Oxyaquic Udifluventes, Typic Paleudults, Typic Hapludults, Typic Hapludox, Oxic Dystrudepts and Typic Endoaquents. Samples were collected in the soil profiles for physical analysis. Measurements of field-saturated hydraulic conductivity and soil penetration resistance were perfomed in some profiles, which were under different uses. The Endoaquents of Limão Creek can be considered efficient as temporary water reservoirs. However, the use of artificial drainage tends to reduce this effect. Differential erosion was detected by the sand texture on the surface of the Typic Paleudults due to the low degree of clay flocculation, slope, high resistance to the penetration and low hydraulic conductivity of the Bt horizon, making it necessary to adopt soil management practices to increase the water infiltration. Under pasture, mainly in the cattle trails where the trampling is more intense, there was high resistance to penetration in the superficial layers of the Typic Hapludults. The Typic Hapludox have the greatest potential for water yield in the small watersheds because of its greater extent in the headwaters and their morphological and physical characteristics, which can result in increased aquifer recharge.

  16. Environmental Assessment for power marketing policy for Southwestern Power Administration

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    Southwestern Power Administration (Southwestern) needs to renew expiring power sales contracts with new term (10 year) sales contracts. The existing contracts have been in place for several years and many will expire over the next ten years. Southwestern completed an Environmental Assessment on the existing power allocation in June, 1979 (a copy of the EA is attached), and there are no proposed additions of any major new generation resources, service to discrete major new loads, or major changes in operating parameters, beyond those included in the existing power allocation. Impacts from a no action plan, proposed alternative, and market power for less than 10 years are described.

  17. Environmental Assessment for power marketing policy for Southwestern Power Administration

    International Nuclear Information System (INIS)

    1993-01-01

    Southwestern Power Administration (Southwestern) needs to renew expiring power sales contracts with new term (10 year) sales contracts. The existing contracts have been in place for several years and many will expire over the next ten years. Southwestern completed an Environmental Assessment on the existing power allocation in June, 1979 (a copy of the EA is attached), and there are no proposed additions of any major new generation resources, service to discrete major new loads, or major changes in operating parameters, beyond those included in the existing power allocation. Impacts from a no action plan, proposed alternative, and market power for less than 10 years are described

  18. Heavy metals in tributaries of Pampulha Reservoir, Minas Gerais

    Directory of Open Access Journals (Sweden)

    A. C. RIETZLER

    Full Text Available A great amount of heavy metals enter Pampulha Reservoir via it's main tributaries (Sarandi and Ressaca. Although no water quality classification has been carried out for these tributaries, the reservoir is expected to be in class 2 of the CONAMA-86 system. As part of a monitoring scheme of the Pampulha Watershed, heavy metals (Zn, Pb, Cd, Ni, Cu, Cr, Mn and Fe were investigated in the water at a control site (considered free from direct human influence and at potential sites of toxicity and contamination during August (dry season and November (wet season of 1998. The results for the first sampling period showed relatively high concentrations of zinc (0.22 mg.L-1 in the upper portion of the reservoir. The highest values of nickel and chromium (0.19 and 0.89 mg.L-1, respectively were found in the initial portion of the Sarandi Stream, while the highest concentrations of lead (0.05 mg.L-1, cadmium (0.014 mg.L-1, manganese (0.43 mg.L-1 and iron (15.25 mg.L-1 were detected in the Ressaca Stream by the landfill dump of Belo Horizonte. A relatively high concentration of cadmium was also detected at the confluence of the two streams. During the second sampling period, there was an increase in the concentrations of zinc at all sampling sites except the control, with values varying from 0.71 mg.L-1 (the Sarandi Stream to 2.50 mg.L-1 (the Ressaca Stream. Lead, cadmium, nickel and chromium concentrations were also higher in the Ressaca Stream, but not detected at the other sampling sites. Copper values were higher than in the first period: 0.10 mg.L-1 at the control up to 0.38 mg.L-1 at the confluence of the streams. Similar results were found for manganese and iron, with values reaching up to 19.30 and 125 mg.L-1, respectively. Moreover, all values recorded in the second sampling period were much higher than recommended for class 2 waters. These results emphasize the need for such monitoring in relation to better water quality management of this reservoir.

  19. Heavy metals in tributaries of Pampulha Reservoir, Minas Gerais

    Directory of Open Access Journals (Sweden)

    RIETZLER A. C.

    2001-01-01

    Full Text Available A great amount of heavy metals enter Pampulha Reservoir via it's main tributaries (Sarandi and Ressaca. Although no water quality classification has been carried out for these tributaries, the reservoir is expected to be in class 2 of the CONAMA-86 system. As part of a monitoring scheme of the Pampulha Watershed, heavy metals (Zn, Pb, Cd, Ni, Cu, Cr, Mn and Fe were investigated in the water at a control site (considered free from direct human influence and at potential sites of toxicity and contamination during August (dry season and November (wet season of 1998. The results for the first sampling period showed relatively high concentrations of zinc (0.22 mg.L-1 in the upper portion of the reservoir. The highest values of nickel and chromium (0.19 and 0.89 mg.L-1, respectively were found in the initial portion of the Sarandi Stream, while the highest concentrations of lead (0.05 mg.L-1, cadmium (0.014 mg.L-1, manganese (0.43 mg.L-1 and iron (15.25 mg.L-1 were detected in the Ressaca Stream by the landfill dump of Belo Horizonte. A relatively high concentration of cadmium was also detected at the confluence of the two streams. During the second sampling period, there was an increase in the concentrations of zinc at all sampling sites except the control, with values varying from 0.71 mg.L-1 (the Sarandi Stream to 2.50 mg.L-1 (the Ressaca Stream. Lead, cadmium, nickel and chromium concentrations were also higher in the Ressaca Stream, but not detected at the other sampling sites. Copper values were higher than in the first period: 0.10 mg.L-1 at the control up to 0.38 mg.L-1 at the confluence of the streams. Similar results were found for manganese and iron, with values reaching up to 19.30 and 125 mg.L-1, respectively. Moreover, all values recorded in the second sampling period were much higher than recommended for class 2 waters. These results emphasize the need for such monitoring in relation to better water quality management of this reservoir.

  20. Short-term responses to watershed logging on biomass mercury and methylmercury accumulation by periphyton in boreal lakes

    Energy Technology Data Exchange (ETDEWEB)

    Desrosiers, M.; Planas, D. [Quebec Univ., Montreal, PQ (Canada). Dept. de sciences biologiques; Mucci, A. [McGill Univ., Montreal, PQ (Canada). Dept. of Earth and Planetary Sciences

    2006-08-15

    Increased timber harvesting in the boreal regions of Quebec may have a significant impact on aquatic ecosystems. Watershed disturbances such as logging increase chemical loading to lakes. Soil in the Canadian Shield readily adsorbs and accumulates mercury (Hg) from atmospheric deposition. Forest watersheds serve as large reservoirs of Hg that shed their metal load when soil and land hydrology are disrupted. This paper presented the results of a study evaluating the impact of logging on periphyton algal biomass and dry mass. The study also evaluated the impact of total mercury (THG) and methylmercury (MeHg) accumulation in the littoral zone of the boreal lakes. A before-after control-impact (BACI) sample design was applied that required data from control and target sites sampled both before and after the disturbances. The study was carried out on 18 boreal lakes located in the Grenville geological province. Eight lakes had their watersheds logged over 15 to 79 per cent of their area. A further 10 lakes were used as control sites to document interannual variations. The project used water quality and physiographic data acquired by research groups within the Sustainable Forest Management Network. Fourteen study lakes were sampled once a year during 2 consecutive ice-free seasons before and after logging, and another 4 lakes were sampled 2 years after logging. Significant decreases in algal biomass and increases in MeHg concentrations in periphyton mats in a majority of the harvested watershed lakes were detected. The increases may have a significant impact on organisms of higher trophic levels as they are at the base of the food web. Results suggested that the observed decrease in periphyton biomass combined with the increase in MeHg accumulation may magnify the impact of logging activities on fish and other aquatic predators. Two years after logging, it was observed that MeHg concentrations were still increasing. It was concluded that further research is needed

  1. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4" t" hfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia); Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Rock Fluid Imaging Lab., Bandung (Indonesia)

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  2. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    International Nuclear Information System (INIS)

    thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" data-affiliation=" (Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" >Nurhandoko, Bagus Endar B.; Susilowati

    2015-01-01

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia

  3. Model My Watershed - A Robust Online App to Enable Citizen Scientists to Model Watershed Hydrology and Water Quality at Regulatory-Level Standards

    Science.gov (United States)

    Daniels, M.; Kerlin, S.; Arscott, D.

    2017-12-01

    Citizen-based watershed monitoring has historically lacked scientific rigor and geographic scope due to limitation in access to watershed-level data and the high level skills and resources required to adequately model watershed dynamics. Public access to watershed information is currently routed through a variety of governmental data portals and often requires advanced geospatial skills to collect and present in useable forms. At the same time, tremendous financial resources are being invested in watershed restoration and management efforts, and often these resources pass through local stakeholder groups such as conservation NGO, watershed interest groups, and local municipalities without extensive hydrologic knowledge or access to sophisticated modeling resources. Even governmental agencies struggle to understand how to best steer or prioritize restoration investments. A new app, Model My Watershed, was built to improve access to watershed data and modeling capabilities in a fast, accessible, free web-app format. Working across the contiguous United States, the Model My Watershed app provides land cover, soils, aerial imagery and relief, watershed delineation, and stream network delineation. Users can model watersheds or areas of interest and create management scenarios to evaluate implementation of land cover changes and best management practice implementation with both hydrologic and water quality outputs that meet TMDL regulatory standards.

  4. Integrating local research watersheds into hydrologic education: Lessons from the Dry Creek Experimental Watershed

    Science.gov (United States)

    McNamara, J. P.; Aishlin, P. S.; Flores, A. N.; Benner, S. G.; Marshall, H. P.; Pierce, J. L.

    2014-12-01

    While a proliferation of instrumented research watersheds and new data sharing technologies has transformed hydrologic research in recent decades, similar advances have not been realized in hydrologic education. Long-standing problems in hydrologic education include discontinuity of hydrologic topics from introductory to advanced courses, inconsistency of content across academic departments, and difficulties in development of laboratory and homework assignments utilizing large time series and spatial data sets. Hydrologic problems are typically not amenable to "back-of-the-chapter" examples. Local, long-term research watersheds offer solutions to these problems. Here, we describe our integration of research and monitoring programs in the Dry Creek Experimental Watershed into undergraduate and graduate hydrology programs at Boise State University. We developed a suite of watershed-based exercises into courses and curriculums using real, tangible datasets from the watershed to teach concepts not amenable to traditional textbook and lecture methods. The aggregation of exercises throughout a course or degree allows for scaffolding of concepts with progressive exposure of advanced concepts throughout a course or degree. The need for exercises of this type is growing as traditional lecture-based classes (passive learning from a local authoritative source) are being replaced with active learning courses that integrate many sources of information through situational factors.

  5. Asotin Creek Model Watershed Plan

    Energy Technology Data Exchange (ETDEWEB)

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  6. Alaska Index of Watershed Integrity

    Science.gov (United States)

    The US Environmental Protection Agency’s (EPA) Index of Watershed Integrity (IWI) is used to calculate and visualize the status of natural watershed infrastructure that supports ecological processes (e.g., nutrient cycling) and services provided to society (e.g., subsistenc...

  7. Watershed condition [Chapter 4

    Science.gov (United States)

    Daniel G. Neary; Jonathan W. Long; Malchus B. Baker

    2012-01-01

    Managers of the Prescott National Forest are obliged to evaluate the conditions of watersheds under their jurisdiction in order to guide informed decisions concerning grazing allotments, forest and woodland management, restoration treatments, and other management initiatives. Watershed condition has been delineated by contrasts between “good” and “poor” conditions (...

  8. Sediment-water interactions affecting dissolved-mercury distributions in Camp Far West Reservoir, California

    Science.gov (United States)

    Kuwabara, James S.; Alpers, Charles N.; Marvin-DiPasquale, Mark; Topping, Brent R.; Carter, James L.; Stewart, A. Robin; Fend, Steven V.; Parcheso, Francis; Moon, Gerald E.; Krabbenhoft, David P.

    2003-01-01

    Field and laboratory studies were conducted in April and November 2002 to provide the first direct measurements of the benthic flux of dissolved (0.2-micrometer filtered) mercury species (total and methylated forms) between the bottom sediment and water column at three sampling locations within Camp Far West Reservoir, California: one near the Bear River inlet to the reservoir, a second at a mid-reservoir site of comparable depth to the inlet site, and the third at the deepest position in the reservoir near the dam (herein referred to as the inlet, midreservoir and near-dam sites, respectively; Background, Fig. 1). Because of interest in the effects of historic hydraulic mining and ore processing in the Sierra Nevada foothills just upstream of the reservoir, dissolved-mercury species and predominant ligands that often control the mercury speciation (represented by dissolved organic carbon, and sulfides) were the solutes of primary interest. Benthic flux, sometimes referred to as internal recycling, represents the transport of dissolved chemical species between the water column and the underlying sediment. Because of the affinity of mercury to adsorb onto particle surfaces and to form insoluble precipitates (particularly with sulfides), the mass transport of mercury in mining-affected watersheds is typically particle dominated. As these enriched particles accumulate at depositional sites such as reservoirs, benthic processes facilitate the repartitioning, transformation, and transport of mercury in dissolved, biologically reactive forms (dissolved methylmercury being the most bioavailable for trophic transfer). These are the forms of mercury examined in this study. In contrast to typical scientific manuscripts, this report is formatted in a pyramid-like structure to serve the needs of diverse groups who may be interested in reviewing or acquiring information at various levels of technical detail (Appendix 1). The report enables quick transitions between the initial

  9. Watershed Education for Broadcast Meteorologists

    Science.gov (United States)

    Lamos, J. P.; Sliter, D.; Espinoza, S.; Spangler, T. C.

    2006-12-01

    The National Environmental Education and Training Organization (NEETF) published a report in 2005 that summarized the findings of ten years of NEETF and Roper Research. The report stated, "Our years of data from Roper surveys show a persistent pattern of environmental ignorance even among the most educated and influential members of society." Market research has also shown that 80% of television viewers list the weather as the primary reason for watching the local news. Broadcast meteorologists, with a broader understanding of environmental and related sciences have an opportunity to use their weathercasts to inform the public about the environment and the factors that influence environmental health. As "station scientists," broadcast meteorologists can use the weather, and people's connection to it, to broaden their understanding of the environment they live in. Weather and watershed conditions associated with flooding and drought have major human and environmental impacts. Increasing the awareness of the general public about basic aspects of the hydrologic landscape can be an important part of mitigating the adverse effects of too much or too little precipitation, and of protecting the environment as well. The concept of a watershed as a person's natural neighborhood is a very important one for understanding hydrologic and environmental issues. Everyone lives in a watershed, and the health of a watershed is the result of the interplay between weather and human activity. This paper describes an online course to give broadcast meteorologists a basic understanding of watersheds and how watersheds are impacted by weather. It discusses how to convey watershed science to a media- savvy audience as well as how to model the communication of watershed and hydrologic concepts to the public. The course uses a narrative, story-like style to present its content. It is organized into six short units of instruction, each approximately 20 minutes in duration. Each unit is

  10. Evapotranspiration sensitivity to air temperature across a snow-influenced watershed: Space-for-time substitution versus integrated watershed modeling

    Science.gov (United States)

    Jepsen, S. M.; Harmon, T. C.; Ficklin, D. L.; Molotch, N. P.; Guan, B.

    2018-01-01

    Changes in long-term, montane actual evapotranspiration (ET) in response to climate change could impact future water supplies and forest species composition. For scenarios of atmospheric warming, predicted changes in long-term ET tend to differ between studies using space-for-time substitution (STS) models and integrated watershed models, and the influence of spatially varying factors on these differences is unclear. To examine this, we compared warming-induced (+2 to +6 °C) changes in ET simulated by an STS model and an integrated watershed model across zones of elevation, substrate available water capacity, and slope in the snow-influenced upper San Joaquin River watershed, Sierra Nevada, USA. We used the Soil Water and Assessment Tool (SWAT) for the watershed modeling and a Budyko-type relationship for the STS modeling. Spatially averaged increases in ET from the STS model increasingly surpassed those from the SWAT model in the higher elevation zones of the watershed, resulting in 2.3-2.6 times greater values from the STS model at the watershed scale. In sparse, deep colluvium or glacial soils on gentle slopes, the SWAT model produced ET increases exceeding those from the STS model. However, watershed areas associated with these conditions were too localized for SWAT to produce spatially averaged ET-gains comparable to the STS model. The SWAT model results nevertheless demonstrate that such soils on high-elevation, gentle slopes will form ET "hot spots" exhibiting disproportionately large increases in ET, and concomitant reductions in runoff yield, in response to warming. Predicted ET responses to warming from STS models and integrated watershed models may, in general, substantially differ (e.g., factor of 2-3) for snow-influenced watersheds exhibiting an elevational gradient in substrate water holding capacity and slope. Long-term water supplies in these settings may therefore be more resilient to warming than STS model predictions would suggest.

  11. An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska (Final Report)

    Science.gov (United States)

    The Bristol Bay watershed in southwestern Alaska supports the largest sockeye salmon fishery in the world, is home to 25 federally recognized tribal governments, and contains large mineral resources. The potential for large-scale mining activities in the watershed has raised conc...

  12. Predicting fecal coliform using the interval-to-interval approach and SWAT in the Miyun watershed, China.

    Science.gov (United States)

    Bai, Jianwen; Shen, Zhenyao; Yan, Tiezhu; Qiu, Jiali; Li, Yangyang

    2017-06-01

    Pathogens in manure can cause waterborne-disease outbreaks, serious illness, and even death in humans. Therefore, information about the transformation and transport of bacteria is crucial for determining their source. In this study, the Soil and Water Assessment Tool (SWAT) was applied to simulate fecal coliform bacteria load in the Miyun Reservoir watershed, China. The data for the fecal coliform were obtained at three sampling sites, Chenying (CY), Gubeikou (GBK), and Xiahui (XH). The calibration processes of the fecal coliform were conducted using the CY and GBK sites, and validation was conducted at the XH site. An interval-to-interval approach was designed and incorporated into the processes of fecal coliform calibration and validation. The 95% confidence interval of the predicted values and the 95% confidence interval of measured values were considered during calibration and validation in the interval-to-interval approach. Compared with the traditional point-to-point comparison, this method can improve simulation accuracy. The results indicated that the simulation of fecal coliform using the interval-to-interval approach was reasonable for the watershed. This method could provide a new research direction for future model calibration and validation studies.

  13. Water quality trading opportunities in two sub-watersheds in the northern Lake Okeechobee watershed.

    Science.gov (United States)

    Corrales, Juliana; Naja, G Melodie; Bhat, Mahadev G; Miralles-Wilhelm, Fernando

    2017-07-01

    For decades, the increase of nutrient enrichment has threatened the ecological integrity and economic sustainability of many rivers, lakes, and coastal waters, including Lake Okeechobee, the second largest freshwater lake in the contiguous United States. Water quality trading programs have been an area of active development to both, reduce nutrient pollution and minimize abatement costs. The objective of this study was to apply a comprehensive modeling framework, integrating a hydrologic-water quality model with an economic model, to assess and compare the cost-effectiveness of a water quality trading program over a command-and-control approach in order to reduce phosphorus loadings to Lake Okeechobee. The Upper Kissimmee (UK) and Taylor Creek/Nubbin Slough (TCNS) sub-watersheds, identified as major sources of total phosphorus (TP) loadings to the lake, were selected for this analysis. The effect of different caps on the market potential was assessed while considering four factors: the least-cost abatement solutions, credit prices, potential cost savings, and credit supply and demand. Hypothetical trading scenarios were also developed, using the optimal caps selected for the two sub-watersheds. In both sub-watersheds, a phosphorus credit trading program was less expensive than the conventional command-and-control approach. While attaining cost-effectiveness, keeping optimal credit prices, and fostering market competition, phosphorus reduction targets of 46% and 32% were selected as the most appropriate caps in the UK and TCNS sub-watersheds, respectively. Wastewater treatment facilities and urban areas in the UK, and concentrated animal feeding operations in the TCNS sub-watershed were identified as potential credit buyers, whereas improved pastures were identified as the major credit sellers in both sub-watersheds. The estimated net cost savings resulting from implementing a phosphorus trading program in the UK and TCNS sub-watersheds were 76% ($ 34.9 million per

  14. Long-Term Changes in Sediment and Nutrient Delivery from Conowingo Dam to Chesapeake Bay: Effects of Reservoir Sedimentation.

    Science.gov (United States)

    Zhang, Qian; Hirsch, Robert M; Ball, William P

    2016-02-16

    Reduction of suspended sediment (SS), total phosphorus (TP), and total nitrogen is an important focus for Chesapeake Bay watershed management. The Susquehanna River, the bay's largest tributary, has drawn attention because SS loads from behind Conowingo Dam (near the river's mouth) have been rising dramatically. To better understand these changes, we evaluated histories of concentration and loading (1986-2013) using data from sites above and below Conowingo Reservoir. First, observed concentration-discharge relationships show that SS and TP concentrations at the reservoir inlet have declined under most discharges in recent decades, but without corresponding declines at the outlet, implying recently diminished reservoir trapping. Second, best estimates of mass balance suggest decreasing net deposition of SS and TP in recent decades over a wide range of discharges, with cumulative mass generally dominated by the 75∼99.5th percentile of daily Conowingo discharges. Finally, stationary models that better accommodate effects of riverflow variability also support the conclusion of diminished trapping of SS and TP under a range of discharges that includes those well below the literature-reported scour threshold. Overall, these findings suggest that decreased net deposition of SS and TP has occurred at subscour levels of discharge, which has significant implications for the Chesapeake Bay ecosystem.

  15. Watersheds in disordered media

    Directory of Open Access Journals (Sweden)

    José S. Andrade Jr.

    2015-02-01

    Full Text Available What is the best way to divide a rugged landscape? Since ancient times, watershedsseparating adjacent water systems that flow, for example, toward different seas, have beenused to delimit boundaries. Interestingly, serious and even tense border disputes betweencountries have relied on the subtle geometrical properties of these tortuous lines. For instance,slight and even anthropogenic modifications of landscapes can produce large changes in awatershed, and the effects can be highly nonlocal. Although the watershed concept arisesnaturally in geomorphology, where it plays a fundamental role in water management, landslide,and flood prevention, it also has important applications in seemingly unrelated fields suchas image processing and medicine. Despite the far-reaching consequences of the scalingproperties on watershed-related hydrological and political issues, it was only recently that a moreprofound and revealing connection has been disclosed between the concept of watershed andstatistical physics of disordered systems. This review initially surveys the origin and definition of awatershed line in a geomorphological framework to subsequently introduce its basic geometricaland physical properties. Results on statistical properties of watersheds obtained from artificialmodel landscapes generated with long-range correlations are presented and shown to be ingood qualitative and quantitative agreement with real landscapes.

  16. Payments for watershed services: opportunities and realities

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Ivan

    2007-08-15

    Many nations have found that regulatory approaches to land and water management have limited impact. An alternative is to create incentives for sound management - under mechanisms known as payments for ecosystem services. It is a simple idea: people who look after ecosystems that benefit others should be recognised and rewarded. In the case of watersheds, downstream beneficiaries of wise upstream land and water use should compensate the stewards. To be effective these 'payments for watershed services' must cover the cost of watershed management. In developing countries, they might also aid local development and reduce poverty. But new research shows that the problems in watersheds are complex and not easily solved. Payments for watershed services do not guarantee poverty reduction and cannot replace the best aspects of regulation.

  17. IMPACT OF HEAVY METAL TO FISH AQUACULTURE IN FLOATING NET CAGE IN CIRATA RESERVOIR, INDONESIA

    Directory of Open Access Journals (Sweden)

    Tri Heru Prihadi

    2008-06-01

    Full Text Available Utilization of Cirata Reservoir for fisheries aquaculture with floating net cage system has been increasing rapidly. Industrial waste existed along watershed brings significant heavy metal pollutant that flows and difficult to control. Consequences of such activities were reflected in the degradation of reservoir environment indicated by sedimentation, water quality degradation and fish mass mortality because of up welling. The objectives of this research were: 1 to obtain data and information on heavy metal content in Cirata Reservoir waters, and 2 to observe and understand the effect of heavy metal to the fish cultured in floating net cage to support aquaculture in floating net cage system. Water quality and fish histology analyses were the methodologies used in this research. Descriptive and laboratory analysis were carry out to analysis the data. Based on observation and descriptive analyses, the content of heavy metal in Cirata Reservoir was classified as worse. Concentration of Pb, Cr, Hg, and Cd in the sample of water and tilapia digestive organ becomes fragile. Infiltration of hemoglobin cell, necrosis, degeneration and pigmentation occurred in body organs when up welling happened. Beside that, during up-welling digestive organ become easily breakable resulted in fish mass mortality in floating net cage. The affinity of hemoglobin to the toxic gas was higher than to oxygen, therefore aeration was not affective and mass mortality cannot be avoided. This was because of various events that occured to the fish and the other water biota that encompassed regular diffusion, bio-magnification, and bio-concentration to fish.

  18. Sediment delivery and lake dynamics in a Mediterranean mountain watershed: Human-climate interactions during the last millennium (El Tobar Lake record, Iberian Range, Spain).

    Science.gov (United States)

    Barreiro-Lostres, Fernando; Brown, Erik; Moreno, Ana; Morellón, Mario; Abbott, Mark; Hillman, Aubrey; Giralt, Santiago; Valero-Garcés, Blas

    2015-11-15

    Land degradation and soil erosion are key environmental problems in Mediterranean mountains characterized by a long history of human occupation and a strong variability of hydrological regimes. To assess recent trends and evaluate climatic and anthropogenic impacts in these highly human modified watersheds we apply an historical approach combining lake sediment core multi-proxy analyses and reconstructions of past land uses to El Tobar Lake watershed, located in the Iberian Range (Central Spain). Four main periods of increased sediment delivery have been identified in the 8m long sediment sequence by their depositional and geochemical signatures. They took place around 16th, late 18th, mid 19th and early 20th centuries as a result of large land uses changes such as forest clearing, farming and grazing during periods of increasing population. In this highly human-modified watershed, positive synergies between human impact and humid periods led to increased sediment delivery periods. During the last millennium, the lake depositional and geochemical cycles recovered quickly after each sediment delivery event, showing strong resilience of the lacustrine system to watershed disturbance. Recent changes are characterized by large hydrological affections since 1967 with the construction of a canal from a nearby reservoir and a decreased in anthropic pressure in the watershed as rural areas were abandoned. The increased fresh water influx to the lake has caused large biological changes, leading to stronger meromictic conditions and higher organic matter accumulation while terrigenous inputs have decreased. Degradation processes in Iberian Range watersheds are strongly controlled by anthropic activities (land use changes, soil erosion) but modulated by climate-related hydrological changes (water availability, flood and runoff frequency). Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Watershed Scale Impacts of Stormwater Green Infrastructure ...

    Science.gov (United States)

    Despite the increasing use of urban stormwater green infrastructure (SGI), including detention ponds and rain gardens, few studies have quantified the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the effects of SGI, Baltimore County, MD, Montgomery County, MD, and Washington, DC, were selected based on the availability of data on SGI, water quality, and stream flow. The watershed scale impact of SGI was evaluated by assessing how increased spatial density of SGI correlates with stream hydrology and nitrogen exports over space and time. The most common SGI types were detention ponds (58%), followed by marshes (12%), sand filters (9%), wet ponds (7%), infiltration trenches (4%), and rain gardens (2%). When controlling for watersheds size and percent impervious surface cover, watersheds with greater amounts of SGI (>10% SGI) have 44% lower peak runoff, 26% less frequent runoff events, and 26% less variable runoff than watersheds with lower SGI. Watersheds with more SGI also show 44% less NO3− and 48% less total nitrogen exports compared to watersheds with minimal SGI. There was no significant reduction in combined sewer overflows in watersheds with greater SGI. Based on specific SGI types, infiltration trenches (R2 = 0.35) showed the strongest correlation with hydrologic metrics, likely due to their ability to attenuate flow, while bioretention (R2 = 0.19) and wet ponds (R2 = 0.12) showed stronger

  20. Greenhouse gas (CO2 and CH4) emissions from a high altitude hydroelectric reservoir in the tropics (Riogrande II, Colombia)

    Science.gov (United States)

    Guérin, Frédéric; Leon, Juan

    2015-04-01

    Tropical hydroelectric reservoirs are considered as very significant source of methane (CH4) and carbon dioxide (CO2), especially when flooding dense forest. We report emissions from the Rio Grande II Reservoir located at 2000 m.a.s.l. in the Colombian Andes. The dam was built at the confluence of the Rio Grande and Rio Chico in 1990. The reservoir has a surface of 12 km2, a maximum depth of 40m and a residence time of 2.5 month. Water quality (temperature, oxygen, pH, conductivity), nitrate, ammonium, dissolved and particulate organic carbon (DOC and POC), CO2 and CH4 were monitored bi-monthly during 1.5 year at 9 stations in the reservoir. Diffusive fluxes of CO2 and CH4 and CH4 ebullition were measured at 5 stations. The Rio grande II Reservoir is weakly stratified thermally with surface temperature ranging from 20 to 24°C and a constant bottom temperature of 18°C. The reservoir water column is well oxygenated at the surface and usually anoxic below 10m depth. At the stations close to the tributaries water inputs, the water column is well mixed and oxygenated from the surface to the bottom. As reported for other reservoirs located in "clear water" watersheds, the concentrations of nutrients are low (NO3-10 mmol m-2 d-1) were observed during the dry season. Close to the tributaries water inputs where the water column is well mixed, the average diffusive flux is 8 mmol m-2 d-1. CH4 ebullition was 3.5 mmol m-2 d-1 and no ebullition was observed for a water depth higher than 5m. The zone under the influence of the water inputs from tributaries represents 25% of the surface of the reservoir but contributed half of total CH4 emissions from the reservoir (29MgC month-1). Ebullition contributed only to 12% of total CH4 emissions over a year but it contributed up to 60% during the dry season. CH4 emissions from the Rio Grande Reservoir contributed 30% of the total GHG emissions (38GgCO2eq y-1). Overall, this study show that the majority of CH4 emissions from this

  1. AQUIFER IN AJAOKUTA, SOUTHWESTERN NIGERIA

    African Journals Online (AJOL)

    2005-03-08

    Mar 8, 2005 ... To establish the feasibility of water supply in a basement complex area ofAjaokuta, Southwestern Nigeria, pumping test results were used to investigate the storage properties and groundwater potential of the aquifer. The aquifer system consists of weathered and weathered/fractured zone of decomposed ...

  2. Application of the ReNuMa model in the Sha He river watershed: tools for watershed environmental management.

    Science.gov (United States)

    Sha, Jian; Liu, Min; Wang, Dong; Swaney, Dennis P; Wang, Yuqiu

    2013-07-30

    Models and related analytical methods are critical tools for use in modern watershed management. A modeling approach for quantifying the source apportionment of dissolved nitrogen (DN) and associated tools for examining the sensitivity and uncertainty of the model estimates were assessed for the Sha He River (SHR) watershed in China. The Regional Nutrient Management model (ReNuMa) was used to infer the primary sources of DN in the SHR watershed. This model is based on the Generalized Watershed Loading Functions (GWLF) and the Net Anthropogenic Nutrient Input (NANI) framework, modified to improve the characterization of subsurface hydrology and septic system loads. Hydrochemical processes of the SHR watershed, including streamflow, DN load fluxes, and corresponding DN concentration responses, were simulated following calibrations against observations of streamflow and DN fluxes. Uncertainty analyses were conducted with a Monte Carlo analysis to vary model parameters for assessing the associated variations in model outputs. The model performed accurately at the watershed scale and provided estimates of monthly streamflows and nutrient loads as well as DN source apportionments. The simulations identified the dominant contribution of agricultural land use and significant monthly variations. These results provide valuable support for science-based watershed management decisions and indicate the utility of ReNuMa for such applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Simulation of soil loss processes based on rainfall runoff and the time factor of governance in the Jialing River Watershed, China.

    Science.gov (United States)

    Wu, Lei; Long, Tian-Yu; Liu, Xia; Mmereki, Daniel

    2012-06-01

    Jialing River is the largest tributary in the catchment area of Three Gorges Reservoir, and it is also one of the important areas of sediment yield in the upper reaches of the Yangtze River. In recent years, significant changes of water and sediment characteristics have taken place. The "Long Control" Project implemented since 1989 had greatly changed the surface appearance of the Jialing River Watershed (JRW), and it had made the environments of the watershed sediment yield and sediment transport change significantly. In this research, the Revised Universal Soil Loss Equation was selected and used to predict the annual average amount of soil erosion for the special water and sediment environments in the JRW after the implementation of the "Long Control" Project, and then the rainfall-runoff modulus and the time factor of governance were both considered as dynamic factors, the dynamic sediment transport model was built for soil erosion monitoring and forecasting based on the average sediment yield model. According to the dynamic model, the spatial and temporal distribution of soil erosion amount and sediment transport amount of the JRW from 1990 to 2007 was simulated using geographic information system (GIS) technology and space-grid algorithm. Simulation results showed that the average relative error of sediment transport was less than 10% except for the extreme hydrological year. The relationship between water and sediment from 1990 to 2007 showed that sediment interception effects of the soil and water conservation projects were obvious: the annual average sediment discharge reduced from 145.3 to 35 million tons, the decrement of sediment amount was about 111 million tons, and decreasing amplitude was 76%; the sediment concentration was also decreased from 2.01 to 0.578 kg/m(3). These data are of great significance for the prediction and estimation of the future changing trends of sediment storage in the Three Gorges Reservoir and the particulate non

  4. Satellite-based monitoring of cyanobacteria blooms from 2002–2011 for 11 reservoirs with watersheds along an agricultural gradient

    Science.gov (United States)

    Imagery acquired by the Envisat Medium Resolution Imaging Spectrometer from 2002-2011 was used to estimate cyanobacteria cell densities for 11 reservoirs in Indiana, Ohio, and Kentucky, USA (surface areas 8–43 km2; 864 total images spanning May–September). This initia...

  5. Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification

    KAUST Repository

    Katterbauer, Klemens

    2015-04-01

    Reservoir simulations and history matching are critical for fine-tuning reservoir production strategies, improving understanding of the subsurface formation, and forecasting remaining reserves. Production data have long been incorporated for adjusting reservoir parameters. However, the sparse spatial sampling of this data set has posed a significant challenge for efficiently reducing uncertainty of reservoir parameters. Seismic, electromagnetic, gravity and InSAR techniques have found widespread applications in enhancing exploration for oil and gas and monitoring reservoirs. These data have however been interpreted and analyzed mostly separately, rarely exploiting the synergy effects that could result from combining them. We present a multi-data ensemble Kalman filter-based history matching framework for the simultaneous incorporation of various reservoir data such as seismic, electromagnetics, gravimetry and InSAR for best possible characterization of the reservoir formation. We apply an ensemble-based sensitivity method to evaluate the impact of each observation on the estimated reservoir parameters. Numerical experiments for different test cases demonstrate considerable matching enhancements when integrating all data sets in the history matching process. Results from the sensitivity analysis further suggest that electromagnetic data exhibit the strongest impact on the matching enhancements due to their strong differentiation between water fronts and hydrocarbons in the test cases.

  6. Nitrogen Saturation in Highly Retentive Watersheds?

    Science.gov (United States)

    Daley, M. L.; McDowell, W. H.

    2009-12-01

    Watershed managers are often concerned with minimizing the amount of N delivered to N-limited estuaries and coastal zones. A major concern is that watersheds might reach N saturation, in which N delivered to coastal zones increases due to declines in the efficiency of N retention despite constant or even reduced N inputs. We have quantified long-term changes in N inputs (atmospheric deposition, imported food and agricultural fertilizers), outputs (N concentration and export) and retention in the urbanizing Lamprey River watershed in coastal NH. Overall, the Lamprey watershed is 70% forested, receives about 13.5 kg N/ha/yr and has a high rate of annual N retention (85%). Atmospheric deposition (8.7 kg/ha/yr) is the largest N input to the watershed. Of the 2.2 kg N/ha/yr exported in the Lamprey River, dissolved organic N (DON) is the dominant form (50% of total) and it varies spatially throughout the watershed with wetland cover. Nitrate accounts for 30% of the N exported, shows a statistically significant increase from 1999 to 2009, and its spatial variability in both concentration and export is related to human population density. In sub-basins throughout the Lamprey, inorganic N retention is high (85-99%), but the efficiency of N retention declines sharply with increased human population density and associated anthropogenic N inputs. N assimilation in the vegetation, denitrification to the atmosphere and storage in the groundwater pool could all be important contributors to the current high rates of N retention. The temporal and spatial patterns that we have observed in nitrate concentration and export are driven by increases in N inputs and impervious surfaces over time, but the declining efficiency of N retention suggests that the watershed may also be reaching N saturation. The downstream receiving estuary, Great Bay, already suffers from low dissolved oxygen levels and eelgrass loss in part due to N loading from the Lamprey watershed. Targeting and reducing

  7. A New Method for Fracturing Wells Reservoir Evaluation in Fractured Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2014-01-01

    Full Text Available Natural fracture is a geological phenomenon widely distributed in tight formation, and fractured gas reservoir stimulation effect mainly depends on the communication of natural fractures. Therefore it is necessary to carry out the evaluation of this reservoir and to find out the optimal natural fractures development wells. By analyzing the interactions and nonlinear relationships of the parameters, it establishes three-level index system of reservoir evaluation and proposes a new method for gas well reservoir evaluation model in fractured gas reservoir on the basis of fuzzy logic theory and multilevel gray correlation. For this method, the Gaussian membership functions to quantify the degree of every factor in the decision-making system and the multilevel gray relation to determine the weight of each parameter on stimulation effect. Finally through fuzzy arithmetic operator between multilevel weights and fuzzy evaluation matrix, score, rank, the reservoir quality, and predicted production will be gotten. Result of this new method shows that the evaluation of the production coincidence rate reaches 80%, which provides a new way for fractured gas reservoir evaluation.

  8. Elevation - LiDAR Survey Minnehaha Creek, MN Watershed

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LiDAR Bare-Earth Grid - Minnehaha Creek Watershed District. The Minnehaha Creek watershed is located primarily in Hennepin County, Minnesota. The watershed covers...

  9. Using Four Capitals to Assess Watershed Sustainability

    Science.gov (United States)

    Pérez-Maqueo, Octavio; Martinez, M. Luisa; Vázquez, Gabriela; Equihua, Miguel

    2013-03-01

    The La Antigua watershed drains into the Gulf of Mexico and can be considered as one of the most important areas in Mexico because of its high productivity, history, and biodiversity, although poverty remains high in the area in spite of these positive attributes. In this study, we performed an integrated assessment of the watershed to recommend a better direction toward a sustainable management in which the four capitals (natural, human, social, and built) are balanced. We contrasted these four capitals in the municipalities of the upper, middle and lower watershed and found that natural capital (natural ecosystems and ecosystem services) was higher in the upper and middle watershed, while human and social capitals (literacy, health, education and income) were generally higher downstream. Overall, Human Development Index was negatively correlated with the percentage of natural ecosystems in the watershed, especially in the upper and lower watershed regions. Our results indicate that natural capital must be fully considered in projections for increasing human development, so that natural resources can be preserved and managed adequately while sustaining intergenerational well-being.

  10. Post-disturbance sediment recovery: Implications for watershed resilience

    Science.gov (United States)

    Rathburn, Sara L.; Shahverdian, Scott M.; Ryan, Sandra E.

    2018-03-01

    Sediment recovery following disturbances is a measure of the time required to attain pre-disturbance sediment fluxes. Insight into the controls on recovery processes and pathways builds understanding of geomorphic resilience. We assess post-disturbance sediment recovery in three small (1.5-100 km2), largely unaltered watersheds within the northern Colorado Rocky Mountains affected by wildfires, floods, and debris flows. Disturbance regimes span 102 (floods, debris flows) to 103 years (wildfires). For all case studies, event sediment recovery followed a nonlinear pattern: initial high sediment flux during single precipitation events or high annual snowmelt runoff followed by decreasing sediment fluxes over time. Disturbance interactions were evaluated after a high-severity fire within the South Fork Cache la Poudre basin was followed by an extreme flood one year post-fire. This compound disturbance hastened suspended sediment recovery to pre-fire concentrations 3 years after the fire. Wildfires over the last 1900 YBP in the South Fork basin indicate fire recurrence intervals of 600 years. Debris flows within the upper Colorado River basin over the last two centuries have shifted the baseline of sediment recovery caused by anthropogenic activities that increased debris flow frequency. An extreme flood on North St. Vrain Creek with an impounding reservoir resulted in extreme sedimentation that led to a physical state change. We introduce an index of resilience as sediment recovery/disturbance recurrence interval, providing a relative comparison between sites. Sediment recovery and channel form resilience may be inversely related because of high or low physical complexity in streams. We propose management guidelines to enhance geomorphic resilience by promoting natural processes that maintain physical complexity. Finally, sediment connectivity within watersheds is an additional factor to consider when establishing restoration treatment priorities.

  11. Modelling of the estimated contributions of different sub-watersheds and sources to phosphorous export and loading from the Dongting Lake watershed, China.

    Science.gov (United States)

    Hou, Ying; Chen, Weiping; Liao, Yuehua; Luo, Yueping

    2017-11-03

    Considerable growth in the economy and population of the Dongting Lake watershed in Southern China has increased phosphorus loading to the lake and resulted in a growing risk of lake eutrophication. This study aimed to reveal the spatial pattern and sources of phosphorus export and loading from the watershed. We applied an export coefficient model and the Dillon-Rigler model to quantify contributions of different sub-watersheds and sources to the total phosphorus (TP) export and loading in 2010. Together, the upper and lower reaches of the Xiang River watershed and the Dongting Lake Area contributed 60.9% of the TP exported from the entire watershed. Livestock husbandry appeared to be the largest anthropogenic source of TP, contributing more than 50% of the TP exported from each secondary sub-watersheds. The actual TP loading to the lake in 2010 was 62.9% more than the permissible annual TP loading for compliance with the Class III water quality standard for lakes. Three primary sub-watersheds-the Dongting Lake Area, the Xiang River, and the Yuan River watersheds-contributed 91.2% of the total TP loading. As the largest contributor among all sources, livestock husbandry contributed nearly 50% of the TP loading from the Dongting Lake Area and more than 60% from each of the other primary sub-watersheds. This study provides a methodology to identify the key sources and locations of TP export and loading in large lake watersheds. The study can provide a reference for the decision-making for controlling P pollution in the Dongting Lake watershed.

  12. Assessing the influence of watershed characteristics on chlorophyll a in waterbodies at global and regional scales

    Science.gov (United States)

    Woelmer, Whitney; Kao, Yu-Chun; Bunnell, David B.; Deines, Andrew M.; Bennion, David; Rogers, Mark W.; Brooks, Colin N.; Sayers, Michael J.; Banach, David M.; Grimm, Amanda G.; Shuchman, Robert A.

    2016-01-01

    Prediction of primary production of lentic water bodies (i.e., lakes and reservoirs) is valuable to researchers and resource managers alike, but is very rarely done at the global scale. With the development of remote sensing technologies, it is now feasible to gather large amounts of data across the world, including understudied and remote regions. To determine which factors were most important in explaining the variation of chlorophyll a (Chl-a), an indicator of primary production in water bodies, at global and regional scales, we first developed a geospatial database of 227 water bodies and watersheds with corresponding Chl-a, nutrient, hydrogeomorphic, and climate data. Then we used a generalized additive modeling approach and developed model selection criteria to select models that most parsimoniously related Chl-a to predictor variables for all 227 water bodies and for 51 lakes in the Laurentian Great Lakes region in the data set. Our best global model contained two hydrogeomorphic variables (water body surface area and the ratio of watershed to water body surface area) and a climate variable (average temperature in the warmest model selection criteria to select models that most parsimoniously related Chl-a to predictor variables quarter) and explained ~ 30% of variation in Chl-a. Our regional model contained one hydrogeomorphic variable (flow accumulation) and the same climate variable, but explained substantially more variation (58%). Our results indicate that a regional approach to watershed modeling may be more informative to predicting Chl-a, and that nearly a third of global variability in Chl-a may be explained using hydrogeomorphic and climate variables.

  13. Estimation of the peak factor based on watershed characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, Jean; Nolin, Simon; Ruest, Benoit [BPR Inc., Quebec, (Canada)

    2010-07-01

    Hydraulic modeling and dam structure design require the river flood flow as a primary input. For a given flood event, the ratio of peak flow over mean daily flow defines the peak factor. The peak factor value is dependent on the watershed and location along the river. The main goal of this study consisted in finding a relationship between watershed characteristics and this peak factor. Regression analyses were carried out on 53 natural watersheds located in the southern part of the province of Quebec using data from the Centre d'expertise hydrique du Quebec (CEHQ). The watershed characteristics included in the analyses were the watershed area, the maximum flow length, the mean slope, the lake proportion and the mean elevation. The results showed that watershed area and length are the major parameters influencing the peak factor. Nine natural watersheds were also used to test the use of a multivariable model in order to determine the peak factor for ungauged watersheds.

  14. Development of a Reservoir System Operation Model for Water Sustainability in the Yaqui River Basin

    Science.gov (United States)

    Mounir, A.; Che, D.; Robles-Morua, A.; Kauneckis, D.

    2017-12-01

    The arid state of Sonora, Mexico underwent the Sonora SI project to provide additional water supply to the capital of Hermosillo. The main component of the project involves an interbasin transfer from the Yaqui River Basin (YRB) to the Sonora River Basin via the Independencia aqueduct. This project has generated conflicts over water among different social sectors in the YRB. To improve the management of the Yaqui reservoir system, we developed a daily watershed model. This model allowed us to predict the amount of water available in different regions of the basin. We integrated this simulation to an optimization model which calculates the best water allocation according to water rights established in Mexico's National Water Law. We compared different precipitation forcing scenarios: (1) a network of ground observations from Mexican water agencies during the historical period of 1980-2013, (2) gridded fields from the North America Land Data Assimilation System (NLDAS) at 12 km resolution, and (3) we will be studying a future forecast scenario. The simulation results were compared to historical observations at the three reservoirs existing in the YRB to generate confidence in the simulation tools. Our results are presented in the form of flow duration, reliability and exceedance frequency curves that are commonly used in the water management agencies. Through this effort, we anticipate building confidence among regional stakeholders in utilizing hydrological models in the development of reservoir operation policies.

  15. Sediment transport and capacity change in three reservoirs, Lower Susquehanna River Basin, Pennsylvania and Maryland, 1900-2012

    Science.gov (United States)

    Langland, Michael J.

    2015-01-01

    predict the sediment scour load for daily mean streamflows greater than 300,000 cubic feet per second for the Lower Susquehanna River reservoirs. A compilation of data from various sources produced a range in total sediment transported through the reservoir system and allowed for apportioning to source (watershed or scour) for various streamflows. In 2011, Conowingo Reservoir was estimated to be about 92 percent of sediment storage capacity. Since construction of Conowingo Dam in 1929 through 2012, approximately 470 million tons of sediment was transported down the Susquehanna River into the reservoir system, approximately 290 million tons were trapped, and approximately 180 million tons were transported to Chesapeake Bay. Spatial and estimated total sand deposition in Conowingo Reservoir based on historical sediment cores indicated continued migration of sand downgradient toward the dam and the winnowing of silts and clays near the dam due to scour.

  16. Reservoir Engineering Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.; Schwarz, W.J.

    1977-12-14

    The Reservoir Engineering Management Program being conducted at Lawrence Berkeley Laboratory includes two major tasks: 1) the continuation of support to geothermal reservoir engineering related work, started under the NSF-RANN program and transferred to ERDA at the time of its formation; 2) the development and subsequent implementation of a broad plan for support of research in topics related to the exploitation of geothermal reservoirs. This plan is now known as the GREMP plan. Both the NSF-RANN legacies and GREMP are in direct support of the DOE/DGE mission in general and the goals of the Resource and Technology/Resource Exploitation and Assessment Branch in particular. These goals are to determine the magnitude and distribution of geothermal resources and reduce risk in their exploitation through improved understanding of generically different reservoir types. These goals are to be accomplished by: 1) the creation of a large data base about geothermal reservoirs, 2) improved tools and methods for gathering data on geothermal reservoirs, and 3) modeling of reservoirs and utilization options. The NSF legacies are more research and training oriented, and the GREMP is geared primarily to the practical development of the geothermal reservoirs. 2 tabs., 3 figs.

  17. Hydrologic connectivity and implications for ecosystem processes - Lessons from naked watersheds

    Science.gov (United States)

    Gooseff, Michael N.; Wlostowski, Adam; McKnight, Diane M.; Jaros, Chris

    2017-01-01

    Hydrologic connectivity has received great attention recently as our conceptual models of watersheds and water quality have evolved in the past several decades. However, the structural complexity of most temperate watersheds (i.e. connections among shallow soils, deep aquifers, the atmosphere and streams) and the dynamic seasonal changes that occur within them (i.e., plant senescence which impacts evapotranspiration) create significant challenges to characterizing or quantifying hydrologic connectivity. The McMurdo Dry Valleys, a polar desert in Antarctica, provide a unique opportunity to study hydrologic connectivity because there is no vegetative cover (and therefore no transpiration), and no deep aquifers connected to surface soils or streams. Glacier melt provides stream flow to well-established channels and closed-basin, ice-covered lakes on the valley floor. Streams are also connected to shallow hyporheic zones along their lengths, which are bounded at 75 cm depth by ice-cemented permafrost. These hydrologic features and connections provide water for and underpin biological communities. Hence, exchange of water among them provides a vector for exchange of energy and dissolved solutes. Connectivity is dynamic on timescales of a day to a flow season (6-12 weeks), as streamflow varies over these timescales. The timescales over which these connections occur is also dynamic. Exchanges between streams and hyporheic zones, for example, have been estimated to be as short as hours to as long as several weeks. These exchanges have significant implications for the biogeochemistry of these systems and the biotic communities in each feature. Here we evaluate the lessons we can learn about hydrologic connectivity in the MDV watersheds that are simplified in the context of processes occurring and water reservoirs included in the landscape, yet are sensitive to climate controls and contain substantial physical heterogeneity. We specifically explore several metrics that are

  18. Economic Tools for Managing Nitrogen in Coastal Watersheds ...

    Science.gov (United States)

    Watershed managers are interested in using economics to communicate the value of estuarine resources to the wider community, determine the most cost-effective means to reduce nitrogen pollution, and evaluate the benefits of taking action to improve coastal ecosystems. We spoke to coastal watershed managers who had commissioned economic studies and found that they were largely satisfied with the information and their ability to communicate the importance of coastal ecosystems. However, while managers were able to use these studies as communication tools, methods used in some studies were inconsistent with what some economists consider best practices. In addition, many watershed managers are grappling with how to implement nitrogen management activities in a way that is both cost-effective and achieves environmental goals, while maintaining public support. These and other issues led to this project. Our intent is to provide information to watershed managers and others interested in watershed management – such as National Estuary Programs, local governments, or nongovernmental organizations – on economic tools for managing nitrogen in coastal watersheds, and to economists and other analysts who are interested in assisting them in meeting their needs. Watershed management requires balancing scientific, political, and social issues to solve environmental problems. This document summarizes questions that watershed managers have about using economic analysis, and g

  19. Modeling soil erosion in a watershed

    OpenAIRE

    Lanuza, R.

    1999-01-01

    Most erosion models have been developed based on a plot scale and have limited application to a watershed due to the differences in aerial scale. In order to address this limitation, a GIS-assisted methodology for modeling soil erosion was developed using PCRaster to predict the rate of soil erosion at watershed level; identify the location of erosion prone areas; and analyze the impact of landuse changes on soil erosion. The general methodology of desktop modeling or soil erosion at watershe...

  20. Southwestern Power Administration Combined Financial Statements, 2006-2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-09-01

    We have audited the accompanying combined balance sheets of the Southwestern Federal Power System (SWFPS), as of September 30, 2009, 2008, 2007, and 2006, and the related combined statements of revenues and expenses, changes in capitalization, and cash flows for the years then ended. As described in note 1(a), the combined financial statement presentation includes the hydroelectric generation functions of another Federal agency (hereinafter referred to as the generating agency), for which Southwestern Power Administration (Southwestern) markets and transmits power. These combined financial statements are the responsibility of the management of Southwestern and the generating agency. Our responsibility is to express an opinion on these combined financial statements based on our audits. We conducted our audits in accordance with auditing standards generally accepted in the United States of America. Those standards require that we plan and perform the audits to obtain reasonable assurance about whether the combined financial statements are free of material misstatement. An audit includes consideration of internal control over financial reporting as a basis for designing audit procedures that are appropriate in the circumstances, but not for the purpose of expressing an opinion on the effectiveness of Southwestern and the generating agency’s internal control over financial reporting. Accordingly, we express no such opinion. An audit also includes examining, on a test basis, evidence supporting the amounts and disclosures in the combined financial statements, assessing the accounting principles used and significant estimates made by management, as well as evaluating the overall combined financial statement presentation. We believe that our audits provide a reasonable basis for our opinion. In our opinion, the combined financial statements referred to above present fairly, in all material respects, the respective financial position of the Southwestern Federal Power

  1. Trends in landscape and vegetation change and implications for the Santa Cruz Watershed

    Science.gov (United States)

    Villarreal, Miguel; Norman, Laura M.; Webb, Robert H.; Turner, Raymond M.

    2013-01-01

    Monitoring and characterizing the interactive effects of land use and climate on land surface processes is a primary focus of land change science, and of particular concern in arid Wells Distribution in Shallow Groundwater Areas Pumping Trends Increase Streamflow Extent Declines 27 environments where both landscapes and livelihoods can be impacted by short-term climate variability. Using a multi-observational approach to land-change analysis that included landownership data as a proxy for land-use practices, multitemporal land-cover maps, and repeat photography dating to the late 19th century, we examine changing spatial and temporal distributions of two vegetation types with high conservation value in the southwestern United States: grasslands and riparian vegetation. Our study area is the bi-national Santa Cruz Watershed, a topographically complex watershed that straddles the Sonoran Desert and the Madrean Archipelago Ecoregions. In this presentation we focus on historical changes in vegetation and land use in grasslands and riparian areas of the Madrean Ecoregion (San Raphael Valley, Cienega Creek, Sonoita), and compare changes in these areas to changes in the warmer and drier Sonoran Ecoregion. Analysis of historical photography confirms major 20th century vegetation shifts documented in other research: woody plant encroachment, desertification of grasslands, and changing riparian and xeroriparian vegetation occurred in both ecoregions following human settlement. However, vegetation changes over the past decade appear to be more subtle and some of the past trajectories appear to be reversing; most notable are recent mesquite declines in xeroriparian and upland areas, and changes from shrubland to grassland area in the Madrean ecoregion. Land cover changes were temporally variable, reflecting broad climate changes. The most dynamic cover changes occurred during the period from 1989 to 1999, a period with two intense droughts. The degree of vegetation change

  2. Southwestern Federal Power System 1995 Financial Statement audit under the Chief Financial Officers Act (WR-FC-96-02)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-22

    The Southwestern Federal Power System encompasses the operation of 24 hydroelectric power plants by the U.S. Army Corps of Engineers and the marketing of power and energy from those plants by the Southwestern Power Administration of the U.S. Department of Energy. To integrate the operation of these hydroelectric generating plants and to transmit power from the dams to its customers, Southwestern Power Administration (Southwestern) maintains 2,220 kilometers (1,380 miles) of high-voltage transmission lines, 24 substations, and 46 microwave and VHF radio sites. Southwestern`s headquarters are in Tulsa, Oklahoma; its dispatch center is in Springfield, Missouri; and its maintenance crews are based in Jonesboro, Arkansas, in Gore and Tupelo, Oklahoma, and in Springfield, Missouri. Three offices - Power Marketing and Delivery, Maintenance, and Administration and Rates - are responsible for meeting Southwestern`s mission. Twelve of the 24 generating plants are scheduled directly by Southwestern, and a total of 19 contribute to the interconnected system operations. Generation at the five remaining projects (Denison, Narrows, Sam Rayburn, Whitney, and Willis) is used to serve specific customer loads. At the end of fiscal year 1995, Southwestern marketed power and energy to 10 generation and transmission cooperatives, one distribution cooperative, three military installations, 44 municipal utilities, and three municipal utility joint-action agencies. One of the joint-action agencies has its own allocation of power from Southwestern; the other two serve 33 municipal utilities to whom Southwestern has allocated power. The total number of power allocation customers is 92. Additionally, excess energy is occasionally sold to non-allocation utilities.

  3. WATERSHED BASED WEB GIS: CASE STUDY OF PALOPO WATERSHED AREA SOUTH SULAWESI, INDONESIA

    Directory of Open Access Journals (Sweden)

    Jalaluddin Rumi PRASAD

    2017-09-01

    Full Text Available Data and land resource information complete, accurate, and current is an input in management planning, evaluation, and monitoring Watershed. Implementation of this research is conducted with optimum utilization of secondary data that is supported by direct field measurement data, digitalizing the maps associated, Geographic Information Systems modeling, and model calibration. This research has resulted in a Geographic Information System Management of potential Watershed GIS Web-based or abbreviated WEB GIS MPPDAS using Palopo watershed area, South Sulawesi as a case study sites for the development of a prototype that consists of three applications the main website ie Web Portal, Web GIS, and Web Tutorial. The system is built to show online (and offline maps watershed in the administrative area of Palopo along with the location of its potential accumulated in the four (4 groups of layers, including groups of main layer (2 layer, a group of base layer (14 layers, groups of thematic layers (12 layers, a group of policy layer (8 layer. In addition to display a map, use the WEB application of GIS MPPDAS can also use tools or controls in the application to perform analyzes in its monitoring and evaluation, including: Geocoding, Add layer, Digitizing, Selection, Measurements, Graph, Filtering, Geolocation, Overlay cartographic, and etc.

  4. Watershed modeling applications in south Texas

    Science.gov (United States)

    Pedraza, Diana E.; Ockerman, Darwin J.

    2012-01-01

    Watershed models can be used to simulate natural and human-altered processes including the flow of water and associated transport of sediment, chemicals, nutrients, and microbial organisms within a watershed. Simulation of these processes is useful for addressing a wide range of water-resource challenges, such as quantifying changes in water availability over time, understanding the effects of development and land-use changes on water resources, quantifying changes in constituent loads and yields over time, and quantifying aquifer recharge temporally and spatially throughout a watershed.

  5. Watershed District

    Data.gov (United States)

    Kansas Data Access and Support Center — Boundaries show on this map are derived from legal descriptions contained in petitions to the Kansas Secretary of State for the creation or extension of watershed...

  6. Application of a virtual watershed in academic education

    OpenAIRE

    Horn , A. L.; Hörmann , G.; Fohrer , N.

    2005-01-01

    International audience; Hydrologic models of watersheds often represent complex systems which are difficult to understand regarding to their structure and dynamics. Virtual watersheds, i.e. watersheds which exist only in the virtual reality of a computer system, are an approach to simplify access to this real-world complexity. In this study we present the virtual watershed KIELSHED-1, a 117 km2 v-shaped valley with grassland on a "Cambisol" soil type. Two weather scenarios are delivered with ...

  7. Global perspective of watershed management

    Science.gov (United States)

    Kenneth N. Brooks; Karlyn Eckman

    2000-01-01

    This paper discusses the role of watershed management in moving towards sustainable natural resource and agricultural development. Examples from 30 field projects and six training projects involving over 25 countries are presented to illustrate watershed management initiatives that have been implemented over the last half of the 20th century. The level of success has...

  8. Chemical and isotopic investigations of runoff in a mountainous watershed, Venezuelan Andes (Rio Bocono)

    International Nuclear Information System (INIS)

    Cornieles, M.; Moreau, A.; Valles, V.; Travi, Y.

    1999-01-01

    The Rio Bocono watershed, located in the Western part of Venezuela on the South western side of Andes is considered by the 'Ministerio de1 Ambiente y de los Recursos Naturales Renovables' (MARN) as a priority zone for environmental management. The studies of relation between flow, dissolved elements and solid transport are essential to estimate soil degradation and sediment deposition which provokes loss of depth in the dam reservoir at the Southern margin of the basin. Because of the large surface which reach 1540 km 2 , the lack of equipment and the flash flood character of the river do not enable the flow mechanisms and transit times to be determined using usual hydrologic methods; therefore this problem has been approached by the way of chemical and isotopic investigation

  9. Feasibility study of wind-generated electricity for rural applications in southwestern Ohio

    Science.gov (United States)

    Kohring, G. W.

    The parameters associated with domestic production of wind generated electricity for direct use by small farms and rural homes in the southwestern Ohio region are discussed. The project involves direct utility interfaced electricity generation from a horizontal axis, down-wind, fixed pitch, wind powered induction generator system. Goals of the project are to determine: the ability to produce useful amounts of domestic wind generated electricity in the southwestern Ohio region; economic justification for domestic wind generated electrical production; and the potential of domestic wind generated electricity for reducing dependence on non-renewable energy resources in the southwestern Ohio region.

  10. Evaluation of an Empirical Reservoir Shape Function to Define Sediment Distributions in Small Reservoirs

    Directory of Open Access Journals (Sweden)

    Bogusław Michalec

    2015-08-01

    Full Text Available Understanding and defining the spatial distribution of sediment deposited in reservoirs is essential not only at the design stage but also during the operation. The majority of research concerns the distribution of sediment deposition in medium and large water reservoirs. Most empirical methods do not provide satisfactory results when applied to the determination of sediment deposition in small reservoirs. Small reservoir’s volumes do not exceed 5 × 106 m3 and their capacity-inflow ratio is less than 10%. Long-term silting measurements of three small reservoirs were used to evaluate the method described by Rahmanian and Banihashemi for predicting sediment distributions in small reservoirs. Rahmanian and Banihashemi stated that their model of distribution of sediment deposition in water reservoir works well for a long duration operation. In the presented study, the silting rate was used in order to determine the long duration operation. Silting rate is a quotient of volume of the sediment deposited in the reservoir and its original volume. It was stated that when the silting rate had reached 50%, the sediment deposition in the reservoir may be described by an empirical reservoir depth shape function (RDSF.

  11. Assessment of landscape change and occurrence at watershed ...

    African Journals Online (AJOL)

    ... the southern watershed zones. Monitoring land cover change at the watershed scale is more indicative of impact level and where efforts for managing and conserving the urban landscape should be prioritized. Key words: Urban expansion, land cover type, remote sensing, watershed units, urban landscape conservation.

  12. Estimates the Effects of Benthic Fluxes on the Water Quality of the Reservoir

    Science.gov (United States)

    Lee, H.; Huh, I. A.; Park, S.; Choi, J. H.

    2014-12-01

    Reservoirs located in highly populated and industrialized regions receive discharges of nutrients and pollutants from the watershed that have great potential to impair water quality and threaten aquatic life. The Euiam reservoir is a multiple-purpose water body used for tourism, fishery, and water supply and has been reported as eutrophic since 1990s. The external nutrients loading is considered to be the main cause of eutrophication of water bodies, and control strategies therefore focus on its reduction. However, algae blooms often continue even after external nutrients loading has been controlled, being benthic nutrient loading the main source of nutrients in the water column. Attempts to quantify benthic nutrients fluxes and their role as a source of nutrients to the water column have produced ambiguous results. Benthic flux is dependent on the upward flow of pore water caused by hydrostatic pressure, molecular diffusion, and mixing of sediment and water. In addition, it is controlled by dissolved oxygen (DO) levels, pH values and temperature in the overlying water. Therefore, linking a benthic flux to a water quality model should give us more insight on the effects of benthic fluxes to better quantify nutrient concentration within an entire reservoir system where physical, chemical, biological properties are variable. To represent temporal and spatial variations in the nutrient concentrations of the reservoir, a three-dimensional time variable model, Generalized Longitudinal-Lateral-Vertical Hydrodynamic and Transport (GLLVHT) was selected. The GLLVHT model is imbedded within the Generalized Environmental Modeling System for Surface waters (GEMSS). The computational grid of the three-dimensional model was developed using the GIS. The horizontal grid is composed of 580 active cells at the surface layer with spacing varies from 54.2 m to 69.8 m. There are 15 vertical layers with uniform thickness of 1.9 m resolution. To calibrate the model, model prediction for

  13. A water resources model to explore the implications of energy alternatives in the southwestern US

    Science.gov (United States)

    Yates, D.; Averyt, Kristen; Flores-Lopez, Francisco; Meldrum, J.; Sattler, S.; Sieber, J.; Young, C.

    2013-12-01

    This letter documents the development and validation of a climate-driven, southwestern-US-wide water resources planning model that is being used to explore the implications of extended drought and climate warming on the allocation of water among competing uses. These model uses include a separate accounting for irrigated agriculture; municipal indoor use based on local population and per-capita consumption; climate-driven municipal outdoor turf and amenity watering; and thermoelectric cooling. The model simulates the natural and managed flows of rivers throughout the southwest, including the South Platte, the Arkansas, the Colorado, the Green, the Salt, the Sacramento, the San Joaquin, the Owens, and more than 50 others. Calibration was performed on parameters of land cover, snow accumulation and melt, and water capacity and hydraulic conductivity of soil horizons. Goodness of fit statistics and other measures of performance are shown for a select number of locations and are used to summarize the model’s ability to represent monthly streamflow, reservoir storages, surface and ground water deliveries, etc, under 1980-2010 levels of sectoral water use.

  14. Application of a virtual watershed in academic education

    Directory of Open Access Journals (Sweden)

    A. L. Horn

    2005-01-01

    Full Text Available Hydrologic models of watersheds often represent complex systems which are difficult to understand regarding to their structure and dynamics. Virtual watersheds, i.e. watersheds which exist only in the virtual reality of a computer system, are an approach to simplify access to this real-world complexity. In this study we present the virtual watershed KIELSHED-1, a 117 km2 v-shaped valley with grassland on a "Cambisol" soil type. Two weather scenarios are delivered with the watershed: a simplified artificial weather scenario based on long-term data of a German weather station as well as an unmodified data record. The input data and parameters are compiled according to the conventions of the SWAT 2000 hydrological model. KIELSHED-1 is mainly used for education, and illustrative application examples, i.e. calculation of water balance, model calibration, development of land use scenarios, give an insight to the capabilities of the virtual watershed.

  15. Understanding toxicity at the watershed scale : design of the Syncrude Sandhill Fen watershed research project

    International Nuclear Information System (INIS)

    Wytrykush, C.

    2010-01-01

    Fens are peat-accumulating wetlands with a water table consisting of mineral-rich ground or surface water. This study discussed the construction of a fen-type reclaimed wetland constructed in a post-mining oil sands landscape. Syncrude Canada's Sandhill fen watershed project represents the first attempt at constructing a fen wetland in the oil sands region. The wetland and its watershed will be constructed on a soft tailings deposit. The design basis for the fen and watershed was developed by a team of researchers and scientists. The aim of the fen design was to control the salinity caused by tailings consolidation and seepage over time. Methods of mitigating potentially toxic effects from salinity were discussed.

  16. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    Directory of Open Access Journals (Sweden)

    Indrajeet Chaubey

    2010-11-01

    Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.

  17. Modeling reservoir geomechanics using discrete element method : Application to reservoir monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Alassi, Haitham Tayseer

    2008-09-15

    Understanding reservoir geomechanical behavior is becoming more and more important for the petroleum industry. Reservoir compaction, which may result in surface subsidence and fault reactivation, occurs during reservoir depletion. Stress changes and possible fracture development inside and outside a depleting reservoir can be monitored using time-lapse (so-called '4D') seismic and/or passive seismic, and this can give valuable information about the conditions of a given reservoir during production. In this study we will focus on using the (particle-based) Discrete Element Method (DEM) to model reservoir geomechanical behavior during depletion and fluid injection. We show in this study that DEM can be used in modeling reservoir geomechanical behavior by comparing results obtained from DEM to those obtained from analytical solutions. The match of the displacement field between DEM and the analytical solution is good, however there is mismatch of the stress field which is related to the way stress is measured in DEM. A good match is however obtained by measuring the stress field carefully. We also use DEM to model reservoir geomechanical behavior beyond the elasticity limit where fractures can develop and faults can reactivate. A general technique has been developed to relate DEM parameters to rock properties. This is necessary in order to use correct reservoir geomechanical properties during modeling. For any type of particle packing there is a limitation that the maximum ratio between P- and S-wave velocity Vp/Vs that can be modeled is 3 . The static behavior for a loose packing is different from the dynamic behavior. Empirical relations are needed for the static behavior based on numerical test observations. The dynamic behavior for both dense and loose packing can be given by analytical relations. Cosserat continuum theory is needed to derive relations for Vp and Vs. It is shown that by constraining the particle rotation, the S-wave velocity can be

  18. Integrated Modeling System for Analysis of Watershed Water Balance: A Case Study in the Tims Branch Watershed, South Carolina

    Science.gov (United States)

    Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.

    2015-12-01

    The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims

  19. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT ...

    Science.gov (United States)

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execution of the Soil Water Assessment Tool (SWAT) and KINEmatic Runoff and EROSion (KINEROS2) hydrologic models. The application of these two models allows AGWA to conduct hydrologic modeling and watershed assessments at multiple temporal and spatial scales. AGWA’s current outputs are runoff (volumes and peaks) and sediment yield, plus nitrogen and phosphorus with the SWAT model. AGWA uses commonly available GIS data layers to fully parameterize, execute, and visualize results from both models. Through an intuitive interface the user selects an outlet from which AGWA delineates and discretizes the watershed using a Digital Elevation Model (DEM) based on the individual model requirements. The watershed model elements are then intersected with soils and land cover data layers to derive the requisite model input parameters. The chosen model is then executed, and the results are imported back into AGWA for visualization. This allows managers to identify potential problem areas where additional monitoring can be undertaken or mitigation activities can be focused. AGWA also has tools to apply an array of best management practices. There are currently two versions of AGWA available; AGWA 1.5 for

  20. Watershed Profiles and Stream-net Structure of Vesuvio Volcano, Italy

    Science.gov (United States)

    Lin, Z.; Oguchi, T.; Komatsu, G.

    2006-12-01

    Watershed topography including stream-net structure in 32 watersheds of Vesuvio Volcano was analyzed using a DEM with a 20-m resolution, with special attention to geomorphological differences between the northern ?0-8 area and the other areas. The longitudinal and transverse profiles and stream-nets of the watersheds were extracted from the DEM. Drainage density and statistical morphometric parameters representing the shape of the profiles were investigated, and their relations with other basic morphometric parameters such as slope angle were examined. The relationships between drainage density and slope angle for each watershed can be divided into two types: Type 1 - negative correlation and Type 2 - convex-form correlation. The Type 2 watersheds have smaller bifurcation ratios and larger low-order stream lengths than the Type 1 watersheds, indicating that low-order streams in the Type 2 watersheds are more integrated. The results of longitudinal and transverse profile analyses also show that the topography of the Type 2 watersheds is simpler and more organized than that of the Type 1 watersheds, suggesting that the Type 2 watersheds are closer to equilibrium conditions. The Type 2 watersheds are located in the steepest and highest part of the somma area, where only limited eruption products have been deposited during the Holocene, due to the existence of the high and steep outer rim of the caldera at the top of the volcano. The results including the existence of the two types are similar to those from non-volcanic watersheds in Japan, indicating that stream-net studies combined with profile analysis using DEMs are effective in discussing the erosional stages of watersheds.

  1. Coastal watershed management across an international border in the Tijuana River watershed

    Science.gov (United States)

    Fernandez, Linda

    2005-05-01

    The paper develops and applies a game theoretic model of upstream and downstream countries to examine cooperative and noncooperative strategies of a common watershed. The application to the Tijuana River watershed shared by the United States and Mexico provides quantification of the strategies for internalizing water quality externalities to upstream and downstream originating from sedimentation. Results show that different transfer payments, such as the Chander/Tulkens cost sharing rule and the Shapley value, imply the size of the existing transfer from downstream to upstream could increase the amount currently allocated.

  2. Assessing internal biophysical vulnerability to landslide hazards - a nested catchment approach: Xiangxi Watershed / Three Gorges Reservoir

    Science.gov (United States)

    Wiegand, Matthias; Seeber, Christoph; Hartmann, Heike; Xiang, Wei; King, Lorenz

    2010-05-01

    The Three Gorges dam construction was completed in 2006. Besides the international media, also the responsible authorities and various scholarly communities pay close attention to potential and actual environmental impacts related to the impoundment and development activities. The geo-environment within the Three Gorges region is highly conducive to landslides. Consequently, a scientific monitoring and risk mitigation system was established and is still under development. Risk analysis with regard to gravity driven mass movements is highly complex and strongly site specific - several aspects hamper a universal methodology applicable for landslide risk and site assessment. The interdisciplinary Sino-German Yangtze-Project Research co-operation aims, among others, to support the sustainable cultivation of the newly developed ecosystems within the Yangtze catchments. Land use change and increasing population growth are causing severe pressure on the scarce land resources. Landslides are acknowledged as important threat, hence vulnerability of certain landscape components have to be identified, quantified and monitored. A nested quantitative approach for vulnerability analysis is developed. The applied risk and vulnerability model understands risk as the product of hazard and vulnerability. Whereas vulnerability is characterized by: mass movement intensity and susceptibility of the respective element at risk. The watershed of Xiangxi river serves as study area. In general, catchment approaches intent and proved to be a functional geographical unit for successful integrated resources management. Several limitations with regard to data accessibility, availability and accuracy have to be considered due to restrictions of feasible scales. Comprehensive large-scale site investigations are confined to training areas for model calibration and validation. Remote sensing potentials are utilised for land use/ land cover change analysis and localization of selected elements

  3. Suspended-sediment and turbidity responses to sediment and turbidity reduction projects in the Beaver Kill, Stony Clove Creek, and Warner Creek, Watersheds, New York, 2010–14

    Science.gov (United States)

    Siemion, Jason; McHale, Michael R.; Davis, Wae Danyelle

    2016-12-05

    Suspended-sediment concentrations (SSCs) and turbidity were monitored within the Beaver Kill, Stony Clove Creek, and Warner Creek tributaries to the upper Esopus Creek in New York, the main source of water to the Ashokan Reservoir, from October 1, 2010, through September 30, 2014. The purpose of the monitoring was to determine the effects of suspended-sediment and turbidity reduction projects (STRPs) on SSC and turbidity in two of the three streams; no STRPs were constructed in the Beaver Kill watershed. During the study period, four STRPs were completed in the Stony Clove Creek and Warner Creek watersheds. Daily mean SSCs decreased significantly for a given streamflow after the STRPs were completed. The most substantial decreases in daily mean SSCs were measured at the highest streamflows. Background SSCs, as measured in water samples collected in upstream reference stream reaches, in all three streams in this study were less than 5 milligrams per liter during low and high streamflows. Longitudinal stream sampling identified stream reaches with failing hillslopes in contact with the stream channel as the primary sediment sources in the Beaver Kill and Stony Clove Creek watersheds.

  4. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  5. McKenzie River Watershed Coordination, Annual Report 2001-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Thrailkil, Jim

    2003-11-01

    BPA funding, in conjunction with contributions from numerous partners organizations and grant funds supports the McKenzie Watershed Council's (MWC) efforts to coordinate restoration and monitoring programs of federal, state, local government, and residents within the watershed. Primary goals of the MWC are to improve resource stewardship and conserve fish, wildlife, and water quality resources. Underpinning the goals is the MWC's baseline program centered on relationship building and information sharing. Objectives for FY02 included: (1) Continue to coordinate McKenzie Watershed activities among diverse groups to restore fish and wildlife habitat in the watershed, with a focus on the middle to lower McKenzie, including private lands and the McKenzie-Willamette confluence area; (2) Influence behavior of watershed residents to benefit watershed function though an outreach and education program, utilizing (BPA funded) Assessment and Conservation Strategy information to provide a context for prioritized action; (3) Continue to maintain and sustain a highly functional watershed council; (4) Maintain and improve water quality concerns through the continuation of Council-sponsored monitoring and evaluation programs; and (5) Continue to secure other funding for watershed restoration and protection projects and Council operations.

  6. Temporal variability in water quality parameters--a case study of drinking water reservoir in Florida, USA.

    Science.gov (United States)

    Toor, Gurpal S; Han, Lu; Stanley, Craig D

    2013-05-01

    Our objective was to evaluate changes in water quality parameters during 1983-2007 in a subtropical drinking water reservoir (area: 7 km(2)) located in Lake Manatee Watershed (area: 338 km(2)) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of water quality threshold of 20 μg l(-1). Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983-2007. Mean concentrations of total N (n = 215; 1.24 mg l(-1)) were lower, and total P (n = 286; 0.26 mg l(-1)) was much higher than the EPA numeric criteria of 1.27 mg total N l(-1) and 0.05 mg total P l(-1) for Florida's colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June-September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.

  7. Environmental Factors Affecting Mercury in Camp Far West Reservoir, California, 2001-03

    Science.gov (United States)

    Alpers, Charles N.; Stewart, A. Robin; Saiki, Michael K.; Marvin-DiPasquale, Mark C.; Topping, Brent R.; Rider, Kelly M.; Gallanthine, Steven K.; Kester, Cynthia A.; Rye, Robert O.; Antweiler, Ronald C.; De Wild, John F.

    2008-01-01

    water were observed in samples collected during summer from deepwater stations in the anoxic hypolimnion. In the shallow (less than 14 meters depth) oxic epilimnion, concentrations of methylmercury in unfiltered water were highest during the spring and lowest during the fall. The ratio of methylmercury to total mercury (MeHg/HgT) increased systematically from winter to spring to summer, largely in response to the progressive seasonal decrease in total mercury concentrations, but also to some extent because of increases in MeHg concentrations during summer. Water-quality data for Camp Far West Reservoir are used in conjunction with data from linked studies of sediment and biota to develop and refine a conceptual model for mercury methylation and bioaccumulation in the reservoir and the lower Bear River watershed. It is hypothesized that MeHg is produced by sulfate-reducing bacteria in the anoxic parts of the water column and in shallow bed sediment. Conditions were optimal for this process during late summer and fall. Previous work has indicated that Camp Far West Reservoir is a phosphate-limited system - molar ratios of inorganic nitrogen to inorganic phosphorus in filtered water were consistently greater than 16 (the Redfield ratio), sometimes by orders of magnitude. Therefore, concentrations of orthophosphate were expectedly very low or below detection at all stations during all seasons. It is further hypothesized that iron-reducing bacteria facilitate release of phosphorus from iron-rich sediments during summer and early fall, stimulating phytoplankton growth in the fall and winter, and that the MeHg produced in the hypolimnion and metalimnion is released to the entire water column in the late fall during reservoir destratification (vertical mixing). Mercury bioaccumulation factors (BAF) were computed using data from linked studies of biota spanning a range of trophic position: zooplankton, midge larvae, mayfly nymphs, crayfish, threadfin shad, bluegill,

  8. [Evaluation on the eco-economic benefits of small watershed in Beijing mountainous area: a case of Yanqi River watershed].

    Science.gov (United States)

    Xiao, Hui-Jie; Wei, Zi-Gang; Wang, Qing; Zhu, Xiao-Bo

    2012-12-01

    Based on the theory of harmonious development of ecological economy, a total of 13 evaluation indices were selected from the ecological, economic, and social sub-systems of Yanqi River watershed in Huairou District of Beijing. The selected evaluation indices were normalized by using trapezoid functions, and the weights of the evaluation indices were determined by analytic hierarchy process. Then, the eco-economic benefits of the watershed were evaluated with weighted composite index method. From 2004 to 2011, the ecological, economic, and social benefits of Yanqi River watershed all had somewhat increase, among which, ecological benefit increased most, with the value changed from 0.210 in 2004 to 0.255 in 2011 and an increment of 21.5%. The eco-economic benefits of the watershed increased from 0.734 in 2004 to 0.840 in 2011, with an increment of 14.2%. At present, the watershed reached the stage of advanced ecosystem, being in beneficial circulation and harmonious development of ecology, economy, and society.

  9. Problems with the dating of sediment core using excess 210Pb in a freshwater system impacted by large scale watershed changes

    International Nuclear Information System (INIS)

    Baskaran, Mark; Nix, Joe; Kuyper, Clark; Karunakara, N.

    2014-01-01

    Pb-210 dating of freshwater and coastal sediments have been extensively conducted over the past 40 years for historical pollution reconstruction studies, sediment focusing, sediment accumulation and mixing rate determination. In areas where there is large scale disturbance of sediments and the watershed, the vertical profiles of excess 210 Pb ( 210 Pb xs ) could provide erroneous or less reliable information on sediment accumulation rates. We analyzed one sediment core from Hendrix Lake in southwestern Arkansas for excess 210 Pb and 137 Cs. There is no decrease in excess 210 Pb activity with depth while the 137 Cs profile indicates sharp peak corresponding to 1963 and the 137 Cs penetration depth of 137 Cs corresponds to 1952. The historical data on the accelerated mercury mining during 1931–1944 resulted in large-scale Hg input to this watershed. Using the peak Hg activity as a time marker, the obtained sediment accumulation rates agree well with the 137 Cs-based rates. Four independent evidences (two-marker events based on 137 Cs and two marker events based on Hg mining activity) result in about the same sedimentation rates and thus, we endorse earlier suggestion that 210 Pb profile always needs to be validated with at least one another independent method. We also present a concise discussion on what important factors that can affect the vertical profiles of 210 Pb xs in relatively smaller lakes

  10. Grays River Watershed Geomorphic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habitat.

  11. SILTATION IN RESERVOIRS

    African Journals Online (AJOL)

    Keywords: reservoir model, siltation, sediment, catchment, sediment transport. 1. Introduction. Sediment ... rendered water storage structures useless in less than 25 years. ... reservoir, thus reducing the space available for water storage and ...

  12. A habitat overlap analysis derived from maxent for tamarisk and the south-western willow flycatcher

    Science.gov (United States)

    York, Patricia; Evangelista, Paul; Kumar, Sunil; Graham, James; Flather, Curtis; Stohlgren, Thomas

    2011-06-01

    Biologic control of the introduced and invasive, woody plant tamarisk ( Tamarix spp, saltcedar) in south-western states is controversial because it affects habitat of the federally endangered South-western Willow Flycatcher ( Empidonax traillii extimus). These songbirds sometimes nest in tamarisk where floodplain-level invasion replaces native habitats. Biologic control, with the saltcedar leaf beetle ( Diorhabda elongate), began along the Virgin River, Utah, in 2006, enhancing the need for comprehensive understanding of the tamarisk-flycatcher relationship. We used maximum entropy (Maxent) modeling to separately quantify the current extent of dense tamarisk habitat (>50% cover) and the potential extent of habitat available for E. traillii extimus within the studied watersheds. We used transformations of 2008 Landsat Thematic Mapper images and a digital elevation model as environmental input variables. Maxent models performed well for the flycatcher and tamarisk with Area Under the ROC Curve (AUC) values of 0.960 and 0.982, respectively. Classification of thresholds and comparison of the two Maxent outputs indicated moderate spatial overlap between predicted suitable habitat for E. traillii extimus and predicted locations with dense tamarisk stands, where flycatcher habitat will potentially change flycatcher habitats. Dense tamarisk habitat comprised 500 km2 within the study area, of which 11.4% was also modeled as potential habitat for E. traillii extimus. Potential habitat modeled for the flycatcher constituted 190 km2, of which 30.7% also contained dense tamarisk habitat. Results showed that both native vegetation and dense tamarisk habitats exist in the study area and that most tamarisk infestations do not contain characteristics that satisfy the habitat requirements of E. traillii extimus. Based on this study, effective biologic control of Tamarix spp. may, in the short term, reduce suitable habitat available to E. traillii extimus, but also has the potential

  13. 18 CFR 801.9 - Watershed management.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Watershed management... GENERAL POLICIES § 801.9 Watershed management. (a) The character, extent, and quality of water resources... management including soil and water conservation measures, land restoration and rehabilitation, erosion...

  14. Optimal Operation of Hydropower Reservoirs under Climate Change: The Case of Tekeze Reservoir, Eastern Nile

    Directory of Open Access Journals (Sweden)

    Fikru Fentaw Abera

    2018-03-01

    Full Text Available Optimal operation of reservoirs is very essential for water resource planning and management, but it is very challenging and complicated when dealing with climate change impacts. The objective of this paper was to assess existing and future hydropower operation at the Tekeze reservoir in the face of climate change. In this study, a calibrated and validated Soil and Water Assessment Tool (SWAT was used to model runoff inflow into the Tekeze hydropower reservoir under present and future climate scenarios. Inflow to the reservoir was simulated using hydro-climatic data from an ensemble of downscaled climate data based on the Coordinated Regional climate Downscaling Experiment over African domain (CORDEX-Africa with Coupled Intercomparison Project Phase 5 (CMIP5 simulations under Representative Concentration Pathway (RCP4.5 and RCP8.5 climate scenarios. Observed and projected inflows to Tekeze hydropower reservoir were used as input to the US Army Corps of Engineer’s Reservoir Evaluation System Perspective Reservoir Model (HEC-ResPRM, a reservoir operation model, to optimize hydropower reservoir release, storage and pool level. Results indicated that climate change has a clear impact on reservoir inflow and showed increase in annual and monthly inflow into the reservoir except in dry months from May to June under RCP4.5 and RCP8.5 climate scenarios. HEC-ResPRM optimal operation results showed an increase in Tekeze reservoir power storage potential up to 25% and 30% under RCP4.5 and RCP8.5 climate scenarios, respectively. This implies that Tekeze hydropower production will be affected by climate change. This analysis can be used by water resources planners and mangers to develop reservoir operation techniques considering climate change impact to increase power production.

  15. Improving reservoir history matching of EM heated heavy oil reservoirs via cross-well seismic tomography

    KAUST Repository

    Katterbauer, Klemens

    2014-01-01

    Enhanced recovery methods have become significant in the industry\\'s drive to increase recovery rates from oil and gas reservoirs. For heavy oil reservoirs, the immobility of the oil at reservoir temperatures, caused by its high viscosity, limits the recovery rates and strains the economic viability of these fields. While thermal recovery methods, such as steam injection or THAI, have extensively been applied in the field, their success has so far been limited due to prohibitive heat losses and the difficulty in controlling the combustion process. Electromagnetic (EM) heating via high-frequency EM radiation has attracted attention due to its wide applicability in different environments, its efficiency, and the improved controllability of the heating process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase recovery rates. Limited research has been undertaken so far to capture the nonlinear reservoir dynamics and significantly varying flow rates for thermally heated heavy oil reservoir that may notably change production rates and render conventional history matching frameworks more challenging. We present a new history matching framework for EM heated heavy oil reservoirs incorporating cross-well seismic imaging. Interfacing an EM heating solver to a reservoir simulator via Andrade’s equation, we couple the system to an ensemble Kalman filter based history matching framework incorporating a cross-well seismic survey module. With increasing power levels and heating applied to the heavy oil reservoirs, reservoir dynamics change considerably and may lead to widely differing production forecasts and increased uncertainty. We have shown that the incorporation of seismic observations into the EnKF framework can significantly enhance reservoir simulations, decrease forecasting

  16. Watershed Management Optimization Support Tool (WMOST) ...

    Science.gov (United States)

    EPA's Watershed Management Optimization Support Tool (WMOST) version 2 is a decision support tool designed to facilitate integrated water management by communities at the small watershed scale. WMOST allows users to look across management options in stormwater (including green infrastructure), wastewater, drinking water, and land conservation programs to find the least cost solutions. The pdf version of these presentations accompany the recorded webinar with closed captions to be posted on the WMOST web page. The webinar was recorded at the time a training workshop took place for EPA's Watershed Management Optimization Support Tool (WMOST, v2).

  17. Nagylengyel: an interesting reservoir. [Yugoslovia

    Energy Technology Data Exchange (ETDEWEB)

    Dedinszky, J

    1971-04-01

    The Nagylengyel oil field, discovered in 1951, has oil-producing formations mostly in the Upper-Triassic dolomites, in the Norian-Ractian transition formations, in the Upper-Cretaceous limestones and shales, and in the Miocene. The formation of the reservoir space occurred in many stages. A porous, cavernous fractured reservoir is developed in the Norian principal dolomite. A cavernous fractured reservoir exists in the Cretaceous limestone and in the Cretaceous shale and porous fractured reservoir is developed in the Miocene. The derivation of the model of the reservoir, and the conservative evaluation of the volume of the reservoir made it possible to use secondary recovery.

  18. DNR Watersheds - DNR Level 02 - HUC 04

    Data.gov (United States)

    Minnesota Department of Natural Resources — These data consists of watershed delineations in one seamless dataset of drainage areas called Minnesota Department of Natural Resources (DNR) Level 02 Watersheds....

  19. Linking Resilience of Aquatic Species to Watershed Condition

    Science.gov (United States)

    Flitcroft, R. L.

    2017-12-01

    Watershed condition means different things to different people. From the perspective of aquatic ecology, watershed condition may be interpreted to mean the capacity of a watershed to support life history diversity of native species. Diversity in expression of life history is thought to confer resilience allowing portions of the broader population to survive stressful conditions. Different species have different life history strategies, many of which were developed through adaptation to regional or local environmental conditions and natural disturbance regimes. By reviewing adaptation strategies for species of interest at regional scales, characteristics of watersheds that confer resilience may be determined. Such assessments must be completed at multiple levels of spatial organization (i.e. sub-watershed, watershed, region) allowing assessments to be inferred across broad spatial extents. In a project on the Wenatchee River watershed, we guided models of wildfire effects on bull trout and spring Chinook from a meta-population perspective to determine risks to survival at local and population scales over multiple extents of spatial organization. In other work in the Oregon Coast Range, we found that historic landslides continue to exert habitat-forming pressure at local scales, leading to patchiness in distribution of habitats for different life stages of coho salmon. Further, climate change work in Oregon estuaries identified different vulnerabilities in terms of juvenile rearing habitat depending on the species of interest and the intensity of future changes in climate. All of these studies point to the importance of considering physical conditions in watersheds at multiple spatial extents from the perspective of native aquatic species in order to understand risks to long-term survival. The broader implications of watershed condition, from this perspective, is the determination of physical attributes that confer resilience to native biota. This may require

  20. Understanding Human Impact: Second Graders Explore Watershed Dynamics

    Science.gov (United States)

    Magruder, Robin; Rosenauer, Julia

    2016-01-01

    This article describes a second grade science enrichment unit with a focus on human impact, both positive and negative, on the living and nonliving components of the local watershed. Investigating the local watershed gave the unit a personal and pragmatic connection to students' lives because they depend on the local watershed for what they need…

  1. Experimental Watershed Study Designs: A Tool for Advancing Process Understanding and Management of Mixed-Land-Use Watersheds

    Science.gov (United States)

    Hubbart, J. A.; Kellner, R. E.; Zeiger, S. J.

    2016-12-01

    Advancements in watershed management are both a major challenge, and urgent need of this century. The experimental watershed study (EWS) approach provides critical baseline and long-term information that can improve decision-making, and reduce misallocation of mitigation investments. Historically, the EWS approach was used in wildland watersheds to quantitatively characterize basic landscape alterations (e.g. forest harvest, road building). However, in recent years, EWS is being repurposed in contemporary multiple-land-use watersheds comprising a mosaic of land use practices such as urbanizing centers, industry, agriculture, and rural development. The EWS method provides scalable and transferrable results that address the uncertainties of development, while providing a scientific basis for total maximum daily load (TMDL) targets in increasing numbers of Clean Water Act 303(d) listed waters. Collaborative adaptive management (CAM) programs, designed to consider the needs of many stakeholders, can also benefit from EWS-generated information, which can be used for best decision making, and serve as a guidance tool throughout the CAM program duration. Of similar importance, long-term EWS monitoring programs create a model system to show stakeholders how investing in rigorous scientific research initiatives improves decision-making, thereby increasing management efficiencies through more focused investments. The evolution from classic wildland EWS designs to contemporary EWS designs in multiple-land-use watersheds will be presented while illustrating how such an approach can encourage innovation, cooperation, and trust among watershed stakeholders working to reach the common goal of improving and sustaining hydrologic regimes and water quality.

  2. Model My Watershed: A high-performance cloud application for public engagement, watershed modeling and conservation decision support

    Science.gov (United States)

    Aufdenkampe, A. K.; Tarboton, D. G.; Horsburgh, J. S.; Mayorga, E.; McFarland, M.; Robbins, A.; Haag, S.; Shokoufandeh, A.; Evans, B. M.; Arscott, D. B.

    2017-12-01

    The Model My Watershed Web app (https://app.wikiwatershed.org/) and the BiG-CZ Data Portal (http://portal.bigcz.org/) and are web applications that share a common codebase and a common goal to deliver high-performance discovery, visualization and analysis of geospatial data in an intuitive user interface in web browser. Model My Watershed (MMW) was designed as a decision support system for watershed conservation implementation. BiG CZ Data Portal was designed to provide context and background data for research sites. Users begin by creating an Area of Interest, via an automated watershed delineation tool, a free draw tool, selection of a predefined area such as a county or USGS Hydrological Unit (HUC), or uploading a custom polygon. Both Web apps visualize and provide summary statistics of land use, soil groups, streams, climate and other geospatial information. MMW then allows users to run a watershed model to simulate different scenarios of human impacts on stormwater runoff and water-quality. BiG CZ Data Portal allows users to search for scientific and monitoring data within the Area of Interest, which also serves as a prototype for the upcoming Monitor My Watershed web app. Both systems integrate with CUAHSI cyberinfrastructure, including visualizing observational data from CUAHSI Water Data Center and storing user data via CUAHSI HydroShare. Both systems also integrate with the new EnviroDIY Water Quality Data Portal (http://data.envirodiy.org/), a system for crowd-sourcing environmental monitoring data using open-source sensor stations (http://envirodiy.org/mayfly/) and based on the Observations Data Model v2.

  3. Chapter 19. Cumulative watershed effects and watershed analysis

    Science.gov (United States)

    Leslie M. Reid

    1998-01-01

    Cumulative watershed effects are environmental changes that are affected by more than.one land-use activity and that are influenced by.processes involving the generation or transport.of water. Almost all environmental changes are.cumulative effects, and almost all land-use.activities contribute to cumulative effects

  4. Streamflow, groundwater hydrology, and water quality in the upper Coleto Creek watershed in southeast Texas, 2009–10

    Science.gov (United States)

    Braun, Christopher L.; Lambert, Rebecca B.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Goliad County Groundwater Conservation District, Victoria County Groundwater Conservation District, Pecan Valley Groundwater Conservation District, Guadalupe-Blanco River Authority, and San Antonio River Authority, did a study to examine the hydrology and stream-aquifer interactions in the upper Coleto Creek watershed. Findings of the study will enhance the scientific understanding of the study-area hydrology and be used to support water-management decisions to help ensure protection of the Evangeline aquifer and surface-water resources in the study area. This report describes the results of streamflow measurements, groundwater-level measurements, and water quality (from both surface-water and groundwater sites) collected from three sampling events (July–August 2009, January 2010, and June 2010) designed to characterize groundwater (from the Evangeline aquifer) and surface water, and the interaction between them, in the upper Coleto Creek watershed upstream from Coleto Creek Reservoir in southeast Texas. This report also provides a baseline level of water quality for the upper Coleto Creek watershed. Three surface-water gain-loss surveys—July 29–30, 2009, January 11–13, 2010, and June 21–22, 2010—were done under differing hydrologic conditions to determine the locations and amounts of streamflow recharging or discharging from the Evangeline aquifer. During periods when flow in the reaches of the upper Coleto Creek watershed was common (such as June 2010, when 12 of 25 reaches were flowing) or probable (such as January 2010, when 22 of 25 reaches were flowing), most of the reaches appeared to be gaining (86 percent in January 2010 and 92 percent in June 2010); however, during drought conditions (July 2009), streamflow was negligible in the entire upper Coleto Creek watershed; streamflow was observed in only two reaches during this period, one that receives inflow directly from Audilet Spring and

  5. Iskuulpa Watershed Management Plan : A Five-Year Plan for Protecting and Enhancing Fish and Wildlife Habitats in the Iskuulpa Watershed.

    Energy Technology Data Exchange (ETDEWEB)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    2003-01-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to protect, enhance, and mitigate wildlife and wildlife habitat and watershed resources in the Iskuulpa Watershed. The Iskuulpa Watershed Project was approved as a Columbia River Basin Wildlife Fish and Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1998. Iskuulpa will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the John Day and McNary Hydroelectric facilities on the Columbia River. By funding the enhancement and operation and maintenance of the Iskuulpa Watershed, BPA will receive credit towards their mitigation debt. The purpose of the Iskuulpa Watershed management plan update is to provide programmatic and site-specific standards and guidelines on how the Iskuulpa Watershed will be managed over the next three years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management.

  6. Watershed manipulation project: Field implementation plan for 1990-1992

    International Nuclear Information System (INIS)

    Erickson, H.; Narahara, A.M.; Rustad, L.E.; Mitchell, M.; Lee, J.

    1993-02-01

    The Bear Brook Watershed in Maine (BBWM) was established in 1986 at Lead Mountain, Maine as part of the Environmental Protection Agency's (EPA) Watershed Manipulation Project (WPM). The goals of the project are to: (1) assess the chemical response of a small upland forested watershed to increased loadings of SO4, (2) determine interactions among biogeochemical mechanisms controlling watershed response to acidic deposition, and (3) test the assumptions of the Direct/Delayed Response Programs (DDRP) computer models of watershed acidification. The document summarizes the field procedures used in the establishment and initial implementation of the plot- and catchment- scale activities at the BBWM, and outlines plans for 1990-02 project activities

  7. [Sediment-water flux and processes of nutrients and gaseous nitrogen release in a China River Reservoir].

    Science.gov (United States)

    Chen, Zhu-hong; Chen, Neng-wang; Wu, Yin-qi; Mo, Qiong-li; Zhou, Xing-peng; Lu, Ting; Tian, Yun

    2014-09-01

    The key processes and fluxes of nutrients (N and P) and gaseous N (N2 and N2O) across the sediment-water interface in a river reservoir (Xipi) of the Jiulong River watershed in southeast China were studied. Intact core sediment incubation of nutrients exchange, in-situ observation and lab incubation of excess dissolved N2 and N2O (products of nitrification, denitrification and Anammox), and determination of physiochemical and microbe parameters were carried out in 2013 for three representative sites along the lacustrine zone of the reservoir. Results showed that ammonium and phosphate were generally released from sediment to overlying water [with averaged fluxes of N (479.8 ± 675.4) mg. (m2. d)-1 and P (4. 56 ± 0.54) mg. (m2 d) -1] , while nitrate and nitrite diffused into the sediment. Flood events in the wet season could introduce a large amount of particulate organic matter that would be trapped by the dam reservoir, resulting in the high release fluxes of ammonium and phosphate observed in the following low-flow season. No clear spatial variation of sediment nutrient release was found in the lacustrine zone of the reservoir. Gaseous N release was dominated by excess dissolved N2 (98% of total), and the N2 flux from sediment was (15.8 ± 12. 5) mg (m2. d) -1. There was a longitudinal and vertical variation of excess dissolved N2, reflecting the combined results of denitrification and Anammox occurring in anoxic sediment and fluvial transport. Nitrification mainly occurred in the lower lacustrine zone, and the enrichment of N2O was likely regulated by the ratio of ammonium to DIN in water.

  8. SHOCK-CLOUD INTERACTION AND PARTICLE ACCELERATION IN THE SOUTHWESTERN LIMB OF SN 1006

    Energy Technology Data Exchange (ETDEWEB)

    Miceli, M.; Orlando, S.; Bocchino, F. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Acero, F. [ORAU/NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Dubner, G. [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); Decourchelle, A., E-mail: miceli@astropa.unipa.it [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, F-91191 Gif-sur-Yvette (France)

    2014-02-20

    The supernova remnant SN 1006 is a powerful source of high-energy particles and evolves in a relatively tenuous and uniform environment despite interacting with an atomic cloud in its northwestern limb. The X-ray image of SN 1006 reveals an indentation in the southwestern part of the shock front and the H I maps show an isolated (southwestern) cloud, having the same velocity as the northwestern cloud, whose morphology fits perfectly in the indentation. We performed spatially resolved spectral analysis of a set of small regions in the southwestern nonthermal limb and studied the deep X-ray spectra obtained within the XMM-Newton SN 1006 Large Program. We also analyzed archive H I data, obtained by combining single-dish and interferometric observations. We found that the best-fit value of N {sub H} derived from the X-ray spectra significantly increases in regions corresponding to the southwestern cloud, while the cutoff energy of the synchrotron emission decreases. The N {sub H} variation corresponds perfectly with the H I column density of the southwestern cloud, as measured from the radio data. The decrease in the cutoff energy at the indentation clearly reveals that the back side of the cloud is actually interacting with the remnant. The southwestern limb therefore presents a unique combination of efficient particle acceleration and high ambient density, thus being the most promising region for γ-ray hadronic emission in SN 1006. We estimate that such emission will be detectable with the Fermi telescope within a few years.

  9. SHOCK-CLOUD INTERACTION AND PARTICLE ACCELERATION IN THE SOUTHWESTERN LIMB OF SN 1006

    International Nuclear Information System (INIS)

    Miceli, M.; Orlando, S.; Bocchino, F.; Acero, F.; Dubner, G.; Decourchelle, A.

    2014-01-01

    The supernova remnant SN 1006 is a powerful source of high-energy particles and evolves in a relatively tenuous and uniform environment despite interacting with an atomic cloud in its northwestern limb. The X-ray image of SN 1006 reveals an indentation in the southwestern part of the shock front and the H I maps show an isolated (southwestern) cloud, having the same velocity as the northwestern cloud, whose morphology fits perfectly in the indentation. We performed spatially resolved spectral analysis of a set of small regions in the southwestern nonthermal limb and studied the deep X-ray spectra obtained within the XMM-Newton SN 1006 Large Program. We also analyzed archive H I data, obtained by combining single-dish and interferometric observations. We found that the best-fit value of N H derived from the X-ray spectra significantly increases in regions corresponding to the southwestern cloud, while the cutoff energy of the synchrotron emission decreases. The N H variation corresponds perfectly with the H I column density of the southwestern cloud, as measured from the radio data. The decrease in the cutoff energy at the indentation clearly reveals that the back side of the cloud is actually interacting with the remnant. The southwestern limb therefore presents a unique combination of efficient particle acceleration and high ambient density, thus being the most promising region for γ-ray hadronic emission in SN 1006. We estimate that such emission will be detectable with the Fermi telescope within a few years

  10. Impact of Climate Variability and Landscape Patterns on Water Budget and Nutrient Loads in a Peri-urban Watershed: A Coupled Analysis Using Process-based Hydrological Model and Landscape Indices

    Science.gov (United States)

    Li, Chongwei; Zhang, Yajuan; Kharel, Gehendra; Zou, Chris B.

    2018-06-01

    Nutrient discharge into peri-urban streams and reservoirs constitutes a significant pressure on environmental management, but quantitative assessment of non-point source pollution under climate variability in fast changing peri-urban watersheds is challenging. Soil and Water Assessment Tool (SWAT) was used to simulate water budget and nutrient loads for landscape patterns representing a 30-year progression of urbanization in a peri-urban watershed near Tianjin metropolis, China. A suite of landscape pattern indices was related to nitrogen (N) and phosphorous (P) loads under dry and wet climate using CANOCO redundancy analysis. The calibrated SWAT model was adequate to simulate runoff and nutrient loads for this peri-urban watershed, with Nash-Sutcliffe coefficient (NSE) and coefficient of determination ( R 2) > 0.70 and percentage bias (PBIAS) between -7 and +18 for calibration and validation periods. With the progression of urbanization, forest remained the main "sink" landscape while cultivated and urban lands remained the main "source" landscapes with the role of orchard and grassland being uncertain and changing with time. Compared to 1984, the landscape use pattern in 2013 increased nutrient discharge by 10%. Nutrient loads modelled under wet climate were 3-4 times higher than that under dry climate for the same landscape pattern. Results indicate that climate change could impose a far greater impact on runoff and nutrient discharge in a peri-urban watershed than landscape pattern change.

  11. Impact of Climate Variability and Landscape Patterns on Water Budget and Nutrient Loads in a Peri-urban Watershed: A Coupled Analysis Using Process-based Hydrological Model and Landscape Indices.

    Science.gov (United States)

    Li, Chongwei; Zhang, Yajuan; Kharel, Gehendra; Zou, Chris B

    2018-06-01

    Nutrient discharge into peri-urban streams and reservoirs constitutes a significant pressure on environmental management, but quantitative assessment of non-point source pollution under climate variability in fast changing peri-urban watersheds is challenging. Soil and Water Assessment Tool (SWAT) was used to simulate water budget and nutrient loads for landscape patterns representing a 30-year progression of urbanization in a peri-urban watershed near Tianjin metropolis, China. A suite of landscape pattern indices was related to nitrogen (N) and phosphorous (P) loads under dry and wet climate using CANOCO redundancy analysis. The calibrated SWAT model was adequate to simulate runoff and nutrient loads for this peri-urban watershed, with Nash-Sutcliffe coefficient (NSE) and coefficient of determination (R 2 ) > 0.70 and percentage bias (PBIAS) between -7 and +18 for calibration and validation periods. With the progression of urbanization, forest remained the main "sink" landscape while cultivated and urban lands remained the main "source" landscapes with the role of orchard and grassland being uncertain and changing with time. Compared to 1984, the landscape use pattern in 2013 increased nutrient discharge by 10%. Nutrient loads modelled under wet climate were 3-4 times higher than that under dry climate for the same landscape pattern. Results indicate that climate change could impose a far greater impact on runoff and nutrient discharge in a peri-urban watershed than landscape pattern change.

  12. Genetic variation in the endangered Southwestern Willow Flycatcher

    Science.gov (United States)

    Busch, Joseph; Miller, Mark P.; Paxton, E.H.; Sogge, M.K.; Keim, Paul

    2000-01-01

    The Southwestern Willow Flycatcher (Empidonax traillii extimus) is an endangered Neotropical migrant that breeds in isolated remnants of dense riparian habitat in the southwestern United States. We estimated genetic variation at 20 breeding sites of the Southwestern Willow Flycatcher (290 individuals) using 38 amplified fragment length polymorphisms (AFLPs). Our results suggest that considerable genetic diversity exists within the subspecies and within local breeding sites. Statistical analyses of genetic variation revealed only slight, although significant, differentiation among breeding sites (Mantel's r = 0.0705, P UPGMA cluster analysis of the AFLP markers indicates that extensive gene flow has occurred among breeding sites. No one site stood out as being genetically unique or isolated. Therefore, the small level of genetic structure that we detected may not be biologically significant. Ongoing field studies are consistent with this conclusion. Of the banded birds that were resighted or recaptured in Arizona during the 1996 to 1998 breeding seasons, one-third moved between breeding sites and two-thirds were philopatric. Low differentiation may be the result of historically high rangewide diversity followed by recent geographic isolation of breeding sites, although observational data indicate that gene flow is a current phenomenon. Our data suggest that breeding groups of E. t. extimus act as a metapopulation.

  13. Impact of Land Use Change and Land Management on Irrigation Water Supply in Northern Java Coast

    Directory of Open Access Journals (Sweden)

    Suria DarmaTarigan

    2013-05-01

    Full Text Available In Indonesia, paddy irrigation covers an area of 7,230,183 ha. Ten percent (10% of those area or 797,971 ha were supplied by reservoirs. As many as 237,790 ha (30% of those area supplied by reservoirs are situated downstream of Citarum Watershed called Northern Java Coast Irrigation Area or Pantura. Therefore, Citarum watershed is one of the most important watershed in Indonesia. Citarum is also categorized as one of most degraded watershed in Java. The study aimed to evaluate influence of land use change on irrigation water supply in Citarum watershed and land management strategies to reduce the impact. Tremendous land use change occurred in the past ten years in Citarum watershed. Settlement areas increases more than a double during 2000 to 2009 (81,686 ha to 176,442 ha and forest area decreased from 71,750 ha to 9,899 ha in the same time period. Land use change influences irrigation water supply through 2 factors: a decreasing storage capacity of watershed (hydrologic functions for dry season, and b decreasing storage capacity of reservoirs due to the sedimentation. Change of Citarum watershed hydrologic function was analyzed using 24 years’ time series discharge data (1984-2008 in combination with rainfall data from 2000 to 2008. Due to the land use change in this time period, discharge tend to decrease despite of increasing trend of rainfall. As a result irrigation area decreased 9,355 ha during wet season and 10,170 ha during dry season in the last ten years. Another threat for sustainability of water irrigation supply is reservoir sedimentation. Sedimentation rate in the past 10 years has reduced upper Citarum reservoir (Saguling half-life period (½ capacity sedimented from 294 to 28 years. If proper land management strategies be carried out, the half-life period of Saguling reservoir can be extended up to 86,4 years

  14. Geology of the Teakettle Creek watersheds

    Science.gov (United States)

    Robert S. LaMotte

    1937-01-01

    The Teakettle Creek Experimental Watersheds lie for the most part on quartzites of probable Triassic age. However one of the triplicate drainages has a considerable acreage developed on weathered granodiorite. Topography is relatively uniform and lends itself to triplicate watershed studies. Locations for dams are suitable if certain engineering precautions...

  15. Valuing the effects of hydropower development on watershed ecosystem services: Case studies in the Jiulong River Watershed, Fujian Province, China

    Science.gov (United States)

    Wang, Guihua; Fang, Qinhua; Zhang, Luoping; Chen, Weiqi; Chen, Zhenming; Hong, Huasheng

    2010-02-01

    Hydropower development brings many negative impacts on watershed ecosystems which are not fully integrated into current decision-making largely because in practice few accept the cost and benefit beyond market. In this paper, a framework was proposed to valuate the effects on watershed ecosystem services caused by hydropower development. Watershed ecosystem services were classified into four categories of provisioning, regulating, cultural and supporting services; then effects on watershed ecosystem services caused by hydropower development were identified to 21 indicators. Thereafter various evaluation techniques including the market value method, opportunity cost approach, project restoration method, travel cost method, and contingent valuation method were determined and the models were developed to valuate these indicators reflecting specific watershed ecosystem services. This approach was applied to three representative hydropower projects (Daguan, Xizaikou and Tiangong) of Jiulong River Watershed in southeast China. It was concluded that for hydropower development: (1) the value ratio of negative impacts to positive benefits ranges from 64.09% to 91.18%, indicating that the negative impacts of hydropower development should be critically studied during its environmental administration process; (2) the biodiversity loss and water quality degradation (together accounting for 80-94%) are the major negative impacts on watershed ecosystem services; (3) the average environmental cost per unit of electricity is up to 0.206 Yuan/kW h, which is about three quarters of its on-grid power tariff; and (4) the current water resource fee accounts for only about 4% of its negative impacts value, therefore a new compensatory method by paying for ecosystem services is necessary for sustainable hydropower development. These findings provide a clear picture of both positive and negative effects of hydropower development for decision-makers in the monetary term, and also provide a

  16. A Study of the Optimal Planning Model for Reservoir Sustainable Management- A Case Study of Shihmen Reservoir

    Science.gov (United States)

    Chen, Y. Y.; Ho, C. C.; Chang, L. C.

    2017-12-01

    The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.

  17. Water-level trends and potentiometric surfaces in the Nacatoch Aquifer in northeastern and southwestern Arkansas and in the Tokio Aquifer in southwestern Arkansas, 2014–15

    Science.gov (United States)

    Rodgers, Kirk D.

    2017-09-20

    The Nacatoch Sand in northeastern and southwestern Arkansas and the Tokio Formation in southwestern Arkansas are sources of groundwater for agricultural, domestic, industrial, and public use. Water-level altitudes measured in 51 wells completed in the Nacatoch Sand and 42 wells completed in the Tokio Formation during 2014 and 2015 were used to create potentiometric-surface maps of the two areas. Aquifers in the Nacatoch Sand and Tokio Formation are hereafter referred to as the Nacatoch aquifer and the Tokio aquifer, respectively.Potentiometric surfaces show that groundwater in the Nacatoch aquifer flows southeast toward the Mississippi River in northeastern Arkansas. Groundwater flow direction is towards the south and southeast in Hempstead, Little River, and Nevada Counties in southwestern Arkansas. An apparent cone of depression exists in southern Clark County and likely alters groundwater flow from a regional direction toward the depression.In southwestern Arkansas, potentiometric surfaces indicate that groundwater flow in the Tokio aquifer is towards the city of Hope. Northwest of Hope, an apparent cone of depression exists. In southwestern Pike, northwestern Nevada, and northeastern Hempstead Counties, an area of artesian flow (water levels are at or above land surface) exists.Water-level changes in wells were identified using two methods: (1) linear regression analysis of hydrographs from select wells with a minimum of 20 years of water-level data, and (2) a direct comparison between water-level measurements from 2008 and 2014–15 at each well. Of the six hydrographs analyzed in the Nacatoch aquifer, four indicated a decline in water levels. Compared to 2008 measurements, the largest rise in water levels was 35.14 feet (ft) in a well in Clark County, whereas the largest decline was 14.76 ft in a well in Nevada County, both located in southwestern Arkansas.Of the four hydrographs analyzed in the Tokio aquifer, one indicated a decline in water levels, while

  18. 5. Basin assessment and watershed analysis

    Science.gov (United States)

    Leslie M. Reid; Robert R. Ziemer

    1994-01-01

    Abstract - Basin assessment is an important component of the President's Forest Plan, yet it has received little attention. Basin assessments are intended both to guide watershed analyses by specifying types of issues and interactions that need to be understood, and, eventually, to integrate the results of watershed analyses occurring within a river basin....

  19. Turbidity Threshold sampling in watershed research

    Science.gov (United States)

    Rand Eads; Jack Lewis

    2003-01-01

    Abstract - When monitoring suspended sediment for watershed research, reliable and accurate results may be a higher priority than in other settings. Timing and frequency of data collection are the most important factors influencing the accuracy of suspended sediment load estimates, and, in most watersheds, suspended sediment transport is dominated by a few, large...

  20. Watershed Planning Basins

    Data.gov (United States)

    Vermont Center for Geographic Information — The Watershed Planning Basin layer is part of a larger dataset contains administrative boundaries for Vermont's Agency of Natural Resources. The dataset includes...

  1. Metal contamination and post-remediation recovery in the Boulder River watershed, Jefferson County, Montana

    Science.gov (United States)

    Unruh, Daniel M.; Church, Stanley E; Nimick, David A.; Fey, David L.

    2009-01-01

    The legacy of acid mine drainage and toxic trace metals left in streams by historical mining is being addressed by many important yet costly remediation efforts. Monitoring of environmental conditions frequently is not performed but is essential to evaluate remediation effectiveness, determine whether clean-up goals have been met, and assess which remediation strategies are most effective. Extensive pre- and post-remediation data for water and sediment quality for the Boulder River watershed in southwestern Montana provide an unusual opportunity to demonstrate the importance of monitoring. The most extensive restoration in the watershed occurred at the Comet mine on High Ore Creek and resulted in the most dramatic improvement in aquatic habitat. Removal of contaminated sediment and tailings, and stream-channel reconstruction reduced Cd and Zn concentrations in water such that fish are now present, and reduced metal concentrations in streambed sediment by a factor of c. 10, the largest improvement in the district. Waste removals at the Buckeye/Enterprise and Bullion mine sites produced limited or no improvement in water and sediment quality, and acidic drainage from mine adits continues to degrade stream aquatic habitat. Recontouring of hillslopes that had funnelled runoff into the workings of the Crystal mine substantially reduced metal concentrations in Uncle Sam Gulch, but did not eliminate all of the acidic adit drainage. Lead isotopic evidence suggests that the Crystal mine rather than the Comet mine is now the largest source of metals in streambed sediment of the Boulder River. The completed removal actions prevent additional contaminants from entering the stream, but it may take many years for erosional processes to diminish the effects of contaminated sediment already in streams. Although significant strides have been made, additional efforts to seal draining adits or treat the adit effluent at the Bullion and Crystal mines would need to be completed to

  2. Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification

    KAUST Repository

    Katterbauer, Klemens; Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim

    2015-01-01

    Reservoir simulations and history matching are critical for fine-tuning reservoir production strategies, improving understanding of the subsurface formation, and forecasting remaining reserves. Production data have long been incorporated

  3. Drivers and Effects of Groundwater-Surface Water Interaction in the Karstic Lower Flint River Basin, Southwestern Georgia, USA

    Science.gov (United States)

    Rugel, K.; Golladay, S. W.; Jackson, C. R.; Rasmussen, T. C.; Dowd, J. F.; Mcdowell, R. J.

    2017-12-01

    Groundwater provides the majority of global water resources for domestic and agricultural usage while contributing vital surface water baseflows which support healthy aquatic ecosystems. Understanding the extent and magnitude of hydrologic connectivity between groundwater and surface water components in karst watersheds is essential to the prudent management of these hydraulically-interactive systems. We examined groundwater and surface water connectivity between the Upper Floridan Aquifer (UFA) and streams in the Lower Flint River Basin (LFRB) in southwestern Georgia where development of agricultural irrigation intensified over the past 30 years. An analysis of USGS streamflow data for the pre- and post-irrigation period showed summer baseflows in some Lower Flint River tributaries were reduced by an order of magnitude in the post-irrigation period, reiterating the strong hydraulic connection between these streams and the underlying aquifer. Large and fine-scale monitoring of calcium, nitrate, specific conductance and stable isotopes (δ18O and δD) on 50 km of Ichawaynochaway Creek, a major tributary of the Lower Flint, detected discrete groundwater-surface water flow paths which accounted for 42% of total groundwater contributions in the 50 km study reach. This presentation will highlight a new analysis using the metadata EPA Reach File (1) and comparing stream reach and instream bedrock joint azimuths with stream geochemical results from previous field study. Our findings suggested that reaches with NNW bearing may be more likely to display enhanced groundwater-surface water connectivity. Our results show that local heterogeneity can significantly affect water budgets and quality within these watersheds, making the use of geomorphological stream attributes a valuable tool to water resource management for the prediction and protection of vulnerable regions of hydrologic connectivity in karst catchments.

  4. All-optical reservoir computing.

    Science.gov (United States)

    Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-09-24

    Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  5. Sedimentological and Geomorphological Effects of Reservoir Flushing: The Cachi Reservoir, Costa Rica, 1996

    DEFF Research Database (Denmark)

    Brandt, Anders; Swenning, Joar

    1999-01-01

    Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs......Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs...

  6. Optimising reservoir operation

    DEFF Research Database (Denmark)

    Ngo, Long le

    Anvendelse af optimeringsteknik til drift af reservoirer er blevet et væsentligt element i vandressource-planlægning og -forvaltning. Traditionelt har reservoirer været styret af heuristiske procedurer for udtag af vand, suppleret i en vis udstrækning af subjektive beslutninger. Udnyttelse af...... reservoirer involverer en lang række interessenter med meget forskellige formål (f.eks. kunstig vanding, vandkraft, vandforsyning mv.), og optimeringsteknik kan langt bedre lede frem til afbalancerede løsninger af de ofte modstridende interesser. Afhandlingen foreslår en række tiltag, hvormed traditionelle...

  7. Phenotypic plasticity in fish life-history traits in two neotropical reservoirs: Petit-Saut Reservoir in French Guiana and Brokopondo Reservoir in Suriname

    Directory of Open Access Journals (Sweden)

    Bernard de Mérona

    Full Text Available Fish species are known for their large phenotypic plasticity in life-history traits in relation to environmental characteristics. Plasticity allows species to increase their fitness in a given environment. Here we examined the life-history response of fish species after an abrupt change in their environment caused by the damming of rivers. Two reservoirs of different age, both situated on the Guiana Shield, were investigated: the young Petit-Saut Reservoir in French Guiana (14 years and the much older Brokopondo Reservoir in Suriname (44 years. Six life-history traits in 14 fish species were studied and compared to their value in the Sinnamary River prior to the completion of Petit-Saut Reservoir. The traits analyzed were maximum length, absolute and relative length at first maturation, proportion of mature oocytes in ripe gonad, batch fecundity and mean size of mature oocytes. The results revealed a general increase of reproductive effort. All species showed a decrease in maximum length. Compared to the values observed before the dam constructions, eight species had larger oocytes and three species showed an increased batch fecundity. These observed changes suggest a trend towards a pioneer strategy. The changes observed in Petit-Saut Reservoir also seemed to apply to the 30 years older Brokopondo Reservoir suggesting that these reservoirs remain in a state of immaturity for a long time.

  8. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...... dispersion equation in modeling the transport and the deposition of reservoir fines. It successfully predicts the unsymmetrical concentration profiles and the hyperexponential deposition in experiments....

  9. Sediment management for reservoir

    International Nuclear Information System (INIS)

    Rahman, A.

    2005-01-01

    All natural lakes and reservoirs whether on rivers, tributaries or off channel storages are doomed to be sited up. Pakistan has two major reservoirs of Tarbela and Managla and shallow lake created by Chashma Barrage. Tarbela and Mangla Lakes are losing their capacities ever since first impounding, Tarbela since 1974 and Mangla since 1967. Tarbela Reservoir receives average annual flow of about 62 MAF and sediment deposits of 0.11 MAF whereas Mangla gets about 23 MAF of average annual flows and is losing its storage at the rate of average 34,000 MAF annually. The loss of storage is a great concern and studies for Tarbela were carried out by TAMS and Wallingford to sustain its capacity whereas no study has been done for Mangla as yet except as part of study for Raised Mangla, which is only desk work. Delta of Tarbala reservoir has advanced to about 6.59 miles (Pivot Point) from power intakes. In case of liquefaction of delta by tremor as low as 0.12g peak ground acceleration the power tunnels I, 2 and 3 will be blocked. Minimum Pool of reservoir is being raised so as to check the advance of delta. Mangla delta will follow the trend of Tarbela. Tarbela has vast amount of data as reservoir is surveyed every year, whereas Mangla Reservoir survey was done at five-year interval, which has now been proposed .to be reduced to three-year interval. In addition suspended sediment sampling of inflow streams is being done by Surface Water Hydrology Project of WAPDA as also some bed load sampling. The problem of Chasma Reservoir has also been highlighted, as it is being indiscriminately being filled up and drawdown several times a year without regard to its reaction to this treatment. The Sediment Management of these reservoirs is essential and the paper discusses pros and cons of various alternatives. (author)

  10. Numerical modeling of watershed-scale radiocesium transport coupled with biogeochemical cycling in forests

    Science.gov (United States)

    Mori, K.; Tada, K.; Tawara, Y.; Tosaka, H.; Ohno, K.; Asami, M.; Kosaka, K.

    2015-12-01

    into the watershed simulator GETFLOWS coupled with biogeochemical cycling in forests. We present brief a overview of the simulator and an application for reservoir basin.

  11. Landscaping practices, land use patterns and stormwater quantity and quality in urban watersheds

    Science.gov (United States)

    Miles, B.; Band, L. E.

    2011-12-01

    Increasing quantity and decreasing quality of urban stormwater threatens biodiversity in local streams and reservoirs, jeopardizes water supplies, and ultimately contributes to estuarine eutrophication. To estimate the effects that present and alternative landscaping practices and land use patterns may have on urban stormwater quantity and quality, simulations of existing land use/land cover using the Regional Hydro-Ecologic Simulation System (RHESSys), a process-based surface hydrology and biogeochemistry model, were developed for watersheds in Baltimore, MD (as part of the Baltimore Ecosystem Study (BES) NSF Long-Term Ecological Research (LTER) site) and Durham, NC (as part of the NSF Urban Long-Term Research Area (ULTRA) program). The influence of land use patterns and landscaping practices on nutrient export in urban watersheds has been explored as part of the BES; this work has focused on improving our understanding of how residential landscaping practices (i.e. lawn fertilization rates) vary across land use and socioeconomic gradients. Elsewhere, others have explored the political ecology of residential landscaping practices - seeking to understand the economic, political, and cultural influences on the practice of high-input residential turf-grass management. Going forward, my research will synthesize and extend this prior work. Rather than pre-supposing predominant residential land use patterns and landscaping practices (i.e. lower-density periphery development incorporating high-input turf landscapes) alternate land use and landscaping scenarios (e.g. higher-density/transit-oriented development, rain gardens, vegetable gardens, native plant/xeriscaping) will be developed through interviews/focus groups with stakeholders (citizens, public officials, developers, non-profits). These scenarios will then be applied to the RHESSys models already developed for catchments in Baltimore and Durham. The modeled scenario results will be used to identify alternate land

  12. [Watershed water environment pollution models and their applications: a review].

    Science.gov (United States)

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  13. Contrasting evidence of Holocene ice margin retreat, south-western Greenland

    DEFF Research Database (Denmark)

    Levy, L. B.; Larsen, N. K.; Davidson, T. A.

    2017-01-01

    Constraining the Greenland Ice Sheet's (GrIS) response to Holocene climate change provides calibrations for ice sheet models that hindcast past ice margin fluctuations. Ice sheet models predict enhanced ice retreat in south-western Greenland during the middle Holocene; however, few geological...... observations corroborating the extensive retreat are available. We present new data from lake sediment cores from the Isua region, south-western Greenland, which provide constraints on Holocene fluctuations of the GrIS margins. Our data indicate that the main GrIS margin was 30 km west of its present...

  14. Seven Global Goals. 2013 annual report, Southwestern Power Administration

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-09-01

    For over 70 years, Southwestern has marketed and delivered reliable, renewable, and affordable hydropower, partnering with Federal power stakeholders and others in the industry to make sure the lights stay on. This kind of effective, efficient, and cost conscious operation is made possible only by hard work and dedication. Southwestern employees work individually and as a team to meet seven comprehensive agency goals that touch on all aspects of the agency’s operations. Dubbed the “Seven Global Goals” by Administrator Chris Turner, these objectives identify specific, measurable targets that support Southwestern’s mission and reinforce its responsibilities toward its customers and the Nation.

  15. Factors influencing woodlands of southwestern North Dakota

    Science.gov (United States)

    Michele M. Girard; Harold Goetz; Ardell J. Bjugstad

    1987-01-01

    Literature pertaining to woodlands of southwestern North Dakota is reviewed. Woodland species composition and distribution, and factors influencing woodland ecosystems such as climate, logging, fire, and grazing are described. Potential management and improvement techniques using vegetation and livestock manipulation have been suggested.

  16. Advances in photonic reservoir computing

    Science.gov (United States)

    Van der Sande, Guy; Brunner, Daniel; Soriano, Miguel C.

    2017-05-01

    We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir's complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  17. Cumulative watershed effects: a research perspective

    Science.gov (United States)

    Leslie M. Reid; Robert R. Ziemer

    1989-01-01

    A cumulative watershed effect (CWE) is any response to multiple land-use activities that is caused by, or results in, altered watershed function. The CWE issue is politically defined, as is the significance of particular impacts. But the processes generating CWEs are the traditional focus of geomorphology and ecology, and have thus been studied for decades. The CWE...

  18. Watershed and Economic Data InterOperability (WEDO): Facilitating Discovery, Evaluation and Integration through the Sharing of Watershed Modeling Data

    Science.gov (United States)

    Watershed and Economic Data InterOperability (WEDO) is a system of information technologies designed to publish watershed modeling studies for reuse. WEDO facilitates three aspects of interoperability: discovery, evaluation and integration of data. This increased level of interop...

  19. Subdivision of Texas watersheds for hydrologic modeling.

    Science.gov (United States)

    2009-06-01

    The purpose of this report is to present a set of findings and examples for subdivision of watersheds for hydrologic modeling. Three approaches were used to examine the impact of watershed subdivision on modeled hydrologic response: (1) An equal-area...

  20. Sudden water pollution accidents and reservoir emergency operations: impact analysis at Danjiangkou Reservoir.

    Science.gov (United States)

    Zheng, Hezhen; Lei, Xiaohui; Shang, Yizi; Duan, Yang; Kong, Lingzhong; Jiang, Yunzhong; Wang, Hao

    2018-03-01

    Danjiangkou Reservoir is the source reservoir of the Middle Route of the South-to-North Water Diversion Project (MRP). Any sudden water pollution accident in the reservoir would threaten the water supply of the MRP. We established a 3-D hydrodynamic and water quality model for the Danjiangkou Reservoir, and proposed scientific suggestions on the prevention and emergency management for sudden water pollution accidents based on simulated results. Simulations were performed on 20 hypothetical pollutant discharge locations and 3 assumed amounts, in order to model the effect of pollutant spreading under different reservoir operation types. The results showed that both the location and mass of pollution affected water quality; however, different reservoir operation types had little effect. Five joint regulation scenarios, which altered the hydrodynamic processes of water conveyance for the Danjiangkou and Taocha dams, were considered for controlling pollution dispersion. The results showed that the spread of a pollutant could be effectively controlled through the joint regulation of the two dams and that the collaborative operation of the Danjiangkou and Taocha dams is critical for ensuring the security of water quality along the MRP.

  1. Stormwater Impaired Watersheds

    Data.gov (United States)

    Vermont Center for Geographic Information — Stormwater impaired watersheds occuring on both the Priority Waters (Part D - Completed TMDL) and 303(d) list of waters (Part A - need TMDL) The Vermont State...

  2. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1983-1987 Methods and Data Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Ian

    1989-12-01

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin. The authorized purpose of the dam is to provide power, flood control, and navigation and other benefits. Research began in May 1983 to determine how operations of Libby dam impact the reservoir fishery and to suggest ways to lessen these impacts. This study is unique in that it was designed to accomplish its goal through detailed information gathering on every trophic level in the reservoir system and integration of this information into a quantitative computer model. The specific study objectives are to: quantify available reservoir habitat, determine abundance, growth and distribution of fish within the reservoir and potential recruitment of salmonids from Libby Reservoir tributaries within the United States, determine abundance and availability of food organisms for fish in the reservoir, quantify fish use of available food items, develop relationships between reservoir drawdown and reservoir habitat for fish and fish food organisms, and estimate impacts of reservoir operation on the reservoir fishery. 115 refs., 22 figs., 51 tabs.

  3. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    Science.gov (United States)

    Cui, X.; Liu, S.; Wei, X.

    2012-11-01

    Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed, located in the upper reach of the Yangtze River basin, plays a strategic role in the environmental protection and economic and social well-being for both the watershed and the entire Yangtze River basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been recognized as one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently completed research programs (one of them known as "973 of the China National Major Fundamental Science" from 2002 to 2008). This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful, because the results from a small spatial scale (e.g. forest stand level) can help interpret the findings on a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water yield increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation on both spatial scales. The impact magnitude caused by forest harvesting indicates that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yield in the Minjiang River watershed. In addition, different types of forests have different magnitudes of evapotranspiration (ET), with

  4. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    Directory of Open Access Journals (Sweden)

    X. Cui

    2012-11-01

    Full Text Available Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed, located in the upper reach of the Yangtze River basin, plays a strategic role in the environmental protection and economic and social well-being for both the watershed and the entire Yangtze River basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been recognized as one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently completed research programs (one of them known as "973 of the China National Major Fundamental Science" from 2002 to 2008. This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful, because the results from a small spatial scale (e.g. forest stand level can help interpret the findings on a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water yield increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation on both spatial scales. The impact magnitude caused by forest harvesting indicates that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yield in the Minjiang River watershed. In addition, different types of forests have different magnitudes of

  5. Characteristics of volcanic reservoirs and distribution rules of effective reservoirs in the Changling fault depression, Songliao Basin

    Directory of Open Access Journals (Sweden)

    Pujun Wang

    2015-11-01

    Full Text Available In the Songliao Basin, volcanic oil and gas reservoirs are important exploration domains. Based on drilling, logging, and 3D seismic (1495 km2 data, 546 sets of measured physical properties and gas testing productivity of 66 wells in the Changling fault depression, Songliao Basin, eruptive cycles and sub-lithofacies were distinguished after lithologic correction of the 19,384 m volcanic well intervals, so that a quantitative analysis was conducted on the relation between the eruptive cycles, lithologies and lithofacies and the distribution of effective reservoirs. After the relationship was established between lithologies, lithofacies & cycles and reservoir physical properties & oil and gas bearing situations, an analysis was conducted on the characteristics of volcanic reservoirs and the distribution rules of effective reservoirs. It is indicated that 10 eruptive cycles of 3 sections are totally developed in this area, and the effective reservoirs are mainly distributed at the top cycles of eruptive sequences, with those of the 1st and 3rd Members of Yingcheng Formation presenting the best reservoir properties. In this area, there are mainly 11 types of volcanic rocks, among which rhyolite, rhyolitic tuff, rhyolitic tuffo lava and rhyolitic volcanic breccia are the dominant lithologies of effective reservoirs. In the target area are mainly developed 4 volcanic lithofacies (11 sub-lithofacies, among which upper sub-lithofacies of effusive facies and thermal clastic sub-lithofacies of explosion lithofacies are predominant in effective reservoirs. There is an obvious corresponding relationship between the physical properties of volcanic reservoirs and the development degree of effective reservoirs. The distribution of effective reservoirs is controlled by reservoir physical properties, and the formation of effective reservoirs is influenced more by porosity than by permeability. It is concluded that deep volcanic gas exploration presents a good

  6. Watershed Modeling Applications with the Open-Access Modular Distributed Watershed Educational Toolbox (MOD-WET) and Introductory Hydrology Textbook

    Science.gov (United States)

    Huning, L. S.; Margulis, S. A.

    2014-12-01

    Traditionally, introductory hydrology courses focus on hydrologic processes as independent or semi-independent concepts that are ultimately integrated into a watershed model near the end of the term. When an "off-the-shelf" watershed model is introduced in the curriculum, this approach can result in a potential disconnect between process-based hydrology and the inherent interconnectivity of processes within the water cycle. In order to curb this and reduce the learning curve associated with applying hydrologic concepts to complex real-world problems, we developed the open-access Modular Distributed Watershed Educational Toolbox (MOD-WET). The user-friendly, MATLAB-based toolbox contains the same physical equations for hydrological processes (i.e. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) that are presented in the companion e-textbook (http://aqua.seas.ucla.edu/margulis_intro_to_hydro_textbook.html) and taught in the classroom. The modular toolbox functions can be used by students to study individual hydrologic processes. These functions are integrated together to form a simple spatially-distributed watershed model, which reinforces a holistic understanding of how hydrologic processes are interconnected and modeled. Therefore when watershed modeling is introduced, students are already familiar with the fundamental building blocks that have been unified in the MOD-WET model. Extensive effort has been placed on the development of a highly modular and well-documented code that can be run on a personal computer within the commonly-used MATLAB environment. MOD-WET was designed to: 1) increase the qualitative and quantitative understanding of hydrological processes at the basin-scale and demonstrate how they vary with watershed properties, 2) emphasize applications of hydrologic concepts rather than computer programming, 3) elucidate the underlying physical processes that can often be obscured with a complicated

  7. Landslides and sediment budgets in four watersheds in eastern Puerto Rico: Chapter F in Water quality and landscape processes of four watersheds in eastern Puerto Rico

    Science.gov (United States)

    Larsen, Matthew C.; Murphy, Sheila F.; Stallard, Robert F.

    2012-01-01

    The low-latitude regions of the Earth are undergoing profound, rapid landscape change as forests are converted to agriculture to support growing population. Understanding the effects of these land-use changes requires analysis of watershed-scale geomorphic processes to better inform and manage this usually disorganized process. The investigation of hillslope erosion and the development of sediment budgets provides essential information for resource managers. Four small, montane, humid-tropical watersheds in the Luquillo Experimental Forest and nearby Río Grande de Loíza watershed, Puerto Rico (18° 20' N., 65° 45' W.), were selected to compare and contrast the geomorphic effects of land use and bedrock geology. Two of the watersheds are underlain largely by resistant Cretaceous volcaniclastic rocks but differ in land use and mean annual runoff: the Mameyes watershed, with predominantly primary forest cover and runoff of 2,750 millimeters per year, and the Canóvanas watershed, with mixed secondary forest and pasture and runoff of 970 millimeters per year. The additional two watersheds are underlain by relatively erodible granitic bedrock: the forested Icacos watershed, with runoff of 3,760 millimeters per year and the agriculturally developed Cayaguás watershed, with a mean annual runoff of 1,620 millimeters per year. Annual sediment budgets were estimated for each watershed using landslide, slopewash, soil creep, treethrow, suspended sediment, and streamflow data. The budgets also included estimates of sediment storage in channel beds, bars, floodplains, and in colluvial deposits. In the two watersheds underlain by volcaniclastic rocks, the forested Mameyes and the developed Canóvanas watersheds, landslide frequency (0.21 and 0.04 landslides per square kilometer per year, respectively), slopewash (5 and 30 metric tons per square kilometer per year), and suspended sediment yield (325 and 424 metric tons per square kilometer per year), were lower than in the

  8. A Stochastic Water Balance Framework for Lowland Watersheds

    Science.gov (United States)

    Thompson, Sally; MacVean, Lissa; Sivapalan, Murugesu

    2017-11-01

    The water balance dynamics in lowland watersheds are influenced not only by local hydroclimatic controls on energy and water availability, but also by imports of water from the upstream watershed. These imports result in a stochastic extent of inundation in lowland watersheds that is determined by the local flood regime, watershed topography, and the rate of loss processes such as drainage and evaporation. Thus, lowland watershed water balances depend on two stochastic processes—rainfall and local inundation dynamics. Lowlands are high productivity environments that are disproportionately associated with urbanization, high productivity agriculture, biodiversity, and flood risk. Consequently, they are being rapidly altered by human development—generally with clear economic and social motivation—but also with significant trade-offs in ecosystem services provision, directly related to changes in the components and variability of the lowland water balance. We present a stochastic framework to assess the lowland water balance and its sensitivity to two common human interventions—replacement of native vegetation with alternative land uses, and construction of local flood protection levees. By providing analytical solutions for the mean and PDF of the water balance components, the proposed framework provides a mechanism to connect human interventions to hydrologic outcomes, and, in conjunction with ecosystem service production estimates, to evaluate trade-offs associated with lowland watershed development.

  9. Watershed analysis on federal lands of the Pacific northwest

    Science.gov (United States)

    Leslie M. Reid; Robert R. Ziemer; Michael J. Furniss

    1994-01-01

    Abstract - Watershed analysis-the evaluation of processes that affect ecosystems and resources in a watershed-is now being carried out by Federal land-management and regulatory agencies on Federal lands of the Pacific Northwest. Methods used differ from those of other implementations of watershed analysis because objectives and opportunities differ. In particular,...

  10. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum

  11. Forest responses to increasing aridity and warmth in the southwestern United States

    Science.gov (United States)

    Williams, A.P.; Allen, Craig D.; Millar, C.I.; Swetnam, T.W.; Michaelsen, J.; Still, C.J.; Leavitt, Steven W.

    2010-01-01

    In recent decades, intense droughts, insect outbreaks, and wildfires have led to decreasing tree growth and increasing mortality in many temperate forests. We compared annual tree-ring width data from 1,097 populations in the coterminous United States to climate data and evaluated site-specific tree responses to climate variations throughout the 20th century. For each population, we developed a climate-driven growth equation by using climate records to predict annual ring widths. Forests within the southwestern United States appear particularly sensitive to drought and warmth. We input 21st century climate projections to the equations to predict growth responses. Our results suggest that if temperature and aridity rise as they are projected to, southwestern trees will experience substantially reduced growth during this century. As tree growth declines, mortality rates may increase at many sites. Increases in wildfires and bark-beetle outbreaks in the most recent decade are likely related to extreme drought and high temperatures during this period. Using satellite imagery and aerial survey data, we conservatively calculate that ≈2.7% of southwestern forest and woodland area experienced substantial mortality due to wildfires from 1984 to 2006, and ≈7.6% experienced mortality associated with bark beetles from 1997 to 2008. We estimate that up to ≈18% of southwestern forest area (excluding woodlands) experienced mortality due to bark beetles or wildfire during this period. Expected climatic changes will alter future forest productivity, disturbance regimes, and species ranges throughout the Southwest. Emerging knowledge of these impending transitions informs efforts to adaptively manage southwestern forests.

  12. Hydrodynamic influence on reservoir sustainability in semi-arid climate: A physicochemical and environmental isotopic study.

    Science.gov (United States)

    Ammar, Rawaa; Kazpard, Véronique; El Samrani, Antoine G; Amacha, Nabil; Saad, Zeinab; Chou, Lei

    2017-07-15

    Water scarcity and increasing water demand require the development of water management plans such as establishing artificial lakes and dams. Plans to meet water needs are faced by uprising challenges to improve water quality and to ensure the sustainability of hydro-projects. Environmental isotopes coupled to water physicochemical characteristics were investigated over a biennial cycle to assess both geomorphological and environmental impacts on the water quality of a reservoir situated in an intensively used agricultural watershed under a Mediterranean semi-arid climate. The particularity of the semi-arid climate and the diverse topography generate a continental and orographic rain effect on the isotopic composition of precipitation and the water recharged sources. The studied reservoir responds quickly to land-use activities and climatic changes as reflected by temporal and spatial variations of water chemistry and isotopic composition. Increasing changes in precipitation rate and dry periods significantly modified the water isotopic composition in the reservoir. During the first year, hydrogen (δD) and oxygen (δ 18 O) isotopes are depleted by 6 and 2‰ between dry and wet season, respectively. While a shift of -2‰ for δD and -1‰ for δ 18 O was detected during the second annual cycle. Environmental isotopic compositions demonstrate for the first time the occurrence of groundwater inflow to the central (Cz) and dam (Dz) zones of the Qaraaoun reservoir. The Cz and Dz can be considered as open water bodies subjected to dilution by groundwater inflow, which induces vertical mixing and reverse isotopic stratification of the water column. In the contrary, the river mouth zone acts as a closed system without groundwater intrusion, where heavy water accumulates and may act as a sink for contaminants during dry season. Groundwater influx acts as a dilution factor that renews the hypolimnion, and minimizes the perturbations induced by both internal

  13. Mercury and Methylmercury Related to Historical Mercury Mining in Three Major Tributaries to Lake Berryessa, Upper Putah Creek Watershed, California

    Science.gov (United States)

    Sparks, G. C.; Alpers, C. N.; Horner, T. C.; Cornwell, K.; Izzo, V.

    2016-12-01

    The relative contributions of total mercury (THg) and methylmercury (MeHg) from upstream historical mercury (Hg) mining districts were examined in the three largest tributaries to Lake Berryessa, a reservoir with water quality impaired by Hg. A fish consumption advisory has been issued for the reservoir; also, in a study of piscivorous birds at 25 California reservoirs, blood samples from Lake Berryessa grebes had the highest THg concentration state-wide. The third and fourth largest historical Hg-producing mining districts in California are within the study area. These mining districts are located within the Pope Creek, Upper Putah Creek, and Knoxville-Eticuera Creeks watersheds. Downstream of the reservoir, Lower Putah Creek drains into the Yolo Bypass, a major source of THg and MeHg to the Sacramento-San Joaquin Delta. Study objectives included: (1) determining if tributaries downstream of historical Hg mining districts and draining to the reservoir are continuing sources of THg and MeHg; (2) characterizing variability of water and streambed sediment parameters in upstream and downstream reaches of each creek; and (3) estimating loads of suspended sediment, THg, and MeHg entering the reservoir from each tributary. Water samples were collected from October 2012 to September 2014 during non-storm and storm events along each tributary and analyzed for general water quality field parameters; unfiltered THg and MeHg; total suspended solids; and total particulate matter. Discharge measurements were made at the time of sample collection; flow and concentration data were combined to compute daily loads. To determine spatial variability, 135 streambed sediment samples were analyzed for THg, organic content (loss on ignition), and grain-size distribution. All three tributaries contribute THg and MeHg to the reservoir. Some consistent spatial trends in THg (water) concentrations were observed over multiple sampling events; THg (water) decreased from upstream to downstream

  14. Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations

    Science.gov (United States)

    Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.

    2011-12-01

    HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of

  15. Influence of land use on the hydrobiogeochemistry of the Camanducaia and Jaguari watersheds, Brazil

    Science.gov (United States)

    Camargo, P. B. D.; Costa, C. F. G. D.; Figueiredo, R. D. O.; Piccolo, M. C.; Mazzi, E. A.; Reis, L. D. C.; Zuccari, M. L.; Green, T. R.; Ferracini, V. L.

    2015-12-01

    Two medium-sized watersheds of the Piracicaba river basin, the Camanducaia and Jaguari sub-basins, are being studied to evaluate the effects of land use change on the basin's hydrobiogeochemistry. The Jaguari basin is an important provider the Cantareira reservoir system that supplies around six million inhabitants of the Metropolitan Region of São Paulo, Brazil. A one-year hydrological study began on January 2015 to monitor some water quality parameters such as pH, electric conductivity (EC), dissolved oxygen (DO), dissolved organic and inorganic carbon (DOC and DIC), nitrate (NO3-), ammonium (NH4+) and total nitrogen (TN). For that purpose we established 19 sampling stations along the Camanducaia (8 stations) and Jaguari (11 stations) river channels; two stations at their main tributaries Mosquito and Camanducaia Mineiro, respectively; and another two stations at small streams in headwater areas of the Jaguari and Camanducaia watersheds. Preliminary results show that DOC concentrations are correlated DIC (r=0.81 at Jaguari; r=0.70 at Camanducaia; p downstream stations of Jaguari and Camanducaia, respectively. Regarding DIC these multiples are 4.4 and 1.9 times greater. The four most downstream stations at Jaguari show urban area effects with higher DIC monthly values ranging from 28.7 to 33 mg L-1. Also DIC correlated with EC values (means around 160 μS) at two of these stations. We expect that at the end of this monitoring year results will show stronger relations between hydrobiogeochemical parameters and land use change.

  16. Characteristics of Intracrater Thermal Anomalies in Southwestern Margaritifer Terra

    Science.gov (United States)

    McDowell, M. L.; Hamilton, V. E.

    2005-03-01

    We use thermophysical properties, albedo, short wavelength emissivity, composition, and geomorphology to understand the formation of anomalously warm intracrater deposits in southwestern Margaritifer Terra.

  17. Optimal spatio-temporal design of water quality monitoring networks for reservoirs: Application of the concept of value of information

    Science.gov (United States)

    Maymandi, Nahal; Kerachian, Reza; Nikoo, Mohammad Reza

    2018-03-01

    This paper presents a new methodology for optimizing Water Quality Monitoring (WQM) networks of reservoirs and lakes using the concept of the value of information (VOI) and utilizing results of a calibrated numerical water quality simulation model. With reference to the value of information theory, water quality of every checkpoint with a specific prior probability differs in time. After analyzing water quality samples taken from potential monitoring points, the posterior probabilities are updated using the Baye's theorem, and VOI of the samples is calculated. In the next step, the stations with maximum VOI is selected as optimal stations. This process is repeated for each sampling interval to obtain optimal monitoring network locations for each interval. The results of the proposed VOI-based methodology is compared with those obtained using an entropy theoretic approach. As the results of the two methodologies would be partially different, in the next step, the results are combined using a weighting method. Finally, the optimal sampling interval and location of WQM stations are chosen using the Evidential Reasoning (ER) decision making method. The efficiency and applicability of the methodology are evaluated using available water quantity and quality data of the Karkheh Reservoir in the southwestern part of Iran.

  18. Bull trout (Salvelinus confluentus) movement in relation to water temperature, season, and habitat features in Arrowrock Reservoir, Idaho, 2012

    Science.gov (United States)

    Maret, Terry R.; Schultz, Justin E.

    2013-01-01

    Acoustic telemetry was used to determine spring to summer (April–August) movement and habitat use of bull trout (Salvelinus confluentus) in Arrowrock Reservoir (hereafter “Arrowrock”), a highly regulated reservoir in the Boise River Basin of southwestern Idaho. Water management practices annually use about 86 percent of the reservoir water volume to satisfy downstream water demands. These practices might be limiting bull trout habitat and movement patterns. Bull trout are among the more thermally sensitive coldwater species in North America, and the species is listed as threatened throughout the contiguous United States under the Endangered Species Act. Biweekly water-temperature and dissolved-oxygen profiles were collected by the Bureau of Reclamation at three locations in Arrowrock to characterize habitat conditions for bull trout. Continuous streamflow and water temperature also were measured immediately upstream of the reservoir on the Middle and South Fork Boise Rivers, which influence habitat conditions in the riverine zones of the reservoir. In spring 2012, 18 bull trout ranging in total length from 306 to 630 millimeters were fitted with acoustic transmitters equipped with temperature and depth sensors. Mobile boat tracking and fixed receivers were used to detect released fish. Fish were tagged from March 28 to April 20 and were tracked through most of August. Most bull trout movements were detected in the Middle Fork Boise River arm of the reservoir. Fifteen individual fish were detected at least once after release. Water surface temperature at each fish detection location ranged from 6.0 to 16.2 degrees Celsius (°C) (mean=10.1°C), whereas bull trout body temperatures were colder, ranging from 4.4 to 11.6°C (mean=7.3°C). Bull trout were detected over deep-water habitat, ranging from 8.0 to 42.6 meters (m) (mean=18.1 m). Actual fish depths were shallower than total water depth, ranging from 0.0 to 24.5 m (mean=6.7 m). The last bull trout was

  19. Cesium reservoir and interconnective components

    International Nuclear Information System (INIS)

    1994-03-01

    The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW range. A thermionic converter must be supplied with cesium vapor for two reasons. Cesium atoms adsorbed on the surface of the emitter cause a reduction of the emitter work function to permit high current densities without excessive heating of the emitter. The second purpose of the cesium vapor is to provide space-charge neutralization in the emitter-collector gap so that the high current densities may flow across the gap unattenuated. The function of the cesium reservoir is to provide a source of cesium atoms, and to provide a reserve in the event that cesium is lost from the plasma by any mechanism. This can be done with a liquid cesium metal reservoir in which case it is heated to the desired temperature with auxiliary heaters. In a TFE, however, it is desirable to have the reservoir passively heated by the nuclear fuel. In this case, the reservoir must operate at a temperature intermediate between the emitter and the collector, ruling out the use of liquid reservoirs. Integral reservoirs contained within the TFE will produce cesium vapor pressures in the desired range at typical electrode temperatures. The reservoir material that appears to be the best able to meet requirements is graphite. Cesium intercalates easily into graphite, and the cesium pressure is insensitive to loading for a given intercalation stage. The goals of the cesium reservoir test program were to verify the performance of Cs-graphite reservoirs in the temperature-pressure range of interest to TFE operation, and to test the operation of these reservoirs after exposure to a fast neutron fluence corresponding to seven year mission lifetime. In addition, other materials were evaluated for possible use in the integral reservoir

  20. Ecosystem services of human-dominated watersheds and land use influences: a case study from the Dianchi Lake watershed in China.

    Science.gov (United States)

    Hou, Ying; Li, Bo; Müller, Felix; Chen, Weiping

    2016-11-01

    Watersheds provide multiple ecosystem services. Ecosystem service assessment is a promising approach to investigate human-environment interaction at the watershed scale. The spatial characteristics of ecosystem services are closely related to land use statuses in human-dominated watersheds. This study aims to investigate the effects of land use on the spatial variations of ecosystem services at the Dianchi Lake watershed in Southwest China. We investigated the spatial variations of six ecosystem services-food supply, net primary productivity (NPP), habitat quality, evapotranspiration, water yield, and nitrogen retention. These services were selected based on their significance at the Dianchi Lake watershed and the availability of their data. The quantification of these services was based on modeling, value transference, and spatial analysis in combination with biophysical and socioeconomic data. Furthermore, we calculated the values of ecosystem services provided by different land use types and quantified the correlations between ecosystem service values and land use area proportions. The results show considerable spatial variations in the six ecosystem services associated with land use influences in the Dianchi Lake watershed. The cropland and forest land use types had predominantly positive influences on food productivity and NPP, respectively. The rural residential area and forest land use types reduced and enhanced habitat quality, respectively; these influences were identical to those of evapotranspiration. Urban area and rural residential area exerted significantly positive influences on water yield. In contrast, water yield was negatively correlated with forest area proportion. Finally, cropland and forest had significantly positive and negative influences, respectively, on nitrogen retention. Our study emphasizes the importance of consideration of the influences from land use composition and distribution on ecosystem services for managing the ecosystems of

  1. Protozoan Parasites of Rodents and Their Zoonotic Significance in Boyer-Ahmad District, Southwestern Iran

    Directory of Open Access Journals (Sweden)

    Zeinab Seifollahi

    2016-01-01

    Full Text Available Backgrounds. Wild rodents are reservoirs of various zoonotic diseases, such as toxoplasmosis, babesiosis, and leishmaniasis. The current study aimed to assess the protozoan infection of rodents in Boyer-Ahmad district, southwestern Iran. Materials and Methods. A total of 52 rodents were collected from different parts of Boyer-Ahmad district, in Kohgiluyeh and Boyer-Ahmad province, using Sherman live traps. Each rodent was anesthetized with ether, according to the ethics of working with animals, and was dissected. Samples were taken from various tissues and stool samples were collected from the contents of the colon and small intestines. Moreover, 2 to 5 mL of blood was taken from each of the rodents and the sera were examined for anti-Leishmania antibodies, by ELISA, or anti-T. gondii antibodies, by modified agglutination test (MAT. DNA was extracted from brain tissue samples of each rodent and PCR was used to identify the DNA of T. gondii. Results. Of the 52 stool samples of rodents studied by parasitological methods, intestinal protozoa infection was seen in 28 cases (53.8%. From 52 rodents, 19 (36.5% were infected with Trichomonas, 10 (19.2% with Giardia muris, and 11 (21.2% with Entamoeba spp. Also, 10 cases (19.2% were infected with Blastocystis, 3 (5.8% were infected with Chilomastix, 7 (13.5% were infected with Endolimax, 1 (1.9% was infected with Retortamonas, 3 (5.77% were infected with T. gondii, and 6 (11.54% were infected with Trypanosoma lewisi. Antibodies to T. gondii were detected in the sera of 5 (9.61% cases. Results of the molecular study showed T. gondii infection in 3 (5.77% of the rodents. Findings of this study showed that rodents in Kohgiluyeh and Boyer-Ahmad province, southwestern Iran, are infected with several blood and intestinal parasites; some of them might be potential risks to residents and domestic animals in the region.

  2. Nitrate in watersheds: straight from soils to streams?

    Science.gov (United States)

    Sudduth, Elizabeth B.; Perakis, Steven S.; Bernhardt, Emily S.

    2013-01-01

    Human activities are rapidly increasing the global supply of reactive N and substantially altering the structure and hydrologic connectivity of managed ecosystems. There is long-standing recognition that N must be removed along hydrologic flowpaths from uplands to streams, yet it has proven difficult to assess the generality of this removal across ecosystem types, and whether these patterns are influenced by land-use change. To assess how well upland nitrate (NO3-) loss is reflected in stream export, we gathered information from >50 watershed biogeochemical studies that reported nitrate concentrations ([NO3-]) for stream water and for either upslope soil solution or groundwater NO3- to examine whether stream export of NO3- accurately reflects upland NO3- losses. In this dataset, soil solution and streamwater [NO3-] were correlated across 40 undisturbed forest watersheds, with streamwater [NO3-] typically half (median = 50%) soil solution [NO3-]. A similar relationship was seen in 10 disturbed forest watersheds. However, for 12 watersheds with significant agricultural or urban development, the intercept and slope were both significantly higher than the relationship seen in forest watersheds. Differences in concentration between soil solution or groundwater and stream water may be attributed to biological uptake, microbial processes including denitrification, and/or preferential flow routing. The results of this synthesis are consistent with the hypotheses that undisturbed watersheds have a significant capacity to remove nitrate after it passes below the rooting zone and that land use changes tend to alter the efficiency or the length of watershed flowpaths, leading to reductions in nitrate removal and increased stream nitrate concentrations.

  3. DNR Watersheds - DNR Level 04 - HUC 08 - Majors

    Data.gov (United States)

    Minnesota Department of Natural Resources — These data consists of 81 watershed delineations in one seamless dataset of drainage areas called Minnesota Department of Natural Resources (DNR) Major Watersheds....

  4. Sediment sources in an urbanizing, mixed land-use watershed

    Science.gov (United States)

    Nelson, Erin J.; Booth, Derek B.

    2002-07-01

    The Issaquah Creek watershed is a rapidly urbanizing watershed of 144 km 2 in western Washington, where sediment aggradation of the main channel and delivery of fine sediment into a large downstream lake have raised increasingly frequent concerns over flooding, loss of fish habitat, and degraded water quality. A watershed-scale sediment budget was evaluated to determine the relative effects of land-use practices, including urbanization, on sediment supply and delivery, and to guide management responses towards the most effective source-reduction strategies. Human activity in the watershed, particularly urban development, has caused an increase of nearly 50% in the annual sediment yield, now estimated to be 44 tonnes km -2 yr -1. The main sources of sediment in the watershed are landslides (50%), channel-bank erosion (20%), and road-surface erosion (15%). This assessment characterizes the role of human activity in mixed-use watersheds such as this, and it demonstrates some of the key processes, particularly enhanced stream-channel erosion, by which urban development alters sediment loads.

  5. Watershed restoration through remining in the Tangascootack Creek Watershed, Clinton County, Pennsylvania

    International Nuclear Information System (INIS)

    Skema, V.W.; Smith, M.W.; Bisko, D.C.; Dimatteo, M.

    1998-01-01

    The Pennsylvania Department of Environmental Protection and the Pennsylvania Geologic Survey are working together to remediate the effects of acid mine drainage. Remining of previously mined areas is a key component of a comprehensive strategy of improving water quality in polluted watersheds. In this new approach sites will be carefully selected on the basis of remaining coal reserves and overburden characteristics. One of the first watersheds targeted was the Tangascootack Creek watershed located in Clinton County near Lock Haven. The Geologic Survey agreed to provide geologic and coal resource maps for this previously unmapped area. This involved conducting field work examining rock exposures. Five cored holes were drilled, and core was examined to develop a geologic framework. Coals from these holes and from highwalls were chemically tested. Strata overlying the coal seams were analyzed using acid base accounting to determine their potential for generating acidity as well as alkalinity. Additional drill hole data and chemical analyses were collected from cooperating mining companies. This information was used to produce a geologic map showing coal crop lines and structure, coal thickness maps, mined-out area maps, overburden thickness maps, overburden geochemistry maps, strip ratio maps, and to estimate the extent of remaining coal reserves. Several significant geologic features were found in the course of mapping the watershed. One is the extreme variability in coal thickness and character of overburden rock. Another is the degree of relief found to be present on the Mississippian-Pennsylvanian unconformity. It is believed that this feature plays an important role in coal and high aluminum flint clay distribution regionally. And finally is the thick occurrence of Loyalhanna Formation calcareous sandstone which is providing a natural source of carbonate for the neutralization of acid mine drainage

  6. Protect and Restore Red River Watershed, 2007-2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bransford, Stephanie [Nez Perce Tribe Fisheries/Watershed Program

    2009-05-04

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Red River Watershed of the South Fork Clearwater River in 2001. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. From completing a watershed assessment to two NEPA efforts and a final stream restoration design, we will begin the effort of restoring the mainstem channel of Red River to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed. Another major, and extremely, important component of this project is the Red River Meadow Conservation Easement. We have begun the process of pursuing a conservation easement on approximately 270 acres of prime meadow habitat (Red River runs through this meadow and is prime spawning and rearing habitat).

  7. New efficient methods for calculating watersheds

    International Nuclear Information System (INIS)

    Fehr, E; Andrade, J S Jr; Herrmann, H J; Kadau, D; Moukarzel, C F; Da Cunha, S D; Da Silva, L R; Oliveira, E A

    2009-01-01

    We present an advanced algorithm for the determination of watershed lines on digital elevation models (DEMs) which is based on the iterative application of invasion percolation (IP). The main advantage of our method over previously proposed ones is that it has a sub-linear time-complexity. This enables us to process systems comprising up to 10 8 sites in a few CPU seconds. Using our algorithm we are able to demonstrate, convincingly and with high accuracy, the fractal character of watershed lines. We find the fractal dimension of watersheds to be D f = 1.211 ± 0.001 for artificial landscapes, D f = 1.10 ± 0.01 for the Alps and D f = 1.11 ± 0.01 for the Himalayas

  8. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  9. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  10. Research on Structure Innovation of Agricultural Organization in China’s Southwestern Mountainous Regions

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Taking agricultural organization in China’s southwestern mountainous regions as research object,on the basis of analysis of the status quo of agricultural organization development in China’s southwestern mountainous regions,we use related theoretical knowledge on economics and organization science,we probe into the process of innovation and mechanism of action concerning the structure of agricultural organization in China’s southwestern mountainous regions over the past 30 years.Finally we draw several general conclusions regarding structure innovation of agricultural organization in China’s southwestern mountainous regions as follows:first,the structure innovation of agricultural organization,a gradual process,proceeds ceaselessly along with ongoing progress and development of agriculture,and in this process,farmers always play a fundamental role;second,the structure innovation of agricultural organization is affected by many factors,and government institutional arrangement and change in market conditions is undoubtedly the most critical factor;third,the probable evolving direction of structure innovation of agricultural organization includes internal differentiation of the same form of agricultural organization,association of different forms of agricultural organization,and emergence of other forms of agricultural organization.

  11. [Impact on nitrogen and phosphorous export of wetlands in Tianmu Lake watershed].

    Science.gov (United States)

    Li, Zhao-Fu; Liu, Hong-Yu; Li, Heng-Peng

    2012-11-01

    Focused on understanding the function of wetland in improving water quality, Pingqiao watershed and Zhongtian watershed in Tianmu Lake drinking water sources area were selected as the research region. We integrated remote sensing, GIS techniques with field investigation and chemical analysis to analyze the relationship between wetland and water quality in watershed scale. Results show: (1) There are many wetland patches in Pingqiao and Zhongtian watershed, wetlands patch densities were respectively 7.5 km(-2) and 7.1 km(-2). Wetlands widely distributed in the Pingqiao watershed with mostly located away from the river of 500 m, whereas wetlands relatively concentrated in the lower reach within 500 meters of riverside in Zhongtian watershed. (2) Nitrogen and phosphorus nutrient retention of wetland in watershed scale was significant. The annual mean TN and DTN concentration had a strong relationship with percent area of wetlands in Zhongtian watershed while the weakest relationship was found with TP and DTP concentrations, especially, the mean TN and DTN concentrations in spring and winter had the significantly negative relationship with wetland areas of watershed. The negative relationship was existed for nitrogen in autumn of Pingqiao watershed, which suggested that watersheds varying in area of wetlands have the different nutrient reducing efficiency in seasonal periods. (3) A certain number and area of wetland will improve river water quality in watershed scale, which can instruct water environment treatment. However, considering the complexity of nutrient transport processes in watershed, wetland-related factors such as area, location, density, ecosystem structure and watershed-related factors such as temporal interval, spatial scales, slope and land use will impact on the transport processes, and related theoretical and practical problems need further research.

  12. Winter Counter-Wind Transport in the Inner Southwestern Yellow Sea

    Science.gov (United States)

    Wu, Hui; Gu, Jinghua; Zhu, Ping

    2018-01-01

    Coastal currents generally flow downshelf with land on the right side (Northern Hemisphere) under the geostrophic balance, and are often strengthened by downwelling-favorable winds. However, the recent mooring observation in the inner southwestern Yellow Sea showed that coastal transport direction can be substantially changed by tidal forcing. In the survey, the tidal-averaged transports at two out of three sites remained northward (i.e., in the upshelf direction) and opposite the downwelling-favorable northerly wind, except during a brief neap tide period. Numerical experiments showed that the incoming Poincaré wave tide from the East China Sea plays a key role in forming this counter-wind transport system. This tidal wave produces a shoreward tidal stress south of 33.5°N in the inner southwestern Yellow Sea, driving an upshelf transport under the Earth's rotation. Counterpropagating tidal waves from the East China Sea and the northern Yellow Sea collide in coastal water in 32.5-34°N, which produce a standing tidal wave and therefore a mean sea-surface setup with alongshore and cross-shelf scales of both >100 km. This sea-surface setup causes an alongshore sea surface gradient, which veers the upshelf transport to the offshore direction under geostrophic balance. The strong tidal current increases the tidal-mean bottom resistance in the SCW, thus reduces the wind-driven current to a magnitude smaller than the tide-induced residual transport velocity. Therefore, upshelf transport persists in the inner southwestern Yellow Sea, and the Changjiang River Estuary becomes a major source area for the inner southwestern Yellow Sea.

  13. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  14. Watershed Management Optimization Support Tool (WMOST) v3: Theoretical Documentation

    Science.gov (United States)

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context, accounting fo...

  15. 78 FR 65703 - Notice of Availability of the Idaho and Southwestern Montana Greater Sage-Grouse Draft Land Use...

    Science.gov (United States)

    2013-11-01

    ...] Notice of Availability of the Idaho and Southwestern Montana Greater Sage-Grouse Draft Land Use Plan... Environmental Impact Statement (EIS) for managing Greater Sage- Grouse (GRSG) in the Idaho and Southwestern... Southwestern Montana Greater Sage-Grouse Draft LUP Amendments/Draft EIS by any of the following methods: Email...

  16. Cloud GIS Based Watershed Management

    Science.gov (United States)

    Bediroğlu, G.; Colak, H. E.

    2017-11-01

    In this study, we generated a Cloud GIS based watershed management system with using Cloud Computing architecture. Cloud GIS is used as SAAS (Software as a Service) and DAAS (Data as a Service). We applied GIS analysis on cloud in terms of testing SAAS and deployed GIS datasets on cloud in terms of DAAS. We used Hybrid cloud computing model in manner of using ready web based mapping services hosted on cloud (World Topology, Satellite Imageries). We uploaded to system after creating geodatabases including Hydrology (Rivers, Lakes), Soil Maps, Climate Maps, Rain Maps, Geology and Land Use. Watershed of study area has been determined on cloud using ready-hosted topology maps. After uploading all the datasets to systems, we have applied various GIS analysis and queries. Results shown that Cloud GIS technology brings velocity and efficiency for watershed management studies. Besides this, system can be easily implemented for similar land analysis and management studies.

  17. Segmentation by watersheds : definition and parallel implementation

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.; Meijster, Arnold

    1997-01-01

    The watershed algorithm is a method for image segmentation widely used in the area of mathematical morphology. In this paper we first address the problem of how to define watersheds. It is pointed out that various existing definitions are not equivalent. In particular we explain the differences

  18. Avaliação da vulnerabilidade ambiental de reservatórios à eutrofização Evaluation of reservoirs environmental vulnerability to eutrophication

    Directory of Open Access Journals (Sweden)

    Maria Cléa Brito de Figueirêdo

    2007-12-01

    Full Text Available Esse trabalho apresenta uma ferramenta de análise da vulnerabilidade de reservatórios à eutrofização, visando subsidiar ações de controle e remediação desse processo. Foram analisadas três subbacias de açudes - Araras, Edson Queiroz e Jaibaras, da bacia do Acaraú, CE, Brasil. A análise multiatributo usada na definição de indicadores ambientais de vulnerabilidade dos açudes à eutrofização, considerou sua sensibilidade e fatores de pressão nas suas sub-bacias que acarretam o transporte de sedimentos e nutrientes para os reservatórios. Foi utilizado um Sistema de Informações Geográficas (SIG com a ferramenta álgebra de mapas para manipular dados de uso e ocupação do solo, declividade do terreno e erodibilidade do solo. Foi identificada alta vulnerabilidade à eutrofização nos três açudes pelas susceptibilidades à erosão, alta carga poluidora principalmente pela pecuária extensiva na região e baixa profundidade relativa dos reservatórios.This work presents a tool to analyze the vulnerability of reservoirs to eutrophication, aiming to subsidize control and remediation actions related with this process. It was analyzed the water basins of Araras, Edson Queiroz and Jaibaras reservoirs, located in the Acaraú watershed, Ceará, Brazil. The multi-criteria analyses methodology used, in order to define environmental vulnerability indicators to reservoir eutrophication, considered reservoir sensibility and pressure factors in the water basin responsible for the transport of sediments and nutrients to the reservoir. A Geographic Information System (GIS with map algebra as major tool was applied to soil use and occupation, declivity and erosion indicators. It was identified high vulnerability to eutrophication in the three mentioned reservoirs because of the waterbasins susceptibility to erosion, high phosphorous load mainly from the extensive cattle raising and low relative depth of the reservoirs.

  19. Influences of land use on water quality of a diverse New England watershed.

    Science.gov (United States)

    Rhodes, A L; Newton, R M; Pufall, A

    2001-09-15

    Analysis of variations in major ion chemistry in the Mill River watershed reveals the importance of anthropogenic activities in controlling streamwater chemistry. Average concentrations of NO3- and SO4(2-) show a positive correlation with percent catchment area altered by human land uses, and concentrations of Cl- increase with road density. Water removal from municipal reservoirs increases the downstream concentration of NO3- and SO4(2-) over that predicted by land use changes, showing that removal of high quality upstream water concentrates pollutants downstream. In salt-impacted streams, Cl- exceeds Na- by 10-15% due to cation exchange reactions that bind Na+ to soil. The net effect of nonpoint source pollution is to elevate ANC in the most developed areas, which impacts the natural acidity of a large swamp. The sum of base cations (C(B)) exceeds ANC for all samples. Plotting C(B) against ANC and subtracting Cl- quantifies the impact of road salt from the impact of the addition of strong acids.

  20. Simulation of Reservoir Sediment Flushing of the Three Gorges Reservoir Using an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Xueying Li

    2016-05-01

    Full Text Available Reservoir sedimentation and its effect on the environment are the most serious world-wide problems in water resources development and utilization today. As one of the largest water conservancy projects, the Three Gorges Reservoir (TGR has been controversial since its demonstration period, and sedimentation is the major concern. Due to the complex physical mechanisms of water and sediment transport, this study adopts the Error Back Propagation Training Artificial Neural Network (BP-ANN to analyze the relationship between the sediment flushing efficiency of the TGR and its influencing factors. The factors are determined by the analysis on 1D unsteady flow and sediment mathematical model, mainly including reservoir inflow, incoming sediment concentration, reservoir water level, and reservoir release. Considering the distinguishing features of reservoir sediment delivery in different seasons, the monthly average data from 2003, when the TGR was put into operation, to 2011 are used to train, validate, and test the BP-ANN model. The results indicate that, although the sample space is quite limited, the whole sediment delivery process can be schematized by the established BP-ANN model, which can be used to help sediment flushing and thus decrease the reservoir sedimentation.

  1. Applying Spatially Distributed Rainfall to a Hydrological Model in a Tropical Watershed, Manoa Watershed, in Hawaii

    Science.gov (United States)

    Huang, Y. F.; Tsang, Y. P.

    2017-12-01

    Rainfall in Hawaii is characterized with high spatial and temporal variability. In the south side of Oahu, the Manoa watershed, with an area of 11 km2, has the annual maximum rainfall of 3900mm and the minimum rainfall of 1000 mm. Despite this high spatial heterogeneity, the rain gage network seems insufficiently capture this pattern. When simulating stream flow and predicting floods with hydrological models in Hawaii, the model performance is often unsatisfactory because of inadequate representation of rainfall data. Longman et al. (in prep.) have developed the spatially distributed daily rainfall across the Hawaiian Islands by applying ordinary kriging, yet these data have not been applied to hydrological models. In this study, we used the Soil and Water Assessment Tool (SWAT) model to assess the streamflow simulation by applying spatially-distributed rainfall in the Manoa watershed. We first used point daily-rainfall at Lyon Arboretum from National Center of Environmental Information (NCEI) as the uniform rainfall input. Secondly, we summarized sub-watershed mean rainfall from the daily spatial-statistical rainfall. Both rainfall data are available from 1999 to 2014. The SWAT was set up for five-year warm-up, nine-year calibration, and two-year validation. The model parameters were calibrated and validated with four U.S. Geological Survey stream gages. We compared the calibrated watershed parameters, characteristics, and assess the streamflow hydrographs from these two rainfall inputs. The differences and improvement of using spatially distributed rainfall input in SWAT were discussed. In addition to improving the model by the representation of rainfall, this study helped us having a better understanding of the watershed hydrological response in Hawaii.

  2. An Effective Reservoir Parameter for Seismic Characterization of Organic Shale Reservoir

    Science.gov (United States)

    Zhao, Luanxiao; Qin, Xuan; Zhang, Jinqiang; Liu, Xiwu; Han, De-hua; Geng, Jianhua; Xiong, Yineng

    2017-12-01

    Sweet spots identification for unconventional shale reservoirs involves detection of organic-rich zones with abundant porosity. However, commonly used elastic attributes, such as P- and S-impedances, often show poor correlations with porosity and organic matter content separately and thus make the seismic characterization of sweet spots challenging. Based on an extensive analysis of worldwide laboratory database of core measurements, we find that P- and S-impedances exhibit much improved linear correlations with the sum of volume fraction of organic matter and porosity than the single parameter of organic matter volume fraction or porosity. Importantly, from the geological perspective, porosity in conjunction with organic matter content is also directly indicative of the total hydrocarbon content of shale resources plays. Consequently, we propose an effective reservoir parameter (ERP), the sum of volume fraction of organic matter and porosity, to bridge the gap between hydrocarbon accumulation and seismic measurements in organic shale reservoirs. ERP acts as the first-order factor in controlling the elastic properties as well as characterizing the hydrocarbon storage capacity of organic shale reservoirs. We also use rock physics modeling to demonstrate why there exists an improved linear correlation between elastic impedances and ERP. A case study in a shale gas reservoir illustrates that seismic-derived ERP can be effectively used to characterize the total gas content in place, which is also confirmed by the production well.

  3. Integrated Approach to Drilling Project in Unconventional Reservoir Using Reservoir Simulation

    Science.gov (United States)

    Stopa, Jerzy; Wiśniowski, Rafał; Wojnarowski, Paweł; Janiga, Damian; Skrzypaszek, Krzysztof

    2018-03-01

    Accumulation and flow mechanisms in unconventional reservoir are different compared to conventional. This requires a special approach of field management with drilling and stimulation treatments as major factor for further production. Integrated approach of unconventional reservoir production optimization assumes coupling drilling project with full scale reservoir simulation for determine best well placement, well length, fracturing treatment design and mid-length distance between wells. Full scale reservoir simulation model emulate a part of polish shale - gas field. The aim of this paper is to establish influence of technical factor for gas production from shale gas field. Due to low reservoir permeability, stimulation treatment should be direct towards maximizing the hydraulic contact. On the basis of production scenarios, 15 stages hydraulic fracturing allows boost gas production over 1.5 times compared to 8 stages. Due to the possible interference of the wells, it is necessary to determine the distance between the horizontal parts of the wells trajectories. In order to determine the distance between the wells allowing to maximize recovery factor of resources in the stimulated zone, a numerical algorithm based on a dynamic model was developed and implemented. Numerical testing and comparative study show that the most favourable arrangement assumes a minimum allowable distance between the wells. This is related to the volume ratio of the drainage zone to the total volume of the stimulated zone.

  4. Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Richard

    2004-02-01

    This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts at off-site mitigation for damage to salmon and steelhead runs, their migration, and wildlife habitat caused by the construction and operation of federal hydroelectric dams on the Columbia River and its tributaries. The proposed restoration activities within the Big Canyon Creek watershed follow the watershed restoration approach mandated by the Fisheries and Watershed Program. Nez Perce Tribal Fisheries/Watershed Program vision focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects. We strive toward maximizing historic ecosystem productive health, for the restoration of anadromous and resident fish populations. The Nez Perce Tribal Fisheries/Watershed Program (NPTFWP) sponsors the Protect and Restore the Big Canyon Creek Watershed project. The NPTFWP has the authority to allocate funds under the provisions set forth in their contract with BPA. In the state of Idaho vast numbers of relatively small obstructions, such as road culverts, block thousands of miles of habitat suitable for a variety of fish species. To date, most agencies and land managers have not had sufficient, quantifiable data to adequately address these barrier sites. The ultimate objective of this comprehensive inventory and assessment was to identify all barrier crossings within the watershed. The barriers were then prioritized according to the

  5. Reservoir floodplains support distinct fish assemblages

    Science.gov (United States)

    Miranda, Leandro E.; Wigen, S. L.; Dagel, Jonah D.

    2014-01-01

    Reservoirs constructed on floodplain rivers are unique because the upper reaches of the impoundment may include extensive floodplain environments. Moreover, reservoirs that experience large periodic water level fluctuations as part of their operational objectives seasonally inundate and dewater floodplains in their upper reaches, partly mimicking natural inundations of river floodplains. In four flood control reservoirs in Mississippi, USA, we explored the dynamics of connectivity between reservoirs and adjacent floodplains and the characteristics of fish assemblages that develop in reservoir floodplains relative to those that develop in reservoir bays. Although fish species richness in floodplains and bays were similar, species composition differed. Floodplains emphasized fish species largely associated with backwater shallow environments, often resistant to harsh environmental conditions. Conversely, dominant species in bays represented mainly generalists that benefit from the continuous connectivity between the bay and the main reservoir. Floodplains in the study reservoirs provided desirable vegetated habitats at lower water level elevations, earlier in the year, and more frequently than in bays. Inundating dense vegetation in bays requires raising reservoir water levels above the levels required to reach floodplains. Therefore, aside from promoting distinct fish assemblages within reservoirs and helping promote diversity in regulated rivers, reservoir floodplains are valued because they can provide suitable vegetated habitats for fish species at elevations below the normal pool, precluding the need to annually flood upland vegetation that would inevitably be impaired by regular flooding. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  6. Urban Stream Burial Increases Watershed-Scale Nitrate Export.

    Directory of Open Access Journals (Sweden)

    Jake J Beaulieu

    Full Text Available Nitrogen (N uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams can increase watershed-scale N retention.

  7. Watershed Planning within a Quantitative Scenario Analysis Framework.

    Science.gov (United States)

    Merriam, Eric R; Petty, J Todd; Strager, Michael P

    2016-07-24

    There is a critical need for tools and methodologies capable of managing aquatic systems within heavily impacted watersheds. Current efforts often fall short as a result of an inability to quantify and predict complex cumulative effects of current and future land use scenarios at relevant spatial scales. The goal of this manuscript is to provide methods for conducting a targeted watershed assessment that enables resource managers to produce landscape-based cumulative effects models for use within a scenario analysis management framework. Sites are first selected for inclusion within the watershed assessment by identifying sites that fall along independent gradients and combinations of known stressors. Field and laboratory techniques are then used to obtain data on the physical, chemical, and biological effects of multiple land use activities. Multiple linear regression analysis is then used to produce landscape-based cumulative effects models for predicting aquatic conditions. Lastly, methods for incorporating cumulative effects models within a scenario analysis framework for guiding management and regulatory decisions (e.g., permitting and mitigation) within actively developing watersheds are discussed and demonstrated for 2 sub-watersheds within the mountaintop mining region of central Appalachia. The watershed assessment and management approach provided herein enables resource managers to facilitate economic and development activity while protecting aquatic resources and producing opportunity for net ecological benefits through targeted remediation.

  8. A rationale for reservoir management economics

    International Nuclear Information System (INIS)

    Hickman, T.S.

    1995-01-01

    Significant economic benefits can be derived from the application f reservoir management. The key elements in economical reservoir management are the efficient use of available resources and optimization of reservoir exploitation through a multidisciplined approach. This paper describes various aspects of and approaches to reservoir management and provides case histories that support the findings

  9. Watershed Conservation in the Long Run

    DEFF Research Database (Denmark)

    Kaiser, Brooks

    2014-01-01

    We studied unanticipated long-run outcomes of conservation activities that occurred in forested watersheds on O`ahu, Hawaii, in the early twentieth century. The initial general impetus for the conservation activities was to improve irrigation surface water flow for the sugar industry. Industry...... concentration facilitated conservation of entire ecosystems. We investigate the benefits that accrued through dynamic linkages of the hydrological cycle and groundwater aquifer system. This provides a clear example of the need to consider integrated watershed effects, industrial structure, and linkages...... in determining conservation policy. We incorporated remote-sensing data, expert opinion on current watershed quality, and a spatial economic and hydrological model of O`ahu’s freshwater use with reports of conservation activities from 1910–1960 to assess these benefits. We find a 2.3% annual increase...

  10. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  11. Exploration and reservoir characterization; Technology Target Areas; TTA2 - Exploration and reservoir characterisation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    In future, research within exploration and reservoir characterization will play an even more important role for Norway since resources are decreasing and new challenges like deep sea, harsh environment and last but not least environmental issues have to be considered. There are two major fields which have to be addressed within exploration and reservoir characterization: First, replacement of reserves by new discoveries and ultimate field recoveries in mature basins at the Norwegian Continental shelf, e.g. at the Halten Terrace has to be addressed. A wealth of data exists in the more mature areas. Interdisciplinary integration is a key feature of reservoir characterization, where available data and specialist knowledge need to be combined into a consistent reservoir description. A systematic approach for handling both uncertainties in data sources and uncertainties in basic models is needed. Fast simulation techniques are necessary to generate models spanning the event space, covering both underground based and model-based uncertainties. Second, exploration in frontier areas like the Barents Sea region and the deeper Voering Basin has to be addressed. The scarcity of wells in these frontier areas leads to uncertainties in the geological understanding. Basin- and depositional modelling are essential for predicting where source rocks and reservoir rocks are deposited, and if, when and which hydrocarbons are generated and trapped. Predictive models and improved process understanding is therefore crucial to meet these issues. Especially the challenges related to the salt deposits e.g. sub-salt/sub-basalt reservoir definitions in the Nordkapp Basin demands up-front research and technology developments. TTA2 stresses the need to focus on the development of new talents. We also see a strong need to push cooperation as far as possible in the present competitive environment. Projects that may require a substantial financial commitment have been identified. The following

  12. Watershed responses to Amazon soya bean cropland expansion and intensification.

    Science.gov (United States)

    Neill, Christopher; Coe, Michael T; Riskin, Shelby H; Krusche, Alex V; Elsenbeer, Helmut; Macedo, Marcia N; McHorney, Richard; Lefebvre, Paul; Davidson, Eric A; Scheffler, Raphael; Figueira, Adelaine Michela e Silva; Porder, Stephen; Deegan, Linda A

    2013-06-05

    The expansion and intensification of soya bean agriculture in southeastern Amazonia can alter watershed hydrology and biogeochemistry by changing the land cover, water balance and nutrient inputs. Several new insights on the responses of watershed hydrology and biogeochemistry to deforestation in Mato Grosso have emerged from recent intensive field campaigns in this region. Because of reduced evapotranspiration, total water export increases threefold to fourfold in soya bean watersheds compared with forest. However, the deep and highly permeable soils on the broad plateaus on which much of the soya bean cultivation has expanded buffer small soya bean watersheds against increased stormflows. Concentrations of nitrate and phosphate do not differ between forest or soya bean watersheds because fixation of phosphorus fertilizer by iron and aluminium oxides and anion exchange of nitrate in deep soils restrict nutrient movement. Despite resistance to biogeochemical change, streams in soya bean watersheds have higher temperatures caused by impoundments and reduction of bordering riparian forest. In larger rivers, increased water flow, current velocities and sediment flux following deforestation can reshape stream morphology, suggesting that cumulative impacts of deforestation in small watersheds will occur at larger scales.

  13. Upland hardwood habitat types in southwestern North Dakota

    Science.gov (United States)

    Michele M. Girard; Harold Goetz; Ardell J. Bjugstad

    1985-01-01

    The Daubenmire habitat type method was used to classify the upland hardwood draws of southwestern North Dakota. Preliminary data analysis indicates there are four upland habitat types: Fraxinus pennsylvanica/Prunus virginiana; F. pnnseanica-Ulmus americana/P. virginiana; Populus...

  14. Watershed Landscape Ecology: Interdisciplinary and Field-based Learning in the Northeast Creek Watershed, Mount Desert Island, Maine

    Science.gov (United States)

    Hall, S. R.; Anderson, J.; Rajakaruna, N.; Cass, D.

    2014-12-01

    At the College of the Atlantic, Bar Harbor, Maine, undergraduate students have the opportunity to design their own curriculum within a major of "Human Ecology." To enable students to have early research experiences, we developed a field-based interdisciplinary program for students to learn and practice field methods in a variety of disciplines, Earth Science, Botany, Chemistry, and Wildlife Biology at three specific field sites within a single watershed on Mt. Desert Island. As the Northeast Creek watershed was the site of previous water quality studies, this program of courses enabled continued monitoring of portions of the watershed. The program includes 4 new courses: Critical Zone 1, Critical Zone 2, Wildlife Biology, and Botany. In Critical Zone 1 students are introduced to general topics in Earth Science and learn to use ArcGIS to make basic maps. In Critical Zone 2, Wildlife Biology, and Botany, students are in the field every week using classic field tools and methods. All three of these courses use the same three general field areas: two with working farms at the middle and lower portion of the watershed and one uninhabited forested property in the higher relief headwaters of the watershed. Students collect daily surface water chemistry data at five stream sites within the watershed, complete basic geologic bedrock and geomorphic mapping, conduct wildlife surveys, botanical surveys, and monitor weather patterns at each of the main sites. Beyond the class data collected and synthesized, students also complete group independent study projects at focused field sites, some of which have turned into much larger research projects. This program is an opportunity for students and faculty with varied interests and expertise to work together to study a specific field locality over multiple years. We see this model as enhancing a number of positive education components: field-based learning, teamwork, problem solving, interdisciplinary discussion, multiple faculty

  15. Water quality of the reservoirs used for irrigation in São José dos Pinhais, Paraná State, Brazil

    Directory of Open Access Journals (Sweden)

    Tiago Miguel Jarek

    2016-04-01

    Full Text Available ABSTRACT: Land use outside its agricultural potential and low vegetation cover in the watershed impair the quality of water used for irrigation and may contribute to the spread of pathogenic coliform bacteria. The objective of this study was to relate the quality of irrigation water with the intensity and type of land use and the rainfall in a vegetable-producing region of São José dos Pinhais, Paraná. Water samples were collected monthly in 2013 from two reservoirs and one preserved source. After collection, the samples were chilled in Styrofoam boxes and transported to the laboratory for analyses of the total and thermotolerant coliforms. Effect of land use was analyzed by probability estimation trees. High land use and weekly above average rainfall increased the probability of thermo tolerant coliforms exceeding the limit allowed under legislation. In regards to thermo tolerant coliforms in the analyzed period, the water from only one reservoir was in accordance with the legislation for the quality of water to irrigate vegetables that are consumed raw. Results of this study are an alert to the local government for the necessity of environmental preservation to maintain the water quality of the county.

  16. High-Functioning Wetland Formed Atop Abandoned Pavement in Eutrophic Reservoir Watershed

    Science.gov (United States)

    Clifford, C.; Heffernan, J. B.

    2017-12-01

    Water scientists and managers regularly observe how wetlands, whether natural or created, can mitigate the influence of artificial impervious surfaces on water quality. However, we rarely study or mention wetlands accidentally (sensu Palta et al. 2017) formed atop impervious surfaces. This silence occurs even though many urbanites have likely noticed sedges rimming a clogged drainage grate or in the low bits of a poorly graded or aging parking lot, or similar. A more extreme example occurs in the Little River Waterfowl Impoundment vicinity of the Butner-Falls of Neuse Game Land in Durham, North Carolina. There, a macadam road that connected local residents and a store, and served as the primary route through the area, by 1910-1920, was apparently abandoned by 1951. Later, damming nearby downstream Falls Lake Reservoir in 1981, and smaller-scale construction locally, apparently increased water table depth and flow exposure. Yet, the road remains largely intact structurally, though mostly buried and sometimes underwater. In a particularly wet segment of the road, surrounded by and partially holding back standing water even in drought, a substantial, mostly native wetland plant community has formed. This community includes trees such as overcup oak (Quercus lyrata) as large as 15 cm in diameter, shrubs such as (Cephalanthus occidentalus), sedges such as woolgrass (Scirpus cyperinus), rushes (multiple Juncus species), grasses such as wood oats (Chasmanthium latifolium), crayfish and fish, and multiple orders of herptiles. The plants grow rooted in fluffy sediment three to rarely more than 20cm deep, over solid pavement. Alongside the old road, the ditches have widened and become shallower and less surficially connected through tree roots and debris dams; they resemble pools. Sediment in these abandoned ditches has accumulated to depths of tens of centimeters, generally reforming a clay-dominated, gleyed soil, in some places buried under more tens of centimeters of very

  17. Kootenai River Focus Watershed Coordination, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Munson, Bob; Munson, Vicki (Kootenai River Network, Libby, MT); Rogers, Rox (US Fish and Wildlife Service, Libby, MT)

    2003-10-01

    The Kootenai River Network Inc. (KRN) was incorporated in Montana in early 1995 with a mission ''to involve stakeholders in the protection and restoration of the chemical, physical and biological integrity of the Kootenai River Basin waters''. The KRN operates with funding from donations, membership dues, private, state and federal grants, and with funding through the Bonneville Power Administration (BPA) for a Focus Watershed Coordinator Program. The Focus Watershed Program is administered to KRN as of October 2001, through a Memorandum of Understanding. Katie Randall resigned her position as Watershed Coordinator in late January 2003 and Munson Consulting was contracted to fill that position through the BPA contract period ending May 30, 2003. To improve communications with in the Kootenai River watershed, the board and staff engaged watershed stakeholders in a full day KRN watershed conference on May 15 and 16 in Bonners Ferry, Idaho. This Annual General Meeting was a tremendous success with over 75 participants representing over 40 citizen groups, tribes and state/provincial/federal agencies from throughout northern Montana and Idaho as well as British Columbia and Alberta. Membership in the KRN increased during the course of the BPA 02/03 grant period. The board of directors grew in numbers during this same time frame and an Advisory Council was formed to assist in transboundary efforts while developing two reorganized KRN committees (Habitat/Restoration/Monitoring (HRM) and Communication/Education/Outreach (CEO)). These committees will serve pivotal roles in communications, outreach, and education about watershed issues, as well as habitat restoration work being accomplished throughout the entire watershed. During this BPA grant period, the KRN has capitalized on the transboundary interest in the Kootenai River watershed. Jim and Laura Duncan of Kimberley, British Columbia, have been instrumental volunteers who have acted as Canadian

  18. When Everything Changes: Mountaintop Mining Effects on Watershed Hydrology

    Science.gov (United States)

    Nippgen, F.; Ross, M. R.; McGlynn, B. L.; Bernhardt, E. S.

    2015-12-01

    Mountaintop removal coal mining (MTM) in the Central Appalachians has expanded over the last 40 years to cover ~7% of this mountainous landscape. MTM operations remove mountaintops and ridges with explosives and machinery to access underlying coal seams. Much of this crushed rock overburden is subsequently deposited into nearby valleys, creating valley fills that often bury headwater streams. In contrast to other disturbances such as forest clear-cutting, perturbations from MTM can extend hundreds of meters deep into the critical zone and completely reshape landscapes. Despite the expansiveness and intensity of the disturbance, MTM has only recently begun to receive focused attention from the hydrologic community and the effect of MTM on the hydrology of impacted watersheds is still not well understood. We are using a two-pronged approach consisting of GIS analysis to quantify spoil volumes and landscape change, together with empirical analysis and modeling of rainfall and runoff data collected in two sets of paired watersheds. We seek to investigate how MTM affects basic hydrologic metrics, including storm peakflows, runoff response times, baseflow, statistics of flow duration curves, and longer-term water balances. Each pair consists of a mined and an unmined watershed; the first set contains headwater streams (size ~100ha), the second set consists of 3rd order streams, draining ~3500ha. Mining covers ~ 95% of the headwater watershed, and 40% of the 3rd-order watershed. Initial GIS analysis indicates that the overburden moved during the mining process could be up to three times greater than previously estimated. Storm runoff peaks in the mined watersheds were muted as compared to the unmined watersheds and runoff ratios were reduced by up to 75% during both wet and dry antecedent conditions. The natural reference watersheds were highly responsive while the additional storage in the mined watersheds led to decreased peak flows during storms and enhanced baseflow

  19. Lesion Distribution and Epidemiology of Mycobacterium bovis in Elk and White-Tailed Deer in South-Western Manitoba, Canada

    Directory of Open Access Journals (Sweden)

    Todd K. Shury

    2011-01-01

    Full Text Available Surveillance for Mycobacterium bovis in free-ranging elk (Cervus elaphus and white-tailed deer (Odocoileus virginianus from south-western Manitoba was carried out from 1997 to 2010 to describe the lesions, epidemiology, and geographic distribution of disease. Tissues were cultured from animals killed by hunters, culled for management, blood-tested, or found opportunistically. Period prevalence in elk was approximately six times higher than deer, suggesting a significant reservoir role for elk, but that infected deer may also be involved. Prevalence was consistently higher in elk compared to deer in a small core area and prevalence declines since 2003 are likely due to a combination of management factors instituted during that time. Older age classes and animals sampled from the core area were at significantly higher risk of being culture positive. Positive elk and deer were more likely to be found through blood testing, opportunistic surveillance, and culling compared to hunting. No non-lesioned, culture-positive elk were detected in this study compared to previous studies in red deer.

  20. McKenzie River focus watershed coordination: year-end report, 2001; ANNUAL

    International Nuclear Information System (INIS)

    Thrailkil, Jim

    2001-01-01

    BPA funding, in conjunction with contributions from numerous partners organizations, supports the McKenzie Watershed Council's efforts to coordinate restoration and monitoring programs of federal, state, local government, and residents within the watershed. The goal of the MWC is to improve resource stewardship and conserve fish, wildlife, and water quality resources. The MWC will always have a baseline program centered on relationship building and information sharing. Objectives for FY01 included: (1) Continue to coordinate McKenzie Watershed activities among diverse groups that restore fish and wildlife habitat in the watershed, with a focus on the lower McKenzie, including private lands and the McKenzie-Willamette confluence area; (2) Influence behavior of watershed residents to benefit watershed function though a strategic and comprehensive outreach and education program, utilizing Assessment and Conservation Strategy information to provide a context for prioritized action; (3) Continue to maintain and sustain a highly functional watershed council; (4) Maintain and improve water quality concerns through the continuation of Council-sponsored monitoring and evaluation programs; and (5) Continue to secure other funding for watershed restoration and protection projects and Council operations