WorldWideScience

Sample records for reservoir storage capacity

  1. Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs

    NARCIS (Netherlands)

    Wisser, D.; Frolking, S.; Hagen, Stephen; Bierkens, M.F.P.|info:eu-repo/dai/nl/125022794

    2013-01-01

    Water storage is an important way to cope with temporal variation in water supply anddemand. The storage capacity and the lifetime of water storage reservoirs can besignificantly reduced by the inflow of sediments. A global, spatially explicit assessment ofreservoir storage loss in conjunction with

  2. Storage capacity of the Fena Valley Reservoir, Guam, Mariana Islands, 2014

    Science.gov (United States)

    Marineau, Mathieu D.; Wright, Scott A.

    2015-01-01

    The Fena Valley Reservoir is in southern Guam and is the primary source of water for the U.S. Naval Base Guam and nearby village residents. Since the construction of the Fena Dam in 1951, sediment has accumulated in the reservoir and reduced its storage capacity. The reservoir was surveyed previously in 1973, 1979, and 1990 to estimate the loss in storage capacity. To determine the current storage capacity, the U.S. Geological Survey, in cooperation with the U.S. Department of Defense Strategic Environmental Research and Development Program, surveyed the bathymetry of the reservoir in February 2014.

  3. Analysis of the influence of input data uncertainties on determining the reliability of reservoir storage capacity

    Directory of Open Access Journals (Sweden)

    Marton Daniel

    2015-12-01

    Full Text Available The paper contains a sensitivity analysis of the influence of uncertainties in input hydrological, morphological and operating data required for a proposal for active reservoir conservation storage capacity and its achieved values. By introducing uncertainties into the considered inputs of the water management analysis of a reservoir, the subsequent analysed reservoir storage capacity is also affected with uncertainties. The values of water outflows from the reservoir and the hydrological reliabilities are affected with uncertainties as well. A simulation model of reservoir behaviour has been compiled with this kind of calculation as stated below. The model allows evaluation of the solution results, taking uncertainties into consideration, in contributing to a reduction in the occurrence of failure or lack of water during reservoir operation in low-water and dry periods.

  4. CO2 Storage Capacity for Multi-Well Pads Scheme in Depleted Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Zhan Meng

    2017-10-01

    Full Text Available As a promising technology to improve shale gas (SG recovery and CO2 storage capacity, the multi-well pads (MWPs scheme has gained more and more attention. The semi-analytical pressure-buildup method has been used to estimate CO2 storage capacity. It focuses on single multi-fractured horizontal wells (SMFHWs and does not consider multi-well pressure interference (MWPI induced by the MWPs scheme. This severely limits the application of this method as incidences of multi-well pressure interference have been widely reported. This paper proposed a new methodology to optimize the injection strategy of the MWPs scheme and maximize CO2 storage capacity. The new method implements numerical discretization, the superposition theory, Gauss elimination, and the Stehfest numerical algorithm to obtain pressure-buildup solutions for the MWPs scheme. The solution by the new method was validated with numerical simulation and pressure-buildup curves were generated to identify MWPI. Using the new method, we observed that the fracture number and fracture half-length have a positive influence on CO2 storage capacity. Both can be approximately related to the CO2 storage capacity by a linear correlation. For a given injection pressure, there is an optimal fracture number; the bigger the limited injection pressure, the smaller the optimal fracture number. Stress sensitivity has positive influences on CO2 storage capacity, thus extending the injection period would improve CO2 storage capacity. This work gains some insights into the CO2 storage capacity of the MWPs scheme in depleted SG reservoirs, and provides considerable guidance on injection strategies to maximize CO2 storage capacity in depleted SG reservoirs.

  5. Effects of adding heat storage capacity in geothermal systems; Impact de reservoirs de stockage thermique sur les systemes geothermiques

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, Antoine; Bernier, Michel; Kummert, Michael [Departement de genie mecanique, Ecole Polytechnique de Montreal, Montreal, Quebec (Canada); Lagace, Jacques [Bouthillette Parizeau et associes inc., Montreal, Quebec (Canada)

    2010-07-01

    The use of geothermal energy to heat and air condition buildings is becoming more and more widespread throughout the world. However, the costs the drilling operations and heat pumps associated with geothermal systems are high. The aim of this study is to evaluate the impact of using thermal storage reservoirs in geothermal systems. The case of a 6000 m2 building in Montreal was studied using a basic system, without storage, and another system which had 2 buffer storage reservoirs; the system was modelled using TRNSYS. Results showed that adding two 120m3 storage reservoirs allowed the length of the wells and the capacity of the heat pumps to be reduced but did not achieve any reduction in energy consumption. The study demonstrated that the use of storage systems can lower the cost of geothermal installations; the possibility of using phase change materials for storage will be investigated in the future.

  6. The Baltic Basin: structure, properties of reservoir rocks, and capacity for geological storage of CO2

    Directory of Open Access Journals (Sweden)

    Vaher, Rein

    2009-12-01

    Full Text Available Baltic countries are located in the limits of the Baltic sedimentary basin, a 700 km long and 500 km wide synclinal structure. The axis of the syneclise plunges to the southwest. In Poland the Precambrian basement occurs at a depth of 5 km. The Baltic Basin includes the Neoproterozoic Ediacaran (Vendian at the base and all Phanerozoic systems. Two aquifers, the lower Devonian and Cambrian reservoirs, meet the basic requirements for CO2 storage. The porosity and permeability of sandstone decrease with depth. The average porosity of Cambrian sandstone at depths of 80–800, 800–1800, and 1800–2300 m is 18.6, 14.2, and 5.5%, respectively. The average permeability is, respectively, 311, 251, and 12 mD. Devonian sandstone has an average porosity of 26% and permeability in the range of 0.5–2 D. Prospective Cambrian structural traps occur only in Latvia. The 16 largest ones have CO2 storage capacity in the range of 2–74 Mt, with total capacity exceeding 400 Mt. The structural trapping is not an option for Lithuania as the uplifts there are too small. Another option is utilization of CO2 for enhanced oil recovery (EOR. The estimated total EOR net volume of CO2 (part of CO2 remaining in the formation in Lithuania is 5.6 Mt. Solubility and mineral trapping are a long-term option. The calculated total solubility trapping capacity of the Cambrian reservoir is as high as 11 Gt of CO2 within the area of the supercritical state of carbon dioxide.

  7. Bathymetry and Sediment-Storage Capacity Change in Three Reservoirs on the Lower Susquehanna River, 1996-2008

    Science.gov (United States)

    Langland, Michael J.

    2009-01-01

    The Susquehanna River transports a substantial amount of the sediment and nutrient load to the Chesapeake Bay. Upstream of the bay, three large dams and their associated reservoirs trap a large amount of the transported sediment and associated nutrients. During the fall of 2008, the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Protection completed bathymetric surveys of three reservoirs on the lower Susquehanna River to provide an estimate of the remaining sediment-storage capacity. Previous studies indicated the upper two reservoirs were in equilibrium with long-term sediment storage; only the most downstream reservoir retained capacity to trap sediments. A differential global positioning system (DGPS) instrument was used to provide the corresponding coordinate position. Bathymetry data were collected using a single beam 210 kHz (kilohertz) echo sounder at pre-defined transects that matched previous surveys. Final horizontal (X and Y) and vertical (Z) coordinates of the geographic positions and depth to bottom were used to create bathymetric maps of the reservoirs. Results indicated that from 1996 to 2008 about 14,700,000 tons of sediment were deposited in the three reservoirs with the majority (12,000,000 tons) being deposited in Conowingo Reservoir. Approximately 20,000 acre-feet or 30,000,000 tons of remaining storage capacity is available in Conowingo Reservoir. At current transport (3,000,000 tons per year) and deposition (2,000,000 tons per year) rates and with no occurrence of major scour events due to floods, the remaining capacity may be filled in 15 to 20 years. Once the remaining sediment-storage capacity in the reservoirs is filled, sediment and associated phosphorus loads entering the Chesapeake Bay are expected to increase.

  8. Reservoir operations under climate change: Storage capacity options to mitigate risk

    Science.gov (United States)

    Ehsani, Nima; Vörösmarty, Charles J.; Fekete, Balázs M.; Stakhiv, Eugene Z.

    2017-12-01

    Observed changes in precipitation patterns, rising surface temperature, increases in frequency and intensity of floods and droughts, widespread melting of ice, and reduced snow cover are some of the documented hydrologic changes associated with global climate change. Climate change is therefore expected to affect the water supply-demand balance in the Northeast United States and challenge existing water management strategies. The hydrological implications of future climate will affect the design capacity and operating characteristics of dams. The vulnerability of water resources systems to floods and droughts will increase, and the trade-offs between reservoir releases to maintain flood control storage, drought resilience, ecological flow, human water demand, and energy production should be reconsidered. We used a Neural Networks based General Reservoir Operation Scheme to estimate the implications of climate change for dams on a regional scale. This dynamic daily reservoir module automatically adapts to changes in climate and re-adjusts the operation of dams based on water storage level, timing, and magnitude of incoming flows. Our findings suggest that the importance of dams in providing water security in the region will increase. We create an indicator of the Effective Degree of Regulation (EDR) by dams on water resources and show that it is expected to increase, particularly during drier months of year, simply as a consequence of projected climate change. The results also indicate that increasing the size and number of dams, in addition to modifying their operations, may become necessary to offset the vulnerabilities of water resources systems to future climate uncertainties. This is the case even without considering the likely increase in future water demand, especially in the most densely populated regions of the Northeast.

  9. Estimation of reservoir storage capacity using multibeam sonar and terrestrial lidar, Randy Poynter Lake, Rockdale County, Georgia, 2012

    Science.gov (United States)

    Lee, K.G.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Rockdale County Department of Water Resources, conducted a bathymetric and topographic survey of Randy Poynter Lake in northern Georgia in 2012. The Randy Poynter Lake watershed drains surface area from Rockdale, Gwinnett, and Walton Counties. The reservoir serves as the water supply for the Conyers-Rockdale Big Haynes Impoundment Authority. The Randy Poynter reservoir was surveyed to prepare a current bathymetric map and determine storage capacities at specified water-surface elevations. Topographic and bathymetric data were collected using a marine-based mobile mapping unit to estimate storage capacity. The marine-based mobile mapping unit operates with several components: multibeam echosounder, singlebeam echosounder, light detection and ranging system, navigation and motion-sensing system, and data acquisition computer. All data were processed and combined to develop a triangulated irregular network, a reservoir capacity table, and a bathymetric contour map.

  10. Vindšachta Water Reservoir – Using GIS Tools for a Comparison of Storage Capacity in 1887 and 2014

    Directory of Open Access Journals (Sweden)

    Jakub Fuska

    2015-12-01

    Full Text Available This article focuses on an analysis of the storage capacity of Vindšachta water reservoir in Štiavnické Bane, Banská Štiavnica district, at two points in time: 1 887 (old and 201 4 (current. The analysis was performed using an old bathymetry map dated 1 887 and current data from sonar surveying (201 4. The analysis was performed by comparing water volumes calculated from digital elevation models of the reservoir bottom for each year, using an area-storage capacity curve. During the period between the two years, the water volume decreased to 85% of the initial storage capacity (from 335 000 m3 to 285 000m3.

  11. The HYDROMED model and its application to semi-arid Mediterranean catchments with hill reservoirs 3: Reservoir storage capacity and probability of failure model

    Directory of Open Access Journals (Sweden)

    R. Ragab

    2001-01-01

    Full Text Available This paper addresses the issue of "what reservoir storage capacity is required to maintain a yield with a given probability of failure?". It is an important issue in terms of construction and cost. HYDROMED offers a solution based on the modified Gould probability matrix method. This method has the advantage of sampling all years data without reference to the sequence and is therefore particularly suitable for catchments with patchy data. In the HYDROMED model, the probability of failure is calculated on a monthly basis. The model has been applied to the El-Gouazine catchment in Tunisia using a long rainfall record from Kairouan together with the estimated Hortonian runoff, class A pan evaporation data and estimated abstraction data. Generally, the probability of failure differed from winter to summer. Generally, the probability of failure approaches zero when the reservoir capacity is 500,000 m3. The 25% probability of failure (75% success is achieved with a reservoir capacity of 58,000 m3 in June and 95,000 m3 in January. The probability of failure for a 240,000 m3 capacity reservoir (closer to storage capacity of El-Gouazine 233,000 m3, is approximately 5% in November, December and January, 3% in March, and 1.1% in May and June. Consequently there is no high risk of El-Gouazine being unable to meet its requirements at a capacity of 233,000 m3. Subsequently the benefit, in terms of probability of failure, by increasing the reservoir volume of El-Gouazine to greater than the 250,000 m3 is not high. This is important for the design engineers and the funding organizations. However, the analysis is based on the existing water abstraction policy, absence of siltation rate data and on the assumption that the present climate will prevail during the lifetime of the reservoir. Should these conditions change, a new analysis should be carried out. Keywords: HYDROMED, reservoir, storage capacity, probability of failure, Mediterranean

  12. AREA-STORAGE CAPACITY CURVE OF HISTORIC ARTIFICIAL WATER RESERVOIR OTTERGRUND, SLOVAKIA – ASSESSMENT OF THE HISTORICAL DATA WITH THE USE OF GIS TOOLS

    Directory of Open Access Journals (Sweden)

    Jakub Fuska

    2017-01-01

    Full Text Available The main goal of this work was to verify the historic data of historic artificial water reservoir Ottergrund, Banská Štiavnica district, which is inscribed in the UNESCO world heritage list. Main focus was set to area-storage capacity curve. There is historic map with the display of reservoir bottom contours and area-storage capacity curve in a paper format. These data were analysed and compared with the results of the calculation of area-storage capacity curve that was performed with the use of a new tool with named “ASC_Curve”, which is based on Python script. This tool utilizes ArcPy site package and it works with the TIN model of water reservoir bottom. In case of water reservoir Ottergrund we created the TIN model of the historic bottom; input data for the TIN model creation was the historic contour plan. The results of the analysis have shown that the storage capacity calculated with the use of the developed ASC_Curve tool is 97% of the volume mentioned in the historic map. Analysis has also show the minor mathematical errors in the calculations of the area-storage capacity data in historic contour plan. This tool can also be used also for the analysis of the current storage capacity conditions of the water reservoirs, if the surveying with echosounding equipment is performed to obtain the data to produce the TIN model of the water reservoir bottom.

  13. Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

    2005-12-07

    Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR

  14. Evaluation of Multiresolution Digital Elevation Model (DEM from Real-Time Kinematic GPS and Ancillary Data for Reservoir Storage Capacity Estimation

    Directory of Open Access Journals (Sweden)

    Yashon O. Ouma

    2016-04-01

    Full Text Available This study presents the estimation of reservoir storage capacity using multiresolution Real-Time Kinematic Global Positioning System (RTK-GPS DEM, in comparison with ASTER and contour-derived DEM. Through RMSE comparisons of the elevation point uncertainty and error analysis, the results shows that the RTK-GPS DEM gave the best results for the reservoir capacity-area power curve estimation, defined by a convex slope with an exponential deterministic relationship given by V = 0.09 × A 1.435 . The results further show the existence an empirical relationship between the reservoir volume certainty and the GPS point density d i as V e = c × d i ρ . This relationship is dependent on the reservoir terrain, slope and surface area. Validation of the results with in situ data showed the differences between the simulated and observed storage volumes was less than +10%, and using the Nash-Sutcliffe coefficient of efficiency on the storage volumes, an average efficiency of +0.7 on the monthly observed and simulated reservoir storage volume was observed.

  15. Estimation of small reservoir storage capacities in the São Francisco, Limpopo, Bandama and Volta river basins using remotely sensed surface areas

    Science.gov (United States)

    Rodrigues, Lineu; Senzanje, Aidan; Cecchi, Philippe; Liebe, Jens

    2010-05-01

    People living in areas with highly variable rainfall, experience droughts and floods and often have insecure livelihoods. Small multi-purpose reservoirs (SR) are a widely used form of infrastructures to provide people in such areas with water during the dry season, e.g. in the basins of São Francisco, Brazil, Limpopo, Zimbabwe, Bandama, Ivory Coast and Volta, Ghana. In these areas, the available natural flow in the streams is sometimes less than the flow required for water supply or irrigation, however water can be stored in times of surplus, for example, from a wet season to a dry season. Efficient water management and sound reservoir planning are hindered by the lack of information about the functioning of these reservoirs. Reservoirs in these regions were constructed in a series of projects funded by different agencies, at different times, with little or no coordination among the implementing partners. Poor record keeping and the lack of appropriate institutional support result in deficiencies of information on the capacity, operation, and maintenance of these structures. Estimating the storage capacity of dams is essential to the responsible management of water diversion. Most of SR in these basins have never been evaluated, possibly because the tools currently used for such measurement are labor-intensive, costly and time-consuming. The objective of this research was to develop methodology to estimate small reservoir capacities as a function of their remotely sensed surface areas in the São Francisco, Limpopo, Bandama and Volta basins, as a way to contribute to improve the water resource management in those catchments. Remote sensing was used to identify, localize and characterize small reservoirs. The surface area of each was calculated from satellite images. A sub-set of reservoirs was selected. For each reservoir in the sub-set, the surface area was estimated from field surveys, and storage capacity was estimated using information on reservoir surface

  16. Using underground gas storage to replace the swing capacity of the giant natural gas field of Groningen in the Netherlands. A reservoir performance feasibility study.

    Science.gov (United States)

    Juez-Larre, Joaquim; Remmelts, Gijs; Breunese, Jaap; Van Gessel, Serge; Leeuwenburgh, Olwijn

    2017-04-01

    In this study we probe the ultimate potential Underground Gas Storage (UGS) capacity of the Netherlands by carrying out a detailed feasibility study on inflow performances of all available onshore natural gas reservoirs. The Netherlands is one of the largest natural gas producers in Western Europe. The current decline of its national production and looming production restrictions on its largest field of Groningen -owing to its induced seismicity- have recently made necessary to upgrade the two largest UGS of Norg and Grijpskerk. The joined working volume of these two UGS is expected to replace the swing capacity of the Groningen field to continue guaranteeing the security of supply of low calorific natural gas. The question is whether the current UGS configuration will provide the expected working storage capacity unrestricted by issues on reservoir performances and/or induced seismicity. This matter will be of paramount importance in the near future when production restrictions and/or the advance state of depletion of the Groningen field will turn the Netherlands into a net importer of high calorific natural gas. By then, the question will be whether the current UGS will still be economically attractive to continue operating, or if additional/alternative types of UGS will be needed?. Hence the characterization and ranking of the best potential reservoirs available today is of paramount importance for future UGS developments. We built an in-house automated module based on the application of the traditional inflow performance relationship analysis to screen the performances of 156 natural gas reservoirs in onshore Netherlands. Results enable identifying the 72 best candidates with an ultimate total working volume capacity of 122±30 billion Sm3. A detailed sensitivity analysis shows the impact of variations in the reservoir properties or wellbore/tubing configurations on withdrawal performances and storage capacity. We validate our predictions by comparing them to

  17. Performance Analysis of Depleted Oil Reservoirs for Underground Gas Storage

    Directory of Open Access Journals (Sweden)

    Dr. C.I.C. Anyadiegwu

    2014-02-01

    Full Text Available The performance of underground gas storage in depleted oil reservoir was analysed with reservoir Y-19, a depleted oil reservoir in Southern region of the Niger Delta. Information on the geologic and production history of the reservoir were obtained from the available field data of the reservoir. The verification of inventory was done to establish the storage capacity of the reservoir. The plot of the well flowing pressure (Pwf against the flow rate (Q, gives the deliverability of the reservoir at various pressures. Results of the estimated properties signified that reservoir Y-19 is a good candidate due to its storage capacity and its flow rate (Q of 287.61 MMscf/d at a flowing pressure of 3900 psig

  18. Deriving Area-storage Curves of Global Reservoirs

    Science.gov (United States)

    Mu, M.; Tang, Q.

    2017-12-01

    Basic information including capacity, dam height, and largest water area on global reservoirs and dams is well documented in databases such as GRanD (Global Reservoirs and Dams), ICOLD (International Commission on Large Dams). However, though playing a critical role in estimating reservoir storage variations from remote sensing or hydrological models, area-storage (or elevation-storage) curves of reservoirs are not publicly shared. In this paper, we combine Landsat surface water extent, 1 arc-minute global relief model (ETOPO1) and GRanD database to derive area-storage curves of global reservoirs whose area is larger than 1 km2 (6,000 more reservoirs are included). First, the coverage polygon of each reservoir in GRanD is extended to where water was detected by Landsat during 1985-2015. Second, elevation of each pixel in the reservoir is extracted from resampled 30-meter ETOPO1, and then relative depth and frequency of each depth value is calculated. Third, cumulative storage is calculated with increasing water area by every one percent of reservoir coverage area and then the uncalibrated area-storage curve is obtained. Finally, the area-storage curve is linearly calibrated by the ratio of calculated capacity over reported capacity in GRanD. The derived curves are compared with in-situ reservoir data collected in Great Plains Region in US, and the results show that in-situ records are well captured by the derived curves even in relative small reservoirs (several square kilometers). The new derived area-storage curves have the potential to be employed in global monitoring or modelling of reservoirs storage and area variations.

  19. Bathymetry and capacity of Shawnee Reservoir, Oklahoma, 2016

    Science.gov (United States)

    Ashworth, Chad E.; Smith, S. Jerrod; Smith, Kevin A.

    2017-02-13

    capacity and between stage and reservoir surface area. The bathymetric map may serve as a baseline to which temporal changes in storage capacity, due to sedimentation and other factors, can be compared. The stage-storage relation may be used in the reporting of real-time Shawnee Reservoir storage capacity at USGS station 07241600 to support water-resource management decisions by the City of Shawnee.

  20. Reflection Phenomena in Underground Pumped Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    Elena Pummer

    2018-04-01

    Full Text Available Energy storage through hydropower leads to free surface water waves in the connected reservoirs. The reason for this is the movement of water between reservoirs at different elevations, which is necessary for electrical energy storage. Currently, the expansion of renewable energies requires the development of fast and flexible energy storage systems, of which classical pumped storage plants are the only technically proven and cost-effective technology and are the most used. Instead of classical pumped storage plants, where reservoirs are located on the surface, underground pumped storage plants with subsurface reservoirs could be an alternative. They are independent of topography and have a low surface area requirement. This can be a great advantage for energy storage expansion in case of environmental issues, residents’ concerns and an unusable terrain surface. However, the reservoirs of underground pumped storage plants differ in design from classical ones for stability and space reasons. The hydraulic design is essential to ensure their satisfactory hydraulic performance. The paper presents a hybrid model study, which is defined here as a combination of physical and numerical modelling to use the advantages and to compensate for the disadvantages of the respective methods. It shows the analysis of waves in ventilated underground reservoir systems with a great length to height ratio, considering new operational aspects from energy supply systems with a great percentage of renewable energies. The multifaceted and narrow design of the reservoirs leads to complex free surface flows; for example, undular and breaking bores arise. The results show excessive wave heights through wave reflections, caused by the impermeable reservoir boundaries. Hence, their knowledge is essential for a successful operational and constructive design of the reservoirs.

  1. Calculation of reservoir capacity loss due to sediment deposition in the `Muela reservoir, Northern Lesotho

    Directory of Open Access Journals (Sweden)

    Liphapang Khaba

    2017-06-01

    Full Text Available Bathymetry survey records of the `Muela Reservoir in northern Lesotho were obtained from the Lesotho Highlands Development Authority (LHDA with the aim of identifying reservoir storage capacity loss due to sediment deposition, between 1985 and 2015. For this purpose, data from eight surveys completed between 1985 and January 2015 were analyzed to quantify bathymetric change between each survey. Four interpolation methods (inverse distance weighting, Kriging, natural neighbor, and spline, were used to create digital terrain models from each survey data-set. In addition, a triangulated irregular network (TIN surface was created from each data-set. The average reservoir storage capacity loss of 15,400 m3/year was determined across the whole period between 1985 and early 2015, based on Kriging. Whilst the results indicate high inter-annual variability in the rate of reservoir capacity reduction, consideration of errors in the surveying and reservoir volumetric calculation methods suggest that rates of reservoir volume reduction can vary between 11,400 m3/year and 18,200 m3/year.

  2. The dynamic capacity calculation method and the flood control ability of the Three Gorges Reservoir

    Science.gov (United States)

    Zhang, Shanghong; Jing, Zhu; Yi, Yujun; Wu, Yu; Zhao, Yong

    2017-12-01

    To evaluate the flood control ability of a river-type reservoir, an accurate simulation method for the flood storage, discharge process, and dynamic capacity of the reservoir is important. As the world's largest reservoir, the storage capacity and flood control capacity of the Three Gorges Reservoir (TGR) has attracted widespread interest and academic debate for nearly 20 years. In this study, a model for calculating the dynamic capacity of a river-type reservoir is established based on data from 394 river cross sections and 2.5-m resolution digital elevation model (DEM) data of the TGR area. The storage capacity and flood control capacity of the TGR were analysed based on the scheduling procedures of a normal impoundment period. The results show that the static capacity of the TGR is 43.43 billion m3, the dynamic flood control capacity is 22.45 billion m3, and the maximum floodwater flow regulated by the dynamic capacity at Zhicheng is no more than 67,700 m3/s. This study supply new simulation method and up-to-date high-precision data to discuss the 20 years debate, and the results reveal the TGR design is conservative for flood control according to the Preliminary Design Report of the Three Gorges Project. The dynamic capacity calculation method used here can provide a reference for flood regulation of large river-type reservoirs.

  3. The Contribution of Reservoirs to Global Land Surface Water Storage Variations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tian; Nijssen, Bart; Gao, Huilin; Lettenmaier, Dennis P.

    2016-12-21

    Man-made reservoirs play a key role in the terrestrial water system. They alter water fluxes at the land surface and impact surface water storage through water management regulations for diverse purposes such as irrigation, municipal water supply, hydropower generation, and flood control. Although most developed countries have established sophisticated observing systems for many variables in the land surface water cycle, long-term and consistent records of reservoir storage are much more limited and not always shared. Furthermore, most land surface hydrological models do not represent the effects of water management activities. Here, the contribution of reservoirs to seasonal water storage variations is investigated using a large-scale water management model to simulate the effects of reservoir management at basin and continental scales. The model was run from 1948 to 2010 at a spatial resolution of 0.258 latitude–longitude. A total of 166 of the largest reservoirs in the world with a total capacity of about 3900 km3 (nearly 60%of the globally integrated reservoir capacity) were simulated. The global reservoir storage time series reflects the massive expansion of global reservoir capacity; over 30 000 reservoirs have been constructed during the past half century, with a mean absolute interannual storage variation of 89 km3. The results indicate that the average reservoir-induced seasonal storage variation is nearly 700 km3 or about 10%of the global reservoir storage. For some river basins, such as the Yellow River, seasonal reservoir storage variations can be as large as 72%of combined snow water equivalent and soil moisture storage.

  4. Estimation of small reservoir storage capacities in a semi-arid environment : A case study in the Upper East Region of Ghana

    NARCIS (Netherlands)

    Liebe, J.; Van de Giesen, N.; Andreini, M.

    2005-01-01

    In semi-arid regions at the margins of the Sahel, large numbers of small reservoirs capture surface runoff during the rainy season, making water available during the dry season. For the local population, small reservoirs are important water sources which help them cope with droughts. The lack of

  5. A Tool for Assessing Future Capacity Loss Due to Sedimentation in the United States' Reservoirs

    Science.gov (United States)

    Pinson, A. O.; Baker, B.; White, K. D.

    2017-12-01

    Federal reservoirs are critical components of the United States' water supply, flood risk management, hydropower and navigation infrastructure. These reservoirs included capacity for storage loss due to the deposition of sediment by inflowing streams in their original design. However, the actual rate of capacity loss experienced is controlled in part by climate, topography, soils, and land use/land cover, and may vary from the design. To assess the current and future vulnerability of its reservoirs to sedimentation. USACE has developed an online planning tool to identify USACE reservoirs where sedimentation is currently a problem (e.g., sedimentation rate exceeds design sedimentation rate, or zone losses disproportionately affect authorized purposes), and reservoirs where rates are expected to increase significantly in the future. The goal is to be able to prioritize operation and maintenance actions to minimize the effects of reservoir capacity loss on authorized purposes and help maximize reservoir use life.

  6. Carbon dioxide storage in unconventional reservoirs workshop: summary of recommendations

    Science.gov (United States)

    Jones, Kevin B.; Blondes, Madalyn S.

    2015-01-01

    “Unconventional reservoirs” for carbon dioxide (CO2) storage—that is, geologic reservoirs in which changes to the rock trap CO2 and therefore contribute to CO2 storage—including coal, shale, basalt, and ultramafic rocks, were the focus of a U.S. Geological Survey (USGS) workshop held March 28 and 29, 2012, at the National Conservation Training Center in Shepherdstown, West Virginia. The goals of the workshop were to determine whether a detailed assessment of CO2 storage capacity in unconventional reservoirs is warranted, and if so, to build a set of recommendations that could be used to develop a methodology to assess this storage capacity. Such an assessment would address only the technically available resource, independent of economic or policy factors. At the end of the workshop, participants agreed that sufficient knowledge exists to allow an assessment of the potential CO2 storage resource in coals, organic-rich shales, and basalts. More work remains to be done before the storage resource in ultramafic rocks can be meaningfully assessed.

  7. Economic performance of water storage capacity expansion for food security

    Science.gov (United States)

    Gohar, Abdelaziz A.; Ward, Frank A.; Amer, Saud A.

    2013-03-01

    SummaryContinued climate variability, population growth, and rising food prices present ongoing challenges for achieving food and water security in poor countries that lack adequate water infrastructure. Undeveloped storage infrastructure presents a special challenge in northern Afghanistan, where food security is undermined by highly variable water supplies, inefficient water allocation rules, and a damaged irrigation system due three decades of war and conflict. Little peer-reviewed research to date has analyzed the economic benefits of water storage capacity expansions as a mechanism to sustain food security over long periods of variable climate and growing food demands needed to feed growing populations. This paper develops and applies an integrated water resources management framework that analyzes impacts of storage capacity expansions for sustaining farm income and food security in the face of highly fluctuating water supplies. Findings illustrate that in Afghanistan's Balkh Basin, total farm income and food security from crop irrigation increase, but at a declining rate as water storage capacity increases from zero to an amount equal to six times the basin's long term water supply. Total farm income increases by 21%, 41%, and 42% for small, medium, and large reservoir capacity, respectively, compared to the existing irrigation system unassisted by reservoir storage capacity. Results provide a framework to target water infrastructure investments that improve food security for river basins in the world's dry regions with low existing storage capacity that face ongoing climate variability and increased demands for food security for growing populations.

  8. CO2 storage in depleted gas reservoirs: A study on the effect of residual gas saturation

    Directory of Open Access Journals (Sweden)

    Arshad Raza

    2018-03-01

    Full Text Available Depleted gas reservoirs are recognized as the most promising candidate for carbon dioxide storage. Primary gas production followed by injection of carbon dioxide after depletion is the strategy adopted for secondary gas recovery and storage practices. This strategy, however, depends on the injection strategy, reservoir characteristics and operational parameters. There have been many studies to-date discussing critical factors influencing the storage performance in depleted gas reservoirs while little attention was given to the effect of residual gas. In this paper, an attempt was made to highlight the importance of residual gas on the capacity, injectivity, reservoir pressurization, and trapping mechanisms of storage sites through the use of numerical simulation. The results obtained indicated that the storage performance is proportionally linked to the amount of residual gas in the medium and reservoirs with low residual fluids are a better choice for storage purposes. Therefore, it would be wise to perform the secondary recovery before storage in order to have the least amount of residual gas in the medium. Although the results of this study are useful to screen depleted gas reservoirs for the storage purpose, more studies are required to confirm the finding presented in this paper.

  9. Storage capacity of the Tilinglike Learning Algorithm

    International Nuclear Information System (INIS)

    Buhot, Arnaud; Gordon, Mirta B.

    2001-01-01

    The storage capacity of an incremental learning algorithm for the parity machine, the Tilinglike Learning Algorithm, is analytically determined in the limit of a large number of hidden perceptrons. Different learning rules for the simple perceptron are investigated. The usual Gardner-Derrida rule leads to a storage capacity close to the upper bound, which is independent of the learning algorithm considered

  10. Compressed air energy storage system reservoir size for a wind energy baseload power plant

    Energy Technology Data Exchange (ETDEWEB)

    Cavallo, A.J.

    1996-12-31

    Wind generated electricity can be transformed from an intermittent to a baseload resource using an oversized wind farm in conjunction with a compressed air energy storage (CAES) system. The size of the storage reservoir for the CAES system (solution mined salt cavern or porous media) as a function of the wind speed autocorrelation time (C) has been examined using a Monte Carlo simulation for a wind class 4 (wind power density 450 W m{sup -2} at 50 m hub height) wind regime with a Weibull k factor of 2.5. For values of C typically found for winds over the US Great Plains, the storage reservoir must have a 60 to 80 hour capacity. Since underground reservoirs account for only a small fraction of total system cost, this larger storage reservoir has a negligible effect on the cost of energy from the wind energy baseload system. 7 refs., 2 figs., 1 tab.

  11. Monitoring small reservoirs' storage with satellite remote sensing in inaccessible areas

    Science.gov (United States)

    Avisse, Nicolas; Tilmant, Amaury; François Müller, Marc; Zhang, Hua

    2017-12-01

    In river basins with water storage facilities, the availability of regularly updated information on reservoir level and capacity is of paramount importance for the effective management of those systems. However, for the vast majority of reservoirs around the world, storage levels are either not measured or not readily available due to financial, political, or legal considerations. This paper proposes a novel approach using Landsat imagery and digital elevation models (DEMs) to retrieve information on storage variations in any inaccessible region. Unlike existing approaches, the method does not require any in situ measurement and is appropriate for monitoring small, and often undocumented, irrigation reservoirs. It consists of three recovery steps: (i) a 2-D dynamic classification of Landsat spectral band information to quantify the surface area of water, (ii) a statistical correction of DEM data to characterize the topography of each reservoir, and (iii) a 3-D reconstruction algorithm to correct for clouds and Landsat 7 Scan Line Corrector failure. The method is applied to quantify reservoir storage in the Yarmouk basin in southern Syria, where ground monitoring is impeded by the ongoing civil war. It is validated against available in situ measurements in neighbouring Jordanian reservoirs. Coefficients of determination range from 0.69 to 0.84, and the normalized root-mean-square error from 10 to 16 % for storage estimations on six Jordanian reservoirs with maximal water surface areas ranging from 0.59 to 3.79 km2.

  12. Bathymetry and capacity of Blackfoot Reservoir, Caribou County, Idaho, 2011

    Science.gov (United States)

    Wood, Molly S.; Skinner, Kenneth D.; Fosness, Ryan L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Shoshone-Bannock Tribes, surveyed the bathymetry and selected above-water sections of Blackfoot Reservoir, Caribou County, Idaho, in 2011. Reservoir operators manage releases from Government Dam on Blackfoot Reservoir based on a stage-capacity relation developed about the time of dam construction in the early 1900s. Reservoir operation directly affects the amount of water that is available for irrigation of agricultural land on the Fort Hall Indian Reservation and surrounding areas. The USGS surveyed the below-water sections of the reservoir using a multibeam echosounder and real-time kinematic global positioning system (RTK-GPS) equipment at full reservoir pool in June 2011, covering elevations from 6,090 to 6,119 feet (ft) above the North American Vertical Datum of 1988 (NAVD 88). The USGS used data from a light detection and ranging (LiDAR) survey performed in 2000 to map reservoir bathymetry from 6,116 to 6,124 ft NAVD 88, which were mostly in depths too shallow to measure with the multibeam echosounder, and most of the above-water section of the reservoir (above 6,124 ft NAVD 88). Selected points and bank erosional features were surveyed by the USGS using RTK-GPS and a total station at low reservoir pool in September 2011 to supplement and verify the LiDAR data. The stage-capacity relation was revised and presented in a tabular format. The datasets show a 2.0-percent decrease in capacity from the original survey, due to sedimentation or differences in accuracy between surveys. A 1.3-percent error also was detected in the previously used capacity table and measured water-level elevation because of questionable reference elevation at monitoring stations near Government Dam. Reservoir capacity in 2011 at design maximum pool of 6,124 ft above NAVD 88 was 333,500 acre-ft.

  13. The grain size distribution of settled sediment within storage reservoir Otmuchów

    Directory of Open Access Journals (Sweden)

    Głowski Robert

    2017-03-01

    Full Text Available The grain size distribution of settled sediment within storage reservoir Otmuchów. The river Nysa Kłodzka is flowing through the flat-reduction Otmuchów. There are localized two storage reservoirs Otmuchów and Nysa. The first of these reservoirs have been constructed in the period 1928-1933 and the filling was completed in 1934. Reservoir Nysa was completed in 1971. Both reservoirs are located within walking distance of each other, creating since 1971 cascade. Reservoir Otmuchów is located above the Nysa reservoir what cause, that in the bowl of the Otmuchów reservoir, the significant part of transported by Nysa Kłodzka sediments is deposited. When established after the 1997 flood damming levels, summer and winter, the length of the reservoir Otmuchów is suitably from 4.5 to 5 km. At the maximum impoundment level and a maximal capacity of 130.45 million m3 the reservoir length reach approx. 7 km. From the analysis of the satellite image can be seen advancing silting of the reservoir Otmuchów especially in the estuary zone of the Nysa Kłodzka. Obtained archival data about changes of the sediment grain size distribution in the longitudinal reservoir profile cover only the region of the still capacity extending a distance of 3 km from the cross-section of the dam. In this zone the fine particles of the suspended load with characteristic diameters ranging from 0.030 to 0.088 mm were embedded. In 2010, the authors presented the results of preliminary analysis of the silting process of the reservoir Otmuchów. The authors pointed out that there is a lack of the data about the dimension of the particles embedded in the usable capacity and flood capacity reserve (above 3 km from the dam causing visible on satellite photo silting. This paper presents the results of the sediment grain size distribution in the usable capacity of the reservoir and in the estuary region of the Nysa Kłodzka located in flood capacity reserve, obtained from the

  14. The Role of Rainfall Variability in Reservoir Storage Management at ...

    African Journals Online (AJOL)

    Bheema

    The objective is to develop functional hydrological relationship between (rainfall, inflow, reservoir storage and turbine releases) over the dam. This will provide scientific basis for operational decisions which can lead to optimum power plant utilization. 1.1. The Study Area. The study area is the Shiroro dam reservoir.

  15. Capacity Expansion Modeling for Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Elaine; Stoll, Brady; Mai, Trieu

    2017-04-03

    The Resource Planning Model (RPM) is a capacity expansion model designed for regional power systems and high levels of renewable generation. Recent extensions capture value-stacking for storage technologies, including batteries and concentrating solar power with storage. After estimating per-unit capacity value and curtailment reduction potential, RPM co-optimizes investment decisions and reduced-form dispatch, accounting for planning reserves; energy value, including arbitrage and curtailment reduction; and three types of operating reserves. Multiple technology cost scenarios are analyzed to determine level of deployment in the Western Interconnection under various conditions.

  16. Underground natural gas storage reservoir management: Phase 2. Final report, June 1, 1995--March 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, I.; Anthony, R.V.

    1996-12-31

    Gas storage operators are facing increased and more complex responsibilities for managing storage operations under Order 636 which requires unbundling of storage from other pipeline services. Low cost methods that improve the accuracy of inventory verification are needed to optimally manage this stored natural gas. Migration of injected gas out of the storage reservoir has not been well documented by industry. The first portion of this study addressed the scope of unaccounted for gas which may have been due to migration. The volume range was estimated from available databases and reported on an aggregate basis. Information on working gas, base gas, operating capacity, injection and withdrawal volumes, current and non-current revenues, gas losses, storage field demographics and reservoir types is contained among the FERC Form 2, EIA Form 191, AGA and FERC Jurisdictional databases. The key elements of this study show that gas migration can result if reservoir limits have not been properly identified, gas migration can occur in formation with extremely low permeability (0.001 md), horizontal wellbores can reduce gas migration losses and over-pressuring (unintentionally) storage reservoirs by reinjecting working gas over a shorter time period may increase gas migration effects.

  17. Dam break flood wave under different reservoir's capacities and ...

    Indian Academy of Sciences (India)

    Dam failure has been the subject of many hydraulic engineering studies due to its complicated physics with many uncertainties involved and the potential to cause many ... This paper presents an experimental study on instantaneous dam failure flood under different reservoir's capacities and lengths in which the side slopes ...

  18. Monitoring small reservoirs' storage with satellite remote sensing in inaccessible areas

    Directory of Open Access Journals (Sweden)

    N. Avisse

    2017-12-01

    Full Text Available In river basins with water storage facilities, the availability of regularly updated information on reservoir level and capacity is of paramount importance for the effective management of those systems. However, for the vast majority of reservoirs around the world, storage levels are either not measured or not readily available due to financial, political, or legal considerations. This paper proposes a novel approach using Landsat imagery and digital elevation models (DEMs to retrieve information on storage variations in any inaccessible region. Unlike existing approaches, the method does not require any in situ measurement and is appropriate for monitoring small, and often undocumented, irrigation reservoirs. It consists of three recovery steps: (i a 2-D dynamic classification of Landsat spectral band information to quantify the surface area of water, (ii a statistical correction of DEM data to characterize the topography of each reservoir, and (iii a 3-D reconstruction algorithm to correct for clouds and Landsat 7 Scan Line Corrector failure. The method is applied to quantify reservoir storage in the Yarmouk basin in southern Syria, where ground monitoring is impeded by the ongoing civil war. It is validated against available in situ measurements in neighbouring Jordanian reservoirs. Coefficients of determination range from 0.69 to 0.84, and the normalized root-mean-square error from 10 to 16 % for storage estimations on six Jordanian reservoirs with maximal water surface areas ranging from 0.59 to 3.79 km2.

  19. Latitudinal and seasonal capacity of the surface oceans as a reservoir of polychlorinated biphenyls

    International Nuclear Information System (INIS)

    Jurado, Elena; Lohmann, Rainer; Meijer, Sandra; Jones, Kevin C.; Dachs, Jordi

    2004-01-01

    The oceans play an important role as a global reservoir and ultimate sink of persistent organic pollutants (POPs) such as polychlorinated biphenyls congeners (PCBs). However, the physical and biogeochemical variables that affect the oceanic capacity to retain PCBs show an important spatial and temporal variability which have not been studied in detail, so far. The objective of this paper is to assess the seasonal and spatial variability of the ocean's maximum capacity to act as a reservoir of atmospherically transported and deposited PCBs. A level I fugacity model is used which incorporates the environmental variables of temperature, phytoplankton biomass, and mixed layer depth, as determined from remote sensing and from climatological datasets. It is shown that temperature, phytoplankton biomass and mixed layer depth influence the potential PCB reservoir of the oceans, being phytoplankton biomass specially important in the oceanic productive regions. The ocean's maximum capacities to hold PCBs are estimated. They are compared to a budget of PCBs in the surface oceans derived using a level III model that assumes steady state and which incorporates water column settling fluxes as a loss process. Results suggest that settling fluxes will keep the surface oceanic reservoir of PCBs well below its maximum capacity, especially for the more hydrophobic compounds. The strong seasonal and latitudinal variability of the surface ocean's storage capacity needs further research, because it plays an important role in the global biogeochemical cycles controlling the ultimate sink of PCBs. Because this modeling exercise incorporates variations in downward fluxes driven by phytoplankton and the extent of the water column mixing, it predicts more complex latitudinal variations in PCBs concentrations than those previously suggested. - Model calculations estimate the latitudinal and seasonal storage capacity of the surface oceans for PCBs

  20. The Role of Rainfall Variability in Reservoir Storage Management at ...

    African Journals Online (AJOL)

    Statistical analysis of hydro-meteorological data (rainfall, inflow, reservoir storage and turbine release) at Shiroro dam were carried out with the aim of detecting spatio-temporal trends. Correlation and regression analysis were used to develop models for the variables. The correlation of between 0.120 and 0.774 revealed ...

  1. Microbial Life in an Underground Gas Storage Reservoir

    Science.gov (United States)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In

  2. CO2 sequestration: Storage capacity guideline needed

    Science.gov (United States)

    Frailey, S.M.; Finley, R.J.; Hickman, T.S.

    2006-01-01

    Petroleum reserves are classified for the assessment of available supplies by governmental agencies, management of business processes for achieving exploration and production efficiency, and documentation of the value of reserves and resources in financial statements. Up to the present however, the storage capacity determinations made by some organizations in the initial CO2 resource assessment are incorrect technically. New publications should thus cover differences in mineral adsorption of CO2 and dissolution of CO2 in various brine waters.

  3. Assessing European Capacity for Geological Storage of Carbon Dioxide. Storage capacity

    NARCIS (Netherlands)

    Neele, F.P.; Allier, D.; Anghel, S.; Anthonsen, K.L.; Bossie-Codreanu, D.; Car, M.; Donda, F.; Dudu, A.; Falus, G.; Georgiev, G.; Hatsiyannis, G.; Hegedus, E.; Hladik, V.; Ivanova, O.; Jencsel, H.; Kirk, K.; Knopf, S.; Kolejka, V.; Kotulova, J.; Kucharic, L.; Le Nindre, Y.M.; Marina, M.; Martinez, R.; Maurand, N.; May, F.; Micevski, E.; Nulle, I.; Opovski, K.; Persoglia, S.; Pomeranceva, R.; Poulsen, N.E.; Prifti, I.; Proca, A.; Saftic, B.; Sava, C.; Shogenova, A.; Shogenov, K.; Sliapiene, R.; Sliaupa, S.; Suarez, I.; Szamosfalvi, A.; Tarkowski, R.; Uliasz-Misiask, B.; Vaher, R.; Vangkilde-Pedersen, T.; Willscher, B.; Wojcicki, A.; Xenakis, M.; Zapatero, M.; Zivkovic, S.A.

    2009-01-01

    This document is deliverable D16 WP2 Report Storage Capacity and provides a description of the work carried out in WP2. It also provides a summary of capacity estimates for deep saline aquifers, hydrocarbon field and coal beds for each country and brief descriptions of the methodology used and

  4. Forecasting the remaining reservoir capacity in the Laurentian Great Lakes watershed

    Science.gov (United States)

    Alighalehbabakhani, Fatemeh; Miller, Carol J.; Baskaran, Mark; Selegean, James P.; Barkach, John H.; Dahl, Travis; Abkenar, Seyed Mohsen Sadatiyan

    2017-12-01

    Sediment accumulation behind a dam is a significant factor in reservoir operation and watershed management. There are many dams located within the Laurentian Great Lakes watershed whose operations have been adversely affected by excessive reservoir sedimentation. Reservoir sedimentation effects include reduction of flood control capability and limitations to both water supply withdrawals and power generation due to reduced reservoir storage. In this research, the sediment accumulation rates of twelve reservoirs within the Great Lakes watershed were evaluated using the Soil and Water Assessment Tool (SWAT). The estimated sediment accumulation rates by SWAT were compared to estimates relying on radionuclide dating of sediment cores and bathymetric survey methods. Based on the sediment accumulation rate, the remaining reservoir capacity for each study site was estimated. Evaluation of the anthropogenic impacts including land use change and dam construction on the sediment yield were assessed in this research. The regression analysis was done on the current and pre-European settlement sediment yield for the modeled watersheds to predict the current and natural sediment yield in un-modeled watersheds. These eleven watersheds are in the state of Indiana, Michigan, Ohio, New York, and Wisconsin.

  5. High Capacity Hydrogen Storage on Nanoporous Biocarbon

    Science.gov (United States)

    Burress, Jacob; Wood, Mikael; Gordon, Michael; Parilla, Phillip; Benham, Michael; Wexler, Carlos; Hawthorne, Fred; Pfeifer, Peter

    2008-03-01

    The Alliance for Collaborative Research in Alternative Fuel Technology (http://all-craft.missouri.edu) has been optimizing nanoporous biocarbon for high capacity hydrogen storage. The hydrogen storage was measured gravimetrically and volumetrically (Sievert's apparatus). These measurements have been validated by NREL and Hiden Isochema. Sample S-33/k, our current best performer, stores 73-91 g H2/kg carbon at 77 K and 47 bar, and 1.0-1.6 g H2/kg carbon at 293 K and 47 bar. Hydrogen isotherms run by Hiden Isochema have given experimental binding energies of 8.8 kJ/mol compared to the binding energy of graphite of 5 kJ/mol. Results from a novel boron doping technique will also be presented. The benefits and validity of using boron-doping on carbon will also be discussed.

  6. System-level modeling for economic evaluation of geological CO2 storage in gas reservoirs

    International Nuclear Information System (INIS)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2007-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO 2 ) from industrial sources into deep geological formations such as brine aquifers or depleted oil or gas reservoirs. Research is being conducted to improve understanding of factors affecting particular aspects of geological CO 2 storage (such as storage performance, storage capacity, and health, safety and environmental (HSE) issues) as well as to lower the cost of CO 2 capture and related processes. However, there has been less emphasis to date on system-level analyses of geological CO 2 storage that consider geological, economic, and environmental issues by linking detailed process models to representations of engineering components and associated economic models. The objective of this study is to develop a system-level model for geological CO 2 storage, including CO 2 capture and separation, compression, pipeline transportation to the storage site, and CO 2 injection. Within our system model we are incorporating detailed reservoir simulations of CO 2 injection into a gas reservoir and related enhanced production of methane. Potential leakage and associated environmental impacts are also considered. The platform for the system-level model is GoldSim [GoldSim User's Guide. GoldSim Technology Group; 2006, http://www.goldsim.com]. The application of the system model focuses on evaluating the feasibility of carbon sequestration with enhanced gas recovery (CSEGR) in the Rio Vista region of California. The reservoir simulations are performed using a special module of the TOUGH2 simulator, EOS7C, for multicomponent gas mixtures of methane and CO 2 . Using a system-level modeling approach, the economic benefits of enhanced gas recovery can be directly weighed against the costs and benefits of CO 2 injection

  7. Information storage capacity of discrete spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Beni, E-mail: rouge@caltech.edu

    2013-11-15

    Understanding the limits imposed on information storage capacity of physical systems is a problem of fundamental and practical importance which bridges physics and information science. There is a well-known upper bound on the amount of information that can be stored reliably in a given volume of discrete spin systems which are supported by gapped local Hamiltonians. However, all the previously known systems were far below this theoretical bound, and it remained open whether there exists a gapped spin system that saturates this bound. Here, we present a construction of spin systems which saturate this theoretical limit asymptotically by borrowing an idea from fractal properties arising in the Sierpinski triangle. Our construction provides not only the best classical error-correcting code which is physically realizable as the energy ground space of gapped frustration-free Hamiltonians, but also a new research avenue for correlated spin phases with fractal spin configurations. -- Highlights: •We propose a spin model with fractal ground states and study its coding properties. •We show that the model asymptotically saturates a theoretical limit on information storage capacity. •We discuss its relations to various theoretical physics problems.

  8. Groundwater storage and water security: making better use of our largest reservoir.

    Science.gov (United States)

    Tuinhof, A; Olsthoorn, T; Heederik, J P; de Vries, J

    2005-01-01

    Provision of sufficient storage capacity under growing water demands and increasing climate variability is one the main concerns for water managers in the coming decades. It is expected that 150-300 km3 of additional storage capacity will be needed by 2025 especially in semi-arid and arid regions where changes in climate variability will have most impact on rainfall and drought. Storage of substantial amounts of water can either be above ground, in reservoirs behind dams or underground in aquifers (sub-surface storage). Recharge enhancement through management of aquifer recharge (MAR) and sub-surface storage (SSS) is a known technology and already successfully applied in a number of countries for many years at different scales. MAR-SSS is a flexible and cost-effective means to increase storage capacity both at village level and in modern water management schemes. A dialogue and information exchange between climate experts and water managers can provide an effective contribution to the planning, design and operation of MAR-SSS schemes.

  9. Suspended-sediment transport and storage: A demonstration of acoustic methods in the evaluation of reservoir management strategies for a small water-supply reservoir in western Colorado

    Science.gov (United States)

    Williams, Cory A.; Richards, Rodney J.; Collins, Kent L.

    2015-01-01

    The U.S. Bureau of Reclamation (USBR) and local stakeholder groups are evaluating reservoir-management strategies within Paonia Reservoir. This small reservoir fills to capacity each spring and requires approximately half of the snowmelt-runoff volume from its sediment-laden source waters, Muddy Creek. The U.S. Geological Survey is currently conducting high-resolution (15-minute data-recording interval) sediment monitoring to characterize incoming and outgoing sediment flux during reservoir operations at two sites on Muddy Creek. The high-resolution monitoring is being used to establish current rates of reservoir sedimentation, support USBR sediment transport and storage models, and assess the viability of water-storage recovery in Paonia Reservoir. These sites are equipped with in situ, single-frequency, side-looking acoustic Doppler current meters in conjunction with turbidity sensors to monitor sediment flux. This project serves as a demonstration of the capability of using surrogate techniques to predict suspended-sediment concentrations in small streams (less than 20 meters in width and 2 meters in depth). These two sites provide the ability to report near real-time suspended-sediment concentrations through the U.S. Geological Survey National Water Information System (NWIS) web interface and National Real-Time Water Quality websites (NRTWQ) to aid in reservoir operations and assessments.

  10. modelling for optimal number of line storage reservoirs in a water

    African Journals Online (AJOL)

    user

    reservoirs and the source of pipe network both increase, while the costs of the demand pipe network decreases. Consequently, a trade-off exits between the storage reservoir and source network cost and the demand network costs. The optimal number of storage reservoirs is that number which gives a system of least total ...

  11. Development of high-capacity antimatter storage

    International Nuclear Information System (INIS)

    Howe, Steven D.; Smith, Gerald A.

    2000-01-01

    Space is vast. Over the next few decades, humanity will strive to send probes farther and farther into space to establish long baselines for interferometry, to visit the Kuiper Belt, to identify the heliopause, or to map the Oort cloud. In order to solve many of the mysteries of the universe or to explore the solar system and beyond, one single technology must be developed--high performance propulsion. In essence, future missions to deep space will require specific impulses between 50,000 and 200,000 seconds and energy densities greater than 10 14 j/kg in order to accomplish the mission within the career lifetime of an individual, 40 years. Only two technologies available to mankind offer such performance--fusion and antimatter. Currently envisioned fusion systems are too massive. Alternatively, because of the high energy density, antimatter powered systems may be relatively compact. The single key technology that is required to enable the revolutionary concept of antimatter propulsion is safe, reliable, high-density storage. Under a grant from the NASA Institute of Advanced Concepts, we have identified two potential mechanisms that may enable high capacity antimatter storage systems to be built. We will describe planned experiments to verify the concepts. Development of a system capable of storing megajoules per gram will allow highly instrumented platforms to make fast missions to great distances. Such a development will open the universe to humanity

  12. A discrete time formulation for batch processes with storage capacity and storage time limitations

    NARCIS (Netherlands)

    Kilic, O.A.; van Donk, D.P.; Wijngaard, J.

    This paper extends the conventional discrete time mixed integer linear programming (MILP) formulation for scheduling multiproduct/multipurpose batch processes by introducing storage capacity and storage time limitations. For this purpose, storage vessels are explicitly modeled on which material

  13. Multiassociative Memory: Recurrent Synapses Increase Storage Capacity.

    Science.gov (United States)

    Gauy, Marcelo Matheus; Meier, Florian; Steger, Angelika

    2017-05-01

    The connection density of nearby neurons in the cortex has been observed to be around 0.1, whereas the longer-range connections are present with much sparser density (Kalisman, Silberberg, & Markram, 2005 ). We propose a memory association model that qualitatively explains these empirical observations. The model we consider is a multiassociative, sparse, Willshaw-like model consisting of binary threshold neurons and binary synapses. It uses recurrent synapses for iterative retrieval of stored memories. We quantify the usefulness of recurrent synapses by simulating the model for small network sizes and by doing a precise mathematical analysis for large network sizes. Given the network parameters, we can determine the precise values of recurrent and afferent synapse densities that optimize the storage capacity of the network. If the network size is like that of a cortical column, then the predicted optimal recurrent density lies in a range that is compatible with biological measurements. Furthermore, we show that our model is able to surpass the standard Willshaw model in the multiassociative case if the information capacity is normalized per strong synapse or per bits required to store the model, as considered in Knoblauch, Palm, and Sommer ( 2010 ).

  14. Optimal Storage Allocation for Wireless Cloud Caching Systems with a Limited Sum Storage Capacity

    OpenAIRE

    Hong, Bi; Choi, Wan

    2016-01-01

    In wireless cloud storage systems, the recovery failure probability depends on not only wireless channel conditions but also storage size of each distributed storage node. For an efficient utilization of limited storage capacity and the performance characterization of allocation strategies, we asymptotically analyze the recovery failure probability of a wireless cloud storage system with a sum storage capacity constraint for both high SNR regime and low SNR regime. Then, we find the optimal s...

  15. Capacity expansion analysis of UGSs rebuilt from low-permeability fractured gas reservoirs with CO2 as cushion gas

    Directory of Open Access Journals (Sweden)

    Yufei Tan

    2016-11-01

    Full Text Available The techniques of pressurized mining and hydraulic fracturing are often used to improve gas well productivity at the later development stage of low-permeability carbonate gas reservoirs, but reservoirs are watered out and a great number of micro fractures are produced. Therefore, one of the key factors for underground gas storages (UGS rebuilt from low-permeability fractured gas reservoirs with CO2 as the cushion gas is how to expand storage capacity effectively by injecting CO2 to displace water and to develop control strategies for the stable migration of gas–water interface. In this paper, a mathematical model was established to simulate the gas–water flow when CO2 was injected into dual porosity reservoirs to displace water. Then, the gas–water interface migration rules while CO2 was injected in the peripheral gas wells for water displacement were analyzed with one domestic UGS rebuilt from fractured gas reservoirs as the research object. And finally, discussion was made on how CO2 dissolution, bottom hole flowing pressure (BHFP, CO2 injection rate and micro fracture parameters affect the stability of gas–water interface in the process of storage capacity expansion. It is shown that the speed of capacity expansion reaches the maximum value at the fifth cycle and then decreases gradually when UGS capacity is expanded in the pattern of more injection and less withdrawal. Gas–water interface during UGS capacity expansion is made stable due to that the solubility of CO2 in water varies with the reservoir pressure. When the UGS capacity is expanded at constant BHFP and the flow rate, the expansion speed can be increased effectively by increasing the BHFP and the injection flow rate of gas wells in the central areas appropriately. In the reservoir areas with high permeability and fracture-matrix permeability ratio, the injection flow rate should be reduced properly to prevent gas–water interface fingering caused by a high-speed flow

  16. Hydrogen underground storage in siliciclastic reservoirs - intention and topics of the H2STORE project

    Science.gov (United States)

    Pudlo, Dieter; Ganzer, Leonhard; Henkel, Steven; Liebscher, Axel; Kühn, Michael; De Lucia, Marco; Panfilov, Michel; Pilz, Peter; Reitenbach, Viktor; Albrecht, Daniel; Würdemann, Hilke; Gaupp, Reinhard

    2013-04-01

    The transfer of energy supply from nuclear and CO2-emitting power generation to renewable energy production sources is strongly reliant to the potential of storing high capacities of energy in a safe and reliable way in time spans of several months. One conceivable option can be the storage of hydrogen and (related) synthetic natural gas (SNG) production in appropriate underground structures, like salt caverns and pore space reservoirs. Successful storage of hydrogen in the form of town gas in salt caverns has been proven in several demonstration projects and can be considered as state of the art technology. However, salt structures have only limited importance for hydrogen storage due to only small cavern volumes and the limited occurrence of salt deposits suitable for flushing of cavern constructions. Thus, regarding potential high-volume storage sites, siliciclastic deposits like saline aquifers and depleted gas reservoirs are of increasing interest. Motivated by a project call and sponsored by the German government the H2STORE ("Hydrogen to Store") collaborative project will investigate the feasibility and the requirements for pore space storage of hydrogen. Thereby depleted gas reservoirs are a major concern of this study. This type of geological structure is chosen because of their well investigated geological settings and proved sealing capacities, which already enable a present (and future) use as natural (and synthetic) reservoir gas storages. Nonetheless hydrogen and hydrocarbon in porous media exhibit major differences in physico-chemical behaviour, essentially due to the high diffusivity and reactivity of hydrogen. The biotic and abiotic reactions of hydrogen with rocks and fluids will be necessary observed in siliciclastic sediments which consist of numerous inorganic and organic compounds and comprise original formation fluids. These features strongly control petrophysical behaviour (e.g. porosity, permeability) and therefore fluid (hydrogen

  17. Distributed coordination of energy-storage capacities in virtual microgrids

    DEFF Research Database (Denmark)

    Brehm, Robert; Ramezani, Hossein; Jouffroy, Jerome

    An approach for distributed coordinated scheduling of storage capacities is presented. When storage capacities are connected in the same grid, behind a common transformer substation, mutual charging and discharging can occur, which can be prevented by the herein introduced coordination method. Wh...

  18. Influence of Synaptic Depression on Memory Storage Capacity

    Science.gov (United States)

    Otsubo, Yosuke; Nagata, Kenji; Oizumi, Masafumi; Okada, Masato

    2011-08-01

    Synaptic efficacy between neurons is known to change within a short time scale dynamically. Neurophysiological experiments show that high-frequency presynaptic inputs decrease synaptic efficacy between neurons. This phenomenon is called synaptic depression, a short term synaptic plasticity. Many researchers have investigated how the synaptic depression affects the memory storage capacity. However, the noise has not been taken into consideration in their analysis. By introducing ``temperature'', which controls the level of the noise, into an update rule of neurons, we investigate the effects of synaptic depression on the memory storage capacity in the presence of the noise. We analytically compute the storage capacity by using a statistical mechanics technique called Self Consistent Signal to Noise Analysis (SCSNA). We find that the synaptic depression decreases the storage capacity in the case of finite temperature in contrast to the case of the low temperature limit, where the storage capacity does not change.

  19. Intelligent monitoring system for real-time geologic CO2 storage, optimization and reservoir managemen

    Science.gov (United States)

    Dou, S.; Commer, M.; Ajo Franklin, J. B.; Freifeld, B. M.; Robertson, M.; Wood, T.; McDonald, S.

    2017-12-01

    Archer Daniels Midland Company's (ADM) world-scale agricultural processing and biofuels production complex located in Decatur, Illinois, is host to two industrial-scale carbon capture and storage projects. The first operation within the Illinois Basin-Decatur Project (IBDP) is a large-scale pilot that injected 1,000,000 metric tons of CO2 over a three year period (2011-2014) in order to validate the Illinois Basin's capacity to permanently store CO2. Injection for the second operation, the Illinois Industrial Carbon Capture and Storage Project (ICCS), started in April 2017, with the purpose of demonstrating the integration of carbon capture and storage (CCS) technology at an ethanol plant. The capacity to store over 1,000,000 metric tons of CO2 per year is anticipated. The latter project is accompanied by the development of an intelligent monitoring system (IMS) that will, among other tasks, perform hydrogeophysical joint analysis of pressure, temperature and seismic reflection data. Using a preliminary radial model assumption, we carry out synthetic joint inversion studies of these data combinations. We validate the history-matching process to be applied to field data once CO2-breakthrough at observation wells occurs. This process will aid the estimation of permeability and porosity for a reservoir model that best matches monitoring observations. The reservoir model will further be used for forecasting studies in order to evaluate different leakage scenarios and develop appropriate early-warning mechanisms. Both the inversion and forecasting studies aim at building an IMS that will use the seismic and pressure-temperature data feeds for providing continuous model calibration and reservoir status updates.

  20. A concept of an electricity storage system with 50 MWh storage capacity

    Directory of Open Access Journals (Sweden)

    Józef Paska

    2012-06-01

    Full Text Available Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy, and direct storage (in an electric or magnetic fi eld. Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers and hydrogen storage. These technologies have diff erent technical characteristics and economic parameters that determine their usability. This paper presents two concepts of an electricity storage tank with a storage capacity of at least 50 MWh, using the BES battery energy storage and CAES compressed air energy storage technologies.

  1. Water Storage Capacities versus Water Use Efficiency: Substitutes or Complements?

    OpenAIRE

    Xie, Yang; Zilberman, David

    2015-01-01

    We investigate the economic relation between two common approaches to tackling water scarcity and adapting to climate change, namely expanding water-storage capac- ities and improving water-use efficiency. We build, analyze, and extend a simple model for capacity choices of dams, incorporating stochastic, dynamic control of water inventories and efficiency in water use. We show that expanding water-storage capacities could encourage water users to improve water-use efficiency and improving wa...

  2. Classification of CO2 Geologic Storage: Resource and Capacity

    Science.gov (United States)

    Frailey, S.M.; Finley, R.J.

    2009-01-01

    The use of the term capacity to describe possible geologic storage implies a realistic or likely volume of CO2 to be sequestered. Poor data quantity and quality may lead to very high uncertainty in the storage estimate. Use of the term "storage resource" alleviates the implied certainty of the term "storage capacity". This is especially important to non- scientists (e.g. policy makers) because "capacity" is commonly used to describe the very specific and more certain quantities such as volume of a gas tank or a hotel's overnight guest limit. Resource is a term used in the classification of oil and gas accumulations to infer lesser certainty in the commercial production of oil and gas. Likewise for CO2 sequestration, a suspected porous and permeable zone can be classified as a resource, but capacity can only be estimated after a well is drilled into the formation and a relatively higher degree of economic and regulatory certainty is established. Storage capacity estimates are lower risk or higher certainty compared to storage resource estimates. In the oil and gas industry, prospective resource and contingent resource are used for estimates with less data and certainty. Oil and gas reserves are classified as Proved and Unproved, and by analogy, capacity can be classified similarly. The highest degree of certainty for an oil or gas accumulation is Proved, Developed Producing (PDP) Reserves. For CO2 sequestration this could be Proved Developed Injecting (PDI) Capacity. A geologic sequestration storage classification system is developed by analogy to that used by the oil and gas industry. When a CO2 sequestration industry emerges, storage resource and capacity estimates will be considered a company asset and consequently regulated by the Securities and Exchange Commission. Additionally, storage accounting and auditing protocols will be required to confirm projected storage estimates and assignment of credits from actual injection. An example illustrates the use of

  3. Interception storage capacities of tropical rainforest canopy trees

    Science.gov (United States)

    Herwitz, Stanley R.

    1985-04-01

    The rainwater interception storage capacities of mature canopy trees in a tropical rainforest site in northeast Queensland, Australia, were approximated using a combination of field and laboratory measurements. The above-ground vegetative surfaces of five selected species (three flaky-barked; two smooth-barked) were saturated under laboratory conditions in order to establish their maximum interception storage capacities. Average leaf surface interception storages ranged from 112 to 161 ml m -2. The interception storages of bark ranged from 0.51 to 0.97 ml cm -3. These standardized interception storages were applied to estimates of leaf surface area and bark volume for 51 mature canopy trees representing the selected species in the field site. The average whole tree interception storage capacities of the five species ranged from 110 to 5281 per tree and 2.2 to 8.3 mm per unit projected crown area. The highly significant interspecific differences in interception storage capacity suggest that both floristic and demographic data are needed in order to accurately calculate a forest-wide interception storage capacity for species-rich tropical rainforest vegetation. Species with large woody surface areas and small projected crown areas are capable of storing the greatest depth equivalents of rainwater under heavy rainfall conditions. In the case of both the flaky-barked and the smooth-barked species, bark accounted for > 50% of the total interception storage capacity under still-air conditions, and > 80% under turbulent air conditions. The emphasis in past interception studies on the role of leaf surfaces in determining the interception storage capacity of a vegetative cover must be modified for tropical rainforests to include the storage capacity provided by the bark tissue on canopy trees.

  4. A numerical investigation of combined heat storage and extraction in deep geothermal reservoirs

    DEFF Research Database (Denmark)

    Major, Márton; Poulsen, Søren Erbs; Balling, Niels

    2018-01-01

    Heat storage capabilities of deep sedimentary geothermal reservoirs are evaluated through numerical model simulations. We combine storage with heat extraction in a doublet well system when storage phases are restricted to summer months. The effects of stored volume and annual repetition on energy...... efficiency. Additional simulations concerning pressure build-up in the reservoir are carried out to show that safety levels may not be reached. Reservoir characteristics are inspired by Danish geothermal conditions, but results are assumed to have more general validity. Thus, deep sedimentary reservoirs...

  5. High capacity hydrogen storage nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy; Wellons, Matthew S.

    2017-12-12

    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.

  6. Assessing European capacity for geological storage of carbon dioxide-the EU GeoCapacity project

    NARCIS (Netherlands)

    Vangkilde-Pedersen, T.; Anthonsen, K.L.; Smith, N.; Kirk, K.; Neele, F.; Meer, B. van der; Le Gallo, Y. le; Bossie-Codreanu, D.; Wojcicki, A.; Nindre, Y.-M. le; Hendriks, C.; Dalhoff, F.; Peter Christensen, N.

    2009-01-01

    The focus of the GeoCapacity project is GIS mapping of CO2 point sources, infrastructure and geological storage in Europe. The main objective is to assess the European capacity for geological storage of CO2 in deep saline aquifers, oil and gas structures and coal beds. Other priorities are further

  7. Global root zone storage capacity from satellite-based evaporation

    Science.gov (United States)

    Wang-Erlandsson, Lan; Bastiaanssen, Wim G. M.; Gao, Hongkai; Jägermeyr, Jonas; Senay, Gabriel B.; van Dijk, Albert I. J. M.; Guerschman, Juan P.; Keys, Patrick W.; Gordon, Line J.; Savenije, Hubert H. G.

    2016-04-01

    This study presents an "Earth observation-based" method for estimating root zone storage capacity - a critical, yet uncertain parameter in hydrological and land surface modelling. By assuming that vegetation optimises its root zone storage capacity to bridge critical dry periods, we were able to use state-of-the-art satellite-based evaporation data computed with independent energy balance equations to derive gridded root zone storage capacity at global scale. This approach does not require soil or vegetation information, is model independent, and is in principle scale independent. In contrast to a traditional look-up table approach, our method captures the variability in root zone storage capacity within land cover types, including in rainforests where direct measurements of root depths otherwise are scarce. Implementing the estimated root zone storage capacity in the global hydrological model STEAM (Simple Terrestrial Evaporation to Atmosphere Model) improved evaporation simulation overall, and in particular during the least evaporating months in sub-humid to humid regions with moderate to high seasonality. Our results suggest that several forest types are able to create a large storage to buffer for severe droughts (with a very long return period), in contrast to, for example, savannahs and woody savannahs (medium length return period), as well as grasslands, shrublands, and croplands (very short return period). The presented method to estimate root zone storage capacity eliminates the need for poor resolution soil and rooting depth data that form a limitation for achieving progress in the global land surface modelling community.

  8. Study on increasing spent fuel storage capacity at Juragua NPP

    International Nuclear Information System (INIS)

    Guerra Valdes, R.; Lopez Aldama, D.; Rodriguez Gual, M.; Garcia Yip, F.

    1999-01-01

    The delay in decision about the final disposal of the spent fuel, led to longer interim storage. The reracking og the storage pools was an economical and feasible option to increase the storage capacity on the site. Reracking of the storage facility led to the analysis of the new conditions for criticality, shielding, residual heat removal and mechanical loads over the structures. This paper includes a summary of the studies on criticality and dose rate changes in the vicinity of the storage pool of Juragua NPP

  9. Effects of Formation Damage on Productivity of Underground Gas Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    C.I.C. Anyadiegwu

    2013-12-01

    Full Text Available Analysis of the effects of formation damage on the productivity of gas storage reservoirs was performed with depleted oil reservoir (OB-02, located onshore, Niger Delta, Nigeria. Information on the reservoir and the fluids from OB-02 were collected and used to evaluate the deliverabilities of the gas storage reservoir over a 10-year period of operation. The results obtained were used to plot graphs of deliverability against permeability and skin respectively. The graphs revealed that as the permeability decreased, the skin increased, and hence a decrease in deliverability of gas from the reservoir during gas withdrawal. Over the ten years of operating the reservoir for gas storage, the deliverability and permeability which were initially 2.7 MMscf/d and 50 mD, with a skin of 0.2, changed to new values of 0.88 MMscf/d and 24 mD with the skin as 4.1 at the tenth year.

  10. Optimal investment timing and capacity choice for pumped hydropower storage

    OpenAIRE

    Fertig, Emily; Heggedal, Ane Marte; Doorman, Gerard L.; Apt, Jay

    2014-01-01

    Pumped hydropower storage can smooth output from intermittent renewable electricity generators and facilitate their large-scale use in energy systems. Germany has aggressive plans for wind power expansion, and pumped storage ramps quickly enough to smooth wind power and could profit from arbitrage on the short-term price fluctuations wind power strengthens. We consider five capacity alternatives for a pumped storage facility in Norway that practices arbitrage in the German spot market. Price ...

  11. The maximum reservoir capacity of soils for persistent organic pollutants: implications for global cycling

    International Nuclear Information System (INIS)

    Dalla Valle, M.; Jurado, E.; Dachs, J.; Sweetman, A.J.; Jones, K.C.

    2005-01-01

    The concept of maximum reservoir capacity (MRC), the ratio of the capacities of the surface soil and of the atmospheric mixed layer (AML) to hold chemical under equilibrium conditions, is applied to selected persistent organic pollutants (POPs) in the surface 'skin' (1 mm) of soils. MRC is calculated as a function of soil organic matter (SOM) content and temperature-dependent K OA and mapped globally for selected PCB congeners (PCB-28; -153; -180) and HCB, to identify regions with a higher tendency to retain POPs. It is shown to vary over many orders of magnitude, between compounds, locations and time (seasonally/diurnally). The MRC approach emphasises the very large capacity of soils as a storage compartment for POPs. The theoretical MRC concept is compared to reality and its implications for the global cycling of POPs are discussed. Sharp gradients in soil MRC can exist in mountainous areas and between the land and ocean. Exchanges between oceans and land masses via the atmosphere is likely to be an important driver to the global cycling of these compounds, and net ocean-land transfers could occur in some areas. - Major global terrestrial sinks/stores for POPs are identified and the significance of gradients between them discussed

  12. The maximum reservoir capacity of soils for persistent organic pollutants: implications for global cycling.

    Science.gov (United States)

    Dalla Valle, M; Jurado, E; Dachs, J; Sweetman, A J; Jones, K C

    2005-03-01

    The concept of maximum reservoir capacity (MRC), the ratio of the capacities of the surface soil and of the atmospheric mixed layer (AML) to hold chemical under equilibrium conditions, is applied to selected persistent organic pollutants (POPs) in the surface 'skin' (1 mm) of soils. MRC is calculated as a function of soil organic matter (SOM) content and temperature-dependent K(OA) and mapped globally for selected PCB congeners (PCB-28; -153; -180) and HCB, to identify regions with a higher tendency to retain POPs. It is shown to vary over many orders of magnitude, between compounds, locations and time (seasonally/diurnally). The MRC approach emphasises the very large capacity of soils as a storage compartment for POPs. The theoretical MRC concept is compared to reality and its implications for the global cycling of POPs are discussed. Sharp gradients in soil MRC can exist in mountainous areas and between the land and ocean. Exchanges between oceans and land masses via the atmosphere is likely to be an important driver to the global cycling of these compounds, and net ocean-land transfers could occur in some areas.

  13. Geophysical assessments of renewable gas energy compressed in geologic pore storage reservoirs.

    Science.gov (United States)

    Al Hagrey, Said Attia; Köhn, Daniel; Rabbel, Wolfgang

    2014-01-01

    Renewable energy resources can indisputably minimize the threat of global warming and climate change. However, they are intermittent and need buffer storage to bridge the time-gap between production (off peak) and demand peaks. Based on geologic and geochemical reasons, the North German Basin has a very large capacity for compressed air/gas energy storage CAES in porous saltwater aquifers and salt cavities. Replacing pore reservoir brine with CAES causes changes in physical properties (elastic moduli, density and electrical properties) and justify applications of integrative geophysical methods for monitoring this energy storage. Here we apply techniques of the elastic full waveform inversion FWI, electric resistivity tomography ERT and gravity to map and quantify a gradually saturated gas plume injected in a thin deep saline aquifer within the North German Basin. For this subsurface model scenario we generated different synthetic data sets without and with adding random noise in order to robust the applied techniques for the real field applications. Datasets are inverted by posing different constraints on the initial model. Results reveal principally the capability of the applied integrative geophysical approach to resolve the CAES targets (plume, host reservoir, and cap rock). Constrained inversion models of elastic FWI and ERT are even able to recover well the gradual gas desaturation with depth. The spatial parameters accurately recovered from each technique are applied in the adequate petrophysical equations to yield precise quantifications of gas saturations. Resulting models of gas saturations independently determined from elastic FWI and ERT techniques are in accordance with each other and with the input (true) saturation model. Moreover, the gravity technique show high sensitivity to the mass deficit resulting from the gas storage and can resolve saturations and temporal saturation changes down to ±3% after reducing any shallow fluctuation such as that of

  14. GRACE water storage estimates for the Middle East and other regions with significant reservoir and lake storage

    Science.gov (United States)

    Longuevergne, L.; Wilson, C. R.; Scanlon, B. R.; Crétaux, J. F.

    2013-12-01

    While GRACE (Gravity Recovery and Climate Experiment) satellites are increasingly being used to monitor total water storage (TWS) changes globally, the impact of spatial distribution of water storage within a basin is generally ignored but may be substantial. In many basins, water is often stored in reservoirs or lakes, flooded areas, small aquifer systems, and other localized regions with areas typically below GRACE resolution (~200 000 km2). The objective of this study was to assess the impact of nonuniform water storage distribution on GRACE estimates of TWS changes as basin-wide averages, focusing on surface water reservoirs and using a priori information on reservoir storage from radar altimetry. Analysis included numerical experiments testing effects of location and areal extent of the localized mass (reservoirs) within a basin on basin-wide average water storage changes, and application to the lower Nile (Lake Nasser) and Tigris-Euphrates basins as examples. Numerical experiments show that by assuming uniform mass distribution, GRACE estimates may under- or overestimate basin-wide average water storage by up to a factor of ~2, depending on reservoir location and areal extent. Although reservoirs generally cover less than 1% of the basin area, and their spatial extent may be unresolved by GRACE, reservoir storage may dominate water storage changes in some basins. For example, reservoir storage accounts for ~95% of seasonal water storage changes in the lower Nile and 10% in the Tigris-Euphrates. Because reservoirs are used to mitigate droughts and buffer against climate extremes, their influence on interannual timescales can be large. For example, TWS decline during the 2007-2009 drought in the Tigris-Euphrates basin measured by GRACE was ~93 km3. Actual reservoir storage from satellite altimetry was limited to 27 km3, but their apparent impact on GRACE reached 45 km3, i.e., 50% of GRACE trend. Therefore, the actual impact of reservoirs would have been greatly

  15. CO2 storage capacity calculations for the Dutch subsurface

    NARCIS (Netherlands)

    Meer, L.G.H. van der; Yavuz, F.

    2009-01-01

    Estimating the capacity of a geological formation to store CO2 is not a straightforward or simple process. Bradshaw [1] has recently listed various estimations for both regional and global CO2 storage capacity. The estimations were quoted as "very large" with ranges for the estimates in the order of

  16. Estimating the Optimal Capacity for Reservoir Dam based on Reliability Level for Meeting Demands

    Directory of Open Access Journals (Sweden)

    Mehrdad Taghian

    2017-02-01

    Full Text Available Introduction: One of the practical and classic problems in the water resource studies is estimation of the optimal reservoir capacity to satisfy demands. However, full supplying demands for total periods need a very high dam to supply demands during severe drought conditions. That means a major part of reservoir capacity and costs is only usable for a short period of the reservoir lifetime, which would be unjustified in economic analysis. Thus, in the proposed method and model, the full meeting demand is only possible for a percent time of the statistical period that is according to reliability constraint. In the general methods, although this concept apparently seems simple, there is a necessity to add binary variables for meeting or not meeting demands in the linear programming model structures. Thus, with many binary variables, solving the problem will be time consuming and difficult. Another way to solve the problem is the application of the yield model. This model includes some simpler assumptions and that is so difficult to consider details of the water resource system. The applicationof evolutionary algorithms, for the problems have many constraints, is also very complicated. Therefore, this study pursues another solution. Materials and Methods: In this study, for development and improvement the usual methods, instead of mix integer linear programming (MILP and the above methods, a simulation model including flow network linear programming is used coupled with an interface manual code in Matlab to account the reliability based on output file of the simulation model. The acre reservoir simulation program (ARSP has been utilized as a simulation model. A major advantage of the ARSP is its inherent flexibility in defining the operating policies through a penalty structure specified by the user. The ARSP utilizes network flow optimization techniques to handle a subset of general linear programming (LP problems for individual time intervals

  17. Acid Fluid-Rock Interactions with Shales Comprising Unconventional Hydrocarbon Reservoirs and with Shale Capping Carbon Storage Reservoirs: Experimental Insights

    Science.gov (United States)

    Kaszuba, J. P.; Bratcher, J.; Marcon, V.; Herz-Thyhsen, R.

    2015-12-01

    Injection of HCl is often a first stage in the hydraulic fracturing process. These acidic fluids react with marls or shales in unconventional reservoirs, reactions generally comparable to reaction between shale caprocks and acidic, carbonated formation waters in a carbon storage reservoir. Hydrothermal experiments examine acid fluid-rock interaction with 1) an unconventional shale reservoir and 2) a model shale capping a carbon storage reservoir. In the former, unconventional reservoir rock and hydraulic fracturing fluid possessing a range of ionic strengths (I = 0.01, 0.15) and initial pH values (2.5 and 7.3) reacted at 115°C and 35 MPa for 28 days. In the latter, a model carbon storage reservoir (Fe-rich dolomite), shale caprock (illite), and shale-reservoir mixture each reacted with formation water (I = 0.1 and pH 6.3) at 160°C and 25 MPa for ~15 days. These three experiments were subsequently injected with sufficient CO2 to maintain CO2 saturation in the water and allowed to react for ~40 additional days. Acidic frac fluid was rapidly buffered (from pH 2.5 to 6.2 after 38 hrs) by reaction with reservoir rock whereas the pH of near-neutral frac fluid decreased (from 7.3 to 6.9) after 47 hrs. Carbonate dissolution released Ca and Sr into solution and feldspar dissolution released SiO2 and Li; the extent of reaction was greater in the experiment containing acidic frac fluid. All three carbon storage experiments displayed a similar pH decrease of 1.5 units after the addition of CO2. The pH remained low for the duration of the experiments because the immiscible supercritical CO2 phase provided an infinite reservoir of carbonic acid that could not be consumed by reaction with the rock. In all three experiments, Ca, Fe, Mg, Mn and SO4 increase with injection, but slowly decline through termination of the experiments. This trend suggests initial dissolution followed by re-precipitation of carbonates, which can be seen in modeling and SEM results. New clay minerals

  18. The role of reservoir storage in large-scale surface water availability analysis for Europe

    Science.gov (United States)

    Garrote, L. M.; Granados, A.; Martin-Carrasco, F.; Iglesias, A.

    2017-12-01

    A regional assessment of current and future water availability in Europe is presented in this study. The assessment was made using the Water Availability and Adaptation Policy Analysis (WAAPA) model. The model was built on the river network derived from the Hydro1K digital elevation maps, including all major river basins of Europe. Reservoir storage volume was taken from the World Register of Dams of ICOLD, including all dams with storage capacity over 5 hm3. Potential Water Availability is defined as the maximum amount of water that could be supplied at a certain point of the river network to satisfy a regular demand under pre-specified reliability requirements. Water availability is the combined result of hydrological processes, which determine streamflow in natural conditions, and human intervention, which determines the available hydraulic infrastructure to manage water and establishes water supply conditions through operating rules. The WAAPA algorithm estimates the maximum demand that can be supplied at every node of the river network accounting for the regulation capacity of reservoirs under different management scenarios. The model was run for a set of hydrologic scenarios taken from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), where the PCRGLOBWB hydrological model was forced with results from five global climate models. Model results allow the estimation of potential water stress by comparing water availability to projections of water abstractions along the river network under different management alternatives. The set of sensitivity analyses performed showed the effect of policy alternatives on water availability and highlighted the large uncertainties linked to hydrological and anthropological processes.

  19. Dam break flood wave under different reservoir's capacities and ...

    Indian Academy of Sciences (India)

    Farhad Hooshyaripor

    2017-07-14

    Jul 14, 2017 ... analysed using common hydraulic rainfall-runoff tools. The failure mode depends upon the failure cause and dam type [2]. Erodible embankment dams ...... distance of the reservoir's centroid to the outlet, larger the catastrophic flood, resulting in higher expected risk. Figure 12 illustrates the flow regime base ...

  20. Assessment of Reservoir Storage in a Semi-Arid Environment Using ...

    African Journals Online (AJOL)

    Nekky Umera

    Tiga Dam in Kano State, Nigeria, of 1090 x 106m3 using Gould. Probability Matrix method. .... The application of the mass storage equation was data driven and the method for collecting the required data ..... Reservoir in million cubic metres. Distribution of average monthly water demand on Tiga Reservoir in million cubic.

  1. 18 CFR 1304.407 - Development within flood control storage zones of TVA reservoirs.

    Science.gov (United States)

    2010-04-01

    ... zones of TVA reservoirs. (a) Activities involving development within the flood control storage zone on TVA reservoirs will be reviewed to determine if the proposed activity qualifies as a repetitive action. Under TVA's implementation of Executive Order 11988, Floodplain Management, repetitive actions are...

  2. Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems

    Science.gov (United States)

    Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.

    2017-12-01

    Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given

  3. Compressed air energy storage with liquid air capacity extension

    International Nuclear Information System (INIS)

    Kantharaj, Bharath; Garvey, Seamus; Pimm, Andrew

    2015-01-01

    Highlights: • A hybrid energy storage system involving compressed air and liquid air is proposed. • Thermodynamic analysis based on exergy is carried out on the proposed system. • Turnaround efficiency is comparable to energy recovery from pure liquid air systems. • Storage duration is critical for economic viability of the proposed system. - Abstract: As renewable electricity generation capacity increases, energy storage will be required at larger scales. Compressed Air Energy Storage (CAES) at large scales, with effective management of heat, is recognised to have potential to provide affordable grid-scale energy storage. Where suitable geologies are unavailable, compressed air could be stored in pressurised steel tanks above ground, but this would incur significant storage costs. Liquid Air Energy Storage (LAES), on the other hand, does not need a pressurised storage vessel, can be located almost anywhere, has a relatively large volumetric exergy density at ambient pressure, and has relatively low marginal cost of energy storage capacity even at modest scales. However, it has lower roundtrip efficiency than compressed air energy storage technologies. This paper carries out thermodynamic analyses for an energy storage installation comprising a compressed air component supplemented with a liquid air store, and additional machinery to transform between gaseous air at ambient temperature and high pressure, and liquid air at ambient pressure. A roundtrip efficiency of 42% is obtained for the conversion of compressed air at 50 bar to liquid air, and back. The proposed system is more economical than pure LAES and more economical than a pure CAES installation if the storage duration is sufficiently long and if the high-pressure air store cannot exploit some large-scale geological feature.

  4. Case study - Dynamic pressure-limited capacity and costs of CO2 storage in the Mount Simon sandstone

    Science.gov (United States)

    Anderson, Steven T.; Jahediesfanjani, Hossein

    2017-01-01

    Widespread deployment of carbon capture and storage (CCS) is likely necessary to be able to satisfy baseload electricity demand, to maintain diversity in the energy mix, and to achieve climate and other objectives at the lowest cost. If all of the carbon dioxide (CO2) emissions from stationary sources (such as fossil-fuel burning power plants, and other industrial plants) in the United States needed to be captured and stored, it could be possible to store only a small fraction of this CO2 in oil and natural gas reservoirs, including as a result of CO2 utilization for enhanced oil recovery. The vast majority would have to be stored in saline-filled reservoirs (Dahowski et al., 2005). Given a lack of long-term commercial-scale CCS projects, there is considerable uncertainty in the risks, dynamic capacity, and their cost implications for geologic storage of CO2. Pressure buildup in the storage reservoir is expected to be a primary source of risk associated with CO2 storage, and could severely limit CO2 injection rates (dynamic storage capacities). Most cost estimates for commercial-scale deployment of CCS estimate CO2 storage costs under assumed availability of a theoretical capacity to store tens, hundreds, or even thousands of gigatons of CO2, without considering geologic heterogeneities, pressure limitations, or the time dimension. This could lead to underestimation of the costs of CO2 storage (Anderson, 2017). This paper considers the impacts of pressure limitations and geologic heterogeneity on the dynamic CO2 storage capacity and storage (injection) costs. In the U.S. Geological Survey (USGS)’s National Assessment of Geologic CO2 Storage Resources (USGS, 2013), the mean estimate of the theoretical storage capacity in the Mount Simon Sandstone was about 94 billion metric tons of CO2. However, our results suggest that the pressure-limited capacity after 50 years of injection could be only about 4% of the theoretical geologic storage capacity in this formation

  5. Identification and dating of indigenous water storage reservoirs along the Rio San José at Laguna Pueblo, western New Mexico, USA

    Science.gov (United States)

    Huckleberry, Gary; Ferguson, T.J.; Rittenour, Tammy M.; Banet, Chris; Mahan, Shannon

    2016-01-01

    An investigation into indigenous water storage on the Rio San José in western New Mexico was conducted in support of efforts by the Pueblo of Laguna to adjudicate their water rights. Here we focus on stratigraphy and geochronology of two Native American-constructed reservoirs. One reservoir located near the community of Casa Blanca was formed by a ∼600 m (2000 feet) long stone masonry dam that impounded ∼1.6 × 106 m3 (∼1300 acre-feet) of stored water. Four optically stimulated luminescence (OSL) ages obtained on reservoir deposits indicate that the dam was constructed prior to AD 1825. The other reservoir is located adjacent to Old Laguna Pueblo and contains only a small remnant of its former earthen dam. The depth and distribution of reservoir deposits and a photogrammetric analyses of relict shorelines indicate a storage capacity of ∼6.5 × 106 m3 (∼5300 ac-ft). OSL ages from above and below the base of the reservoir indicate that the reservoir was constructed sometime after AD 1370 but before AD 1750. The results of our investigation are consistent with Laguna oral history and Spanish accounts demonstrating indigenous construction of significant water-storage reservoirs on the Rio San José prior to the late nineteenth century.

  6. The role of rainfall variability in reservoir storage management at ...

    African Journals Online (AJOL)

    Reservoir operation and management is usually patterned after the background of long standing water resources management experience. Reservoir management for optimum power production at any hydropower station requires constant assessment of the quantity of available water. The hydrographic responses of flow ...

  7. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration.

    Science.gov (United States)

    Jun, Young-Shin; Zhang, Lijie; Min, Yujia; Li, Qingyun

    2017-07-18

    Geologic CO 2 sequestration (GCS) is a promising strategy to mitigate anthropogenic CO 2 emission to the atmosphere. Suitable geologic storage sites should have a porous reservoir rock zone where injected CO 2 can displace brine and be stored in pores, and an impermeable zone on top of reservoir rocks to hinder upward movement of buoyant CO 2 . The injection wells (steel casings encased in concrete) pass through these geologic zones and lead CO 2 to the desired zones. In subsurface environments, CO 2 is reactive as both a supercritical (sc) phase and aqueous (aq) species. Its nanoscale chemical reactions with geomedia and wellbores are closely related to the safety and efficiency of CO 2 storage. For example, the injection pressure is determined by the wettability and permeability of geomedia, which can be sensitive to nanoscale mineral-fluid interactions; the sealing safety of the injection sites is affected by the opening and closing of fractures in caprocks and the alteration of wellbore integrity caused by nanoscale chemical reactions; and the time scale for CO 2 mineralization is also largely dependent on the chemical reactivities of the reservoir rocks. Therefore, nanoscale chemical processes can influence the hydrogeological and mechanical properties of geomedia, such as their wettability, permeability, mechanical strength, and fracturing. This Account reviews our group's work on nanoscale chemical reactions and their qualitative impacts on seal integrity and storage capacity at GCS sites from four points of view. First, studies on dissolution of feldspar, an important reservoir rock constituent, and subsequent secondary mineral precipitation are discussed, focusing on the effects of feldspar crystallography, cations, and sulfate anions. Second, interfacial reactions between caprock and brine are introduced using model clay minerals, with focuses on the effects of water chemistries (salinity and organic ligands) and water content on mineral dissolution and

  8. A thermal storage capacity market for non dispatchable renewable energies

    Science.gov (United States)

    Bennouna, El Ghali; Mouaky, Ammar; Arrad, Mouad; Ghennioui, Abdellatif; Mimet, Abdelaziz

    2017-06-01

    Due to the increasingly high capacity of wind power and solar PV in Germany and some other European countries and the high share of variable renewable energy resources in comparison to fossil and nuclear capacity, a power reserve market structured by auction systems was created to facilitate the exchange of balance power capacities between systems and even grid operators. Morocco has a large potential for both wind and solar energy and is engaged in a program to deploy 2000MW of wind capacity by 2020 and 3000 MW of solar capacity by 2030. Although the competitiveness of wind energy is very strong, it appears clearly that the wind program could be even more ambitious than what it is, especially when compared to the large exploitable potential. On the other hand, heavy investments on concentrated solar power plants equipped with thermal energy storage have triggered a few years ago including the launching of the first part of the Nour Ouarzazate complex, the goal being to reach stable, dispatchable and affordable electricity especially during evening peak hours. This paper aims to demonstrate the potential of shared thermal storage capacity between dispatchable and non dispatchable renewable energies and particularly CSP and wind power. Thus highlighting the importance of a storage capacity market in parallel to the power reserve market and the and how it could enhance the development of both wind and CSP market penetration.

  9. CO2 storage capacity estimation: Issues and development of standards

    Science.gov (United States)

    Bradshaw, J.; Bachu, S.; Bonijoly, D.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M.

    2007-01-01

    Associated with the endeavours of geoscientists to pursue the promise that geological storage of CO2 has of potentially making deep cuts into greenhouse gas emissions, Governments around the world are dependent on reliable estimates of CO2 storage capacity and insightful indications of the viability of geological storage in their respective jurisdictions. Similarly, industry needs reliable estimates for business decisions regarding site selection and development. If such estimates are unreliable, and decisions are made based on poor advice, then valuable resources and time could be wasted. Policies that have been put in place to address CO2 emissions could be jeopardised. Estimates need to clearly state the limitations that existed (data, time, knowledge) at the time of making the assessment and indicate the purpose and future use to which the estimates should be applied. A set of guidelines for estimation of storage capacity will greatly assist future deliberations by government and industry on the appropriateness of geological storage of CO2 in different geological settings and political jurisdictions. This work has been initiated under the auspices of the Carbon Sequestration Leadership Forum (www.cslforum.org), and it is intended that it will be an ongoing taskforce to further examine issues associated with storage capacity estimation. Crown Copyright ?? 2007.

  10. Consensus based scheduling of storage capacities in a virtual microgrid

    DEFF Research Database (Denmark)

    Brehm, Robert; Top, Søren; Mátéfi-Tempfli, Stefan

    2017-01-01

    We present a distributed, decentralized method for coordinated scheduling of charge/discharge intervals of storage capacities in a utility grid integrated microgrid. The decentralized algorithm is based on a consensus scheme and solves an optimisation problem with the objective of minimising......, by use of storage capacities, the power flow over a transformer substation from/to the utility grid integrated microgrid. It is shown that when using this coordinated scheduling algorithm, load profile flattening (peak-shaving) for the utility grid is achieved. Additionally, mutual charge...

  11. On a Model of Associative Memory with Huge Storage Capacity

    Science.gov (United States)

    Demircigil, Mete; Heusel, Judith; Löwe, Matthias; Upgang, Sven; Vermet, Franck

    2017-07-01

    In Krotov et al. (in: Lee (eds) Advances in Neural Information Processing Systems, Curran Associates, Inc., Red Hook, 2016) Krotov and Hopfield suggest a generalized version of the well-known Hopfield model of associative memory. In their version they consider a polynomial interaction function and claim that this increases the storage capacity of the model. We prove this claim and take the "limit" as the degree of the polynomial becomes infinite, i.e. an exponential interaction function. With this interaction we prove that model has an exponential storage capacity in the number of neurons, yet the basins of attraction are almost as large as in the standard Hopfield model.

  12. Bistable gradient networks. II. Storage capacity and behavior near saturation

    Science.gov (United States)

    McGraw, Patrick N.; Menzinger, Michael

    2003-01-01

    We examine numerically the storage capacity and the behavior near saturation of an attractor neural network consisting of bistable elements with an adjustable coupling strength, the bistable gradient network. For strong coupling, we find evidence of a first-order “memory blackout” phase transition, as in the Hopfield network. For weak coupling, on the other hand, there is no evidence of such a transition and memorized patterns can be stable even at high levels of loading. The enhanced storage capacity comes, however, at the cost of imperfect retrieval of the patterns from corrupted versions.

  13. Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south-eastern Brazil

    Directory of Open Access Journals (Sweden)

    D. D. C. D. Melo

    2016-11-01

    Full Text Available Droughts are particularly critical for Brazil because of impacts on water supply and because most (70 % of its electricity is derived from hydroelectric generation. The Paraná basin (PB, a major hydroelectric producing region with 32 % (60 million people of Brazil's population, recently experienced the most severe drought since the 1960s, compromising the water supply for 11 million people in São Paulo. The objective of this study is to quantify linkages between meteorological and hydrological droughts based on remote sensing, modelling, and monitoring data using the Paraná River basin in south-eastern Brazil as a case study. Two major meteorological droughts were identified in the early 2000s and 2014, with precipitation 20–50 % below the long-term mean. Total water storage change estimated from the Gravity Recovery and Climate Experiment (GRACE satellites declined by 150 km3 between April 2011 and April 2015. Simulated soil moisture storage declined during the droughts, resulting in decreased runoff into reservoirs. As a result, reservoir storage decreased by 30 % relative to the system's maximum capacity, with negative trends ranging from 17 (May 1997–April 2001 to 25 km3 yr−1 (May 2011–April 2015. Storage in upstream reservoirs is mostly controlled by natural climate forcing, whereas storage in downstream reservoirs also reflects dam operations. This study emphasizes the importance of integrating remote sensing, modelling, and monitoring data to evaluate droughts and to establish a preliminary understanding of the linkages between a meteorological and hydrological drought for future management.

  14. Sediment transport and capacity change in three reservoirs, Lower Susquehanna River Basin, Pennsylvania and Maryland, 1900-2012

    Science.gov (United States)

    Langland, Michael J.

    2015-01-01

    The U.S. Geological Survey (USGS) has conducted numerous sediment transport studies in the Susquehanna River and in particular in three reservoirs in the Lower Susquehanna River Basin to determine sediment transport rates over the past century and to document changes in storage capacity. The Susquehanna River is the largest tributary to Chesapeake Bay and transports about one-half of the total freshwater input and substantial amounts of sediment and nutrients to the bay. The transported loads are affected by deposition in reservoirs (Lake Clarke, Lake Aldred, and Conowingo Reservoir) behind three hydropower dams. The geometry and texture of the deposited sediments in each reservoir upstream from the three dams has been a subject of research in recent decades. Particle size deposition and sediment scouring processes are part of the reservoir dynamics. A Total Maximum Daily Load (TMDL) for nitrogen, phosphorus, and sediment was established for Chesapeake Bay to attain water-quality standards. Six states and the District of Columbia agreed to reduce loads to the bay and to meet load allocation goals for the TMDL. The USGS has been estimating annual sediment loads at the Susquehanna River at Marietta, Pennsylvania (above Lake Clarke), and Susquehanna River at Conowingo, Maryland (below Conowingo Reservoir), since the mid-1980s to predict the mass balance of sediment transport through the reservoir system. Using streamflow and sediment data from the Susquehanna River at Harrisburg, Pennsylvania (upstream from the reservoirs), from 1900 to 1981, sediment loads were greatest in the early to mid-1900s when land disturbance activities from coal production and agriculture were at their peak. Sediment loads declined in the 1950s with the introduction of agricultural soil conservation practices. Loads were dominated by climatic factors in the 1960s (drought) and 1970s (very wet) and have been declining since the 1980s through 2012. The USGS developed a regression equation to

  15. Storage capacity of attractor neural networks with depressing synapses

    International Nuclear Information System (INIS)

    Torres, Joaquin J.; Pantic, Lovorka; Kappen, Hilbert J.

    2002-01-01

    We compute the capacity of a binary neural network with dynamic depressing synapses to store and retrieve an infinite number of patterns. We use a biologically motivated model of synaptic depression and a standard mean-field approach. We find that at T=0 the critical storage capacity decreases with the degree of the depression. We confirm the validity of our main mean-field results with numerical simulations

  16. A data driven model for the impact of IFT and density variations on CO2 storage capacity in geologic formations

    Science.gov (United States)

    Nomeli, Mohammad A.; Riaz, Amir

    2017-09-01

    Carbon dioxide (CO2) storage in depleted hydrocarbon reservoirs and deep saline aquifers is one of the most promising solutions for decreasing CO2 concentration in the atmosphere. One of the important issues for CO2 storage in subsurface environments is the sealing efficiency of low-permeable cap-rocks overlying potential CO2 storage reservoirs. Though we focus on the effect of IFT in this study as a factor influencing sealing efficiency or storage capacity, other factors such as interfacial interactions, wettability, pore radius and interfacial mass transfer also affect the mobility and storage capacity of CO2 phase in the pore space. The study of the variation of IFT is however important because the pressure needed to penetrate a pore depends on both the pore size and the interfacial tension. Hence small variations in IFT can affect flow across a large population of pores. A novel model is proposed to find the IFT of the ternary systems (CO2/brine-salt) in a range of temperatures (300-373 K), pressures (50-250 bar), and up to 6 molal salinity applicable to CO2 storage in geological formations through a multi-variant non-linear regression of experimental data. The method uses a general empirical model for the quaternary system CO2/brine-salts that can be made to coincide with experimental data for a variety of solutions. We introduce correction parameters into the model, which compensates for uncertainties, and enforce agreement with experimental data. The results for IFT show a strong dependence on temperature, pressure, and salinity. The model has been found to describe the experimental data in the appropriate parameter space with reasonable precision. Finally, we use the new model to evaluate the effects of formation depth on the actual efficiency of CO2 storage. The results indicate that, in the case of CO2 storage in deep subsurface environments as a global-warming mitigation strategy, CO2 storage capacity increases with reservoir depth.

  17. Hydrogen storage capacity of titanium met-cars

    Energy Technology Data Exchange (ETDEWEB)

    Akman, N [Department of Physics, Mersin University, 33342 Mersin (Turkey); Durgun, E [Department of Physics, Bilkent University, 06800 Ankara (Turkey); Yildirim, T [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Ciraci, S [Department of Physics, Bilkent University, 06800 Ankara (Turkey)

    2006-10-18

    The adsorption of hydrogen molecules on the titanium metallocarbohedryne (met-car) cluster has been investigated by using the first-principles plane wave method. We have found that, while a single Ti atom at the corner can bind up to three hydrogen molecules, a single Ti atom on the surface of the cluster can bind only one hydrogen molecule. Accordingly, a Ti{sub 8}C{sub 12} met-car can bind up to 16 H{sub 2} molecules and hence can be considered as a high-capacity hydrogen storage medium. Strong interaction between two met-car clusters leading to the dimer formation can affect H{sub 2} storage capacity slightly. Increasing the storage capacity by directly inserting H{sub 2} into the met-car or by functionalizing it with an Na atom have been explored. It is found that the insertion of neither an H{sub 2} molecule nor an Na atom could further promote the H{sub 2} storage capacity of a Ti{sub 8}C{sub 12} cluster. We have also tested the stability of the H{sub 2}-adsorbed Ti{sub 8}C{sub 12} met-car with ab initio molecular dynamics calculations which have been carried out at room temperature.

  18. Cycloaddition in peptides for high-capacity optical storage

    DEFF Research Database (Denmark)

    Lohse, Brian; Berg, Rolf Henrik; Hvilsted, Søren

    2006-01-01

    Photodimerization of chromophores attached to a short peptide chain is investigated for high-capacity optical digital storage with UV lasers. The length and rigidity of the peptide chain assure an optimal distance and orientation of the chromophores for effective photodimerization. Using a theory...

  19. Hydrogen storage capacity of titanium met-cars

    International Nuclear Information System (INIS)

    Akman, N; Durgun, E; Yildirim, T; Ciraci, S

    2006-01-01

    The adsorption of hydrogen molecules on the titanium metallocarbohedryne (met-car) cluster has been investigated by using the first-principles plane wave method. We have found that, while a single Ti atom at the corner can bind up to three hydrogen molecules, a single Ti atom on the surface of the cluster can bind only one hydrogen molecule. Accordingly, a Ti 8 C 12 met-car can bind up to 16 H 2 molecules and hence can be considered as a high-capacity hydrogen storage medium. Strong interaction between two met-car clusters leading to the dimer formation can affect H 2 storage capacity slightly. Increasing the storage capacity by directly inserting H 2 into the met-car or by functionalizing it with an Na atom have been explored. It is found that the insertion of neither an H 2 molecule nor an Na atom could further promote the H 2 storage capacity of a Ti 8 C 12 cluster. We have also tested the stability of the H 2 -adsorbed Ti 8 C 12 met-car with ab initio molecular dynamics calculations which have been carried out at room temperature

  20. Capacity recovery after storage negatively precharged nickel hydrogen cells

    Science.gov (United States)

    Lowery, John E.

    1993-02-01

    Tests were conducted to investigate the recovery of capacity lost during open circuit storage of negatively precharged nickel hydrogen batteries. Four Eagle Picher RNH-90-3 cells were used in the tests. Recovery procedures and test results are presented in outline and graphic form.

  1. Remotely-sensed near real-time monitoring of reservoir storage in India

    Science.gov (United States)

    Tiwari, A. D.; Mishra, V.

    2017-12-01

    Real-time reservoir storage information at a high temporal resolution is crucial to mitigate the influence of extreme events like floods and droughts. Despite large implications of near real-time reservoir monitoring in India for water resources and irrigation, remotely sensed monitoring systems have been lacking. Here we develop remotely sensed real-time monitoring systems for 91 large reservoirs in India for the period from 2000 to 2017. For the reservoir storage estimation, we combined Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day 250 m Enhanced Vegetation Index (EVI), and Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) ICESat/GLAS elevation data. Vegetation data with the highest temporal resolution available from the MODIS is at 16 days. To increase the temporal resolution to 8 days, we developed the 8-day composite of near infrared, red, and blue band surface reflectance. Surface reflectance 8-Day L3 Global 250m only have NIR band and Red band, therefore, surface reflectance of 8-Day L3 Global at 500m is used for the blue band, which was regridded to 250m spatial resolution. An area-elevation relationship was derived using area from an unsupervised classification of MODIS image followed by an image enhancement and elevation data from ICESat/GLAS. A trial and error method was used to obtain the area-elevation relationship for those reservoirs for which ICESat/GLAS data is not available. The reservoir storages results were compared with the gauge storage data from 2002 to 2009 (training period), which were then evaluated for the period of 2010 to 2016. Our storage estimates were highly correlated with observations (R2 = 0.6 to 0.96), and the normalized root mean square error (NRMSE) ranged between 10% and 50%. We also developed a relationship between precipitation and reservoir storage that can be used for prediction of storage during the dry season.

  2. Analysis of change of retention capacity of a small water reservoir

    Science.gov (United States)

    Výleta, R.; Danáčová, M.; Valent, P.

    2017-10-01

    This study is focused on the analysis of the changes of retention capacity of a small water reservoir induced by intensive erosion and sedimentation processes. The water reservoir is situated near the village of Vrbovce in the Western part of Slovakia, and the analysis is carried out for a period 2008-2017. The data used to build a digital elevation model (DEM) of the reservoir’s bed came from a terrain measurement, utilizing an acoustic Doppler current profiler (ADCP) to measure the water depth in the reservoir. The DEM was used to quantify the soil loss from agricultural land situated within the basin of the reservoir. The ability of the water reservoir to transform a design flood with a return period of 100 years is evaluated for both design (2008) and current conditions (2017). The results show that the small water reservoir is a subject to siltation, with sediments comprised of fine soil particles transported from nearby agricultural land. The ability of the water reservoir to transform a 100-year flood has not changed significantly. The reduction of the reservoir’s retention capacity should be systematically and regularly monitored in order to adjust its operational manual and improve its efficiency.

  3. Ringwallspeicher - a geotechnical option for large storage capacities

    Science.gov (United States)

    Popp, M.

    2012-04-01

    For a regenerative power supply, based on wind and sun and without fallback to fossil or nuclear energy carriers, the actually available storage capacity of Germany would be required about 500 times as large. If pumped hydro systems shall be established in a land saving way, than gauge deviations should be as large as possible in the upper and in the lower basin, besides a maximum height difference between the two basins. With a Ringwallspeicher, large storage capacities with a high degree of efficiency can be built also in areas, where classic pumped hydro systems wouldn't be considered, because large height differences can be established and natural existing height differences can be increased. Also the water gauge deviations offer a wide scope in designing. Bucket-wheels would excavate the lower basin to build the dam for the upper basin, which will be sealed on the inside. The plant would be operated like a pumped hydro storage system. Using not demanded electricity, water is pumped into the upper basin, which will flow through turbines back down if there is an electricity deficiency. The geometry of these storage plants would lead to a rapid growth of capacity with increasing dimensions. More informations: http://www.ringwallspeicher.de.

  4. Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, J.T.; Zhou, Q.

    2009-04-02

    Industrial-scale injection of CO{sub 2} into saline sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration reservoirs. In this paper, we discuss how such basin-scale hydrologic impacts can (1) affect regulation of CO{sub 2} storage projects and (2) may reduce current storage capacity estimates. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO{sub 2} storage projects in a core injection area suitable for long-term storage. Each project is assumed to inject five million tonnes of CO{sub 2} per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO{sub 2}-brine flow processes and the large-scale groundwater flow patterns in response to CO{sub 2} storage. The far-field pressure buildup predicted for this selected sequestration scenario suggests that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrologic response may be affected by interference between individual sites. Our results also support recent studies in that environmental concerns related to near-field and far-field pressure buildup may be a limiting factor on CO{sub 2} storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO{sub 2}, may have to be revised based on assessments of pressure perturbations and their potential impact on caprock integrity and groundwater resources, respectively. We finally discuss some of the challenges in making reliable predictions of large-scale hydrologic impacts related to CO{sub 2

  5. Simulation Applied to the Storage Capacity and Stockpiles

    Directory of Open Access Journals (Sweden)

    Andrea Alejandra Giubergia

    2016-05-01

    Full Text Available This investigation is focused on process based simulations. The simulation is carried out (using the FlexSim 7.3.0 software to a mining process including storage hoppers and haulage equipment in order to estimate the desirable truck fleet size and the capacity of the trucks and the hoppers as well as assessing whether the design of the access roads is acceptable for the success of the operations. It is concluded that the dimensions of the loading system has been overestimated compared to the existing equipment fleet size. Therefore, it is required to increase the number of trucks or the truck haulage capacity to improve the mine productivity.

  6. Soft-bound synaptic plasticity increases storage capacity.

    Directory of Open Access Journals (Sweden)

    Mark C W van Rossum

    Full Text Available Accurate models of synaptic plasticity are essential to understand the adaptive properties of the nervous system and for realistic models of learning and memory. Experiments have shown that synaptic plasticity depends not only on pre- and post-synaptic activity patterns, but also on the strength of the connection itself. Namely, weaker synapses are more easily strengthened than already strong ones. This so called soft-bound plasticity automatically constrains the synaptic strengths. It is known that this has important consequences for the dynamics of plasticity and the synaptic weight distribution, but its impact on information storage is unknown. In this modeling study we introduce an information theoretic framework to analyse memory storage in an online learning setting. We show that soft-bound plasticity increases a variety of performance criteria by about 18% over hard-bound plasticity, and likely maximizes the storage capacity of synapses.

  7. CO2 point sources and subsurface storage capacities for CO2 in aquifers in Norway

    International Nuclear Information System (INIS)

    Boee, Reidulv; Magnus, Christian; Osmundsen, Per Terje; Rindstad, Bjoern Ivar

    2002-01-01

    The GESTCO project comprises a study of the distribution and coincidence of thermal CO 2 emission sources and location/quality of geological storage capacity in Europe. Four of the most promising types of geological storage are being studied. 1. Onshore/offshore saline aquifers with or without lateral seal. 2. Low entalpy geothermal reservoirs. 3. Deep methane-bearing coal beds and abandoned coal and salt mines. 4. Exhausted or near exhausted hydrocarbon structures. In this report we present an inventory of CO 2 point sources in Norway (1999) and the results of the work within Study Area C: Deep saline aquifers offshore/near shore Northern and Central Norway. Also offshore/near shore Southern Norway has been included while the Barents Sea is not described in any detail. The most detailed studies are on the Tilje and Aare Formations on the Troendelag Platform off Mid-Norway and on the Sognefjord, Fensfjord and Krossfjord Formations, southeast of the Troll Field off Western Norway. The Tilje Formation has been chosen as one of the cases to be studied in greater detail (numerical modelling) in the project. This report shows that offshore Norway, there are concentrations of large CO 2 point sources in the Haltenbanken, the Viking Graben/Tampen Spur area, the Southern Viking Graben and the central Trough, while onshore Norway there are concentrations of point sources in the Oslofjord/Porsgrund area, along the coast of western Norway and in the Troendelag. A number of aquifers with large theoretical CO 2 storage potential are pointed out in the North Sea, the Norwegian Sea and in the Southern Barents Sea. The storage capacity in the depth interval 0.8 - 4 km below sea level is estimated to be ca. 13 Gt (13000000000 tonnes) CO 2 in geological traps (outside hydrocarbon fields), while the storage capacity in aquifers not confined to traps is estimated to be at least 280 Gt CO 2 . (Author)

  8. Assessing materials handling and storage capacities in port terminals

    Science.gov (United States)

    Dinu, O.; Roşca, E.; Popa, M.; Roşca, M. A.; Rusca, A.

    2017-08-01

    Terminals constitute the factual interface between different modes and, as a result, buffer stocks are unavoidable whenever transport flows with different discontinuities meet. This is the reason why assessing materials handling and storage capacities is an important issue in the course of attempting to increase operative planning of logistic processes in terminals. Proposed paper starts with a brief review of the compatibilities between different sorts of materials and corresponding transport modes and after, a literature overview of the studies related to ports terminals and their specialization is made. As a methodology, discrete event simulation stands as a feasible technique for assessing handling and storage capacities at the terminal, taking into consideration the multi-flows interaction and the non-uniform arrivals of vessels and inland vehicles. In this context, a simulation model, that integrates the activities of an inland water terminal and describes the essential interactions between the subsystems which influence the terminal capacity, is developed. Different scenarios are simulated for diverse sorts of materials, leading to bottlenecks identification, performance indicators such as average storage occupancy rate, average dwell or transit times estimations, and their evolution is analysed in order to improve the transfer operations in the logistic process

  9. Soil Phosphorus Storage Capacity for Environmental Risk Assessment

    Directory of Open Access Journals (Sweden)

    Vimala D. Nair

    2014-01-01

    Full Text Available Reliable techniques must be developed to predict phosphorus (P storage and release from soils of uplands, ditches, streams, and wetlands in order to better understand the natural, anthropogenic, and legacy sources of P and their impact on water quality at a field/plot as well as larger scales. A concept called the “safe” soil phosphorus storage capacity (SPSC that is based on a threshold phosphorus saturation ratio (PSR has been developed; the PSR is the molar ratio of P to Fe and Al, and SPSC is a PSR-based calculation of the remaining soil P storage capacity that captures risks arising from previous loading as well as inherently low P sorption capacity of a soil. Zero SPSC amounts to a threshold value below which P runoff or leaching risk increases precipitously. In addition to the use of the PSR/SPSC concept for P risk assessment and management, and its ability to predict isotherm parameters such as the Langmuir strength of bonding, KL, and the equilibrium P concentration, EPC0, this simple, cost-effective, and quantitative approach has the potential to be used as an agronomic tool for more precise application of P for plant uptake.

  10. Optimizing and Quantifying CO2 Storage Resource in Saline Formations and Hydrocarbon Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bosshart, Nicholas W. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Ayash, Scott C. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Azzolina, Nicholas A. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Peck, Wesley D. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Gorecki, Charles D. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Ge, Jun [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Jiang, Tao [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Burton-Kelly, Matthew E. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Anderson, Parker W. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Dotzenrod, Neil W. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Gorz, Andrew J. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center

    2017-06-30

    In an effort to reduce carbon dioxide (CO2) emissions from large stationary sources, carbon capture and storage (CCS) is being investigated as one approach. This work assesses CO2 storage resource estimation methods for deep saline formations (DSFs) and hydrocarbon reservoirs undergoing CO2 enhanced oil recovery (EOR). Project activities were conducted using geologic modeling and simulation to investigate CO2 storage efficiency. CO2 storage rates and efficiencies in DSFs classified by interpreted depositional environment were evaluated at the regional scale over a 100-year time frame. A focus was placed on developing results applicable to future widespread commercial-scale CO2 storage operations in which an array of injection wells may be used to optimize storage in saline formations. The results of this work suggest future investigations of prospective storage resource in closed or semiclosed formations need not have a detailed understanding of the depositional environment of the reservoir to generate meaningful estimates. However, the results of this work also illustrate the relative importance of depositional environment, formation depth, structural geometry, and boundary conditions on the rate of CO2 storage in these types of systems. CO2 EOR occupies an important place in the realm of geologic storage of CO2, as it is likely to be the primary means of geologic CO2 storage during the early stages of commercial implementation, given the lack of a national policy and the viability of the current business case. This work estimates CO2 storage efficiency factors using a unique industry database of CO2 EOR sites and 18 different reservoir simulation models capturing fluvial clastic and shallow shelf carbonate depositional environments for reservoir depths of 1219 and 2438 meters (4000 and 8000 feet) and 7.6-, 20-, and 64-meter (25-, 66

  11. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  12. Protracted near-solidus storage and pre-eruptive rejuvenation of large magma reservoirs

    Science.gov (United States)

    Szymanowski, Dawid; Wotzlaw, Jörn-Frederik; Ellis, Ben S.; Bachmann, Olivier; Guillong, Marcel; von Quadt, Albrecht

    2017-10-01

    Building super-eruptive magma reservoirs in the cold, upper parts of Earth's crust requires a significant influx of magma over an extended period, sufficient to allow the magma to accumulate, differentiate and periodically erupt. Some models favour magma storage in a cold non-eruptible state, requiring extensive reactivation of the reservoirs before eruption, whereas others suggest storage at higher temperature and lower crystallinity, implying that magma in such reservoirs is readily eruptible. Consequently, constraining volcanic hazards requires observations directly linking magma residence timescales to the thermal state and crystallinity of storage. Here we simultaneously determine crystallization temperatures and ages of magmatic crystals of zircon and titanite in the 900 km3 Kneeling Nun Tuff (New Mexico, USA), which allows us to place tight constraints on the long-term thermal evolution of the magma reservoir. We show that zircon and titanite crystals record more than 600,000 years of magma assembly and constrain the dominant storage conditions to low temperatures, set between the granitic solidus (680 to 700 °C) and the temperature of the onset of titanite crystallization (about 720 to 730 °C). We apply the zircon-titanite systematics to a suite of other super-eruptions and suggest that protracted low-temperature storage culminating in late-stage reheating is a widespread feature of large crystal-rich eruptions.

  13. Global Reservoir and Dam Database, Version 1 (GRanDv1): Reservoirs, Revision 01

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Reservoir and Dam (GRanD) Database, Version 1.1 contains 6,862 records of reservoirs and their associated dams with a cumulative storage capacity of 6,197...

  14. Hybrid Multi-Objective Optimization of Folsom Reservoir Operation to Maximize Storage in Whole Watershed

    Science.gov (United States)

    Goharian, E.; Gailey, R.; Maples, S.; Azizipour, M.; Sandoval Solis, S.; Fogg, G. E.

    2017-12-01

    The drought incidents and growing water scarcity in California have a profound effect on human, agricultural, and environmental water needs. California experienced multi-year droughts, which have caused groundwater overdraft and dropping groundwater levels, and dwindling of major reservoirs. These concerns call for a stringent evaluation of future water resources sustainability and security in the state. To answer to this call, Sustainable Groundwater Management Act (SGMA) was passed in 2014 to promise a sustainable groundwater management in California by 2042. SGMA refers to managed aquifer recharge (MAR) as a key management option, especially in areas with high variation in water availability intra- and inter-annually, to secure the refill of underground water storage and return of groundwater quality to a desirable condition. The hybrid optimization of an integrated water resources system provides an opportunity to adapt surface reservoir operations for enhancement in groundwater recharge. Here, to re-operate Folsom Reservoir, objectives are maximizing the storage in the whole American-Cosumnes watershed and maximizing hydropower generation from Folsom Reservoir. While a linear programing (LP) module tends to maximize the total groundwater recharge by distributing and spreading water over suitable lands in basin, a genetic based algorithm, Non-dominated Sorting Genetic Algorithm II (NSGA-II), layer above it controls releases from the reservoir to secure the hydropower generation, carry-over storage in reservoir, available water for replenishment, and downstream water requirements. The preliminary results show additional releases from the reservoir for groundwater recharge during high flow seasons. Moreover, tradeoffs between the objectives describe that new operation performs satisfactorily to increase the storage in the basin, with nonsignificant effects on other objectives.

  15. Study of Carrying Capacity Assesment for Natural Fisheries in Jatibarang Reservoir In Semarang City

    Science.gov (United States)

    Sujono, Bambang; Anggoro, Sutrisno

    2018-02-01

    Jatibarang reservoir serves as water supply in dry season and controlling flood in Semarang City. This reservoir is stem Kreo River which cathment areas of 54 km2, pool of area 110 ha and volume is 20 billion m3. This reservoir is potential to develop as natural fisheries area. The goals of this research were to explore existing condition of physical, biological as well as chemical parameter; carrying capacity assessment for natural fisheries; determining appropriate fish species to be developed in Jatibarang reservoir. This research was done in descriptive explorative scheme. Field survey and laboratory analyses were conducted to identify physical, chemical and biological parameters of the water. Physical parameters measured were temperature and water brightness. Chemical parameters measured were pH, DO, phosphate, Ammonia, nitrites and nitrate, while biological parameter measured were chlorophyll-a concentration. Carrying capacity analyses was done referred to the Government Regulation Number 82, 2001 that regulate the management of water quality and water pollution control. Based on the research, it showed that the existing condition of physical, chemical and biological parameters were still good to be used for natural fisheries. Based on TSI index, it classified as eutrofic water. Furthermore, tilapia fish (Oreochromis mossambicus), nile tilapia (Oreochromis niloticus) tawes (Barbonymus gonionotus) and carper fish (Cyprinus carpio) were considered as best species for natural fisheries in Jatibarang Reservoir.

  16. Prediction of the thermohydraulic performance of porous-media reservoirs for compressed-air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; McCann, R.A.

    1981-09-01

    The numerical modeling capability that has been developed at the Pacific Northwest Laboratory (PNL) for the prediction of the thermohydraulic performance of porous media reservoirs for compressed air energy storage (CAES) is described. The capability of the numerical models was demonstrated by application to a variety of parametric analyses and the support analyses for the CAES porous media field demonstration program. The demonstration site analyses include calculations for the displacement of aquifer water to develop the air storage zone, the potential for water coning, thermal development in the reservoir, and the dehydration of the near-wellbore region. Unique features of the demonstration site reservoir that affect the thermohydraulic performance are identified and contrasted against the predicted performance for conditions that would be considered more typical of a commercial CAES site.

  17. Reservoir capacity estimates in shale plays based on experimental adsorption data

    Science.gov (United States)

    Ngo, Tan

    Fine-grained sedimentary rocks are characterized by a complex porous framework containing pores in the nanometer range that can store a significant amount of natural gas (or any other fluids) through adsorption processes. Although the adsorbed gas can take up to a major fraction of the total gas-in-place in these reservoirs, the ability to produce it is limited, and the current technology focuses primarily on the free gas in the fractures. A better understanding and quantification of adsorption/desorption mechanisms in these rocks is therefore required, in order to allow for a more efficient and sustainable use of these resources. Additionally, while water is still predominantly used to fracture the rock, other fluids, such as supercritical CO2 are being considered; here, the idea is to reproduce a similar strategy as for the enhanced recovery of methane in deep coal seams (ECBM). Also in this case, the feasibility of CO2 injection and storage in hydrocarbon shale reservoirs requires a thorough understanding of the rock behavior when exposed to CO2, thus including its adsorption characteristics. The main objectives of this Master's Thesis are as follows: (1) to identify the main controls on gas adsorption in mudrocks (TOC, thermal maturity, clay content, etc.); (2) to create a library of adsorption data measured on shale samples at relevant conditions and to use them for estimating GIP and gas storage in shale reservoirs; (3) to build an experimental apparatus to measure adsorption properties of supercritical fluids (such as CO2 or CH 4) in microporous materials; (4) to measure adsorption isotherms on microporous samples at various temperatures and pressures. The main outcomes of this Master's Thesis are summarized as follows. A review of the literature has been carried out to create a library of methane and CO2 adsorption isotherms on shale samples from various formations worldwide. Large discrepancies have been found between estimates of the adsorbed gas density

  18. Microflora of hydrobionts digestive tract in Kaunas water storage reservoir

    International Nuclear Information System (INIS)

    Shyvokiene, J.; Mickiene, L.; Mileriene, E.

    1996-01-01

    Microbiological and ichthiological investigations carried out in 1990 and 1992 showed the variability of bacterial cenoses in the digestive tract of hydrobionts before and after setting in motion Kruonis hydro pumped storage. The studies also showed that microorganisms of the digestive tract of the hydrobionts investigated were involved in the degradation of nutritional substrates and could serve as indicators of an anthropogenic effect. Before setting in motion the hydro pumped storage hydrocarbon-degrading bacteria (HDB) were detected in the digestive tract of the freshwater shrimps, opossum shrimps, sticklebacks, zebra mussels and roaches. The greatest number of HDB was found in the digestive tract of the roach while in perches they were not detected. However after setting in motion the hydro pumped storage , high numbers of HDB were determined in the digestive tracts of all the hydrobionts investigated. It has been shown that the function of bacterial digestion is conditioned not only by the nutrition specificity of the macroorganism, but on its environment as well. With the aid of enzymes secreted by microorganisms organic compounds difficult to assimilate are transformed into valuable nutrients. Besides, the functional activity of microorganisms of the digestive tract of the hydrobionts indicate the intensity of the digestive process and physiological state of their organism. Therefore, when investigating fish stocks in hydrosystems one must evaluate inner resources of their organism, i.e. functional activities and the activity of digestive tract microorganisms, their quantitative and qualitative composition, relationship with the macroorganism, its growth rate and environment. (author). 15 refs., 5 tabs

  19. Assessment of Factors Influencing Effective CO2 Storage Capacity and Injectivity in Eastern Gas Shales

    Energy Technology Data Exchange (ETDEWEB)

    Godec, Michael [Advanced Resources International, Inc., Arlington, VA (United States)

    2013-06-30

    Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO2) storage in these formations. The potential storage of CO2 in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO2 storage capacity in conventional reservoirs. The goal of this cooperative research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO2 storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO2 injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO2 injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO2 injection; (5) Identify and evaluate potential constraints to economic CO2 storage in gas shales, and propose development approaches that overcome these constraints

  20. Water coning in porous media reservoirs for compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; McCann, R.A.

    1981-06-01

    The general purpose of this work is to define the hydrodynamic and thermodynamic response of a CAES porous media reservoir subjected to simulated air mass cycling. This research will assist in providing design guidelines for the efficient and stable operation of the air storage reservoir. This report presents the analysis and results for the two-phase (air-water), two-dimensional, numerical modeling of CAES porous media reservoirs. The effects of capillary pressure and relative permeability were included. The fluids were considered to be immisicible; there was no phase change; and the system was isothermal. The specific purpose of this analysis was to evaluate the reservoir parameters that were believed to be important to water coning. This phenomenon may occur in reservoirs in which water underlies the air storage zone. It involves the possible intrusion of water into the wellbore or near-wellbore region. The water movement is in response to pressure gradients created during a reservoir discharge cycle. Potential adverse effects due to this water movement are associated with the pressure response of the reservoir and the geochemical stability of the near-wellbore region. The results obtained for the simulated operation of a CAES reservoir suggest that water coning should not be a severe problem, due to the slow response of the water to the pressure gradients and the relatively short duration in which those gradients exist. However, water coning will depend on site-specific conditions, particularly the fluid distributions following bubble development, and, therefore, a water coning analysis should be included as part of site evaluation.

  1. A Bayesian Belief Network Approach to Explore Alternative Decisions for Sediment Control and water Storage Capacity at Lago Lucchetti, Puerto Rico

    Science.gov (United States)

    A Bayesian belief network (BBN) was developed to characterize the effects of sediment accumulation on the water storage capacity of Lago Lucchetti (located in southwest Puerto Rico) and to forecast the life expectancy (usefulness) of the reservoir under different management scena...

  2. Spatially pooled depth-dependent reservoir storage, elevation, and water-quality data for selected reservoirs in Texas, January 1965-January 2010

    Science.gov (United States)

    Burley, Thomas E.; Asquith, William H.; Brooks, Donald L.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with Texas Tech University, constructed a dataset of selected reservoir storage (daily and instantaneous values), reservoir elevation (daily and instantaneous values), and water-quality data from 59 reservoirs throughout Texas. The period of record for the data is as large as January 1965-January 2010. Data were acquired from existing databases, spreadsheets, delimited text files, and hard-copy reports. The goal was to obtain as much data as possible; therefore, no data acquisition restrictions specifying a particular time window were used. Primary data sources include the USGS National Water Information System, the Texas Commission on Environmental Quality Surface Water-Quality Management Information System, and the Texas Water Development Board monthly Texas Water Condition Reports. Additional water-quality data for six reservoirs were obtained from USGS Texas Annual Water Data Reports. Data were combined from the multiple sources to create as complete a set of properties and constituents as the disparate databases allowed. By devising a unique per-reservoir short name to represent all sites on a reservoir regardless of their source, all sampling sites at a reservoir were spatially pooled by reservoir and temporally combined by date. Reservoir selection was based on various criteria including the availability of water-quality properties and constituents that might affect the trophic status of the reservoir and could also be important for understanding possible effects of climate change in the future. Other considerations in the selection of reservoirs included the general reservoir-specific period of record, the availability of concurrent reservoir storage or elevation data to match with water-quality data, and the availability of sample depth measurements. Additional separate selection criteria included historic information pertaining to blooms of golden algae. Physical properties and constituents were water

  3. Expansion of storage capacity of interim spent fuel storage (MSVP) Bohunice

    International Nuclear Information System (INIS)

    Pilat, P.; Fridrich, V.

    2005-01-01

    This article describes modifications of Interim spent fuel storage, performed with aim of storage capacity expansion, seismic stability enhancement, and overall increase of service life as well as assuring of MSVP safe operation. Uniqueness of adopted technical solutions is based upon the fact that mentioned innovations and modifications were performed without any changes, neither in ground plan nor architecture of MSVP structure. It also important to mention that all modifications were performed during continual operation of MSVP without any breaks of limits or operational regulations. Reconstruction and innovation of existing construction and technological systems of MSVP has assured required quality standard comparable with actual trends. (authors)

  4. Sanitary impact evaluation of drinking water in storage reservoirs in Moroccan rural area.

    Science.gov (United States)

    Aziz, Faissal; Parrado Rubio, Juan; Ouazzani, Naaila; Dary, Mohammed; Manyani, Hamid; Rodríguez Morgado, Bruno; Mandi, Laila

    2017-05-01

    In Morocco, storage reservoirs are particular systems of water supply in rural areas. These reservoirs are fed with rainwater and/or directly from the river, which are very contaminated by several pathogenic bacteria. They are used without any treatment as a drinking water by the surrounding population. In this context, the aim of this study is to evaluate the impact of consuming contaminated water stored in reservoirs on health status for six rural communities located in Assif El Mal, Southern East of Marrakech. This was investigated using a classical methodology based on population survey and by molecular approach using PCR-DGGE technique to determine the intestinal bacterial diversity of consumers. The survey showed that, the residents of the studied area suffered from numerous health problems (diarrheal diseases, vomiting or hepatitis A) due to the lack of waste management infrastructures. The consumer's stool analysis by molecular approach revealed that numbers of Escherichia coli , Aeromonas hydrophila and Clostridia , were significantly higher in the diarrheal feces. In addition, PCR-DGGE study of the prevalence and distribution of bacteria causing human diseases, confirmed that, there is a relationship between water bacterial contaminations of storage reservoirs and microbial disease related health status. Therefore, water reservoir consumption is assumed to be the mean way of exposure for this population. It's clear that this approach gives a very helpful tool to confirm without any doubt the relationship between water bacterial contamination and health status.

  5. Two-phase flow visualization under reservoir conditions for highly heterogeneous conglomerate rock: A core-scale study for geologic carbon storage.

    Science.gov (United States)

    Kim, Kue-Young; Oh, Junho; Han, Weon Shik; Park, Kwon Gyu; Shinn, Young Jae; Park, Eungyu

    2018-03-20

    Geologic storage of carbon dioxide (CO 2 ) is considered a viable strategy for significantly reducing anthropogenic CO 2 emissions into the atmosphere; however, understanding the flow mechanisms in various geological formations is essential for safe storage using this technique. This study presents, for the first time, a two-phase (CO 2 and brine) flow visualization under reservoir conditions (10 MPa, 50 °C) for a highly heterogeneous conglomerate core obtained from a real CO 2 storage site. Rock heterogeneity and the porosity variation characteristics were evaluated using X-ray computed tomography (CT). Multiphase flow tests with an in-situ imaging technology revealed three distinct CO 2 saturation distributions (from homogeneous to non-uniform) dependent on compositional complexity. Dense discontinuity networks within clasts provided well-connected pathways for CO 2 flow, potentially helping to reduce overpressure. Two flow tests, one under capillary-dominated conditions and the other in a transition regime between the capillary and viscous limits, indicated that greater injection rates (potential causes of reservoir overpressure) could be significantly reduced without substantially altering the total stored CO 2 mass. Finally, the capillary storage capacity of the reservoir was calculated. Capacity ranged between 0.5 and 4.5%, depending on the initial CO 2 saturation.

  6. Assessment of Reservoir Storage in a Semi-Arid Environment Using ...

    African Journals Online (AJOL)

    This study made an assessment of the existing reservoir capacity of Tiga Dam in Kano State, Nigeria, of 1090 x 106m3 using Gould Probability Matrix method. A generated annual inflow series between (1906 and 2004), rainfall and evaporation loss estimated for the period between 1990 and 2004 coupled with demand ...

  7. A Study of Sedimentation at the River Estuary on the Change of Reservoir Storage

    Directory of Open Access Journals (Sweden)

    Iskahar

    2018-01-01

    Full Text Available Estuary of the river that leads to the reservoir has characteristics include: relatively flat, there is a change in the increase of wet cross-sectional area and backwater. The backwater will cause the flow velocity to be reduced, so that the grains of sediment with a certain diameter carried by the flow will settle in the estuary of the river. The purpose of this research is to know the distribution and sedimentation pattern at the river estuary that leads to the reservoir with the change of water level in the reservoir storage, so the solution can be found to remove / reduce sediment before entering the reservoir. The method used is the experimental, by making the physical model of the river estuary leading to the reservoir. This study expects a solution to reduce sedimentation, so that sedimentation can be removed / minimized before entering the reservoir. This research tries to apply bypass channel to reduce the sedimentation at the river estuary. Bypass channels can be applied to overcome sedimentation at the river estuary, but in order for the sediment to be removed optimally, it is necessary to modify the mouth of bypass channel and channel angle.

  8. A Study of Sedimentation at the River Estuary on the Change of Reservoir Storage

    Science.gov (United States)

    Iskahar; Suripin; Isdiyana

    2018-02-01

    Estuary of the river that leads to the reservoir has characteristics include: relatively flat, there is a change in the increase of wet cross-sectional area and backwater. The backwater will cause the flow velocity to be reduced, so that the grains of sediment with a certain diameter carried by the flow will settle in the estuary of the river. The purpose of this research is to know the distribution and sedimentation pattern at the river estuary that leads to the reservoir with the change of water level in the reservoir storage, so the solution can be found to remove / reduce sediment before entering the reservoir. The method used is the experimental, by making the physical model of the river estuary leading to the reservoir. This study expects a solution to reduce sedimentation, so that sedimentation can be removed / minimized before entering the reservoir. This research tries to apply bypass channel to reduce the sedimentation at the river estuary. Bypass channels can be applied to overcome sedimentation at the river estuary, but in order for the sediment to be removed optimally, it is necessary to modify the mouth of bypass channel and channel angle.

  9. Response of littoral macrophytes to water level fluctuations in a storage reservoir

    Directory of Open Access Journals (Sweden)

    Krolová M.

    2013-05-01

    Full Text Available Lakes and reservoirs that are used for water supply and/or flow regulations have usually poorly developed littoral macrophyte communities, which impairs ecological potential in terms of the EU Water Framework Directive. The aim of our study was to reveal controlling factors for the growth of littoral macrophytes in a storage reservoir with fluctuating water level (Lipno Reservoir, Czech Republic. Macrophytes occurred in this reservoir only in the eulittoral zone i.e., the shoreline region between the highest and the lowest seasonal water levels. Three eulittoral sub-zones could be distinguished: the upper eulittoral with a stable community of perennial species with high cover, the middle eulittoral with relatively high richness of emergent and amphibious species present at low cover values, and the lower eulittoral devoid of permanent vegetation. Cover and species composition in particular sub-zones were primarily influenced by the duration and timing of flooding, followed by nutrient limitation and strongly reducing conditions in the flooded organic sediment. Our results stress the ecological importance of eulittoral zone in reservoirs with fluctuating water levels where macrophyte growth can be supported by targeted management of water level, thus helping reservoir managers in improving the ecological potential of this type of water bodies.

  10. Frictional and transport properties of simulated faults in CO2 storage reservoirs and clay-rich caprocks

    NARCIS (Netherlands)

    Bakker, Elisenda

    2017-01-01

    In order to mitigate and meet CO2 emission regulations, long-term CO2 storage in hydrocarbon reservoirs is one of the most attractive large-scale options. To ensure save anthropogenic storage, it is important to maintain the sealing integrity of potential storage complexes. It is therefore

  11. Potential petrophysical and chemical property alterations in a compressed air energy storage porous rock reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Stottlemyre, J.A.; Erikson, R.L.; Smith, R.P.

    1979-10-01

    Successful commercialization of Compressed Air Energy Storage (CAES) systems depends on long-term stability of the underground reservoirs subjected to somewhat unique operating conditions. Specifically, these conditions include elevated and time varying temperatures, effective stresses, and air humidities. To minimize the requirements for premium fuels, it may be desirable to retain the thermal energy of compression. Porous media, e.g., sandstone, may hold promise as elevated temperature reservoirs. In this study, a reservoir composed of clean quartz sandstone and injection air temperatures of 300 to 575/sup 0/K are assumed. Numerical modeling is used to estimate temperature, stress, and humidity conditions within this reference porous media reservoir. A discussion on relative importance to CAES of several potential porous media damage mechanisms is presented. In this context, damage is defined as a reduction in intrinsic permeability (measure of air transport capability), a decrease in effective porosity (measure of storage capability), or an increase in elastic and/or inelastic deformation of the porous material. The potential damage mechanisms presented include: (1) disaggregation, (2) particulate plugging, (3) boundary layer viscosity anomalies, (4) inelastic microstructural consolidation, (5) clay swelling and dispersion, (6) hydrothermal mineral alteration, (7) oxidation reactions, and (8) well casing corrosion. These mechanisms are placed in perspective with respect to anticipated CAES conditions and mechanisms suggested are: (1) of academic interest only, (2) readily identified and controlled via engineering, or (3) potential problem areas requiring additional investigation.

  12. Quantification of dissolved organic carbon (DOC) storage in lakes and reservoirs of mainland China.

    Science.gov (United States)

    Song, Kaishan; Wen, Zhidan; Shang, Yingxing; Yang, Hong; Lyu, Lili; Liu, Ge; Fang, Chong; Du, Jia; Zhao, Ying

    2018-04-04

    As a major fraction of carbon in inland waters, dissolved organic carbon (DOC) plays a crucial role in carbon cycling on a global scale. However, the quantity of DOC stored in lakes and reservoirs was not clear to date. In an attempt to examine the factors that determine the DOC storage in lakes and reservoirs across China, we assembled a large database (measured 367 lakes, and meta-analyzed 102 lakes from five limnetic regions; measured 144 reservoirs, and meta-analyzed 272 reservoirs from 31 provincial units) of DOC concentrations and water storages for lakes and reservoirs that are used to determine DOC storage in static inland waters. We found that DOC concentrations in saline waters (Mean/median ± S.D: 50.5/30.0 ± 55.97 mg/L) are much higher than those in fresh waters (8.1/5.9 ± 6.8 mg/L), while lake DOC concentrations (25.9/11.5 ± 42.04 mg/L) are much higher than those in reservoirs (5.0/3.8 ± 4.5 mg/L). In terms of lake water volume and DOC storage, the Tibet-Qinghai lake region has the largest water volume (552.8 km 3 ), 92% of which is saline waters, thus the largest DOC (13.39 Tg) is stored in these alpine lake region; followed by the Mengxin lake region, having a water volume of 99.4 km 3 in which 1.75 Tg DOC was stored. Compared to Mengxin lake region, almost the same amount of water was stored in East China lake region (91.9 km 3 ), however, much less DOC was stored in this region (0.43 Tg) due to the lower DOC concentration (Ave: 3.45 ± 2.68 mg/L). According to our investigation, Yungui and Northeast lake regions had water storages of 32.14 km 3 and 19.44 km 3 respectively, but relatively less DOC was stored in Yungui (0.13 Tg) than in Northeast lake region (0.19 Tg). Due to low DOC concentration in reservoirs, especially these large reservoirs having lower DOC concentration (V > 1.0 km 3 : 2.31 ± 1.48 mg/L), only 1.54 Tg was stored in a 485.1 km 3 volume of water contained

  13. The Potential for Energy Storage to Provide Peaking Capacity in California under Increased Penetration of Solar Photovoltaics: Report Summary

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-12

    Opportunities to provide peaking capacity with low-cost energy storage are emerging. But adding storage changes the ability of subsequent storage additions to meet peak demand. Increasing photovoltaic (PV) deployment also affects storage's ability to provide peak capacity. This study examines storage's potential to replace conventional peak capacity in California.

  14. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    ,100 ft above the basal sandstone and is 100-200 ft thick. The storage capacity estimates for a 20-mile radius from the injection well ranged from 39-78 million tons (Mt) for each formation. Several other oil and gas plays have hydraulic properties conducive for injection, but the formations are generally only 5-50 ft thick in the study area. Overlying the injection reservoirs are thick sequences of dense, impermeable dolomite, limestone, and shale. These layers provide containment above the potential injection reservoirs. In general, it appears that the containment layers are much thicker and extensive than the injection intervals. Other physical parameters for the study area appear to be typical for the region. Anticipated pressures at maximum depths are approximately 4,100 psi based on a 0.45 psi/ft pressure gradient. Temperatures are likely to be 150 F. Groundwater flow is slow and complex in deep formations. Regional flow directions appear to be toward the west-northwest at less than 1 ft per year within the basal sandstone. Vertical gradients are downward in the study area. A review of brine geochemistry indicates that formation fluids have high salinity and dissolved solids. Total dissolved solids ranges from 200,000-325,000 mg/L in the deep reservoirs. Brine chemistry is similar throughout the different formations, suggesting extensive mixing in a mature basin. Unconsolidated sediments in the Ohio River Valley are the primary source of drinking water in the study area.

  15. Estimation of energy storage capacity in power system in japan under future demand and supply factors

    International Nuclear Information System (INIS)

    Kurihara, Ikuo; Tanaka, Toshikatsu

    1996-01-01

    The desirable capacity of future energy storage facility in power system in Japan is discussed in this paper, putting emphasis on future new electric demand/supply factors such as CO 2 emission problems and social structure change. The two fundamental demand scenarios are considered; one is base case scenario which extrapolates the trend until now and the other is social structure change scenario. The desirable capacity of the energy storage facility is obtained from the result of optimum generation mix which minimizes the yearly expenses of the target year (2030 and 2050). The result shows that the optimum capacity of energy storage facility is about 10 to 15%. The social structure change and demand side energy storage have great influences on the optimum capacity of supply side storage. The former increases storage capacity. The latter reduces it and also contributes to the reduction of generation cost. Suppression of CO 2 emission basically affects to reduce the storage capacity. The load following operation of nuclear plant also reduces the optimum storage capacity in the case it produces surplus energy at night. Though there exist many factors which increase or decrease the capacity of energy storage facility, as a whole, it is concluded that the development of new energy storage technology is necessary for future. (author)

  16. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs :

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, William Payton

    2013-06-01

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a

  17. The storage capacity of cocoa seeds (Theobroma cacao L.) through giving Polyethylene Glycol (PEG) in the various of storage container

    Science.gov (United States)

    Lahay, R. R.; Misrun, S.; Sipayung, R.

    2018-02-01

    Cocoa is plant which it’s seed character is recalcitrant. Giving PEG and using various of storage containers was hoped to increase storage capacity of cocoa seeds as long as period of saving. The reseach was aimed to identify the storage capacity of cocoa seeds through giving PEG in the various of storage containers. Research took place in Hataram Jawa II, Kabupaten Simalungun, Propinsi Sumatera Utara, Indonesia. The method of this research is spit-split plot design with 3 replication. Storage period was put on main plot which was consisted of 4 level, PEG concentration was put on sub plot, consisted of 4 level and storage container was put on the sub sub plot consisted of 3 types. The results showed that until 4 days at storage with 45 % PEG concentration at all storage container, percentage of seed germination at storage can be decreased to be 2.90 %, and can be defensed until 16 days with 45 % PEG concentration at perforated plastic storage container. Percentage of molded seeds and seed moisture content were increased with added period of storage but seed moisture content was increased until 12 days at storage and was decreased at 16 days in storage.

  18. Stochastic Management of the Open Large Water Reservoir with Storage Function with Using a Genetic Algorithm

    Science.gov (United States)

    Kozel, Tomas; Stary, Milos

    2016-10-01

    Described models are used random forecasting period of flow line with different length. The length is shorter than 1 year. Forecasting period of flow line is transformed to line of managing discharges with same length as forecast. Adaptive managing is used only first value of line of discharges. Stochastic management is worked with dispersion of controlling discharge value. Main advantage stochastic management is fun of possibilities. In article is described construction and evaluation of adaptive stochastic model base on genetic algorithm (classic optimization method). Model was used for stochastic management of open large water reservoir with storage function. Genetic algorithm is used as optimization algorithm. Forecasted inflow is given to model and controlling discharge value is computed by model for chosen probability of controlling discharge value. Model was tested and validated on made up large open water reservoir. Results of stochastic model were evaluated for given probability and were compared to results of same model for 100% forecast (forecasted values are real values). The management of the large open water reservoir with storage function was done logically and with increased sum number of forecast from 300 to 500 the results given by model were better, but another increased from 500 to 750 and 1000 did not get expected improvement. Influence on course of management was tested for different length forecasted inflow and their sum number. Classical optimization model is needed too much time for calculation, therefore stochastic model base on genetic algorithm was used parallel calculation on cluster.

  19. On CO2 Behavior in the Subsurface, Following Leakage from aGeologic Storage Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, Karsten

    2006-02-09

    The amounts of CO2 that would need to be injected intogeologic storage reservoirs to achieve a significant reduction ofatmospheric emissions are very large. A 1000 MWe coal-fired power plantemits approximately 30,000 tonnes of CO2 per day, 10 Mt per year(Hitchon, 1996). When injected underground over a typical lifetime of 30years of such a plant, the CO2 plume may occupy a large area of order 100km2 or more, and fluid pressure increase in excess of 1 bar(corresponding to 10 m water head) may extend over an area of more than2,500 km2 (Pruess, et al., 2003). The large areal extent expected for CO2plumes makes it likely that caprock imperfections will be encountered,such as fault zones or fractures, which may allow some CO2 to escape fromthe primary storage reservoir. Under most subsurface conditions oftemperature and pressure, CO2 is buoyant relative to groundwaters. If(sub-)vertical pathways are available, CO2 will tend to flow upward and,depending on geologic conditions, may eventually reach potablegroundwater aquifers or even the land surface. Leakage of CO2 could alsooccur along wellbores, including pre-existing and improperly abandonedwells, or wells drilled in connection with the CO2 storage operations.The pressure increases accompanying CO2 injection will give rise tochanges in effective stress that could cause movement along faults,increasing permeability and potential for leakage.Escape of CO2 from aprimary geologic storage reservoir and potential hazards associated withits discharge at the land surface raise a number of concerns, including(1) acidification of groundwater resources, (2) asphyxiation hazard whenleaking CO2 is discharged at the land surface, (3) increase inatmospheric concentrations of CO2, and (4) damage from a high-energy,eruptive discharge (if such discharge is physically possible). In orderto gain public acceptance for geologic storage as a viable technology forreducing atmospheric emissions of CO2, it is necessary to address theseissues

  20. An integrated petrophysical-geophysical approach for the characterization of a potential caprock-reservoir system for CO2 storage.

    Science.gov (United States)

    Fais, Silvana; Ligas, Paola; Cuccuru, Francesco; Casula, Giuseppe; Giovanna Bianchi, Maria; Maggio, Enrico; Plaisant, Alberto; Pettinau, Alberto

    2016-04-01

    The selection of a CO2 geologic storage site requires the choice of a study site suitable for the characterization in order to create a robust experimental database especially regarding the spatial petrophysical heterogeneities and elasto-mechanical properties of the rocks that make up a potential caprock-reservoir system. In our study the petrophysical and elasto-mechanical characterization began in a previously well drilled area in the northern part of the Sulcis coal basin (Nuraxi Figus area - SW Sardinia - Italy) where crucial geologic data were recovered from high-quality samples from stratigraphic wells and from mining galleries. The basin represents one of the most important Italian carbon reserves characterized by a great mining potential. In the study area, the Middle Eocene - Lower Oligocene Cixerri Fm. made up of terrigeneous continental rocks and the Upper Thanetian - Lower Ypresian Miliolitico Carbonate Complex in the Sulcis coal basin have been identified respectively as potential caprock and reservoir for CO2 storage. Petrophysical and geophysical investigations were carried out by a great number of laboratory tests on the core samples and in situ measurements on a mining gallery in order to characterize the potential caprock-reservoir system and to substantially reduce geologic uncertainty in the storage site characterization and in the geological and numerical modelling for the evaluation of CO2 storage capacity. In order to better define the spatial distribution of the petrophysical heterogeneity, the seismic responses from the caprock-reservoir system formations were also analysed and correlated with the petrophysical and elasto-mechanical properties In a second step of this work, we also analysed the tectonic stability of the study area by the integrated application of remote-sensing monitoring spatial geodetic techniques. In particular, the global positioning system (GPS) and interferometric synthetic aperture radar (inSAR) were considered

  1. Enhancement of Hydrogen Storage Capacity in Hydrate Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Soohaeng; Xantheas, Sotiris S.

    2012-02-16

    First principles electronic structure calculations of the gas phase pentagonal dodecahedron (H2O)20 (D-cage) and tetrakaidecahedron (H2O)24 (T-cage), which are building blocks of structure I (sI) hydrate lattice, suggest that these can accommodate up to a maximum of 5 and 7 guest hydrogen molecules, respectively. For the pure hydrogen hydrate, Born-Oppenheimer Molecular Dynamics (BOMD) simulations of periodic (sI) hydrate lattices indicate that the guest molecules are released into the vapor phase via the hexagonal phases of the larger T-cages. An additional mechanism for the migration between neighboring D- and T-cages was found to occur through a shared pentagonal face via the breaking and reforming of a hydrogen bond. This molecular mechanism is also found for the expulsion of a CH4 molecule from the D-cage. The presence of methane in the larger T-cages was found to block this release, therefore suggesting possible scenarios for the stabilization of these mixed guest clathrate hydrates and the potential enhancement of their hydrogen storage capacity.

  2. Hydrogen storage capacity of lithium-doped KOH activated carbons

    International Nuclear Information System (INIS)

    Minoda, Ai; Oshima, Shinji; Iki, Hideshi; Akiba, Etsuo

    2014-01-01

    Highlights: • The hydrogen adsorption of lithium-doped KOH activated carbons has been studied. • Lithium doping improves their hydrogen adsorption affinity. • Lithium doping is more effective for materials with micropores of 0.8 nm or smaller. • Lithium reagent can alter the pore structure, depending on the raw material. • Optimizing the pore size and functional group is needed for better hydrogen uptake. - Abstract: The authors have studied the hydrogen adsorption performance of several types of lithium-doped KOH activated carbons. In the case of activated cokes, lithium doping improves their hydrogen adsorption affinity from 5.02 kg/m 3 to 5.86 kg/m 3 at 303 K. Hydrogen adsorption density increases by around 17% after lithium doping, likely due to the fact that lithium doping is more effective for materials with micropores of 0.8 nm or smaller. The effects of lithium on hydrogen storage capacity vary depending on the raw material, because the lithium reagent can react with the material and alter the pore structure, indicating that lithium doping has the effect of plugging or filling the micropores and changing the structures of functional groups, resulting in the formation of mesopores. Despite an observed decrease in hydrogen uptake, lithium doping was found to improve hydrogen adsorption affinity. Lithium doping increases hydrogen uptake by optimizing the pore size and functional group composition

  3. Sustainable Irrigation Allocation Model for Dry and Wet Periods using Reservoir Storage and Inflow

    Science.gov (United States)

    Surianarayanan, S.; Suribabu, C. R.; Ramakrishnan, K.

    2017-07-01

    The dry period agriculture is inevitable both for the farmers for their earning, and for the soil for its fertility by crop-rotation. In tropical countries like INDIA, dry period agriculture becomes difficult because of less (or) no rain fall. Hence a simple water balancing model for irrigation scheduling, using the measure “Volumetric Reliability” is prepared in this paper, with the storage and inflow of a reservoir both for the dry and wet periods. The case-study is done for a reservoir in INDIA with thirty one years of hydrological data(from 1982 to 2012). The objective of this paper is to prepare a simple water balance model taking 10 days periods of demand and supply for ID crop(Irrigated Dry crop, ground nut) with usage of volumetric reliability concept for the periods of deficiency and adoption of less water requirement crops to reduce the water-stress during critical periods of crop growth, and finally arrive at a feasible allocation schedule for the success of agriculture and the yield throughout the year both for wet and dry crops with the available storage on the start of irrigation for a particular year. The reservoir is divided for storages such as full, deficient and critical storages. The starting storage for the dry period from January is used after adequate allocation for wet crops, the quantity for riparian rights and for drinking water, for the sustainability. By the water-balancing, the time-series for thirty one years, it is found that for twenty two years the demand for the ID crops is satisfied with the storage in the reservoir, and in the remaining years of deficient inflows, for three years (1986,1996,2004)the demand is managed by using the safe reliability factor for demand which can nullify the deficit in demand for the whole supply period. But it is genuine to assure that the reduction in the amount of water for each 10 days periods should not exceed the survival limit of the crop. Necessary soil-moisture must be ensured in the crop

  4. Characterization of biocenoses in the storage reservoirs of liquid radioactive wastes of Mayak PA. Initial descriptive report

    International Nuclear Information System (INIS)

    Pryakhin, E.A.; Mokrov, Yu.G.; Tryapitsina, G.A.; Ivanov, I.A.; Osipov, D.I.; Atamanyuk, N.I.; Deryabina, L.V.; Shaposhnikova, I.A.; Shishkina, E.A.; Obvintseva, N.A.; Egoreichenkov, E.A.; Styazhkina, E.V.; Osipova, O.F.; Mogilnikova, N.I.; Andreev, S.S.; Tarasov, O.V.; Geras'kin, S.A.; Trapeznikov, A.V.; Akleyev, A.V.

    2016-01-01

    As a result of operation of the Mayak Production Association (Mayak PA), Chelyabinsk Oblast, Russia, an enterprise for production and separation of weapon-grade plutonium in the Soviet Union, ecosystems of a number of water bodies have been radioactively contaminated. The article presents information about the current state of ecosystems of 6 special industrial storage reservoirs of liquid radioactive waste from Mayak PA: reservoirs R-3, R-4, R-9, R-10, R-11 and R-17. At present the excess of the radionuclide content in the water of the studied reservoirs and comparison reservoirs (Shershnyovskoye and Beloyarskoye reservoirs) is 9 orders of magnitude for 90 Sr and 137 Cs, and 6 orders of magnitude for alpha-emitting radionuclides. According to the level of radioactive contamination, the reservoirs of the Mayak PA could be arranged in the ascending order as follows: R-11, R-10, R-4, R-3, R-17 and R-9. In 2007–2012 research of the status of the biocenoses of these reservoirs in terms of phytoplankton, zooplankton, bacterioplankton, zoobenthos, aquatic plants, ichthyofauna, avifauna parameters was performed. The conducted studies revealed decrease in species diversity in reservoirs with the highest levels of radioactive and chemical contamination. This article is an initial descriptive report on the status of the biocenoses of radioactively contaminated reservoirs of the Mayak PA, and is the first article in a series of publications devoted to the studies of the reaction of biocenoses of the fresh-water reservoirs of the Mayak PA to a combination of natural and man-made factors, including chronic radiation exposure. - Highlights: • The current state of storage reservoirs of liquid radioactive waste of the Mayak Production Association is presented. • Radionuclides contents in water and sediments of the reservoirs of Mayak PA are presented. • The status of the major ecological groups of hydrobionts of the given reservoirs is described.

  5. Reservoir Engineering Optimization Strategies for Subsurface CO{sub 2} Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mclntire, Blayde; McPherson, Brian

    2013-09-30

    The purpose of this report is to outline a methodology for calculating the optimum number of injection wells for geologic CCS. The methodology is intended primarily for reservoir pressure management, and factors in cost as well. Efficiency may come in many forms depending on project goals; therefore, various results are presented simultaneously. The developed methodology is illustrated via application in a case study of the Rocky Mountain Carbon Capture and Storage (RMCCS) project, including a CCS candidate site near Craig, Colorado, USA. The forecasting method provided reasonable estimates of cost and injection volume when compared to simulated results.

  6. Quantifying the uncertainties of climate change effects on the storage-yield and performance characteristics of the Pong multi-purpose reservoir, India

    Directory of Open Access Journals (Sweden)

    B. Soundharajan

    2015-06-01

    Full Text Available Climate change is predicted to affect water resources infrastructure due to its effect on rainfall, temperature and evapotranspiration. However, there are huge uncertainties on both the magnitude and direction of these effects. The Pong reservoir on the Beas River in northern India serves irrigation and hydropower needs. The hydrology of the catchment is highly influenced by Himalayan seasonal snow and glaciers, and Monsoon rainfall; the changing pattern of the latter and the predicted disappearance of the former will have profound effects on the performance of the reservoir. This study employed a Monte-Carlo simulation approach to characterise the uncertainties in the future storage requirements and performance of the reservoir. Using a calibrated rainfall-runoff (R-R model, the baseline runoff scenario was first simulated. The R-R inputs (rainfall and temperature were then perturbed using plausible delta-changes to produce simulated climate change runoff scenarios. Stochastic models of the runoff were developed and used to generate ensembles of both the current and climate-change perturbed future scenarios. The resulting runoff ensembles were used to simulate the behaviour of the reservoir and determine "populations" of reservoir storage capacity and performance characteristics. Comparing these parameters between the current and the perturbed provided the population of climate change effects which was then analysed to determine the uncertainties. The results show that contrary to the usual practice of using single records, there is wide variability in the assessed impacts. This variability or uncertainty will, no doubt, complicate the development of climate change adaptation measures; however, knowledge of its sheer magnitude as demonstrated in this study will help in the formulation of appropriate policy and technical interventions for sustaining and possibly enhancing water security for irrigation and other uses served by Pong reservoir.

  7. Quantifying the uncertainties of climate change effects on the storage-yield and performance characteristics of the Pong multi-purpose reservoir, India

    Science.gov (United States)

    Soundharajan, B.; Adeloye, A. J.; Remesan, R.

    2015-06-01

    Climate change is predicted to affect water resources infrastructure due to its effect on rainfall, temperature and evapotranspiration. However, there are huge uncertainties on both the magnitude and direction of these effects. The Pong reservoir on the Beas River in northern India serves irrigation and hydropower needs. The hydrology of the catchment is highly influenced by Himalayan seasonal snow and glaciers, and Monsoon rainfall; the changing pattern of the latter and the predicted disappearance of the former will have profound effects on the performance of the reservoir. This study employed a Monte-Carlo simulation approach to characterise the uncertainties in the future storage requirements and performance of the reservoir. Using a calibrated rainfall-runoff (R-R) model, the baseline runoff scenario was first simulated. The R-R inputs (rainfall and temperature) were then perturbed using plausible delta-changes to produce simulated climate change runoff scenarios. Stochastic models of the runoff were developed and used to generate ensembles of both the current and climate-change perturbed future scenarios. The resulting runoff ensembles were used to simulate the behaviour of the reservoir and determine "populations" of reservoir storage capacity and performance characteristics. Comparing these parameters between the current and the perturbed provided the population of climate change effects which was then analysed to determine the uncertainties. The results show that contrary to the usual practice of using single records, there is wide variability in the assessed impacts. This variability or uncertainty will, no doubt, complicate the development of climate change adaptation measures; however, knowledge of its sheer magnitude as demonstrated in this study will help in the formulation of appropriate policy and technical interventions for sustaining and possibly enhancing water security for irrigation and other uses served by Pong reservoir.

  8. Doomed reservoirs in Kansas, USA? Climate change and groundwater mining on the Great Plains lead to unsustainable surface water storage

    Science.gov (United States)

    Brikowski, T. H.

    2008-06-01

    SummaryStreamflow declines on the Great Plains of the US are causing many Federal reservoirs to become profoundly inefficient, and will eventually drive them into unsustainability as negative annual reservoir water budgets become more common. The streamflow declines are historically related to groundwater mining, but since the mid-1980s correlate increasingly with climate. This study highlights that progression toward unsustainability, and shows that future climate change will continue streamflow declines at historical rates, with severe consequences for surface water supply. An object lesson is Optima Lake in the Oklahoma Panhandle, where streamflows have declined 99% since the 1960s and the reservoir has never been more than 5% full. Water balances for the four westernmost Federal reservoirs in Kansas (Cedar Bluff, Keith Sebelius, Webster and Kirwin) show similar tendencies. For these four, reservoir inflow has declined by 92%, 73%, 81% and 64% respectively since the 1950s. Since 1990 total evaporated volumes relative to total inflows amounted to 68%, 83%, 24% and 44% respectively. Predictions of streamflow and reservoir performance based on climate change models indicate 70% chance of steady decline after 2007, with a ˜50% chance of failure (releases by gravity flow impossible) of Cedar Bluff Reservoir between 2007 and 2050. Paradoxically, a 30% chance of storage increase prior 2020 is indicated, followed by steady declines through 2100. Within 95% confidence the models predict >50% decline in surface water resources between 2007 and 2050. Ultimately, surface storage of water resources may prove unsustainable in this region, forcing conversion to subsurface storage.

  9. On-farm irrigation reservoirs for surface water storage in eastern Arkansas: Trends in construction in response to aquifer depletion

    Science.gov (United States)

    Yaeger, M. A.; Reba, M. L.; Massey, J. H.; Adviento-Borbe, A.

    2017-12-01

    On-farm surface water storage reservoirs have been constructed to address declines in the Mississippi River Valley Alluvial aquifer, the primary source of irrigation for most of the row crops grown in eastern Arkansas. These reservoirs and their associated infrastructure represent significant investments in financial and natural resources, and may cause producers to incur costs associated with foregone crop production and long-term maintenance. Thus, an analysis of reservoir construction trends in the Grand Prairie Critical Groundwater Area (GPCGA) and Cache River Critical Groundwater Area (CRCGA) was conducted to assist future water management decisions. Between 1996 and 2015, on average, 16 and 4 reservoirs were constructed per year, corresponding to cumulative new reservoir surface areas of 161 and 60 ha yr-1, for the GPCGA and the CRCGA, respectively. In terms of reservoir locations relative to aquifer status, after 1996, 84.5% of 309 total reservoirs constructed in the GPCGA and 91.0% of 78 in the CRCGA were located in areas with remaining saturated aquifer thicknesses of 50% or less. The majority of new reservoirs (74% in the GPCGA and 63% in the CRCGA) were constructed on previously productive cropland. The next most common land use, representing 11% and 15% of new reservoirs constructed in the GPCGA and CRCGA, respectively, was the combination of a field edge and a ditch, stream, or other low-lying area. Less than 10% of post-1996 reservoirs were constructed on predominately low-lying land, and the use of such lands decreased in both critical groundwater areas during the past 20 years. These disparities in reservoir construction rates, locations, and prior land uses is likely due to groundwater declines being first observed in the GPCGA as well as the existence of two large-scale river diversion projects under construction in the GPCGA that feature on-farm storage as a means to offset groundwater use.

  10. Energy optimization through probabilistic annual forecast water release technique for major storage hydroelectric reservoir

    International Nuclear Information System (INIS)

    Abdul Bahari Othman; Mohd Zamri Yusoff

    2006-01-01

    One of the important decisions to be made by the management of hydroelectric power plant associated with major storage reservoir is to determine the best turbine water release decision for the next financial year. The water release decision enables firm energy generated estimation for the coming financial year to be done. This task is usually a simple and straightforward task provided that the amount of turbine water release is known. The more challenging task is to determine the best water release decision that is able to resolve the two conflicting operational objectives which are minimizing the drop of turbine gross head and maximizing upper reserve margin of the reservoir. Most techniques from literature emphasize on utilizing the statistical simulations approach. Markovians models, for example, are a class of statistical model that utilizes the past and the present system states as a basis for predicting the future [1]. This paper illustrates that rigorous solution criterion can be mathematically proven to resolve those two conflicting operational objectives. Thus, best water release decision that maximizes potential energy for the prevailing natural inflow is met. It is shown that the annual water release decision shall be made in such a manner that annual return inflow that has return frequency smaller than critical return frequency (f c ) should not be considered. This criterion enables target turbine gross head to be set to the well-defined elevation. In the other words, upper storage margin of the reservoir shall be made available to capture magnitude of future inflow that has return frequency greater than or equal to f c. A case study is shown to demonstrate practical application of the derived mathematical formulas

  11. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ≥ 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ≥ 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space

  12. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for the facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities

  13. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for the facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities.

  14. Global Reservoir and Dam Database, Version 1 (GRanDv1): Dams, Revision 01

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Reservoir and Dam Database, Version 1 (Revision 01) contains 6,862 records of reservoirs and their associated dams with a cumulative storage capacity of...

  15. Rocky Mountain Regional CO{sub 2} Storage Capacity and Significance

    Energy Technology Data Exchange (ETDEWEB)

    Laes, Denise; Eisinger, Chris; Esser, Richard; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Matthews, Vince; McPherson, Brian

    2013-08-30

    The purpose of this study includes extensive characterization of the most promising geologic CO{sub 2} storage formations on the Colorado Plateau, including estimates of maximum possible storage capacity. The primary targets of characterization and capacity analysis include the Cretaceous Dakota Formation, the Jurassic Entrada Formation and the Permian Weber Formation and their equivalents in the Colorado Plateau region. The total CO{sub 2} capacity estimates for the deep saline formations of the Colorado Plateau region range between 9.8 metric GT and 143 metric GT, depending on assumed storage efficiency, formations included, and other factors.

  16. Studies on the Optimal behavior of Energy Storage in Reservoirs of a Hydroelectric system; Estudios sobre el comportamiento optimo del almacenamiento de energia en embalses de sistema hidroelectrico

    Energy Technology Data Exchange (ETDEWEB)

    Macedo Faria, Breno; Franco Barbosa, Paulo Sergio [Universidad Estatal de Campinas (Brazil)

    2002-09-01

    This work aims at studying the results of an optimisation model applied to the Paranaiba river basin, Brazil. This system is made by the junction of three river branches located in a region with a well-defined seasonal hydrological behavior. The ratio between the total energy storage in the system and the active storage for every reservoir is evaluated from the optimal operational results. This relationship allows recognizing systematic patterns on the relative use for every reservoir, when compared to the entire system. The main parameters that define reservoir behavior are identified, with highlights on the position of the power station in the cascade, the relationship between the river flow and the active storage, and the installed capacity of the power station. In addition, the parameter hydrological scenario is also another factor that defines the relative use of the reservoirs. [Spanish] El modelo del presente trabajo tiene como objetivo estudiar los resultados de una optimizacion para el sistema hidroelectrico de la cuenca del rio Paranaiba, Brasil, la cual esta formada por la confluencia de tres rios en una region de distribucion de lluvias bien definidas en terminos hidrologicos. Se analiza la relacion entre la energia total almacenada en el sistema y el volumen util de cada embalse a partir de los resultados operativos optimos. Esta relacion permite identificar resultados sistematicos en lo que se refiere a la utilizacion de cada embalse, en comparacion con el uso del sistema como un todo. Se identifican los principales parametros responsables por el comportamiento de los embalses, destacando la influencia de la posicion de la central hidroelectrica en la cascada, de la relacion caudal/volumen util y de la potencia de central. Ademas, el parametro escenario hidrologico tambien es otro factor determinante en el uso relativo de los embalses.

  17. Estimation of Bank Erosion Due To Reservoir Operation in Cascade (Case Study: Citarum Cascade Reservoir

    Directory of Open Access Journals (Sweden)

    Sri Legowo

    2009-11-01

    Full Text Available Sedimentation is such a crucial issue to be noted once the accumulated sediment begins to fill the reservoir dead storage, this will then influence the long-term reservoir operation. The sediment accumulated requires a serious attention for it may influence the storage capacity and other reservoir management of activities. The continuous inflow of sediment to the reservoir will decrease the capacity of reservoir storage, the reservoir value in use, and the useful age of reservoir. Because of that, the rate of the sediment needs to be delayed as possible. In this research, the delay of the sediment rate is considered based on the rate of flow of landslide of the reservoir slope. The rate of flow of the sliding slope can be minimized by way of each reservoir autonomous efforts. This effort can be performed through; the regulation of fluctuating rate of reservoir surface current that does not cause suddenly drawdown and upraising as well. The research model is compiled using the searching technique of Non Linear Programming (NLP.The rate of bank erosion for the reservoir variates from 0.0009 to 0.0048 MCM/year, which is no sigrificant value to threaten the life time of reservoir.Mean while the rate of watershed sediment has a significant value, i.e: 3,02 MCM/year for Saguling that causes to fullfill the storage capacity in 40 next years (from years 2008.

  18. High-capacity electrode materials for electrochemical energy storage

    Indian Academy of Sciences (India)

    2015-06-02

    scale accept- ability of renewable energy sources for reducing greenhouse gas emission. Intermittent sources such as solar and wind energies need reliable and efficient energy storage systems. Pramana – J. Phys., Vol. 84, No.

  19. Geomechanical behavior of the reservoir and caprock system at the In Salah CO2 storage project.

    Science.gov (United States)

    White, Joshua A; Chiaramonte, Laura; Ezzedine, Souheil; Foxall, William; Hao, Yue; Ramirez, Abelardo; McNab, Walt

    2014-06-17

    Almost 4 million metric tons of CO2 were injected at the In Salah CO2 storage site between 2004 and 2011. Storage integrity at the site is provided by a 950-m-thick caprock that sits above the injection interval. This caprock consists of a number of low-permeability units that work together to limit vertical fluid migration. These are grouped into main caprock units, providing the primary seal, and lower caprock units, providing an additional buffer and some secondary storage capacity. Monitoring observations at the site indirectly suggest that pressure, and probably CO2, have migrated upward into the lower portion of the caprock. Although there are no indications that the overall storage integrity has been compromised, these observations raise interesting questions about the geomechanical behavior of the system. Several hypotheses have been put forward to explain the measured pressure, seismic, and surface deformation behavior. These include fault leakage, flow through preexisting fractures, and the possibility that injection pressures induced hydraulic fractures. This work evaluates these hypotheses in light of the available data. We suggest that the simplest and most likely explanation for the observations is that a portion of the lower caprock was hydrofractured, although interaction with preexisting fractures may have played a significant role. There are no indications, however, that the overall storage complex has been compromised, and several independent data sets demonstrate that CO2 is contained in the confinement zone.

  20. Reservoir Sedimentation Based on Uncertainty Analysis

    Directory of Open Access Journals (Sweden)

    Farhad Imanshoar

    2014-01-01

    Full Text Available Reservoir sedimentation can result in loss of much needed reservoir storage capacity, reducing the useful life of dams. Thus, sufficient sediment storage capacity should be provided for the reservoir design stage to ensure that sediment accumulation will not impair the functioning of the reservoir during the useful operational-economic life of the project. However, an important issue to consider when estimating reservoir sedimentation and accumulation is the uncertainty involved in reservoir sedimentation. In this paper, the basic factors influencing the density of sediments deposited in reservoirs are discussed, and uncertainties in reservoir sedimentation have been determined using the Delta method. Further, Kenny Reservoir in the White River Basin in northwestern Colorado was selected to determine the density of deposits in the reservoir and the coefficient of variation. The results of this investigation have indicated that by using the Delta method in the case of Kenny Reservoir, the uncertainty regarding accumulated sediment density, expressed by the coefficient of variation for a period of 50 years of reservoir operation, could be reduced to about 10%. Results of the Delta method suggest an applicable approach for dead storage planning via interfacing with uncertainties associated with reservoir sedimentation.

  1. Structural analysis of porous rock reservoirs subjected to conditions of compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Friley, J.R.

    1980-01-01

    Investigations are described which were performed to assess the structural behavior of porous rock compressed air energy storage (CAES) reservoirs subjected to loading conditions of temperature and pressure felt to be typical of such an operation. Analyses performed addressed not only the nominal or mean reservoir response but also the cyclic response due to charge/discharge operation. The analyses were carried out by assuming various geometrical and material related parameters of a generic site. The objective of this study was to determine the gross response of a generic porous reservoir. The site geometry for this study assumed a cylindrical model 122 m in dia and 57 m high including thicknesses for the cap, porous, and base rock formations. The central portion of the porous zone was assumed to be at a depth of 518 m and at an initial temperature of 20/sup 0/C. Cyclic loading conditions of compressed air consisted of pressure values in the range of 4.5 to 5.2 MPa and temperature values between 143 and 204/sup 0/C.Various modes of structural behavior were studied. These response modes were analyzed using loading conditions of temperature and pressure (in the porous zone) corresponding to various operational states during the first year of simulated site operation. The results of the structural analyses performed indicate that the most severely stressed region will likely be in the wellbore vicinity and hence highly dependent on the length of and placement technique utilized in the well production length. Analyses to address this specific areas are currently being pursued.

  2. ISLSCP II Total Plant-Available Soil Water Storage Capacity of the Rooting Zone

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides two estimates of the geographic distribution of the total plant-available soil water storage capacity of the rooting zone ("rooting zone water...

  3. ISLSCP II Total Plant-Available Soil Water Storage Capacity of the Rooting Zone

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides two estimates of the geographic distribution of the total plant-available soil water storage capacity of the rooting zone ("rooting...

  4. New Direct Color Mapping Method for Reducing the Storage Capacity of Look-Up Table Memory

    Science.gov (United States)

    Ikegami, Hiroaki

    1989-04-01

    Direct color mapping method using 3-dimensional look-up table is promising for high accuracy and high speed color correction, instead of matrix masking method. But it needs large storage capacity which leads to cost increase. So various ideas using interpolation technique were proposed for reducing the storage capacity. This time, two new ideas for reducing the storage capacity are introduced and evaluated. One is to eliminate the part of 3-dimensional look-up table memory corresponding to the outside of color gamut of output device. Its reduction ratio is about 25%. The other is to reduce the look-up tables instead of multiplier for 3 X 3 matrix interpolation. Its reduction ratio is about 20% in the case of 8 bit X 3 input and 8 bit X 3 output using lower 3 bit interpolation. By the combination of these ideas, the storage capacity can be reduced down to 100k byte in that case.

  5. Environmental Effects of Storage Preservation Practices: Controlled Flushing of Fine Sediment from a Small Hydropower Reservoir

    Science.gov (United States)

    Espa, Paolo; Castelli, Elena; Crosa, Giuseppe; Gentili, Gaetano

    2013-07-01

    Sediment flushing may be effective in mitigating loss of reservoir storage due to siltation, but flushing must be controlled to limit the impact on the downstream environment. A reliable prediction of the environmental effects of sediment flushing is hindered by the limited scientific information currently available. Consequently, there may be some controversy as regards to management decisions, planning the work, and monitoring strategies. This paper summarizes the main results of a monitoring campaign on the stream below a small alpine hydropower reservoir subjected to annual flushing between 2006 and 2009. The removed sediment was essentially silt, and the suspended solid concentration (SSC) of the discharged water was controlled to alleviate downstream impact. Control was achieved through hydraulic regulation and mechanical digging, alternating daytime sediment evacuation, and nocturnal clear water release. The four operations lasted about two weeks each and had an average SSC of about 4 g L-1. Maximum values of SSC were generally kept below 10 g L-1. Downstream impact was quantified through sampling of fish fauna (brown trout) and macroinvertebrate in the final reach of the effluent stream. The benthic community was severely impaired by the flushing operations, but recovered to pre-flushing values in a few months. As expected, the impact on brown trout was heavier on juveniles. While data biasing due to fish removal and re-stocking cannot be ruled out, the fish community seems to have reached a state of equilibrium characterized by a lower density than was measured before the flushing operations.

  6. Metrics to assess the mitigation of global warming by carbon capture and storage in the ocean and in geological reservoirs

    OpenAIRE

    Haugan, Peter Mosby; Joos, Fortunat

    2004-01-01

    Different metrics to assess mitigation of global warming by carbon capture and storage are discussed. The climatic impact of capturing 30% of the anthropogenic carbon emission and its storage in the ocean or in geological reservoir are evaluated for different stabilization scenarios using a reduced-form carbon cycle-climate model. The accumulated Global Warming Avoided (GWA) remains, after a ramp-up during the first ~50 years, in the range of 15 to 30% over the next millennium for de...

  7. Quantification of oil recovery efficiency, CO 2 storage potential, and fluid-rock interactions by CWI in heterogeneous sandstone oil reservoirs

    DEFF Research Database (Denmark)

    Seyyedi, Mojtaba; Sohrabi, Mehran; Sisson, Adam

    2017-01-01

    Significant interest exists in improving recovery from oil reservoirs while addressing concerns about increasing CO2 concentrations in the atmosphere. The combination of Enhanced Oil Recovery (EOR) and safe geologic storage of CO2 in oil reservoirs is appealing and can be achieved by carbonated (...... for oil recovery and CO2 storage potential on heterogeneous cores. Since not all the oil reservoirs are homogenous, understanding the potential of CWI as an integrated EOR and CO2 storage scenario in heterogeneous oil reservoirs is essential.......Significant interest exists in improving recovery from oil reservoirs while addressing concerns about increasing CO2 concentrations in the atmosphere. The combination of Enhanced Oil Recovery (EOR) and safe geologic storage of CO2 in oil reservoirs is appealing and can be achieved by carbonated (CO...

  8. Hydriding and dehydriding rates and hydrogen-storage capacity of ...

    Indian Academy of Sciences (India)

    Fe2O3 (expected to increase hydriding rate) was selected as an oxide to be added. Ti was also selected since, it was considered to increase the hydriding and dehydriding rates by forming Ti hydride. A sample, Mg–14Ni–3Fe2O3–3Ti, was prepared by reactive mechanical grinding and its hydrogen storage properties were ...

  9. Hydriding and dehydriding rates and hydrogen-storage capacity of ...

    Indian Academy of Sciences (India)

    incorporation of hydrogen into the world economy has a number of difficulties to be solved. When compared to oil and natural gas, hydrogen has no large-scale infrastructure supporting its transportation. Hydrogen is largely used by chemical and refining industries. However, the cost of hydro- gen storage and delivery is too ...

  10. A Central Capacity Limit to the Simultaneous Storage of Visual and Auditory Arrays in Working Memory

    Science.gov (United States)

    Saults, J. Scott; Cowan, Nelson

    2007-01-01

    If working memory is limited by central capacity (e.g., the focus of attention; N. Cowan, 2001), then storage limits for information in a single modality should apply also to the simultaneous storage of information from different modalities. The authors investigated this by combining a visual-array comparison task with a novel auditory-array…

  11. Achieving increased spent fuel storage capacity at the High Flux Isotope Reactor (HFIR)

    International Nuclear Information System (INIS)

    Cook, D.H.; Chang, S.J.; Dabs, R.D.; Freels, J.D.; Morgan, K.A.; Rothrock, R.B.; Griess, J.C.

    1994-01-01

    The HFIR facility was originally designed to store approximately 25 spent cores, sufficient to allow for operational contingencies and for cooling prior to off-site shipment for reprocessing. The original capacity has now been increased to 60 positions, of which 53 are currently filled (September 1994). Additional spent cores are produced at a rate of about 10 or 11 per year. Continued HFIR operation, therefore, depends on a significant near-term expansion of the pool storage capacity, as well as on a future capability of reprocessing or other storage alternatives once the practical capacity of the pool is reached. To store the much larger inventory of spent fuel that may remain on-site under various future scenarios, the pool capacity is being increased in a phased manner through installation of a new multi-tier spent fuel rack design for higher density storage. A total of 143 positions was used for this paper as the maximum practical pool capacity without impacting operations; however, greater ultimate capacities were addressed in the supporting analyses and approval documents. This paper addresses issues related to the pool storage expansion including (1) seismic effects on the three-tier storage arrays, (2) thermal performance of the new arrays, (3) spent fuel cladding corrosion concerns related to the longer period of pool storage, and (4) impacts of increased spent fuel inventory on the pool water quality, water treatment systems, and LLLW volume

  12. Optimization of time and location dependent spent nuclear fuel storage capacity

    International Nuclear Information System (INIS)

    Macek, V.

    1977-01-01

    A linear spent fuel storage model is developed to identify cost-effective spent nuclear fuel storage strategies. The purpose of this model is to provide guidelines for the implementation of the optimal time-dependent spent fuel storage capacity expansion in view of the current economic and regulatory environment which has resulted in phase-out of the closed nuclear fuel cycle. Management alternatives of the spent fuel storage backlog, which is created by mismatch between spent fuel generation rate and spent fuel disposition capability, are represented by aggregate decision variables which describe the time dependent on-reactor-site and off-site spent fuel storage capacity additions, and the amount of spent fuel transferred to off-site storage facilities. Principal constraints of the model assure determination of cost optimal spent fuel storage expansion strategies, while spent fuel storage requirements are met at all times. A detailed physical and economic analysis of the essential components of the spent fuel storage problem, which precedes the model development, assures its realism. The effects of technological limitations on the on-site spent fuel storage expansion and timing of reinitiation of the spent fuel reprocessing on optimal spent fuel storage capacity expansion are investigated. The principal results of the study indicate that (a) expansion of storage capacity beyond that of currently planned facilities is necessary, and (b) economics of the post-reactor fuel cycle is extremely sensitive to the timing of reinitiation of spent fuel reprocessing. Postponement of reprocessing beyond mid-1982 may result in net negative economic liability of the back end of the nuclear fuel cycle

  13. Optimal nonlinear information processing capacity in delay-based reservoir computers

    Science.gov (United States)

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2015-09-01

    Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.

  14. Hybrid Stochastic Forecasting Model for Management of Large Open Water Reservoir with Storage Function

    Science.gov (United States)

    Kozel, Tomas; Stary, Milos

    2017-12-01

    all numbers from interval. Resulted course of management was compared with course, which was obtained from using GE + real flow series. Comparing results showed that fuzzy model with forecasted values has been able to manage main malfunction and artificially disorders made by model were founded essential, after values of water volume during management were evaluated. Forecasting model in combination with fuzzy model provide very good results in management of water reservoir with storage function and can be recommended for this purpose.

  15. Geological storage of carbon dioxide in the coal seams: from material to the reservoir

    International Nuclear Information System (INIS)

    Nikoosokhan, S.

    2012-01-01

    CO 2 emissions into the atmosphere are recognized to have a significant effect on global warming. Geological storage of CO 2 is widely regarded as an essential approach to reduce the impact of such emissions on the environment. Moreover, injecting carbon dioxide in coal bed methane reservoirs facilitates the recovery of the methane naturally present, a process known as enhanced coal bed methane recovery (ECBM). But the swelling of the coal matrix induced by the preferential adsorption by coal of carbon dioxide over the methane in place leads to a closure of the cleat system (a set of small natural fractures) of the reservoir and therefore to a loss of injectivity. This PhD thesis is dedicated to a study of how this injectivity evolves in presence of fluids. We derive two poro-mechanical dual-porosity models for a coal bed reservoir saturated by a pure fluid. The resulting constitutive equations enable to better understand and model the link between the injectivity of a coal seam and the adsorption-induced swelling of coal. For both models, the pore space of the reservoir is considered to be divided into the macroporous cleats and the pores of the coal matrix. The two models differ by how adsorption of fluid is taken into account: the first model is restricted to surface adsorption, while the second model can be applied for adsorption in a medium with a generic pore size distribution and thus in a microporous medium such as coal, in which adsorption mostly occurs by micropore filling. The latter model is calibrated on two coals with different sorption and swelling properties. We then perform simulations at various scales (Representative Elementary Volume, coal sample, coal seam). In particular, we validate our model on experimental data of adsorption-induced variations of permeability of coal. We also perform simulations of seams from which methane would be produced (CBM) or of methane-free seams into which CO 2 would be injected. We study the effect of various

  16. Evaluating Potential for Large Releases from CO2 Storage Reservoirs: Analogs, Scenarios, and Modeling Needs

    International Nuclear Information System (INIS)

    Birkholzer, Jens; Pruess, Karsten; Lewicki, Jennifer; Tsang, Chin-Fu; Karimjee, Anhar

    2005-01-01

    While the purpose of geologic storage of CO 2 in deep saline formations is to trap greenhouse gases underground, the potential exists for CO 2 to escape from the target reservoir, migrate upward along permeable pathways, and discharge at the land surface. Such discharge is not necessarily a serious concern, as CO 2 is a naturally abundant and relatively benign gas in low concentrations. However, there is a potential risk to health, safety and environment (HSE) in the event that large localized fluxes of CO 2 were to occur at the land surface, especially where CO 2 could accumulate. In this paper, we develop possible scenarios for large CO 2 fluxes based on the analysis of natural analogues, where large releases of gas have been observed. We are particularly interested in scenarios which could generate sudden, possibly self-enhancing, or even eruptive release events. The probability for such events may be low, but the circumstances under which they might occur and potential consequences need to be evaluated in order to design appropriate site selection and risk management strategies. Numerical modeling of hypothetical test cases is needed to determine critical conditions for such events, to evaluate whether such conditions may be possible at designated storage sites, and, if applicable, to evaluate the potential HSE impacts of such events and design appropriate mitigation strategies

  17. Evaluation of sediment management strategies on reservoir storage depletion rate: a case study

    NARCIS (Netherlands)

    Ali, M.; Sterk, G.

    2010-01-01

    Sedimentation aspects have a major role during the design of new reservoir projects because life of the reservoir mainly depends upon sediment handling during reservoir operation. Therefore, proper sediment management strategies should be adopted to enhance the life span of reservoirs. Basha

  18. High-capacity electrode materials for electrochemical energy storage

    Indian Academy of Sciences (India)

    2015-06-02

    Jun 2, 2015 ... favour the formation of intermediate phases that are kinetically driven. In addition, iron fluorides (FeF3 and FeF2) are highly ionic solids and therefore extremely insulating in nature [36,37,41]. These and other factors limit the use of iron fluorides for high-capacity batteries despite their very high theoretical ...

  19. Experimental investigation of the Heletz shale caprocks sealing capacity: implication for CO2 geological storage integrity

    Science.gov (United States)

    Abdoulghafour, Halidi; Gouze, Philippe; Luquot, Linda; Arif, Mohamed; Iglauer, Stefan

    2017-04-01

    Using a combination of core flooding experiments and wettability measurements, we evaluate the sealing efficiency of Heletz caprock under CO2 sequestration conditions. The flow through experiments consisted of flowing CO2 enriched fluid into two micro-fractured cylindrical cores (15 mm length - 9 mm diameter, with hydraulic aperture: 2.7 µm for the sample named H18A and 13 µm for sample named H18B) and monitoring the permeability changes, the evolution of the chemistry from the inlet and outlet fluid. The changes in microstructures and mineralogy were also studied using an environmental scanning electrons microscope (ESEM) and X-ray micro-tomography (XRMT) images. The fracture permeability was found to decrease significantly in the two experiments from 14.1×10-12 m2 to 5.0×10-12 m2 for experiment H18B and from 6.5×10-13 m2 to 2.8×10-13 m2 for experiment H18A. Calcite dissolution and reconversion of k-feldspar to illite and kaolinite were the main reaction on sample H18B while "calcite precipitation" in batch condition was the dominant reaction on sample H18A. Accordingly, the decrease in permeability was induced by the dispersion of dissolution products and the re-organization of clay particles within the fracture for sample H18B as shown by micro-tomography and ESEM images. The fracture healing due to the calcite and clay mineral precipitation along the fracture was attested by ESEM image for sample H18A. The results of capillary pressure breakthrough calculated by applying the Washburn equation and the reservoir scaling method from intrusion of mercury are approximately 380 kPa and 310 kPa for H18B and H18A respectively. Although, these values are sensibly different but close to each other and in good agreement to indicate the weak storage capacity of the heletz caprock. Subsequently less than 90 m of CO2 column height can be efficiently stored in the Heletz reservoir. Thus the self-mitigation of the CO2 leakage is expected only when few quantity of CO2

  20. Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Hailin [Los Alamos National Laboratory; Dai, Zhenxue [Los Alamos National Laboratory; Jiao, Zunsheng [Wyoming State Geological Survey; Stauffer, Philip H. [Los Alamos National Laboratory; Surdam, Ronald C. [Wyoming State Geological Survey

    2011-01-01

    Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline

  1. Determining the Minimal Power Capacity of Energy Storage to Accommodate Renewable Generation

    Directory of Open Access Journals (Sweden)

    Xingning Han

    2017-04-01

    Full Text Available The increasing penetration of renewable generation increases the need for flexibility to accommodate for growing uncertainties. The level of flexibility is measured by the available power that can be provided by flexible resources, such as dispatachable generators, in a certain time period under the constraint of transmission capacity. In addition to conventional flexible resources, energy storage is also expected as a supplementary flexible resource for variability accommodation. To aid the cost-effective planning of energy storage in power grids with intensive renewable generation, this study proposed an approach to determine the minimal requirement of power capacity and the appropriate location for the energy storage. In the proposed approach, the variation of renewable generation is limited within uncertainty sets, then a linear model is proposed for dispatchable generators and candidate energy storage to accommodate the variation in renewable generation under the power balance and transmission network constraints. The target of the proposed approach is to minimize the total power capacity of candidate energy storage facilities when the availability of existing flexible resources is maximized. After that, the robust linear optimization method is employed to convert and solve the proposed model with uncertainties. Case studies are carried out in a modified Garver 6-bus system and the Liaoning provincial power system in China. Simulation results well demonstrate the proposed optimization can provide the optimal location of energy storage with small power capacities. The minimal power capacity of allocated energy storage obtained from the proposed approach only accounts for 1/30 of the capacity of the particular transmission line that is required for network expansion. Besides being adopted for energy storage planning, the proposed approach can also be a potential tool for identifying the sufficiency of flexibility when a priority is given to

  2. Rhizophoraceae Mangrove Saplings Use Hypocotyl and Leaf Water Storage Capacity to Cope with Soil Water Salinity Changes

    Science.gov (United States)

    Lechthaler, Silvia; Robert, Elisabeth M. R.; Tonné, Nathalie; Prusova, Alena; Gerkema, Edo; Van As, Henk; Koedam, Nico; Windt, Carel W.

    2016-01-01

    Some of the most striking features of Rhizophoraceae mangrove saplings are their voluminous cylinder-shaped hypocotyls and thickened leaves. The hypocotyls are known to serve as floats during seed dispersal (hydrochory) and store nutrients that allow the seedling to root and settle. In this study we investigate to what degree the hypocotyls and leaves can serve as water reservoirs once seedlings have settled, helping the plant to buffer the rapid water potential changes that are typical for the mangrove environment. We exposed saplings of two Rhizophoraceae species to three levels of salinity (15, 30, and 0–5‰, in that sequence) while non-invasively monitoring changes in hypocotyl and leaf water content by means of mobile NMR sensors. As a proxy for water content, changes in hypocotyl diameter and leaf thickness were monitored by means of dendrometers. Hypocotyl diameter variations were also monitored in the field on a Rhizophora species. The saplings were able to buffer rapid rhizosphere salinity changes using water stored in hypocotyls and leaves, but the largest water storage capacity was found in the leaves. We conclude that in Rhizophora and Bruguiera the hypocotyl offers the bulk of water buffering capacity during the dispersal phase and directly after settlement when only few leaves are present. As saplings develop more leaves, the significance of the leaves as a water storage organ becomes larger than that of the hypocotyl. PMID:27446125

  3. Rhizophoraceae Mangrove Saplings Use Hypocotyl and Leaf Water Storage Capacity to Cope with Soil Water Salinity Changes.

    Science.gov (United States)

    Lechthaler, Silvia; Robert, Elisabeth M R; Tonné, Nathalie; Prusova, Alena; Gerkema, Edo; Van As, Henk; Koedam, Nico; Windt, Carel W

    2016-01-01

    Some of the most striking features of Rhizophoraceae mangrove saplings are their voluminous cylinder-shaped hypocotyls and thickened leaves. The hypocotyls are known to serve as floats during seed dispersal (hydrochory) and store nutrients that allow the seedling to root and settle. In this study we investigate to what degree the hypocotyls and leaves can serve as water reservoirs once seedlings have settled, helping the plant to buffer the rapid water potential changes that are typical for the mangrove environment. We exposed saplings of two Rhizophoraceae species to three levels of salinity (15, 30, and 0-5‰, in that sequence) while non-invasively monitoring changes in hypocotyl and leaf water content by means of mobile NMR sensors. As a proxy for water content, changes in hypocotyl diameter and leaf thickness were monitored by means of dendrometers. Hypocotyl diameter variations were also monitored in the field on a Rhizophora species. The saplings were able to buffer rapid rhizosphere salinity changes using water stored in hypocotyls and leaves, but the largest water storage capacity was found in the leaves. We conclude that in Rhizophora and Bruguiera the hypocotyl offers the bulk of water buffering capacity during the dispersal phase and directly after settlement when only few leaves are present. As saplings develop more leaves, the significance of the leaves as a water storage organ becomes larger than that of the hypocotyl.

  4. Highly efficient distributed generation and high-capacity energy storage

    DEFF Research Database (Denmark)

    Hemmes, Kas; Guerrero, Josep M.; Zhelev, Toshko

    2012-01-01

    With the growing amount of decentralized power production the design and operation of the grid has to be reconsidered. New problems include the two-way flow of electricity and maintaining the power balance given the increased amount of uncertain and fluctuating renewable energy sources like wind...... and solar that deliver electricity to the grid. Solution directions are the development of smart grids, demand side management, virtual power plants and storage of electricity. These are directions that, rightly so, are already attracting a lot of attention and R&D funding. In this paper critical issues...

  5. Sediment management for reservoir

    International Nuclear Information System (INIS)

    Rahman, A.

    2005-01-01

    All natural lakes and reservoirs whether on rivers, tributaries or off channel storages are doomed to be sited up. Pakistan has two major reservoirs of Tarbela and Managla and shallow lake created by Chashma Barrage. Tarbela and Mangla Lakes are losing their capacities ever since first impounding, Tarbela since 1974 and Mangla since 1967. Tarbela Reservoir receives average annual flow of about 62 MAF and sediment deposits of 0.11 MAF whereas Mangla gets about 23 MAF of average annual flows and is losing its storage at the rate of average 34,000 MAF annually. The loss of storage is a great concern and studies for Tarbela were carried out by TAMS and Wallingford to sustain its capacity whereas no study has been done for Mangla as yet except as part of study for Raised Mangla, which is only desk work. Delta of Tarbala reservoir has advanced to about 6.59 miles (Pivot Point) from power intakes. In case of liquefaction of delta by tremor as low as 0.12g peak ground acceleration the power tunnels I, 2 and 3 will be blocked. Minimum Pool of reservoir is being raised so as to check the advance of delta. Mangla delta will follow the trend of Tarbela. Tarbela has vast amount of data as reservoir is surveyed every year, whereas Mangla Reservoir survey was done at five-year interval, which has now been proposed .to be reduced to three-year interval. In addition suspended sediment sampling of inflow streams is being done by Surface Water Hydrology Project of WAPDA as also some bed load sampling. The problem of Chasma Reservoir has also been highlighted, as it is being indiscriminately being filled up and drawdown several times a year without regard to its reaction to this treatment. The Sediment Management of these reservoirs is essential and the paper discusses pros and cons of various alternatives. (author)

  6. Some open issues in the analysis of the storage and migration properties of fractured carbonate reservoirs

    Science.gov (United States)

    Agosta, Fabrizio

    2017-04-01

    Underground CO2 storage in depleted hydrocarbon reservoirs may become a common practice in the future to lower the concentration of greenhouse gases in the atmosphere. Results from the first experiments conducted in carbonate rocks, for instance the Lacq integrated CCS Pilot site, SW France, are quite exciting. All monitored parameters, such as the CO2 concentration at well sites, well pressures, cap rock integrity and environmental indicators show the long-term integrity of this type of geological reservoirs. Other positive news arise from the OXY-CFB-300 Compostilla Project, NW Spain, where most of the injected CO2 dissolved into the formation brines, suggesting the long-term security of this method. However, in both cases, the CO2- rich fluids partially dissolved the carbonate minerals during their migration through the fractured reservoir, modifying the overall pore volume and pressure regimes. These results support the growing need for a better understanding of the mechanical behavior of carbonate rocks over geological time of scales. In fact, it is well known that carbonates exhibit a variety of deformation mechanisms depending upon many intrinsic factors such as composition, texture, connected pore volume, and nature of the primary heterogeneities. Commonly, tight carbonates are prone to opening-mode and/or pressure solution deformation. The interplay between these two mechanisms likely affects the petrophysical properties of the fault damage zones, which form potential sites for CO2 storage due to their high values of both connected porosity and permeability. On the contrary, cataclastic deformation produces fault rocks that often form localized fluid barriers for cross-fault fluid flow. Nowadays, questions on the conditions of sealing/leakage of carbonate fault rocks are still open. In particular, the relative role played by bulk crushing, chipping, cementation, and pressure solution on connected porosity of carbonate fault rocks during structural

  7. Depth limit of littoral vegetation in a storage reservoir: A case study of Lipno Reservoir (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Krolová, M.; Čížková, Hana; Hejzlar, Josef

    2012-01-01

    Roč. 42, č. 2 (2012), s. 165-174 ISSN 0075-9511 R&D Projects: GA ČR(CZ) GA206/09/1764 EU Projects: European Commission(XE) 244121 - REFRESH Institutional research plan: CEZ:AV0Z60170517; CEZ:AV0Z60870520 Keywords : macrophyte * littoral * reservoir * shore erosion * ecological potential * European Water Framework Directive Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.565, year: 2012

  8. Recommended volumetric capacity definitions and protocols for accurate, standardized and unambiguous metrics for hydrogen storage materials

    Science.gov (United States)

    Parilla, Philip A.; Gross, Karl; Hurst, Katherine; Gennett, Thomas

    2016-03-01

    The ultimate goal of the hydrogen economy is the development of hydrogen storage systems that meet or exceed the US DOE's goals for onboard storage in hydrogen-powered vehicles. In order to develop new materials to meet these goals, it is extremely critical to accurately, uniformly and precisely measure materials' properties relevant to the specific goals. Without this assurance, such measurements are not reliable and, therefore, do not provide a benefit toward the work at hand. In particular, capacity measurements for hydrogen storage materials must be based on valid and accurate results to ensure proper identification of promising materials for further development. Volumetric capacity determinations are becoming increasingly important for identifying promising materials, yet there exists controversy on how such determinations are made and whether such determinations are valid due to differing methodologies to count the hydrogen content. These issues are discussed herein, and we show mathematically that capacity determinations can be made rigorously and unambiguously if the constituent volumes are well defined and measurable in practice. It is widely accepted that this occurs for excess capacity determinations and we show here that this can happen for the total capacity determination. Because the adsorption volume is undefined, the absolute capacity determination remains imprecise. Furthermore, we show that there is a direct relationship between determining the respective capacities and the calibration constants used for the manometric and gravimetric techniques. Several suggested volumetric capacity figure-of-merits are defined, discussed and reporting requirements recommended. Finally, an example is provided to illustrate these protocols and concepts.

  9. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui; Sullivan, E. C.; Lawter, Amanda R.; Harvey, Omar R.; Bowden, Mark

    2013-04-15

    Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one geochemical outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education efforts associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive capability and

  10. Assessing the adequacy of water storage infrastructure capacity under hydroclimatic variability and water demands in the United States

    Science.gov (United States)

    Ho, M. W.; Devineni, N.; Cook, E. R.; Lall, U.

    2017-12-01

    As populations and associated economic activity in the US evolve, regional demands for water likewise change. For regions dependent on surface water, dams and reservoirs are critical to storing and managing releases of water and regulating the temporal and spatial availability of water in order to meet these demands. Storage capacities typically range from seasonal storage in the east to multi-annual and decadal-scale storage in the drier west. However, most dams in the US were designed with limited knowledge regarding the range, frequency, and persistence of hydroclimatic extremes. Demands for water supplied by these dams have likewise changed. Furthermore, many dams in the US are now reaching or have already exceeded their economic design life. The converging issues of aging dams, improved knowledge of hydroclimatic variability, and evolving demands for dam services result in a pressing need to evaluate existing reservoir capacities with respect to contemporary water demands, long term hydroclimatic variability, and service reliability into the future. Such an effort is possible given the recent development of two datasets that respectively address hydroclimatic variability in the conterminous United States over the past 555 years and human water demand related water stress over the same region. The first data set is a paleoclimate reconstruction of streamflow variability across the CONUS region based on a tree-ring informed reconstruction of the Palmer Drought Severity Index. This streamflow reconstruction suggested that wet spells with shorter drier spells were a key feature of 20th century streamflow compared with the preceding 450 years. The second data set in an annual cumulative drought index that is a measure of water balance based on water supplied through precipitation and water demands based on evaporative demands, agricultural, urban, and industrial demands. This index identified urban and regional hotspots that were particularly dependent on water

  11. Characterization of biocenosis in the storage-reservoirs of liquid radioactive wastes of 'Mayak' PA

    Energy Technology Data Exchange (ETDEWEB)

    Pryakhin, E.; Tryapitsina, G.; Andreyev, S.; Akleyev, A. [Urals Research Center for Radiation Medicine - URCRM (Russian Federation); Mokrov, Y.; Ivanov, I. [Mayak PA (Russian Federation)

    2014-07-01

    A number of storage-reservoirs of liquid radioactive wastes of 'Mayak' Production Association ('Mayak' PA) with different levels of radioactive contamination: reservoir R-17 ('Staroye Boloto'), reservoir R-9 (Lake Karachay), reservoirs of the Techa Cascade R-3 (Koksharov pond), R-4 (Metlinsky pond), R-10 and R-11 is located in Chelyabinsk Oblast (Russia). The operation of these reservoirs began in 1949-1964. Full-scale hydro-biological studies of these reservoirs were started in 2007. The research into the status of biocenosis of these storage reservoirs of liquid radioactive wastes of 'Mayak' PA was performed in 2007 - 2011. The status of biocenosis was evaluated in accordance with the status of following communities: bacterio-plankton, phytoplankton, zooplankton, zoo-benthos, macrophytes and ichthyofauna. The status of ecosystems was determined by radioactive and chemical contamination of water bodies. The results of hydro-biological investigations showed that no changes in the status of biota in reservoir R-11 were revealed as compared to the biological parameters of the water bodies of this geographical zone. In terms of biological parameters the status of the ecosystem of the reservoir R-11 is characterized by a sufficient biological diversity, and can be considered acceptable. The ecosystem of the reservoir R-10 maintains its functional integrity, although there were registered negative effects in the zoo-benthos community associated with the decrease in the parameters of the development of pelophylic mollusks that live at the bottom of the water body throughout the entire life cycle. In reservoir R-4 the parameters of the development of phytoplankton did not differ from those in Reservoirs R-11 and R-10; however, a significant reduction in the quantity of Cladocera and Copepoda was registered in the zooplankton community, while in the zoo-benthos there were no small mollusks that live aground throughout the entire life

  12. Enhancing Endurance of Huge-Capacity Flash Storage Systems by Selectively Replacing Data Blocks

    Science.gov (United States)

    Wang, Wei-Neng; Ni, Kai; Ma, Jian-She; Wang, Zong-Chao; Zhao, Yi; Pan, Long-Fa

    The wear leveling is a critical factor which significantly impacts the lifetime and the performance of flash storage systems. To extend lifespan and reduce memory requirements, this paper proposed an efficient wear leveling without substantially increasing overhead and without modifying Flash Translation Layer (FTL) for huge-capacity flash storage systems, which is based on selective replacement. Experimental results show that our design levels the wear of different physical blocks with limited system overhead compared with previous algorithms.

  13. Study of nuclear waste storage capacity at Yucca mountain repository

    International Nuclear Information System (INIS)

    Zhou Wei; Apted, M.; Kessler, J.H.

    2008-01-01

    The Yucca Mountain repository is applying license for storing 70000 MTHM nuclear waste including commercial spent nuclear fuel (CSNF) and defense high-level radioactive waste (HLW). The 70000 MTHM is a legal not the technical limit. To study the technical limit, the Electric Power Research Institute (EPRI) carried out a systematic study to explore the potential impact if the repository will accept more waste. This paper describes the model and results for evaluating the spent-fuel disposal capacity for a repository at Yucca Mountain from the thermal and hydrological point of view. Two proposed alternative repository designs are analyzed, both of which would fit into the currently well-characterized site and, therefore, not necessitating any additional site characterization at Yucca Mountain. The two- and three-dimensional models for coupled thermo-hydrological analysis extends from the surface to the water table, covering all the major and subgroup rock layers of the planned repository, as well as formations above and below the repository horizon. A dual-porosity and dual-permeability approach is used to model coupled heat and mass transfer through fracture formations. The waste package heating and ventilation are all assumed to follow those of the current design. The results show that the repository is able to accommodate three times the amount of spent fuel compared to the current design, without extra spatial expansion or exceeding current thermal and hydrological constraints. (authors)

  14. Reactivation capacity by latency-reversing agents ex vivo correlates with the size of the HIV-1 reservoir.

    Science.gov (United States)

    Darcis, Gilles; Bouchat, Sophie; Kula, Anna; Van Driessche, Benoit; Delacourt, Nadège; Vanhulle, Caroline; Avettand-Fenoel, Véronique; De Wit, Stéphane; Rohr, Olivier; Rouzioux, Christine; Van Lint, Carine

    2017-01-14

    HIV-1 reservoirs are the major hurdle to virus clearance in combination antiretroviral therapy (cART)-treated patients. An approach to eradicating HIV-1 involves reversing latency in cART-treated patients to make latent cells visible to the host immune system. Stimulation of patient cell cultures with latency-reversing agents (LRAs) ex vivo results in heterogeneous responses among HIV-infected patients. Determinants of this heterogeneity are unknown and consequently important to determine. Here, we grouped and retrospectively analyzed the data from our two recent HIV-1 reactivation studies to investigate the role of the HIV-1 reservoir size in the reactivation capacity by LRAs in ex vivo cultures of CD8-depleted peripheral blood mononuclear cells (PBMCs) isolated from 54 cART-treated patients and of resting CD4 T cells isolated from 30 cART-treated patients. Our results established a statistically relevant positive correlation between the HIV-1 reservoir size measured by total cell-associated HIV-1 DNA and the frequency of positive HIV-1 recovery measurements in response to various LRAs in ex vivo cultures of cells isolated from cART-treated HIV aviremic patients. HIV-1 reservoir size also correlated with the extracellular HIV-1 RNA median level measured in supernatants of cell cultures following LRA treatments. However, we identified HIV patients whose positive measurements frequency and median level of extracellular HIV-1 RNA deviated from linearity relative to their corresponding HIV reservoir size. We demonstrated that the reservoir size is one predictive marker of LRA effectiveness but this parameter alone is not sufficient. The identification of other predictive markers is necessary to predict the success of HIV anti-latency approaches.

  15. Impacts of shifting fire regime on ecosystem carbon storage capacity in the interior Alaskan forests

    Science.gov (United States)

    Li, D.; Kelly, R.; Hu, F.; Luo, Y.

    2012-12-01

    Fire is the primary disturbance in the boreal forest, and variations in fire regimes have important ecological, biogeochemical, and socioeconomic implications. Recent widespread burning throughout the biome has been convincingly linked to climatic warming, with expectations of increased burning with future climate change. However, fire-regime dynamics are scale-dependent, and it is unclear whether empirical climate-fire relationships derived from the short observational record are applicable to future projections. Paleo-fire reconstructions offer a valuable extension to historical fire records by providing a context for ongoing change and offering insights to the causes and consequences of fire regime shifts over decades to millennia. The main objectives of this study are to address 1) how fire regime shift impacts ecosystem C dynamics at a millennial time scale; and 2) which factor is more important in regulating the dynamics of ecosystem C storage capacity at decades to millennium scales among fire, CO2 and temperature. In this study, the REGIME model (Weng et al. JGR, 2012) has been modified to evaluate the dynamics of ecosystem C storage capacity (the theoretic capacity of an ecosystem to store C) since 3000 years BP for the black spruce forests in interior Alaska under the influence of changing fire regime, rising atmospheric CO2 concentration, and climate warming, all of which were derived from paleo-data. In addition, C storage capacity was also modeled through the 21 century using IPCC scenarios for CO2 and temperature, and fire regime scenario derived based on a paleo-fire dataset. Overall, fire frequency has been constant but fire severity has increased significantly since 3000 years BP for the studied area. Our results indicate that this fire regime shifting alone or in combination with temperature and/or CO2 always decrease ecosystem C storage capacity over the past 3000 years. Among the single factors, fire regime shifting results in the greatest

  16. Sensitivity Analysis of Time Length of Photovoltaic Output Power to Capacity Configuration of Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Mingqi Wang

    2017-10-01

    Full Text Available Time interval and time length are two important indexes when analyzing the active output data of photovoltaic (PV power stations. When the time interval is constant, the length of time is too small, and the included information is less, resulting in a lack and distortion of information; it the length of time is too large, the included information is redundant and complicated, resulting in unnecessary increases of storage capacity and calculation. Therefore, it is important to determine the appropriate length of data for the analysis of PV output data. In this paper, firstly, the output data of a PV power station is analyzed statistically, and the preliminary conclusions for time length selection are obtained by autocorrelation analysis. Based on the weather characteristics, clustering analysis methods and statistical principles are used to analyze the data and optimal sample capacity estimation, respectively, for different types of photovoltaic output data and determine the required data time length at the time of analyzing the PV power plant output data, the relationship between energy storage capacity demand and data length is investigated, the rationality of the length of the selected time is verified. Meanwhile, the energy storage system capacity configuration based on the optimal data time length is given. The results show that the requirement of data volume of energy storage system capacity configuration can be met when the time length of the PV output data is 23 days.

  17. CO2 Saline Storage Demonstration in Colorado Sedimentary Basins. Applied Studies in Reservoir Assessment and Dynamic Processes Affecting Industrial Operations

    Energy Technology Data Exchange (ETDEWEB)

    Nummedal, Dag [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Doran, Kevin [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Sitchler, Alexis [Trustees Of The Colorado School Of Mines, Golden, CO (United States); McCray, John [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Mouzakis, Katherine [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Glossner, Andy [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Mandernack, Kevin [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Gutierrez, Marte [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Pranter, Matthew [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Rybowiak, Chris [Trustees Of The Colorado School Of Mines, Golden, CO (United States)

    2012-09-30

    This multitask research project was conducted in anticipation of a possible future increase in industrial efforts at CO2 storage in Colorado sedimentary basins. Colorado is already the home to the oldest Rocky Mountain CO2 storage site, the Rangely Oil Field, where CO2-EOR has been underway since the 1980s. The Colorado Geological Survey has evaluated storage options statewide, and as part of the SW Carbon Sequestration Partnership the Survey, is deeply engaged in and committed to suitable underground CO2 storage. As a more sustainable energy industry is becoming a global priority, it is imperative to explore the range of technical options available to reduce emissions from fossil fuels. One such option is to store at least some emitted CO2 underground. In this NETL-sponsored CO2 sequestration project, the Colorado School of Mines and our partners at the University of Colorado have focused on a set of the major fundamental science and engineering issues surrounding geomechanics, mineralogy, geochemistry and reservoir architecture of possible CO2 storage sites (not limited to Colorado). Those are the central themes of this final report and reported below in Tasks 2, 3, 4, and 6. Closely related to these reservoir geoscience issues are also legal, environmental and public acceptance concerns about pore space accessibility—as a precondition for CO2 storage. These are addressed in Tasks 1, 5 and 7. Some debates about the future course of the energy industry can become acrimonius. It is true that the physics of combustion of hydrocarbons makes it impossible for fossil energy to attain a carbon footprint anywhere nearly as low as that of renewables. However, there are many offsetting benefits, not the least that fossil energy is still plentiful, it has a global and highly advanced distribution system in place, and the footprint that the fossil energy infrastructure occupies is

  18. Boar sperm storage capacity of BTS and Androhep Plus: viability, motility, capacitation, and tyrosine phosphorylation.

    Science.gov (United States)

    Dubé, Charlotte; Beaulieu, Martin; Reyes-Moreno, Carlos; Guillemette, Christine; Bailey, Janice L

    2004-09-01

    Androhep Plus, a long-term extender (up to 7 days) and Beltsville Thawing Solution (BTS), a short-term extender (up to 3 days), are commonly used for liquid storage of porcine semen. To test the hypothesis that modifications in sperm viability, motility, chlortetracycline (CTC) fluorescence patterns, and protein tyrosine phosphorylation occur during semen storage in extenders, we compared these end points at different periods of storage in either Androhep Plus or BTS. Sperm from five boars were assessed daily over 12 days of storage (n = 5 ejaculates from different boars). Viability was not different (P BTS (P BTS. A tyrosine-phosphorylated protein of Mr 21,000 appeared after 10 days in sperm incubated in BTS, and was identified as a phospholipid hydroperoxide glutathione peroxidase. Therefore, modifications in viability, motility, CTC fluorescence patterns, and sperm protein tyrosine phosphorylation were apparent during sperm storage in extenders; these may affect the fertilizing capacity of the semen.

  19. Engineering program in order to increase the irradiated fuel storage capacity in pool facilities of Juragua

    International Nuclear Information System (INIS)

    Rodriguez R, J.

    1996-01-01

    In 1993, a technical program in the spent fuel storage area of Nuclear Plant Juragua was launched. Such a program tries to carry out an engineering assessment of the possibility of increasing the spent fuel storage capacity in pool storage facilities by using high density racks (re-racking) instead of the original (non-compact) ones. The purpose of the above-mentioned program is to evaluate possible solutions that can be applied to the construction works prior to plant operation. The first stage of the program for the 1994-95 period is an ongoing Engineering-Economic Feasibility Study (EEFS), which endeavors to examine the capabilities of the reloading pool in Unit-1 Reactor building and long-term storage pool in auxiliary building in high density storage conditions. Technical details of the EEFS and reached results and difficulties are described. (author). 5 refs., 2 figs

  20. Reservoir characterization and final pre-test analysis in support of the compressed-air-energy-storage Pittsfield aquifer field test in Pike County, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; McCann, R.A.

    1983-06-01

    The work reported is part of a field experimental program to demonstrate and evaluate compressed air energy storage in a porous media aquifer reservoir near Pittsfield, Illinois. The reservoir is described. Numerical modeling of the reservoir was performed concurrently with site development. The numerical models were applied to predict the thermohydraulic performance of the porous media reservoir. This reservoir characterization and pre-test analysis made use of evaluation of bubble development, water coning, thermal development, and near-wellbore desaturation. The work was undertaken to define the time required to develop an air storage bubble of adequate size, to assess the specification of instrumentation and above-ground equipment, and to develop and evaluate operational strategies for air cycling. A parametric analysis was performed for the field test reservoir. (LEW)

  1. Trophic State Evolution and Nutrient Trapping Capacity in a Transboundary Subtropical Reservoir: A 25-Year Study

    Science.gov (United States)

    Cunha, Davi Gasparini Fernandes; Benassi, Simone Frederigi; de Falco, Patrícia Bortoletto; do Carmo Calijuri, Maria

    2016-03-01

    Artificial reservoirs have been used for drinking water supply, other human activities, flood control and pollution abatement worldwide, providing overall benefits to downstream water quality. Most reservoirs in Brazil were built during the 1970s, but their long-term patterns of trophic status, water chemistry, and nutrient removal are still not very well characterized. We aimed to evaluate water quality time series (1985-2010) data from the riverine and lacustrine zones of the transboundary Itaipu Reservoir (Brazil/Paraguay). We examined total phosphorus and nitrogen, chlorophyll a concentrations, water transparency, and phytoplankton density to look for spatial and temporal trends and correlations with trophic state evolution and nutrient retention. There was significant temporal and spatial water quality variation ( P Itaipu and led to relatively low removal percentages. Our study suggested that water quality problems may be more pronounced immediately after the filling phase of the artificial reservoirs, associated with the initial decomposition of drowned vegetation at the very beginning of reservoir operation.

  2. Charge Modulation in Graphitic Carbon Nitride as a Switchable Approach to High-Capacity Hydrogen Storage.

    Science.gov (United States)

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C

    2015-11-01

    Electrical charging of graphitic carbon nitride nanosheets (g-C4 N3 and g-C3 N4 ) is proposed as a strategy for high-capacity and electrocatalytically switchable hydrogen storage. Using first-principle calculations, we found that the adsorption energy of H2 molecules on graphitic carbon nitride nanosheets is dramatically enhanced by injecting extra electrons into the adsorbent. At full hydrogen coverage, the negatively charged graphitic carbon nitride achieves storage capacities up to 6-7 wt %. In contrast to other hydrogen storage approaches, the storage/release occurs spontaneously once extra electrons are introduced or removed, and these processes can be simply controlled by switching on/off the charging voltage. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Importantly, g-C4 N3 has good electrical conductivity and high electron mobility, which can be a very good candidate for electron injection/release. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ultra-high hydrogen storage capacity of Li-decorated graphyne: A first-principles prediction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hongyu; Zhang Meng; Zhao Lixia; Luo Youhua [Department of Physics, East China University of Science and Technology, Shanghai 200237 (China); Zhao Mingwen; Bu Hongxia; He Xiujie [School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 Shandong (China)

    2012-10-15

    Graphyne, consisting of sp- and sp{sup 2}-hybridized carbon atoms, is a new member of carbon allotropes which has a natural porous structure. Here, we report our first-principles calculations on the possibility of Li-decorated graphyne as a hydrogen storage medium. We predict that Li-doping significantly enhances the hydrogen storage ability of graphyne compared to that of pristine graphyne, which can be attributed to the polarization of H{sub 2} molecules induced by the charge transfer from Li atoms to graphyne. The favorite H{sub 2} molecules adsorption configurations on a single side and on both sides of a Li-decorated graphyne layer are determined. When Li atoms are adsorbed on one side of graphyne, each Li can bind four H{sub 2} molecules, corresponding to a hydrogen storage capacity of 9.26 wt. %. The hydrogen storage capacity can be further improved to 15.15 wt. % as graphyne is decorated by Li atoms on both sides, with an optimal average binding energy of 0.226 eV/H{sub 2}. The results show that the Li-decorated graphyne can serve as a high capacity hydrogen storage medium.

  4. Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO2 Storage Efficiency. A Reservoir Simulation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Okwen, Roland [University of Illinois, Champaign, IL (United States); Frailey, Scott [University of Illinois, Champaign, IL (United States); Leetaru, Hannes [University of Illinois, Champaign, IL (United States); Moulton, Sandy [Illinois State Geological Survey, Champaign, IL (United States)

    2014-09-30

    The storage potential and fluid movement within formations are dependent on the unique hydraulic characteristics of their respective depositional environments. Storage efficiency (E) quantifies the potential for storage in a geologic depositional environment and is used to assess basinal or regional CO2 storage resources. Current estimates of storage resources are calculated using common E ranges by lithology and not by depositional environment. The objectives of this project are to quantify E ranges and identify E enhancement strategies for different depositional environments via reservoir simulation studies. The depositional environments considered include deltaic, shelf clastic, shelf carbonate, fluvial deltaic, strandplain, reef, fluvial and alluvial, and turbidite. Strategies considered for enhancing E include CO2 injection via vertical, horizontal, and deviated wells, selective completions, water production, and multi-well injection. Conceptual geologic and geocellular models of the depositional environments were developed based on data from Illinois Basin oil fields and gas storage sites. The geologic and geocellular models were generalized for use in other US sedimentary basins. An important aspect of this work is the development of conceptual geologic and geocellular models that reflect the uniqueness of each depositional environment. Different injection well completions methods were simulated to investigate methods of enhancing E in the presence of geologic heterogeneity specific to a depositional environment. Modeling scenarios included horizontal wells (length, orientation, and inclination), selective and dynamic completions, water production, and multiwell injection. A Geologic Storage Efficiency Calculator (GSECalc) was developed to calculate E from reservoir simulation output. Estimated E values were normalized to diminish their dependency on fluid relative permeability. Classifying depositional environments according to

  5. A central capacity limit to the simultaneous storage of visual and auditory arrays in working memory.

    Science.gov (United States)

    Saults, J Scott; Cowan, Nelson

    2007-11-01

    If working memory is limited by central capacity (e.g., the focus of attention; N. Cowan, 2001), then storage limits for information in a single modality should apply also to the simultaneous storage of information from different modalities. The authors investigated this by combining a visual-array comparison task with a novel auditory-array comparison task in 5 experiments. Participants were to remember only the visual, only the auditory (unimodal memory conditions), or both arrays (bimodal memory conditions). Experiments 1 and 2 showed significant dual-task tradeoffs for visual but not for auditory capacity. In Experiments 3-5, the authors eliminated modality-specific memory by using postperceptual masks. Dual-task costs occurred for both modalities, and the number of auditory and visual items remembered together was no more than the higher of the unimodal capacities (visual: 3-4 items). The findings suggest a central capacity supplemented by modality- or code-specific storage and point to avenues for further research on the role of processing in central storage. 2007 APA

  6. The effect of oxygen storage capacity on the dynamic characteristics of an automotive catalytic converter

    International Nuclear Information System (INIS)

    Shamim, Tariq

    2008-01-01

    Automotive catalytic converters, which are employed to reduce engine exhaust emissions, are subjected to highly transient conditions during a typical driving cycle. These transient conditions arise from changes in driving mode, the hysteresis and flow lags of the feedback control system, and result in fluctuations of air-fuel ratio, exhaust gas flow rates and temperatures. The catalyst performance is also strongly influenced by the oxygen storage capacity. This paper presents a computational investigation of the effect of oxygen storage capacity on the dynamic behavior of an automotive catalytic converter subjected to modulations in exhaust gases. The modulations are generated by forcing the temporal variations in exhaust gases air-fuel ratio, gas flow rates and temperatures. The study employs a single-channel based, one-dimensional, non-adiabatic model. The results show that the imposed modulations cause a significant departure in the catalyst behavior from its steady behavior, and the oxygen storage capacity plays an important role in determining the catalyst's response to the imposed modulations. Modulations and oxygen storage capacity are found to have relatively greater influence on the catalyst's performance near stoichiometric conditions

  7. Cold storage affects mortality, body mass, lifespan, reproduction and flight capacity of Praon volucre (Hymenoptera: Braconidae)

    NARCIS (Netherlands)

    Lins, J.C.; Bueno, V.H.P.; Sidney, L.A.; Silva, D.B.; Sampaio, M.V.; Pereira, J.M.; Nomelini, Q.S.S.; Lenteren, van J.C.

    2013-01-01

    The possibility of storing natural enemies at low temperatures is important for the mass production of biological control agents. We evaluated the effect of different periods of cold storage on immature mortality, mummy body mass, lifespan, reproduction and flight capacity of the parasitoid Praon

  8. Numerical simulations of enhanced gas recovery at the Zalezcze gas field in Poland confirm high CO2 storage capacity and mechanical integrity

    International Nuclear Information System (INIS)

    Klimkowski, Lukasz; Nagy, Stanislaw; Papiernik, Bartosz; Orlic, Bogdan; Kempka, Thomas

    2015-01-01

    Natural gas from the Zalecze gas field located in the Fore-Sudetic Monocline of the Southern Permian Basin has been produced since November 1973, and continuous gas production led to a decrease in the initial reservoir pressure from 151 bar to about 22 bar until 2010. We investigated a prospective enhanced gas recovery operation at the Zalecze gas field by coupled numerical hydro-mechanical simulations to account for the CO 2 storage capacity, trapping efficiency and mechanical integrity of the reservoir, cap-rock and regional faults. Dynamic flow simulations carried out indicate a CO 2 storage capacity of 106.6 Mt with a trapping efficiency of about 43% (45.8 Mt CO 2 ) established after 500 years of simulation. Two independent strategies on the assessment of mechanical integrity were followed by two different modeling groups resulting in the implementation of field- to regional-scale hydro-mechanical simulation models. The simulation results based on application of different constitutive laws for the lithological units show deviations of 31% to 93% for the calculated maximum vertical displacements at the reservoir top. Nevertheless, results of both simulation strategies indicate that fault reactivation generating potential leakage pathways from the reservoir to shallower units is very unlikely due to the low fault slip tendency (close to zero) in the Zechstein cap-rocks. Consequently, our simulation results also emphasise that the supra- and sub-saliferous fault systems at the Zalecze gas field are independent and very likely not hydraulically connected. Based on our simulation results derived from two independent modeling strategies with similar simulation results on fault and cap-rock integrity, we conclude that the investigated enhanced gas recovery scheme is feasible, with a negligibly low risk of relevant fault reactivation or formation fluid leakage through the Zechstein cap-rocks. (authors)

  9. Evolution of antioxidant capacity of blend juice made from beetroot, carrot and celery during refrigerated storage

    Directory of Open Access Journals (Sweden)

    Alina G. PROFIR

    2013-12-01

    Full Text Available Vegetable juice is a valuable source of antioxidants because it contains a significant amount of bioactive compounds and it can be a convenient way of consumption. The antioxidant capacity of vegetables depends on a wide range of compounds like flavonoids, phenolic acids, aminoacids, ascorbic acid, tocopherols and pigments. The levels of individual antioxidants in food do not reflect their total antioxidant capacity, which could also depend on their synergism. The aim of this study is to compare the changes occurred on antioxidant capacity of vegetables juice during refrigerated storage after two different preservation processes: pasteurization and fermentation. A blend of juice obtained from beetroot, carrot and celery has been stored at temperature of 4ºC for two weeks. During this period of time antioxidant activity, total flavonoids and polyphenolic compounds have been quantified. Our results have shown that fermented juice is an important source of antioxidant compounds with a good stability during storage.

  10. Review of private sector treatment, storage, and disposal capacity for radioactive waste. Revision 1

    International Nuclear Information System (INIS)

    Smith, M.; Harris, J.G.; Moore-Mayne, S.; Mayes, R.; Naretto, C.

    1995-01-01

    This report is an update of a report that summarized the current and near-term commercial and disposal of radioactive and mixed waste. This report was capacity for the treatment, storage, dating and written for the Idaho National Engineering Laboratory (INEL) with the objective of updating and expanding the report entitled ''Review of Private Sector Treatment, Storage, and Disposal Capacity for Radioactive Waste'', (INEL-95/0020, January 1995). The capacity to process radioactively-contaminated protective clothing and/or respirators was added to the list of private sector capabilities to be assessed. Of the 20 companies surveyed in the previous report, 14 responded to the request for additional information, five did not respond, and one asked to be deleted from the survey. One additional company was identified as being capable of performing LLMW treatability studies and six were identified as providers of laundering services for radioactively-contaminated protective clothing and/or respirators

  11. Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli.

    Science.gov (United States)

    Brady, Timothy F; Störmer, Viola S; Alvarez, George A

    2016-07-05

    Visual working memory is the cognitive system that holds visual information active to make it resistant to interference from new perceptual input. Information about simple stimuli-colors and orientations-is encoded into working memory rapidly: In under 100 ms, working memory ‟fills up," revealing a stark capacity limit. However, for real-world objects, the same behavioral limits do not hold: With increasing encoding time, people store more real-world objects and do so with more detail. This boost in performance for real-world objects is generally assumed to reflect the use of a separate episodic long-term memory system, rather than working memory. Here we show that this behavioral increase in capacity with real-world objects is not solely due to the use of separate episodic long-term memory systems. In particular, we show that this increase is a result of active storage in working memory, as shown by directly measuring neural activity during the delay period of a working memory task using EEG. These data challenge fixed-capacity working memory models and demonstrate that working memory and its capacity limitations are dependent upon our existing knowledge.

  12. Improved Characterization and Modeling of Tight Oil Formations for CO2 Enhanced Oil Recovery Potential and Storage Capacity Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, James; Smith, Steven; Kurz, Bethany; Hawthorne, Steven; Jin, Lu; Bosshart, Nicholas; Torres, Jose; Nyberg, Carolyn; Heebink, Loreal; Hurley, John

    2018-03-09

    Tight oil formations such as those in the Bakken petroleum system are known to hold hundreds of billions of barrels of oil in place; however, the primary recovery factor for these plays is typically less than 10%. Tight oil formations, including the Bakken Formation, therefore, may be attractive candidates for enhanced oil recovery (EOR) using CO2. Multiphase fluid behavior and flow in fluid-rich shales can vary substantially depending on the size of pore throats, and properties such as fluid viscosity and density are much different in nanoscale pores than in macroscale pores. Thus it is critical to understand the nature and distribution of nano-, micro-, and macroscale pores and fracture networks. To address these issues, the Energy & Environmental Research Center (EERC) has been conducting a research program entitled “Improved Characterization and Modeling of Tight Oil Formations for CO2 Enhanced Oil Recovery Potential and Storage Capacity Estimation.” The objectives of the project are 1) the use of advanced characterization methods to better understand and quantify the petrophysical and geomechanical factors that control CO2 and oil mobility within tight oil formation samples, 2) the determination of CO2 permeation and oil extraction rates in tight reservoir rocks and organic-rich shales of the Bakken, and 3) the integration of the laboratory-based CO2 permeation and oil extraction data and the characterization data into geologic models and dynamic simulations to develop predictions of CO2 storage resource and EOR in the Bakken tight oil formation. A combination of standard and advanced petrophysical characterization techniques were applied to characterize samples of Bakken Formation tight reservoir rock and shales from multiple wells. Techniques included advanced computer tomography (CT) imaging, scanning electron microscopy (SEM) techniques, whole-core and micro x-ray CT imaging, field emission (FE) SEM, and focused ion beam (FIB) SEM. Selected samples

  13. Tailoring the thermostability and hydrogen storage capacity of Li decorated carbon materials by heteroatom doping

    Science.gov (United States)

    Long, Jun; Li, Jieyuan; Nan, Fang; Yin, Shi; Li, Jianjun; Cen, Wanglai

    2018-03-01

    Li decorated graphene is supposed to be a promising material for the hydrogen storage, which can be further improved by heteroatom doping. But a unified promoting mechanism for various doping types and species are still lacking, which hinders the rational design of advanced materials. The potential of N/B doped Li decorated graphene for hydrogen storage is investigated with DFT calculations. A covalent interaction between Li and the graphene substrates is identified to control the thermostability and hydrogen storage capacity (HSC) of the Li decorated substrate, which is in turn subject to the electronegativity of doping species and the doping types. Additionally, a conceptual descriptor is proposed to predict the HSC of Li decorated graphene. These results provide a unified explanation and prediction of the effects of heteroatom doping on Li decorated carbon materials for hydrogen storage.

  14. Moisture buffer capacity of cement-lime plasters with enhanced thermal storage capacity

    Science.gov (United States)

    Fořt, Jan; Pavlíková, Milena; Pavlík, Zbyšek

    2017-07-01

    Indoor air temperature and relative humidity represent important parameters for health and working efficiency of buildings occupants. Beside the moderation of temperature, investigation of hygric properties of building materials with connection to indoor relative humidity variation became recognized as a relevant factor for energy efficient building maintenance. The moisture buffer value introduced in the Nordtest protocol can be used for estimation of moisture buffer capacity of building materials or their multi-layered systems. In this paper, both the ideal and real moisture buffer values are examined on the basis of simulation of diurnal relative humidity fluctuations in plasters with incorporated PCM admixture. Retrieved data points to a complex effect of the tested plasters on possible moderation of buildings interior climate.

  15. Technique for determining lithological composition and effective holding capacity of igneoussedimentary reservoirs according to the well logging data

    Energy Technology Data Exchange (ETDEWEB)

    Shnurman, G.A.; Krylova, O.V.

    1981-01-01

    Technique for determining lithological composition and effective holding capacity of igneous-sedimentary reservoirs on the basis of well logging data is described. Gamma-gamma logs indicate the presence in the section of rocks of low mineralogical density. On the basis of neutron logging curves the conclusion is made on a wide spread in the section of rocks of low mineralogical density as well as finely dispersed minerals with a high combined water saturation. The established statistical correlation between porosity and total hydrogen content in rocks allows to determine approximately the general porosity of rocks and combined water content only on the basis of neutron logging data.

  16. Near-future perspective of CO2 aquifer storage in Japan: Site selection and capacity

    International Nuclear Information System (INIS)

    Xiaochun Li; Ohsumi, T.; Koide, H.; Akimoto, K.; Kotsubo, H.

    2005-01-01

    Japan has started a 5-year national R and D project titled 'Underground Storage of Carbon Dioxide' to reduce CO 2 emissions into the atmosphere. One of the targets of the project is to select a few preferred storage sites as candidates for large-scale demonstration tests in the next phase, and for commercial use in the near future. For this purpose, we have ranked the sites in terms of capacity potential and CO 2 supply potential, both of which significantly affect the storage economics. Here, the supply potential for a storage site is characterized by the annual amount of the stationary emission sources and the site-source distance; that is, how much CO 2 is available and how far away it is. In total, 69 sites on land and offshore and 113 fossil fuel fired power plants are being considered. Finally, using the data on capacities and supply potentials, the sites are graded into three ranks. As a result, a map that shows the rankings of each site has been made. The sites in rank 1 are recommended as near-future candidate sites. These sites have a comparatively large capacity and can obtain a reasonable amount of CO 2 from nearby sources without requiring a main pipeline. (author)

  17. Counting the Photons: Determining the Absolute Storage Capacity of Persistent Phosphors

    Directory of Open Access Journals (Sweden)

    David Van der Heggen

    2017-07-01

    Full Text Available The performance of a persistent phosphor is often determined by comparing luminance decay curves, expressed in cd/m 2 . However, these photometric units do not enable a straightforward, objective comparison between different phosphors in terms of the total number of emitted photons, as these units are dependent on the emission spectrum of the phosphor. This may lead to incorrect conclusions regarding the storage capacity of the phosphor. An alternative and convenient technique of characterizing the performance of a phosphor was developed on the basis of the absolute storage capacity of phosphors. In this technique, the phosphor is incorporated in a transparent polymer and the measured afterglow is converted into an absolute number of emitted photons, effectively quantifying the amount of energy that can be stored in the material. This method was applied to the benchmark phosphor SrAl 2 O 4 :Eu,Dy and to the nano-sized phosphor CaS:Eu. The results indicated that only a fraction of the Eu ions (around 1.6% in the case of SrAl 2 O 4 :Eu,Dy participated in the energy storage process, which is in line with earlier reports based on X-ray absorption spectroscopy. These findings imply that there is still a significant margin for improving the storage capacity of persistent phosphors.

  18. The Potential for Energy Storage to Provide Peaking Capacity in California Under Increased Penetration of Solar Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-14

    In this report, we examine the potential for replacing conventional peaking capacity in California with energy storage, including analysis of the changing technical potential with increased storage deployment and the effect of PV deployment. We examine nine years of historic load data, a range of storage durations (2-8 hours), and a range of PV penetration levels (0%-30%). We demonstrate how PV increases the ability of storage to reduce peak net demand. In the scenarios analyzed, the expected penetration of PV in California in 2020 could more than double the potential for 4-hour energy storage to provide capacity services.

  19. Economic feasibility of pipe storage and underground reservoir storage options for power-to-gas load balancing

    International Nuclear Information System (INIS)

    Budny, Christoph; Madlener, Reinhard; Hilgers, Christoph

    2015-01-01

    Highlights: • Study of cost effectiveness of power-to-gas and storage of H 2 and renewable methane. • NPV analysis and Monte Carlo simulation to address fuel and electricity price risks. • Gas sale is compared with power and gas market arbitrage and balancing market gains. • Power-to-gas for linking the balancing markets for power and gas is not profitable. • Pipe storage is the preferred option for temporal arbitrage and balancing energy. - Abstract: This paper investigates the economic feasibility of power-to-gas (P2G) systems and gas storage options for both hydrogen and renewable methane. The study is based on a techno-economic model in which the net present value (NPV) method and Monte Carlo simulation of risks and price forward curves for the electricity and the gas market are used. We study three investment cases: a Base Case where the gas is directly sold in the market, a Storage & Arbitrage Case where temporal arbitrage opportunities between the electricity and the gas market are exploited, and a Storage & Balancing Case where the balancing markets (secondary reserve market for electricity, external balancing market for natural gas) are addressed. The optimal type and size of different centralized and decentralized storage facilities are determined and compared with each other. In a detailed sensitivity and cost analysis, we identify the key factors which could potentially improve the economic viability of the technological concepts assessed. We find that the P2G system used for bridging the balancing markets for power and gas cannot be operated profitably. For both, temporal arbitrage and balancing energy, pipe storage is preferred. Relatively high feed-in tariffs (100 € MW −1 for hydrogen, 130 € MW −1 for methane) are required to render pipe storage for P2G economically viable

  20. Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Gherardi, Fabrizio; Xu, Tianfu; Pruess, Karsten

    2007-09-07

    This paper presents numerical simulations of reactive transport which may be induced in the caprock of an on-shore depleted gas reservoir by the geological sequestration of carbon dioxide. The objective is to verify that CO{sub 2} geological disposal activities currently being planned for the study area are safe and do not induce any undesired environmental impact. In our model, fluid flow and mineral alteration are induced in the caprock by penetration of high CO{sub 2} concentrations from the underlying reservoir, where it was assumed that large amounts of CO{sub 2} have already been injected at depth. The main focus is on the potential effect of precipitation and dissolution processes on the sealing efficiency of caprock formations. Concerns that some leakage may occur in the investigated system arise because the seal is made up of potentially highly-reactive rocks, consisting of carbonate-rich shales (calcite+dolomite averaging up to more than 30% of solid volume fraction). Batch simulations and multi-dimensional 1D and 2D modeling have been used to investigate multicomponent geochemical processes. Numerical simulations account for fracture-matrix interactions, gas phase participation in multiphase fluid flow and geochemical reactions, and kinetics of fluid-rock interactions. The geochemical processes and parameters to which the occurrence of high CO{sub 2} concentrations are most sensitive are investigated by conceptualizing different mass transport mechanisms (i.e. diffusion and mixed advection+diffusion). The most relevant mineralogical transformations occurring in the caprock are described, and the feedback of these geochemical processes on physical properties such as porosity is examined to evaluate how the sealing capacity of the caprock could evolve in time. The simulations demonstrate that the occurrence of some gas leakage from the reservoir may have a strong influence on the geochemical evolution of the caprock. In fact, when a free CO{sub 2

  1. Parametric Study on the Dynamic Heat Storage Capacity of Building Elements

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, H.; Heiselberg, Per

    2007-01-01

    of onedimensional heat conduction in a slab with convective boundary condition was applied to quantify the dynamic heat storage capacity of a particular building element. The impact of different parameters, such as slab thickness, material properties and the heat transfer coefficient was investigated, as well...... of an element depended greatly on the heat transfer coefficient. For thin, light elements a significant increase in heat capacity due to the use of PCMs was found to be possible. The present study shows the impact and interrelation of geometrical and physical parameters which appreciably influence the heat...

  2. Estimation of Potential Carbon Dioxide Storage Capacities of Onshore Sedimentary Basins in Republic of Korea

    Science.gov (United States)

    Park, S.; Kim, J.; Lee, Y.

    2010-12-01

    The potential carbon dioxide storage capacities of the five main onshore sedimentary basins (Chungnam, Gyeongsang, Honam, Mungyeong, and Taebaeksan Basins) in Republic of Korea are estimated based on the methods suggested by the United States National Energy Technology Laboratory (NETL). The target geologic formations considered for geologic storage of carbon dioxide in the sedimentary basins are sandstone and coal beds. The density of carbon dioxide is set equal to 446.4 kg/m3. The adsorption capacity and density of coal (anthracite) are set equal to 2.71 × 10-2 kg/kg and 1.82 × 103 kg/m3, respectively. The average storage efficiency factors for sandstone and coal are set equal to 2.5% and 34.0%, respectively. The Chungnam Basin has the sandstone volume of 72 km3 and the coal volume of 1.24 km3. The average porosity of sandstone in the Chungnam Basin is 3.8%. As a result, the potential carbon dioxide storage capacities of sandstone and coal in the Chungnam Basin are estimated to be 31 Mton and 21 Mton, respectively. The Gyeongsang Basin has the sandstone volume of 1,960 km3. The average porosity of sandstone in the Gyeongsang Basin is 4.6%. As a result, the potential carbon dioxide storage capacity of sandstone in the Gyeongsang Basin is estimated to be 1,011 Mton. The Honam Basin has the sandstone volume of 8 km3 and the coal volume of 0.27 km3. The average porosity of sandstone in the Honam Basin is 1.9%. As a result, the potential carbon dioxide storage capacities of sandstone and coal in the Honam Basin are estimated to be 2 Mton and 5 Mton, respectively. The Mungyeong Basin has the sandstone volume of 60 km3 and the coal volume of 0.66 km3. The average porosity of sandstone in the Mungyeong Basin is 2.0%. As a result, the potential carbon dioxide storage capacities of sandstone and coal in the Mungyeong Basin are estimated to be 13 Mton and 11 Mton, respectively. The Taebaeksan Basin has the sandstone volume of 71 km3 and the coal volume of 0.73 km3. The

  3. The estimation of CO2 storage potential of gas-bearing shale complex at the early stage of reservoir characterization: the case of Baltic Basin (Poland).

    Science.gov (United States)

    Wójcicki, Adam; Jarosiński, Marek

    2017-04-01

    For the stage of shale gas production, like in the USA, prediction of the CO2 storage potential in shale reservoir can be performed by dynamic modeling. We have made an attempt to estimate this potential at an early stage of shale gas exploration in the Lower Paleozoic Baltic Basin, based on data from 3,800 m deep vertical well (without hydraulic fracking stimulation), supplemented with additional information from neighboring boreholes. Such an attempt makes a sense as a first guess forecast for company that explores a new basin. In our approach, the storage capacity is build by: (1) sorption potential of organic matter, (2) open pore space and (3) potential fracture space. the sequence. our estimation is done for 120 m long shale sequence including three shale intervals enriched with organic mater. Such an interval is possible to be fracked from a single horizontal borehole as known from hydraulic fracture treatment in the other boreholes in this region. The potential for adsorbed CO2 is determined from Langmuir isotherm parameters taken from laboratory measurements in case of both CH4 and CO2 adsorption, as well as shale density and volume. CO2 has approximately three times higher sorption capacity than methane to the organic matter contained in the Baltic Basin shales. Finally, due to low permeability of shale we adopt the common assumption for the USA shale basins that the CO2 will be able to reach effectively only 10% of theoretical total sorption volume. The pore space capacity was estimated by utilizing results of laboratory measurements of dynamic capacity for pores bigger than 10 nm. It is assumed for smaller pores adsorption prevails over free gas. Similarly to solution for sorption, we have assumed that only 10 % of the tight pore space will be reached by CO2. For fracture space we have considered separately natural (tectonic-origin) and technological (potentially produced by hydraulic fracturing treatment) fractures. From fracture density profile and

  4. Determination of installation capacity in reservoir hydro-power plants considering technical, economical and reliability indices

    DEFF Research Database (Denmark)

    Hosseini, S.M.H.; Forouzbakhsh, Farshid; Fotouh-Firuzabad, Mahmood

    2008-01-01

    One of the most important issues in planning the ‘‘reservoir” type of hydro-power plants (HPP) is to determine the installation capacity of the HPPs and estimate its annual energy value. In this paper, a method is presented. A computer program has been developed to analyze energy calculation...... the technical, economic and reliability indices will determine the installation capacity of an HPP. By applying the above-mentioned algorithm to an existing HPP named ‘‘Bookan” (located in the westnorth of Iran); the capacity of 30 MW is obtained....

  5. Modeling intermediate product selection under production and storage capacity limitations in food processing

    DEFF Research Database (Denmark)

    Kilic, Onur Alper; Akkerman, Renzo; Grunow, Martin

    2009-01-01

    In the food industry products are usually characterized by their recipes, which are specified by various quality attributes. For end products, this is given by customer requirements, but for intermediate products, the recipes can be chosen in such a way that raw material procurement costs...... with production and inventory planning, thereby considering the production and storage capacity limitations. The resulting model can be used to solve an important practical problem typical for many food processing industries....

  6. Analysis of the Storage Capacity in an Aggregated Heat Pump Portfolio

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Andersen, Palle; Pedersen, Tom Søndergård

    2015-01-01

    Energy storages connected to the power grid will be of great importance in the near future. A pilot project has investigated more than 100 single family houses with heat pumps all connected to the internet. The houses have large heat capacities and it is possible to move energy consumption to sui...... (scheduling) algorithm. The properties of this scheduling are investigated in the paper especially the flexibility and ability to trade on the intra-day regulating market is in focus....

  7. Rewritable multicolor fluorescent patterns for multistate memory devices with high data storage capacity.

    Science.gov (United States)

    Lu, Zhisong; Liu, Yingshuai; Hu, Weihua; Lou, Xiong Wen David; Li, Chang Ming

    2011-09-14

    We report a branched polyethyleneimine (BPEI)-quantum dot (QD) based rewritable fluorescent system with a multicolor recording mode, in which BPEI is both QD-multicolor patterning "writer" and data erasing "remover". This method could write distinct colors from size-tailored QDs to represent large numbers of logic states for high data storage capacity. This journal is © The Royal Society of Chemistry 2011

  8. Subgrid Parameterization of the Soil Moisture Storage Capacity for a Distributed Rainfall-Runoff Model

    Directory of Open Access Journals (Sweden)

    Weijian Guo

    2015-05-01

    Full Text Available Spatial variability plays an important role in nonlinear hydrologic processes. Due to the limitation of computational efficiency and data resolution, subgrid variability is usually assumed to be uniform for most grid-based rainfall-runoff models, which leads to the scale-dependence of model performances. In this paper, the scale effect on the Grid-Xinanjiang model was examined. The bias of the estimation of precipitation, runoff, evapotranspiration and soil moisture at the different grid scales, along with the scale-dependence of the effective parameters, highlights the importance of well representing the subgrid variability. This paper presents a subgrid parameterization method to incorporate the subgrid variability of the soil storage capacity, which is a key variable that controls runoff generation and partitioning in the Grid-Xinanjiang model. In light of the similar spatial pattern and physical basis, the soil storage capacity is correlated with the topographic index, whose spatial distribution can more readily be measured. A beta distribution is introduced to represent the spatial distribution of the soil storage capacity within the grid. The results derived from the Yanduhe Basin show that the proposed subgrid parameterization method can effectively correct the watershed soil storage capacity curve. Compared to the original Grid-Xinanjiang model, the model performances are quite consistent at the different grid scales when the subgrid variability is incorporated. This subgrid parameterization method reduces the recalibration necessity when the Digital Elevation Model (DEM resolution is changed. Moreover, it improves the potential for the application of the distributed model in the ungauged basin.

  9. Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations

    Directory of Open Access Journals (Sweden)

    Yuhong Chen

    2017-08-01

    Full Text Available The generalized gradient approximation (GGA function based on density functional theory is adopted to investigate the optimized geometrical structure, electron structure and hydrogen storage performance of Sc modified porous graphene (PG. It is found that the carbon ring center is the most stable adsorbed position for a single Sc atom on PG, and the maximum number of adsorbed H2 molecules is four with the average adsorption energy of −0.429 eV/H2. By adding a second Sc atom on the other side of the system, the hydrogen storage capacity of the system can be improved effectively. Two Sc atoms located on opposite sides of the PG carbon ring center hole is the most suitable hydrogen storage structure, and the hydrogen storage capacity reach a maximum 9.09 wt % at the average adsorption energy of −0.296 eV/H2. The adsorption of H2 molecules in the PG system is mainly attributed to orbital hybridization among H, Sc, and C atoms, and Coulomb attraction between negatively charged H2 molecules and positively charged Sc atoms.

  10. Social exclusion weakens storage capacity and attentional filtering ability in visual working memory.

    Science.gov (United States)

    Xu, Mengsi; Qiao, Lei; Qi, Senqing; Li, Zhiai; Diao, Liuting; Fan, Lingxia; Zhang, Lijie; Yang, Dong

    2018-01-01

    Social exclusion has been found to impair visual working memory (WM), while the underlying neural processes are currently unclear. Using two experiments, we tested whether the poor WM performance caused by exclusion was due to reduced storage capacity, impaired attentional filtering ability or both. The Cyberball game was used to manipulate social exclusion. Seventy-four female participants performed WM tasks while event-related potentials were recorded. In Experiment 1, participants were made to remember the orientations of red rectangles while ignoring salient green rectangles. Results showed that exclusion impaired the ability to filter out irrelevant items from WM, as reflected by the similar contralateral delay activity (CDA) amplitudes for one-target-one-distractor condition and two-targets condition, as well as the similar CDA amplitudes for two-targets-two-distractors condition and four-targets condition in excluded individuals. In Experiment 2, participants were asked to remember 1-5 colored squares. Results showed that exclusion reduced storage capacity, as the CDA amplitudes reached asymptote at loads of two items for exclusion group and at loads of three items for inclusion group. Together, these two experiments provided complementary evidence that WM deficits caused by social exclusion were due to reduced storage capacity and impaired attentional filtering ability. © The Author (2017). Published by Oxford University Press.

  11. Water chemistry, seepage investigation, streamflow, reservoir storage, and annual availability of water for the San Juan-Chama Project, northern New Mexico, 1942-2010

    Science.gov (United States)

    McKean, Sarah E.; Anderholm, Scott K.

    2014-01-01

    at Azotea Tunnel Outlet occurred from May through June, with a median duration of slightly longer than a month. Years with higher maximum daily streamflow generally are associated with higher annual streamflow than years with lower maximum daily streamflow. The amount of water that can be diverted for the SJCP is controlled by the availability of streamflow and is limited by several factors including legal limits for diversion, limits from the SJCP infrastructure including the size of the diversion dams and tunnels, the capacity of Heron Reservoir, and operational constraints that limit when water can be diverted. The average annual streamflow at Azotea Tunnel Outlet was 94,710 acre-feet, and the annual streamflow at Azotea Tunnel Outlet was approximately 75 percent of the annual streamflow available for the SJCP. The average annual percentage of available streamflow not diverted for the SJCP was 14 percent because of structural limitations of the capacity of infrastructure, 1 percent because of limitations of the reservoir storage capacity, and 29 percent because of the limitations from operations. For most years, the annual available streamflow not diverted for unknown reasons exceeded the sum of the water not diverted because of structural, capacity, and operational limitations.

  12. Valuation Of Multiple Hyro Reservoir Storage Systems In Competitive Electricity Markets

    OpenAIRE

    Felix, Bastian

    2014-01-01

    Increasing renewable generation results in growing supply uncertainty. By now hydrostorages are the most efficient way of smoothing uncertain power supply. In liberalized and competitive markets the valuation of hydro storages investment projects needs to take the market information and therefore the uncertainty of electricity prices into account in investment valuation. Besides the investment in new pump storage facilities the extension of existing storage sites may be an opportunity. Howeve...

  13. Co-extruded multilayer films for high capacity optical data storage

    Science.gov (United States)

    Christenson, Cory W.; Ryan, Chris; Valle, Brent; Saini, Anuj; Lott, Joseph; Johnson, Jack; Shiraldi, David; Weder, Christoph; Baer, Eric; Singer, Kenneth D.; Shan, Jie

    2012-10-01

    New approaches for optical data storage (ODS) applications are needed to meet the future requirements of applications in multimedia, archiving, security, and many others. Commercial data storage technologies are moving to threedimensional (3D) materials, but the capacity is limited by the fabrication cost and the number of layers that can be addressed using the reflection-based storage mechanism. We demonstrate here storage systems based on co-extrusion of multilayer (ML) films that can overcome these problems. The organic roll-to-roll films produced can easily be produced hundreds of meters in length, in a far simpler and cheaper manner than current manufacturing methods such as spin coating and lamination. The medium consists of alternating active and buffer layers, and data storage is demonstrated by writing images in 23 layers of 78 μm thick films by fluorescence (FL) quenching of an organic dye. The areal data resolution is at the diffraction limit of the CW Blu-ray (BR) laser employed, and the co-extrusion technique allows for small layer spacings, leading to a total bit density 1.2 Tb/cm3. We anticipate materials already demonstrated successful for 3D ODS will be adapted to this technique, as well as new systems developed, to take full advantage of this medium.

  14. Drought propagation in the Paraná Basin, Brazil: from rainfall deficits to impacts on reservoir storage

    Science.gov (United States)

    Melo, D. D.; Wendland, E.

    2017-12-01

    The sensibility and resilience of hydrologic systems to climate changes are crucial for estimating potential impacts of droughts, responsible for major economic and human losses globally. Understanding how droughts propagate is a key element to develop a predictive understanding for future management and mitigation strategies. In this context, this study investigated the drought propagation in the Paraná Basin (PB), Southeast Brazil, a major hydroelectricity producing region with 32 % (60 million people) of the country's population. Reservoir storage (RESS), river discharge (Q) and rainfall (P) data were used to assess the linkages between meteorological and hydrological droughts, characterized by the Standard Precipitation Index (SPI) and Streamflow Drought Index (SDI), respectively. The data are from 37 sub-basins within the PB, consisting of contributing areas of 37 reservoirs (250 km3 of stored water) within the PB for the period between 1995 and 2015. The response time (RT) of the hydrologic system to droughts, given as the time lag between P, Q and RESS, was quantified using a non-parametric statistical method that combines cumulative sums and Bootstrap resampling technique. Based on our results, the RTs of the hydrologic system of the PB varies from 0 to 6 months, depending on a number of aspects: lithology, topography, dam operation, etc. Linkages between SPI and SDI indicated that the anthropogenic control (dam operation) plays an important role in buffering drought impacts to downstream sub-basins: SDI decreased from upstream to downstream despite similar SPI values over the whole area. Comparisons between sub-basins, with variable drainage sizes (5,000 - 50,000 km2), confirmed the benefice of upstream reservoirs in reducing hydrological droughts. For example, the RT for a 4,800 km2 basin was 6 months between P and Q and 9 months between Q and RESS, under anthropogenic control. Conversely, the RT to precipitation for a reservoir subjected to natural

  15. Spatial Persistence of Macropores and Authigenic Clays in a Reservoir Sandstone: Implications for Enhanced Oil Recovery and CO2 Storage

    Science.gov (United States)

    Dewers, T. A.

    2015-12-01

    Multiphase flow in clay-rich sandstone reservoirs is important to enhanced oil recovery (EOR) and the geologic storage of CO2. Understanding geologic controls on pore structure allows for better identification of lithofacies that can contain, storage, and/or transmit hydrocarbons and CO2, and may result in better designs for EOR-CO2 storage. We examine three-dimensional pore structure and connectivity of sandstone samples from the Farnsworth Unit, Texas, the site of a combined EOR-CO2 storage project by the Southwest Regional Partnership on Carbon Sequestration (SWP). We employ a unique set of methods, including: robotic serial polishing and reflected-light imaging for digital pore-structure reconstruction; electron microscopy; laser scanning confocal microscopy; mercury intrusion-extrusion porosimetry; and relative permeability and capillary pressure measurements using CO2 and synthetic formation fluid. Our results link pore size distributions, topology of porosity and clay-rich phases, and spatial persistence of connected flow paths to multiphase flow behavior. The authors gratefully acknowledge the U.S. Department of Energy's National Energy Technology Laboratory for sponsoring this project through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Modelling of sedimentation processes inside Roseires Reservoir (Sudan) (abstract)

    NARCIS (Netherlands)

    Ali, Y.S.A.; Omer, A.Y.A.; Crosato, A.

    2013-01-01

    Roseires Reservoir is located on the Blue Nile River, in Sudan (figure 1). It is the first trap to the sediments coming from the upper catchment in Ethiopia, which suffers from high erosion and desertification problems. The reservoir lost already more than one third of its storage capacity due to

  17. Modelling of sedimentation processes inside Roseires Reservoir (Sudan) (discussion)

    NARCIS (Netherlands)

    Omer, A.Y.A.; Ali, Y.S.A.; Roelvink, J.A.; Dastgheib, A.; Paron, P.; Crosato, A.

    2014-01-01

    Discussion paper. Roseires Reservoir, located on the Blue Nile River, in Sudan, is the first trap to the sediments coming from the upper catchment in Ethiopia, which suffers from high erosion and desertification problems. The reservoir lost already more than one third of its 5 storage capacity due

  18. Modelling of sedimentation processes inside Roseires Reservoir (Sudan)

    NARCIS (Netherlands)

    Omer, A.Y.A.; Ali, Y.S.A.; Roelvink, J.A.; Dastgheib, A.; Paron, P.; Crosato, A.

    2015-01-01

    Roseires Reservoir, located on the Blue Nile River in Sudan, is the first trap to the sediments coming from the vast upper river catchment in Ethiopia, which suffers from high erosion and desertification problems. The reservoir has already lost more than one-third of its storage capacity due to

  19. Geological Characterisation of Depleted Oil and Gas Reservoirs for ...

    African Journals Online (AJOL)

    Comparison of the derived reservoir and seal properties such as porosity, permeability, thickness and depth with the minimum recommended site selection criteria shows that the reservoirs are potential candidates for carbon geosequestration with a total theoretical storage capacity of 147MM tons. © JASEM ...

  20. Peripheral ligands as electron storage reservoirs and their role in enhancement of photocatalytic hydrogen generation

    NARCIS (Netherlands)

    Pan, Qing; Freitag, Leon; Kowacs, Tanja; Falgenhauer, Jane C.; Korterik, Jeroen P.; Schlettwein, Derck; Browne, Wesley R.; Pryce, Mary T.; Rau, Sven; Gonzalez, Leticia; Vos, Johannes G.; Huijser, Jannetje Maria

    2016-01-01

    The contrasting early-time photodynamics of two related Ru/Pt photocatalysts with very different photocatalytic H2 generation capabilities are reported. Ultrafast equilibration (535 ± 17 fs) creates an electron reservoir on the peripheral ligands of the ester substituted complex, allowing a dramatic

  1. Information retrieval system: impacts of water-level changes on uses of federal storage reservoirs of the Columbia River.

    Energy Technology Data Exchange (ETDEWEB)

    Fickeisen, D.H.; Cowley, P.J.; Neitzel, D.A.; Simmons, M.A.

    1982-09-01

    A project undertaken to provide the Bonneville Power Administration (BPA) with information needed to conduct environmental assessments and meet requirements of the National Environmental Policy Act (NEPA) and the Pacific Northwest Electric Power Planning and Conservation Act (Regional Act) is described. Access to information on environmental effects would help BPA fulfill its responsibilities to coordinate power generation on the Columbia River system, protect uses of the river system (e.g., irrigation, recreation, navigation), and enhance fish and wildlife production. Staff members at BPA identified the need to compile and index information resources that would help answer environmental impact questions. A computer retrieval system that would provide ready access to the information was envisioned. This project was supported by BPA to provide an initial step toward a compilation of environmental impact information. Scientists at Pacific Northwest Laboratory (PNL) identified, gathered, and evaluated information related to environmental effects of water level on uses of five study reservoirs and developed and implemented and environmental data retrieval system, which provides for automated storage and retrieval of annotated citations to published and unpublished information. The data retrieval system is operating on BPA's computer facility and includes the reservoir water-level environmental data. This project was divided into several tasks, some of which were conducted simultaneously to meet project deadlines. The tasks were to identify uses of the five study reservoirs, compile and evaluate reservoir information, develop a data entry and retrieval system, identify and analyze research needs, and document the data retrieval system and train users. Additional details of the project are described in several appendixes.

  2. Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blackberry products.

    Science.gov (United States)

    Hager, Tiffany J; Howard, Luke R; Prior, Ronald L

    2008-02-13

    Blackberries are a rich source of polyphenolics, particularly anthocyanins, that may contribute to the reduced risk of chronic disease; however, as with most berries, the fresh fruit are only seasonally available. With most of the blackberries consumed as frozen or in thermally processed forms after long-term storage, the purpose of this study was to evaluate the effects of processing and 6 months of storage on the anthocyanins and antioxidant capacity of blackberries that were individually quick-frozen (IQF), canned-in-syrup, canned-in-water, pureed, and juiced (clarified and nonclarified). Monomeric anthocyanins, percent polymeric color, and antioxidant capacity by oxygen radical absorbance capacity (ORAC FL) and photochemiluminescence (PCL) were determined postprocessing (1 day) and after 1, 3, and 6 months of storage. Processing resulted in increases in polymeric color values (up to 7%) and losses in monomeric anthocyanins (up to 65%). For most products, processing also resulted in losses in antioxidant capacity (by ORAC FL and PCL). Storage at 25 degrees C of all processed products resulted in dramatic losses in monomeric anthocyanins with as much as 75% losses of anthocyanins throughout storage, which coincided with marked increases of percent polymeric color values of these products over 6 months of storage. There were no changes in ORAC FL or PCL for processed products throughout long-term storage. No significant changes in antioxidant capacity or anthocyanin content were observed in IQF fruit during long-term storage at -20 degrees C.

  3. Multimode intelligent data compressor/decompressor (MICE) optimized for speed and storage capacity

    Science.gov (United States)

    Piliavin, Michael A.; D'Adderio, Leo; Aye, Tin M.; Jannson, Joanna L.

    2002-12-01

    Proliferation of high speed, low cost computing systems has caused an explosion of data, leading to the need for higher and higher capacity storage systems and faster data transmission. The field of nuclear physics has felt this need acutely because data can be acquired at >100 Mbps, the data accumulated by a single collider can exceed hundreds of petabytes. Although much effort has gone into improving data storage, all approaches are severely limited by slow processing, high capacity memory requirements, and compression of heterogeneous data. Physical Optics Corporation (POC) has developed a preliminary prototype Multimode Intelligent Compression Engine (MICE) that overcomes many of the limitations of lossless data compression techniques for large scale data storage, retrieval, and processing. The MICE approach combines novel software/hardware. The key MICE innovation is a unique fuzzy logic artificial intelligence preprocessor that examines the incoming data in sections, on the fly, and applies optimum compression to each section. No a priori information is required about the data. The unique MICE hardware is based on POC's high speed, highly parallel processing technology. The hardware is compact and economical, and enables the system to compress data in real time.

  4. Procedural Documentation and Accuracy Assessment of Bathymetric Maps and Area/Capacity Tables for Small Reservoirs

    Science.gov (United States)

    Wilson, Gary L.; Richards, Joseph M.

    2006-01-01

    Because of the increasing use and importance of lakes for water supply to communities, a repeatable and reliable procedure to determine lake bathymetry and capacity is needed. A method to determine the accuracy of the procedure will help ensure proper collection and use of the data and resulting products. It is important to clearly define the intended products and desired accuracy before conducting the bathymetric survey to ensure proper data collection. A survey-grade echo sounder and differential global positioning system receivers were used to collect water-depth and position data in December 2003 at Sugar Creek Lake near Moberly, Missouri. Data were collected along planned transects, with an additional set of quality-assurance data collected for use in accuracy computations. All collected data were imported into a geographic information system database. A bathymetric surface model, contour map, and area/capacity tables were created from the geographic information system database. An accuracy assessment was completed on the collected data, bathymetric surface model, area/capacity table, and contour map products. Using established vertical accuracy standards, the accuracy of the collected data, bathymetric surface model, and contour map product was 0.67 foot, 0.91 foot, and 1.51 feet at the 95 percent confidence level. By comparing results from different transect intervals with the quality-assurance transect data, it was determined that a transect interval of 1 percent of the longitudinal length of Sugar Creek Lake produced nearly as good results as 0.5 percent transect interval for the bathymetric surface model, area/capacity table, and contour map products.

  5. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis?

    Science.gov (United States)

    Halem, M.; Shaffer, F.; Palm, N.; Salmon, E.; Raghavan, S.; Kempster, L.

    1998-01-01

    This technology assessment of long-term high capacity data storage systems identifies an emerging crisis of severe proportions related to preserving important historical data in science, healthcare, manufacturing, finance and other fields. For the last 50 years, the information revolution, which has engulfed all major institutions of modem society, centered itself on data-their collection, storage, retrieval, transmission, analysis and presentation. The transformation of long term historical data records into information concepts, according to Drucker, is the next stage in this revolution towards building the new information based scientific and business foundations. For this to occur, data survivability, reliability and evolvability of long term storage media and systems pose formidable technological challenges. Unlike the Y2K problem, where the clock is ticking and a crisis is set to go off at a specific time, large capacity data storage repositories face a crisis similar to the social security system in that the seriousness of the problem emerges after a decade or two. The essence of the storage crisis is as follows: since it could take a decade to migrate a peta-byte of data to a new media for preservation, and the life expectancy of the storage media itself is only a decade, then it may not be possible to complete the transfer before an irrecoverable data loss occurs. Over the last two decades, a number of anecdotal crises have occurred where vital scientific and business data were lost or would have been lost if not for major expenditures of resources and funds to save this data, much like what is happening today to solve the Y2K problem. A pr-ime example was the joint NASA/NSF/NOAA effort to rescue eight years worth of TOVS/AVHRR data from an obsolete system, which otherwise would have not resulted in the valuable 20-year long satellite record of global warming. Current storage systems solutions to long-term data survivability rest on scalable architectures

  6. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches: UPH. Appendix A: Upper reservoir

    Science.gov (United States)

    1981-04-01

    Overriding considerations including operating range, volume and lining of reservoir, embankment design, intake/outlet arrangements and filling and make up water provisions were studied within the context of minimizing facility costs and optimizing the plant layout. The study led to the selection of a reservoir formed by embankment of compacted rockfill together with an intake/outlet structure located in the embankment. The reservoir floor and upstream slopes of the embankment will have an asphalt lining to prevent leakage. The material and cost estimates presented are based on the requirements for a 2000 MW plant providing 20,000 MWh of storage with a nominal head of 4600 ft.

  7. Factors affecting storage of compressed air in porous-rock reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.; Doherty, T.J.; Erikson, R.L.; Wiles, L.E.

    1983-05-01

    This report documents a review and evaluation of the geotechnical aspects of porous medium (aquifer) storage. These aspects include geologic, petrologic, geophysical, hydrologic, and geochemical characteristics of porous rock masses and their interactions with compressed air energy storage (CAES) operations. The primary objective is to present criteria categories for the design and stability of CAES in porous media (aquifers). The document will also describe analytical, laboratory, and field-scale investigations that have been conducted.

  8. Reservoir Routing on Double-Peak Design Flood

    Directory of Open Access Journals (Sweden)

    Andrea Gioia

    2016-11-01

    Full Text Available This work investigates the routing effect provided by an artificial reservoir to a double-peak flood of a given return period. The present paper introduces a dimensionless form of the reservoir balance equation that describes the hydrologic-hydraulic processes that may occur and allows for the evaluation of the reservoir routing coefficient (RC. Exploiting this equation, an extensive sensitivity analysis based on the use of two simple parametric indices that depend on the storage capacity (SC of the reservoir, the discharge capacity (DC of the spillway (with fixed-crest and the hydrologic behavior of the basin was performed.

  9. Influence of capacity- and time-constrained intermediate storage in two-stage food production systems

    DEFF Research Database (Denmark)

    Akkerman, Renzo; van Donk, Dirk Pieter; Gaalman, Gerard

    2007-01-01

    In food processing, two-stage production systems with a batch processor in the first stage and packaging lines in the second stage are common and mostly separated by capacity- and time-constrained intermediate storage. This combination of constraints is common in practice, but the literature hardly...... of systems like this. Contrary to the common sense in operations management, the LPT rule is able to maximize the total production volume per day. Furthermore, we show that adding one tank has considerable effects. Finally, we conclude that the optimal setup frequency for batches in the first stage...

  10. Infection capacity of the pathogens Penicillium italicum and P. Expansum in orange during storage

    OpenAIRE

    Veljović Sonja P.; Boonsiri Krissana; Maina Michael K.; Semavor Emmanuel M.; Surajit Mitra

    2017-01-01

    Penicillium italicum and P. expansum are important pathogens causing decay in most fruits and vegetables. In this study, orange fruits were inoculated with these two species of fungus and stored 14 days with or without bagging, in a cold room for 11 days and 3 days at room temperature to determine the effect of bagging and infection capacities of both molds on oranges during storage. The results indicated that P. expansum can grow on orange peel with smaller colony diameter than P. italicum i...

  11. Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration

    International Nuclear Information System (INIS)

    Darcovich, K.; Henquin, E.R.; Kenney, B.; Davidson, I.J.; Saldanha, N.; Beausoleil-Morrison, I.

    2013-01-01

    Highlights: • Characterized two novel high capacity electrode materials for Li-ion batteries. • A numerical discharge model was run to characterize Li-ion cell behavior. • Engineering model of Li-ion battery pack developed from cell fundamentals. • ESP-r model integrated micro-cogeneration and high capacity Li-ion storage. • Higher capacity batteries shown to improve micro-cogeneration systems. - Abstract: Combined heat and power on a residential scale, also known as micro-cogeneration, is currently gaining traction as an energy savings practice. The configuration of micro-cogeneration systems is highly variable, as local climate, energy supply, energy market and the feasibility of including renewable type components such as wind turbines or photovoltaic panels are all factors. Large-scale lithium ion batteries for electrical storage in this context can provide cost savings, operational flexibility, and reduced stress on the distribution grid as well as a degree of contingency for installations relying upon unsteady renewables. Concurrently, significant advances in component materials used to make lithium ion cells offer performance improvements in terms of power output, energy capacity, robustness and longevity, thereby enhancing their prospective utility in residential micro-cogeneration installations. The present study evaluates annual residential energy use for a typical Canadian home connected to the electrical grid, equipped with a micro-cogeneration system consisting of a Stirling engine for supplying heat and power, coupled with a nominal 2 kW/6 kW h lithium ion battery. Two novel battery cathode chemistries, one a new Li–NCA material, the other a high voltage Ni-doped lithium manganate, are compared in the residential micro-cogeneration context with a system equipped with the presently conventional LiMn 2 O 4 spinel-type battery

  12. Aluminum and silicon based phase change materials for high capacity thermal energy storage

    International Nuclear Information System (INIS)

    Wang, Zhengyun; Wang, Hui; Li, Xiaobo; Wang, Dezhi; Zhang, Qinyong; Chen, Gang; Ren, Zhifeng

    2015-01-01

    Six compositions of aluminum (Al) and silicon (Si) based materials: 87.8Al-12.2Si, 80Al–20Si, 70Al–30Si, 60Al–40Si, 45Al–40Si–15Fe, and 17Al–53Si–30Ni (atomic ratio), were investigated for potentially high thermal energy storage (TES) application from medium to high temperatures (550–1200 °C) through solid–liquid phase change. Thermal properties such as melting point, latent heat, specific heat, thermal diffusivity and thermal conductivity were investigated by differential scanning calorimetry and laser flash apparatus. The results reveal that the thermal storage capacity of the Al–Si materials increases with increasing Si concentration. The melting point and latent heat of 45Al–40Si–15Fe and 17Al–53Si–30Ni are ∼869 °C and ∼562 J g −1 , and ∼1079 °C and ∼960 J g −1 , respectively. The measured thermal conductivity of Al–Si binary materials depend on Si concentration and is higher than 80 W m −1  K −1 from room temperature to 500 °C, which is almost two orders of magnitude higher than those of salts that are commonly used phase change material for thermal energy storage. - Highlights: • Six kinds of materials were investigated for thermal energy storage (550–1200 °C). • Partial melting of Al–Si materials show progressively changing temperatures. • Studied materials can be used in three different working temperature ranges. • Materials are potentially good candidates for thermal energy storage applications.

  13. Enhanced hydrogen storage capacity of Ni/Sn-coated MWCNT nanocomposites

    Science.gov (United States)

    Varshoy, Shokufeh; Khoshnevisan, Bahram; Behpour, Mohsen

    2018-02-01

    The hydrogen storage capacity of Ni-Sn, Ni-Sn/multi-walled carbon nanotube (MWCNT) and Ni/Sn-coated MWCNT electrodes was investigated by using a chronopotentiometry method. The Sn layer was electrochemically deposited inside pores of nanoscale Ni foam. The MWCNTs were put on the Ni-Sn foam with nanoscale porosities using an electrophoretic deposition method and coated with Sn nanoparticles by an electroplating process. X-ray diffraction and energy dispersive spectroscopy results indicated that the Sn layer and MWCNTs are successfully deposited on the surface of Ni substrate. On the other hand, a field-emission scanning electron microscopy technique revealed the morphology of resulting Ni foam, Ni-Sn and Ni-Sn/MWCNT electrodes. In order to measure the hydrogen adsorption performed in a three electrode cell, the Ni-Sn, Ni-Sn/MWCNT and Ni/Sn-coated MWCNT electrodes were used as working electrodes whereas Pt and Ag/AgCl electrodes were employed as counter and reference electrodes, respectively. Our results on the discharge capacity in different electrodes represent that the Ni/Sn-coated MWCNT has a maximum discharge capacity of ˜30 000 mAh g-1 for 20 cycles compared to that of Ni-Sn/MWCNT electrodes for 15 cycles (˜9500 mAh g-1). By increasing the number of cycles in a constant current, the corresponding capacity increases, thereby reaching a constant amount for 20 cycles.

  14. Geomechanical Framework for Secure CO2 Storage in Fractured Reservoirs and Caprocks for Sedimentary Basins in theMidwest United States

    Energy Technology Data Exchange (ETDEWEB)

    Sminchak, Joel [Battelle, Columbus, OH (United States)

    2017-09-29

    and basal sandstone-Precambrian contacts at the Arches and East-Central Appalachian Basin sites. Geophysical logs were utilized to develop local-scale geologic models by determining geomechanical and petrophysical parameters within the geologic formations. These data were ported to coupled fluid-flow and reservoir geomechanics multi-phase CO2 injection simulations. The models were developed to emphasize the geomechanical layers within the CO2 storage zones and caprocks. A series of simulations were completed for each site to evaluate whether commercial-scale CO2 could be safely injected into each site, given site-specific geologic and geomechanical controls. This involved analyzing the simulation results for the integrity of the caprock, intermediate, and reservoir zones, as well quantifying the areal uplift at the surface. Simulation results were also examined to ensure that the stress-stress perturbations were isolated within the subsurface, and that there was only limited upward migration of the CO2. Simulations showed capacity to inject more than 10 million metric tons of CO2 in a single well at the Arches and East Central Appalachian Basin sites without excessive geomechanical risks. Low-permeability rock layers at the Northern Appalachian Basin study area well resulted in very low CO2 injection capacity. Fracture models developed for the sites suggests that the sites have sparse fracture network in the deeper Cambrian rocks. However, there were indicators in image logs of a moderate fracture matrix in the Rose Run Sandstone at the Northern Appalachian Basin site. Dual permeability fracture matrix simulations suggest the much higher injection rates may be feasible in the fractured interval. Guidance was developed for geomechanical site characterization in the areas of geophysical logging, rock core testing, well testing, and site monitoring. The guidance demonstrates that there is a suitable array

  15. [Response of Algae to Nitrogen and Phosphorus Concentration and Quantity of Pumping Water in Pumped Storage Reservoir].

    Science.gov (United States)

    Wan, You-peng; Yin, Kui-hao; Peng, Sheng-hua

    2015-06-01

    Taking a pumped storage reservoir located in southern China as the research object, the paper established a three-dimensional hydrodynamic and eutrophication model of the reservoir employing EFDC (environmental fluid dynamics code) model, calibrated and verified the model using long-term hydraulic and water quality data. Based on the model results, the effects of nitrogen and phosphorus concentrations on the algae growth were analyzed, and the response of algae to nitrogen and phosphorus concentration and quantity of pumping water was also calculated. The results showed that the nitrogen and phosphorus concentrations had little limit on algae growth rate in the reservoir. In the nutrients reduction scenarios, reducing phosphorus would gain greater algae biomass reduction than reducing nitrogen. When reducing 60 percent of nitrogen, the algae biomass did not decrease, while 12.4 percent of algae biomass reduction could be gained with the same reduction ratio of phosphorus. When the reduction ratio went to 90 percent, the algae biomass decreased by 17.9 percent and 35.1 percent for nitrogen and phosphorus reduction, respectively. In the pumping water quantity regulation scenarios, the algae biomass decreased with the increasing pumping water quantity when the pumping water quantity was greater than 20 percent of the current value; when it was less than 20 percent, the algae biomass increased with the increasing pumping water quantity. The algae biomass decreased by 25.7 percent when the pumping water quantity was doubled, and increased by 38.8 percent when it decreased to 20 percent. The study could play an important role in supporting eutrophication controlling in water source area.

  16. Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage

    Science.gov (United States)

    Charles, Daniel Scott; Feygenson, Mikhail; Page, Katharine; Neuefeind, Joerg; Xu, Wenqian; Teng, Xiaowei

    2017-05-01

    Aqueous electrochemical energy storage devices using potassium-ions as charge carriers are attractive due to their superior safety, lower cost and excellent transport properties compared to other alkali ions. However, the accommodation of potassium-ions with satisfactory capacity and cyclability is difficult because the large ionic radius of potassium-ions causes structural distortion and instabilities even in layered electrodes. Here we report that water induces structural rearrangements of the vanadium-oxygen octahedra and enhances stability of the highly disordered potassium-intercalated vanadium oxide nanosheets. The vanadium oxide nanosheets engaged by structural water achieves high capacity (183 mAh g-1 in half-cells at a scan rate of 5 mV s-1, corresponding to 0.89 charge per vanadium) and excellent cyclability (62.5 mAh g-1 in full cells after 5,000 cycles at 10 C). The promotional effects of structural water on the disordered vanadium oxide nanosheets will contribute to the exploration of disordered structures from earth-abundant elements for electrochemical energy storage.

  17. Capacity enhancement of aqueous borohydride fuels for hydrogen storage in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, David; Neiner, Doinita [U.S. Borax Inc., Rio Tinto, Greenwood Village, CO (United States); Bowden, Mark [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA (United States); Whittemore, Sean; Holladay, Jamie [Pacific Northwest National Laboratory, Richland, WA (United States); Huang, Zhenguo [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2500 (Australia); Autrey, Tom [Pacific Northwest National Laboratory, Richland, WA (United States)

    2015-10-05

    Highlights: • Adjusting ratio of Q = Na/B will maximize H{sub 2} storage capacity of liquid carrier. • Mixtures of hydrolysis products are desirable to maximize solubility. • 6.5 wt.% hydrogen and remains liquid from beginning to end. - Abstract: In this work we demonstrate enhanced hydrogen storage capacities through increased solubility of sodium borate product species in aqueous media achieved by adjusting the sodium (NaOH) to boron (B(OH){sub 3}) ratio, i.e., M/B, to obtain a distribution of polyborate anions. For a 1:1 mol ratio of NaOH to B(OH){sub 3}, M/B = 1, the ratio of the hydrolysis product formed from NaBH{sub 4} hydrolysis, the sole borate species formed and observed by {sup 11}B NMR is sodium metaborate, NaB(OH){sub 4}. When the ratio is 1:3 NaOH to B(OH){sub 3}, M/B = 0.33, a mixture of borate anions is formed and observed as a broad peak in the {sup 11}B NMR spectrum. The complex polyborate mixture yields a metastable solution that is difficult to crystallize. Given the enhanced solubility of the polyborate mixture formed when M/B = 0.33 it should follow that the hydrolysis of sodium octahydrotriborate, NaB{sub 3}H{sub 8}, can provide a greater storage capacity of hydrogen for fuel cell applications compared to sodium borohydride while maintaining a single phase. Accordingly, the hydrolysis of a 23 wt.% NaB{sub 3}H{sub 8} solution in water yields a solution having the same complex polyborate mixture as formed by mixing a 1:3 M ratio of NaOH and B(OH){sub 3} and releases >8 eq of H{sub 2}. By optimizing the M/B ratio a complex mixture of soluble products, including B{sub 3}O{sub 3}(OH){sub 5}{sup 2−}, B{sub 4}O{sub 5}(OH){sub 4}{sup 2−}, B{sub 3}O{sub 3}(OH){sub 4}{sup −}, B{sub 5}O{sub 6}(OH){sub 4}{sup −} and B(OH){sub 3}, can be maintained as a single liquid phase throughout the hydrogen release process. Consequently, hydrolysis of NaB{sub 3}H{sub 8} can provide a 40% increase in H{sub 2} storage density compared to the hydrolysis

  18. Modeling the Use of Mine Waste Rock as a Porous Medium Reservoir for Compressed Air Energy Storage

    Science.gov (United States)

    Donelick, R. A.; Donelick, M. B.

    2016-12-01

    We are studying the engineering and economic feasibilities of constructing Big Mass Battery (BiMBy) compressed air energy storage devices using some of the giga-tonnes of annually generated and historically produced mine waste rock/overburden/tailings (waste rock). This beneficial use of waste rock is based on the large mass (Big Mass), large pore volume, and wide range of waste rock permeabilities available at some large open pit metal mines and coal strip mines. Porous Big Mass is encapsulated and overlain by additional Big Mass; compressed air is pumped into the encapsulated pore space when renewable energy is abundant; compressed air is released from the encapsulated pore space to run turbines to generate electricity at the grid scale when consumers demand electricity. Energy storage capacity modeling: 1) Yerington Pit, Anaconda Copper Mine, Yerington, NV (inactive metal mine): 340 Mt Big Mass, energy storage capacity equivalent to 390k-710k home batteries of size 10 kW•h/charge, assumed 20% porosity, 50% overall efficiency. 2) Berkeley Pit, Butte Copper Mine, Butte, MT (inactive metal mine): 870 Mt Big Mass, energy storage capacity equivalent to 1.4M-2.9M home batteries of size 10 kW•h/charge, assumed 20% porosity, 50% overall efficiency. 3) Rosebud Mine, Colstrip, MT (active coal strip mine): 87 Mt over 2 years, energy storage capacity equivalent to 45k-67k home batteries of size 10 kW•h/charge, assumed 30% porosity, 50% overall efficiency. Encapsulating impermeable layer modeling: Inactive mine pits like Yerington Pit and Berkeley Pit, and similar active pits, have associated with them low permeability earthen material (silt and clay in Big Mass) at sufficient quantities to manufacture an encapsulating structure with minimal loss of efficiency due to leakage, a lifetime of decades or even centuries, and minimal need for the use of geomembranes. Active coal strip mines like Rosebud mine have associated with them low permeability earthen material such as

  19. Short-term storage evaluation of quality and antioxidant capacity in chestnut-wheat bread.

    Science.gov (United States)

    Rinaldi, Massimiliano; Paciulli, Maria; Dall'Asta, Chiara; Cirlini, Martina; Chiavaro, Emma

    2015-01-01

    Bread traditionally made from wheat is now often supplemented with alternative functional ingredients as chestnut flours; no data have been previously published about the staling of chestnut-containing bread. Thus short-term storage (3 days) for chestnut flour-supplemented soft wheat bread is evaluated by means of selected physicochemical properties (i.e. water dynamics, texture, colour, crumb grain characteristic, total antioxidant capacity). Bread prepared with a 20:80 ratio of chestnut:soft wheat flours maintained its moisture content in both crust and crumb. Crumb hardness, after baking, was found to be significantly higher than that of the soft wheat bread; it did not change during storage, whereas it significantly increased in the control bread until the end of the shelf life. The supplemented bread presented a heterogeneous crumb structure, with a significant decrease in the largest pores during shelf life, relative to the shrinkage of crumb grain. The control exhibited a significant redistribution of crumb holes, with a decrease in the smallest grain classes and an increase in the intermediate ones, most likely caused by cell wall thickening. The colour of the crumb remained unaltered in both breads. The crust of the control presented a significant decrease of a* (redness) and that of the supplemented bread exhibited a decrease of b* (yellowness). The antioxidant capacity was detected after day 1 of storage in the chestnut flour bread only. Chestnut flour supplementation could represent a feasible way of producing bread with improved characteristics, not only just after baking but also during shelf life. © 2014 Society of Chemical Industry.

  20. Hydrogen storage capacity on Ti-decorated porous graphene: First-principles investigation

    Science.gov (United States)

    Yuan, Lihua; Kang, Long; Chen, Yuhong; Wang, Daobin; Gong, Jijun; Wang, Chunni; Zhang, Meiling; Wu, Xiaojuan

    2018-03-01

    Hydrogen storage capacity on Titanium (Ti) decorated porous graphene (PG) has been investigated using density functional theory simulations with generalized gradient approximation method. The possible adsorption sites of Ti atom on PG and electronic properties of Ti-PG system are also discussed.The results show a Ti atom prefers to strongly adsorb on the center site above the C hexagon with the binding energy of 3.65 eV, and the polarization and the hybridization mechanisms both contribute to the Ti atom adsorption on PG. To avoid a tendency of clustering among Ti atoms, the single side of the PG unit cell should only contain one Ti atom. For the single side of PG, four H2 molecules can be adsorbed around Ti atom, and the adsorption mechanism of H2 molecules come from not only the polarization mechanism between Ti and H atoms but also the orbital hybridization among Ti atom, H2 molecules and C atoms. For the case of double sides of PG, eight H2 molecules can be adsorbed on Ti-decorated PG unit cell with the average adsorption energy of -0.457 eV, and the gravimetric hydrogen storage capacity is 6.11 wt.%. Furthermore, ab inito molecular-dynaics simulation result shows that six H2 molecules can be adsorbed on double sides of unit cell of Ti-PG system and the configuration of Ti-PG is very stable at 300 K and without external pressure, which indicates Ti-decorated PG could be considered as a potential hydrogen storage medium at ambient conditions.

  1. Exploratory Simulation Studies of Caprock Alteration Induced byStorage of CO2 in Depleted Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Gherardi, Fabrizio; Xu, Tianfu; Pruess, Karsten

    2005-11-23

    This report presents numerical simulations of isothermalreactive flows which might be induced in the caprock of an Italiandepleted gas reservoir by the geological sequestration of carbon dioxide.Our objective is to verify that CO2 geological disposal activitiesalready planned for the study area are safe and do not induce anyundesired environmental impact.Gas-water-rock interactions have beenmodelled under two different intial conditions, i.e., assuming that i)caprock is perfectly sealed, or ii) partially fractured. Field conditionsare better approximated in terms of the "sealed caprock model". Thefractured caprock model has been implemented because it permits toexplore the geochemical beahvior of the system under particularly severeconditions which are not currently encountered in the field, and then todelineate a sort of hypothetical maximum risk scenario.Major evidencessupporting the assumption of a sealed caprock stem from the fact that nogas leakages have been detected during the exploitation phase, subsequentreservoir repressurization due to the ingression of a lateral aquifer,and during several cycles of gas storage in the latest life of reservoirmanagement.An extensive program of multidisciplinary laboratory tests onrock properties, geochemical and microseismic monitoring, and reservoirsimulation studies is underway to better characterize the reservoir andcap-rock behavior before the performance of a planned CO2 sequestrationpilot test.In our models, fluid flow and mineral alteration are inducedin the caprock by penetration of high CO2 concentrations from theunderlying reservoir, i.e., it was assumed that large amounts of CO2 havebeen already injected at depth. The main focus is on the potential effectof these geochemical transformations on the sealing efficiency of caprockformations. Batch and multi-dimensional 1D and 2D modeling has been usedto investigate multicomponent geochemical processes. Our simulationsaccount for fracture-matrix interactions, gas

  2. Sources of variation in simulated ecosystem carbon storage capacity from the 5th Climate Model Intercomparison Project (CMIP5

    Directory of Open Access Journals (Sweden)

    Yaner Yan

    2014-05-01

    Full Text Available Ecosystem carbon (C storage strongly regulates climate-C cycle feedback and is largely determined by both C residence time and C input from net primary productivity (NPP. However, spatial patterns of ecosystem C storage and its variation have not been well quantified in earth system models (ESMs, which is essential to predict future climate change and guide model development. We intended to evaluate spatial patterns of ecosystem C storage capacity simulated by ESMs as part of the 5th Climate Model Intercomparison Project (CMIP5 and explore the sources of multi-model variation from mean residence time (MRT and/or C inputs. Five ESMs were evaluated, including C inputs (NPP and [gross primary productivity] GPP, outputs (autotrophic/heterotrophic respiration and pools (vegetation, litter and soil C. ESMs reasonably simulated the NPP and NPP/GPP ratio compared with Moderate Resolution Imaging Spectroradiometer (MODIS estimates except NorESM. However, all of the models significantly underestimated ecosystem MRT, resulting in underestimation of ecosystem C storage capacity. CCSM predicted the lowest ecosystem C storage capacity (~10 kg C m−2 with the lowest MRT values (14 yr, while MIROC-ESM estimated the highest ecosystem C storage capacity (~36 kg C m−2 with the longest MRT (44 yr. Ecosystem C storage capacity varied considerably among models, with larger variation at high latitudes and in Australia, mainly resulting from the differences in the MRTs across models. Our results indicate that additional research is needed to improve post-photosynthesis C-cycle modelling, especially at high latitudes, so that ecosystem C residence time and storage capacity can be appropriately simulated.

  3. Depth of cinder deposits and water-storage capacity at Cinder Lake, Coconino County, Arizona

    Science.gov (United States)

    Macy, Jamie P.; Amoroso, Lee; Kennedy, Jeff; Unema, Joel

    2012-01-01

    The 2010 Schultz fire northeast of Flagstaff, Arizona, burned more than 15,000 acres on the east side of San Francisco Mountain from June 20 to July 3. As a result, several drainages in the burn area are now more susceptible to increased frequency and volume of runoff, and downstream areas are more susceptible to flooding. Resultant flooding in areas downgradient of the burn has resulted in extensive damage to private lands and residences, municipal water lines, and roads. Coconino County, which encompasses Flagstaff, has responded by deepening and expanding a system of roadside ditches to move flood water away from communities and into an area of open U.S. Forest Service lands, known as Cinder Lake, where rapid infiltration can occur. Water that has been recently channeled into the Cinder Lake area has infiltrated into the volcanic cinders and could eventually migrate to the deep regional groundwater-flow system that underlies the area. How much water can potentially be diverted into Cinder Lake is unknown, and Coconino County is interested in determining how much storage is available. The U.S. Geological Survey conducted geophysical surveys and drilled four boreholes to determine the depth of the cinder beds and their potential for water storage capacity. Results from the geophysical surveys and boreholes indicate that interbedded cinders and alluvial deposits are underlain by basalt at about 30 feet below land surface. An average total porosity for the upper 30 feet of deposits was calculated at 43 percent for an area of 300 acres surrounding the boreholes, which yields a total potential subsurface storage for Cinder Lake of about 4,000 acre-feet. Ongoing monitoring of storage change in the Cinder Lake area was initiated using a network of gravity stations.

  4. Well Integrity for Natural Gas Storage in Depleted Reservoirs and Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oldenburg, Curtis [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jordan, Preston [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Perfect, Scott [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morris, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Joshua [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bauer, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bromhal, Grant [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Glosser, Deborah [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Wyatt, Douglas [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Rose, Kelly [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2016-09-01

    The 2015-2016 Aliso Canyon/Porter Ranch natural gas well blowout emitted approximately 100,000 tonnes of natural gas (mostly methane, CH4) over four months. The blowout impacted thousands of nearby residents, who were displaced from their homes. The high visibility of the event has led to increased scrutiny of the safety of natural gas storage at the Aliso Canyon facility, as well as broader concern for natural gas storage integrity throughout the country. This report presents the findings of the DOE National Laboratories Well Integrity Work Group efforts in the four tasks. In addition to documenting the work of the Work Group, this report presents high priority recommendations to improve well integrity and reduce the likelihood and consequences of subsurface natural gas leaks.

  5. Comment on "Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals".

    Science.gov (United States)

    Wilson, Colin J N; Morgan, Daniel J; Charlier, Bruce L A; Barker, Simon J

    2017-12-22

    Rubin et al (Reports, 16 June 2017, p. 1154) proposed that gradients in lithium abundance in zircons from a rhyolitic eruption in New Zealand reflected short-lived residence at magmatic temperatures interleaved with long-term "cold" (<650°C) storage. Important issues arise with the interpretation of these lithium gradients and consequent crystal thermal histories that raise concerns about the validity of this conclusion. Copyright © 2017, American Association for the Advancement of Science.

  6. Storage and Release of Spermatozoa from the Pre-Uterine Tube Reservoir

    Science.gov (United States)

    Freeman, Sarah L.; England, Gary C.W.

    2013-01-01

    In mammals, after coitus a small number of spermatozoa enter the uterine tube and following attachment to uterine tube epithelium are arrested in a non-capacitated state until peri-ovulatory signalling induces their detachment. Whilst awaiting release low numbers of spermatozoa continually detach from the epithelium and the uterine tube reservoir risks depletion. There is evidence of attachment of spermatozoa to uterine epithelium in several species which might form a potential pre-uterine tube reservoir. In this study we demonstrate that: (1) dog spermatozoa attach to uterine epithelium and maintain flagellar activity, (2) in non-capacitating conditions spermatozoa progressively detach with a variety of motility characteristics, (3) attachment is not influenced by epithelial changes occurring around ovulation, (4) attachment to uterine epithelium slows capacitation, (5) capacitated spermatozoa have reduced ability to attach to uterine epithelium, (6) under capacitating conditions increased numbers of spermatozoa detach and exhibit transitional and hyperactive motility which differ to those seen in non-capacitating conditions, (7) detachment of spermatozoa and motility changes can be induced by post-ovulation but not pre-ovulation uterine tube flush fluid and by components of follicular fluid and solubilised zona pellucida, (8) prolonged culture does not change the nature of the progressive detachment seen in non-capacitating conditions nor the potential for increased detachment in capacitating conditions. We postulate that in some species binding of spermatozoa to uterine epithelium is an important component of the transport of spermatozoa. Before ovulation low numbers of spermatozoa continually detach, including those which are non-capacitated with fast forward progressive motility allowing the re-population of the uterine tube, whilst around the time of ovulation, signalling from as-yet unknown factors associated with follicular fluid, oocytes and uterine tube

  7. Well Integrity for Natural Gas Storage in Depleted Reservoirs and Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jordan, Preston [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Perfect, Scott [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morris, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Joshua [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bauer, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bromhal, Grant [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Glosser, Deborah [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Wyatt, Douglas [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Rose, Kelly [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2016-09-02

    Introduction Motivation The 2015-2016 Aliso Canyon/Porter Ranch natural gas well blowout emitted approximately 100,000 tonnes of natural gas (mostly methane, CH4) over four months. The blowout impacted thousands of nearby residents, who were displaced from their homes. The high visibility of the event has led to increased scrutiny of the safety of natural gas storage at the Aliso Canyon facility, as well as broader concern for natural gas storage integrity throughout the country. Federal Review of Well Integrity In April of 2016, the U.S. Department of Energy (DOE), in conjunction with the U.S. Department of Transportation (DOT) through the Pipeline and Hazardous Materials Safety Administration (PHMSA), announced the formation of a new Interagency Task Force on Natural Gas Storage Safety. The Task Force enlisted a group of scientists and engineers at the DOE National Laboratories to review the state of well integrity in natural gas storage in the U.S. The overarching objective of the review is to gather, analyze, catalogue, and disseminate information and findings that can lead to improved natural gas storage safety and security and thus reduce the risk of future events. The “Protecting our Infrastructure of Pipelines and Enhancing Safety Act of 2016’’ or the ‘‘PIPES Act of 2016,’’which was signed into law on June 22, 2016, created an Aliso Canyon Natural Gas Leak Task Force led by the Secretary of Energy and consisting of representatives from the DOT, Environmental Protection Agency (EPA), Department of Health and Human Services, Federal Energy Regulatory Commission (FERC), Department of Commerce and the Department of Interior. The Task Force was asked to perform an analysis of the Aliso Canyon event and make recommendations on preventing similar incidents in the future. The PIPES Act also required that DOT/PHMSA promulgate minimum safety standards for underground storage that would take effect within two years. Background on the DOE

  8. Element mobilization and immobilization from carbonate rocks between CO2storage reservoirs and the overlying aquifers during a potential CO2leakage.

    Science.gov (United States)

    Lawter, Amanda R; Qafoku, Nikolla P; Asmussen, R Matthew; Kukkadapu, Ravi K; Qafoku, Odeta; Bacon, Diana H; Brown, Christopher F

    2018-04-01

    Despite the numerous studies on changes within the reservoir following CO 2 injection and the effects of CO 2 release into overlying aquifers, little or no literature is available on the effect of CO 2 release on rock between the storage reservoirs and subsurface. This is important, because the interactions that occur in this zone between the CO 2 storage reservoir and the subsurface may have a significant impact on risk analysis for CO 2 storage projects. To address this knowledge gap, relevant rock materials, temperatures and pressures were used to study mineralogical and elemental changes in this intermediate zone. After rocks reacted with CO 2 -acidified 0.01 M NaCl, liquid analysis showed an increase of major elements (e.g., Ca and Mg) and variable concentrations of potential contaminants (e.g., Sr and Ba); lower aqueous concentrations of these elements were observed in N 2 control experiments, likely due to differences in pH between the CO 2 and N 2 experiments. In experiments with As/Cd and/or organic spikes, representing potential contaminants in the CO 2 plume originating in the storage reservoir, most or all of these contaminants were removed from the aqueous phase. SEM and Mössbauer spectroscopy results showed the formation of new minerals and Fe oxides in some CO 2 -reacted samples, indicating potential for contaminant removal through mineral incorporation or adsorption onto Fe oxides. These experiments show the interactions between the CO 2 -laden plume and the rock between storage reservoirs and overlying aquifers have the potential to affect the level of risk to overlying groundwater, and should be considered during site selection and risk evaluation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Depression storage capacities of different ideal pavements as quantified by a terrestrial laser scanning-based method.

    Science.gov (United States)

    Nehls, T; Menzel, M; Wessolek, G

    2015-01-01

    Rainfall partition on paved urban surfaces is governed to a great extent by depression storage. This is especially the case for small rainfall events, which are often ignored in urban hydrology. If storage, infiltration and evaporation (important for urban heat island mitigation), rather than storm water run-off, are of interest, high-resolution simulations with exact values for depression storage capacities are required. Terrestrial laser scanners deliver fast, high-resolution surveys of pavement surface morphology. The depression storage capacity can be quantified from 3D points by generating digital elevation models and applying cut-and-fill algorithms in a geographic information system. The method was validated using a test model. It was possible to quantify depressions with a depth of at least 1.4 × 10(-3) m and a surface of at least 15 × 10(-6) m(2) with an uncertainty below 30%. Applying this method, the depression storage capacities for 11 ideal, typical pavement designs were found to vary from 0.07 to 1.4 mm. Realistic urban pavements must also be surveyed, as cracks and puddles from their use history can have a major impact on the depression storage capacities and thus on infiltration, evaporation and, finally, the annual run-off.

  10. Solid hydrides as hydrogen storage reservoirs; Hidruros solidos como acumuladores de hidrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Sanchez, C.; Friedrichs, O.; Ares, J. R.; Leardini, F.; Bodega, J.; Fernandez, J. F.

    2010-07-01

    Metal hydrides as hydrogen storage materials are briefly reviewed in this paper. Fundamental properties of metal-hydrogen (gas) system such as Pressure-Composition-Temperature (P-C-T) characteristics are discussed on the light of the metal-hydride thermodynamics. Attention is specially paid to light metal hydrides which might have application in the car and transport sector. The pros and cons of MgH{sub 2} as a light material are outlined. Researches in course oriented to improve the behaviour of MgH{sub 2} are presented. Finally, other very promising alternative materials such as Al compounds (alanates) or borohydrides as light hydrogen accumulators are also considered. (Author)

  11. Optimizing accuracy of determinations of CO₂ storage capacity and permanence, and designing more efficient storage operations: An example from the Rock Springs Uplift, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, Ramsey [Univ. of Wyoming, Laramie, WY (United States). Dept. of Chemistry; Dahl, Shanna [Univ. of Wyoming, Laramie, WY (United States). Dept. of Chemistry; Deiss, Allory [Univ. of Wyoming, Laramie, WY (United States). Dept. of Chemistry; Duguid, Andrew [Univ. of Wyoming, Laramie, WY (United States). Dept. of Chemistry; Ganshin, Yuri [Univ. of Wyoming, Laramie, WY (United States). Dept. of Chemistry; Jiao, Zunsheng [Univ. of Wyoming, Laramie, WY (United States). Dept. of Chemistry; Quillinan, Scott [Univ. of Wyoming, Laramie, WY (United States). Dept. of Chemistry

    2015-12-01

    At a potential injection site on the Rock Springs Uplift in southwest Wyoming, an investigation of confining layers was undertaken to develop and test methodology, identify key data requirements, assess previous injection scenarios relative to detailed confining layer properties, and integrate all findings in order to reduce the uncertainty of CO₂ storage permanence. The assurance of safe and permanent storage of CO₂ at a storage site involves a detailed evaluation of the confining layers. Four suites of field data were recognized as crucial for determining storage permanence relative to the confining layers; seismic, core and petrophysical data from a wellbore, formation fluid samples, and in-situ formation tests. Core and petrophysical data were used to create a vertical heterogenic property model that defined porosity, permeability, displacement pressure, geomechanical strengths, and diagenetic history. These analyses identified four primary confining layers and multiple redundant confining layers. In-situ formation tests were used to evaluate fracture gradients, regional stress fields, baseline microseismic data, step-rate injection tests, and formation perforation responses. Seismic attributes, correlated with the vertical heterogenic property models, were calculated and used to create a 3-D volume model over the entire site. The seismic data provided the vehicle to transform the vertical heterogenic property model into a horizontal heterogenic property model, which allowed for the evaluation of confining layers across the entire study site without risking additional wellbore perforations. Lastly, formation fluids were collected and analyzed for geochemical and isotopic compositions from stacked reservoir systems. These data further tested primary confining layers, by evaluating the evidence of mixing between target reservoirs (mixing would imply an existing breach of primary confining layers). All data were propagated into a dynamic, heterogenic geologic

  12. Increasing Sucrose Uptake Capacity of Wheat Grains Stimulates Storage Protein Synthesis1[W

    Science.gov (United States)

    Weichert, Nicola; Saalbach, Isolde; Weichert, Heiko; Kohl, Stefan; Erban, Alexander; Kopka, Joachim; Hause, Bettina; Varshney, Alok; Sreenivasulu, Nese; Strickert, Marc; Kumlehn, Jochen; Weschke, Winfriede; Weber, Hans

    2010-01-01

    Increasing grain sink strength by improving assimilate uptake capacity could be a promising approach toward getting higher yield. The barley (Hordeum vulgare) sucrose transporter HvSUT1 (SUT) was expressed under control of the endosperm-specific Hordein B1 promoter (HO). Compared with the wild type, transgenic HOSUT grains take up more sucrose (Suc) in vitro, showing that the transgene is functional. Grain Suc levels are not altered, indicating that Suc fluxes are influenced rather than steady-state levels. HOSUT grains have increased percentages of total nitrogen and prolamins, which is reflected in increased levels of phenylalanine, tyrosine, tryptophan, isoleucine, and leucine at late grain development. Transcript profiling indicates specific stimulation of prolamin gene expression at the onset of storage phase. Changes in gene expression and metabolite levels related to carbon metabolism and amino acid biosynthesis suggest deregulated carbon-nitrogen balance, which together indicate carbon sufficiency and relative depletion of nitrogen. Genes, deregulated together with prolamin genes, might represent candidates, which respond positively to assimilate supply and are related to sugar-starch metabolism, cytokinin and brassinosteroid functions, cell proliferation, and sugar/abscisic acid signaling. Genes showing inverse expression patterns represent potential negative regulators. It is concluded that HvSUT1 overexpression increases grain protein content but also deregulates the metabolic status of wheat (Triticum aestivum) grains, accompanied by up-regulated gene expression of positive and negative regulators related to sugar signaling and assimilate supply. In HOSUT grains, alternating stimulation of positive and negative regulators causes oscillatory patterns of gene expression and highlights the capacity and great flexibility to adjust wheat grain storage metabolism in response to metabolic alterations. PMID:20018590

  13. Infection capacity of the pathogens Penicillium italicum and P. Expansum in orange during storage

    Directory of Open Access Journals (Sweden)

    Veljović Sonja P.

    2017-01-01

    Full Text Available Penicillium italicum and P. expansum are important pathogens causing decay in most fruits and vegetables. In this study, orange fruits were inoculated with these two species of fungus and stored 14 days with or without bagging, in a cold room for 11 days and 3 days at room temperature to determine the effect of bagging and infection capacities of both molds on oranges during storage. The results indicated that P. expansum can grow on orange peel with smaller colony diameter than P. italicum in bagged and unbagged fruits. Total soluble solids (TSS and firmness were not affected by bag. Gas composition of the bags showed low oxygen and high carbon dioxide concentration after fourteen days of storage. Bagged fruits decreased decay caused by P. italicum and weight loss, and delayed changes in firmness, TSS and acidity compared with control fruits. The study suggests that bagging may be a promising option for controlling decay, maintaining fruit quality and extending shelf-life of oranges.

  14. Quality and fertilizing capacity of boar spermatozoa during liquid storage in extender supplemented with different antibiotics.

    Science.gov (United States)

    Bryła, Magdalena; Trzcińska, Monika

    2015-12-01

    The aim of the study was to determine the effect of antibiotics on quality parameters and fertilizing capacity of boar sperm during liquid preservation. In the first experiment, semen was diluted in an extender containing 200 μg/mL of gentamicin as a control and diluted in a modified extenders: Ext I (contained 200 μg/mL florfenicol), Ext II (contained 200 μg/mL polymyxin B), Ext III (contained 100 μg/mL gentamicin and 100 μg/mL florfenicol) and Ext IV (contained 100 μg/mL gentamicin and 100 μg/mL polymyxin B). The semen was stored for ten days. Sperm quality was evaluated based on the motility (CASA; TM: total motility; PM: progressive motility), membrane integrity (YO-PRO-1/PI assay), mitochondrial activity (JC-1) and DNA integrity (TUNEL). The highest PM% (62.5 ± 9.6) was observed in Ext III at Day 6 of storage. The highest sperm viability and mitochondrial transmembrane potential was noticed at the end of the storage period in Ext III. Long-term storage did not induce DNA fragmentation in the extenders analyzed. In the second experiment, semen diluted in the control extender and in the extender providing the highest quality spermatozoa on Day 10 (Ext III) was used for artificial insemination (AI) of synchronized gilts. Our studies showed that the highest reproductive performance of inseminated gilts (pregnant gilts: 97.0%, litter size: 11.4 ± 1.2) occurred with Ext III semen dilution. The combination of 100 μg/mL gentamicin and 100 μg/mL florfenicol in the extender maintained sperm motility, membrane integrity and mitochondrial activity and enhanced the higher reproduction success. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Element mobilization and immobilization from carbonate rocks between CO 2 storage reservoirs and the overlying aquifers during a potential CO 2 leakage

    Energy Technology Data Exchange (ETDEWEB)

    Lawter, Amanda R.; Qafoku, Nikolla P.; Asmussen, R. Matthew; Kukkadapu, Ravi K.; Qafoku, Odeta; Bacon, Diana H.; Brown, Christopher F.

    2018-04-01

    Despite the numerous studies on changes within the reservoir following CO2 injection and the effects of CO2 release into overlying aquifers, little or no literature is available on the effect of CO2 release on rock between the storage reservoirs and subsurface. To address this knowledge gap, relevant rock materials, temperatures and pressures were used to study mineralogical and elemental changes in this intermediate zone. After rocks reacted with CO2, liquid analysis showed an increase of major elements (e.g., Ca, and Mg) and variable concentrations of potential contaminants (e.g., Sr and Ba); lower concentrations were observed in N2 controls. In experiments with As/Cd and/or organic spikes, representing potential contaminants in the CO2 plume originating in the storage reservoir, most or all of these contaminants were removed from the aqueous phase. SEM and Mössbauer spectroscopy results showed the formation of new minerals and Fe oxides in some CO2-reacted samples, indicating potential for contaminant removal through mineral incorporation or adsorption onto Fe oxides. These experiments show the interactions between the CO2-laden plume and the rock between storage reservoirs and overlying aquifers have the potential to affect the level of risk to overlying groundwater, and should be considered during site selection and risk evaluation.

  16. Modelling of Reservoir Operations using Fuzzy Logic and ANNs

    Science.gov (United States)

    Van De Giesen, N.; Coerver, B.; Rutten, M.

    2015-12-01

    Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, , was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.

  17. Predicting Formation Damage in Aquifer Thermal Energy Storage Systems Utilizing a Coupled Hydraulic-Thermal-Chemical Reservoir Model

    Science.gov (United States)

    Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali

    2014-05-01

    In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to

  18. Hydrological properties of bark of selected forest tree species. Part 2: Interspecific variability of bark water storage capacity

    Directory of Open Access Journals (Sweden)

    Ilek Anna

    2017-06-01

    Full Text Available The subject of the present research is the water storage capacity of bark of seven forest tree species: Pinus sylvestris L., Larix decidua Mill., Abies alba Mill., Pinus sylvestris L., Quercus robur L., Betula pendula Ehrh. and Fagus sylvatica L. The aim of the research is to demonstrate differences in the formation of bark water storage capacity between species and to identify factors influencing the hydrological properties of bark. The maximum water storage capacity of bark was determined under laboratory conditions by performing a series of experiments simulating rainfall and by immersing bark samples in containers filled with water. After each single experiment, the bark samples were subjected to gravity filtration in a desiccator partially filled with water. The experiments lasted from 1084 to 1389 hours, depending on the bark sample. In all the studied species, bark sampled from the thinnest trees is characterized by the highest water storage capacity expressed in mm H2O · cm-3, while bark sampled from the thickest trees - by the lowest capacity. On the other hand, bark sampled from the thickest trees is characterized by the highest water storage capacity expressed in H2O · cm-2 whereas bark from the thinnest trees - by the lowest capacity. In most species tested, as the tree thickness and thus the bark thickness and the coefficient of development of the interception surface of bark increase, the sorption properties of the bark decrease with bark depth, and the main role in water retention is played by the outer bark surface. The bark of European beech is an exception because of the smallest degree of surface development and because the dominant process is the absorption of water. When examining the hydrological properties of bark and calculating its parameters, one needs to take into account the actual surface of the bark of trees. Disregarding the actual bark surface may lead to significant errors in the interpretation of research

  19. Capacity enhancement of aqueous borohydride fuels for hydrogen storage in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, David [U.S. Borax Inc., Rio Tinto, CO (United States); Neiner, Doinita [U.S. Borax Inc., Rio Tinto, CO (United States); Bowden, Mark [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Whittemore, Sean [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holladay, Jamie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Zhenguo [Univ. of Wollongong, NSW (Australia); Autrey, Tom [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    In this work we demonstrate enhanced hydrogen storage capacities through increased solubility of sodium borate product species in aqueous media achieved by adjusting the sodium (NaOH) to boron (B(OH)3) ratio, i.e., M/B, to obtain a distribution of polyborate anions. For a 1:1 mole ratio of NaOH to B(OH)3, M/B = 1, the ratio of the hydrolysis product formed from NaBH4 hydrolysis, the sole borate species formed and observed by 11B NMR is sodium metaborate, NaB(OH)4. When the ratio is 1:3 NaOH to B(OH)3, M/B = 0.33, a mixture of borate anions is formed and observed as a broad peak in the 11B NMR spectrum. The complex polyborate mixture yields a metastable solution that is difficult to crystallize. Given the enhanced solubility of the polyborate mixture formed when M/B = 0.33 it should follow that the hydrolysis of sodium octahydrotriborate, NaB3H8, can provide a greater storage capacity of hydrogen for fuel cell applications compared to sodium borohydride while maintaining a single phase. Accordingly, the hydrolysis of a 23 wt% NaB3H8 solution in water yields a solution having the same complex polyborate mixture as formed by mixing a 1:3 molar ratio of NaOH and B(OH)3 and releases >8 eq of H2. By optimizing the M/B ratio a complex mixture of soluble products, including B3O3(OH)52-, B4O5(OH)42-, B3O3(OH)4-, B5O6(OH)4- and B(OH)3, can be maintained as a single liquid phase throughout the hydrogen release process. Consequently, hydrolysis of NaB3H8 can provide a 40% increase in H2 storage density compared to the hydrolysis of NaBH4 given the decreased solubility of sodium metaborate. The authors would like to thank Jim Sisco and Paul Osenar of

  20. SECARB Commercial Scale CO2 Injection and Optimization of Storage Capacity in the Southeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Koperna, George J. [Advanced Resources International, Inc., Arlington, VA (United States); Pashin, Jack [Oklahoma State Univ., Stillwater, OK (United States); Walsh, Peter [Univ. of Alabama, Birmingham, AL (United States)

    2017-10-30

    The Commercial Scale Project is a US DOE/NETL funded initiative aimed at enhancing the knowledge-base and industry’s ability to geologically store vast quantities of anthropogenic carbon. In support of this goal, a large-scale, stacked reservoir geologic model was developed for Gulf Coast sediments centered on the Citronelle Dome in southwest Alabama, the site of the SECARB Phase III Anthropogenic Test. Characterization of regional geology to construct the model consists of an assessment of the entire stratigraphic continuum at Citronelle Dome, from surface to the depth of the Donovan oil-bearing formation. This project utilizes all available geologic data available, which includes: modern geophysical well logs from three new wells drilled for SECARB’s Anthropogenic Test; vintage logs from the Citronelle oilfield wells; porosity and permeability data from whole core and sidewall cores obtained from the injection and observation wells drilled for the Anthropogenic Test; core data obtained from the SECARB Phase II saline aquifer injection test; regional core data for relevant formations from the Geological Survey of Alabama archives. Cross sections, isopach maps, and structure maps were developed to validate the geometry and architecture of the Citronelle Dome for building the model, and assuring that no major structural defects exist in the area. A synthetic neural network approach was used to predict porosity using the available SP and resistivity log data for the storage reservoir formations. These data are validated and applied to extrapolate porosity data over the study area wells, and to interpolate permeability amongst these data points. Geostatistical assessments were conducted over the study area. In addition to geologic characterization of the region, a suite of core analyses was conducted to construct a depositional model and constrain caprock integrity. Petrographic assessment of core was conducted by OSU and analyzed to build a depositional framework

  1. Oxygen storage capacity and structural properties of Ni-doped LaMnO3 perovskites

    International Nuclear Information System (INIS)

    Ran, Rui; Wu, Xiaodong; Weng, Duan; Fan, Jun

    2013-01-01

    Graphical abstract: Dynamic OSC of (a) fresh and (b) aged LaMn 1−x Ni x O 3 perovskites (0.1 Hz). Aged condition: 1050 °C, 5 h, 7% steam in air. The LaMn 1−x Ni x O 3 perovskites exhibit considerable dynamic OSC in comparison to CeO 2 –ZrO 2 (CZ), even after 1050 °C hydrothermal ageing for 5 h. Highlights: •Ni-doped LaMnO 3 perovskites exhibit very large dynamic OSC and high oxygen storage rate. •Mn 4+ is favourable to the releasable oxygen. •Doping of Ni ions increase the Mn 4+ content and the oxygen vacancies. •Doping of Ni ions reduce the BO 6 distortion in the LaMnO 3 perovskites. -- Abstract: A series of Ni doped LaMnO 3 perovskites were prepared by a sol–gel method as oxygen storage materials. Powder X-ray diffraction (XRD), X-ray adsorption fine structure (XAFS), oxygen storage capacity (OSC) and H 2 -temperature program reduction (TPR) measurements were performed to investigate the OSC of the perovskites as well as the effects of Ni on the structural properties. The results showed that the Ni-doped LaMnO 3 perovskite exhibited very large dynamic OSC and high oxygen release rate, which provided a possibility to serve as an oxygen storage material candidate in three-way catalysts. The available oxygen species below 500 °C primarily originated from the redox reaction between Mn 4+ and Mn 3+ , and the more Mn 4+ were favourable to the releasable oxygen. The doping of appropriate Ni ions promoted the OSC of the LaMnO 3 perovskites by increasing the Mn 4+ content and adjusting the structural defects. On the other hand, the doped Ni ions could make the BO 6 distortion disappearing in the LaMnO 3 perovskites to reduce the lattice oxygen activity

  2. Assessment of the impact of the Kruonis hydro pumped storage on the ichtyocenosis of the Kaunas water reservoir

    International Nuclear Information System (INIS)

    Valushiene, V.; Gerulaitis, A.; Repechka, R.

    1996-01-01

    During the exploitation period (1992-1993) of one hydroagregate unit of the Kruonis Hydro Pumped Storage (HPS) the lower basin of the Kaunas Water Reservoir (Kauno Marios) fish species, their dimensions and age were found to change insignificantly as compared with the background data of the previous years (1989-1991). These changes can be associated with the peculiarities of natural conditions. At the current velocity 9-10 cm/s the penetration of young fish and their larvae into the hydroagregates of HPS was observed. At the end of summer, the abundance of fish larvae in the reverse canal before the unit started operating made up 41.3, during the pumping period - 51.3, at discharge time - 30.5 spec./100 m 3 . The greater part of the 'pumped in' fish accumulated in the upper basin. The rest ones, having passed through aggregates, penetrated into the reverse canal and came back into the lower basin. When operating one unit at the regime of 'pump', the injuries of young fish do not exceed 3-5%. The larger the fish the more often the injuries. The main injuries were mechanical or associated with fluctuations of pressure. 12 refs., 4 figs

  3. Numerical analysis of temperature and flow effects in a dry, two-dimensional, porous-media reservoir used for compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.

    1979-10-01

    The purpose of the work is to define the hydrodynamic and thermodynamic response of a CAES dry porous media reservoir subjected to simulated air mass cycling. The knowledge gained will provide, or will assist in providing, design guidelines for the efficient and stable operation of the air storage reservoir. The analysis and results obtained by two-dimensional modeling of dry reservoirs are presented. While the fluid/thermal response of the underground system is dependent on many parameters, the two-dimensional model was applied only to those parameters that entered the analysis by virtue of inclusion of the vertical dimension. In particular, the parameters or responses that were quantified or characterized include wellbore heat transfer, heat losses to the vertical boundaries of the porous zone, gravitationally induced flows, producing length of the wellbore, and the effects of nonuniform permeability. The analysis of the wellbore heat transfer included consideration of insulation, preheating (bubble development with heated air), and air mass flow rate.

  4. Increased charge storage capacity of titanium nitride electrodes by deposition of boron-doped nanocrystalline diamond films

    DEFF Research Database (Denmark)

    Meijs, Suzan; McDonald, Matthew; Sørensen, Søren

    2015-01-01

    The aim of this study was to investigate the feasibility of depositing a thin layer of boron-doped nanocrystalline diamond (B-NCD) on titanium nitride (TiN) coated electrodes and the effect this has on charge injection properties. The charge storage capacity increased by applying the B-NCD film...

  5. Assesment of bathymetric maps via GIS for water in reservoir

    Directory of Open Access Journals (Sweden)

    Ayhan Ceylan

    Full Text Available In order to adopt measures for storing more water in reservoirs, lakes and ponds; to prevent water pollution, protect water sources and extend the service life of these facilities, it is important for manager (Municipalities, Directorates of the State Hydraulic Works (DSHW, Irrigation Unions etc. to know the current topographic conditions and any changes in the storage capacities of these facilities. This study aimed to identify the updated topographic and bathymetric data required for the efficient management and usage of Altınapa reservoir, changes in surface area and volume of the facility, and to form a Reservoir Information System (RIS. Two digital elevation models, from 2009 and 1984, were used to determine changes in the storage capacity of the reservoir. The calculations indicated that, within this 25-year period, the storage capacity of the reservoir decreased by 12.7% due to sedimentation. A Dam Information System (RIS was developed from a wide range of data sources, including topographic and bathymetric data of the reservoir and its surrounding area, data on specific features such as plant cover, water quality characteristics (Temperature, Dissolved Oxygen (DO, Secchi Disk Depth (SDD and pH, geological structure, average water level, water supplied from springs, evaporation value of the reservoir, and precipitation.

  6. Calendar aging of commercial graphite/LiFePO4 cell - Predicting capacity fade under time dependent storage conditions

    Science.gov (United States)

    Grolleau, Sébastien; Delaille, Arnaud; Gualous, Hamid; Gyan, Philippe; Revel, Renaud; Bernard, Julien; Redondo-Iglesias, Eduardo; Peter, Jérémy

    2014-06-01

    In applications such as electrical transportation, most of the battery life is spent under storage. Understanding and estimating aging under storage, also named as calendar aging, is therefore a prerequisite for cell life prediction. This work investigates aging behavior upon storage of a commercial 15 Ah lithium-ion graphite/iron phosphate cell. Performance decline during 450 days of storage under nine stationary conditions is analyzed using non-destructive electrochemical tests. Temperature is found to be more detrimental than State of Charge (SoC). Most often, degradation models express the accumulated degradation with respect to time and aging conditions. In this article, a simple modeling approach is proposed focusing on the degradation rate to predict capacity fade. This permits predicting cell degradation under time dependent storage conditions (SoC and temperature) which are usually experienced in real applications. Model prediction is compared to experimental calendar aging data obtained over 625 days in a controlled time dependent temperature storage conditions. Predictions are in good agreement with experimental results as the absolute error on capacity prediction never exceeds 3% over 400 days and 5% over 625 days.

  7. Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed black raspberry products.

    Science.gov (United States)

    Hager, A; Howard, L R; Prior, R L; Brownmiller, C

    2008-08-01

    This study evaluated the effects of processing and 6 mo of storage on total monomeric anthocyanins, percent polymeric color, and antioxidant capacity of black raspberries that were individually quick-frozen (IQF), canned-in-syrup, canned-in-water, pureed, and juiced (clarified and nonclarified). Total monomeric anthocyanins, percent polymeric color, and ORAC(FL) were determined 1 d postprocessing and after 1, 3, and 6 mo of storage. Thermal processing resulted in marked losses in total anthocyanins ranging from 37% in puree to 69% to 73% in nonclarified and clarified juices, respectively, but only the juices showed substantial losses (38% to 41%) in ORAC(FL). Storage at 25 degrees C of all thermally processed products resulted in dramatic losses in total anthocyanins ranging from 49% in canned-in-syrup to 75% in clarified juices. This coincided with marked increases in percent polymeric color values of these products over the 6-mo storage. ORAC(FL) values showed little change during storage, indicating that the formation of polymers compensated for the loss of antioxidant capacity due to anthocyanin degradation. Total anthocyanins and ORACFL of IQF berries were well retained during long-term storage at -20 degrees C.

  8. Antioxidant capacity, phenolic and vitamin C contents of quinoa (Chenopodium quinoa Willd. as affected by sprouting and storage conditions

    Directory of Open Access Journals (Sweden)

    Maura N. Laus

    2017-03-01

    Full Text Available Antioxidant capacity (AC of quinoa (Chenopodium quinoa Willd. cv. Real seeds and sprouts obtained after 4 days of seed germination at 20°C and 70% humidity was evaluated using trolox equivalent antioxidant capacity (TEAC and oxygen radical absorbance capacity (ORAC assays, able to highlight reducing activity and peroxyl radical scavenging capacity, respectively; phenolic content (PC was also measured. Both TEAC and ORAC assays revealed a significantly higher (about 2- and 2.8-fold, respectively AC of 4-day-old sprouts compared to seeds; consistently, also PC values of sprouts resulted about 2.6 times higher than seeds. In order to investigate the influence of storage on AC and PC, as well as on vitamin C content (VCC, 4-day-old sprouts were subjected for 7 days at 5°C to three different conditions of controlled atmosphere storage (CAS compared with air. Interestingly, whatever the CAS conditions, storage of quinoa sprouts up to 7 days induced an increase of AC evaluated in terms of reducing activity by TEAC assay. Consistently, an increase of PC and VCC was measured during storage, positively correlated to TEAC values. Moreover, a decrease of peroxyl radical scavenging activity, measured by ORAC, was observed after 7 days of storage, in accordance with a shift of AC towards the reducing activity component. Overall, these findings indicate that sprouting approach using quinoa may provide highly antioxidant-enriched seedlings that may improve nutritional quality of diet or of functional foods. Interestingly, antioxidant properties of quinoa sprouts may be deeply influenced by storage, able to increase reducing activity by increasing phenols and vitamin C.

  9. Optimized Planning of Power Source Capacity in Microgrid, Considering Combinations of Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Zifa Liu

    2016-12-01

    Full Text Available Since renewable energy resource is universally accepted as a promising method to solve the global energy problem, optimal planning and utilization of various distributed generators (DG and energy storage (ES devices deserve special concern. ES devices possess various characteristics in power density, energy density, response speed (switching speed and lifetime. Besides, as different load types have various requirements on power supply reliability according to their importance, coordinated planning with consideration of reasonable matching between power source and load can efficiently improve power supply reliability and economic efficiency via a customized power supply and compensation strategy. This paper focuses on optimization of power source capacity in microgrid and a coordinated planning strategy is proposed with integrated consideration of characteristics of DG, ES and load. An index named additional compensation ratio (ACR for balancing economic efficiency and reliability is proposed and considered in the strategy. The objective function which aims to minimize life cycle cost (LCC is established considering economic efficiency, reliability and environmental conservation. The proposed planning strategy and optimizing model is calculated and verified through case study of an autonomy microgrid.

  10. Synthesis of CeO2-based core/shell nanoparticles with high oxygen storage capacity

    Science.gov (United States)

    Uzunoglu, Aytekin; Kose, Dursun Ali; Stanciu, Lia A.

    2017-07-01

    Ceria plays a key role in various applications including sensing and catalysis owing to its high oxygen storage capacity (OSC). The aim of this work is to prepare novel MO x /CeO2 (M: Zr, Ti, Cu) metal oxide systems with core/shell structures using a facile two-step chemical precipitation method. The synthesized nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and N2 adsorption methods. The OSC property of the samples was evaluated using TGA analysis conducted at 600 °C under reductive (5% H2/Ar) and oxidative (synthetic air) environments. The OSCs of the samples were found to be 130, 253, and 2098 µmol-O2/g for ZrO2/CeO2, TiO2/CeO2, and CuO/CeO2, respectively. Effects of heat treatment on the physical and redox properties of the samples were also evaluated. In this regard, the samples were exposed to 500 °C for 5 h under ambient environment. It was observed that the heat treatment induced the formation of mixed metal oxide alloys and the BET surface area of the samples diminished significantly. The OSC of the samples, however, did not experience any significant chance, which was attributed to the compensation of the loss in the surface area by the alloy formation after the heat treatment.

  11. Estimation of the Change in Storage Capacity above Mined Longwall Panels.

    Science.gov (United States)

    Tammetta, Paul

    2016-09-01

    Accurate estimation of the change in groundwater storage capacity (S) above mined longwall panels is vital for analysis of postmining void water level recovery in coal mines, and assessment of water quality impacts. At present, there is no generalized representation of the spatial distribution of changes in S around a panel. Current estimates are generally bulk averages with high uncertainty, precluding calculation of groundwater velocities in various parts of the subsurface. In this work, a recently published hydrogeological conceptual model of longwall caving is used in conjunction with observations from borehole extensometers, goaf height measurements, and pumping/drawdown records for mine pools to develop a subsurface spatial distribution of changes in S following longwall caving, with reduced uncertainty in their magnitudes. The assumption of saturation in the disturbed zone proved critical for obtaining accurate results and in reconciling widely varying published estimates of S. Results indicate that the goaf and collapsed zones each absorb over 30% of the mined volume, and about 20% is absorbed by the surface subsidence trough. The increase in S in the collapsed zone is inversely proportional to the amount of surface subsidence. The conceptual model is updated with these results to present the spatial distribution of S after caving. The results allow calculation of water velocities in various zones, and may provide greater accuracy in estimation of water level rebound and water quality processes. Most of the S participating in groundwater flows is provided by defects rather than the matrix. © 2016, National Ground Water Association.

  12. Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium

    International Nuclear Information System (INIS)

    Perdomo, Camilo; Pérez, Alejandro; Molina, Rafael; Moreno, Sonia

    2016-01-01

    Highlights: • Ce addition to the catalysts improves the availability of oxygen in the materials. • Mixed oxide with Co and Cu exhibits the best oxygen transport properties. • Co presence improves O 2 mobility in the catalysts. • The presence of Cu in the solids improves redox properties. - Abstract: The oxygen mobility and storage capacity of Ce-Co/Cu-MgAl or Ce–MgAl mixed oxides, obtained by hydrotalcite precursors, were evaluated using Toluene-temperature-programmed-reaction, 18 O 2 isotopic exchange and O 2 -H 2 titration. The presence of oxygen vacancies-related species was evaluated by means of Electron Paramagnetic Resonance. A correlation was found between the studied properties and the catalytic activity of the oxides in total oxidation processes. It was evidenced that catalytic activity depends on two related processes: the facility with which the solid can be reduced and its ability to regenerate itself in the presence of molecular oxygen in the gas phase. These processes are enhanced by Cu-Co cooperative effect in the mixed oxides. Additionally, the incorporation of Ce in the Co-Cu catalysts improved their oxygen transport properties.

  13. What limits working memory capacity? Evidence for modality-specific sources to the simultaneous storage of visual and auditory arrays.

    Science.gov (United States)

    Fougnie, Daryl; Marois, René

    2011-11-01

    There is considerable debate on whether working memory (WM) storage is mediated by distinct subsystems for auditory and visual stimuli (Baddeley, 1986) or whether it is constrained by a single, central capacity-limited system (Cowan, 2006). Recent studies have addressed this issue by measuring the dual-task cost during the concurrent storage of auditory and visual arrays (e.g., Cocchini, Logie, Della Sala, MacPherson, & Baddeley, 2002; Fougnie & Marois, 2006; Saults & Cowan, 2007). However, studies have yielded widely different dual-task costs, which have been taken to support both modality-specific and central capacity-limit accounts of WM storage. Here, we demonstrate that the controversies regarding such costs mostly stem from how these costs are measured. Measures that compare combined dual-task capacity with the higher single-task capacity support a single, central WM store when there is a large disparity between the single-task capacities (Experiment 1) but not when the single-task capacities are well equated (Experiment 2). In contrast, measures of the dual-task cost that normalize for differences in single-task capacity reveal evidence for modality-specific stores, regardless of single-task performance. Moreover, these normalized measures indicate that dual-task cost is much smaller if the tasks do not involve maintaining bound feature representations in WM (Experiment 3). Taken together, these experiments not only resolve a discrepancy in the field and clarify how to assess the dual-task cost but also indicate that WM capacity can be constrained both by modality-specific and modality-independent sources of information processing.

  14. Energy Saving High-Capacity Moderate Pressure Carbon Dioxide Storage System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Our approach to high-pressure carbon dioxide storage will directly address the challenges associated with storage of compressed carbon dioxide - the need to reduce...

  15. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides.

    Science.gov (United States)

    Xie, Yu; Naguib, Michael; Mochalin, Vadym N; Barsoum, Michel W; Gogotsi, Yury; Yu, Xiqian; Nam, Kyung-Wan; Yang, Xiao-Qing; Kolesnikov, Alexander I; Kent, Paul R C

    2014-04-30

    A combination of density functional theory (DFT) calculations and experiments is used to shed light on the relation between surface structure and Li-ion storage capacities of the following functionalized two-dimensional (2D) transition-metal carbides or MXenes: Sc2C, Ti2C, Ti3C2, V2C, Cr2C, and Nb2C. The Li-ion storage capacities are found to strongly depend on the nature of the surface functional groups, with O groups exhibiting the highest theoretical Li-ion storage capacities. MXene surfaces can be initially covered with OH groups, removable by high-temperature treatment or by reactions in the first lithiation cycle. This was verified by annealing f-Nb2C and f-Ti3C2 at 673 and 773 K in vacuum for 40 h and in situ X-ray adsorption spectroscopy (XAS) and Li capacity measurements for the first lithiation/delithiation cycle of f-Ti3C2. The high-temperature removal of water and OH was confirmed using X-ray diffraction and inelastic neutron scattering. The voltage profile and X-ray adsorption near edge structure of f-Ti3C2 revealed surface reactions in the first lithiation cycle. Moreover, lithiated oxygen terminated MXenes surfaces are able to adsorb additional Li beyond a monolayer, providing a mechanism to substantially increase capacity, as observed mainly in delaminated MXenes and confirmed by DFT calculations and XAS. The calculated Li diffusion barriers are low, indicative of the measured high-rate performance. We predict the not yet synthesized Cr2C to possess high Li capacity due to the low activation energy of water formation at high temperature, while the not yet synthesized Sc2C is predicted to potentially display low Li capacity due to higher reaction barriers for OH removal.

  16. Changes in the color, chemical stability and antioxidant capacity of thermally treated anthocyanin aqueous solution over storage.

    Science.gov (United States)

    Sui, Xiaonan; Bary, Solène; Zhou, Weibiao

    2016-02-01

    Many anthocyanin-containing foods are thermally processed to ensure their safety, and stored for some time before being consumed. However, the combination of thermal processing and subsequent storage has a significant impact on anthocyanins. This study aimed to investigate the color, chemical stability, and antioxidant capacity of thermally treated anthocyanin aqueous solutions during storage at 4, 25, 45, and 65 °C, respectively. Anthocyanin aqueous solutions were thermally treated before storage. Results showed that the degradation rate of anthocyanins in aqueous solutions was much faster than those in real food. The color of the anthocyanin aqueous solutions changed dramatically during storage. The anthocyanin aqueous solutions stored at 4 °C showed the best chemical stability. Interestingly, the antioxidant capacity of the anthocyanin aqueous solutions stored at lower temperatures remained the same; however, the antioxidant capacity of those thermally treated at 120 or 140 °C and stored at 45 or 65 °C significantly decreased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Experimental and Numerical Study of Effect of Thermal Management on Storage Capacity of the Adsorbed Natural Gas Vessel

    KAUST Repository

    Ybyraiymkul, Doskhan

    2017-07-08

    One of the main challenges in the adsorbed natural gas (ANG) storage system is the thermal effect of adsorption, which significantly lowers storage capacity. These challenges can be solved by efficient thermal management system. In this paper, influence of thermal management on storage capacity of the ANG vessel was studied experimentally and numerically. 3D numerical model was considered in order to understand heat transfer phenomena and analyze influence of thermal control comprehensively. In addition, a detailed 2D axisymmetric unit cell model of adsorbent layer with heat exchanger was developed, followed by optimization of heat exchanging device design to minimize volume occupied by fins and tubes. Heat transfer, mass transfer and adsorption kinetics, which occur in ANG vessel during charging process, are accounted for in models. Nelder-Mead method is implemented to obtain the geometrical parameters, which lead to the optimal characteristics of heat exchange. A new optimized configuration of ANG vessel was developed with compact heat exchanger. Results show that storage capacity of the ANG vessel increased significantly due to lowering of heat exchanger volume for 3 times from 13.5% to 4.3% and effective temperature control.

  18. Increasing the thermal storage capacity of a phase change material by encapsulation: preparation and application in natural rubber.

    Science.gov (United States)

    Phadungphatthanakoon, Songpon; Poompradub, Sirilux; Wanichwecharungruang, Supason P

    2011-09-01

    Existing encapsulated organic phase change materials (PCM) usually contain a shell material that possesses a poor heat storage capacity and so results in a lowered latent heat storage density of the encapsulated PCM compared to unencapsulated PCM. Here, we demonstrate the use of a novel microencapsulation process to encapsulate n-eicosane (C20) into a 2:1 (w/w) ratio blend of ethyl cellulose (EC):methyl cellulose (MC) to give C20-loaded EC/MC microspheres with an increased heat storage capacity compared to the unencapsulated C20. Up to a 29 and 24% increase in the absolute enthalpy value during crystallization and melting were observed for the encap-C20/EC/MC microparticles with a 9% (w/w) EC/MC polymer content. The mechanism that leads to the increased latent heat storage capacity is discussed. The blending of the water-dispersible C20-loaded EC/MC microspheres into natural rubber latex showed excellent compatibility, and the obtained rubber composite showed not only an obvious thermoregulation property but also an improved mechanical property.

  19. Impact of sea-level rise on Everglades carbon storage capacity in the Holocene

    Science.gov (United States)

    Jones, M.; Bernhardt, C. E.; Wingard, G. L. L.; Keller, K.; Stackhouse, B.; Landacre, B.

    2017-12-01

    storage capacity of the Florida Everglades could decrease significantly if the freshwater Everglades accretion rate cannot outpace SLR. Further, the expansion and persistence of high-accumulating Rhizophora peat is limited by elevated SLR, impacting coastline stability and wildlife habitat.

  20. The role of storage capacity in coping with intra- and inter-annual water variability in large river basins

    Science.gov (United States)

    Gaupp, Franziska; Hall, Jim; Dadson, Simon

    2015-12-01

    Societies and economies are challenged by variable water supplies. Water storage infrastructure, on a range of scales, can help to mitigate hydrological variability. This study uses a water balance model to investigate how storage capacity can improve water security in the world’s 403 most important river basins, by substituting water from wet months to dry months. We construct a new water balance model for 676 ‘basin-country units’ (BCUs), which simulates runoff, water use (from surface and groundwater), evaporation and trans-boundary discharges. When hydrological variability and net withdrawals are taken into account, along with existing storage capacity, we find risks of water shortages in the Indian subcontinent, Northern China, Spain, the West of the US, Australia and several basins in Africa. Dividing basins into BCUs enabled assessment of upstream dependency in transboundary rivers. Including Environmental Water Requirements into the model, we find that in many basins in India, Northern China, South Africa, the US West Coast, the East of Brazil, Spain and in the Murray basin in Australia human water demand leads to over-abstraction of water resources important to the ecosystem. Then, a Sequent Peak Analysis is conducted to estimate how much storage would be needed to satisfy human water demand whilst not jeopardizing environmental flows. The results are consistent with the water balance model in that basins in India, Northern China, Western Australia, Spain, the US West Coast and several basins in Africa would need more storage to mitigate water supply variability and to meet water demand.

  1. Conductive Boron-Doped Graphene as an Ideal Material for Electrocatalytically Switchable and High-Capacity Hydrogen Storage.

    Science.gov (United States)

    Tan, Xin; Tahini, Hassan A; Smith, Sean C

    2016-12-07

    Electrocatalytic, switchable hydrogen storage promises both tunable kinetics and facile reversibility without the need for specific catalysts. The feasibility of this approach relies on having materials that are easy to synthesize, possessing good electrical conductivities. Graphitic carbon nitride (g-C 4 N 3 ) has been predicted to display charge-responsive binding with molecular hydrogen-the only such conductive sorbent material that has been discovered to date. As yet, however, this conductive variant of graphitic carbon nitride is not readily synthesized by scalable methods. Here, we examine the possibility of conductive and easily synthesized boron-doped graphene nanosheets (B-doped graphene) as sorbent materials for practical applications of electrocatalytically switchable hydrogen storage. Using first-principle calculations, we find that the adsorption energy of H 2 molecules on B-doped graphene can be dramatically enhanced by removing electrons from and thereby positively charging the adsorbent. Thus, by controlling charge injected or depleted from the adsorbent, one can effectively tune the storage/release processes which occur spontaneously without any energy barriers. At full hydrogen coverage, the positively charged BC 5 achieves high storage capacities up to 5.3 wt %. Importantly, B-doped graphene, such as BC 49 , BC 7 , and BC 5 , have good electrical conductivity and can be easily synthesized by scalable methods, which positions this class of material as a very good candidate for charge injection/release. These predictions pave the route for practical implementation of electrocatalytic systems with switchable storage/release capacities that offer high capacity for hydrogen storage.

  2. A Power Smoothing Control Strategy and Optimized Allocation of Battery Capacity Based on Hybrid Storage Energy Technology

    Directory of Open Access Journals (Sweden)

    Yong Li

    2012-05-01

    Full Text Available Wind power parallel operation is an effective way to realize the large scale use of wind power, but the fluctuations of power output from wind power units may have great influence on power quality, hence a new method of power smoothing and capacity optimized allocation based on hybrid energy storage technology is proposed in terms of the uncontrollable and unexpected characteristics of wind speed in wind farms. First, power smoothing based on a traditional Inertial Filter is introduced and the relationship between the time constant, its smoothing effect and capacity allocation are analyzed and combined with Proportional Integral Differential (PID control to realize power smoothing control of wind power. Then wavelet theory is adopted to realize a multi-layer decomposition of power output in some wind farms, a power smoothing model based on hybrid energy storage technology is constructed combining the characteristics of the Super Capacitor (SC and Battery Energy Storage System (BESS technologies. The hybrid energy storage system is available for power fluctuations with high frequency-low energy and low frequency-high energy to achieve good smoothing effects compared with a single energy storage system. The power fluctuations filtered by the Wavelet Transform is regarded as the target value of BESS, the charging and discharging control for battery is completed quickly by Model Algorithm Control (MAC. Because of the influence of the inertia and the response speed of the battery, its actual output is not completely equal to the target value which mainly reflects in high-frequency part, the difference part uses SC to compensate and makes the output of battery and SC closer to the target value on the whole. Compared with the traditional Inertial Filter and PID control method, the validity of the model was verified by simulation results. Finally under the premise of power grid standards, the corresponding capacity design had been given to reduce the

  3. A Study on the Reservoir Capacity to Control Mud Flood Derived from Mud Volcano: A Phenomenon in Sidoarjo

    Directory of Open Access Journals (Sweden)

    Sholihin Sholihin

    2010-11-01

    Full Text Available This paper is an extended research of Coastal Zone Management of Sidoarjo mud phenomenon. The idea is to find special concept of management to control mud flood using reservoir system. This method, in the mud fluid, is intentionally used to make separation of the solid materials from water. The concept is to calculate sediment velocity in order to find the time of sedimentation then to estimate the volume of mud. Therefore, the reservoir will be determined from this calculation. The result of this research is the dimension of the reservoir: area of 3,704,144.36 m2, the depth of 5.94 m, and the volume 22.018.856.07 m3. The time of sedimentation is calculated of 28.33 hours for 42.2 % of material volume sedimentation. Consequently, the suspension material is 57.8 %. The correction of calculation is depending on the calculation of the velocity of sedimentation, about 2 %.

  4. Will building new reservoirs always help increase the water supply reliability? - insight from a modeling-based global study

    Science.gov (United States)

    Zhuang, Y.; Tian, F.; Yigzaw, W.; Hejazi, M. I.; Li, H. Y.; Turner, S. W. D.; Vernon, C. R.

    2017-12-01

    More and more reservoirs are being build or planned in order to help meet the increasing water demand all over the world. However, is building new reservoirs always helpful to water supply? To address this question, the river routing module of Global Change Assessment Model (GCAM) has been extended with a simple yet physical-based reservoir scheme accounting for irrigation, flood control and hydropower operations at each individual reservoir. The new GCAM river routing model has been applied over the global domain with the runoff inputs from the Variable Infiltration Capacity Model. The simulated streamflow is validated at 150 global river basins where the observed streamflow data are available. The model performance has been significantly improved at 77 basins and worsened at 35 basins. To facilitate the analysis of additional reservoir storage impacts at the basin level, a lumped version of GCAM reservoir model has been developed, representing a single lumped reservoir at each river basin which has the regulation capacity of all reservoir combined. A Sequent Peak Analysis is used to estimate how much additional reservoir storage is required to satisfy the current water demand. For basins with water deficit, the water supply reliability can be improved with additional storage. However, there is a threshold storage value at each basin beyond which the reliability stops increasing, suggesting that building new reservoirs will not help better relieve the water stress. Findings in the research can be helpful to the future planning and management of new reservoirs.

  5. Mathematical and field analysis of longitudinal reservoir infill

    Science.gov (United States)

    Ke, W. T.; Capart, H.

    2016-12-01

    In reservoirs, severe problems are caused by infilled sediment deposits. In long term, the sediment accumulation reduces the capacity of reservoir storage and flood control benefits. In the short term, the sediment deposits influence the intakes of water-supply and hydroelectricity generation. For the management of reservoir, it is important to understand the deposition process and then to predict the sedimentation in reservoir. To investigate the behaviors of sediment deposits, we propose a one-dimensional simplified theory derived by the Exner equation to predict the longitudinal sedimentation distribution in idealized reservoirs. The theory models the reservoir infill geomorphic actions for three scenarios: delta progradation, near-dam bottom deposition, and final infill. These yield three kinds of self-similar analytical solutions for the reservoir bed profiles, under different boundary conditions. Three analytical solutions are composed by error function, complementary error function, and imaginary error function, respectively. The theory is also computed by finite volume method to test the analytical solutions. The theoretical and numerical predictions are in good agreement with one-dimensional small-scale laboratory experiment. As the theory is simple to apply with analytical solutions and numerical computation, we propose some applications to simulate the long-profile evolution of field reservoirs and focus on the infill sediment deposit volume resulting the uplift of near-dam bottom elevation. These field reservoirs introduced here are Wushe Reservoir, Tsengwen Reservoir, Mudan Reservoir in Taiwan, Lago Dos Bocas in Puerto Rico, and Sakuma Dam in Japan.

  6. Bismuth as a New Chloride-Storage Electrode Enabling the Construction of a Practical High Capacity Desalination Battery.

    Science.gov (United States)

    Nam, Do-Hwan; Choi, Kyoung-Shin

    2017-08-16

    Materials that can selectively store Na and Cl ions in the bulk of their structures and release these ions with good cycle stability can enable the construction of a high capacity, rechargeable desalination cell for use in seawater desalination. In this study, the ability of a nanocrystalline Bi foam electrode to serve as an efficient and high capacity Cl-storage electrode using its conversion to BiOCl was investigated. When Bi as a Cl-storage electrode was coupled with NaTi 2 (PO 4 ) 3 as a Na-storage electrode, a new type of rechargeable desalination cell, which is charged during desalination and discharged during salination, was constructed. The resulting Bi-NaTi 2 (PO 4 ) 3 cell was tested under various salination and desalination conditions to investigate advantages and potential limitations of using Bi as a Cl-storage electrode. Slow Cl - release kinetics of BiOCl in neutral conditions and an imbalance in Cl and Na storage (i.e., Cl storage requires three electrons/Cl, while Na storage requires one electron/Na) were identified as possible drawbacks, but strategies to address these issues were developed. On the basis of these investigations, optimum desalination and salination conditions were identified where the Bi/NaTi 2 (PO 4 ) 3 cell achieved a desalination/salination cycle at ±1 mA cm -2 with a net potential input of only 0.20 V. The kinetics of Cl - release from BiOCl was significantly improved by the use of an acidic solution, and therefore, a divided cell was used for the salination process. We believe that with further optimizations the Bi/BiOCl electrode will enable efficient and practical desalination applications.

  7. Climate variability and sedimentation of a hydropower reservoir

    International Nuclear Information System (INIS)

    Riedel, M.

    2008-01-01

    As part of the relicensing of a large Hydroelectric Project in the central Appalachians, large scale watershed and reservoir sedimentation models were developed to forecast potential sedimentation scenarios. The GIS based watershed model was spatially explicit and calibrated to long term observed data. Potential socio/economic development scenarios were used to construct future watershed land cover scenarios. Climatic variability and potential change analysis were used to identify future climate regimes and shifts in precipitation and temperature patterns. Permutations of these development and climate changes were forecasted over 50 years and used to develop sediment yield regimes to the project reservoir. Extensive field work and reservoir survey, including current and wave instrumentation, were used to characterize the project watershed, rivers and reservoir hydrodynamics. A fully 3 dimensional hydrodynamic reservoir sedimentation model was developed for the project and calibrated to observed data. Hydrologic and sedimentation results from watershed forecasting provided boundary conditions for reservoir inputs. The calibrated reservoir model was then used to forecast changes in reservoir sedimentation and storage capacity under different future climate scenarios. Results indicated unique zones of advancing sediment deltas and temporary storage areas. Forecasted changes in reservoir bathymetry and sedimentation patterns were also developed for the various climate change scenarios. The warmer and wetter scenario produced sedimentation impacts similar to extensive development under no climate change. The results of these analyses are being used to develop collaborative watershed and soil conservation partnerships to reduce future soil losses and reservoir sedimentation from projected development. (author)

  8. Determining Carbon and Oxygen Stable Isotope Systematics in Brines at Elevated p/T Conditions to Enhance Monitoring of CO2 Induced Processes in Carbon Storage Reservoirs

    Science.gov (United States)

    Becker, V.; Myrttinen, A.; Mayer, B.; Barth, J. A.

    2012-12-01

    Stable carbon isotope ratios (δ13C) are a powerful tool for inferring carbon sources and mixing ratios of injected and baseline CO2 in storage reservoirs. Furthermore, CO2 releasing and consuming processes can be deduced if the isotopic compositions of end-members are known. At low CO2 pressures (pCO2), oxygen isotope ratios (δ18O) of CO2 usually assume the δ18O of the water plus a temperature-dependent isotope fractionation factor. However, at very high CO2 pressures as they occur in CO2 storage reservoirs, the δ18O of the injected CO2 may in fact change the δ18O of the reservoir brine. Hence, changing δ18O of brine constitutes an additional tracer for reservoir-internal carbon dynamics and allows the determination of the amount of free phase CO2 present in the reservoir (Johnson et al. 2011). Further systematic research to quantify carbon and oxygen isotope fractionation between the involved inorganic carbon species (CO2, H2CO3, HCO3-, CO32-, carbonate minerals) and kinetic and equilibrium isotope effects during gas-water-rock interactions is necessary because p/T conditions and salinities in CO2 storage reservoirs may exceed the boundary conditions of typical environmental isotope applications, thereby limiting the accuracy of stable isotope monitoring approaches in deep saline formations (Becker et al. 2011). In doing so, it is crucial to compare isotopic patterns observed in laboratory experiments with artificial brines to similar experiments with original fluids from representative field sites to account for reactions of dissolved inorganic carbon (DIC) with minor brine components. In the CO2ISO-LABEL project, funded by the German Ministry for Education and Research, multiple series of laboratory experiments are conducted to determine the influence of pressure, temperature and brine composition on the δ13C of DIC and the δ18O of brines in water-CO2-rock reactions with special focus placed on kinetics and stable oxygen and carbon isotope fractionation

  9. Rainwater harvesting in catchments for agro-forestry uses: A study focused on the balance between sustainability values and storage capacity.

    Science.gov (United States)

    Terêncio, D P S; Sanches Fernandes, L F; Cortes, R M V; Moura, J P; Pacheco, F A L

    2018-02-01

    Rainwater harvesting (RWH) is used to support small-scale agriculture and handle seasonal water availability, especially in regions where populations are scattered or the costs to develop surface or groundwater resources are high. However, questions may arise as whether this technique can support larger-scale irrigation projects and in complement help the struggle against wildfires in agro-forested watersheds. The issue is relevant because harvested rainwater in catchments is usually accumulated in small-capacity reservoirs created by small-height dams. In this study, a RWH site allocation method was improved from a previous model, by introducing the dam wall height as evaluation parameter. The studied watershed (Sabor River basin) is mostly located in the Northeast of Portugal. This is a rural watershed where agriculture and forestry uses are dominant and where ecologically relevant regions (e.g., Montezinho natural park) need to be protected from wildfires. The study aimed at ranking 384 rainfall collection sub-catchments as regards installation of RWH sites for crop irrigation and forest fire combat. The height parameter was set to 3m because this value is a reference to detention basins that hold sustainability values (e.g., landscape integration, environmental protection), but the irrigation capacity under these settings was smaller than 10ha in 50% of cases, while continuous arable lands in the Sabor basin cover on average 222ha. Besides, the number of sub-catchments capable to irrigate the average arable land was solely 7. When the dam wall height increased to 6 and 12m, the irrigation capacity increased to 46 and 124 sub-catchments, respectively, meaning that more engineered dams may not always ensure all sustainability values but warrant much better storage. The limiting parameter was the dam wall height because 217 sub-catchments were found to drain enough water for irrigation and capable to store it if proper dam wall heights were used. Copyright © 2017

  10. Development and evaluation of a low-cost and high-capacity DICOM image data storage system for research.

    Science.gov (United States)

    Yakami, Masahiro; Ishizu, Koichi; Kubo, Takeshi; Okada, Tomohisa; Togashi, Kaori

    2011-04-01

    Thin-slice CT data, useful for clinical diagnosis and research, is now widely available but is typically discarded in many institutions, after a short period of time due to data storage capacity limitations. We designed and built a low-cost high-capacity Digital Imaging and COmmunication in Medicine (DICOM) storage system able to store thin-slice image data for years, using off-the-shelf consumer hardware components, such as a Macintosh computer, a Windows PC, and network-attached storage units. "Ordinary" hierarchical file systems, instead of a centralized data management system such as relational database, were adopted to manage patient DICOM files by arranging them in directories enabling quick and easy access to the DICOM files of each study by following the directory trees with Windows Explorer via study date and patient ID. Software used for this system was open-source OsiriX and additional programs we developed ourselves, both of which were freely available via the Internet. The initial cost of this system was about $3,600 with an incremental storage cost of about $900 per 1 terabyte (TB). This system has been running since 7th Feb 2008 with the data stored increasing at the rate of about 1.3 TB per month. Total data stored was 21.3 TB on 23rd June 2009. The maintenance workload was found to be about 30 to 60 min once every 2 weeks. In conclusion, this newly developed DICOM storage system is useful for research due to its cost-effectiveness, enormous capacity, high scalability, sufficient reliability, and easy data access.

  11. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches. UPH. Appendix E: Lower reservoir

    Science.gov (United States)

    1981-04-01

    Operational, construction, and geotechnical requirements were examined. Overriding considerations including operating range, volume, construction methods, cavern cross section and reservoir layout were studied within the context of minimizing facility costs and optimizing the plant layout. The study led to a preliminary arrangement of fourteen parallel caverns, each 60 ft wide by 85 ft high in cross section and 3610 ft in length. The requirements for and preliminary design of the intermediate reservoir in the case of a two step UPH facility is also described. The design and the cost estimates presented are based on the requirements for a 2000 MW plant providing 20,000 MWh of storage at a nominal head of 4600 ft.

  12. Optimal Capacity Configuration of a Hybrid Energy Storage System for an Isolated Microgrid Using Quantum-Behaved Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2018-02-01

    Full Text Available The capacity of an energy storage device configuration not only affects the economic operation of a microgrid, but also affects the power supply’s reliability. An isolated microgrid is considered with typical loads, renewable energy resources, and a hybrid energy storage system (HESS composed of batteries and ultracapacitors in this paper. A quantum-behaved particle swarm optimization (QPSO algorithm that optimizes the HESS capacity is used. Based on the respective power compensation capabilities of ultracapacitors and batteries, a rational energy scheduling strategy is proposed using the principle of a low-pass filter and can help to avoid frequent batteries charging and discharging. Considering the rated power of each energy storage type, the respective compensation power is corrected. By determining whether the charging state reaches the limit, the value is corrected again. Additionally, a mathematical model that minimizes the daily cost of the HESS is derived. This paper takes an isolated micrgrid in north China as an example to verify the effectiveness of this method. The comparison between QPSO and a traditional particle swarm algorithm shows that QPSO can find the optimal solution faster and the HESS has lower daily cost. Simulation results for an isolated microgrid verified the effectiveness of the HESS optimal capacity configuration method.

  13. [Algal community structure and water quality assessment on drawdown area of Kaixian waters in Three Gorges Reservoir during winter storage period].

    Science.gov (United States)

    Guo, Jing-Song; Xie, Dan; Li, Zhe; Chen, Yuan; Sun, Zhi-Yu; Chen, Yong-Bo; Long, Man

    2012-04-01

    The old town area of Kaixian county was flooded and showed reservoir characteristics after the water level of Three Gorges Reservoir got 172. 8 m in December 2008. The aquatic ecology and nutritional status of Kaixian drawdown area after water storage are still rarely reported. To understand the current water environment and changes in algal community structure of Kaixian drawdown area after 172.8 m water level, the algal composition, abundance, biomass distribution and changes of its sampling spots including Hanfeng Lake were observed twice during winter storage period in January and December 2009. The trends in phytoplankton community structure were analyzed and the water quality assessment of nutritional status was carried out. The results indicated that 6 phylums, 37 genera, 69 species of phytoplankton in total were identified in the two sampling, and the dominant species were Dinophyta and Cryptophyta. The cell density and biomass in December 2009 were lower than those in January 2009. The evaluation results of algal population structure and pollution indicators showed that the nutrition level of Kaixian drawdown area during the winter storage period was mesotrophic to eutrophic type, while diversity analysis result indicated moderate pollution.

  14. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Winiarski, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carmichael, Robert T. [Cadeo Group, Washington D. C. (United States); Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fisher, Andrew R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  15. Large temporal scale and capacity subsurface bulk energy storage with CO2

    Science.gov (United States)

    Saar, M. O.; Fleming, M. R.; Adams, B. M.; Ogland-Hand, J.; Nelson, E. S.; Randolph, J.; Sioshansi, R.; Kuehn, T. H.; Buscheck, T. A.; Bielicki, J. M.

    2017-12-01

    Decarbonizing energy systems by increasing the penetration of variable renewable energy (VRE) technologies requires efficient and short- to long-term energy storage. Very large amounts of energy can be stored in the subsurface as heat and/or pressure energy in order to provide both short- and long-term (seasonal) storage, depending on the implementation. This energy storage approach can be quite efficient, especially where geothermal energy is naturally added to the system. Here, we present subsurface heat and/or pressure energy storage with supercritical carbon dioxide (CO2) and discuss the system's efficiency, deployment options, as well as its advantages and disadvantages, compared to several other energy storage options. CO2-based subsurface bulk energy storage has the potential to be particularly efficient and large-scale, both temporally (i.e., seasonal) and spatially. The latter refers to the amount of energy that can be stored underground, using CO2, at a geologically conducive location, potentially enabling storing excess power from a substantial portion of the power grid. The implication is that it would be possible to employ centralized energy storage for (a substantial part of) the power grid, where the geology enables CO2-based bulk subsurface energy storage, whereas the VRE technologies (solar, wind) are located on that same power grid, where (solar, wind) conditions are ideal. However, this may require reinforcing the power grid's transmission lines in certain parts of the grid to enable high-load power transmission from/to a few locations.

  16. The use of contained nuclear explosions to create underground reservoirs, and experience of operating these for gas condensate storage

    International Nuclear Information System (INIS)

    Kedrovskij, O.L.; Myasnikov, K.V.; Leonov, E.A.; Romadin, N.M.; Dorodnov, V.F.; Nikiforov, G.A.

    1975-01-01

    Investigations on the creation of underground reservoirs by means of nuclear explosions have been going on in the Soviet Union for many years. In this paper the authors consider three main kinds of sites or formations that can be used for constructing reservoirs by this method, namely, low-permeable rocks, worked-out mines and rock salt formations. Formulae are given for predicting the mechanical effect of an explosion in rocks, taking their strength characteristics into account. Engineering procedures are described for sealing and restoring the emplacement holes, so that they can be used for operating the underground reservoir. Experience with the contruction and operation of a 50 000 m 3 gas-condensate reservoir in a rock salt formation is described. In the appendix to the paper a method is presented for calculating the stability of spherical cavities created by nuclear explosions in rock salt, allowing for the development of elasto-plastic deformations and creep

  17. Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II

    Energy Technology Data Exchange (ETDEWEB)

    George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg; Aiysha Sultana; Tyler Van Leeuwen

    2009-06-01

    This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2 storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.

  18. Evolution of the Petrophysical and Mineralogical Properties of Two Reservoir Rocks Under Thermodynamic Conditions Relevant for CO2 Geological Storage at 3 km Depth

    International Nuclear Information System (INIS)

    Rimmel, G.; Barlet-Gouedard, V.; Renard, F.

    2010-01-01

    Injection of carbon dioxide (CO 2 ) underground, for long-term geological storage purposes, is considered as an economically viable option to reduce greenhouse gas emissions in the atmosphere. The chemical interactions between supercritical CO 2 and the potential reservoir rock need to be thoroughly investigated under thermodynamic conditions relevant for geological storage. In the present study, 40 samples of Lavoux limestone and Adamswiller sandstone, both collected from reservoir rocks in the Paris basin, were experimentally exposed to CO 2 in laboratory autoclaves specially built to simulate CO 2 -storage-reservoir conditions. The two types of rock were exposed to wet supercritical CO 2 and CO 2 -saturated water for one month, at 28 MPa and 90 C, corresponding to conditions for a burial depth approximating 3 km. The changes in mineralogy and micro-texture of the samples were measured using X-ray diffraction analyses, Raman spectroscopy, scanning-electron microscopy, and energy-dispersion spectroscopy microanalysis. The petrophysical properties were monitored by measuring the weight, density, mechanical properties, permeability, global porosity, and local porosity gradients through the samples. Both rocks maintained their mechanical and mineralogical properties after CO 2 exposure despite an increase of porosity and permeability. Microscopic zones of calcite dissolution observed in the limestone are more likely to be responsible for such increase. In the sandstone, an alteration of the petro-fabric is assumed to have occurred due to clay minerals reacting with CO 2 . All samples of Lavoux limestone and Adamswiller sandstone showed a measurable alteration when immersed either in wet supercritical CO 2 or in CO 2 -saturated water. These batch experiments were performed using distilled water and thus simulate more severe conditions than using formation water (brine). (authors)

  19. Gravity Recovery and Climate Experiment (GRACE) detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements

    Science.gov (United States)

    Wang, Xianwei; de Linage, Caroline; Famiglietti, James; Zender, Charles S.

    2011-12-01

    Water impoundment in the Three Gorges Reservoir (TGR) of China caused a large mass redistribution from the oceans to a concentrated land area in a short time period. We show that this mass shift is captured by the Gravity Recovery and Climate Experiment (GRACE) unconstrained global solutions at a 400 km spatial resolution after removing correlated errors. The WaterGAP Global Hydrology Model (WGHM) is selected to isolate the TGR contribution from regional water storage changes. For the first time, this study compares the GRACE (minus WGHM) estimated TGR volume changes with in situ measurements from April 2002 to May 2010 at a monthly time scale. During the 8 year study period, GRACE-WGHM estimated TGR volume changes show an increasing trend consistent with the TGR in situ measurements and lead to similar estimates of impounded water volume. GRACE-WGHM estimated total volume increase agrees to within 14% (3.2 km3) of the in situ measurements. This indicates that GRACE can retrieve the true amplitudes of large surface water storage changes in a concentrated area that is much smaller than the spatial resolution of its global harmonic solutions. The GRACE-WGHM estimated TGR monthly volume changes explain 76% (r2 = 0.76) of in situ measurement monthly variability and have an uncertainty of 4.62 km3. Our results also indicate reservoir leakage and groundwater recharge due to TGR filling and contamination from neighboring lakes are nonnegligible in the GRACE total water storage changes. Moreover, GRACE observations could provide a relatively accurate estimate of global water volume withheld by newly constructed large reservoirs and their impacts on global sea level rise since 2002.

  20. Methods to Assess Geological CO2 Storage Capacity: Status and Best Practice

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    To understand the emission reduction potential of carbon capture and storage (CCS), decision makers need to understand the amount of CO2 that can be safely stored in the subsurface and the geographical distribution of storage resources. Estimates of storage resources need to be made using reliable and consistent methods. Previous estimates of CO2 storage potential for a range of countries and regions have been based on a variety of methodologies resulting in a correspondingly wide range of estimates. Consequently, there has been uncertainty about which of the methodologies were most appropriate in given settings, and whether the estimates produced by these methods were useful to policy makers trying to determine the appropriate role of CCS. In 2011, the IEA convened two workshops which brought together experts for six national surveys organisations to review CO2 storage assessment methodologies and make recommendations on how to harmonise CO2 storage estimates worldwide. This report presents the findings of these workshops and an internationally shared guideline for quantifying CO2 storage resources.

  1. Biphase Cobalt-Manganese Oxide with High Capacity and Rate Performance for Aqueous Sodium-Ion Electrochemical Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Xiaoqiang [Univ. of New Hampshire, Durham, NH (United States). Dept. of Chemical Engineering; Charles, Daniel S. [Univ. of New Hampshire, Durham, NH (United States). Dept. of Chemical Engineering; Xu, Wenqian [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS). X-ray Science Division; Feygenson, Mikhail [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division and Spallation Neutron Source (SNS) outstation Juelich Centre for Neutron Science (JCNS), Forschungszentrum Juelich GmbH; Su, Dong [Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN); Teng, Xiaowei [Univ. of New Hampshire, Durham, NH (United States). Dept. of Chemical Engineering

    2017-11-22

    Manganese-based metal oxide electrode materials are of great importance in electrochemical energy storage for their favorable redox behavior, low cost and environmental-friendliness. However, their storage capacity and cycle life in aqueous Na-ion electrolytes is not satisfactory. In this paper, we report the development of a bi-phase cobalt-manganese oxide (Co-Mn-O) nanostructured electrode material, comprised of a layered MnO2.H2O birnessite phase and a (Co0.83Mn0.13Va0.04)tetra(Co0.38Mn1.62)octaO3.72 (Va: vacancy; tetra: tetrahedral sites; octa: octahedral sites) spinel phase, verified by neutron total scattering and pair distribution function analyses. The bi-phase Co-Mn-O material demonstrates an excellent storage capacity towards Na-ions in an aqueous electrolyte (121 mA h g-1 at a scan rate of 1 mV s-1 in the half-cell and 81 mA h g-1 at a current density of 2 A g-1 after 5000 cycles in full-cells), as well as high rate performance (57 mA h g-1 a rate of 360 C). Electro-kinetic analysis and in situ X-ray diffraction measurements further confirm that the synergistic interaction between the spinel and layered phases, as well as the vacancy of the tetrahedral sites of spinel phase, contribute to the improved capacity and rate performance of the Co-Mn-O material by facilitating both diffusion-limited redox and capacitive charge storage processes.

  2. Dynamical Origin of the Effective Storage Capacity in the Brain's Working Memory

    Science.gov (United States)

    Bick, Christian; Rabinovich, Mikhail I.

    2009-11-01

    The capacity of working memory (WM), a short-term buffer for information in the brain, is limited. We suggest a model for sequential WM that is based upon winnerless competition amongst representations of available informational items. Analytical results for the underlying mathematical model relate WM capacity and relative lateral inhibition in the corresponding neural network. This implies an upper bound for WM capacity, which is, under reasonable neurobiological assumptions, close to the “magical number seven.”

  3. Storage capacity assessment of liquid fuels production by solar gasification in a packed bed reactor using a dynamic process model

    International Nuclear Information System (INIS)

    Kaniyal, Ashok A.; Eyk, Philip J. van; Nathan, Graham J.

    2016-01-01

    of syngas throughput that could be maintained over a full year by 74%, to 5.9 kmol/day. Importantly, a larger heliostat field collection area was calculated to reduce the required storage capacity to approximately halve 35 days, which in absolute terms corresponds to 3.0 tons of syngas. Nevertheless, a requirement for this capacity of storage suggests that the use of the packed bed solar gasification reactor for FT liquids production is unlikely to be viable without substantial changes to the design and operation of the reactor and/or downstream processing plant.

  4. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis

    Science.gov (United States)

    Halem, M.; Shaffer, F.; Palm, N.; Salmon, E.; Raghavan, S.; Kempster, L.

    1998-01-01

    The density of digital storage media in our information-intensive society increases by a factor of four every three years, while the rate at which this data can be migrated to viable long-term storage has been increasing by a factor of only four every nine years. Meanwhile, older data stored on increasingly obsolete media, are at considerable risk. When the systems for which the media were designed are no longer serviced by their manufacturers (many of whom are out of business), the data will no longer be accessible. In some cases, older media suffer from a physical breakdown of components - tapes simply lose their magnetic properties after a long time in storage. The scale of the crisis is compatible to that facing the Social Security System. Greater financial and intellectual resources to the development and refinement of new storage media and migration technologies in order to preserve as much data as possible.

  5. Preparation, characterization, and ınvestigation of H2 storage capacities of Pruussian blue analogues

    OpenAIRE

    Altınsoy, Büşra

    2015-01-01

    Cataloged from PDF version of article. A convenient and efficient hydrogen storage system is a research challenge since hydrogen storage is one of the most critical steps in hydrogen economy. The media where hydrogen molecule is stored is important not only because of safety but also to generate maximum energy and consume minimum energy during the adsorption-desorption process. Porous coordination polymers have been considered as convenient hydrogen sorbents among other h...

  6. Area of Interest 1, CO2 at the Interface. Nature and Dynamics of the Reservoir/Caprock Contact and Implications for Carbon Storage Performance

    Energy Technology Data Exchange (ETDEWEB)

    Mozley, Peter [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Evans, James [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Dewers, Thomas [New Mexico Institute Of Mining And Technology, Socorro, NM (United States)

    2014-10-31

    Formation reservoir/caprock interface in order to extend our work to a reservoir/caprock pair this is currently being assessed for long-term carbon storage. These analyses indicate that interface features similar to those observed at the Utah sites 3 were not observed. Although not directly related to our main study topic, one byproduct of our investigation is documentation of exceptionally high degrees of heterogeneity in the pore-size distribution of the Mount Simon Sandstone. This suggests that the unit has a greater-than-normal potential for residual trapping of supercritical CO2.

  7. DNA MemoChip: Long-Term and High Capacity Information Storage and Select Retrieval

    Science.gov (United States)

    Wang, Fuzhou; Kream, Richard M.

    2018-01-01

    Over the course of history, human beings have never stopped seeking effective methods for information storage. From rocks to paper, and through the past several decades of using computer disks, USB sticks, and on to the thin silicon “chips” and “cloud” storage of today, it would seem that we have reached an era of efficiency for managing innumerable and ever-expanding data. Astonishingly, when tracing this technological path, one realizes that our ancient methods of informational storage far outlast paper (10,000 vs. 1,000 years, respectively), let alone the computer-based memory devices that only last, on average, 5 to 25 years. During this time of fast-paced information generation, it becomes increasingly difficult for current storage methods to retain such massive amounts of data, and to maintain appropriate speeds with which to retrieve it, especially when in demand by a large number of users. Others have proposed that DNA-based information storage provides a way forward for information retention as a result of its temporal stability. It is now evident that DNA represents a potentially economical and sustainable mechanism for storing information, as demonstrated by its decoding from a 700,000 year-old horse genome. The fact that the human genome is present in a cell, containing also the varied mitochondrial genome, indicates DNA’s great potential for large data storage in a ‘smaller’ space. PMID:29481548

  8. DNA MemoChip: Long-Term and High Capacity Information Storage and Select Retrieval.

    Science.gov (United States)

    Stefano, George B; Wang, Fuzhou; Kream, Richard M

    2018-02-26

    Over the course of history, human beings have never stopped seeking effective methods for information storage. From rocks to paper, and through the past several decades of using computer disks, USB sticks, and on to the thin silicon "chips" and "cloud" storage of today, it would seem that we have reached an era of efficiency for managing innumerable and ever-expanding data. Astonishingly, when tracing this technological path, one realizes that our ancient methods of informational storage far outlast paper (10,000 vs. 1,000 years, respectively), let alone the computer-based memory devices that only last, on average, 5 to 25 years. During this time of fast-paced information generation, it becomes increasingly difficult for current storage methods to retain such massive amounts of data, and to maintain appropriate speeds with which to retrieve it, especially when in demand by a large number of users. Others have proposed that DNA-based information storage provides a way forward for information retention as a result of its temporal stability. It is now evident that DNA represents a potentially economical and sustainable mechanism for storing information, as demonstrated by its decoding from a 700,000 year-old horse genome. The fact that the human genome is present in a cell, containing also the varied mitochondrial genome, indicates DNA's great potential for large data storage in a 'smaller' space.

  9. South Louisiana Enhanced Oil Recovery/Sequestration R&D Project Small Scale Field Tests of Geologic Reservoir Classes for Geologic Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hite, Roger [Blackhorse Energy LLC, Houston, TX (United States)

    2016-10-01

    The project site is located in Livingston Parish, Louisiana, approximately 26 miles due east of Baton Rouge. This project proposed to evaluate an early Eocene-aged Wilcox oil reservoir for permanent storage of CO2. Blackhorse Energy, LLC planned to conduct a parallel CO2 oil recovery project in the First Wilcox Sand. The primary focus of this project was to examine and prove the suitability of South Louisiana geologic formations for large-scale geologic sequestration of CO2 in association with enhanced oil recovery applications. This was to be accomplished through the focused demonstration of small-scale, permanent storage of CO2 in the First Wilcox Sand. The project was terminated at the request of Blackhorse Energy LLC on October 22, 2014.

  10. Nonlinear Filtering Effects of Reservoirs on Flood Frequency Curves at the Regional Scale: RESERVOIRS FILTER FLOOD FREQUENCY CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Li, Hong-Yi; Leung, Lai-Yung; Yigzaw, Wondmagegn Y.; Zhao, Jianshi; Lu, Hui; Deng, Zhiqun; Demissie, Yonas; Bloschl, Gunter

    2017-10-01

    Anthropogenic activities, e.g., reservoir operation, may alter the characteristics of Flood Frequency Curve (FFC) and challenge the basic assumption of stationarity used in flood frequency analysis. This paper presents a combined data-modeling analysis of the nonlinear filtering effects of reservoirs on the FFCs over the contiguous United States. A dimensionless Reservoir Impact Index (RII), defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume, is used to quantify reservoir regulation effects. Analyses are performed for 388 river stations with an average record length of 50 years. The first two moments of the FFC, mean annual maximum flood (MAF) and coefficient of variations (CV), are calculated for the pre- and post-dam periods and compared to elucidate the reservoir regulation effects as a function of RII. It is found that MAF generally decreases with increasing RII but stabilizes when RII exceeds a threshold value, and CV increases with RII until a threshold value beyond which CV decreases with RII. The processes underlying the nonlinear threshold behavior of MAF and CV are investigated using three reservoir models with different levels of complexity. All models capture the non-linear relationships of MAF and CV with RII, suggesting that the basic flood control function of reservoirs is key to the non-linear relationships. The relative roles of reservoir storage capacity, operation objectives, available storage prior to a flood event, and reservoir inflow pattern are systematically investigated. Our findings may help improve flood-risk assessment and mitigation in regulated river systems at the regional scale.

  11. A Model To Estimate Carbon Dioxide Injectivity and Storage Capacity for Geological Sequestration in Shale Gas Wells.

    Science.gov (United States)

    Edwards, Ryan W J; Celia, Michael A; Bandilla, Karl W; Doster, Florian; Kanno, Cynthia M

    2015-08-04

    Recent studies suggest the possibility of CO2 sequestration in depleted shale gas formations, motivated by large storage capacity estimates in these formations. Questions remain regarding the dynamic response and practicality of injection of large amounts of CO2 into shale gas wells. A two-component (CO2 and CH4) model of gas flow in a shale gas formation including adsorption effects provides the basis to investigate the dynamics of CO2 injection. History-matching of gas production data allows for formation parameter estimation. Application to three shale gas-producing regions shows that CO2 can only be injected at low rates into individual wells and that individual well capacity is relatively small, despite significant capacity variation between shale plays. The estimated total capacity of an average Marcellus Shale well in Pennsylvania is 0.5 million metric tonnes (Mt) of CO2, compared with 0.15 Mt in an average Barnett Shale well. Applying the individual well estimates to the total number of existing and permitted planned wells (as of March, 2015) in each play yields a current estimated capacity of 7200-9600 Mt in the Marcellus Shale in Pennsylvania and 2100-3100 Mt in the Barnett Shale.

  12. Studies and research concerning BNFP. Spent fuel disassembly: increasing hot-cell storage capacity at the Barnwell Nuclear Fuel Plant

    International Nuclear Information System (INIS)

    Anderson, R.T.

    1979-10-01

    This report presents the results of work performed at AGNS in 1979 related to production-rate fuel disassembly in the existing hot cell spaces of the BNFP. The primary advantage of the developed technique is realized at a reprocessing plant facility where suitable hot cells and connecting storage pools are available. The existing spent fuel pools are also candidates for away-from-reactor (AFR) storage space. Storage estimates based on utilization of the BNFP indicate that a major expansion from 1600 MTU up to 3000 MTU is possible. The report presents data on the results of initial process development and prototype equipment testing. Assessments were made of operational safety, licensing, and economic factors. These studies indicate that the techniques are performable and have economic merit when there is a requirement for a large increment of new storage capacity. A development program plan is presented. This plan delineates the future work required to bring the process to a point where implementation is possible

  13. Destratification of an impounding reservoir using compressed air??case of Mudi reservoir, Blantyre, Malawi

    Science.gov (United States)

    Chipofya, V. H.; Matapa, E. J.

    This paper reviews the operational and cost effectiveness of a compressed air destratification system that was installed in the Mudi reservoir for destratifying the reservoir. Mudi reservoir is a raw water source for the Blantyre Water Board. It has a capacity of 1,400,000 cubic metres. The reservoir is 15.3 m deep at top water level. In the absence of any artificial circulation of air, the reservoir stratifies into two layers. There is a warm epilimnion in the top 3 m of the reservoir, with temperatures ranging from 23 to 26 °C. There is prolific algal growth in this layer. The bottom layer has much lower temperatures, and is oxygen deficient. Under such anaerobic conditions, ammonia, sulphides, iron and manganese are released from the sediments of the reservoir. As a result of nutrient inflow from the catchments, coupled with tropical ambient temperatures, the reservoir is most times infested with blue-green algae. This results into water treatment problems in respect of taste and odour and iron and manganese soluble salts. To abate such problems, air is artificially circulated in the reservoir, near the intake tower, through a perforated pipe that is connected to an electrically driven compressor. This causes artificial circulation of water in the hypolimnion region of the reservoir. As a result of this circulation, a hostile environment that inhibits the propagation of algae is created. Dissolved oxygen and temperature profiles are practically uniform from top to bottom of reservoir. Concentrations of iron and manganese soluble salts are much reduced at any of the draw-off points available for the water treatment process. The paper concludes by highlighting the significant cost savings in water treatment that are accrued from the use of compressed air destratification in impounding water storage reservoirs for the control of algae and other chemical pollutants.

  14. Hydrogen storage by adsorption on activated carbon: investigation of the thermal effects during the charging process; Stockage de l'hydrogene par adsorption sur charbon actif: etude des effets thermiques lors de la charge dynamique d'un reservoir a lit fixe adsorbant

    Energy Technology Data Exchange (ETDEWEB)

    Hermosilla-Lara, G

    2007-02-15

    This work presents an experimental and numerical investigation of the thermal effects occurring during the charge of adsorbent fixed bed tank. The influence of these thermal effects, which result from the exothermal character of the adsorption process and the pressure forces work, on the storage capacity is specially analysed. An experimental setup allowing the dynamic measurements of the temperature and pressure profiles has been used. Then the numerical protocol with the Fluent software, has been validated by comparison of the simulated pressure, flow rate and temperature fields in the tank with the results obtained from an experimental investigation carried out the dynamic storage. Several predictive simulations have been carried out in order to study the effect of the boundary conditions, as the wall temperature or effective thermal conductivity of the porous bed, on the storage capacity of the reservoir. We searched the optimal geometry of an interbed thermal dissipator for a given industrial tank. To do this we made vary the H/L ratio, which represents the ratio of the height of an elementary stage and the total length of the tank. We could determine an optimal geometry which corresponds to the value 1/3 of the ratio H/L. From this optimum we studied the effect of five additional cooling tubes on the tank storage capacity. The stored mass is 15 % higher than that obtained without these tubes. (author)

  15. Mineralogical controls on porosity and water chemistry during O2-SO2-CO2 reaction of CO2 storage reservoir and cap-rock core

    International Nuclear Information System (INIS)

    Pearce, Julie K.; Golab, Alexandra; Dawson, Grant K.W.; Knuefing, Lydia; Goodwin, Carley; Golding, Suzanne D.

    2016-01-01

    Reservoir and cap-rock core samples with variable lithology's representative of siliciclastic reservoirs used for CO 2 storage have been characterized and reacted at reservoir conditions with an impure CO 2 stream and low salinity brine. Cores from a target CO 2 storage site in Queensland, Australia were tested. Mineralogical controls on the resulting changes to porosity and water chemistry have been identified. The tested siliciclastic reservoir core samples can be grouped generally into three responses to impure CO 2 -brine reaction, dependent on mineralogy. The mineralogically clean quartzose reservoir cores had high porosities, with negligible change after reaction, in resolvable porosity or mineralogy, calculated using X-ray micro computed tomography and QEMSCAN. However, strong brine acidification and a high concentration of dissolved sulphate were generated in experiments owing to minimal mineral buffering. Also, the movement of kaolin has the potential to block pore throats and reduce permeability. The reaction of the impure CO 2 -brine with calcite-cemented cap-rock core samples caused the largest porosity changes after reaction through calcite dissolution; to the extent that one sample developed a connection of open pores that extended into the core sub-plug. This has the potential to both favor injectivity but also affect CO 2 migration. The dissolution of calcite caused the buffering of acidity resulting in no significant observable silicate dissolution. Clay-rich cap-rock core samples with minor amounts of carbonate minerals had only small changes after reaction. Created porosity appeared mainly disconnected. Changes were instead associated with decreases in density from Fe-leaching of chlorite or dissolution of minor amounts of carbonates and plagioclase. The interbedded sandstone and shale core also developed increased porosity parallel to bedding through dissolution of carbonates and reactive silicates in the sandy layers. Tight interbedded cap

  16. Process for the generation of high capacity pulses from an inductive energy storage device

    International Nuclear Information System (INIS)

    Maier, F.; Maier, S.

    1984-01-01

    An inductive storage circuit for generating high voltage pulses includes a quenching circuit and a discharge circuit each connected in parallel with a storage inductor. One branch of the quenching circuit includes a quenching capacitor and one branch of the discharge circuit includes a resistor and a diode in series. These two branches have a common junction, to which is connected a quenching thyristor that forms the second branch of each of the quenching and discharge circuits. Thus, the quenching thyristor is in series with each of the quenching capacitor and the discharge resistor

  17. From Fundamental Understanding To Predicting New Nanomaterials For High Capacity Hydrogen/Methane Storage and Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Taner [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-03-03

    On-board hydrogen/methane storage in fuel cell-powered vehicles is a major component of the national need to achieve energy independence and protect the environment. The main obstacles in hydrogen storage are slow kinetics, poor reversibility and high dehydrogenation temperatures for the chemical hydrides; and very low desorption temperatures/energies for the physisorption materials (MOF’s, porous carbons). Similarly, the current methane storage technologies are mainly based on physisorption in porous materials but the gravimetric and volumetric storage capacities are below the target values. Finally, carbon capture, a critical component of the mitigation of CO2 emissions from industrial plants, also suffers from similar problems. The solid-absorbers such as MOFs are either not stable against real flue-gas conditions and/or do not have large enough CO2 capture capacity to be practical and cost effective. In this project, we addressed these challenges using a unique combination of computational, synthetic and experimental methods. The main scope of our research was to achieve fundamental understanding of the chemical and structural interactions governing the storage and release of hydrogen/methane and carbon capture in a wide spectrum of candidate materials. We studied the effect of scaffolding and doping of the candidate materials on their storage and dynamics properties. We reviewed current progress, challenges and prospect in closely related fields of hydrogen/methane storage and carbon capture.[1-5] For example, for physisorption based storage materials, we show that tap-densities or simply pressing MOFs into pellet forms reduce the uptake capacities by half and therefore packing MOFs is one of the most important challenges going forward. For room temperature hydrogen storage application of MOFs, we argue that MOFs are the most promising scaffold materials for Ammonia-Borane (AB) because of their unique interior active metal-centers for AB binding and well

  18. A method for examining the geospatial distribution of CO2 storage resources applied to the Pre-Punta Gorda Composite and Dollar Bay reservoirs of the South Florida Basin, U.S.A

    Science.gov (United States)

    Roberts-Ashby, Tina; Brandon N. Ashby,

    2016-01-01

    This paper demonstrates geospatial modification of the USGS methodology for assessing geologic CO2 storage resources, and was applied to the Pre-Punta Gorda Composite and Dollar Bay reservoirs of the South Florida Basin. The study provides detailed evaluation of porous intervals within these reservoirs and utilizes GIS to evaluate the potential spatial distribution of reservoir parameters and volume of CO2 that can be stored. This study also shows that incorporating spatial variation of parameters using detailed and robust datasets may improve estimates of storage resources when compared to applying uniform values across the study area derived from small datasets, like many assessment methodologies. Geospatially derived estimates of storage resources presented here (Pre-Punta Gorda Composite = 105,570 MtCO2; Dollar Bay = 24,760 MtCO2) were greater than previous assessments, which was largely attributed to the fact that detailed evaluation of these reservoirs resulted in higher estimates of porosity and net-porous thickness, and areas of high porosity and thick net-porous intervals were incorporated into the model, likely increasing the calculated volume of storage space available for CO2 sequestration. The geospatial method for evaluating CO2 storage resources also provides the ability to identify areas that potentially contain higher volumes of storage resources, as well as areas that might be less favorable.

  19. Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity

    DEFF Research Database (Denmark)

    Bialy, Agata; Jensen, Peter Bjerre; Blanchard, Didier

    2015-01-01

    with spray drying and in situ thermogravimetric and structural characterization, we synthesize a range of new, stable barium-strontium chloride solid solutions with superior ammonia storage densities. By tuning the barium/strontium ratio, different crystallographic phases and compositions can be obtained...

  20. Design and Synthesis of Novel Porous Metal-Organic Frameworks (MOFs) Toward High Hydrogen Storage Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Eddaoudi [USF; Zaworotko, Michael [USF; Space, Brian [USF; Eckert, Juergen [USF

    2013-05-08

    Statement of Objectives: 1. Synthesize viable porous MOFs for high H2 storage at ambient conditions to be assessed by measuring H2 uptake. 2. Develop a better understanding of the operative interactions of the sorbed H2 with the organic and inorganic constituents of the sorbent MOF by means of inelastic neutron scattering (INS, to characterize the H2-MOF interactions) and computational studies (to interpret the data and predict novel materials suitable for high H2 uptake at moderate temperatures and relatively low pressures). 3. Synergistically combine the outcomes of objectives 1 and 2 to construct a made-to-order inexpensive MOF that is suitable for super H2 storage and meets the DOE targets - 6% H2 per weight (2kWh/kg) by 2010 and 9% H2 per weight (3kWh/kg) by 2015. The ongoing research is a collaborative experimental and computational effort focused on assessing H2 storage and interactions with pre-selected metal-organic frameworks (MOFs) and zeolite-like MOFs (ZMOFs), with the eventual goal of synthesizing made-to-order high H2 storage materials to achieve the DOE targets for mobile applications. We proposed in this funded research to increase the amount of H2 uptake, as well as tune the interactions (i.e. isosteric heats of adsorption), by targeting readily tunable MOFs:

  1. Efficient Control of Energy Storage for Increasing the PV Hosting Capacity of LV Grids

    DEFF Research Database (Denmark)

    Hashemi Toghroljerdi, Seyedmostafa; Østergaard, Jacob

    2016-01-01

    power injected into the grid and the amount of reactive power absorbed by PV inverters are estimated using the PV generation forecast and load consumption forecast, and the dynamic operating points for energy storage management are determined for a specific period of time by solving a linear...

  2. Enhanced Capacity and Rate Capability of Nitrogen/Oxygen Dual-Doped Hard Carbon in Capacitive Potassium-Ion Storage.

    Science.gov (United States)

    Yang, Jinlin; Ju, Zhicheng; Jiang, Yong; Xing, Zheng; Xi, Baojuan; Feng, Jinkui; Xiong, Shenglin

    2018-01-01

    The intercalation of potassium ions into graphite is demonstrated to be feasible, while the electrochemical performance of potassium-ion batteries (KIBs) remains unsatisfying. More effort is needed to improve the specific capacity while maintaining a superior rate capability. As an attempt, nitrogen/oxygen dual-doped hierarchical porous hard carbon (NOHPHC) is introduced as the anode in KIBs by carbonizing and acidizing the NH 2 -MIL-101(Al) precursor. Specifically, the NOHPHC electrode delivers high reversible capacities of 365 and 118 mA h g -1 at 25 and 3000 mA g -1 , respectively. The capacity retention reaches 69.5% at 1050 mA g -1 for 1100 cycles. The reasons for the enhanced electrochemical performance, such as the high capacity, good cycling stability, and superior rate capability, are analyzed qualitatively and quantitatively. Quantitative analysis reveals that mixed mechanisms, including capacitance and diffusion, account for the K-ion storage, in which the capacitance plays a more important role. Specifically, the enhanced interlayer spacing (0.39 nm) enables the intercalation of large K ions, while the high specific surface area of ≈1030 m 2 g -1 and the dual-heteroatom doping (N and O) are conducive to the reversible adsorption of K ions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tunable Gravimetric and Volumetric Hydrogen Storage Capacities in Polyhedral Oligomeric Silsesquioxane Frameworks.

    Science.gov (United States)

    Deshmukh, Amol; Chiu, Cheng-Chau; Chen, Yun-Wen; Kuo, Jer-Lai

    2016-09-28

    We study the hydrogen adsorption in porous frameworks composed of silsesquioxane cages linked via boron substituted aromatic structures by first-principles modeling. Such polyhedral oligomeric silsesquioxane (POSS) frameworks can be further modified by decorating them with metal atoms binding to the ring structures of the linkers. We have considered Sc- and Ti-doped frameworks which bind H2 via so-called Kubas interaction between hydrogen molecules and transition metal atoms. It will be demonstrated that the maximum H2 gravimetric capacity can be improved to more than 7.5 wt % by using longer linkers with more ring structures. However, the maximum H2 volumetric capacity can be tuned to more than 70 g/L by varying the size of silsesquioxane cages. We are optimistic that by varying the building blocks, POSS frameworks can be modified to meet the targets for the gravimetric and volumetric capacities set by the U.S. Department of Energy.

  4. Characterization and modelling of a naturally fractured reservoir-caprock unit targeted for CO2 storage in arctic Norway

    NARCIS (Netherlands)

    Senger, K.; Mulrooney, M.; Schaaf, N.; Tveranger, J.; Braathen, A.; Ogata, K.; Olaussen, S.

    2017-01-01

    Successfully storing CO2 underground requires a good understanding of the subsurface at the storage site, and its robust representation in geological models. Geological models, and related simulations, provide important quantitative information on critical parameters for the optimal utilisation of

  5. High storage capacity in the Hopfield model with auto-interactions—stability analysis

    Science.gov (United States)

    Rocchi, Jacopo; Saad, David; Tantari, Daniele

    2017-11-01

    Recent studies point to the potential storage of a large number of patterns in the celebrated Hopfield associative memory model, well beyond the limits obtained previously. We investigate the properties of new fixed points to discover that they exhibit instabilities for small perturbations and are therefore of limited value as associative memories. Moreover, a large deviations approach also shows that errors introduced to the original patterns induce additional errors and increased corruption with respect to the stored patterns.

  6. Altered mitochondrial oxidative phosphorylation capacity in horses suffering from polysaccharide storage myopathy

    OpenAIRE

    Tosi, Irène; Art, Tatiana; Cassart, Dominique; Serteyn, Didier; Votion, Dominique

    2013-01-01

    Introduction: Exertional rhabdomyolyses are a common cause of exercise intolerance in the equine athlete, and Polysaccharide Storage Myopathy (PSSM) is a widely described muscular pathology. It is characterized by an accumulation of abnormal glycogen in myofibers due to a genetic defect in the skeletal muscle glycogen synthase (GYS1) enzyme. We hypothesized that the energetic production through the oxidative phosphorylation (OXPHOS) in muscular mitochondria might be impaired in type-1 PSSM-af...

  7. High storage capacity in the Hopfield model with auto-interactions—stability analysis

    International Nuclear Information System (INIS)

    Rocchi, Jacopo; Saad, David; Tantari, Daniele

    2017-01-01

    Recent studies point to the potential storage of a large number of patterns in the celebrated Hopfield associative memory model, well beyond the limits obtained previously. We investigate the properties of new fixed points to discover that they exhibit instabilities for small perturbations and are therefore of limited value as associative memories. Moreover, a large deviations approach also shows that errors introduced to the original patterns induce additional errors and increased corruption with respect to the stored patterns. (paper)

  8. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.

    Science.gov (United States)

    Kucharski, Timothy J; Ferralis, Nicola; Kolpak, Alexie M; Zheng, Jennie O; Nocera, Daniel G; Grossman, Jeffrey C

    2014-05-01

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  9. Content of Total Phenolics, Flavan-3-Ols and Proanthocyanidins, Oxidative Stability and Antioxidant Capacity of Chocolate During Storage

    Directory of Open Access Journals (Sweden)

    Draženka Komes

    2016-01-01

    Full Text Available Antioxidant (AO capacity of chocolates with 27, 44 and 75 % cocoa was assessed after production and during twelve months of storage by direct current (DC polarographic assay, based on the decrease of anodic current caused by the formation of hydroxo-perhydroxyl mercury(II complex (HPMC in alkaline solutions of hydrogen peroxide at potentials of mercury oxidation, and two spectrophotometric assays. Relative antioxidant capacity index (RACI was calculated by taking the average value of the AO assay (the sample mass in all assays was identical. Oxidative stability of chocolate fat was determined by differential scanning calorimetry. Measured parameters and RACI were correlated mutually and with the content of total phenols (Folin-Ciocalteu assay, flavan-3-ols (vanillin and p-dimethylaminocinnamaldehyde assay and proanthocyanidins (modified Bate-Smith assay. During storage, the studied functional and health-related characteristics remained unchanged. Amongst applied AO assays, the DC polarographic one, whose validity was confirmed by two-way ANOVA and F-test, correlated most significantly with oxidative stability (oxidation onset temperature and induction time. In addition, principal component analysis was applied to characterise chocolate types.

  10. Content of Total Phenolics, Flavan-3-Ols and Proanthocyanidins, Oxidative Stability and Antioxidant Capacity of Chocolate During Storage.

    Science.gov (United States)

    Laličić-Petronijević, Jovanka; Komes, Draženka; Gorjanović, Stanislava; Belščak-Cvitanović, Ana; Pezo, Lato; Pastor, Ferenc; Ostojić, Sanja; Popov-Raljić, Jovanka; Sužnjević, Desanka

    2016-03-01

    Antioxidant (AO) capacity of chocolates with 27, 44 and 75% cocoa was assessed after production and during twelve months of storage by direct current (DC) polarographic assay, based on the decrease of anodic current caused by the formation of hydroxo-perhydroxyl mercury(II) complex (HPMC) in alkaline solutions of hydrogen peroxide at potentials of mercury oxidation, and two spectrophotometric assays. Relative antioxidant capacity index (RACI) was calculated by taking the average value of the AO assay (the sample mass in all assays was identical). Oxidative stability of chocolate fat was determined by differential scanning calorimetry. Measured parameters and RACI were correlated mutually and with the content of total phenols (Folin-Ciocalteu assay), flavan-3-ols (vanillin and p -dimethylaminocinnamaldehyde assay) and proanthocyanidins (modified Bate-Smith assay). During storage, the studied functional and health-related characteristics remained unchanged. Amongst applied AO assays, the DC polarographic one, whose validity was confirmed by two-way ANOVA and F-test, correlated most significantly with oxidative stability (oxidation onset temperature and induction time). In addition, principal component analysis was applied to characterise chocolate types.

  11. Concrete Materials with Ultra-High Damage Resistance and Self- Sensing Capacity for Extended Nuclear Fuel Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mo [Univ. of California, Irvine, CA (United States); Nakshatrala, Kalyana [Univ. of Houston, TX (United States); William, Kasper [Univ. of Houston, TX (United States); Xi, Yungping [Univ. of Colorado, Boulder, CO (United States)

    2017-02-08

    The objective of this project is to develop a new class of multifunctional concrete materials (MSCs) for extended spent nuclear fuel (SNF) storage systems, which combine ultra-high damage resistance through strain-hardening behavior with distributed multi-dimensional damage self-sensing capacity. The beauty of multifunctional concrete materials is two-fold: First, it serves as a major material component for the SNF pool, dry cask shielding and foundation pad with greatly improved resistance to cracking, reinforcement corrosion, and other common deterioration mechanisms under service conditions, and prevention from fracture failure under extreme events (e.g. impact, earthquake). This will be achieved by designing multiple levels of protection mechanisms into the material (i.e., ultrahigh ductility that provides thousands of times greater fracture energy than concrete and normal fiber reinforced concrete; intrinsic cracking control, electrochemical properties modification, reduced chemical and radionuclide transport properties, and crack-healing properties). Second, it offers capacity for distributed and direct sensing of cracking, strain, and corrosion wherever the material is located. This will be achieved by establishing the changes in electrical properties due to mechanical and electrochemical stimulus. The project will combine nano-, micro- and composite technologies, computational mechanics, durability characterization, and structural health monitoring methods, to realize new MSCs for very long-term (greater than 120 years) SNF storage systems.

  12. Content of Total Phenolics, Flavan-3-Ols and Proanthocyanidins, Oxidative Stability and Antioxidant Capacity of Chocolate During Storage

    Science.gov (United States)

    Komes, Draženka; Gorjanović, Stanislava; Belščak-Cvitanović, Ana; Pezo, Lato; Pastor, Ferenc; Ostojić, Sanja; Popov-Raljić, Jovanka; Sužnjević, Desanka

    2016-01-01

    Summary Antioxidant (AO) capacity of chocolates with 27, 44 and 75% cocoa was assessed after production and during twelve months of storage by direct current (DC) polarographic assay, based on the decrease of anodic current caused by the formation of hydroxo-perhydroxyl mercury(II) complex (HPMC) in alkaline solutions of hydrogen peroxide at potentials of mercury oxidation, and two spectrophotometric assays. Relative antioxidant capacity index (RACI) was calculated by taking the average value of the AO assay (the sample mass in all assays was identical). Oxidative stability of chocolate fat was determined by differential scanning calorimetry. Measured parameters and RACI were correlated mutually and with the content of total phenols (Folin-Ciocalteu assay), flavan-3-ols (vanillin and p-dimethylaminocinnamaldehyde assay) and proanthocyanidins (modified Bate-Smith assay). During storage, the studied functional and health-related characteristics remained unchanged. Amongst applied AO assays, the DC polarographic one, whose validity was confirmed by two-way ANOVA and F-test, correlated most significantly with oxidative stability (oxidation onset temperature and induction time). In addition, principal component analysis was applied to characterise chocolate types. PMID:27904388

  13. Impaired Semantic Knowledge Underlies the Reduced Verbal Short-Term Storage Capacity in Alzheimer's Disease

    Science.gov (United States)

    Peters, Frederic; Majerus, Steve; De Baerdemaeker, Julie; Salmon, Eric; Collette, Fabienne

    2009-01-01

    A decrease in verbal short-term memory (STM) capacity is consistently observed in patients with Alzheimer's disease (AD). Although this impairment has been mainly attributed to attentional deficits during encoding and maintenance, the progressive deterioration of semantic knowledge in early stages of AD may also be an important determinant of poor…

  14. Short-term storage capacity for visual objects depends on expertise

    DEFF Research Database (Denmark)

    Sørensen, Thomas Alrik; Kyllingsbæk, Søren

    2012-01-01

    Visual short-term memory (VSTM) has traditionally been thought to have a very limited capacity of around 3–4 objects. However, recently several researchers have argued that VSTM may be limited in the amount of information retained rather than by a specific number of objects. Here we present a study...

  15. Massive Memory Revisited: Limitations on Storage Capacity for Object Details in Visual Long-Term Memory

    Science.gov (United States)

    Cunningham, Corbin A.; Yassa, Michael A.; Egeth, Howard E.

    2015-01-01

    Previous work suggests that visual long-term memory (VLTM) is highly detailed and has a massive capacity. However, memory performance is subject to the effects of the type of testing procedure used. The current study examines detail memory performance by probing the same memories within the same subjects, but using divergent probing methods. The…

  16. Flow characteristic of Hijiori HDR reservoir from circulation test in 1991; Koon tantai Hijiori jikkenjo ni okeru senbu choryuso shiken (1991 nendo) kekka to ryudo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shiga, T.; Hyodo, M.; Shinohara, N.; Takasugi, S. [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan)

    1996-05-01

    This paper reports one example of flow analyses on a circulation test carried out in fiscal 1991 at the Hijiori hot dry rock experimental field (Yamagata Prefecture). A fluid circulation model was proposed to simulate an HDR circulation system for a shallow reservoir (at a depth of about 1800 m) demonstrated in the circulation test by using an electric circuit network (which expresses continuity impedance in resistance and fluid storage in capacitance). Storage capacity of the reservoir was estimated by deriving time constant of the system from data of time-based change in reservoir pressure associated with transition phenomena during the circulation test. The storage capacity was estimated separately by dividing change of storage in the reservoir by change in the reservoir pressure. To derive the storage in the reservoir, a method to calculate non-recovered flows in the circulation test was utilized. The results of evaluating the reservoir capacity in the shallow reservoir using the above two independent methods were found substantially consistent. 3 refs., 6 figs., 1 tab.

  17. The role of residence time in diagnostic models of global carbon storage capacity: model decomposition based on a traceable scheme.

    Science.gov (United States)

    Yizhao, Chen; Jianyang, Xia; Zhengguo, Sun; Jianlong, Li; Yiqi, Luo; Chengcheng, Gang; Zhaoqi, Wang

    2015-11-06

    As a key factor that determines carbon storage capacity, residence time (τE) is not well constrained in terrestrial biosphere models. This factor is recognized as an important source of model uncertainty. In this study, to understand how τE influences terrestrial carbon storage prediction in diagnostic models, we introduced a model decomposition scheme in the Boreal Ecosystem Productivity Simulator (BEPS) and then compared it with a prognostic model. The result showed that τE ranged from 32.7 to 158.2 years. The baseline residence time (τ'E) was stable for each biome, ranging from 12 to 53.7 years for forest biomes and 4.2 to 5.3 years for non-forest biomes. The spatiotemporal variations in τE were mainly determined by the environmental scalar (ξ). By comparing models, we found that the BEPS uses a more detailed pool construction but rougher parameterization for carbon allocation and decomposition. With respect to ξ comparison, the global difference in the temperature scalar (ξt) averaged 0.045, whereas the moisture scalar (ξw) had a much larger variation, with an average of 0.312. We propose that further evaluations and improvements in τ'E and ξw predictions are essential to reduce the uncertainties in predicting carbon storage by the BEPS and similar diagnostic models.

  18. Optimizing Capacities of Distributed Generation and Energy Storage in a Small Autonomous Power System Considering Uncertainty in Renewables

    Directory of Open Access Journals (Sweden)

    Ying-Yi Hong

    2015-03-01

    Full Text Available This paper explores real power generation planning, considering distributed generation resources and energy storage in a small standalone power system. On account of the Kyoto Protocol and Copenhagen Accord, wind and photovoltaic (PV powers are considered as clean and renewable energies. In this study, a genetic algorithm (GA was used to determine the optimal capacities of wind-turbine-generators, PV, diesel generators and energy storage in a small standalone power system. The investment costs (installation, unit and maintenance costs of the distributed generation resources and energy storage and the cost of fuel for the diesel generators were minimized while the reliability requirement and CO2 emission limit were fulfilled. The renewable sources and loads were modeled by random variables because of their uncertainties. The equality and inequality constraints in the genetic algorithms were treated by cumulant effects and cumulative probability of random variables, respectively. The IEEE reliability data for an 8760 h load profile with a 150 kW peak load were used to demonstrate the applicability of the proposed method.

  19. The role of residence time in diagnostic models of global carbon storage capacity: model decomposition based on a traceable scheme

    Science.gov (United States)

    Yizhao, Chen; Jianyang, Xia; Zhengguo, Sun; Jianlong, Li; Yiqi, Luo; Chengcheng, Gang; Zhaoqi, Wang

    2015-01-01

    As a key factor that determines carbon storage capacity, residence time (τE) is not well constrained in terrestrial biosphere models. This factor is recognized as an important source of model uncertainty. In this study, to understand how τE influences terrestrial carbon storage prediction in diagnostic models, we introduced a model decomposition scheme in the Boreal Ecosystem Productivity Simulator (BEPS) and then compared it with a prognostic model. The result showed that τE ranged from 32.7 to 158.2 years. The baseline residence time (τ′E) was stable for each biome, ranging from 12 to 53.7 years for forest biomes and 4.2 to 5.3 years for non-forest biomes. The spatiotemporal variations in τE were mainly determined by the environmental scalar (ξ). By comparing models, we found that the BEPS uses a more detailed pool construction but rougher parameterization for carbon allocation and decomposition. With respect to ξ comparison, the global difference in the temperature scalar (ξt) averaged 0.045, whereas the moisture scalar (ξw) had a much larger variation, with an average of 0.312. We propose that further evaluations and improvements in τ′E and ξw predictions are essential to reduce the uncertainties in predicting carbon storage by the BEPS and similar diagnostic models. PMID:26541245

  20. External electric field: An effective way to prevent aggregation of Mg atoms on γ-graphyne for high hydrogen storage capacity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ping-Ping [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Zhang, Hong, E-mail: hongzhang@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Cheng, Xin-Lu, E-mail: chengxl@scu.edu.cn [Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Tang, Yong-Jian, E-mail: tangyongjian2000@sina.com [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-05-15

    Highlights: • Due to large pores in the sheet of γ-graphyne, it should be a potential materials for energy storage applications. Our calculations might motivate active experimental efforts in designing high-efficiency hydrogen storage media. • For the first time, we use an applied external electric field to prevent Mg atoms from clustering using density functional theory (DFT) calculations. • The results demonstrate that, for Mg-G after electric field (F = 0.05 V/nm) treatment, ten H{sub 2} molecules per Mg atom can be adsorbed and the hydrogen storage capacities reach to 10.64 wt%, with the average binding energies of 0.28 eV/H{sub 2}. - Abstract: In this article, we investigate the hydrogen storage capacity of Mg-decorated γ-graphyne (Mg-G) based on DFT calculations. Our results indicate that an external electric field can effectively prevent Mg atoms aggregating on γ-graphyne sheet. The Mg-G, after electric field (F = 0.05 V/nm) treatment, can store up to ten H{sub 2} molecules and the hydrogen storage capacity is 10.64 wt%, with the average adsorption energy of 0.28 eV/H{sub 2}. Our calculations demonstrate that Mg-G is a potential material for hydrogen storage with high capacity and might motivate active experimental efforts in designing hydrogen storage media.

  1. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity.

    Science.gov (United States)

    Peng, Chengxin; Chen, Bingdi; Qin, Yao; Yang, Shihe; Li, Chunzhong; Zuo, Yuanhui; Liu, Siyang; Yang, Jinhu

    2012-02-28

    In this paper, we report a facile ultrasonic method to synthesize well-dispersed CoO quantum dots (3-8 nm) on graphene nanosheets at room temperature by employing Co(4)(CO)(12) as cobalt precursor. The prepared CoO/graphene composites displayed high performance as an anode material for lithium-ion battery, such as high reversible lithium storage capacity (1592 mAh g(-1) after 50 cycles), high Coulombic efficiency (over 95%), excellent cycling stability, and high rate capability (1008 mAh g(-1) with a total retention of 77.6% after 50 cycles at a current density of 1000 mA g(-1), dramatically increased from the initial 50 mA g(-1)). The extraordinary performance arises from the structure advantages of the composites: the nanosized CoO quantum dots with high dispersity on conductive graphene substrates supply not only large quantity of accessible active sites for lithium-ion insertion but also good conductivity and short diffusion length for lithium ions, which are beneficial for high capacity and rate capability. Meanwhile, the isolated CoO quantum dots anchored tightly on the graphene nanosheets can effectively circumvent the volume expansion/contraction associated with lithium insertion/extraction during discharge/charge processes, which is good for high capacity as well as cycling stability. Moreover, regarding the anomalous behavior of capacity increase with cycles (activation effect) observed, we proposed a tentative hypothesis stressing the competition between the conductivity increase and the amorphorization of the composite electrodes during cycling in determining the trends of the capacity, in the hope to gain a fuller understanding of the inner working of the novel nanostructured electrode-based lithium-ion batteries.

  2. Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage.

    Science.gov (United States)

    Gu, Yan; Xu, Yi; Wang, Yong

    2013-02-01

    Graphene-wrapped CoS nanoparticles are synthesized by a solvothermal approach. The product is significantly different from porous CoS microspheres prepared in the absence of graphene under similar preparation conditions. The CoS microspheres and CoS/graphene composite are fabricated as anode materials for lithium-ion batteries. The CoS/graphene composite is found to be better suitable as an anode in terms of higher capacity and better cycling performances. The nanocomposite exhibits an unprecedented high reversible capacity of 1056 mA h/g among all cobalt sulfide-based anode materials. Good cycling performances are also observed at both small and high current rates.

  3. Mobility and Congestion in Dynamical Multilayer Networks with Finite Storage Capacity

    Science.gov (United States)

    Manfredi, S.; Di Tucci, E.; Latora, V.

    2018-02-01

    Multilayer networks describe well many real interconnected communication and transportation systems, ranging from computer networks to multimodal mobility infrastructures. Here, we introduce a model in which the nodes have a limited capacity of storing and processing the agents moving over a multilayer network, and their congestions trigger temporary faults which, in turn, dynamically affect the routing of agents seeking for uncongested paths. The study of the network performance under different layer velocities and node maximum capacities reveals the existence of delicate trade-offs between the number of served agents and their time to travel to destination. We provide analytical estimates of the optimal buffer size at which the travel time is minimum and of its dependence on the velocity and number of links at the different layers. Phenomena reminiscent of the slower is faster effect and of the Braess' paradox are observed in our dynamical multilayer setup.

  4. Concepts for a low emittance-high capacity storage ring for the Diamond Light Source

    CERN Document Server

    Bartolini, Riccardo; Evans, Gwyndaf; Sawhney, Kawal; Zegenhagen, Joerg

    2017-01-01

    The Diamond Light Source is investigating several paths for a possible machine upgrade to Diamond II. The exercise is driven by a joint assessment of the science capabilities opened by a very low emittance ring and the machine design that will underpin them. The consultation is made on a beamline-by-beamline basis and has highlighted a significant preference for lattices that combine both a low emittance and large capacity for IDs.

  5. Optimization of Battery Capacity Decay for Semi-Active Hybrid Energy Storage System Equipped on Electric City Bus

    Directory of Open Access Journals (Sweden)

    Xiaogang Wu

    2017-06-01

    Full Text Available In view of severe changes in temperature during different seasons in cold areas of northern China, the decay of battery capacity of electric vehicles poses a problem. This paper uses an electric bus power system with semi-active hybrid energy storage system (HESS as the research object and proposes a convex power distribution strategy to optimize the battery current that represents degradation of battery capacity based on the analysis of semi-empirical LiFePO4 battery life decline model. Simulation results show that, at a room temperature of 25 °C, during a daily trip organized by the Harbin City Driving Cycle including four cycle lines and four charging phases, the percentage of battery degradation was 9.6 × 10−3%. According to the average temperature of different months in Harbin, the percentage of battery degradation of the power distribution strategy proposed in this paper is 3.15% in one year; the electric bus can operate for 6.4 years until its capacity reduces to 80% of its initial value, and it can operate for 0.51 year more than the rule-based power distribution strategy.

  6. Physical Model-Based Investigation of Reservoir Sedimentation Processes

    Directory of Open Access Journals (Sweden)

    Cheng-Chia Huang

    2018-03-01

    Full Text Available Sedimentation is a serious problem in the operations of reservoirs. In Taiwan, the situation became worse after the Chi-Chi Earthquake recorded on 21 September 1999. The sediment trap efficiency in several regional reservoirs has been sharply increased, adversely affecting the operations on water supplies. According to the field record, the average annual sediment deposition observed in several regional reservoirs in Taiwan has been increased. For instance, the typhoon event recorded in 2008 at the Wushe Reservoir, Taiwan, produced a 3 m sediment deposit upstream of the dam. The remaining storage capacity in the Wushe Reservoir was reduced to 35.9% or a volume of 53.79 million m3 for flood water detention in 2010. It is urgent that research should be conducted to understand the sediment movement in the Wushe Reservoir. In this study, a scale physical model was built to reproduce the flood flow through the reservoir, investigate the long-term depositional pattern, and evaluate sediment trap efficiency. This allows us to estimate the residual life of the reservoir by proposing a modification of Brune’s method. It can be presented to predict the lifespan of Taiwan reservoirs due to higher applicability in both the physical model and the observed data.

  7. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis?

    Science.gov (United States)

    Halem, Milton

    1999-01-01

    In a recent address at the California Science Center in Los Angeles, Vice President Al Gore articulated a Digital Earth Vision. That vision spoke to developing a multi-resolution, three-dimensional visual representation of the planet into which we can roam and zoom into vast quantities of embedded geo-referenced data. The vision was not limited to moving through space, but also allowing travel over a time-line, which can be set for days, years, centuries, or even geological epochs. A working group of Federal Agencies, developing a coordinated program to implement the Vice President's vision, developed the definition of the Digital Earth as a visual representation of our planet that enables a person to explore and interact with the vast amounts of natural and cultural geo-referenced information gathered about the Earth. One of the challenges identified by the agencies was whether the technology existed that would be available to permanently store and deliver all the digital data that enterprises might want to save for decades and centuries. Satellite digital data is growing by Moore's Law as is the growth of computer generated data. Similarly, the density of digital storage media in our information-intensive society is also increasing by a factor of four every three years. The technological bottleneck is that the bandwidth for transferring data is only growing at a factor of four every nine years. This implies that the migration of data to viable long-term storage is growing more slowly. The implication is that older data stored on increasingly obsolete media are at considerable risk if they cannot be continuously migrated to media with longer life times. Another problem occurs when the software and hardware systems for which the media were designed are no longer serviced by their manufacturers. Many instances exist where support for these systems are phased out after mergers or even in going out of business. In addition, survivability of older media can suffer from

  8. Microstructure and low-temperature hydrogen storage capacity of ball-milled graphite

    Energy Technology Data Exchange (ETDEWEB)

    Hentsche, Melanie; Hermann, Helmut; Lindackers, Dirk [Leibniz-Institute for Solid State and Materials Research IFW Dresden, PF 270116, D-01171 Dresden (Germany); Seifert, Gotthard [Technical University Dresden, Institute of Physical Chemistry and Electrochemistry, D-01062 Dresden (Germany)

    2007-07-15

    Hydrogen adsorption in ball-milled graphite is investigated in the low temperature range from 110 to 35 K and at pressures up to 20 MPa. The adsorption data are compared to the results of detailed quantitative microstructural analyses of the samples used for the adsorption experiments. The amount of hydrogen adsorbed at temperatures well below 77 K exceeds considerably that what is expected from adsorption on plane graphitic planes. The results can be explained assuming the following mechanisms: (i) adsorption in trapping states on plane surfaces at and below 110 K; (ii) adsorption in small micropores with diameter of less than 1 nm at 77 K and pressure of 10 MPa, and (iii) multilayer adsorption in mesopores at temperatures from 35 to 40 K and pressure of 2 MPa. The effects observed in the low temperature range are reversible and make the investigated material interesting as a supporting component for liquid hydrogen storage systems. (author)

  9. Antigen storage compartments in mature dendritic cells facilitate prolonged cytotoxic T lymphocyte cross-priming capacity.

    Science.gov (United States)

    van Montfoort, Nadine; Camps, Marcel G; Khan, Selina; Filippov, Dmitri V; Weterings, Jimmy J; Griffith, Janice M; Geuze, Hans J; van Hall, Thorbald; Verbeek, J Sjef; Melief, Cornelis J; Ossendorp, Ferry

    2009-04-21

    Dendritic cells (DCs) are crucial for priming of naive CD8(+) T lymphocytes to exogenous antigens, so-called "cross-priming." We report that exogenous protein antigen can be conserved for several days in mature DCs, coinciding with strong cytotoxic T lymphocyte cross-priming potency in vivo. After MHC class I peptide elution, protein antigen-derived peptide presentation is efficiently restored, indicating the presence of an intracellular antigen depot. We characterized this depot as a lysosome-like organelle, distinct from MHC class II compartments and recently described early endosomal compartments that allow acute antigen presentation in MHC class I. The storage compartments we report here facilitate continuous supply of MHC class I ligands. This mechanism ensures sustained cross-presentation by DCs, despite the short-lived expression of MHC class I-peptide complexes at the cell surface.

  10. Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity

    International Nuclear Information System (INIS)

    Bialy, Agata; Jensen, Peter B.; Blanchard, Didier; Vegge, Tejs; Quaade, Ulrich J.

    2015-01-01

    Metal halide ammines are very attractive materials for ammonia absorption and storage—applications where the practically accessible or usable gravimetric and volumetric storage densities are of critical importance. Here we present, that by combining advanced computational materials prediction with spray drying and in situ thermogravimetric and structural characterization, we synthesize a range of new, stable barium-strontium chloride solid solutions with superior ammonia storage densities. By tuning the barium/strontium ratio, different crystallographic phases and compositions can be obtained with different ammonia ab- and desorption properties. In particular it is shown, that in the molar range of 35–50% barium and 65–50% strontium, stable materials can be produced with a practically usable ammonia density (both volumetric and gravimetric) that is higher than any of the pure metal halides, and with a practically accessible volumetric ammonia densities in excess of 99% of liquid ammonia. - Graphical abstract: Thermal desorption curves of ammonia from Ba x Sr (1−x) Cl 2 mixtures with x equal to 0.125, 0.25 and 0.5 and atomic structure of Sr(NH 3 ) 8 Cl 2 . - Highlights: • Solid solutions of strontium and barium chloride were synthesized by spray drying. • Adjusting molar ratios led to different crystallographic phases and compositions. • Different molar ratios led to different ammonia ab-/desorption properties. • 35–50 mol% BaCl 2 in SrCl 2 yields higher ammonia density than any other metal halide. • DFT calculations can be used to predict properties of the mixtures

  11. Field demonstration of an active reservoir pressure management through fluid injection and displaced fluid extractions at the Rock Springs Uplift, a priority geologic CO2 storage site for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zunsheng [Univ. of Wyoming, Laramie, WY (United States)

    2017-04-05

    This report provides the results from the project entitled Field Demonstration of Reservoir Pressure Management through Fluid Injection and Displaced Fluid Extraction at the Rock Springs Uplift, a Priority Geologic CO2 Storage Site for Wyoming (DE-FE0026159 for both original performance period (September 1, 2015 to August 31, 2016) and no-cost extension (September 1, 2016 to January 6, 2017)).

  12. Reservoir Characterization and CO2 Plume Migration Modeling Based on Bottom-hole Pressure Data: An Example from the AEP Mountaineer Geological Storage Project

    Science.gov (United States)

    Mishra, Srikanta; Kelley, Mark; Oruganti, YagnaDeepika; Bhattacharya, Indra; Spitznogle, Gary

    2014-05-01

    We present an integrated approach for formation permeability estimation, front tracking, reservoir model calibration, and plume migration modeling based on injection rate and down-hole pressure data from CO2 geologic sequestration projects. The data are taken from the 20 MW CO2 capture and storage project at American Electric Power's Mountaineer Plant in West Virginia, USA. The Mountaineer CO2 injection system consists of two injection wells - one in the Copper Ridge Dolomite formation and one in the Rose Run sandstone formation, and three deep observation wells that were operational between October 2009 and May 2011. Approximately 27000 MT and 10000 MT were injected into the Copper Ridge dolomite formation and Rose Run sandstone formation, respectively. A wealth of pressure and rate data from injection and observation wells is available covering a series of injection and pressure falloff events. The methodology developed and applied for interpreting and integrating the data during reservoir analysis and modeling from the Rose Run formation is the subject of this paper. For the analysis of transient pressure data at the injection and observation wells, the CO2 storage reservoir is conceptualized as a radial composite system, where the inner (invaded) zone consists of both supercritical CO2 and brine, and the outer (uninvaded) zone consists of undisturbed brine. Using established analytical solutions for analyzing fluid injection problems in the petroleum reservoir engineering literature, we show how the late-time pressure derivative response from both injection and observation wells will be identical - reflecting the permeability-thickness product of the undisturbed brine-filled formation. We also show how the expanding CO2 plume affects the "effective" compressibility that can be estimated by history matching injection-falloff data and how this can be used to develop a relationship between the plume radius and "effective" compressibility. This provides a novel non

  13. The EPQ model under conditions of two levels of trade credit and limited storage capacity in supply chain management

    Science.gov (United States)

    Chung, Kun-Jen

    2013-09-01

    An inventory problem involves a lot of factors influencing inventory decisions. To understand it, the traditional economic production quantity (EPQ) model plays rather important role for inventory analysis. Although the traditional EPQ models are still widely used in industry, practitioners frequently question validities of assumptions of these models such that their use encounters challenges and difficulties. So, this article tries to present a new inventory model by considering two levels of trade credit, finite replenishment rate and limited storage capacity together to relax the basic assumptions of the traditional EPQ model to improve the environment of the use of it. Keeping in mind cost-minimisation strategy, four easy-to-use theorems are developed to characterise the optimal solution. Finally, the sensitivity analyses are executed to investigate the effects of the various parameters on ordering policies and the annual total relevant costs of the inventory system.

  14. Study of Deformations in a Large-Capacity Oil Storage Tank in the Presence of Subgrade Inhomogeneity Zones

    Directory of Open Access Journals (Sweden)

    Tarasenko Alexandr

    2016-01-01

    Full Text Available Characteristics of a joint action of a subgrade and a large 50000 m3 capacity storage tank have been overviewed. The maximum allowable values of the RVSPK-50000 base immersion in the presence of the inhomogeneity zone have been determined given the stiffness of metal structures. To simulate the inhomogeneity zone we applied the Drucker–Prager model – a linear elastoplastic material implemented in the finite element software package ANSYS. The dependences of the maximum design value of the outer tank bottom contour immersion on the inhomogeneity zone sector length have been obtained (in the range of 10 to 95 meters. It has been found that 95% of all cases of uneven immersion occurring in practice fall within this range according to data on diagnostics of 40 vertical steel tanks.

  15. Working through the pain: working memory capacity and differences in processing and storage under pain.

    Science.gov (United States)

    Sanchez, Christopher A

    2011-02-01

    It has been suggested that pain perception and attention are closely linked at both a neural and a behavioural level. If pain and attention are so linked, it is reasonable to speculate that those who vary in working memory capacity (WMC) should be affected by pain differently. This study compares the performance of individuals who differ in WMC as they perform processing and memory span tasks while under mild pain and not. While processing performance under mild pain does not interact with WMC, the ability to store information for later recall does. This suggests that pain operates much like an additional processing burden, and that the ability to overcome this physical sensation is related to differences in WMC. © 2011 Psychology Press, an imprint of the Taylor & Francis Group, an Informa business

  16. The effect of KOH:C and activation temperature on hydrogen storage capacities of activated carbons

    Science.gov (United States)

    Rash, Tyler; Beckner, Matt; Romanos, Jimmy; Leimkuehler, Eric; Takeei, Ali; Suppes, Galen; Wexler, Carlos; Pfeifer, Peter

    2011-03-01

    The Alliance for Collaborative Research in Alternative Fuel Technologies (ALL-CRAFT has been producing high surface area activated carbons. Here we will investigate the effect of the ratio of activating agent to carbon and activation temperature on hydrogen sorption characteristics and sample structure. Results show that a ratio of 3:1 KOH:C and an activation temperature of 790 C are the ideal activation conditions for hydrogen storage applications. Hydrogen sorption measurements are completed using a volumetric instrument that operates at pressures up to 100 bar and at temperatures of 80 K, the sublimation temperature of dry ice (-78.5 C), and room temperature. Specific surface area and pore size distributions are measured using subcritical nitrogen isotherms. This material is based on work supported by the US Department of Defense under Awards No. N00164-07-P-1306 and N00164-08-C-GS37, the US Department of Energy under Awards No. DE-FG02-07ER46411 and DE-FG36-08GO18142.

  17. Relational database hybrid model, of high performance and storage capacity for nuclear engineering applications

    International Nuclear Information System (INIS)

    Gomes Neto, Jose

    2008-01-01

    The objective of this work is to present the relational database, named FALCAO. It was created and implemented to support the storage of the monitored variables in the IEA-R1 research reactor, located in the Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP. The data logical model and its direct influence in the integrity of the provided information are carefully considered. The concepts and steps of normalization and de normalization including the entities and relations involved in the logical model are presented. It is also presented the effects of the model rules in the acquisition, loading and availability of the final information, under the performance concept since the acquisition process loads and provides lots of information in small intervals of time. The SACD application, through its functionalities, presents the information stored in the FALCAO database in a practical and optimized form. The implementation of the FALCAO database occurred successfully and its existence leads to a considerably favorable situation. It is now essential to the routine of the researchers involved, not only due to the substantial improvement of the process but also to the reliability associated to it. (author)

  18. Thermodynamic Modeling of Hydrogen Storage Capacity in Mg-Na Alloys

    Directory of Open Access Journals (Sweden)

    S. Abdessameud

    2014-01-01

    Full Text Available Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems.

  19. Enhancing charge-storage capacity of non-volatile memory devices using template-directed assembly of gold nanoparticles.

    Science.gov (United States)

    Gupta, Raju Kumar; Krishnamoorthy, Sivashankar; Kusuma, Damar Yoga; Lee, Pooi See; Srinivasan, M P

    2012-04-07

    We demonstrate the controlled fabrication of aggregates of gold nanoparticles as a means of enhancing the charge-storage capacity of metal-insulator-semiconductor (MIS) devices by up to 300% at a low biasing voltage of ±4 V. Aggregates of citrate stabilized gold nanoparticles were obtained by directed electrostatic self-assembly onto an underlying nanopattern of positively charged centers. The underlying nanopatterns consist of amine functionalized gold nanoparticle arrays formed using amphiphilic diblock copolymer reverse micelles as templates. The hierarchical self-organization leads to a twelve-fold increase in the number density of the gold nanoparticles and therefore significantly increases the charge storage centers for the MIS device. The MIS structure showed counterclockwise C-V hysteresis curves indicating a good memory effect. A memory window of 1 V was obtained at a low biasing voltage of ±4 V. Furthermore, C-t measurements conducted after applying a charging bias of 4 V showed that the charge was retained beyond 20,000 s. The proposed strategy can be readily adapted for fabricating next generation solution processible non-volatile memory devices. This journal is © The Royal Society of Chemistry 2012

  20. Addition of titanium as a potential catalyst for a high-capacity hydrogen storage medium (abstract only)

    International Nuclear Information System (INIS)

    Zuliani, F; Baerends, E J

    2008-01-01

    In recent years there has been increased interest in the characterization of titanium as a catalyst for high-capacity hydrogen storage materials. A first-principles study (Yildirim and Ciraci 2005 Phys. Rev. Lett. 94 175501) demonstrated that a single Ti atom coated on a single-walled nanotube (SWNT) binds up to four hydrogen molecules. The bonding was claimed to be an 'unusual combination of chemisorption and physisorption'. We report an ab initio study by means of the ADF program, which provides a complete insight into the donation/back-donation mechanism characterizing the bond between the Ti atom and the four H 2 molecules, and a full understanding of the catalytic role played by the Ti atom. In addition, we found that the same amount of adsorbed hydrogen can be stored using benzene support for Ti in place of the SWNT, due to the dominant local contribution of the hexagonal carbon ring surrounding the Ti atom. The benzene-Ti-H 2 bonding is discussed on the basis of molecular orbital interaction schemes as provided by ADF. This result advances our insight into the role of titanium as a catalyst and suggests new routes to better storage through different combinations of supports and catalysts

  1. A dimension reduction method for flood compensation operation of multi-reservoir system

    Science.gov (United States)

    Jia, B.; Wu, S.; Fan, Z.

    2017-12-01

    Multiple reservoirs cooperation compensation operations coping with uncontrolled flood play vital role in real-time flood mitigation. This paper come up with a reservoir flood compensation operation index (ResFCOI), which formed by elements of flood control storage, flood inflow volume, flood transmission time and cooperation operations period, then establish a flood cooperation compensation operations model of multi-reservoir system, according to the ResFCOI to determine a computational order of each reservoir, and lastly the differential evolution algorithm is implemented for computing single reservoir flood compensation optimization in turn, so that a dimension reduction method is formed to reduce computational complexity. Shiguan River Basin with two large reservoirs and an extensive uncontrolled flood area, is used as a case study, results show that (a) reservoirs' flood discharges and the uncontrolled flood are superimposed at Jiangjiaji Station, while the formed flood peak flow is as small as possible; (b) cooperation compensation operations slightly increase in usage of flood storage capacity in reservoirs, when comparing to rule-based operations; (c) it takes 50 seconds in average when computing a cooperation compensation operations scheme. The dimension reduction method to guide flood compensation operations of multi-reservoir system, can make each reservoir adjust its flood discharge strategy dynamically according to the uncontrolled flood magnitude and pattern, so as to mitigate the downstream flood disaster.

  2. Reservoir-induced Alterations in Flood Seasonality: Patterns, Processes, and Implications

    Science.gov (United States)

    Abeshu, G. W.; Li, H. Y.; Yigzaw, W.; Hejazi, M. I.; Tang, J.; Demissie, Y.

    2017-12-01

    Reservoirs are by far the most significant human activities that are imposing hydrologic alterations, specifically related to extreme flow conditions. This study presents the effects of reservoir regulation on flood seasonality in different hydrologic and climate settings across the contiguous United States. The data employed consists of reservoir information from the National Inventory of Dams (NID) and Global Reservoir and Dam (GRanD) database along with USGS stream flow data for pre- and post-impoundment periods. A new flood seasonality index was developed with circular statistics to reveal any significant shifts in flood timing between pre- and post-impoundments periods at each USGS station. Reservoir Impact Index (RII) was developed as a function of storage capacity and mean annual streamflow to quantify the regulation effects of reservoirs on flood seasonality. Process understanding of how reservoir regulation affects flow seasonality was analyzed based on RII using simple but physically-based reservoir models with different degrees of complexity, e.g., simple linear and hedging models. Results indicate that the shift in seasonality of annual maximum flood (AMF) at downstream generally increases with increasing RII, given that reservoir has enough storage to regulate the flood. The process modeling results also imply that reservoir state prior to the occurrence of AMF, antecedent climatic patterns and catchment state affect the shift in AMF arrival at downstream. These findings will help improve the ability to examine issues connected to flood frequency characteristics including nutrient delivery, sediment load and stream temperature shifts at downstream of dams.

  3. The optimization of energy storage capacity for distribution networks with the consideration of probability correlation between wind farms based on PSO algorithm

    Science.gov (United States)

    Wang, Bo; Li, Hongxia; Cao, Xueyuan; Zhu, Xiaojun; Gan, Zhongxue

    2017-04-01

    With the rapid development of the energy networks, various forms of renewable energy resources are absorbed into it. Because of the inherent random behaviour of the renewable resources, introducing them into the energy network will destroy the stability of the grids. It is required to use proper energy storages to reduce the uncertain fluctuation from the renewable energy resources. For a concrete model research, this paper presented an explicit method to give suitable capacities of the energy storages in consideration of the economics of the storage, grid losses and the probabilities of the bus voltages violation, for situations of the winds-power generations injected into the power network. Furthermore, the influence of the correlation between the different winds farms on the optimal storage capacity can also be studied by this method.

  4. Zn(II, Mn(II and Sr(II Behavior in a Natural Carbonate Reservoir System. Part II: Impact of Geological CO2 Storage Conditions

    Directory of Open Access Journals (Sweden)

    Auffray B.

    2016-07-01

    Full Text Available Some key points still prevent the full development of geological carbon sequestration in underground formations, especially concerning the assessment of the integrity of such storage. Indeed, the consequences of gas injection on chemistry and petrophysical properties are still much discussed in the scientific community, and are still not well known at either laboratory or field scale. In this article, the results of an experimental study about the mobilization of Trace Elements (TE during CO2 injection in a reservoir are presented. The experimental conditions range from typical storage formation conditions (90 bar, supercritical CO2 to shallower conditions (60 and 30 bar, CO2 as gas phase, and consider the dissolution of the two carbonates, coupled with the sorption of an initial concentration of 10−5 M of Zn(II, and the consequent release in solution of Mn(II and Sr(II. The investigation goes beyond the sole behavior of TE in the storage conditions: it presents the specific behavior of each element with respect to the pressure and the natural carbonate considered, showing that different equilibrium concentrations are to be expected if a fluid with a given concentration of TE leaks to an upper formation. Even though sorption is evidenced, it does not balance the amount of TE released by the dissolution process. The increase in porosity is clearly evidenced as a linear function of the CO2 pressure imposed for the St-Emilion carbonate. For the Lavoux carbonate, this trend is not confirmed by the 90 bar experiment. A preferential dissolution of the bigger family of pores from the preexisting porosity is observed in one of the samples (Lavoux carbonate while the second one (St-Emilion carbonate presents a newly-formed family of pores. Both reacted samples evidence that the pore network evolves toward a tubular network type.

  5. Alloying of Mg/Mg2Ni eutectic by chosen non-hydride forming elements: Relation between segregation of the third element and hydride storage capacity

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír

    2012-01-01

    Roč. 197, č. 1 (2012), s. 116-120 ISSN 0378-7753 R&D Projects: GA ČR GA106/09/0814; GA ČR(CZ) GAP108/11/0148 Institutional research plan: CEZ:AV0Z20410507 Keywords : Energy storage materials * Hydrogen storage capacity * Metal hydrides Subject RIV: JG - Metallurgy Impact factor: 4.675, year: 2012

  6. Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity.

    Science.gov (United States)

    Mercado, Lina M; Medlyn, Belinda E; Huntingford, Chris; Oliver, Rebecca J; Clark, Douglas B; Sitch, Stephen; Zelazowski, Przemyslaw; Kattge, Jens; Harper, Anna B; Cox, Peter M

    2018-04-10

    Plant temperature responses vary geographically, reflecting thermally contrasting habitats and long-term species adaptations to their climate of origin. Plants also can acclimate to fast temporal changes in temperature regime to mitigate stress. Although plant photosynthetic responses are known to acclimate to temperature, many global models used to predict future vegetation and climate-carbon interactions do not include this process. We quantify the global and regional impacts of biogeographical variability and thermal acclimation of temperature response of photosynthetic capacity on the terrestrial carbon (C) cycle between 1860 and 2100 within a coupled climate-carbon cycle model, that emulates 22 global climate models. Results indicate that inclusion of biogeographical variation in photosynthetic temperature response is most important for present-day and future C uptake, with increasing importance of thermal acclimation under future warming. Accounting for both effects narrows the range of predictions of the simulated global land C storage in 2100 across climate projections (29% and 43% globally and in the tropics, respectively). Contrary to earlier studies, our results suggest that thermal acclimation of photosynthetic capacity makes tropical and temperate C less vulnerable to warming, but reduces the warming-induced C uptake in the boreal region under elevated CO 2 . © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  7. A practical approach for calculating the settlement and storage capacity of landfills based on the space and time discretization of the landfilling process.

    Science.gov (United States)

    Gao, Wu; Xu, Wenjie; Bian, Xuecheng; Chen, Yunmin

    2017-11-01

    The settlement of any position of the municipal solid waste (MSW) body during the landfilling process and after its closure has effects on the integrity of the internal structure and storage capacity of the landfill. This paper proposes a practical approach for calculating the settlement and storage capacity of landfills based on the space and time discretization of the landfilling process. The MSW body in the landfill was divided into independent column units, and the filling process of each column unit was determined by a simplified complete landfilling process. The settlement of a position in the landfill was calculated with the compression of each MSW layer in every column unit. Then, the simultaneous settlement of all the column units was integrated to obtain the settlement of the landfill and storage capacity of all the column units; this allowed to obtain the storage capacity of the landfill based on the layer-wise summation method. When the compression of each MSW layer was calculated, the effects of the fluctuation of the main leachate level and variation in the unit weight of the MSW on the overburdened effective stress were taken into consideration by introducing the main leachate level's proportion and the unit weight and buried depth curve. This approach is especially significant for MSW with a high kitchen waste content and landfills in developing countries. The stress-biodegradation compression model was used to calculate the compression of each MSW layer. A software program, Settlement and Storage Capacity Calculation System for Landfills, was developed by integrating the space and time discretization of the landfilling process and the settlement and storage capacity algorithms. The landfilling process of the phase IV of Shanghai Laogang Landfill was simulated using this software. The maximum geometric volume of the landfill error between the calculated and measured values is only 2.02%, and the accumulated filling weight error between the

  8. Effect of rare earth composition on the high-rate capability and low-temperature capacity of AB 5-type hydrogen storage alloys

    Science.gov (United States)

    Ye, Hui; Xia, Baojia; Wu, Wenquan; Du, Ke; Zhang, Hong

    Effects of rare earth composition on the high-rate capability and low-temperature capacity of AB 5-type hydrogen storage alloys have been studied and analyzed with pattern recognition methods. The results show that the increase of Ce and Pr and the decrease of La and Nd concentration improve the high-rate capability and low-temperature capacity of AB 5-type hydrogen storage alloys, Ce exhibiting better favorable influences than Pr. The improvement of both high-rate capability and low-temperature capacity are mainly ascribed to the lower stability of the hydride. The alloy with the rare earth composition of La 0.1645Ce 0.7277Pr 0.0234Nd 0.0845 shows very good high-rate capability and low-temperature capacity.

  9. THE STRUCTURE OF THE WATER CONSTRUCTIONS IN THE SEBES HYDROGRAPHIC BASIN AND THE STORAGE RESERVOIRS. EFFECT ON THE AVERAGE DISCHARGE

    Directory of Open Access Journals (Sweden)

    Stef Iulian Ioan

    2013-05-01

    Full Text Available In the upper basin of the Sebes Valley, the oldest storage lakes have been temporary artificial lakes, called haituri in Romanian. They were created within the forest exploitation areas. Inside the dams of those retention lakes, which dams are made of a wooden skeleton, filled with soil and stones, there have been weirs for the quick discharge of the water, having the purpose of creating some flood trends, capable of carrying over the logs, downstream the lake. At present, some of those temporary artificial lakes are used as trout farms, while others are damaged, or operate as basins for the sedimentation of the alluvial deposits. The difference of level between the springs of the Sebes and the Mures Rivers generates a convertible hydroelectric potential, having an average power exceeding 60,000 kW" />

  10. Final Project Report for DOE/EERE High-Capacity and Low-Cost Hydrogen-Storage Sorbents for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hong-Cai [Texas A & M Univ., College Station, TX (United States); Liu, Di-Jia [Texas A & M Univ., College Station, TX (United States)

    2017-12-01

    This report provides a review of the objectives, progress, and milestones of the research conducted during this project on the topic of developing innovative metal-organic frameworks (MOFs) and porous organic polymers (POPs) for high-capacity and low-cost hydrogen-storage sorbents in automotive applications.1 The objectives of the proposed research were to develop new materials as next-generation hydrogen storage sorbents that meet or exceed DOE’s 2017 performance targets of gravimetric capacity of 0.055 kg H2/kgsystem and volumetric capacity of 0.040 kg H2/Lsystem at a cost of $400/kg H2 stored. Texas A&M University (TAMU) and Argonne National Laboratory (ANL) collaborated in developing low-cost and high-capacity hydrogen-storage sorbents with appropriate stability, sorption kinetics, and thermal conductivity. The research scope and methods developed to achieve the project’s goals include the following: Advanced ligand design and synthesis to construct MOF sorbents with optimal hydrogen storage capacities, low cost and high stability; Substantially improve the hydrogen uptake capacity and chemical stability of MOF-based sorbents by incorporating high valent metal ions during synthesis or through the post-synthetic metal metathesis oxidation approach; Enhance sorbent storage capacity through material engineering and characterization; Generate a better understanding of the H2-sorbent interaction through advanced characterization and simulation. Over the course of the project 5 different MOFs were developed and studied: PCN-250, PCN-12, PCN-12’, PCN-608 and PCN-609.2-3 Two different samples were submitted to the National Renewable Energy Laboratory (NREL) in order to validate their hydrogen adsorption capacity, PCN-250 and PCN-12. Neither of these samples reached the project’s Go/No-Go requirements but the data obtained did further prove the hypothesis that the presence of open metal

  11. Design assessment for the Melton Valley Storage Tanks capacity increase at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-11-01

    This project was initiated to find ways to increase storage capacity for the liquid low-level waste (LLLW) system at the Oak Ridge National Laboratory and satisfy the Federal Facility Agreement (FFA) requirement for the transfer of LLW from existing tank systems not in full FFA compliance

  12. Impact of CO2 leakage from sub-seabed carbon dioxide capture and storage (CCS reservoirs on benthic virus-prokaryote interactions and functions

    Directory of Open Access Journals (Sweden)

    Eugenio eRastelli

    2015-09-01

    Full Text Available Atmospheric CO2 emissions are a global concern due to their predicted impact on biodiversity, ecosystems functioning and human life. Among the proposed mitigation strategies, CO2 capture and storage (CCS, primarily the injection of CO2 into marine deep geological formations has been suggested as a technically practical option for reducing emissions. However, concerns have been raised that possible leakage from such storage sites, and the associated elevated levels of pCO2 could locally impact the biodiversity and biogeochemical processes in the sediments above these reservoirs. Whilst a number of impact assessment studies have been conducted, no information is available on the specific responses of viruses and virus-host interactions. In the present study, we tested the impact of a simulated CO2 leakage on the benthic microbial assemblages, with specific focus on microbial activity and virus-induced prokaryotic mortality. We found that exposure to levels of CO2 in the overlying seawater from 1,000 ppm to 20,000 ppm for a period up to 140 days, resulted in a marked decrease in heterotrophic carbon production and organic matter degradation rates in the sediments, associated with lower rates of virus-induced prokaryotic mortality, and a progressive accumulation of sedimentary organic matter with increasing CO2 concentrations. These results suggest that the increase in seawater pCO2 levels that may result from CO2 leakage, can severely reduce the rates of microbial-mediated recycling of the sedimentary organic matter and viral infections, with major consequences on C cycling and nutrient regeneration, and hence on the functioning of benthic ecosystems.

  13. Impact of CO2 leakage from sub-seabed carbon dioxide capture and storage (CCS) reservoirs on benthic virus–prokaryote interactions and functions

    Science.gov (United States)

    Rastelli, Eugenio; Corinaldesi, Cinzia; Dell’Anno, Antonio; Amaro, Teresa; Queirós, Ana M.; Widdicombe, Stephen; Danovaro, Roberto

    2015-01-01

    Atmospheric CO2 emissions are a global concern due to their predicted impact on biodiversity, ecosystems functioning, and human life. Among the proposed mitigation strategies, CO2 capture and storage, primarily the injection of CO2 into marine deep geological formations has been suggested as a technically practical option for reducing emissions. However, concerns have been raised that possible leakage from such storage sites, and the associated elevated levels of pCO2 could locally impact the biodiversity and biogeochemical processes in the sediments above these reservoirs. Whilst a number of impact assessment studies have been conducted, no information is available on the specific responses of viruses and virus–host interactions. In the present study, we tested the impact of a simulated CO2 leakage on the benthic microbial assemblages, with specific focus on microbial activity and virus-induced prokaryotic mortality (VIPM). We found that exposure to levels of CO2 in the overlying seawater from 1,000 to 20,000 ppm for a period up to 140 days, resulted in a marked decrease in heterotrophic carbon production and organic matter degradation rates in the sediments, associated with lower rates of VIPM, and a progressive accumulation of sedimentary organic matter with increasing CO2 concentrations. These results suggest that the increase in seawater pCO2 levels that may result from CO2 leakage, can severely reduce the rates of microbial-mediated recycling of the sedimentary organic matter and viral infections, with major consequences on C cycling and nutrient regeneration, and hence on the functioning of benthic ecosystems. PMID:26441872

  14. Impact of CO2 leakage from sub-seabed carbon dioxide capture and storage (CCS) reservoirs on benthic virus-prokaryote interactions and functions.

    Science.gov (United States)

    Rastelli, Eugenio; Corinaldesi, Cinzia; Dell'Anno, Antonio; Amaro, Teresa; Queirós, Ana M; Widdicombe, Stephen; Danovaro, Roberto

    2015-01-01

    Atmospheric CO2 emissions are a global concern due to their predicted impact on biodiversity, ecosystems functioning, and human life. Among the proposed mitigation strategies, CO2 capture and storage, primarily the injection of CO2 into marine deep geological formations has been suggested as a technically practical option for reducing emissions. However, concerns have been raised that possible leakage from such storage sites, and the associated elevated levels of pCO2 could locally impact the biodiversity and biogeochemical processes in the sediments above these reservoirs. Whilst a number of impact assessment studies have been conducted, no information is available on the specific responses of viruses and virus-host interactions. In the present study, we tested the impact of a simulated CO2 leakage on the benthic microbial assemblages, with specific focus on microbial activity and virus-induced prokaryotic mortality (VIPM). We found that exposure to levels of CO2 in the overlying seawater from 1,000 to 20,000 ppm for a period up to 140 days, resulted in a marked decrease in heterotrophic carbon production and organic matter degradation rates in the sediments, associated with lower rates of VIPM, and a progressive accumulation of sedimentary organic matter with increasing CO2 concentrations. These results suggest that the increase in seawater pCO2 levels that may result from CO2 leakage, can severely reduce the rates of microbial-mediated recycling of the sedimentary organic matter and viral infections, with major consequences on C cycling and nutrient regeneration, and hence on the functioning of benthic ecosystems.

  15. Impacts of fluvial sedimentary heterogeneities on CO2 storage performance

    Science.gov (United States)

    Issautier, B. H.; Viseur, S.; Audigane, P. D.

    2011-12-01

    The heterogeneity of fluvial systems is a key parameter in sedimentology due to the associated impacts on flow performance. In a broader context, fluvial reservoirs are now targets for CO2 storage projects in several sedimentary basins (Paris Basin, North German Basin), thus calling for detailed characterization of reservoir behaviour and capacity. Fluvial reservoirs are a complex layout of highly heterogeneous sedimentary bodies with varying connectivity, depending on the sedimentary history of the system. Reservoir characterization must determine (a) the nature and dimension of the sedimentary bodies, and (b) the connectivity drivers and their evolution throughout the stratigraphic succession. Based on reservoir characterization, geological modelling must account for this information and can be used as a predictive tool for capacity estimation. Flow simulation, however, describes the reservoir behaviour with respect to CO2 injection. The present work focuses on fluvial reservoir performance and was carried out as part of a PhD (2008-2011) dedicated to the impact of sedimentary heterogeneity on CO2 storage performance. The work comprises three steps: ? Reservoir characterization based on detailed fieldwork (sedimentology and sequence stratigraphy) carried out in Central Arabia on the Minjur Sandstone. Twelve depositional environments and their associated heterogeneity are identified, and their layout is presented in a high-resolution sequence stratigraphy analysis. This step is summed up in a 3D geological model. ? Conceptual modelling based on this field data, using gOcad software and an in-house python code. The purpose was to study, for a given architecture, the impact of sedimentary heterogeneity on storage capacity estimations using two models: one with heterogeneity within the sedimentary fill (model A); the other without heterogeneity within the sedimentary fill (model B). A workflow was designed to estimate and compare the storage capacities for a series

  16. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities.

    Science.gov (United States)

    Farha, Omar K; Yazaydın, A Özgür; Eryazici, Ibrahim; Malliakas, Christos D; Hauser, Brad G; Kanatzidis, Mercouri G; Nguyen, SonBinh T; Snurr, Randall Q; Hupp, Joseph T

    2010-11-01

    Metal-organic frameworks--a class of porous hybrid materials built from metal ions and organic bridges--have recently shown great promise for a wide variety of applications. The large choice of building blocks means that the structures and pore characteristics of the metal-organic frameworks can be tuned relatively easily. However, despite much research, it remains challenging to prepare frameworks specifically tailored for particular applications. Here, we have used computational modelling to design and predictively characterize a metal-organic framework (NU-100) with a particularly high surface area. Subsequent experimental synthesis yielded a material, matching the calculated structure, with a high BET surface area (6,143 m(2) g(-1)). Furthermore, sorption measurements revealed that the material had high storage capacities for hydrogen (164 mg g(-1)) and carbon dioxide (2,315 mg g(-1))--gases of high importance in the contexts of clean energy and climate alteration, respectively--in excellent agreement with predictions from modelling.

  17. Analysis of Sedimentation in Wonogiri Reservoir

    Directory of Open Access Journals (Sweden)

    Tri Joko Inti Budi Santosa

    2016-01-01

    Full Text Available The Wonogiri reservoir which has 730 million cubic meters of total storage, 90 square kilometers of water area, and 1260 square kilometers of catchment area, is located in the Wonogiri Regency, Central Java Province. It was first established in 1981 and began its operation in 1982 with the expectation that it would last for about 100 years. Today (2002 the reservoir has got a serious problem of sedimentation. The sedimentation is so large that it would decrease the capacity storage of the reservoir and would shorten the length of operation. Therefore, it is necessary to predict the sediment that comes into the reservoir. This research would be based on the total sediment calculation of the sedimentation, through some methods, such as echo sounding measured data, land erosion (USLE, the calculation of the sediment in rivers. This research calculates the sediment capacities based on the water flow data and the sediment rating curves in rivers of Keduang, Tirtomoyo, Temon, upstream reach of Bengawan Solo, Alang, and Wuryantoro. The suspended load was calculated based on the sediment rating curves, whereas the bed load was computed as the percentage of the suspended load. The sum of both calculation results would be the total sediment. The calculation result showed that the total sediment which has come into the reservoir is 6.68 million cubic meters per year. As a comparison, the writer noted that the former researcher using echo sounding method done by the Faculty of Geography of the Universitas Gadjah Mada in 1985, it found that the total sediment capacity which came into the reservoir was 6.60 million cubic meters per year or 5.40 mm per year of sheet erosion. The other research using echo sounding method done by JICA in 2000 found that the total sediment which had come into the reservoir was 4.50 million cubic meters per year or 3.50 mm per year of sheet erosion. By knowing the results of calculation of the total sediment, we can learn that

  18. Controlling effect of fractures on gas accumulation and production within the tight sandstone: A case study on the Jurassic Dibei gas reservoir in the eastern part of the Kuqa foreland basin, China

    OpenAIRE

    Lu, Hui; Lu, Xuesong; Fan, Junjia; Zhao, Mengjun; Wei, Hongxing; Zhang, Baoshou; Lu, Yuhong

    2016-01-01

    Using Dibei tight sandstone gas reservoir in the eastern part of the Kuqa foreland basin as an example, this paper discusses tight sandstone reservoir fractures characterization, its effect on storage space and gas flow capacity, and its contribution to gas accumulation, enrichment and production in tight sandstone reservoir by using laser scanning confocal microscope (LSCM) observation, mercury intrusion capillary pressure (MICP) testing, and gas-water two-phase relative permeability testing...

  19. Potentials of low-capacity and mini storages in the low-voltage grid; Potenziale von Klein- und Kleinstspeichern im Niederspannungsnetz

    Energy Technology Data Exchange (ETDEWEB)

    Fest, Claus [RWE Effizienz GmbH, Dortmund (Germany). Energiepolitik und Foerderprojekte; Franz, Oliver [RWE Deutschland AG, Essen (Germany); Heinlein, Bjoern [Clifford Chance, Frankfurt am Main (Germany). Energy and Infrastructure

    2013-07-15

    The energy turnaround is more and more revealing itself to be an extremely complex and arduous generation project in which a multitude of technical, economic and regulatory aspects need to be adjusted, brought into proper relation to and integrated with one another all at the right time. One technology to emerge from the ongoing search for possible contributors to a sustainable integration of fluctuating energy production are low-capacity and mini storages which can be used for short-term storage in the low-voltage grid.

  20. Energy storage: a review of recent literature

    International Nuclear Information System (INIS)

    Tatone, O.S.

    1981-12-01

    Recent literature on the technological and economic status of reversible energy storage has been reviewed. A broad range of research and development activities have been pursued between 1975 and the present. Most of this work has concentrated on improving technical and economic performance of previously known storage technologies. Hydraulic pumped storage with both reservoirs above ground and compressed air storage (1 plant) are the only methods that have been adopted by electric utilities. The need for electrical energy storage in Canada has not been acute because of the large proportion of hydraulic generation which incorporates some storge and, in most cases, can readily be used for load-following. Residential heat storage in ceramic room heaters has been used in Europe for several years. For Canadian climatic and market conditions larger, central heating units would be required. Residential heat storage depends upon utilities offering time-of-use rates and none in Canada do so at present. Most seasonal storage concepts depend upon storage of low-grade heat for district heating. The cost of energy storage is highly dependent upon annual energy throughput and hence favours smaller capacity systems operating on frequent charge/discharge cycles over long-term storage. Capital costs of energy storage methods from the literature, expressed in constant dollars, are compared graphically and tentative investment costs are presented for several storage methods

  1. Bathymetric maps and water-quality profiles of Table Rock and North Saluda Reservoirs, Greenville County, South Carolina

    Science.gov (United States)

    Clark, Jimmy M.; Journey, Celeste A.; Nagle, Doug D.; Lanier, Timothy H.

    2014-01-01

    Lakes and reservoirs are the water-supply source for many communities. As such, water-resource managers that oversee these water supplies require monitoring of the quantity and quality of the resource. Monitoring information can be used to assess the basic conditions within the reservoir and to establish a reliable estimate of storage capacity. In April and May 2013, a global navigation satellite system receiver and fathometer were used to collect bathymetric data, and an autonomous underwater vehicle was used to collect water-quality and bathymetric data at Table Rock Reservoir and North Saluda Reservoir in Greenville County, South Carolina. These bathymetric data were used to create a bathymetric contour map and stage-area and stage-volume relation tables for each reservoir. Additionally, statistical summaries of the water-quality data were used to provide a general description of water-quality conditions in the reservoirs.

  2. An Effective Reservoir Parameter for Seismic Characterization of Organic Shale Reservoir

    Science.gov (United States)

    Zhao, Luanxiao; Qin, Xuan; Zhang, Jinqiang; Liu, Xiwu; Han, De-hua; Geng, Jianhua; Xiong, Yineng

    2017-12-01

    Sweet spots identification for unconventional shale reservoirs involves detection of organic-rich zones with abundant porosity. However, commonly used elastic attributes, such as P- and S-impedances, often show poor correlations with porosity and organic matter content separately and thus make the seismic characterization of sweet spots challenging. Based on an extensive analysis of worldwide laboratory database of core measurements, we find that P- and S-impedances exhibit much improved linear correlations with the sum of volume fraction of organic matter and porosity than the single parameter of organic matter volume fraction or porosity. Importantly, from the geological perspective, porosity in conjunction with organic matter content is also directly indicative of the total hydrocarbon content of shale resources plays. Consequently, we propose an effective reservoir parameter (ERP), the sum of volume fraction of organic matter and porosity, to bridge the gap between hydrocarbon accumulation and seismic measurements in organic shale reservoirs. ERP acts as the first-order factor in controlling the elastic properties as well as characterizing the hydrocarbon storage capacity of organic shale reservoirs. We also use rock physics modeling to demonstrate why there exists an improved linear correlation between elastic impedances and ERP. A case study in a shale gas reservoir illustrates that seismic-derived ERP can be effectively used to characterize the total gas content in place, which is also confirmed by the production well.

  3. Bathymetry of Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie Reservoirs, New York, 2013–15

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2018-02-01

    Drinking water for New York City is supplied from several large reservoirs, including a system of reservoirs west of the Hudson River. To provide updated reservoir capacity tables and bathymetry maps of the City’s six West of Hudson reservoirs, bathymetric surveys were conducted by the U.S. Geological Survey from 2013 to 2015. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system along planned transects at predetermined intervals for each reservoir. A separate quality assurance dataset of echo sounder points was collected along transects at oblique angles to the main transects for accuracy assessment. Field-survey data were combined with water surface elevations in a geographic information system to create three-dimensional surfaces in the form of triangulated irregular networks (TINs) representing the elevations of the reservoir geomorphology. The TINs were linearly enforced to better represent geomorphic features within the reservoirs. The linearly enforced TINs were then used to create raster surfaces and 2-foot-interval contour maps of the reservoirs. Elevation-area-capacity tables were calculated at 0.01-foot intervals. The results of the surveys show that the total capacity of the West of Hudson reservoirs has decreased by 11.5 billion gallons (Ggal), or 2.3 percent, since construction, and the useable capacity (the volume above the minimum operating level required to deliver full flow for drinking water supply) has decreased by 7.9 Ggal (1.7 percent). The available capacity (the volume between the spillway elevation and the lowest intake or sill elevation used for drinking water supply) decreased by 9.6 Ggal (2.0 percent), and dead storage (the volume below the lowest intake or sill elevation) decreased by 1.9 Ggal (11.6 percent).

  4. Experimental simulation of the geological storage of CO2: particular study of the interfaces between well cement, cap-rock and reservoir rock

    International Nuclear Information System (INIS)

    Jobard, Emmanuel

    2013-01-01

    The geological storage of the CO 2 is envisaged to mitigate the anthropogenic greenhouse gas emissions in the short term. CO 2 is trapped from big emitters and is directly injected into a reservoir rock (mainly in deep salty aquifers, depleted hydrocarbon oil fields or unexploited charcoal lodes) located at more than 800 m deep. In the framework of the CO 2 storage, it is crucial to ensure the integrity of the solicited materials in order to guarantee the permanent confinement of the sequestrated fluids. Using experimental simulation the purpose of this work is to study the mechanisms which could be responsible for the system destabilization and could lead CO 2 leakage from the injection well. The experimental simulations are performed under pressure and temperature conditions of the geological storage (100 bar and from 80 to 100 deg. C). The first experimental model, called COTAGES (for 'Colonne Thermoregulee A Grains pour Gaz a Effet de Serre') allows studying the effects of the thermal destabilisation caused by the injection of a fluid at 25 deg. C in a hotter reservoir (submitted to the geothermal gradient). This device composed of an aqueous saline solution (4 g.L -1 of NaCl), crushed rock (Lavoux limestone or Callovo-Oxfordian argillite) and gas (N 2 or CO 2 ) allows demonstrating an important matter transfer from the cold area (30 deg. C) toward the hot area (100 deg. C). The observed dissolution/precipitation phenomena leading to changes of the petro-physical rocks properties occur in presence of N 2 or CO 2 but are significantly amplified by the presence of CO 2 . Concerning the experiments carried out with Lavoux limestone, the dissolution in the cold zone causes a raise of porosity of about 2% (initial porosity of 8%) due to the formation of about 500 pores/mm 2 with a size ranging between 10 and 100 μm 2 . The precipitation in the hot zone forms a micro-calcite fringe on the external part of the grains and fills the intergrain porosity

  5. Oxygen Storage Capacity and Oxygen Mobility of Co-Mn-Mg-Al Mixed Oxides and Their Relation in the VOC Oxidation Reaction

    Directory of Open Access Journals (Sweden)

    María Haidy Castaño

    2015-05-01

    Full Text Available Co-Mn-Mg-Al oxides were synthesized using auto-combustion and co-precipitation techniques. Constant ratios were maintained with (Co + Mn + Mg/Al equal to 3.0, (Co + Mn/Mg equal to 1.0 and Co/Mn equal to 0.5. The chemical and structural composition, redox properties, oxygen storage capacity and oxygen mobility were analyzed using X-ray fluorescence (XRF, X-ray diffraction (XRD, Raman spectroscopy, scanning electron microscopy (SEM, temperature-programmed reduction of hydrogen (H2-TPR, oxygen storage capacity (OSC, oxygen storage complete capacity (OSCC and isotopic exchange, respectively. The catalytic behavior of the oxides was evaluated in the total oxidation of a mixture of 250 ppm toluene and 250 ppm 2-propanol. The synthesis methodology affected the crystallite size, redox properties, OSC and oxide oxygen mobility, which determined the catalytic behavior. The co-precipitation method got the most active oxide in the oxidation of the volatile organic compound (VOC mixture because of the improved mobility of oxygen and ability to favor redox processes in the material structure.

  6. Climate variability and sedimentation of a hydropower reservoir

    International Nuclear Information System (INIS)

    Riedel, M.

    2008-01-01

    This presentation discussed a large-scale watershed and reservoir sedimentation model developed to predict potential sedimentation scenarios for a large hydroelectric power project located in the central Appalachians. The geographic information system (GIS) watershed model was calibrated using observed long-term meteorological and hydrological data. Potential development scenarios were then used to construct future watershed land cover scenarios. Future climate change regimes and precipitation and temperature pattern shifts were identified using climatic variability and potential change analyses. Results of the study were then forecast for a period of 50 years and used to develop sediment yield regimes for the project's reservoir. The model was validated using reservoir and fields studies for watershed, river, and reservoir hydrodynamics. The resulting 3-D hydrological sedimentation model was then used to forecast changes in river sedimentation and storage capacity under various future climate scenarios. Results of the study showed the development of unique zones of advancing sediment deltas and temporary storage areas. Warmer and wetter scenarios produced sedimentation impacts similar to scenarios without climatic change. It was concluded that results of the analyses will be used to help reduce future soil losses in the reservoir. tabs., figs

  7. Physical Experiment and Numerical Simulation of the Artificial Recharge Effect on Groundwater Reservoir

    Directory of Open Access Journals (Sweden)

    Yang Xu

    2017-11-01

    Full Text Available To improve the efficiency of utilizing water resources in arid areas, the mechanism of artificial recharge effecting on groundwater reservoir was analyzed in this research. Based on a generalized groundwater reservoir in a two-dimensional sand tank model, different scenarios of the infiltration basin location and recharge intensity are designed to study how to improve the efficiency of groundwater reservoir artificial recharge. The effective storage capacity and the effective storage rate are taken as the main parameters to analyze the relation between recharge water volume and storage capacity. By combining with groundwater flow system theory, FEFLOW (Finite Element subsurface FLOW system is adopted to set up the groundwater numerical model. It is used to verify the experiment results and to make deep analysis on the rule of water table fluctuations and groundwater movement in the aquifer. Based on the model, different scenarios are designed to examine the combined effect of recharge intensity and intermittent periods. The research results show that: the distance between infiltration basin and pumping well should be shortened appropriately, but not too close; increasing recharge intensity helps to enlarge the effective storage capacity, but it can also reduce the effective storage rate, which goes against the purpose of effective utilization of water resources; and, the recharge intensity and recharge duration should be given full consideration by the actual requirements when we take the approach of intermittent recharge to make a reasonable choice.

  8. Petrophysical examination of CO₂-brine-rock interactions-results of the first stage of long-term experiments in the potential Zaosie Anticline reservoir (central Poland) for CO₂ storage.

    Science.gov (United States)

    Tarkowski, Radosław; Wdowin, Magdalena; Manecki, Maciej

    2015-01-01

    The objective of the study was determination of experiment-induced alterations and changes in the properties of reservoir rocks and sealing rocks sampled from potential reservoir for CO₂. In the experiment, rocks submerged in brine in specially constructed reactors were subjected to CO₂ pressure of 6 MPa for 20 months at room temperature. Samples of Lower Jurassic reservoir rocks and sealing rocks (sandstones, claystones, and mudstones) from the Zaosie Anticline (central Poland) were analysed for their petrophysical properties (specific surface area, porosity, pore size and distribution) before and after the experiment. Comparison of the ionic composition the brines before and after the experiment demonstrated an increase in total dissolved solids as well as the concentration of sulphates and calcium ions. This indicates partial dissolution of the rock matrix and the cements. As a result of the reaction, the properties of reservoir rocks did not changed significantly and should not affect the process of CO₂ storage. In the case of the sealing rocks, however, the porosity, the framework density, as well as the average capillary and threshold diameter increased. Also, the pore distribution in the pore space changed in favour of larger pores. The reasons for these changes could not be explained by petrographic characteristics and should be thoroughly investigated.

  9. Storage of phase-coded patterns via STDP in fully-connected and sparse network: a study of the network capacity

    Directory of Open Access Journals (Sweden)

    Silvia Scarpetta

    2010-08-01

    Full Text Available We study the storage and retrieval of phase-coded patterns as stable dynamical attractors in recurrent neural networks, for both an analog and a integrate-and-fire spiking model. The synaptic strength is determined by a learning rule based on spike-time-dependent plasticity, with an asymmetric time window depending on the relative timing between pre- and post-synaptic activity. We store multiple patterns and study the network capacity. For the analog model, we find that the network capacity scales linearly with the network size, and that both capacity and the oscillation frequency of the retrieval state depend on the asymmetry of the learning time window. In addition to fully-connected networks, we study sparse networks, where each neuron is connected only to a small number $zll N$ of other neurons. Connections can be short range, between neighboring neurons placed on a regular lattice, or long range, between randomly chosen pairs of neurons. We find that a small fraction of long range connections is able to amplify the capacity of the network. This imply that a small-world-network topology is optimal, as a compromise between the cost of long range connections and the capacity increase. Also in the spiking integrate and fire model the crucial result of storing and retrieval of multiple phase-coded patterns is observed. The capacity of the fully-connected spiking network is investigated, together with the relation between oscillation frequency of retrieval state and window asymmetry.

  10. Modeling of Turbidity Variation in Two Reservoirs Connected by a Water Transfer Tunnel in South Korea

    Directory of Open Access Journals (Sweden)

    Jae Chung Park

    2017-06-01

    Full Text Available The Andong and Imha reservoirs in South Korea are connected by a water transfer tunnel. The turbidity of the Imha reservoir is much higher than that of the Andong reservoir. Thus, it is necessary to examine the movement of turbidity between the two reservoirs via the water transfer tunnel. The aim of this study was to investigate the effect of the water transfer tunnel on the turbidity behavior of the two connecting reservoirs and to further understand the effect of reservoir turbidity distribution as a function of the selective withdrawal depth. This study applied the CE-QUAL-W2, a water quality and 2-dimensional hydrodynamic model, for simulating the hydrodynamic processes of the two reservoirs. Results indicate that, in the Andong reservoir, the turbidity of the released water with the water transfer tunnel was similar to that without the tunnel. However, in the Imha reservoir, the turbidity of the released water with the water transfer tunnel was lower than that without the tunnel. This can be attributed to the higher capacity of the Andong reservoir, which has double the storage of the Imha reservoir. Withdrawal turbidity in the Imha reservoir was investigated using the water transfer tunnel. This study applied three withdrawal selections as elevation (EL. 141.0 m, 146.5 m, and 152.0 m. The highest withdrawal turbidity resulted in EL. 141.0 m, which indicates that the high turbidity current is located at a vertical depth of about 20–30 m because of the density difference. These results will be helpful for understanding the release and selective withdrawal turbidity behaviors for a water transfer tunnel between two reservoirs.

  11. Effect of Storage Temperature on Vitamin C, Total Phenolics, UPLC Phenolic Acid Profile and Antioxidant Capacity of Eleven Potato (Solanum tuberosum Varieties

    Directory of Open Access Journals (Sweden)

    Joseph Hubert Yamdeu Galani

    2017-03-01

    Full Text Available Storage of potato tubers at low temperature affects their metabolism and may alter their phytochemical properties. There is a need to elucidate the changes in antioxidant compounds, activity and enzymes during storage of tubers. Eleven Indian potato varieties were evaluated for antioxidant parameters, after 0, 30, 60 and 90 days of storage at room temperature, 15 °C and 4 °C. Total phenolics (0.0786–0.1546 mg gallic acid equivalents⋅g−1 FW and vitamin C content (0.0828–0.2416 mg⋅g−1 FW varied among the varieties and were different with storage temperature; their levels fluctuated during storage but remained above the initial level until the last day of observation. Phenolic acid profiling by UPLC identified 12 compounds among which the most abundant was chlorogenic acid followed by gallic acid, sinapic acid and ellagic acid. Except para-coumaric acid which decreased at 4 °C, all the phenolic acids increased with storage. Caffeic acid, chlorogenic acid, protocatechuic acid and gallic acid mostly correlated with total phenolic content (r = 0.456, 0.482, 0.588 and 0.620, respectively. Antioxidant activity against both DPPH and ABTS radicals increased during the initial days of storage and then dropped to a level comparable or lower than the original value, irrespective of the storage temperature. Correlation study revealed that chlorogenic acid, gallic acid and ferulic acid mostly contributed to antioxidant activity. Activity of both antioxidant enzymes, superoxide dismutase and ascorbate peroxidase, increased initially but then decreased to values lower than the initial level and were not influenced by storage temperature. Correlation with antioxidant activity indicated that the enhancement of reactive oxygen scavenging species in cold stored tubers could result mainly from ascorbate peroxidase activity. Our results demonstrate that storage temperature adversely influences the metabolism and the content of

  12. The Indonesia Carbon Capture Storage Capacity Building Program : CCS for Coal-fired Power Plants in Indonesia

    OpenAIRE

    World Bank

    2015-01-01

    In order to meet the growing Indonesian demand for electricity, while also constraining carbon dioxide (CO2) emissions, future coal power plants may have to include CO2 capture equipment with storage of that CO2. This study set out to define and evaluate the conditions under which fossil fuel power plants can be deemed as carbon capture and storage (CCS) ready (CCS-R). It considers the tec...

  13. Experimental and modeling results on geochemical impacts of leaking CO2 from subsurface storage reservoirs to an unconfined oxidizing carbonate aquifer

    Science.gov (United States)

    Qafoku, N. P.; Bacon, D. H.; Shao, H.; Lawter, A.; Wang, G.; Brown, C. F.

    2013-12-01

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate risks to groundwater quality and develop a systematic understanding on how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Solid materials (rocks and slightly weathered rocks) from an unconfined aquifer, i.e., the Edwards Aquifer in Texas, were used in this investigation. The experimental part consisted of: 1) wet chemical acid extractions (8M HNO3 solution at 90 0C); 2) batch experiments conducted at low solid to solution ratios to study time-dependent releases of major, minor and trace elements during periodic or continuous exposure to CO2 gas; 3) hydraulically saturated column experiments conducted under continuous and stop-flow conditions using a CO2 gas saturated synthetic groundwater; 4) pre- and post-treatment solid phase characterization studies. Major variables tested included reaction time (0-336 hours), CO2 flow rate (50 to 350 ml/min), brine concentration (0.1 and 1 M NaCl), rock type and particle size fraction. We are currently investigating the solution composition effects (i.e., presence of contaminants in the initial solution) on the fate and behavior of potential contaminants (As, Pb and Cd) in these systems. Results from the solid phase characterization studies showed that the mineralogy of the Edwards aquifer materials was dominated by calcite. Quartz and montmorillonite were also present in some samples. Acid extractions confirmed that the solid phase had appreciable amounts of potential contaminants (As, Cd, Cr, Cu, Pb and Zn). However, the results from the batch and column experiments demonstrated that these contaminants

  14. Drought and reservoirs: intended benefits and unintended consequences

    Science.gov (United States)

    Di Baldassarre, Giuliano; AghaKouchak, Amir; Rangecroft, Sally; Wanders, Niko; Kuil, Linda; Veldkamp, Ted; van Loon, Anne

    2017-04-01

    Socioeconomic drought can be broadly defined as a condition whereby water demand cannot be satisfied by water supply. Here we posit that while reservoirs often alleviate socioeconomic drought, they can lead to unintended consequences in the medium-long term. Losses caused by socioeconomic drought tend to trigger public pressure for action, which can result in the introduction or expansion of reservoirs to store more water during high flow conditions, and release it during low flow conditions. In the short term, increasing reservoir storage is often beneficial because frequency, magnitude, and duration of drought can be significantly reduced. Yet, it is important to note that reservoirs may fail in mitigating major, prolonged drought, because reservoir storage is unavoidably limited. In the medium-long term, two main dynamics tend to emerge, which often generate unintended consequences. The first one, termed here as "supply-demand cycle", is when increasing water supply triggers additional development and thus generates higher demand, which then offsets the benefit of reservoirs as a water supply source. This is a self-reinforcing feedback, or vicious cycle, as the occurrence of a new socioeconomic drought will then likely trigger further expansion of reservoir storage to, again, increase water supply. A second dynamic, termed here as "reservoir effect" (after White's "levee effect"), is when extended periods of abundant water supply, secured by reservoirs, generate a decline of coping capacities through increased competition for water and reduced shocks to the system, which in turn increases the vulnerability of the system to socio-economic drought. In other words, while a frequent experience of water shortages can help keep high levels of preparedness, some elements of system's resilience can be lost when minor-to-moderate events are avoided. As a result, the development of reservoirs can generate a shift from frequent socioeconomic drought conditions to rare

  15. Stable large-scale CO2 storage in defiance of an energy system based on renewable energy - Modelling the impact of varying CO2 injection rates on reservoir behavior

    Science.gov (United States)

    Bannach, Andreas; Hauer, Rene; Martin, Streibel; Stienstra, Gerard; Kühn, Michael

    2015-04-01

    The IPCC Report 2014 strengthens the need for CO2 storage as part of CCS or BECCS to reach ambitious climate goals despite growing energy demand in the future. The further expansion of renewable energy sources is a second major pillar. As it is today in Germany the weather becomes the controlling factor for electricity production by fossil fuelled power plants which lead to significant fluctuations of CO2-emissions which can be traced in injection rates if the CO2 were captured and stored. To analyse the impact of such changing injection rates on a CO2 storage reservoir. two reservoir simulation models are applied: a. An (smaller) reservoir model approved by gas storage activities for decades, to investigate the dynamic effects in the early stage of storage filling (initial aquifer displacement). b. An anticline structure big enough to accommodate a total amount of ≥ 100 Mega tons CO2 to investigate the dynamic effects for the entire operational life time of the storage under particular consideration of very high filling levels (highest aquifer compression). Therefore a reservoir model was generated. The defined yearly injection rate schedule is based on a study performed on behalf of IZ Klima (DNV GL, 2014). According to this study the exclusive consideration of a pool of coal-fired power plants causes the most intensive dynamically changing CO2 emissions and hence accounts for variations of a system which includes industry driven CO2 production. Besides short-term changes (daily & weekly cycles) seasonal influences are also taken into account. Simulation runs cover a variation of injection points (well locations at the top vs. locations at the flank of the structure) and some other largely unknown reservoir parameters as aquifer size and aquifer mobility. Simulation of a 20 year storage operation is followed by a post-operational shut-in phase which covers approximately 500 years to assess possible effects of changing injection rates on the long-term reservoir

  16. Research Note:An approach to integrated assessement of reservoir siltation: the Joaquín Costa reservoir as a case study

    Directory of Open Access Journals (Sweden)

    A. Navas

    2004-01-01

    Full Text Available In 1932, the Esera river was dammed at the foothills of the Pyrenean External Ranges; since then, sedimentation has reduced its water storage capacity by a third. This study of the sediments in the Joaquín Costa reservoir has been based on detailed sedimentological examination and other analysis of mineralogy, grain size distribution and the chemical components of the materials accumulated at the bottom of the reservoir. Interpretations are based on results from four sediment cores collected at sites representative of the main environments in the reservoir. Records of known flood events and of reservoir management data have been combined with a 137Cs-derived chronology. Thus, it has been possible to ascribe the sedimentary record at the different reservoir environments to specific years, as well as some main changes in the facies types and sediment components. This methodology is a first approach to assessing siltation processes and dynamics in Mediterranean mountain reservoirs. Keywords: reservoir siltation, mineralogy, sedimentology,sedimentation rates, 137Cs, sediment tracing, mountain reservoir, central Spanish Pyrenees

  17. Electricity Storage. Technology Brief

    Energy Technology Data Exchange (ETDEWEB)

    Simbolotti, G. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome (Italy); Kempener, R. [International Renewable Energy Agency IRENA, Bonn (Germany)

    2012-04-15

    Electricity storage is a key technology for electricity systems with a high share of renewables as it allows electricity to be generated when renewable sources (i.e. wind, sunlight) are available and to be consumed on demand. It is expected that the increasing price of fossil fuels and peak-load electricity and the growing share of renewables will result in electricity storage to grow rapidly and become more cost effective. However, electricity storage is technically challenging because electricity can only be stored after conversion into other forms of energy, and this involves expensive equipment and energy losses. At present, the only commercial storage option is pumped hydro power where surplus electricity (e.g. electricity produced overnight by base-load coal or nuclear power) is used to pump water from a lower to an upper reservoir. The stored energy is then used to produce hydropower during daily high-demand periods. Pumped hydro plants are large-scale storage systems with a typical efficiency between 70% and 80%, which means that a quarter of the energy is lost in the process. Other storage technologies with different characteristics (i.e. storage process and capacity, conversion back to electricity and response to power demand, energy losses and costs) are currently in demonstration or pre-commercial stages and discussed in this brief report: Compressed air energy storage (CAES) systems, Flywheels; Electrical batteries; Supercapacitors; Superconducting magnetic storage; and Thermal energy storage. No single electricity storage technology scores high in all dimensions. The technology of choice often depends on the size of the system, the specific service, the electricity sources and the marginal cost of peak electricity. Pumped hydro currently accounts for 95% of the global storage capacity and still offers a considerable expansion potential but does not suit residential or small-size applications. CAES expansion is limited due to the lack of suitable

  18. Carbon nanotubes for energy storage using their hydrogen adsorption capacity: state of the art and perspectives; Nanotubos de carbono para estocagem de energia por adsorcao de hidrogenio: estado da arte e perspectivas

    Energy Technology Data Exchange (ETDEWEB)

    Maestro, Luis Fernando; Luengo, Carlos Alberto [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Fisica. Grupo de Combustiveis Alternativos], e-mail: lmaestro@ifi.unicamp.br

    2004-07-01

    It is presented an updated scope of the research in carbon nanotubes synthesis, their purification and a discussion of recent results in energy storage using their hydrogen adsorption capacity. The GCA activities in this area are also discussed. (author)

  19. Winter electricity supply and seasonal storage deficit in the Swiss Alps

    Science.gov (United States)

    Manso, Pedro; Monay, Blaise; Dujardin, Jérôme; Schaefli, Bettina; Schleiss, Anton

    2017-04-01

    Switzerland electricity production depends at 60% on hydropower, most of the remainder coming from nuclear power plants. The ongoing energy transition foresees an increase in renewable electricity production of solar photovoltaic, wind and geothermal origin to replace part of nuclear production; hydropower, in its several forms, will continue to provide the backbone and the guarantee of the instantaneous and permanent stability of the electric system. One of the key elements of any future portfolio of electricity mix with higher shares of intermittent energy sources like wind and solar are fast energy storage and energy deployment solutions. Hydropower schemes with pumping capabilities are eligible for storage at different time scales, whereas high-head storage hydropower schemes have already a cornerstone role in today's grid operation. These hydropower storage schemes have also been doing what can be labelled as "seasonal energy storage" in different extents, storing abundant flows in the wet season (summer) to produce electricity in the dry (winter) alpine season. Some of the existing reservoirs are however under sized with regards to the available water inflows and either spill over or operate as "run-of-the-river" which is economically suboptimal. Their role in seasonal energy transfer could increase through storage capacity increase (by dam heightening, by new storage dams in the same catchment). Inversely, other reservoirs that already store most of the wet season inflow might not fill up in the future in case inflows decrease due to climate changes; these reservoirs might then have extra storage capacity available to store energy from sources like solar and wind, if water pumping capacity is added or increased. The present work presents a comprehensive methodology for the identification of the seasonal storage deficit per catchment considering todays and future hydrological conditions with climate change, applied to several landmark case studies in

  20. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neutral reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  1. Negative plates for dry-charged lead storage batteries. [higher charging capacity when impregnated with tannin solution

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, V.; Malikova, V.; Weber, H.

    1970-09-15

    Impregnation of negative plates with acid solutions of sulfomethylated tannins was found to improve the charging properties at low temperatures. Methods for synthesizing tannins are described. Charging capacity at 0/sup 0/ was 7.3A. (RWR)

  2. Low-crystallinity molybdenum sulfide nanosheets assembled on carbon nanotubes for long-life lithium storage: Unusual electrochemical behaviors and ascending capacities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaodan, E-mail: xiaodan_li@yeah.net [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Wu, Gaoxiang, E-mail: wgxjimmy@126.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Chen, Jiewei, E-mail: kzscjw@126.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Li, Meicheng, E-mail: mcli@ncepu.edu.cn [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Chongqing Materials Research Institute, Chongqing 400707 (China); Li, Wei, E-mail: wei.li@inl.int [International Iberian Nanotechnology Laboratory (INL), Braga 4715-330 (Portugal); Wang, Tianyue, E-mail: 1355796015@qq.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Jiang, Bing, E-mail: BingJiang@ncepu.edu.cn [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); He, Yue, E-mail: 947667748@qq.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Mai, Liqiang, E-mail: mlq518@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2017-01-15

    Highlights: • Low-crystallinity molybdenum sulfide coated on carbon nanotubes were synthesized. • This anode material has unusual electrochemical behaviors compared to typical MoS{sub 2}. • It exhibits noticable ascending trends in capacity and superior rate performance. • The ascending performance can effectively extend the circulation life of batteries. - Abstract: Low-crystallinity molybdenum sulfide (LCMS, Mo:S = 1:2.75) nanosheets synthesized by a facile and low temperature solvothermal method is now reported. The as-prepared LCMS anode material is composited of MoS{sub 2} layers mixed with amorphous MoS{sub 3}, which leads to an unusual electrochemical process for lithium storage compared to typical MoS{sub 2} anode. The existence of MoS{sub 3} and Mo (VI) provide strong adsorption and binding sites for polar polysulphides, which compels abundant sulfur to turn into new-formed MoS{sub 3} rather than diffuse into electrolyte. To fully utilize this novel electrochemical process, LCMS is decorated on carbon nanotubes, obtaining well-dispersed CNTs@LCMS. As electrode material for lithium storage, CNTs@LCMS exhibits a noticable ascending trend in capacity from 820 mA h g{sup −1} to 1350 mA h g{sup −1} at 100 mA g{sup −1} during 130 cycles. The persistent ascending capacity is ascribed to the increasing lithium storage caused by new-formed MoS{sub 3}, combined with the reduced volume change benifiting from well-dispersed CNTs@LCMS. Furthermore, the ascending performance is proved to be able to effectively extend the circulation life (up to 200%) for lithium-ion batteries by mathematical modeling and calculation. Accordingly, the CNTs@LCMS composite is a promising anode material for long-life lithium-ion batteries.

  3. Dynamic Heat Storage and Cooling Capacity of a Concrete Deck with PCM and Thermally Activated Building System

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    with and without microencapsulated PCM are presented. The new concrete deck with microencapsulated PCM is the standard deck on which an additional layer of the PCM concrete was added and, at the same time, the latent heat storage was introduced to the construction. The challenge of numerically simulating...

  4. Trap-efficiency study, Highland Creek flood retarding reservoir near Kelseyville, California, water years 1966-77

    Science.gov (United States)

    Trujillo, L.F.

    1980-01-01

    This investigation is part of a nationwide study of trap efficiency of detention reservoirs. In this report, trap efficiency was computed from reservoir inflow and outflow sediment data and from reservoir survey and outflow data. Highland Creek Reservoir is a flood retarding reservoir located in Lake County, near Kelseyville, California. This reservoir has a maximum storage capacity of 3,199 acre-feet and permanent pool storage of 921 acre-feet. Mean annual rainfall for the 14.1-square-mile drainage area above Highland Creek Dam was 29 inches during the December 1965 to September 1977 study period. Resultant mean annual runoff was 17,100 acre-feet. Total reservoir inflow for the 11.8-year study period was 202,000 acre-feet, transporting an estimated 126,000 tons (10,700 tons per year) of suspended sediment. Total reservoir outflow for the same period was 188,700 acre-feet, including 15,230 tons (1,290 tons per year) of sediment. Estimated trap efficiency for the study period was 88%, based on estimated sediment inflow and measured sediment outflow. Reservoir surveys made in December 1965 and April 1972 revealed a storage capacity loss of 35.8 acre-feet during the 6.3-year period. Computed by using an estimated specific weight, this loss represents 54,600 tons of deposited sediment. Sediment outflow during the same period was 8,890 tons. Trap efficiency for the survey period was 86%. (USGS)

  5. Cost implications of uncertainty in CO2 storage resource estimates: A review

    Science.gov (United States)

    Anderson, Steven T.

    2017-01-01

    Carbon capture from stationary sources and geologic storage of carbon dioxide (CO2) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO2 storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference, and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO2, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO2 storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO2 injection will be mitigated by reservoir pressure management, estimates of the costs of CO2 storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO2 storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO2 storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the scarcity of (data from) long-term commercial-scale CO2

  6. A remote sensing method for estimating regional reservoir area and evaporative loss

    Science.gov (United States)

    Zhang, Hua; Gorelick, Steven M.; Zimba, Paul V.; Zhang, Xiaodong

    2017-12-01

    Evaporation from the water surface of a reservoir can significantly affect its function of ensuring the availability and temporal stability of water supply. Current estimations of reservoir evaporative loss are dependent on water area derived from a reservoir storage-area curve. Such curves are unavailable if the reservoir is located in a data-sparse region or questionable if long-term sedimentation has changed the original elevation-area relationship. We propose a remote sensing framework to estimate reservoir evaporative loss at the regional scale. This framework uses a multispectral water index to extract reservoir area from Landsat imagery and estimate monthly evaporation volume based on pan-derived evaporative rates. The optimal index threshold is determined based on local observations and extended to unobserved locations and periods. Built on the cloud computing capacity of the Google Earth Engine, this framework can efficiently analyze satellite images at large spatiotemporal scales, where such analysis is infeasible with a single computer. Our study involves 200 major reservoirs in Texas, captured in 17,811 Landsat images over a 32-year period. The results show that these reservoirs contribute to an annual evaporative loss of 8.0 billion cubic meters, equivalent to 20% of their total active storage or 53% of total annual water use in Texas. At five coastal basins, reservoir evaporative losses exceed the minimum freshwater inflows required to sustain ecosystem health and fishery productivity of the receiving estuaries. Reservoir evaporative loss can be significant enough to counterbalance the positive effects of impounding water and to offset the contribution of water conservation and reuse practices. Our results also reveal the spatially variable performance of the multispectral water index and indicate the limitation of using scene-level cloud cover to screen satellite images. This study demonstrates the advantage of combining satellite remote sensing and

  7. Trap-efficiency study, Highland Creek flood-retarding reservoir near Kelseyville, California, water years 1966-77

    Science.gov (United States)

    Trujillo, L.F.

    1982-01-01

    This investigation is part of a nationwide study of trap efficiency of detention reservoirs. In this report, trap efficiency was computed from reservoir inflow and outflow sediment data and from reservoir survey and outflow data. Highland Creek Reservoir is a flood-retarding reservoir located in Lake County, near Kelseyville, California. This reservoir has a maximum storage capacity of 3,199 acre-feet and permanent pool storage of 921 acre-feet. Mean annual rainfall for the 14.1 square-mile drainage area above Highland Creek Dam was 29 inches during the December 1965 to September 1977 study period. Resultant mean annual runoff was 17,100 acre-feet. Total reservoir inflow for the 11.8 yea r study period was 202,000 acre-feet, transporting an estimated 126,000 tons (10,700 tons per year) of suspended sediment. Total reservoir outflow for the same period was 188,700 acre-feet, including 15 ,230 tons (1,290 tons per year) of sediment. Estimated trap efficiency for the study period was 88 percent, based on estimated sediment inflow and measured sediment outflow.

  8. Opportunities in independent gas storage

    International Nuclear Information System (INIS)

    Daniel, R.

    1999-01-01

    The range of business opportunities currently available for the midstream oil and gas business were discussed with particular focus on storage opportunities. Alberta Energy Co. (AEC) Ltd.'s two midstream business units include AEC Pipelines and Gas Processing, and AEC Storage and Hub Services. These two businesses provide the company with good investment returns, stable cash flow, and some significant strategic synergies with their exploration and production businesses. In 1988, the AECO C Hub in southeastern Alberta was created as an outgrowth of AEC's gas production operations on the Suffield block, where they had depleted gas reservoirs with high rock quality suitable for high deliverability storage. With the AECO C Hub, AEC was able to offer firm storage contracts of from 1 to 20 years, and to introduce short term interruptible parking and lending services, title exchange, a spot price index for greater price discovery, and an electronic nomination system. AEC is currently completing construction of their second commercial storage facility, the Wild Goose project, in northern California. D ebottlenecking' the Western Canada supply basin should provide additional opportunities for further expansion not only for AEC but also for other midstream service providers. Opportunities are especially available in the areas of new storage facilities to serve location-specific needs, replacement of declining storage capacity, replacement of retiring facilities, technological optimization of existing facilities, more flexible, higher deliverability facilities and commercial optimization of existing facilities. A map of the hubs and market centres of North America are included. 5 figs

  9. The Controls of Pore-Throat Structure on Fluid Performance in Tight Clastic Rock Reservoir: A Case from the Upper Triassic of Chang 7 Member, Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Yunlong Zhang

    2018-01-01

    Full Text Available The characteristics of porosity and permeability in tight clastic rock reservoir have significant difference from those in conventional reservoir. The increased exploitation of tight gas and oil requests further understanding of fluid performance in the nanoscale pore-throat network of the tight reservoir. Typical tight sandstone and siltstone samples from Ordos Basin were investigated, and rate-controlled mercury injection capillary pressure (RMICP and nuclear magnetic resonance (NMR were employed in this paper, combined with helium porosity and air permeability data, to analyze the impact of pore-throat structure on the storage and seepage capacity of these tight oil reservoirs, revealing the control factors of economic petroleum production. The researches indicate that, in the tight clastic rock reservoir, largest throat is the key control on the permeability and potentially dominates the movable water saturation in the reservoir. The storage capacity of the reservoir consists of effective throat and pore space. Although it has a relatively steady and significant proportion that resulted from the throats, its variation is still dominated by the effective pores. A combination parameter (ε that was established to be as an integrated characteristic of pore-throat structure shows effectively prediction of physical capability for hydrocarbon resource of the tight clastic rock reservoir.

  10. Relative Economic Merits of Storage and Combustion Turbines for Meeting Peak Capacity Requirements under Increased Penetration of Solar Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Diakov, Victor [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Batteries with several hours of capacity provide an alternative to combustion turbines for meeting peak capacity requirements. Even when compared to state-of-the-art highly flexible combustion turbines, batteries can provide a greater operational value, which is reflected in a lower system-wide production cost. By shifting load and providing operating reserves, batteries can reduce the cost of operating the power system to a traditional electric utility. This added value means that, depending on battery life, batteries can have a higher cost than a combustion turbine of equal capacity and still produce a system with equal or lower overall life-cycle cost. For a utility considering investing in new capacity, the cost premium for batteries is highly sensitive to a variety of factors, including lifetime, natural gas costs, PV penetration, and grid generation mix. In addition, as PV penetration increases, the net electricity demand profile changes, which may reduce the amount of battery energy capacity needed to reliably meet peak demand.

  11. Modelling of Hydropower Reservoir Variables for Energy Generation ...

    African Journals Online (AJOL)

    Efficient management of hydropower reservoir can only be realized when there is sufficient understanding of interactions existing between reservoir variables and energy generation. Reservoir inflow, storage, reservoir elevation, turbine release, net generating had, plant use coefficient, tail race level and evaporation losses ...

  12. Ontogeny of Oxygen Storage Capacity and Diving Ability in the Southern Sea Otter (Enhydra lutris nereis): Costs and Benefits of Large Lungs.

    Science.gov (United States)

    Thometz, Nicole M; Murray, Michael J; Williams, Terrie M

    2015-01-01

    Small body size, large lungs, and dense pelage contribute to the unique challenges faced by diving sea otters (Enhydra lutris) when compared to other marine mammals. Here we determine the consequences of large lungs on the development of diving ability in southern sea otters (Enhydra lutris nereis) by examining the ontogeny of blood, muscle, and lung oxygen stores and calculating aerobic dive limits (cADL) for immature and mature age classes. Total oxygen storage capacity matures rapidly in sea otters, reaching adult levels by 2 mo postpartum. But this result is driven by exceptional lung capacity at birth, followed by a decrease in mass-specific lung volume with age. Blood and muscle oxygen stores remain well below adult values before weaning, with large pups exhibiting 74% and 54% of adult values, respectively. Slow muscle development limits the capacity of immature sea otters to dive against high positive buoyancy due to comparatively large lungs. Immature sea otters diving with total lung capacity (TLC) experience up to twice the mass-specific positive buoyancy as adults diving with TLC but can reduce these forces to comparable adult levels by using a smaller diving lung volume (DLV). The cADL of a juvenile with DLV is 3.62 min, while the cADL of an adult with TLC is 4.82 min. We find that the magnitude of positive buoyancy experienced by sea otters changes markedly with age and strongly influences the ontogeny of diving ability in this species.

  13. Prototyping and Testing a New Volumetric Curvature Tool for Modeling Reservoir Compartments and Leakage Pathways in the Arbuckle Saline Aquifer: Reducing Uncertainty in CO2 Storage and Permanence

    Energy Technology Data Exchange (ETDEWEB)

    Rush, Jason [Univ. of Kansas and Kansas Geological Survey, Lawrence, KS (United States); Holubnyak, Yevhen [Univ. of Kansas and Kansas Geological Survey, Lawrence, KS (United States); Watney, Willard [Univ. of Kansas and Kansas Geological Survey, Lawrence, KS (United States)

    2016-12-09

    This DOE-funded project evaluates the utility of seismic volumetric curvature (VC) for predicting stratal and structural architecture diagnostic of paleokarst reservoirs. Of special interest are applications geared toward carbon capture, utilization, and storage (CCUS). VC has been championed for identifying faults (offset <¼ λ) that cannot be imaged by conventional 3-D seismic attributes such as coherence. The objective of this research was to evaluate VC-techniques for reducing uncertainties in reservoir compartmentalization studies and seal risk assessments especially for saline aquifers. A 2000-ft horizontal lateral was purposefully drilled across VC-imaged lineaments—interpreted to record a fractured and a fault-bounded doline—to physically confirm their presence. The 15-mi² study area is located in southeastern Bemis-Shutts Field, which is situated along the crest of the Central Kansas Uplift (CKU) in Ellis County, Kansas. The uppermost Arbuckle (200+ ft) has extensive paleokarst including collapsed paleocaverns and dolines related to exceedingly prolonged pre-Simpson (Sauk–Tippecanoe) and/or pre-Pennsylvanian subaerial exposure. A lateral borehole was successfully drilled across the full extent (~1100 ft) of a VC-inferred paleokarst doline. Triple combo (GR-neutron/density-resistivity), full-wave sonic, and borehole micro-imager logs were successfully run to TD on drill-pipe. Results from the formation evaluation reveal breccias (e.g., crackle, mosaic, chaotic), fractures, faults, vugs (1-6"), and unaffected host strata consistent with the pre-spud interpretation. Well-rounded pebbles were also observed on the image log. VC-inferred lineaments coincide with 20–80-ft wide intervals of high GR values (100+ API), matrix-rich breccias, and faults. To further demonstrate their utility, VC attributes are integrated into a geocellular modeling workflow: 1) to constrain the structural model; 2) to generate facies probability grids, and; 3) to collocate

  14. Effects of 1-Methylcyclopropene and Modified Atmosphere Packaging on the Antioxidant Capacity in Pepper “Kulai” during Low-Temperature Storage

    Science.gov (United States)

    Tan, Chung Keat; Ali, Zainon Mohd; Ismail, Ismanizan; Zainal, Zamri

    2012-01-01

    The objective of the present study was to simultaneously evaluate the effect of a postharvest treatment on the pepper's antioxidant content and its ability to retain its economical value during the postharvest period. The fruits were pretreated by modified atmosphere packaging (MAP) with or without treatment with 1-methylcyclopropene (1-MCP) before cold storage at 10°C. Changes in the levels of non-enzymatic antioxidants, including the total phenolic, ascorbic acid levels and the total glutathione level, as well as enzymatic antioxidants, including ascorbate peroxidase (APX), glutathione reductase (GR), and catalase (CAT), were determined. Both treatments successfully extended the shelf life of the fruit for up to 25 days, and a high level of antioxidant capacity was maintained throughout the storage period. However, 1-MCP treatment maintained the high antioxidant capacity for a longer period of time. The 1-MCP-treated peppers maintained high levels of phenolic content, a high reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio, decreased levels of ascorbic acid and CAT activity, and increased levels of APX and GR compared with the peppers that were not treated with 1-MCP. The overall results suggested that a combination of 1-MCP and MAP was the most effective treatment for extending shelf life while retaining the nutritional benefits. PMID:22919322

  15. Metabolic Linkage and Correlations to Storage Capacity in Erythrocytes from Glucose 6-Phosphate Dehydrogenase-Deficient Donors

    Directory of Open Access Journals (Sweden)

    Julie A. Reisz

    2018-01-01

    Full Text Available ObjectiveIn glucose 6-phosphate dehydrogenase (G6PD deficiency, decreased NADPH regeneration in the pentose phosphate pathway and subnormal levels of reduced glutathione result in insufficient antioxidant defense, increased susceptibility of red blood cells (RBCs to oxidative stress, and acute hemolysis following exposure to pro-oxidant drugs and infections. Despite the fact that redox disequilibrium is a prominent feature of RBC storage lesion, it has been reported that the G6PD-deficient RBCs store well, at least in respect to energy metabolism, but their overall metabolic phenotypes and molecular linkages to the storability profile are scarcely investigated.MethodsWe performed UHPLC-MS metabolomics analyses of weekly sampled RBC concentrates from G6PD sufficient and deficient donors, stored in citrate phosphate dextrose/saline adenine glucose mannitol from day 0 to storage day 42, followed by statistical and bioinformatics integration of the data.ResultsOther than previously reported alterations in glycolysis, metabolomics analyses revealed bioactive lipids, free fatty acids, bile acids, amino acids, and purines as top variables discriminating RBC concentrates for G6PD-deficient donors. Two-way ANOVA showed significant changes in the storage-dependent variation in fumarate, one-carbon, and sulfur metabolism, glutathione homeostasis, and antioxidant defense (including urate components in G6PD-deficient vs. sufficient donors. The levels of free fatty acids and their oxidized derivatives, as well as those of membrane-associated plasticizers were significantly lower in G6PD-deficient units in comparison to controls. By using the strongest correlations between in vivo and ex vivo metabolic and physiological parameters, consecutively present throughout the storage period, several interactomes were produced that revealed an interesting interplay between redox, energy, and hemolysis variables, which may be further associated with donor

  16. Effect of five year storage on total phenolic content and antioxidant capacity of almond (Amygdalus communisL. hull and shell from different genotypes

    Directory of Open Access Journals (Sweden)

    Khadijeh Sadat Moosavi Dolatabadi

    2014-12-01

    Full Text Available Objectives: Almond (Prunus amygdalus hull and shell are agricultural by-products that are a source of phenolic compounds.The processing of almond produce shell and hull, accounts for more than 50% by dry weight of the almond fruits. Recently, more studies have focused on the influence of storage conditions and postharvest handling on the nutritional quality of fruits, especially the antioxidant phenolics. In this study, influence of long-term storage (five years on the total phenolic and antioxidant capacity of almond hull and shell from different genotypes was evaluated. Materials and Methods: The fruits of subjected genotypes were collected and their hull and shell were separated. They were dried and reduced to fine powder. This powder stored at room temperature for five years. The total phenolic content (TPC and bioactivities (antioxidant potential: DPPH and ABTS radical scavenging and reducing power of extracts were evaluated using spectrophotometric methods. Results: It was found that TPC content and bioactivity levels in the stored almond hull and shell were different, compared to the hulls and shells which were evaluated in 2007. S1-4 genotype had the highest TPC and reducing power in its hull and shell.Low correlation coefficient was observed between phenolic content and the DPPH radical scavenging percentage in hull and shell extract. Conclusions: For the first time, results of this investigation showed that storage can influence the antioxidant and antiradical potential of almond hull and shell.

  17. Position paper, need for additional waste storage capacity and recommended path forward for project W-236a, Multi-function Waste Tank Facility

    International Nuclear Information System (INIS)

    Awadalla, N.G.

    1994-01-01

    Project W-236a, Multi-function waste Tank Facility (MWTF), was initiated to increase the safe waste storage capacity for the Tank Waste Remediation System (TWRS) by building two new one million gallon underground storage tanks in the 200 West Area and four tanks in the 200 East Area. Construction of the tanks was scheduled to begin in September 1994 with operations beginning in calendar year (CY) 1998. However, recent reviews have raised several issues regarding the mission, scope, and schedule of the MWTF. The decision to build new tanks must consider several elements, such as: Operational risk and needs -- Operational risk and flexibility must be managed such that any identified risk is reduced as soon as practicable; The amount of waste that will be generated in the future -- Additional needed tank capacity must be made available to support operations and maintain currently planned safety improvement activities; Safety issues -- The retrieval of waste from single-shell tanks (SSTs) and watch list tanks will add to the total amount of waste that must be stored in a double-shell tank (DST); Availability of existing DSTs -- The integrity of the 28 existing DSTs must be continuously managed; and Affect on other projects and programs -- Because MWTF systems have been integrated with other projects, a decision on one project will affect another. In addition the W-236a schedule is logically tied to support retrieval and safety program plans. Based on the above, two new tanks are needed for safe waste storage in the 200 West Area, and they need to be built as soon as practicable. Design should continue for the tanks in the 200 East Area with a decision made by September, on whether to construct them. Construction of the cross-site transfer line should proceed as scheduled. To implement this recommendation several actions need to be implemented

  18. Preliminary assessments of CO2 storage in carbonate formations: a case study from Malaysia

    Science.gov (United States)

    Raza, Arshad; Gholami, Raoof; Rezaee, Reza; Bing, Chua Han; Nagarajan, Ramasamy; Hamid, Mohamed Ali

    2017-06-01

    The preliminary assessment of depleted reservoirs prior to the injection of CO2 is an essential step to ensure the safety and success of storage projects. Several studies have provided a preliminary assessment of depleted reservoirs as a sequestration practice. However, the screening criteria used in these studies were not able to consider all of the aspects of a storage site. The aim of this paper is to provide a reservoir-scale evaluation approach for long-term storage practice in an offshore carbonate field located in Malaysia. Recently developed screening criteria that cover the key aspects of storage sites, such as capacity, injectivity, trapping mechanisms, and containment, are taken into consideration for the purpose of this study. The results obtained suggest that the reservoir has good potential to be a storage place for CO2, although the compaction behavior and aquifer supports of the reservoir might cause some difficulties. It is, therefore, recommended that a series of experimental and numerical studies on different aspects of storage sites be performed to ensure that injectivity is not a problem when it comes to the implementation stage.

  19. A Scenario-Based Approach for Energy Storage Capacity Determination in LV Grids with High PV Penetration

    DEFF Research Database (Denmark)

    Hashemi Toghroljerdi, Seyedmostafa; Østergaard, Jacob; Yang, Guangya

    2014-01-01

    In this paper a new method is proposed to determine the minimum energy storage required to be installed at different locations of a low voltage (LV) grid in order to prevent the overvoltage due to high residential photovoltaic (PV) penetration. The method is based on the voltage sensitivity...... with different occurrence probabilities without involving the time-series studies problems. The proposed method is capable of modeling output power of PV panels with different orientations as well as different electric vehicle (EV) charging patterns....

  20. The potential of geological storage of CO2 in Austria: a techno-economic assessment

    Science.gov (United States)

    Brüstle, Anna Katharina; Welkenhuysen, Kris; Bottig, Magdalena; Piessens, Kris; Ramirez, Andrea; Swenner, Rudy

    2014-05-01

    An impressive two-third or about 40GWh/y of electricity in Austria is produced from renewable energy sources, in particular hydro energy. For the remaining part the country depends on fossil fuels, which together with iron & steel production form the most CO2 intensive industries in Austria with a combined emission of just over 20Mt/y. According to the IEA, CO2 capture and geological storage (CCS) can reduce the global CO2 emission until 2050 by 17%. A correct assessment of CCS needs to start with the storage potential. Prior to this study, only general estimates of the theoretical capacity of Austrian reservoirs were available, thus, up until now, the realistic potential for CCS technology has not been assessed. Both for policy and industry, an assessment of the matched capacity is required, which is the capacity that actually will be used in CCS projects. This hurdle can be taken by applying a recently developed methodology (Welkenhuysen et al., 2013). This policy support system (PSS) consists of two parts, PSS Explorer and PSS III simulator. In brief, the methodology is based on expert judgements of potential reservoirs. These assessments can provide the best available data, including the expert's experience and possibly confidential data, without disclosing specific data. The geo-techno-economic calculation scheme PSS Explorer uses the expert input to calculate for each individual reservoir an assessment of the practical capacity (as probability density functions), in function of an acceptable price for storage. This practical capacity can then be used by the techno-economic PSS III simulator to perform advanced source-sink matching until 2050 and thus provide the matched reservoir capacity. The analysed reservoirs are 7 active or abandoned oil and gas reservoirs in Austria. The simulation of the electricity and iron & steel sector of Austria resulted in the estimation of the geological storage potential, taking into account geological, technological and

  1. How ecosystems organize their moisture storage requirement

    Science.gov (United States)

    Savenije, H.

    2014-12-01

    The moisture storage capacity in the root zone of ecosystems acts as a buffer against climatic variability and is a critical factor controlling many physical, biogeochemical and biological processes including land-atmosphere exchanges, rainfall-runoff generation, carbon cycling and nutrient dynamics. Notwithstanding its importance this storage capacity cannot be directly observed at catchment scale. Approaching this problem from a different angle, we can try to understand how adaptive systems cope with the variability of essential inputs through the creation of buffers. Surprisingly, there appears to be a strong correspondence between how societies and ecosystems try to safeguard their water supply. People build reservoirs to buffer against periods of water shortage; ecosystems essentially do the same by creating sufficient moisture storage in their root zone. Both try to do this at minimum expense: people by optimizing the amount of storage at minimum costs; and ecosystems by creating an optimum root zone buffer at minimum biomass investment. A classical engineering way for designing the size of a reservoir is the Rippl (1883) diagram, where tangents to the accumulated inflow determine the required storage. It is a logical method for people to size the storage required to satisfy the long-term water demand. Using this principle, over time, many societies have tried to regulate their rivers, leveling out the natural dynamics of the system. But are people unique in trying to even out unwanted fluctuations or to bridge periods of water shortage? Like societies, ecosystems adjust their storage buffer to climatic variability. Similar to the way in which engineers design reservoirs, we can estimate the root zone storage capacity at catchment scale on the basis of observed climate and hydrological data. This approach was proven to be remarkably accurate not only in 11 catchments of the Ping river in Thailand but also in 413 catchments across the USA, with diverse climate

  2. COSTING MODELS FOR WATER SUPPLY DISTRIBUTION: PART III- PUMPS, TANKS, AND RESERVOIRS

    Science.gov (United States)

    Distribution systems are generally designed to ensure hydraulic reliability. Storage tanks, reservoirs and pumps are critical in maintaining this reliability. Although storage tanks, reservoirs and pumps are necessary for maintaining adequate pressure, they may also have a negati...

  3. CNTs in situ attached to α-Fe2O3 submicron spheres for enhancing lithium storage capacity.

    Science.gov (United States)

    Gao, Guo; Zhang, Qiang; Cheng, Xin-Bing; Qiu, Peiyu; Sun, Rongjin; Yin, Ting; Cui, Daxiang

    2015-01-14

    In this work, we developed a facile hydrothermal method for synthesis of hybrid α-Fe2O3-carbon nanotubes (CNTs) architectures (α-Fe2O3-CNTs-1 and α-Fe2O3-CNTs-2). The CNTs are in situ attached to the α-Fe2O3 submicron spheres and form three-dimensional network robust architectures. The increase in the amount of CNTs in the network α-Fe2O3-CNTs architectures will significantly enhance the cycling and rate performance, as the flexible and robust CNTs could ensure the fast electron transport pathways, enhance the electronic conductivity, and improve the structural stability of the electrode. As for pure α-Fe2O3 submicron spheres, the capacity decreased significantly and retained at 377.4 mAh g(-1) after 11 cycles, and the capacity has a slightly increasing trend at the following cycling. In contrast, the network α-Fe2O3-CNTs-2 electrode shows the most remarkable performance. At the 60th cycle, the capacity of network α-Fe2O3-CNTs-2 (764.5 mAh g(-1)) is 1.78 times than that of α-Fe2O3 submicron spheres (428.3 mAh g(-1)). The long-term cycling performance (1000 cycles) of samples at a high current density of 5 C showed that the capacity of α-Fe2O3 submicron spheres fade to ∼37.3 mAh g(-1) at the 400th cycle and gradually increased to ∼116.7 mAh g(-1) at the 1000th cycle. The capacity of network α-Fe2O3-CNTs-2 maintained at ∼220.2 mAh g(-1) before the 400th cycle, arrived at ∼326.5 mAh g(-1) in the 615th, cycle and retained this value until 1000th cycle. The network α-Fe2O3-CNTs-2 composite could significantly enhance the cycling and rate performance than pure α-Fe2O3 submicron spheres composite.

  4. Self-assembly synthesis of 3D graphene-encapsulated hierarchical Fe3O4 nano-flower architecture with high lithium storage capacity and excellent rate capability

    Science.gov (United States)

    Ma, Yating; Huang, Jian; Lin, Liang; Xie, Qingshui; Yan, Mengyu; Qu, Baihua; Wang, Laisen; Mai, Liqiang; Peng, Dong-Liang

    2017-10-01

    Graphene-encapsulated hierarchical metal oxides architectures can efficiently combine the merits of graphene and hierarchical metal oxides, which are deemed as the potential anode material candidates for the next-generation lithium-ion batteries due to the synergistic effect between them. Herein, a cationic surfactant induced self-assembly method is developed to construct 3D Fe3O4@reduction graphene oxide (H-Fe3O4@RGO) hybrid architecture in which hierarchical Fe3O4 nano-flowers (H-Fe3O4) are intimately encapsulated by 3D graphene network. Each H-Fe3O4 particle is constituted of rod-shaped skeletons surrounded by petal-like nano-flakes that are made up of enormous nanoparticles. When tested as the anode material in lithium-ion batteries, a high reversible capacity of 2270 mA h g-1 after 460 cycles is achieved under a current density of 0.5 A g-1. More impressively, even tested at a large current density of 10 A g-1, a decent reversible capacity of 490 mA h g-1 can be retained, which is still higher than the theoretical capacity of traditional graphite anode, demonstrating the remarkable lithium storage properties. The reasons for the excellent electrochemical performance of H-Fe3O4@RGO electrode have been discussed in detail.

  5. Quantifying the potential for reservoirs to secure future surface water yields in the world’s largest river basins

    Science.gov (United States)

    Liu, Lu; Parkinson, Simon; Gidden, Matthew; Byers, Edward; Satoh, Yusuke; Riahi, Keywan; Forman, Barton

    2018-04-01

    Surface water reservoirs provide us with reliable water supply, hydropower generation, flood control and recreation services. Yet reservoirs also cause flow fragmentation in rivers and lead to flooding of upstream areas, thereby displacing existing land-use activities and ecosystems. Anticipated population growth and development coupled with climate change in many regions of the globe suggests a critical need to assess the potential for future reservoir capacity to help balance rising water demands with long-term water availability. Here, we assess the potential of large-scale reservoirs to provide reliable surface water yields while also considering environmental flows within 235 of the world’s largest river basins. Maps of existing cropland and habitat conservation zones are integrated with spatially-explicit population and urbanization projections from the Shared Socioeconomic Pathways to identify regions unsuitable for increasing water supply by exploiting new reservoir storage. Results show that even when maximizing the global reservoir storage to its potential limit (∼4.3–4.8 times the current capacity), firm yields would only increase by about 50% over current levels. However, there exist large disparities across different basins. The majority of river basins in North America are found to gain relatively little firm yield by increasing storage capacity, whereas basins in Southeast Asia display greater potential for expansion as well as proportional gains in firm yield under multiple uncertainties. Parts of Europe, the United States and South America show relatively low reliability of maintaining current firm yields under future climate change, whereas most of Asia and higher latitude regions display comparatively high reliability. Findings from this study highlight the importance of incorporating different factors, including human development, land-use activities, and climate change, over a time span of multiple decades and across a range of different

  6. Entropy, pricing and macroeconomics of pumped-storage systems

    Science.gov (United States)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2014-05-01

    We propose a pricing scheme for the enhancement of macroeconomic performance of pumped-storage systems, based on the statistical properties of both geophysical and economic variables. The main argument consists in the need of a context of economic values concerning the hub energy resource; defined as the resource that comprises the reference energy currency for all involved renewable energy sources (RES) and discounts all related uncertainty. In the case of pumped-storage systems the hub resource is the reservoir's water, as a benchmark for all connected intermittent RES. The uncertainty of all involved natural and economic processes is statistically quantifiable by entropy. It is the relation between the entropies of all involved RES that shapes the macroeconomic state of the integrated pumped-storage system. Consequently, there must be consideration on the entropy of wind, solar and precipitation patterns, as well as on the entropy of economic processes -such as demand preferences on either current energy use or storage for future availability. For pumped-storage macroeconomics, a price on the reservoir's capacity scarcity should also be imposed in order to shape a pricing field with upper and lower limits for the long-term stability of the pricing range and positive net energy benefits, which is the primary issue of the generalized deployment of pumped-storage technology. Keywords: Entropy, uncertainty, pricing, hub energy resource, RES, energy storage, capacity scarcity, macroeconomics

  7. Dredged Material Management Plan and Environmental Impact Statement. McNary Reservoir and Lower Snake River Reservoirs. Appendix C: Economic Analysis

    National Research Council Canada - National Science Library

    2002-01-01

    ...; for managment of dredged material from these reservoirs; and for maintenance of flow conveyance capacity at the most upstream extent of the Lower Granite reservoir for the remaining economic life of the dam and reservoir project (to year 2074...

  8. Saline Cavern Adiabatic Compressed Air Energy Storage Using Sand as Heat Storage Material

    Directory of Open Access Journals (Sweden)

    Martin Haemmerle

    2017-03-01

    Full Text Available Adiabatic compressed air energy storage systems offer large energy storage capacities and power outputs beyond 100MWel. Salt production in Austria produces large caverns which are able to hold pressure up to 100 bar, thus providing low cost pressurized air storage reservoirs for adiabatic compressed air energy storage plants. In this paper the results of a feasibility study is presented, which was financed by the Austrian Research Promotion Agency, with the objective to determine the adiabatic compressed air energy storage potential of Austria’s salt caverns. The study contains designs of realisable plants with capacities between 10 and 50 MWel, applying a high temperature energy storage system currently developed at the Institute for Energy Systems and Thermodynamics in Vienna. It could be shown that the overall storage potential of Austria’s salt caverns exceeds a total of 4GWhel in the year 2030 and, assuming an adequate performance of the heat exchanger, that a 10MWel adiabatic compressed air energy storage plant in Upper Austria is currently feasible using state of the art thermal turbomachinery which is able to provide a compressor discharge temperature of 400 °C.

  9. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage.

    Science.gov (United States)

    Chieruzzi, Manila; Cerritelli, Gian F; Miliozzi, Adio; Kenny, José M

    2013-10-29

    In this study, different nanofluids with phase change behavior were developed by mixing a molten salt base fluid (selected as phase change material) with nanoparticles using the direct-synthesis method. The thermal properties of the nanofluids obtained were investigated. These nanofluids can be used in concentrating solar plants with a reduction of storage material if an improvement in the specific heat is achieved. The base salt mixture was a NaNO3-KNO3 (60:40 ratio) binary salt. The nanoparticles used were silica (SiO2), alumina (Al2O3), titania (TiO2), and a mix of silica-alumina (SiO2-Al2O3). Three weight fractions were evaluated: 0.5, 1.0, and 1.5 wt.%. Each nanofluid was prepared in water solution, sonicated, and evaporated. Measurements on thermophysical properties were performed by differential scanning calorimetry analysis and the dispersion of the nanoparticles was analyzed by scanning electron microscopy (SEM). The results obtained show that the addition of 1.0 wt.% of nanoparticles to the base salt increases the specific heat of 15% to 57% in the solid phase and of 1% to 22% in the liquid phase. In particular, this research shows that the addition of silica-alumina nanoparticles has a significant potential for enhancing the thermal storage characteristics of the NaNO3-KNO3 binary salt. These results deviated from the predictions of the theoretical model used. SEM suggests a greater interaction between these nanoparticles and the salt.

  10. Offshore Storage Resource Assessment - FINAL SCIENTIFIC/TECHNICAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Savage, Bill [NITEC LLC; Ozgen, Chet [NITEC LLC

    2017-12-13

    simulator was fast and easy to utilize and provided a valuable enhanced assessment and refinement of the estimated CO2 storage volume for each reservoir simulated. The user interface was expanded to allow for calculation of a probability based assessment of the CO2 storage volume based on typical uncertainties in operating conditions and reservoir properties during the CO2 injection period. This modeling of the CO2 storage estimates for the simulated reservoirs resulted in definition of correlations applicable to all reservoir types (a refined DOE equation) which can be used for predictive purposes using available public data. Application of the correlations to the 675 depleted fields yielded a total CO2 storage capacity of 4,748 MM tons. The CO2 storage assessments were supplemented with simulation modeling of eleven (11) oil reservoirs that quantified the change in the stored CO2 storage volume with the addition of CO2-EOR (Enhanced Oil Recovery) production. Application of CO2-EOR to oil reservoirs resulted in higher volumes of CO2 storage.

  11. No Clear Association between Impaired Short-Term or Working Memory Storage and Time Reproduction Capacity in Adult ADHD Patients.

    Science.gov (United States)

    Mette, Christian; Grabemann, Marco; Zimmermann, Marco; Strunz, Laura; Scherbaum, Norbert; Wiltfang, Jens; Kis, Bernhard

    2015-01-01

    Altered time reproduction is exhibited by patients with adult attention deficit hyperactivity disorder (ADHD). It remains unclear whether memory capacity influences the ability of adults with ADHD to reproduce time intervals. We conducted a behavioral study on 30 ADHD patients who were medicated with methylphenidate, 29 unmedicated adult ADHD patients and 32 healthy controls (HCs). We assessed time reproduction using six time intervals (1 s, 4 s, 6 s, 10 s, 24 s and 60 s) and assessed memory performance using the Wechsler memory scale. The patients with ADHD exhibited lower memory performance scores than the HCs. No significant differences in the raw scores for any of the time intervals (p > .05), with the exception of the variability at the short time intervals (1 s, 4 s and 6 s) (p memory performance (p > .05). We detected no findings indicating that working memory might influence time reproduction in adult patients with ADHD. Therefore, further studies concerning time reproduction and memory capacity among adult patients with ADHD must be performed to verify and replicate the present findings.

  12. No Clear Association between Impaired Short-Term or Working Memory Storage and Time Reproduction Capacity in Adult ADHD Patients.

    Directory of Open Access Journals (Sweden)

    Christian Mette

    Full Text Available Altered time reproduction is exhibited by patients with adult attention deficit hyperactivity disorder (ADHD. It remains unclear whether memory capacity influences the ability of adults with ADHD to reproduce time intervals.We conducted a behavioral study on 30 ADHD patients who were medicated with methylphenidate, 29 unmedicated adult ADHD patients and 32 healthy controls (HCs. We assessed time reproduction using six time intervals (1 s, 4 s, 6 s, 10 s, 24 s and 60 s and assessed memory performance using the Wechsler memory scale.The patients with ADHD exhibited lower memory performance scores than the HCs. No significant differences in the raw scores for any of the time intervals (p > .05, with the exception of the variability at the short time intervals (1 s, 4 s and 6 s (p .05.We detected no findings indicating that working memory might influence time reproduction in adult patients with ADHD. Therefore, further studies concerning time reproduction and memory capacity among adult patients with ADHD must be performed to verify and replicate the present findings.

  13. Numerical investigation of CO2 storage in hydrocarbon field using a geomechanical-fluid coupling model

    Directory of Open Access Journals (Sweden)

    Guang Li

    2016-09-01

    Full Text Available Increasing pore pressure due to CO2 injection can lead to stress and strain changes of the reservoir. One of the safely standards for long term CO2 storage is whether stress and strain changes caused by CO2 injection will lead to irreversible mechanical damages of the reservoir and impact the integrity of caprock which could lead to CO2 leakage through previously sealing structures. Leakage from storage will compromise both the storage capacity and the perceived security of the project, therefore, a successful CO2 storage project requires large volumes of CO2 to be injected into storage site in a reliable and secure manner. Yougou hydrocarbon field located in Orods basin was chosen as storage site based on it's stable geological structure and low leakage risks. In this paper, we present a fluid pressure and stress-strain variations analysis for CO2 geological storage based on a geomechanical-fluid coupling model. Using nonlinear elasticity theory to describe the geomechanical part of the model, while using the Darcy's law to describe the fluid flow. Two parts are coupled together using the poroelasticity theory. The objectives of our work were: 1 evaluation of the geomechanical response of the reservoir to different CO2 injection scenarios. 2 assessment of the potential leakage risk of the reservoir caused by CO2 injection.

  14. Remaining gaps for "safe" CO2 storage: the INGV CO2GAPS vision of "learning by doing" monitoring geogas leakage, reservoirs contamination/mixing and induced/triggered seismicity

    Science.gov (United States)

    Quattrocchi, F.; Vinciguerra, S.; Chiarabba, C.; Boschi, E.; Anselmi, M.; Burrato, P.; Buttinelli, M.; Cantucci, B.; Cinti, D.; Galli, G.; Improta, L.; Nazzari, M.; Pischiutta, M.; Pizzino, L.; Procesi, M.; Rovelli, A.; Sciarra, A.; Voltattorni, N.

    2012-12-01

    The CO2GAPS project proposed by INGV is intended to build up an European Proposal for a new kind of research strategy in the field of the geogas storage. Aim of the project would be to fill such key GAPS concerning the main risks associated to CO2 storage and their implications on the entire Carbon Capture and Storage (CCS) process, which are: i) the geogas leakage both in soils and shallow aquifers, up to indoor seepage; ii) the reservoirs contamination/mixing by hydrocarbons and heavy metals; iii) induced or triggered seismicity and microseismicity, especially for seismogenic blind faults. In order to consider such risks and make the CCS public acceptance easier, a new kind of research approach should be performed by: i) a better multi-disciplinary and "site specific" risk assessment; ii) the development of more reliable multi-disciplinary monitoring protocols. In this view robust pre-injection base-lines (seismicity and degassing) as well as identification and discrimination criteria for potential anomalies are mandatory. CO2 injection dynamic modelling presently not consider reservoirs geomechanical properties during reactive mass-transport large scale simulations. Complex simulations of the contemporaneous physic-chemical processes involving CO2-rich plumes which move, react and help to crack the reservoir rocks are not totally performed. These activities should not be accomplished only by the oil-gas/electric companies, since the experienced know-how should be shared among the CCS industrial operators and research institutions, with the governments support and overview, also flanked by a transparent and "peer reviewed" scientific popularization process. In this context, a preliminary and reliable 3D modelling of the entire "storage complex" as defined by the European Directive 31/2009 is strictly necessary, taking into account the above mentioned geological, geochemical and geophysical risks. New scientific results could also highlighting such opportunities

  15. Facile and rapid synthesis of RGO-In2S3 composites with enhanced cyclability and high capacity for lithium storage.

    Science.gov (United States)

    Ye, Fangmin; Du, Gaohui; Jiang, Zhoufeng; Zhong, Yijun; Wang, Xiaodong; Cao, Qingping; Jiang, J Z

    2012-12-07

    A sheet-on-sheet reduced graphene oxide-β-In(2)S(3) (RGO-In(2)S(3)) composite, was successfully synthesized via a one-step mild method. This fresh composite used as an anode material exhibits enhanced cyclability and specific capacity for lithium storage. These results are linked with the intrinsic layered structure of β-In(2)S(3) sheets and the effective combination of β-In(2)S(3) and RGO sheets. This results in a high specific surface area and good conductivity of RGO-In(2)S(3) composites, with higher transport rates of electrolyte ions and electrons, and a more effective electrochemical reaction of the active material. This facile and rapid synthesis method is a promising route for a large-scale production of graphene-based metal sulfides, which could be used as electrode materials for Li-ion batteries.

  16. Indirect test method does not provide reliable data. Rated thermal capacity of storage furnaces; Indirekte Pruefmethode fuehrt nicht zu sicheren Kennwerten. Nennwaermeleistung von Speicherfeuerstaetten

    Energy Technology Data Exchange (ETDEWEB)

    Sprung, J.; Koenig, N. [Fraunhofer-Institut fuer Bauphysik, Stuttgart (Germany)

    2002-11-01

    Decentralised furnaces fuelled with biogenic fuels are important in building construction today as the heat demand of modern buildings has decreased. Efficient projecting and operation requires reliable data on the achievable thermal capacity. The contribution shows that tests according to current specifications will not provide reliable data, especially when furnaces with heat storage options are concerned. [German] Dezentrale, mit biogenen Brennstoffen betriebene Feuerstaetten gewinnen aufgrund des niedrigen Waermebedarfs im modernen Wohnungsbau Bedeutung. Um diese Art von Feuerstaetten effektiv planen und betreiben zu koennen, sind verlaessliche Angaben zur realisierbaren Waermeleistung erforderlich. Im folgenden wird herausgestellt, dass die bisher fuer mit Festbrennstoffen betriebenen Einzelfeuerstaetten angewandte und in den einschlaegigen Normen enthaltene Pruefmethode der indirekten Bestimmung der Waermeleistung insbesondere fuer Feuerstaetten mit waermespeichernden Eigenschaften nicht verwendbar ist. (orig.)

  17. Analysis of output power and capacity reduction in electrical storage facilities by peak shift control of PV system with bifacial modules

    International Nuclear Information System (INIS)

    Obara, Shin’ya; Konno, Daisuke; Utsugi, Yuta; Morel, Jorge

    2014-01-01

    Highlights: • Characteristics of a large-scale power plant using bifacial solar cell is described. • Conversion efficiency of bifacial photovoltaics obtained using 3D-CAD modeling. • Power supply of bifacial PV can be matched with demand by adjusting the orientation. - Abstract: Bifacial photovoltaics are widely investigated with the aim of reducing the amount of silicon used and increasing conversion efficiencies. The output power of bifacial photovoltaics depends on the quantity of solar radiation incident on the reverse face. Furthermore, controlling the orientation can distribute the times of peak power output in the morning and afternoon to better match the demand. In this study, the demand patterns of individual houses or the whole Hokkaido region were analyzed assuming the substitution of a conventional large-scale electric power system with one using bifacial photovoltaics. The supply–demand balances and electrical storage capacities were investigated. When comparing a large scale solar power plant (mega-solar power plant) using monofacial photovoltaics or vertical bifacial photovoltaics (in which the orientation could be adjusted), the supply–demand could be better balanced for individual houses in the latter case, thereby allowing the storage capacity to be reduced. A bifacial solar module was modeled by 3D-CAD (three dimensional computer aided design) and thermal fluid analysis. The module temperature distribution of bifacial photovoltaics was calculated with respect to the environmental conditions (wind flow, direct and diffuse solar radiation, etc.) and internal heat generation, as well as the orientation of the solar panels. Furthermore, the output power of bifacial photovoltaics can be easily obtained from the analysis result of modular temperature distribution and the relation between temperature and output power

  18. Effect of dilution in sperm maturation media and time of storage on sperm motility and fertilizing capacity of cryopreserved semen of sex-reversed female rainbow trout.