WorldWideScience

Sample records for reservoir pressure response

  1. Pressurization Risk Assessment of CO2 Reservoirs Utilizing Design of Experiments and Response Surface Methods

    Science.gov (United States)

    Guyant, E.; Han, W. S.; Kim, K. Y.; Park, E.; Han, K.

    2015-12-01

    Monitoring of pressure buildup can provide explicit information on reservoir integrity and is an appealing tool, however pressure variation is dependent on a variety of factors causing high uncertainty in pressure predictions. This work evaluated pressurization of a reservoir system in the presence of leakage pathways as well as exploring the effects of compartmentalization of the reservoir utilizing design of experiments (Definitive Screening, Box Behnken, Central Composite, and Latin Hypercube designs) and response surface methods. Two models were developed, 1) an idealized injection scenario in order to evaluate the performance of multiple designs, and 2) a complex injection scenario implementing the best performing design to investigate pressurization of the reservoir system. A holistic evaluation of scenario 1, determined that the Central Composite design would be used for the complex injection scenario. The complex scenario evaluated 5 risk factors: reservoir, seal, leakage pathway and fault permeabilities, and horizontal position of the pathway. A total of 60 response surface models (RSM) were developed for the complex scenario with an average R2 of 0.95 and a NRMSE of 0.067. Sensitivity to the input factors was dynamic through space and time; at the earliest time (0.05 years) the reservoir permeability was dominant, and for later times (>0.5 years) the fault permeability became dominant for all locations. The RSM's were then used to conduct a Monte Carlo Analysis to further analyze pressurization risks, identifying the P10, P50, P90 values. This identified the in zone (lower) P90 values as 2.16, 1.77, and 1.53 MPa and above zone values of 1.35, 1.23, 1.09 MPa for monitoring locations 1, 2, and 3, respectively. In summary, the design of experiments and response surface methods allowed for an efficient sensitivity and uncertainty analysis to be conducted permitting a complete evaluation of the pressurization across the entire parameter space.

  2. Reservoir response to thermal and high-pressure well stimulation efforts at Raft River, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bradford, Jacob [Energy & Geoscience Institute at the Univ. of Utah, Salt Lake City, UT (United States); Moore, Joseph [Energy & Geoscience Institute at the Univ. of Utah, Salt Lake City, UT (United States); Podgorney, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    An injection stimulation test begun at the Raft River geothermal reservoir in June, 2013 has produced a wealth of data describing well and reservoir response via high-resolution temperature logging and distributed temperature sensing, seismic monitoring, periodic borehole televiewer logging, periodic stepped flow rate tests and tracer injections before and after stimulation efforts. One of the primary measures of response to the stimulation is the relationship between fluid pressure and flow rate, short-term during forced flow rate changes and the long-term change in injectivity. In this paper we examine that hydraulic response using standard pumping test analysis methods, largely because pressure response to the stimulation was not detected, or measurable, in other wells. Analysis of stepped rate flow tests supports the inference from other data that a large fracture, with a radial extent of one to several meters, intersects the well in the target reservoir, suggests that the flow regime is radial to a distance of only several meters and demonstrates that the pressure build-up cone reaches an effective constant head at that distance. The well’s longer term hydraulic response demonstrated continually increasing injectivity but at a dramatically faster rate later from ~2 years out and continuing to the present. The net change in injectivity is significantly greater than observed in other longterm injectivity monitoring studies, with an approximately 150–fold increase occurring over ~2.5 years. While gradually increasing injectivity is a likely consequence of slow migration of a cooling front, and consequent dilation of fractures, the steady, ongoing, rate of increase is contrary to what would be expected in a radial or linear flow regime, where the cooling front would slow with time. As a result, occasional step-like changes in injectivity, immediately following high-flow rate tests suggest that hydro shearing during high-pressure testing altered the near

  3. Environmental response nanosilica for reducing the pressure of water injection in ultra-low permeability reservoirs

    Science.gov (United States)

    Liu, Peisong; Niu, Liyong; Li, Xiaohong; Zhang, Zhijun

    2017-12-01

    The super-hydrophobic silica nanoparticles are applied to alter the wettability of rock surface from water-wet to oil-wet. The aim of this is to reduce injection pressure so as to enhance water injection efficiency in low permeability reservoirs. Therefore, a new type of environmentally responsive nanosilica (denote as ERS) is modified with organic compound containing hydrophobic groups and "pinning" groups by covalent bond and then covered with a layer of hydrophilic organic compound by chemical adsorption to achieve excellent water dispersibility. Resultant ERS is homogeneously dispersed in water with a size of about 4-8 nm like a micro-emulsion system and can be easily injected into the macro or nano channels of ultra-low permeability reservoirs. The hydrophobic nanosilica core can be released from the aqueous delivery system owing to its strong dependence on the environmental variation from normal condition to injection wells (such as pH and salinity). Then the exposed silica nanoparticles form a thin layer on the surface of narrow pore throat, leading to the wettability from water-wet to oil-wet. More importantly, the two rock cores with different permeability were surface treated with ERS dispersion with a concentration of 2 g/L, exhibit great reduce of water injection pressure by 57.4 and 39.6%, respectively, which shows great potential for exploitation of crude oil from ultra-low permeability reservoirs during water flooding. [Figure not available: see fulltext.

  4. A Mathematical Model for the Analysis of the Pressure Transient Response of Fluid Flow in Fractal Reservoir

    Directory of Open Access Journals (Sweden)

    Jin-Zhou Zhao

    2015-01-01

    Full Text Available This study uses similar construction method of solution (SCMS to solve mathematical models of fluid spherical flow in a fractal reservoir which can avoid the complicated mathematical deduction. The models are presented in three kinds of outer boundary conditions (infinite, constant pressure, and closed. The influence of wellbore storage effect, skin factor, and variable flow rate production is also involved in the inner boundary conditions. The analytical solutions are constructed in the Laplace space and presented in a pattern with one continued fraction—the similar structure of solution. The pattern can bring convenience to well test analysis programming. The mathematical beauty of fractal is that the infinite complexity is formed with relatively simple equations. So the relation of reservoir parameters (wellbore storage effect, the skin factor, fractal dimension, and conductivity index, the formation pressure, and the wellbore pressure can be learnt easily. Type curves of the wellbore pressure and pressure derivative are plotted and analyzed in real domain using the Stehfest numerical invention algorithm. The SCMS and type curves can interpret intuitively transient pressure response of fractal spherical flow reservoir. The results obtained in this study have both theoretical and practical significance in evaluating fluid flow in such a fractal reservoir and embody the convenience of the SCMS.

  5. Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure.

    Science.gov (United States)

    Ravazzoli, C L; Santos, J E; Carcione, J M

    2003-04-01

    We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.

  6. Pressure Transient Analysis of Dual Fractal Reservoir

    Directory of Open Access Journals (Sweden)

    Xiao-Hua Tan

    2013-01-01

    Full Text Available A dual fractal reservoir transient flow model was created by embedding a fracture system simulated by a tree-shaped fractal network into a matrix system simulated by fractal porous media. The dimensionless bottom hole pressure model was created using the Laplace transform and Stehfest numerical inversion methods. According to the model's solution, the bilogarithmic type curves of the dual fractal reservoirs are illustrated, and the influence of different fractal factors on pressure transient responses is discussed. This semianalytical model provides a practical and reliable method for empirical applications.

  7. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    Science.gov (United States)

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.

  8. Reservoir pressure evolution model during exploration drilling

    Directory of Open Access Journals (Sweden)

    Korotaev B. A.

    2017-03-01

    Full Text Available Based on the analysis of laboratory studies and literature data the method for estimating reservoir pressure in exploratory drilling has been proposed, it allows identify zones of abnormal reservoir pressure in the presence of seismic data on reservoir location depths. This method of assessment is based on developed at the end of the XX century methods using d- and σ-exponentials taking into account the mechanical drilling speed, rotor speed, bit load and its diameter, lithological constant and degree of rocks' compaction, mud density and "regional density". It is known that in exploratory drilling pulsation of pressure at the wellhead is observed. Such pulsation is a consequence of transferring reservoir pressure through clay. In the paper the mechanism for transferring pressure to the bottomhole as well as the behaviour of the clay layer during transmission of excess pressure has been described. A laboratory installation has been built, it has been used for modelling pressure propagation to the bottomhole of the well through a layer of clay. The bulge of the clay layer is established for 215.9 mm bottomhole diameter. Functional correlation of pressure propagation through the layer of clay has been determined and a reaction of the top clay layer has been shown to have bulge with a height of 25 mm. A pressure distribution scheme (balance has been developed, which takes into account the distance from layers with abnormal pressure to the bottomhole. A balance equation for reservoir pressure evaluation has been derived including well depth, distance from bottomhole to the top of the formation with abnormal pressure and density of clay.

  9. Analysis of pressure variation of fluid in bounded circular reservoirs ...

    African Journals Online (AJOL)

    The result obtained at the wellbore was compared with the results obtained by Van Everdigen and Hurst. It was shown that there was a strong positive correlation between the results. The result obtained from the analysis also shows the pressure variation outside wellbore of the same reservoir. It is important to note that ...

  10. The impact of hydraulic flow unit & reservoir quality index on pressure profile and productivity index in multi-segments reservoirs

    Directory of Open Access Journals (Sweden)

    Salam Al-Rbeawi

    2017-12-01

    Full Text Available The objective of this paper is studying the impact of the hydraulic flow unit and reservoir quality index (RQI on pressure profile and productivity index of horizontal wells acting in finite reservoirs. Several mathematical models have been developed to investigate this impact. These models have been built based on the pressure distribution in porous media, depleted by a horizontal well, consist of multi hydraulic flow units and different reservoir quality index. The porous media are assumed to be finite rectangular reservoirs having different configurations and the wellbores may have different lengths. Several analytical models describing flow regimes have been derived wherein hydraulic flow units and reservoir quality index have been included in addition to rock and fluid properties. The impact of these two parameters on reservoir performance has also been studied using steady state productivity index.It has been found that both pressure responses and flow regimes are highly affected by the existence of multiple hydraulic flow units in the porous media and the change in reservoir quality index for these units. Positive change in the RQI could lead to positive change in both pressure drop required for reservoir fluids to move towards the wellbore and hence the productivity index.

  11. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    S-characterization combinations and 260 reservoir fluids. PC-SAFT with the new general characterization method is shown to give the lowest AAD% and maximum deviation in calculation of saturation pressure, density and STO density, among all the tested characterization methods for PC-SAFT. Application of the new characterization...... be highly rewarding if successfully produced. This PhD project is part of the NextOil (New Extreme Oil and Gas in the Danish North Sea) project which is intended to reduce the uncertainties in HPHT field development. The main focus of this PhD is on accurate description of the reservoir fluid behavior under...... HPHT conditions to minimize the production risks from these types of reservoirs. In particular, the study has thoroughly evaluated several non-cubic Equations of State (EoSs) which are considered promising for HPHT fluid modeling, showing their advantages and short comings based on an extensive...

  12. pressure distribution in a layered reservoir with gas-cap and bottom

    African Journals Online (AJOL)

    2012-07-02

    Jul 2, 2012 ... pressure derivatives, interlayer cross flow, heterogeneity, reservoir characterization, pressure distribution, dimensionless pressure. 1. Introduction. Oil production from a layered reservoir with a top gas cap and bottom water acting simultaneously poses serious challenges of rate and pressure monitoring.

  13. Characterizing hydraulic fractures in shale gas reservoirs using transient pressure tests

    Directory of Open Access Journals (Sweden)

    Cong Wang

    2015-06-01

    This work presents an unconventional gas reservoir simulator and its application to quantify hydraulic fractures in shale gas reservoirs using transient pressure data. The numerical model incorporates most known physical processes for gas production from unconventional reservoirs, including two-phase flow of liquid and gas, Klinkenberg effect, non-Darcy flow, and nonlinear adsorption. In addition, the model is able to handle various types and scales of fractures or heterogeneity using continuum, discrete or hybrid modeling approaches under different well production conditions of varying rate or pressure. Our modeling studies indicate that the most sensitive parameter of hydraulic fractures to early transient gas flow through extremely low permeability rock is actually the fracture-matrix contacting area, generated by fracturing stimulation. Based on this observation, it is possible to use transient pressure testing data to estimate the area of fractures generated from fracturing operations. We will conduct a series of modeling studies and present a methodology using typical transient pressure responses, simulated by the numerical model, to estimate fracture areas created or to quantity hydraulic fractures with traditional well testing technology. The type curves of pressure transients from this study can be used to quantify hydraulic fractures in field application.

  14. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum

  15. Cross-fault pressure depletion, Zechstein carbonate reservoir, Weser-Ems area, Northern German Gas Basin

    Energy Technology Data Exchange (ETDEWEB)

    Corona, F.V.; Brauckmann, F.; Beckmann, H.; Gobi, A.; Grassmann, S.; Neble, J.; Roettgen, K. [ExxonMobil Production Deutschland GmbH (EMPG), Hannover (Germany)

    2013-08-01

    A cross-fault pressure depletion study in Upper Permian Zechstein Ca2 carbonate reservoir was undertaken in the Weser-Ems area of the Northern German Gas Basin. The primary objectives are to develop a practical workflow to define cross-fault pressures scenarios for Zechstein Ca2 reservoir drillwells, to determine the key factors of cross-fault pressure behavior in this platform carbonate reservoir, and to translate the observed cross-fault pressure depletion to fault transmissibility for reservoir simulation models. Analysis of Zechstein Ca2 cross-fault pressures indicates that most Zechstein-cutting faults appear to act as fluid-flow baffles with some local occurrences of fault seal. Moreover, there appears to be distinct cross-fault baffling or pressure depletion trends that may be related to the extent of the separating fault or fault system, degree of reservoir flow-path tortuosity, and quality of reservoir juxtaposition. Based on the above observations, a three-part workflow was developed consisting of (1) careful interpretation and mapping of faults and fault networks, (2) analysis of reservoir juxtaposition and reservoir juxtaposition quality, and (3) application of the observed cross-fault pressure depletion trends. This approach is field-analog based, is practical, and is being used currently to provide reliable and supportable pressure prediction scenarios for subsequent Zechstein fault-bounded drill-well opportunities.

  16. Laboratory evaluation of the limitations of positive pressure safety valves on hard-shell venous reservoirs.

    Science.gov (United States)

    Almany, Daniel K; Sistino, Joseph J

    2002-06-01

    Vacuum-assisted venous drainage (VAVD) is a technique used to increase venous return during cardiopulmonary bypass (CPB). However, VAVD has created some new safety concerns. One potential problem is the pressurization of the venous reservoir in the event of vacuum failure. To prevent this overpressurization, a positive pressure release valve (PPRV) is placed on the venous reservoir. The purpose of this study was to determine if there is a difference in the pressurization of venous reservoirs using various PPRVs. The method of this study included evaluation of four different venous reservoirs and their associated PPRVs. Each reservoir was completely sealed, and two roller pumps with 1/4-in tubing were connected to the reservoir suction inlet. The roller pumps were calibrated, and a disposable pressure transducer was used to measure pressure at the venous inlet. Each reservoir was first sealed and then pressurized to test the occlusion of the roller heads. The PPRVs were tested by measuring the venous inlet pressure at a range of suction flow rates from 0-5 L/min. Linear regression analysis was performed to predict the venous inlet pressure from the rate of suction flow for each PPRV. The PPRV in the Baxter, Gish, and Gambro reservoirs maintained a low reservoir pressure (40 mmHg) even at low flow rates (1-2 L/min). It is recommended that any reservoir used for VAVD be evaluated in a similar manner to determine whether it is safe under the maximal suction and vent flow conditions possible during clinical practice.

  17. The meshless Galerkin method for pressure distribution simulation of horizontal well reservoir

    Directory of Open Access Journals (Sweden)

    Shuyong Hu

    2015-06-01

    Full Text Available This paper provides a novel three-dimensional meshless Galerkin for horizontal well reservoir simulation. The pressure function is approached by moving least-square method which consists of weight function, basic function and coefficient. Based on Galerkin principle and use penalty function method, the paper deduces the meshless Galerkin numerical linear equations. Cut off the pressure distribution of the horizontal section from the simulation database of horizontal well reservoir. It demonstrates that meshless Galerkin is a feasible numerical method for the horizontal well reservoir simulation. It is useful to research complex reservoir.

  18. Effects of gas types and models on optimized gas fuelling station reservoir's pressure

    Directory of Open Access Journals (Sweden)

    M. Farzaneh-Gord

    2013-06-01

    Full Text Available There are similar algorithms and infrastructure for storing gas fuels at CNG (Compressed Natural Gas and CHG (Compressed Hydrogen Gas fuelling stations. In these stations, the fuels are usually stored in the cascade storage system to utilize the stations more efficiently. The cascade storage system generally divides into three reservoirs, commonly termed low, medium and high-pressure reservoirs. The pressures within these reservoirs have huge effects on performance of the stations. In the current study, based on the laws of thermodynamics, conservation of mass and real/ideal gas assumptions, a theoretical analysis has been constructed to study the effects of gas types and models on performance of the stations. It is intended to determine the optimized reservoir pressures for these stations. The results reveal that the optimized pressure differs between the gas types. For ideal and real gas models in both stations (CNG and CHG, the optimized non-dimensional low pressure-reservoir pressure is found to be 0.22. The optimized non-dimensional medium-pressure reservoir pressure is the same for the stations, and equal to 0.58.

  19. Analysis of pressure variation of fluid in bounded circular reservoirs ...

    African Journals Online (AJOL)

    The result obtained at the wellbore was compared with the results obtained by Van Everdigen and Hurst. It was shown that there was a strong positive correlation between the results. Keywords: Bounded circular reservoir, constant terminal rate, dimensionless variables, diffusivity equation, and Crank-Nicholson scheme.

  20. pressure analysis and fluid contact prediction for alpha reservoir

    African Journals Online (AJOL)

    HOD

    1, 3, CENTER OF EXCELLENCE IN INTEGRATED PETROLEUM EXPLORATION AND EVALUATION STUDIES (IPEES),UNIVERSITY. OF BENIN, BENIN ... economic value of the asset. Early oil rim development can be negatively impacted by water coning and/or early gas breakthrough.[1].Oil rim reservoirs are common in.

  1. Response time verification of in situ hydraulic pressure sensors in a nuclear reactor

    International Nuclear Information System (INIS)

    Foster, C.G.

    1978-01-01

    A method and apparatus for verifying response time in situ of hydraulic pressure and pressure differential sensing instrumentation in a nuclear circuit is disclosed. Hydraulic pressure at a reference sensor and at an in situ process sensor under test is varied according to a linear ramp. Sensor response time is then determined by comparison of the sensor electrical analog output signals. The process sensor is subjected to a relatively slowly changing and a relatively rapidly changing hydraulic pressure ramp signal to determine an upper bound for process sensor response time over the range of all pressure transients to which the sensor is required to respond. Signal linearity is independent of the volumetric displacement of the process sensor. The hydraulic signal generator includes a first pressurizable gas reservoir, a second pressurizable liquid and gas reservoir, a gate for rapidly opening a gas communication path between the two reservoirs, a throttle valve for regulating rate of gas pressure equalization between the two reservoirs, and hydraulic conduit means for simultaneously communicating a ramp of hydraulic pressure change between the liquid/gas reservoir and both a reference and a process sensor. By maintaining a sufficient pressure differential between the reservoirs and by maintaining a sufficient ratio of gas to liquid in the liquid/gas reservoir, excellent linearity and minimal transient effects can be achieved for all pressure ranges, magnitudes, and rates of change of interest

  2. Study on Transfer Rules of Coal Reservoir Pressure Drop Based on Coalbed Methane Well Drainage Experiments

    Science.gov (United States)

    Yuhang, X.

    2017-12-01

    A pumping test was carried out to explore the transfer rules of pressure drop in coal reservoir during the drainage. The experiment was divided into three stages. In the first stage, the pump displacement of 3m3/h was used to reduce the bottom hole flowing pressure and stopped until the continuous gas phase was produced; Undertaking the first stage, in the second stage, when the gas phase was continuously produced, the pump was stopped immediately. As the bottom hole flowing pressure going up without gas phase, pumping started again for a week. In the third stage ,the well pumping was carried out at the bottom hole pressure drop rate of 30Kpa/d after two months' recovery. Combined with the data of regional geology and fractured well, taking the characteristics of macroscopic coal rocks, development of pore and fracture in coal and isothermal adsorption test as the background, the features of reservoir output in each stage of the experiment were analyzed and compared, and then the transfer rules of pressure drop contained in the differences of the output was studied further. In the first and third stage of the experiment, the output of liquid phase was much larger than the space volume of coal reservoir pore and fracture in the range of 100m2. In the second stage, the output of the continuous gas phase appeared around 0.7Mpa when the continuous gas phase appears below the critical desorption pressure of 0.25Mpa during the whole experiment. The results indicate that, the transfer of pressure drop in the coal reservoir of this well is mainly horizontal, and the liquid phase produced in the reservoir mainly comes from the recharge of the reservoir at the far end of the relative high pressure area; the adsorption space of coalbed methane in the coal matrix as well as the main migration channel of fluid in the reservoir doesn't belong to the same pressure system and there exists the communication barrier between them. In addition, the increasing of the effective stress

  3. CO2 dissolution and its impact on reservoir pressure behavior

    NARCIS (Netherlands)

    Peters, E.; Egberts, P.J.P.; Loeve, D.; Hofstee, C.

    2015-01-01

    Geological storage of CO2 in large, saline aquifers needs to be monitored for safety purposes. In particular the observation of the pressure behavior of a storage site is relevant for the indication of CO2 leakage. However, interpretation of observed pressure is not straightforward in these systems,

  4. Construction of a carbonate reservoir model using pressure transient data : field case study

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, S. [Petro-Iran, (Iran, Islamic Republic of); Ghanizadeh, M. [Tehran Energy, (Iran, Islamic Republic of); Haghighi, M. [Tehran Univ., (Iran, Islamic Republic of)

    2004-07-01

    Pressure transient data was integrated with other reservoir information to create a geological model of a carbonate reservoir in the Salaman offshore field in Iran. The model was created using seismic and well log data as well as the interpretation of 99 well tests performed in this field. Several features such as sealing faults, aquifer, fracturing and layering systems were observed. Two faults were identified in the northern part of the reservoir. The distance between the major fault and well number 27 was less than predicted from seismic data. An active aquifer and minor fault were also identified near well number 6. A fracture system was identified around well number 22. Most well tests showed communication between different layers of the reservoirs, suggesting interconnected layers in terms of geology. All calculated permeabilities from the well tests were found to be significantly higher than those from core analysis, suggesting that discrete fractures exist throughout the reservoir. The northern region of the reservoir has the highest permeability values and the lowest values are observed in the central part of the reservoir. 18 refs., 6 figs.

  5. Effects of both wellbore and reservoir properties on pressure and ...

    African Journals Online (AJOL)

    The task of clean oil production from a horizontal well under complete external fluid drive is a huge challenge to the operator who intends to exclude unwanted fluid production. In order to determine guidelines for drilling or modifying a horizontal well to achieve economic production therefore, dimensionless pressures and ...

  6. 49 CFR 236.554 - Rate of pressure reduction; equalizing reservoir or brake pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Rate of pressure reduction; equalizing reservoir or brake pipe. 236.554 Section 236.554 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS...

  7. Phase Envelope Calculations for Reservoir Fluids in the Presence of Capillary Pressure

    DEFF Research Database (Denmark)

    Lemus, Diego; Yan, Wei; Michelsen, Michael L.

    2015-01-01

    Reservoir fluids are multicomponent mixtures in confined spaces, where the role of capillary force becomes important when the average pore size is on the order of tens of nanometers, such as in tight rocks and shale. We present an algorithm for calculating the phase envelope of multicomponent...... the bubble and dew point curves but also other quality lines with vapor fractions between 0 and 1. The algorithm has been used to calculate the phase envelopes of binary, multicomponent and reservoir fluid systems for pore radius from 10 to 50 nm. The presence of capillary pressure changes the saturation...

  8. The pressure equation arising in reservoir simulation. Mathematical properties, numerical methods and upscaling

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Bjoern Fredrik

    1997-12-31

    The main purpose of this thesis has been to analyse self-adjoint second order elliptic partial differential equations arising in reservoir simulation. It studies several mathematical and numerical problems for the pressure equation arising in models of fluid flow in porous media. The theoretical results obtained have been illustrated by a series of numerical experiments. The influence of large variations in the mobility tensor upon the solution of the pressure equation is analysed. The performance of numerical methods applied to such problems have been studied. A new upscaling technique for one-phase flow in heterogeneous reservoirs is developed. The stability of the solution of the pressure equation with respect to small perturbations of the mobility tensor is studied. The results are used to develop a new numerical method for a model of fully nonlinear water waves. 158 refs, 39 figs., 12 tabs.

  9. Transient pressure analysis of a volume fracturing well in fractured tight oil reservoirs

    Science.gov (United States)

    Lu, Cheng; Wang, Jiahang; Zhang, Cong; Cheng, Minhua; Wang, Xiaodong; Dong, Wenxiu; Zhou, Yingfang

    2017-12-01

    This paper presents a semi-analytical model to simulate transient pressure curves for a vertical well with a reconstructed fracture network in fractured tight oil reservoirs. In the proposed model, the reservoir is a composite system and contains two regions. The inner region is described as a formation with a finite conductivity hydraulic fracture network and the flow in the fracture is assumed to be linear, while the outer region is modeled using the classical Warren–Root model where radial flow is applied. The transient pressure curves of a vertical well in the proposed reservoir model are calculated semi-analytically using the Laplace transform and Stehfest numerical inversion. As shown in the type curves, the flow is divided into several regimes: (a) linear flow in artificial main fractures; (b) coupled boundary flow; (c) early linear flow in a fractured formation; (d) mid radial flow in the semi-fractures of the formation; (e) mid radial flow or pseudo steady flow; (f) mid cross-flow; (g) closed boundary flow. Based on our newly proposed model, the effects of some sensitive parameters, such as elastic storativity ratio, cross-flow coefficient, fracture conductivity and skin factor, on the type curves were also analyzed extensively. The simulated type curves show that for a vertical fractured well in a tight reservoir, the elastic storativity ratios and crossflow coefficients affect the time and the degree of crossflow respectively. The pressure loss increases with an increase in the fracture conductivity. To a certain extent, the effect of the fracture conductivity is more obvious than that of the half length of the fracture on improving the production effect. With an increase in the wellbore storage coefficient, the fluid compressibility is so large that it might cover the early stage fracturing characteristics. Linear or bilinear flow may not be recognized, and the pressure and pressure derivative gradually shift to the right. With an increase in the skin

  10. Understanding creep in sandstone reservoirs - theoretical deformation mechanism maps for pressure solution in granular materials

    Science.gov (United States)

    Hangx, Suzanne; Spiers, Christopher

    2014-05-01

    Subsurface exploitation of the Earth's natural resources removes the natural system from its chemical and physical equilibrium. As such, groundwater extraction and hydrocarbon production from subsurface reservoirs frequently causes surface subsidence and induces (micro)seismicity. These effects are not only a problem in onshore (e.g. Groningen, the Netherlands) and offshore hydrocarbon fields (e.g. Ekofisk, Norway), but also in urban areas with extensive groundwater pumping (e.g. Venice, Italy). It is known that fluid extraction inevitably leads to (poro)elastic compaction of reservoirs, hence subsidence and occasional fault reactivation, and causes significant technical, economic and ecological impact. However, such effects often exceed what is expected from purely elastic reservoir behaviour and may continue long after exploitation has ceased. This is most likely due to time-dependent compaction, or 'creep deformation', of such reservoirs, driven by the reduction in pore fluid pressure compared with the rock overburden. Given the societal and ecological impact of surface subsidence, as well as the current interest in developing geothermal energy and unconventional gas resources in densely populated areas, there is much need for obtaining better quantitative understanding of creep in sediments to improve the predictability of the impact of geo-energy and groundwater production. The key problem in developing a reliable, quantitative description of the creep behaviour of sediments, such as sands and sandstones, is that the operative deformation mechanisms are poorly known and poorly quantified. While grain-scale brittle fracturing plus intergranular sliding play an important role in the early stages of compaction, these time-independent, brittle-frictional processes give way to compaction creep on longer time-scales. Thermally-activated mass transfer processes, like pressure solution, can cause creep via dissolution of material at stressed grain contacts, grain

  11. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard

    Science.gov (United States)

    Patrick, Matthew R.; Anderson, Kyle R.; Poland, Michael P.; Orr, Tim R.; Swanson, Donald A.

    2015-01-01

    Forecasting volcanic activity relies fundamentally on tracking magma pressure through the use of proxies, such as ground surface deformation and earthquake rates. Lava lakes at open-vent basaltic volcanoes provide a window into the uppermost magma system for gauging reservoir pressure changes more directly. At Kīlauea Volcano (Hawaiʻi, USA) the surface height of the summit lava lake in Halemaʻumaʻu Crater fluctuates with surface deformation over short (hours to days) and long (weeks to months) time scales. This correlation implies that the lake behaves as a simple piezometer of the subsurface magma reservoir. Changes in lava level and summit deformation scale with (and shortly precede) changes in eruption rate from Kīlauea's East Rift Zone, indicating that summit lava level can be used for short-term forecasting of rift zone activity and associated hazards at Kīlauea.

  12. Influence of Adsorption and Capillary Pressure on Phase Equilibria Inside Shale Reservoirs

    DEFF Research Database (Denmark)

    Sandoval, Diego R.; Yan, Wei; Michelsen, Michael L.

    2018-01-01

    is moderate in comparison to the that at low pressure and high temperature. The adsorption effects are stronger for the gas bulk phase region, leading to bigger changes in the gas phase composition and the shift of the dew point curve. PVT simulations of two model reservoir fluid systems show significant......Due to the small pore sizes and organic content of shale, capillary pressure and adsorption are two effects that should be taken into account in the study of phase equilibrium inside shale. The inclusion of both effects in the phase equilibrium modeling can shed light on how bulk phase composition...... their interface is taken into account. A flash algorithm by alternately updating the adsorbed phase amount and the fugacities in the bulk phases has been developed. The flash algorithm is used to analyze some representative systems (from binary, ternary to low-GOR and high-GOR model reservoir fluid systems...

  13. Two-phase flow in volatile oil reservoir using two-phase pseudo-pressure well test method

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, M.; Ahmadi, M. [Calgary Univ., AB (Canada)

    2009-09-15

    A study was conducted to better understand the behaviour of volatile oil reservoirs. Retrograde condensation occurs in gas-condensate reservoirs when the flowing bottomhole pressure (BHP) lowers below the dewpoint pressure, thus creating 4 regions in the reservoir with different liquid saturations. Similarly, when the BHP of volatile oil reservoirs falls below the bubblepoint pressure, two phases are created in the region around the wellbore, and a single phase (oil) appears in regions away from the well. In turn, higher gas saturation causes the oil relative permeability to decrease towards the near-wellbore region. Reservoir compositional simulations were used in this study to predict the fluid behaviour below the bubblepoint. The flowing bottomhole pressure was then exported to a well test package to diagnose the occurrence of different mobility regions. The study also investigated the use of a two-phase pseudo-pressure method on volatile and highly volatile oil reservoirs. It was concluded that this method can successfully predict the true permeability and mechanical skin. It can also distinguish between mechanical skin and condensate bank skin. As such, the two-phase pseudo-pressure method is particularly useful for developing after-drilling well treatment and enhanced oil recovery process designs. However, accurate relative permeability and PVT data must be available for reliable interpretation of the well test in volatile oil reservoirs. 18 refs., 3 tabs., 9 figs.

  14. A Mathematical Pressure Transient Analysis Model for Multiple Fractured Horizontal Wells in Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Yan Zeng

    2018-01-01

    Full Text Available Multistage fractured horizontal wells (MFHWs have become the main technology for shale gas exploration. However, the existing models have neglected the percolation mechanism in nanopores of organic matter and failed to consider the differences among the reservoir properties in different areas. On that account, in this study, a modified apparent permeability model was proposed describing gas flow in shale gas reservoirs by integrating bulk gas flow in nanopores and gas desorption from nanopores. The apparent permeability was introduced into the macroseepage model to establish a dynamic pressure analysis model for MFHWs dual-porosity formations. The Laplace transformation and the regular perturbation method were used to obtain an analytical solution. The influences of fracture half-length, fracture permeability, Langmuir volume, matrix radius, matrix permeability, and induced fracture permeability on pressure and production were discussed. Results show that fracture half-length, fracture permeability, and induced fracture permeability exert a significant influence on production. A larger Langmuir volume results in a smaller pressure and pressure derivative. An increase in matrix permeability increases the production rate. Besides, this model fits the actual field data relatively well. It has a reliable theoretical foundation and can preferably describe the dynamic changes of pressure in the exploration process.

  15. Analytical solution of geological carbon sequestration under constant pressure injection into a horizontal radial reservoir

    Science.gov (United States)

    Jhang, R.; Liou, T.

    2013-12-01

    Carbon capture and sequestration (CCS) is believed to be an economically feasible technology to mitigate global warming by capturing carbon dioxide (CO2), the major component of greenhouse gases, from the atmosphere and injecting it into deep geological formations.Several mechanisms can help trap CO2 in the pore space of a geological reservoir, stratigraphic and structural trapping, hydrodynamic trapping, and geochemical trapping.Besides these trapping mechanisms, another important issue that deserves careful attention is the risk of CO2 leakage. The common ';constant injection rate' scenario may induce high pressure buildup that will endanger the mechanical integrity as well as the sealing capability of the cap rock. Instead of injecting CO2 at a constant mass rate, CO2 can be injected into the reservoir by fixing the pressure (usually the bottom-hole pressure) in the injection borehole. By doing so, the inevitable pressure buildup associated with the constant injection scheme can be completely eliminated in the constant pressure injection scheme. In this paper, a semi-analytical solution for CO2 injection with constant pressure was developed. For simplicity, structural and geochemical trapping mechanisms were not considered. Therefore, a horizontal reservoir with infinite radial extent was considered. Prior to injection, the reservoir is fully saturated with the formation brine. It is assumed that CO2 does not mix with brine such that a sharp interface is formed once CO2 invades the brine-saturated pores. Because of the density difference between CO2 and brine, CO2 resides above the interface. Additional assumptions were also made when building up the brine and CO2 mass balance equations: (1) both of the fluids and the geological formations are incompressible, (2) capillary pressure is neglected, (3)there is no fluid flow in the vertical direction, and the horizontal flow satisfies the Darcy's law.In order to solve for the height of brine-CO2 interface, the two

  16. An innovative technique for estimating water saturation from capillary pressure in clastic reservoirs

    Science.gov (United States)

    Adeoti, Lukumon; Ayolabi, Elijah Adebowale; James, Logan

    2017-11-01

    A major drawback of old resistivity tools is the poor vertical resolution and estimation of hydrocarbon when applying water saturation (Sw) from historical resistivity method. In this study, we have provided an alternative method called saturation height function to estimate hydrocarbon in some clastic reservoirs in the Niger Delta. The saturation height function was derived from pseudo capillary pressure curves generated using modern wells with complete log data. Our method was based on the determination of rock type from log derived porosity-permeability relationship, supported by volume of shale for its classification into different zones. Leverette-J functions were derived for each rock type. Our results show good correlation between Sw from resistivity based method and Sw from pseudo capillary pressure curves in wells with modern log data. The resistivity based model overestimates Sw in some wells while Sw from the pseudo capillary pressure curves validates and predicts more accurate Sw. In addition, the result of Sw from pseudo capillary pressure curves replaces that of resistivity based model in a well where the resistivity equipment failed. The plot of hydrocarbon pore volume (HCPV) from J-function against HCPV from Archie shows that wells with high HCPV have high sand qualities and vice versa. This was further used to predict the geometry of stratigraphic units. The model presented here freshly addresses the gap in the estimation of Sw and is applicable to reservoirs of similar rock type in other frontier basins worldwide.

  17. Pressure Transient Analysis and Flux Distribution for Multistage Fractured Horizontal Wells in Triple-Porosity Reservoir Media with Consideration of Stress-Sensitivity Effect

    Directory of Open Access Journals (Sweden)

    Jingjing Guo

    2015-01-01

    Full Text Available Triple-porosity model is usually adopted to describe reservoirs with multiscaled pore spaces, including matrix pores, natural fractures, and vugs. Multiple fractures created by hydraulic fracturing can effectively improve the connectivity between existing natural fractures and thus increase well deliverability. However, little work has been done on pressure transient behavior of multistage fractured horizontal wells in triple-porosity reservoirs. Based on source/sink function method, this paper presents a triple-porosity model to investigate the transient pressure dynamics and flux distribution for multistage fractured horizontal wells in fractured-vuggy reservoirs with consideration of stress-dependent natural fracture permeability. The model is semianalytically solved by discretizing hydraulic fractures and Pedrosa’s transformation, perturbation theory, and integration transformation method. Type curves of transient pressure dynamics are generated, and flux distribution among hydraulic fractures for a fractured horizontal well with constant production rate is also discussed. Parametric study shows that major influential parameters on transient pressure responses are parameters pertinent to reservoir properties, interporosity mass transfer, and hydraulic fractures. Analysis of flux distribution indicates that flux density gradually increases from the horizontal wellbore to fracture tips, and the flux contribution of outermost fractures is higher than that of inner fractures. The model can also be extended to optimize hydraulic fracture parameters.

  18. Fluid Micro-Reservoirs Array Design with Auto-Pressure Regulation for High-Speed 3D Printers

    Directory of Open Access Journals (Sweden)

    Moshe Einat

    2016-11-01

    Full Text Available Three dimensional (3D printing technology is rapidly evolving such that printing speed is now a crucial factor in technological developments and future applications. For printing heads based on the inkjet concept, the number of nozzles on the print head is a limiting factor of printing speed. This paper offers a method to practically increase the number of nozzles unlimitedly, and thus to dramatically ramp up printing speed. Fluid reservoirs are used in inkjet print heads to supply fluid through a manifold to the jetting chambers. The pressure in the reservoir’s outlet is important and influences device performance. Many efforts have been made to regulate pressure inside the fluid reservoirs so as to obtain a constant pressure in the chambers. When the number of nozzles is increased too much, the regulation of uniform pressure among all the nozzles becomes too complicated. In this paper, a different approach is taken. The reservoir is divided into an array of many micro-reservoirs. Each micro-reservoir supports one or a few chambers, and has a unique structure with auto-pressure regulation, where the outlet pressure is independent of the fluid level. The regulation is based on auto-compensation of the gravity force and a capillary force having the same dependence on the fluid level; this feature is obtained by adding a wedge in the reservoir with a unique shape. When the fluid level drops, the gravitational force and the capillary force decrease with it, but at similar rates. Terms for the force balance are derived and, consequently, a constant pressure in the fluid micro-reservoir segment is obtained automatically, with each segment being autonomous. This micro reservoir array is suggested for the enlargement of an inkjet print head and the achievement of high-speed 3D printing.

  19. Analytical Model of Waterflood Sweep Efficiency in Vertical Heterogeneous Reservoirs under Constant Pressure

    Directory of Open Access Journals (Sweden)

    Lisha Zhao

    2016-01-01

    Full Text Available An analytical model has been developed for quantitative evaluation of vertical sweep efficiency based on heterogeneous multilayer reservoirs. By applying the Buckley-Leverett displacement mechanism, a theoretical relationship is deduced to describe dynamic changes of the front of water injection, water saturation of producing well, and swept volume during waterflooding under the condition of constant pressure, which substitutes for the condition of constant rate in the traditional way. Then, this method of calculating sweep efficiency is applied from single layer to multilayers, which can be used to accurately calculate the sweep efficiency of heterogeneous reservoirs and evaluate the degree of waterflooding in multilayer reservoirs. In the case study, the water frontal position, water cut, volumetric sweep efficiency, and oil recovery are compared between commingled injection and zonal injection by applying the derived equations. The results are verified by numerical simulators, respectively. It is shown that zonal injection works better than commingled injection in respect of sweep efficiency and oil recovery and has a longer period of water free production.

  20. Designing cyclic pressure pulsing in naturally fractured reservoirs using an inverse looking recurrent neural network

    Science.gov (United States)

    Artun, E.; Ertekin, T.; Watson, R.; Miller, B.

    2012-01-01

    In this paper, an inverse looking approach is presented to efficiently design cyclic pressure pulsing (huff 'n' puff) with N 2 and CO 2, which is an effective improved oil recovery method in naturally fractured reservoirs. A numerical flow simulation model with compositional, dual-porosity formulation is constructed. The model characteristics are from the Big Andy Field, which is a depleted, naturally fractured oil reservoir in Kentucky. A set of cyclic pulsing design scenarios is created and run using this model. These scenarios and corresponding performance indicators are fed into the recurrent neural network for training. In order to capture the cyclic, time-dependent behavior of the process, recurrent neural networks are used to develop proxy models that can mimic the reservoir simulation model in an inverse looking manner. Two separate inverse looking proxy models for N 2 and CO 2 injections are constructed to predict the corresponding design scenarios, given a set of desired performance characteristics. Predictive capabilities of developed proxy models are evaluated by comparing simulation outputs with neural-network outputs. It is observed that networks are able to accurately predict the design parameters, such as the injection rate and the duration of injection, soaking and production periods.

  1. Assessment of Ilam Reservoir Eutrophication Response in Controlling Water Inflow

    Directory of Open Access Journals (Sweden)

    Fereshteh Nourmohammadi Dehbalaei

    2016-12-01

    Full Text Available In this research, a 2D laterally averaged model of hydrodynamics and water quality, CE-QUAL-W2, was applied to simulate water quality parameters in the Ilam reservoir. The water quality of Ilam reservoir was obtained between mesotrophic and eutrophic based on the measured data including chlorophyll a, total phosphorus and subsurface oxygen saturation. The CE-QUAL-W2 model was calibrated and verified by using the data of the year 2009 and 2010, respectively. Nutrients, chlorophyll a and dissolved oxygen were the water quality constituents simulated by the CE-QUAL-W2 model. The comparison of the simulated water surface elevation with the measurement records indicated that the flow was fully balanced in the numerical model. There was a good agreement between the simulated and measured results of the hydrodynamics and water quality constituents in the calibration and verification periods. Some scenarios have been made base on decreasing in water quantity and nutrient inputs of reservoir inflows. The results have shown that the water quality improvements of the Ilam reservoir will not be achieved by reducing a portion of the reservoir inflow. The retention time of water in reservoir would be changed by decreasing of inflows and it made of the negative effects on the chlorophyll-a concentration by reduction of nutrient inputs and keeping constant of discharge inflow to reservoir, the concentration of total phosphorus would be significantly changed and also the concentration of chlorophyll-a was constant approximately. Thus, the effects of control in nutrient inputs are much more than control in discharge inflows in the Ilam reservoir.

  2. Bursting Events in Pressure Flushing with Expanding Bottom Outlet Channel within Dam Reservoir

    Directory of Open Access Journals (Sweden)

    soheila Tofighi

    2017-01-01

    Full Text Available Introduction: Currently, large dams in the world, due to the high amount of sediments in the reservoir, especially around the intake, have operational problems. One of the solutions for this problem is pressure flushing. In this type of flushing, a mixture of water and sediment is removed from bottom outlets form dam reservoir and a funnel shaped crater is created in the vicinity of the outlet opening. In laboratory experiments carried out in this study, pressure flushing with the expansion of bottom outlet within the reservoir and its statistical analysis of bursting events were investigated. The structure of the turbulent flow is not fully understood due to their complexity and random nature. Klein et al. Introduced the turbulence bursting in this kind of flow and Nezo and Nakagora suggested that the events resulting from turbulence bursting has a significant effect of transferring the sediment particles. Materials and Methods: For the purposes of this study, the experiments were conducted with a physical model with 7m length, 1.4m width, and 1.5m height, consisting of three parts namely the inlet of the model, the main reservoir, and settling basin. The main reservoir of the model was 5m long and the sediments were placed within this part of the model. The sediment particles were non-cohesive silica with uniform size and with median diameter (d50 1.15mm and geometrics standard deviation (σg 1.37. Experiments carried out with different discharges and water depths above the bottom outlet in different expansion size of outlet channel in constant sediment level of 20cm above the center of the outlet channel. The model was slowly filled with water until the water surface elevation reached to a desired level. The bottom outlet was manually opened, after a while sedimentwere discharged with the water flow in very high concentrations through the outlet channel (sudden discharge and a funnel shaped crater was formed in front of it. After the run of

  3. Stability Analysis of Hydrodynamic Pressure Landslides with Different Permeability Coefficients Affected by Reservoir Water Level Fluctuations and Rainstorms

    Directory of Open Access Journals (Sweden)

    Faming Huang

    2017-06-01

    Full Text Available It is significant to study the variations in the stability coefficients of hydrodynamic pressure landslides with different permeability coefficients affected by reservoir water level fluctuations and rainstorms. The Sifangbei landslide in Three Gorges Reservoir area is used as case study. Its stability coefficients are simulated based on saturated-unsaturated seepage theory and finite element analysis. The operating conditions of stability coefficients calculation are reservoir water level variations between 175 m and 145 m, different rates of reservoir water level fluctuations, and a three-day continuous rainstorm. Results show that the stability coefficient of the hydrodynamic pressure landslide decreases with the drawdown of the reservoir water level, and a rapid drawdown rate leads to a small stability coefficient when the permeability coefficient ranges from 1.16 × 10−6 m/s to 4.64 × 10−5 m/s. Additionally, the landslide stability coefficient increases as the reservoir water level increases, and a rapid increase in the water level leads to a high stability coefficient when the permeability coefficient ranges from 1.16 × 10−6 m/s to 4.64 × 10−5 m/s. The landslide stability coefficient initially decreases and then increases as the reservoir water level declines when the permeability coefficient is greater than 4.64 × 10−5 m/s. Moreover, for structures with the same landslide, the landslide stability coefficient is most sensitive to the change in the rate of reservoir water level drawdown when the permeability coefficient increases from 1.16 × 10−6 m/s to 1.16 × 10−4 m/s. Additionally, the rate of decrease in the stability coefficient increases as the permeability coefficient increases. Finally, the three-day rainstorm leads to a significant reduction in landslide stability, and the rate of decrease in the stability coefficient initially increases and then decreases as the permeability coefficient increases.

  4. The Impact of Dam-Reservoir-Foundation Interaction on Nonlinear Response of Concrete Gravity Dams

    Science.gov (United States)

    Amini, AliReza; Motamedi, Mohammad Hossein; Ghaemian, Mohsen

    2008-07-01

    To study the impact of dam-reservoir-foundation interaction on nonlinear response of concrete gravity dams, a two-dimensional finite element model of a concrete gravity dam including the dam body, a part of its foundation and a part of the reservoir was made. In addition, the proper boundary conditions were used in both reservoir and foundation in order to absorb the energy of outgoing waves at the far end boundaries. Using the finite element method and smeared crack approach, some different seismic nonlinear analyses were done and finally, we came to a conclusion that the consideration of dam-reservoir-foundation interaction in nonlinear analysis of concrete dams is of great importance, because from the performance point of view, this interaction significantly improves the nonlinear response of concrete dams.

  5. The Impact of Dam-Reservoir-Foundation Interaction on Nonlinear Response of Concrete Gravity Dams

    International Nuclear Information System (INIS)

    Amini, Ali Reza; Motamedi, Mohammad Hossein; Ghaemian, Mohsen

    2008-01-01

    To study the impact of dam-reservoir-foundation interaction on nonlinear response of concrete gravity dams, a two-dimensional finite element model of a concrete gravity dam including the dam body, a part of its foundation and a part of the reservoir was made. In addition, the proper boundary conditions were used in both reservoir and foundation in order to absorb the energy of outgoing waves at the far end boundaries. Using the finite element method and smeared crack approach, some different seismic nonlinear analyses were done and finally, we came to a conclusion that the consideration of dam-reservoir-foundation interaction in nonlinear analysis of concrete dams is of great importance, because from the performance point of view, this interaction significantly improves the nonlinear response of concrete dams

  6. Influence of clay and silica on permeability and capillary entry pressure of chalk reservoirs in the North Sea

    DEFF Research Database (Denmark)

    Røgen, Birte; Fabricius, Ida Lykke

    2002-01-01

    The permeability and capillary entry pressure of chalk reservoirs are controlled by their porosity and specific surface area. Measured permeabilities are in the range 0.025-5.3 mD and are successfully predicted by use of the Kozeny equation. In this paper we focus on the factors that control spec...

  7. Response of Kondo lattice systems to pressure

    International Nuclear Information System (INIS)

    Thompson, J.D.; Borges, H.A.; Fisk, Z.; Horn, S.; Parks, R.D.; Wells, G.L.

    1987-01-01

    Yb-based Kondo lattice systems (YbAgCu 4 , YbCu 2 Si 2 , YbRh 2 Si 2 ) represent an interesting class of materials in which it is possible to study systematically the development of heavy electron behavior through the application of pressure. Certainly, additional experiments are required to determine to what extent Yb compounds are mirror images of their Ce counterparts. Finally, pressure reveals the presence of competing interactions for which a simple model exists that qualitatively accounts for the pressure response observed in a large number of Ce, U and Yb-based Kondo lattice systems

  8. Superposition well-test method for reservoir characterization and pressure management during CO2 injection

    Science.gov (United States)

    White, J. A.

    2014-12-01

    As a significant fraction of a carbon storage project's budget is devoted to site characterization and monitoring, there has been an intense drive in recent years to both lower cost and improve the quality of data obtained. Two data streams that are cheap and always available are pressure and flow rate measurements from the injection well. Falloff testing, in which the well is shut-in for some period of time and the pressure decline curve measured, is often used to probe the storage zone and look for indications of hydraulic barriers, fracture-dominated flow, and other reservoir characteristics. These tests can be used to monitor many hydromechanical processes of interest, including hydraulic fracturing and fault reactivation. Unfortunately, the length of the shut-in period controls how far away from the injector information may be obtained. For operational reasons these tests are typically kept short and infrequent, limiting their usefulness. In this work, we present a new analysis method in which ongoing injection data is used to reconstruct an equivalent falloff test, without shutting in the well. The entire history of injection may therefore be used as a stand in for a very long test. The method relies upon a simple superposition principle to transform a multi-rate injection sequence into an equivalent single-rate process. We demonstrate the effectiveness of the method using injection data from the Snøhvit storage project. We also explore its utility in an active pressure management scenario. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Electrolyte CPA equation of state for very high temperature and pressure reservoir and basin applications

    Science.gov (United States)

    Courtial, Xavier; Ferrando, Nicolas; de Hemptinne, Jean-Charles; Mougin, Pascal

    2014-10-01

    In this work, an electrolyte version of the Cubic Plus Association (eCPA) equation of state has been adapted to systems containing CH4, CO2, H2O and NaCl (up to 5 molal) at pressures up to 200 MPa and temperatures up to 773 K for salt-free systems and 573 K for salt-containing systems. Its purpose is to represent the phase behavior (including salting-out effect and critical point) and the phase densities in a range of temperature and pressure encountered in deep reservoirs and basins. The goal of the parameterization proposed is not to reach a very high accuracy for phase equilibrium and volumetric properties, but rather to develop a semi-predictive approach to model the phase and volumetric behavior of this system while allowing an easy extension to other compounds. Without salt, predictions for pure component vapor pressures and liquid molar volumes present an average absolute deviation (AAD) lower than 3% compared to experimental reference values. The pure component molar volumes out of saturation show an AAD lower than 4%. The highest deviations in densities are observed as expected in the vicinity of the critical coordinates of pure water and this effect increases when gases or salts are added to the system. For each binary system, CH4 + CO2, CH4 + H2O and CO2 + H2O, binary interaction parameters have been fitted to correctly represent the shape of the fluid phase envelopes (including all critical points) in the entire temperature and pressure range considered (219 K to 633 K and up to 250 MPa). The methane concentration in both phases of the CH4 + CO2 binary system is represented with an AAD lower than 9%. The methane solubility in water is represented within 16% and 8% for the methane content of the vapor. The CO2 solubility in water is within 26%, while the CO2 in the vapor phase shows an average deviation of 12%. All molar volumes are represented with an AAD lower than 3%. The few VLE experimental data for the CH4 + CO2 + H2O ternary system are fairly well

  10. Nuclear register applications and pressure tests to foresee reservoirs exploitation with water drive

    International Nuclear Information System (INIS)

    Osorio F, X.; Redosado G, V.

    1994-01-01

    This paper illustrates how the pulsed neutron log and well test analysis aid proper reservoir management in strong water reservoirs. These techniques have been applied to Cetico reservoir which belongs to Corrientes Field which is located in the Peruvian Jungle. Corrientes is the most important field operated by PETROPERU S.A. As a result of the analysis we current know the present areal water saturation distribution and also have improve the reservoir characterization al of which is being used for increasing the oil production and reserves. (author). 4 refs, 7 figs, 3 tabs

  11. Effects of pressure drawdown and recovery on the Cerro Prieto beta reservoir in the CP-III area

    Energy Technology Data Exchange (ETDEWEB)

    Truesdell, A.H. [Truesdell (Alfred H.), Menlo Park, CA (United States); Lippmann, M.J. [Lawrence Berkeley National Lab., CA (United States)

    1998-02-01

    The production characteristics of wells in the northwestern Cerro Prieto III area changed greatly when the Cp-III power plant went on line in 1986. Fluid extraction in the field more than doubled and reservoir-wide boiling started immediately, greatly increasing the enthalpy of produced fluids. Some well fluids showed a decrease in chloride due to adiabatic steam condensation in the well and separator, and others were enriched in chloride due to boiling. As reservoir drawdown increased, entrance of cooler and more dilute groundwaters into the reservoir became evident (i.e., condensation stopped, and there was a decrease in enthalpy and chloride in produced fluids). Although some groundwater inflow was from the leaky western margin of the reservoir, the majority is in the northeast, inferred to be local and downward, possibly through more permeable zones associated with the normal fault H. This natural recharge and some reinjection have slowed and possibly reversed pressure drawdown throughout CP-III. Enthalpy has decreased and liquid saturation has increased as the steam-rich zone in the upper part of the reservoir has either disappeared or become thinner.

  12. Reservoir Characterization and CO2 Plume Migration Modeling Based on Bottom-hole Pressure Data: An Example from the AEP Mountaineer Geological Storage Project

    Science.gov (United States)

    Mishra, Srikanta; Kelley, Mark; Oruganti, YagnaDeepika; Bhattacharya, Indra; Spitznogle, Gary

    2014-05-01

    We present an integrated approach for formation permeability estimation, front tracking, reservoir model calibration, and plume migration modeling based on injection rate and down-hole pressure data from CO2 geologic sequestration projects. The data are taken from the 20 MW CO2 capture and storage project at American Electric Power's Mountaineer Plant in West Virginia, USA. The Mountaineer CO2 injection system consists of two injection wells - one in the Copper Ridge Dolomite formation and one in the Rose Run sandstone formation, and three deep observation wells that were operational between October 2009 and May 2011. Approximately 27000 MT and 10000 MT were injected into the Copper Ridge dolomite formation and Rose Run sandstone formation, respectively. A wealth of pressure and rate data from injection and observation wells is available covering a series of injection and pressure falloff events. The methodology developed and applied for interpreting and integrating the data during reservoir analysis and modeling from the Rose Run formation is the subject of this paper. For the analysis of transient pressure data at the injection and observation wells, the CO2 storage reservoir is conceptualized as a radial composite system, where the inner (invaded) zone consists of both supercritical CO2 and brine, and the outer (uninvaded) zone consists of undisturbed brine. Using established analytical solutions for analyzing fluid injection problems in the petroleum reservoir engineering literature, we show how the late-time pressure derivative response from both injection and observation wells will be identical - reflecting the permeability-thickness product of the undisturbed brine-filled formation. We also show how the expanding CO2 plume affects the "effective" compressibility that can be estimated by history matching injection-falloff data and how this can be used to develop a relationship between the plume radius and "effective" compressibility. This provides a novel non

  13. analysis of pressure variation of fluid in an infinite acting reservoir

    African Journals Online (AJOL)

    The diffusivity equation was used in the analysis. The work covers the transient state where the reservoir is acting as if it was infinite in size. The finite element technique, using Lagrange quadratic shape elements was employed to carry out the analysis over the cross-section of the reservoir. The analysis was done with the ...

  14. Analysis of pressure falloff tests of non-Newtonian power-law fluids in naturally-fractured bounded reservoirs

    Directory of Open Access Journals (Sweden)

    Omotayo Omosebi

    2015-12-01

    This article presents an analytic technique for interpreting pressure falloff tests of non-Newtonian Power-law fluids in wells that are located near boundaries in dual-porosity reservoirs. First, dimensionless pressure solutions are obtained and Stehfest inversion algorithm is used to develop new type curves. Subsequently, long-time analytic solutions are presented and interpretation procedure is proposed using direct synthesis. Two examples, including real field data from a heavy oil reservoir in Colombian eastern plains basin, are used to validate and demonstrate application of this technique. Results agree with conventional type-curve matching procedure. The approach proposed in this study avoids the use of type curves, which is prone to human errors. It provides a better alternative for direct estimation of formation and flow properties from falloff data.

  15. Analysis of formation pressure test results in the Mount Elbert methane hydrate reservoir through numerical simulation

    Science.gov (United States)

    Kurihara, M.; Sato, A.; Funatsu, K.; Ouchi, H.; Masuda, Y.; Narita, H.; Collett, T.S.

    2011-01-01

    Targeting the methane hydrate (MH) bearing units C and D at the Mount Elbert prospect on the Alaska North Slope, four MDT (Modular Dynamic Formation Tester) tests were conducted in February 2007. The C2 MDT test was selected for history matching simulation in the MH Simulator Code Comparison Study. Through history matching simulation, the physical and chemical properties of the unit C were adjusted, which suggested the most likely reservoir properties of this unit. Based on these properties thus tuned, the numerical models replicating "Mount Elbert C2 zone like reservoir" "PBU L-Pad like reservoir" and "PBU L-Pad down dip like reservoir" were constructed. The long term production performances of wells in these reservoirs were then forecasted assuming the MH dissociation and production by the methods of depressurization, combination of depressurization and wellbore heating, and hot water huff and puff. The predicted cumulative gas production ranges from 2.16??106m3/well to 8.22??108m3/well depending mainly on the initial temperature of the reservoir and on the production method.This paper describes the details of modeling and history matching simulation. This paper also presents the results of the examinations on the effects of reservoir properties on MH dissociation and production performances under the application of the depressurization and thermal methods. ?? 2010 Elsevier Ltd.

  16. Water Age Responses to Weather Conditions in a Hyper-Eutrophic Channel Reservoir in Southern China

    Directory of Open Access Journals (Sweden)

    Wei Du

    2016-08-01

    Full Text Available Channel reservoirs have the characteristics of both rivers and lakes, in which hydrodynamic conditions and the factors affecting the eutrophication process are complex and highly affected by weather conditions. Water age at any location in the reservoir is used as an indicator for describing the spatial and temporal variations of water exchange and nutrient transport. The hyper-eutrophic Changtan Reservoir (CTR in Southern China was investigated. Three weather conditions including wet, normal, and dry years were considered for assessing the response of water age by using the coupled watershed model Soil Water Assessment Tool (SWAT and the three-dimensional hydrodynamic model Environmental Fluid Hydrodynamic Code (EFDC. The results showed that the water age in CTR varied tremendously under different weather conditions. The averaged water ages at the downstream of CTR were 3 d, 60 d, and 110 d, respectively in the three typical wet, normal, and dry years. The highest water ages at the main tributary were >70 d, >100 d, and >200 d, respectively. The spatial distribution of water ages in the tributaries and the reservoir were mainly affected by precipitation. This paper provides useful information on water exchange and transport pathways in channel reservoir, which will be helpful in understanding nutrient dynamics for controlling algal blooms.

  17. Forecasting of reservoir pressures of oil and gas bearing complexes in northern part of West Siberia for safety oil and gas deposits exploration and development

    Science.gov (United States)

    Gorbunov, P. A.; Vorobyov, S. V.

    2017-10-01

    In the paper the features of reservoir pressures changes in the northern part of West Siberian oil-and gas province are described. This research is based on the results of hydrodynamic studies in prospecting and explorating wells in Yamal-Nenets Autonomous District. In the Cenomanian, Albian, Aptian and in the top of Neocomian deposits, according to the research, reservoir pressure is usually equal to hydrostatic pressure. At the bottom of the Neocomian and Jurassic deposits zones with abnormally high reservoir pressures (AHRP) are distinguished within Gydan and Yamal Peninsula and in the Nadym-Pur-Taz interfluve. Authors performed the unique zoning of the territory of the Yamal-Nenets Autonomous District according to the patterns of changes of reservoir pressures in the section of the sedimentary cover. The performed zoning and structural modeling allow authors to create a set of the initial reservoir pressures maps for the main oil and gas bearing complexes of the northern part of West Siberia. The results of the survey should improve the efficiency of exploration drilling by preventing complications and accidents during this operation in zones with abnormally high reservoir pressures. In addition, the results of the study can be used to estimate gas resources within prospective areas of Yamal-Nenets Autonomous District.

  18. Response of cyanobacteria to low atmosphere pressure

    Science.gov (United States)

    Qin, Lifeng; Ai, Weidang; Guo, Shuangsheng; Tang, Yongkang; Yu, Qingni; Shen, Yunze; Ren, Jin

    Maintaining a low pressure environment would reduce the technological complexity and constructed cost of future lunar base. To estimate the effect of hypobaric of controlled ecological life support system in lunar base on terrestrial life, cyanobacteria was used as the model to exam the response of growth, morphology, physiology to it. The decrease of atmosphere pressure from 100 KPa to 50 KPa reducing the growth rates of Microcystis aeruginosa, Merismopedia.sp, Anabaena sp. PCC 7120, Anabaena Hos-aquae, the chlorophyll a content in Microcystis aeruginosa, Merismopedia.sp, Anabaena Hos-aquae, the carotenoid content in Microcystis aeruginosa, Merismopedia.sp and Anabaena sp. PCC 7120, the phycocyanin content in Microcystis aeruginosa. This study explored the biological characteristics of the cyanobacteria under low pressure condition, which aimed at understanding the response of the earth's life to environment for the future moon base, the results enrich the research contents of the lunar biology and may be referred for the research of other terrestrial life, such as human, plant, microbe and animal living in life support system of lunar base.

  19. Containment pressure response to hydrogen combustion

    International Nuclear Information System (INIS)

    Fuls, G.M.

    1981-01-01

    Since Offshore Power Systems (OPS) was well into the licensing procedure for the Floating Nuclear Plant (FNP), OPS anticipated questions by the Nuclear Regulatory Commission (NRC) about the effects of a TMI-2 type transient on the integrity of the Ice Condenser (IC) containment used in the FNP design. The partiular concern was the relatively small net free volume and low design pressure of the IC containment. Offsetting the small volume and low design pressure, however, is the large, passive heat sink represented by the mass of ice in the ice condenser. To assess the response of the IC containment to a TMI-2 type transient, OPS began the development of the CLASIX computer program for the analysis of this type of accident

  20. Influence of abnormally high formation pressure on the porosity of reservoirs (on the example of Solokhovsk field)

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtin, V.V.; Omelin, V.M.

    1980-01-01

    Productive horizons of the Solokhovsk field are composed of alternating claystones, siltstones, and sandstones. Samples of rocks were investigated by using the automatic electronic analyzer, Kvantimet-720. It was found that abnormally high formation pressure causes a decompaction effect. This effect is observed not only in clays which cover a deposit, but also in reservoirs of the deposit. Increases in pore dimensions and in average area of pores are the consequences of the decompaction effect. An extent of decompaction effect in consolidated formations in zones of abnormally high formation pressure depends on an intensity of secondary local epigenetic processes. These processes take place in zones of abnormally high formation pressure and in aureoles of hydrocarbon inculcation.

  1. Anti-HIV Antibody Responses and the HIV Reservoir Size during Antiretroviral Therapy.

    Directory of Open Access Journals (Sweden)

    Sulggi A Lee

    Full Text Available A major challenge to HIV eradication strategies is the lack of an accurate measurement of the total burden of replication-competent HIV (the "reservoir". We assessed the association of anti-HIV antibody responses and the estimated size of the reservoir during antiretroviral therapy (ART.We evaluated anti-HIV antibody profiles using luciferase immunoprecipitation systems (LIPS assay in relation to several blood-based HIV reservoir measures: total and 2-LTR DNA (rtPCR or droplet digital PCR; integrated DNA (Alu PCR; unspliced RNA (rtPCR, multiply-spliced RNA (TILDA, residual plasma HIV RNA (single copy PCR, and replication-competent virus (outgrowth assay. We also assessed total HIV DNA and RNA in gut-associated lymphoid tissue (rtPCR. Spearman correlations and linear regressions were performed using log-transformed blood- or tissue-based reservoir measurements as predictors and log-transformed antibody levels as outcome variables.Among 51 chronically HIV-infected ART-suppressed participants (median age = 57, nadir CD4+ count = 196 cells/mm3, ART duration = 9 years, the most statistically significant associations were between antibody responses to integrase and HIV RNA in gut-associated lymphoid tissue (1.17 fold-increase per two-fold RNA increase, P = 0.004 and between antibody responses to matrix and integrated HIV DNA in resting CD4+ T cells (0.35 fold-decrease per two-fold DNA increase, P = 0.003. However, these associations were not statistically significant after a stringent Bonferroni-adjustment of P<0.00045. Multivariate models including age and duration of ART did not markedly alter results.Our findings suggest that anti-HIV antibody responses may reflect the size of the HIV reservoir during chronic treated HIV disease, possibly via antigen recognition in reservoir sites. Larger, prospective studies are needed to validate the utility of antibody levels as a measure of the total body burden of HIV during treatment.

  2. Understanding creep in sandstone reservoirs – theoretical deformation mechanism maps for pressure solution in granular materials

    NARCIS (Netherlands)

    Hangx, Suzanne; Spiers, Christopher

    Subsurface exploitation of the Earth’s natural resources removes the natural system from its chemical and physical equilibrium. As such, groundwater extraction and hydrocarbon production from subsurface reservoirs frequently causes surface subsidence and induces (micro)seismicity. These effects are

  3. Differential pressure gauge has fast response

    Science.gov (United States)

    Weber, H. S.

    1965-01-01

    Differential pressure gage with semiconductor type strain gage elements measures rapidly changing pressure. Output of the strain gage elements is a dc voltage that is directly proportional to the pressure difference being measured.

  4. Pre-drilling prediction techniques on the high-temperature high-pressure hydrocarbon reservoirs offshore Hainan Island, China

    Science.gov (United States)

    Zhang, Hanyu; Liu, Huaishan; Wu, Shiguo; Sun, Jin; Yang, Chaoqun; Xie, Yangbing; Chen, Chuanxu; Gao, Jinwei; Wang, Jiliang

    2018-02-01

    Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure (HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques (PPTs). To improve the accuracy of geopressure prediction in HTHP hydrocarbon reservoirs offshore Hainan Island, we made a comprehensive summary of current PPTs to identify existing problems and challenges by analyzing the global distribution of HTHP hydrocarbon reservoirs, the research status of PPTs, and the geologic setting and its HTHP formation mechanism. Our research results indicate that the HTHP formation mechanism in the study area is caused by multiple factors, including rapid loading, diapir intrusions, hydrocarbon generation, and the thermal expansion of pore fluids. Due to this multi-factor interaction, a cloud of HTHP hydrocarbon reservoirs has developed in the Ying-Qiong Basin, but only traditional PPTs have been implemented, based on the assumption of conditions that do not conform to the actual geologic environment, e.g., Bellotti's law and Eaton's law. In this paper, we focus on these issues, identify some challenges and solutions, and call for further PPT research to address the drawbacks of previous works and meet the challenges associated with the deepwater technology gap. In this way, we hope to contribute to the improved accuracy of geopressure prediction prior to drilling and provide support for future HTHP drilling offshore Hainan Island.

  5. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California

    Science.gov (United States)

    Taira, Taka’aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael

    2018-01-01

    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes. PMID:29326977

  6. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California.

    Science.gov (United States)

    Taira, Taka'aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael

    2018-01-01

    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes.

  7. pressure distribution in a layered reservoir with gas-cap and bottom

    African Journals Online (AJOL)

    2012-07-02

    Jul 2, 2012 ... dimensionless pressure and dimensionless pressure derivative plots, respectively, when the effects ... effects of layering on pressure distribution of a two- ..... Journal of Pet. Tech., Oct. 1974, Page. 1178-1186. 2. Ehlig-Economides, C.A., and Joseph, J.A. A New. Test for Determination of Individual Layer ...

  8. Laboratory Investigation to Assess the Impact of Pore Pressure Decline and Confining Stress on Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    khalil Rehman Memon

    2018-01-01

    Full Text Available Four core samples of outcrop type shale from Mancos, Marcellus, Eagle Ford, and Barnett shale formations were studied to evaluate the productivity performance and reservoir connectivity at elevated temperature and pressure. These laboratory experiments were conducted using hydrostatic permeability system with helium as test gas primarily to avoid potential significant effects of adsorption and/or associated swelling that might affect permeability. It was found that the permeability reduction was observed due to increasing confining stress and permeability improvement was observed related to Knudsen flow and molecular slippage related to Klinkenberg effect. Through the effective permeability of rock is improved at lower pore pressures, as 1000 psi. The effective stress with relatively high flow path was identified, as 100-200 nm, in Eagle Ford core sample. However other three samples showed low marginal flow paths in low connectivity.

  9. STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Charles McCormick; Roger Hester

    2004-09-30

    This sixth and final progress report for DOE Award Number DE-FC26-01BC15317 describes research during the period March 01, 2004 through August 31, 2004 performed at the University of Southern Mississippi on ''Stimuli Responsive Polymers with Enhanced Efficiency in Reservoir Recovery'' processes. Significantly, terpolymers that are responsive to changes in pH and ionic strength have been synthesized, characterized, and their solution properties have been extensively examined. Terpolymers composed of acrylamide, a carboxylated acrylamido monomer (AMBA), and a quaternary ammonium monomer (AMBATAC) with balanced compositions of the latter two, exhibit increases in aqueous solution viscosity as NaCl concentration is increased. This increase in polymer coil size can be expected upon injection of this type of polymer into oil reservoirs of moderate-to-high salinity, leading to better mobility control. The opposite effect (loss of viscosity) is observed for conventional polymer systems. Additionally polymer mobility characteristics have been conducted for a number of hydrophilic copolymers utilizing an extensional flow apparatus and size exclusion chromatography. This study reveled that oil recovery enhancement through use of polymers in a water flood is due to the polymer's resistance to deformation as it flows through the reservoir. Individual polymers when in aqueous solution form coils. The larger the polymer's coil size, the greater the polymer's resistance to extensional flow and the more effective the polymer is in enhancing oil recovery. Large coil sizes are obtained by increasing the polymer molecular weight and having macromolecular structures that favor greater swelling of the coil by the aqueous solvent conditions (temperature, pH and electrolyte concentration) existing in the reservoir.

  10. Study of the thermohydraulics of CO2 discharge from a high pressure reservoir

    NARCIS (Netherlands)

    Ahmad, M.; Osch, M.B.V.; Buit, L.; Florisson, O.; Hulsbosch-Dam, C.; Spruijt, M.; Davolio, F.

    2013-01-01

    An experimental test set up has been constructed to carry out controlled CO2 release experiments from a high pressure vessel. The test set up is made up of a 500l stainless steel vessel where CO2 can be introduced up to high pressures and where controlled releases can be conducted. The work

  11. Exploring How Changing Monsoonal Dynamics and Human Pressures Challenge Multi-Reservoir Management of Food-Energy-Water Tradeoffs

    Science.gov (United States)

    Quinn, J.; Reed, P. M.; Giuliani, M.; Castelletti, A.; Oyler, J.; Nicholas, R.

    2017-12-01

    Multi-reservoir systems require robust and adaptive control policies capable of managing evolving hydroclimatic variability and human demands across a wide range of time scales. This is especially true for systems with high intra-annual and inter-annual variability, such as monsoonal river systems that need to buffer against seasonal droughts while also managing extreme floods. Moreover, the timing, intensity, duration, and frequency of these hydrologic extremes may be affected by deeply uncertain changes in socioeconomic and climatic pressures. This study contributes an innovative method for exploring how possible changes in the timing and magnitude of monsoonal seasonal extremes impact the robustness of reservoir operating policies optimized to historical conditions assuming stationarity. We illustrate this analysis on the Red River basin in Vietnam, where reservoirs and dams serve as important sources of hydropower production, irrigable water supply, and flood protection for the capital city of Hanoi. Applying our scenario discovery approach, we find food-energy-water tradeoffs are exacerbated by potential hydrologic shifts, with wetter worlds threatening the ability of operating strategies to manage flood risk and drier worlds threatening their ability to provide sufficient water supply and hydropower production, especially if demands increase. Most notably, though, amplification of the within-year monsoonal cycle and increased inter-annual variability threaten all of the above. These findings highlight the importance of considering changes in both lower order moments of annual streamflow and intra-annual monsoonal behavior when evaluating the robustness of alternative water systems control strategies for managing deeply uncertain futures.

  12. Interfacial tension phenomenon and mass transfer process in the reservoir brine-CO{sub 2} system at high pressures and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yang, D.; Tontiwachwuthikul, P.; Gu, Y. [Petroleum Technology Research Centre, Regina, SK (Canada)]|[Regina Univ., SK (Canada)

    2005-07-01

    One of the potential technologies for mitigating greenhouse gas (GHG) emissions is the geological sequestration of anthropologic carbon dioxide (CO{sub 2}) in depleted oil or gas reservoirs or in saline aquifers. The interfacial interactions between CO{sub 2} and the crude oil, brine and reservoir minerals determine the success of sequestration. These interfacial interactions also influence the mass transfer of CO{sub 2} in the reservoir brine. This study developed an experimental technique to examine the mass transfer processes between the reservoir brine and CO{sub 2}. It also examined the dynamic interfacial tension (IFT) phenomenon of the reservoir brine-CO{sub 2} system under practical reservoir conditions and evaluated the temperatures, based on the axisymmetric drop shape analysis for the pendant drop case. The dynamic and equilibrium IFTs between the reservoir brine and CO{sub 2} were measured at different pressures and 2 constant temperatures. Several key physical phenomena were observed after the fresh brine phase made contact with the CO{sub 2}. The dynamic IFT was found to reduce gradually to a constant value referred to as the equilibrium IFT. This reduction is due to the adsorption of the CO{sub 2} molecules and the reorientation of water molecules at the pendant brine drop surface. The equilibrium IFT decreases with increasing pressure, but it increases as the temperature increases. A two-way mass transfer between the brine phase and CO{sub 2} was observed. It was concluded that the accurate determination of the maximum amount of CO{sub 2} that can be sequestered in a depleted reservoir or saline aquifer may depend on the two-way mass transfer between the reservoir brine and the carbon dioxide. 24 refs., 7 figs.

  13. Dual stimuli responsive self-reporting material for chemical reservoir coating

    Science.gov (United States)

    Lee, Tae Hee; Song, Young Kyu; Park, Sun Hee; Park, Young Il; Noh, Seung Man; Kim, Jin Chul

    2018-03-01

    In this study, we introduce a novel dual stimuli responsive self-reporting thiol-epoxy thermoset (DSRTET) coatings which can detect both crack occurrence and pH variation. For crack detection, microcapsule containing tetraphenylethylene (TPE) which exhibits aggregation induced emission (AIE) effect was prepared via multi-step emulsion polymerization and dispersed in DSRTET coatings. For pH variation detection, commercial thymol blue as a pH indicator was added into the polymer matrix. The effect of microcapsule contents in DSRTET on their curing behavior, material properties, and crack sensitivity was characterized using an oscillatory rheology, rigid body pendulum test (RPT), nano-indentation test (NST), universal test machine (UTM) and scratch tester. It was revealed that crack sensitivity of DSRTET coatings was greatly influenced by material properties as well as microcapsule content. The color transition of DSRTET coatings in response to acid or base solution were quantitatively investigated using a multi-angle spectrophotometer after simple acid and base solution drop tests. The color of DSRTET coatings changed from a pale green to red for acidic solution and to blue for basic solution. Finally, The DSRTET used in this study was applied to laboratory scale chemical reservoirs in order to verify the potential as a dual stimuli response self-reporting coating which can detect both crack in coating material and chemical spill caused by the leakage or breakage of the reservoir part.

  14. Phytoplankton Communities Exhibit a Stronger Response to Environmental Changes than Bacterioplankton in Three Subtropical Reservoirs.

    Science.gov (United States)

    Liu, Lemian; Yang, Jun; Lv, Hong; Yu, Xiaoqing; Wilkinson, David M; Yang, Jun

    2015-09-15

    The simultaneous analysis of multiple components of ecosystems is crucial for comprehensive studies of environmental changes in aquatic ecosystems, but such studies are rare. In this study, we analyzed simultaneously the bacterioplankton and phytoplankton communities in three Chinese subtropical reservoirs and compared the response of these two components to seasonal environmental changes. Time-lag analysis indicated that the temporal community dynamics of both bacterioplankton and phytoplankton showed significant directional changes, and variance partitioning suggested that the major reason was the gradual improvement of reservoir water quality from middle eutrophic to oligo-mesotrophic levels during the course of our study. In addition, we found a higher level of temporal stability or stochasticity in the bacterioplankton community than in the phytoplankton community. Potential explanations are that traits associated with bacteria, such as high abundance, widespread dispersal, potential for rapid growth rates, and rapid evolutionary adaptation, may underlie the different stability or stochasticity of bacterioplankton and phytoplankton communities to the environmental changes. In addition, the indirect response of bacterioplankton to nitrogen and phosphorus may result in the fact that environmental deterministic selection was stronger for the phytoplankton than for the bacterioplankton communities.

  15. Linking functional response and bioenergetics to estimate juvenile salmon growth in a reservoir food web

    Science.gov (United States)

    Haskell, Craig A.; Beauchamp, David A.; Bollens, Stephen M.

    2017-01-01

    Juvenile salmon (Oncorhynchus spp.) use of reservoir food webs is understudied. We examined the feeding behavior of subyearling Chinook salmon (O. tshawytscha) and its relation to growth by estimating the functional response of juvenile salmon to changes in the density of Daphnia, an important component of reservoir food webs. We then estimated salmon growth across a broad range of water temperatures and daily rations of two primary prey, Daphnia and juvenile American shad (Alosa sapidissima) using a bioenergetics model. Laboratory feeding experiments yielded a Type-II functional response curve: C = 29.858 P *(4.271 + P)-1 indicating that salmon consumption (C) of Daphnia was not affected until Daphnia densities (P) were < 30 · L-1. Past field studies documented Daphnia densities in lower Columbia River reservoirs of < 3 · L-1 in July but as high as 40 · L-1 in August. Bioenergetics modeling indicated that subyearlings could not achieve positive growth above 22°C regardless of prey type or consumption rate. When feeding on Daphnia, subyearlings could not achieve positive growth above 20°C (water temperatures they commonly encounter in the lower Columbia River during summer). At 16–18°C, subyearlings had to consume about 27,000 Daphnia · day-1 to achieve positive growth. However, when feeding on juvenile American shad, subyearlings had to consume 20 shad · day-1 at 16–18°C, or at least 25 shad · day-1 at 20°C to achieve positive growth. Using empirical consumption rates and water temperatures from summer 2013, subyearlings exhibited negative growth during July (-0.23 to -0.29 g · d-1) and August (-0.05 to -0.07 g · d-1). By switching prey from Daphnia to juvenile shad which have a higher energy density, subyearlings can partially compensate for the effects of higher water temperatures they experience in the lower Columbia River during summer. However, achieving positive growth as piscivores requires subyearlings to feed at

  16. Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells

    Energy Technology Data Exchange (ETDEWEB)

    Pastouret, Alan [Draka Cableteq USA, Inc., North Dighton, MA (United States); Gooijer, Frans [Draka Cableteq USA, Inc., North Dighton, MA (United States); Overton, Bob [Draka Cableteq USA, Inc., North Dighton, MA (United States); Jonker, Jan [Draka Cableteq USA, Inc., North Dighton, MA (United States); Curley, Jim [Draka Cableteq USA, Inc., North Dighton, MA (United States); Constantine, Walter [Draka Cableteq USA, Inc., North Dighton, MA (United States); Waterman, Kendall Miller [Draka Cableteq USA, Inc., North Dighton, MA (United States)

    2015-11-13

    High Temperature insulated wire and optical fiber cable is a key enabling technology for the Geothermal Technologies Program (GTP). Without insulated electrical wires and optical fiber, downhole temperature and pressure sensors, flow meters and gauges cannot communicate with the surface. Unfortunately, there are currently no insulated electrical wire or fiber cable constructions capable of surviving for extended periods of deployment in a geothermal well (240-325°C) or supercritical (374°C) reservoir. This has severely hindered engineered reservoir creation, management and utilization, as hot zones and cool water intrusions cannot be understood over time. The lack of a insulated electrical wire and fiber cable solution is a fundamental limitation to the viability of this energy source. The High Temperature Downhole Tools target specification is development of tools and sensors for logging and monitoring wellbore conditions at depths of up to 10,000 meters and temperatures up to 374oC. It well recognized in the industry that no current electronic or fiber cable can be successfully deployed in a well and function successfully for more a few days at temperatures over 240oC. The goal of this project was to raise this performance level significantly. Prysmian Group’s objective in this project was to develop a complete, multi-purpose cable solution for long-term deployment in geothermal wells/reservoirs that can be used with the widest variety of sensors. In particular, the overall project objective was to produce a manufacturable cable design that can perform without serious degradation: • At temperatures up to 374°C; • At pressures up to 220 bar; • In a hydrogen-rich environment; and • For the life of the well (> 5 years). This cable incorporates: • Specialty optical fibers, with specific glass chemistry and high temperature and pressure protective coatings for data communication and distributed temperature and pressure sensing, and • High

  17. Political pressure on nuclear - responsibility or business?

    International Nuclear Information System (INIS)

    Petrech, Rastislav; Holy, Robert

    2001-01-01

    Environmental Impact Assessment study prior to bringing the plant in a commercial operation - will change nothing. I believe that the outcomes will reinforce the arguments in favour of construction and commissioning of new sources of clean, safe, and reliable generation of electricity. Is it just diverting the public's attention from other problems or an attempt to gain a political capital? Is the political pressure on nuclear a real responsibility or a sheer business? Most politicians have no idea about the nuclear power, and if they do, it is only very misty one. It is necessary to invite them to visit plants, discuss with them and give them clear arguments. A clear statement of an energy policy and relying on the safe and economic advantageous nuclear power can also attract a large portion of electors in the future. We should try so that energy policy in post-communist countries got into election programmes of each political party, since the energy mix policy cannot be tailored only for one election period of a government, but for a time of 20 to 30 years in advance

  18. TRITIUM RESERVOIR STRUCTURAL PERFORMANCE PREDICTION

    Energy Technology Data Exchange (ETDEWEB)

    Lam, P.S.; Morgan, M.J

    2005-11-10

    The burst test is used to assess the material performance of tritium reservoirs in the surveillance program in which reservoirs have been in service for extended periods of time. A materials system model and finite element procedure were developed under a Savannah River Site Plant-Directed Research and Development (PDRD) program to predict the structural response under a full range of loading and aged material conditions of the reservoir. The results show that the predicted burst pressure and volume ductility are in good agreement with the actual burst test results for the unexposed units. The material tensile properties used in the calculations were obtained from a curved tensile specimen harvested from a companion reservoir by Electric Discharge Machining (EDM). In the absence of exposed and aged material tensile data, literature data were used for demonstrating the methodology in terms of the helium-3 concentration in the metal and the depth of penetration in the reservoir sidewall. It can be shown that the volume ductility decreases significantly with the presence of tritium and its decay product, helium-3, in the metal, as was observed in the laboratory-controlled burst tests. The model and analytical procedure provides a predictive tool for reservoir structural integrity under aging conditions. It is recommended that benchmark tests and analysis for aged materials be performed. The methodology can be augmented to predict performance for reservoir with flaws.

  19. [Response of Phytoplankton Functional Groups to Eutrophication in Summer at Xiaoguan Reservoir].

    Science.gov (United States)

    Li, Lei; Li, Qiu-hua; Jiao, Shu-lin; Li, Yue; Xiao, Jing; Deng, Long; Sun, Rong-guo; Gao, Yong-chun; Luo, Lan

    2015-12-01

    Hydrology and Water Resources Bureau of Guizhou Province, Guiyang 550002, China) Abstract: In order to explore the distribution characteristics of phytoplankton functional groups, eutrophication characteristics and response of phytoplankton functional groups to eutrophication in Xiaoguan Reservoir, phytoplankton and water samples were taken once a week from 25th July 2014 to 27th September 2014. The results showed that there were 22 phytoplankton functional groups, groups S1, D, J, B, G, MP, L₀, SN, X1, Y, Xph, F, T and W1 were comparatively common functional groups, Wherein, S1, D and J were the dominant functional groups. Weekly dynamics of phytoplankton functional groups were: S1-->S1-->S1-->S1-->S1--S1-->S1-->J/D/S1-->Sl1- >/1D. group Sl1dominated over other groups, the cell abundance of S1 appeared two peaks at week 5 and week 7 respectively, but there was a slump at week 8, and rose again at last, compared to two peaks before, the cell abundance had dropped from 10⁸cells · L⁻¹ to 10⁷cells · L⁻¹ Water flush caused by discharge gate opening artificially was the main reason. Based on the three methods of eutrophication evaluation, the water was in moderately eutrophic and eutrophic states in Xiaoguan Reservoir in the summer of 2014. Multivariate analysis (RDA) indicated transparency was the main factor affecting the distribution of phytoplankton functional groups, and nutrients were no longer the limiting factor. The study suggested that phytoplankton functional groups could make a good response to eutrophication: groups S1 and J adapted to the turbid eutrophic water bodies, D adapted to shallow turbid waters and was sensitive to nutrient depletion. Also, common functional groups like G, X1, WW1 F etc. mostly adapted to eutrophic water bodies.

  20. Analysis for pressure transient of coalbed methane reservoir based on Laplace transform finite difference method

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2015-09-01

    Full Text Available Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare with the results from the analytical method, the result from Laplace transform finite difference method turns out to be accurate. The influence factors are analyzed, including fractal dimension, fractal index, skin factor, well bore storage coefficient, energy storage ratio, interporosity flow coefficient and the adsorption factor. The calculating error of Laplace transform difference method is small. Laplace transform difference method has advantages in well-test application since any moment simulation does not rely on other moment results and space grid.

  1. A simulation of mud invasion and characteristics of array laterolog responses in a low-permeability gas reservoir: a case study

    Science.gov (United States)

    Jiang, Yanjiao; Sun, Jianmeng; Gao, Jianshen; Zhang, Pengyun; Cui, Jiangman

    2017-06-01

    Mud invasion is a complex problem in reservoir evaluation. The original distribution of formation fluid and resistivity near the wellbore changes when mud filtrate invades the permeability formations, and the electric logging response always shows distortion. In this study, the influencing factors in mud invasion analysis are investigated for a low-permeability gas reservoir based on a numerical simulation method. These factors include overbalance pressure, formation permeability, initial water saturation, and relative permeability, and we acquire the law of mud invasion and the main controlling factors of the invasion. Based on the simulation results, the array laterolog responses of different invasion situations are calculated by a three-dimensional finite element method, and we hold the opinion that the characteristics of these responses and the separation differences of the curves at different investigation depths are affected by the depth of the mud invasion. Furthermore, combined with the logging data and invasion simulation results, the calculation relation of the invasion depth is established using physical property parameters and array laterolog responses. This method effectively hides the influencing factors of invasion time and has good applications regarding the logging data of different invasion moments. In a low-invasion well case, the calculated result is in accordance with the actual situation and verifies the reliability of the method. The research shows that the combination of mud invasion characteristics and array laterolog responses can be applied to the prediction and evaluation of mud invasion depth in the study area. Furthermore, it can provide a service for fluid property evaluation and resistivity correction, as well as improve the reliability of reservoir evaluation by electrical logging.

  2. Pressure-specific and multiple pressure response of fish assemblages in European running waters.

    Science.gov (United States)

    Schinegger, Rafaela; Trautwein, Clemens; Schmutz, Stefan

    2013-09-01

    We classified homogenous river types across Europe and searched for fish metrics qualified to show responses to specific pressures (hydromorphological pressures or water quality pressures) vs. multiple pressures in these river types. We analysed fish taxa lists from 3105 sites in 16 ecoregions and 14 countries. Sites were pre-classified for 15 selected pressures to separate unimpacted from impacted sites. Hierarchical cluster analysis was used to split unimpacted sites into four homogenous river types based on species composition and geographical location. Classification trees were employed to predict associated river types for impacted sites with four environmental variables. We defined a set of 129 candidate fish metrics to select the best reacting metrics for each river type. The candidate metrics represented tolerances/intolerances of species associated with six metric types: habitat, migration, water quality sensitivity, reproduction, trophic level and biodiversity. The results showed that 17 uncorrelated metrics reacted to pressures in the four river types. Metrics responded specifically to water quality pressures and hydromorphological pressures in three river types and to multiple pressures in all river types. Four metrics associated with water quality sensitivity showed a significant reaction in up to three river types, whereas 13 metrics were specific to individual river types. Our results contribute to the better understanding of fish assemblage response to human pressures at a pan-European scale. The results are especially important for European river management and restoration, as it is necessary to uncover underlying processes and effects of human pressures on aquatic communities.

  3. Response of Daphnia's antioxidant system to spatial heterogeneity in Cyanobacteria concentrations in a lowland reservoir.

    Directory of Open Access Journals (Sweden)

    Adrianna Wojtal-Frankiewicz

    Full Text Available Many species and clones of Daphnia inhabit ecosystems with permanent algal blooms, and they can develop tolerance to cyanobacterial toxins. In the current study, we examined the spatial differences in the response of Daphnia longispina to the toxic Microcystis aeruginosa in a lowland eutrophic dam reservoir between June (before blooms and September (during blooms. The reservoir showed a distinct spatial pattern in cyanobacteria abundance resulting from the wind direction: the station closest to the dam was characterised by persistently high Microcystis biomass, whereas the upstream stations had a significantly lower biomass of Microcystis. Microcystin concentrations were closely correlated with the cyanobacteria abundance (r = 0.93. The density of daphniids did not differ among the stations. The main objective of this study was to investigate how the distribution of toxic Microcystis blooms affects the antioxidant system of Daphnia. We examined catalase (CAT activity, the level of the low molecular weight antioxidant glutathione (GSH, glutathione S-transferase (GST activity and oxidative stress parameters, such as lipid peroxidation (LPO. We found that the higher the abundance (and toxicity of the cyanobacteria, the lower the values of the antioxidant parameters. The CAT activity and LPO level were always significantly lower at the station with the highest M. aeruginosa biomass, which indicated the low oxidative stress of D. longispina at the site with the potentially high toxic thread. However, the low concentration of GSH and the highest activity of GST indicated the occurrence of detoxification processes at this site. These results demonstrate that daphniids that have coexisted with a high biomass of toxic cyanobacteria have effective mechanisms that protect them against the toxic effects of microcystins. We also conclude that Daphnia's resistance capacity to Microcystis toxins may differ within an ecosystem, depending on the bloom

  4. LMFBR subassembly response to local pressure loadings: an experimental approach

    International Nuclear Information System (INIS)

    Marciniak, T.J.; Ash, J.E.; Marchertas, A.H.; Cagliostro, D.J.

    1975-01-01

    An experimental program to determine the response of LMFBR-type subassemblies to local subassembly accidents caused by pressure loadings is described. Some results are presented and compared with computer calculations

  5. Response of space shuttle insulation panels to acoustic noise pressure

    Science.gov (United States)

    Vaicaitis, R.

    1976-01-01

    The response of reusable space shuttle insulation panels to random acoustic pressure fields are studied. The basic analytical approach in formulating the governing equations of motion uses a Rayleigh-Ritz technique. The input pressure field is modeled as a stationary Gaussian random process for which the cross-spectral density function is known empirically from experimental measurements. The response calculations are performed in both frequency and time domain.

  6. Seismic reflection response from cross-correlations of ambient vibrations on non-conventional hidrocarbon reservoir

    Science.gov (United States)

    Huerta, F. V.; Granados, I.; Aguirre, J.; Carrera, R. Á.

    2017-12-01

    Nowadays, in hydrocarbon industry, there is a need to optimize and reduce exploration costs in the different types of reservoirs, motivating the community specialized in the search and development of alternative exploration geophysical methods. This study show the reflection response obtained from a shale gas / oil deposit through the method of seismic interferometry of ambient vibrations in combination with Wavelet analysis and conventional seismic reflection techniques (CMP & NMO). The method is to generate seismic responses from virtual sources through the process of cross-correlation of records of Ambient Seismic Vibrations (ASV), collected in different receivers. The seismic response obtained is interpreted as the response that would be measured in one of the receivers considering a virtual source in the other. The acquisition of ASV records was performed in northern of Mexico through semi-rectangular arrays of multi-component geophones with instrumental response of 10 Hz. The in-line distance between geophones was 40 m while in cross-line was 280 m, the sampling used during the data collection was 2 ms and the total duration of the records was 6 hours. The results show the reflection response of two lines in the in-line direction and two in the cross-line direction for which the continuity of coherent events have been identified and interpreted as reflectors. There is certainty that the events identified correspond to reflections because the time-frequency analysis performed with the Wavelet Transform has allowed to identify the frequency band in which there are body waves. On the other hand, the CMP and NMO techniques have allowed to emphasize and correct the reflection response obtained during the correlation processes in the frequency band of interest. The results of the processing and analysis of ASV records through the seismic interferometry method have allowed us to see interesting results in light of the cross-correlation process in combination with

  7. Reservoir characterization based on tracer response and rank analysis of production and injection rates

    Energy Technology Data Exchange (ETDEWEB)

    Refunjol, B.T. [Lagoven, S.A., Pdvsa (Venezuela); Lake, L.W. [Univ. of Texas, Austin, TX (United States)

    1997-08-01

    Quantification of the spatial distribution of properties is important for many reservoir-engineering applications. But, before applying any reservoir-characterization technique, the type of problem to be tackled and the information available should be analyzed. This is important because difficulties arise in reservoirs where production records are the only information for analysis. This paper presents the results of a practical technique to determine preferential flow trends in a reservoir. The technique is a combination of reservoir geology, tracer data, and Spearman rank correlation coefficient analysis. The Spearman analysis, in particular, will prove to be important because it appears to be insightful and uses injection/production data that are prevalent in circumstances where other data are nonexistent. The technique is applied to the North Buck Draw field, Campbell County, Wyoming. This work provides guidelines to assess information about reservoir continuity in interwell regions from widely available measurements of production and injection rates at existing wells. The information gained from the application of this technique can contribute to both the daily reservoir management and the future design, control, and interpretation of subsequent projects in the reservoir, without the need for additional data.

  8. Reservoir characterisation using process-response simulations : The Lower Cretaceous Rijn Field, West Netherlands Basin

    NARCIS (Netherlands)

    Alberts, L.J.H.; Geel, C.R.; Klasen, J.J.

    2003-01-01

    Petroleum geologists always need to deal with large gaps in data resolution and coverage during reservoir characterisation. Seismic data shows only large geological structures, whereas small-scale structures and reservoir properties can be observed only at well locations. In the area between wells,

  9. Modelling the hydromechanical response in the vicinity of the Koyna reservoir (India): results for the initial filling period

    Science.gov (United States)

    Gavrilenko, P.; Singh, Chandrani; Chadha, R. K.

    2010-10-01

    The seismic activity in the Koyna area is clearly related to the water impoundment of the Koyna dam in 1962, and has reached a remarkable level with the occurrence of a major event of magnitude 6.3 in 1967 December 10. We present a homogeneous poroelastic model based on analysis of the first eight years of seismicity, which aims to link the water-level fluctuations of the reservoir with the seismicity. Starting from a discretized lake, we calculate the stress field resulting from the water-level fluctuations and the pore pressure changes due to the undrained and the diffusive responses of the medium. Then, we compare the Coulomb stress variations with a set of relocated seismic events. We find that more than 80 per cent of the relocated events before the M6.3 event are well described by this poroelastic model, leading us to derive a suitable diffusivity cp = 0.2m2s-1. Then, we model the response of the system after the M6.3 event of 1967 December 10, by comparing the variation of the Coulomb stress field with the spatio-temporal characteristics of the relocated post-seismic events and the decay of aftershocks with time. We find that compared to before the main event a tenfold increase in hydraulic diffusivity is required to satisfactorily describe the aftershock decay with the appropriate Omori exponent. Although this increase in diffusivity may be physically related to the main shock we also note that events later than 9 months after the main shock are not well explained. We therefore propose an alternative hydrological model, which involves two compartments of contrasting diffusivities.

  10. Total gas pressure and biological response

    International Nuclear Information System (INIS)

    Powell, C.; Prince, A.

    1999-01-01

    The total gas pressure (TGP) is a possible threat to fish populations, having a potentially lethal effect on them, but if they dive below certain depths they can avoid these effects. The spatial and temporal depth distribution of adult rainbow trout in the Columbia River below the Hugh Keenleyside (HLK) Dam was monitored, and twenty one adult rainbow trout had depth sensitive electronic tags attached to them to allow their spatial and temporal depth behavior to be tracked and recorded. Nineteen of the fish were consistently relocated after release into the Columbia River, and fish were monitored during the numerous day and night 12 hour observation periods to provide a cross section of fish behavior. With a depth benchmark determined, an experiment was carried out to manipulate TGP production levels from the HLK dam and monitor the fish behavior. TGP levels were manipulated while keeping flows downstream of the dam constant. Two groups of fish were monitored and each group of fish was monitored continuously during the specific 12 hour observation periods within each experimental session. The first session recorded fish behavior when TGP was less than 110%, the second session when TGP was elevated to over 110%, and finally, when the TGP levels were lowered back below 110%. Neither temporal nor spatial fish behavior patterns of the rainbow trout monitored appeared to be influenced by the changes in TGP, compared to that of the benchmark observations. Fish continued to hold at and feed at, or within, a 5 m depth of the surface regardless of the TGP

  11. Understanding the True Stimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf

    2017-06-06

    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically-induced fractures that connect the wellbore to a larger fracture surface area within the reservoir rock volume. Thus, accurate estimation of the stimulated reservoir volume (SRV) becomes critical for the reservoir performance simulation and production analysis. Micro-seismic events (MS) have been commonly used as a proxy to map out the SRV geometry, which could be erroneous because not all MS events are related to hydraulic fracture propagation. The case studies discussed here utilized a fully 3-D simulation approach to estimate the SRV. The simulation approach presented in this paper takes into account the real-time changes in the reservoir\\'s geomechanics as a function of fluid pressures. It is consisted of four separate coupled modules: geomechanics, hydrodynamics, a geomechanical joint model for interfacial resolution, and an adaptive re-meshing. Reservoir stress condition, rock mechanical properties, and injected fluid pressure dictate how fracture elements could open or slide. Critical stress intensity factor was used as a fracture criterion governing the generation of new fractures or propagation of existing fractures and their directions. Our simulations were run on a Cray XC-40 HPC system. The studies outcomes proved the approach of using MS data as a proxy for SRV to be significantly flawed. Many of the observed stimulated natural fractures are stress related and very few that are closer to the injection field are connected. The situation is worsened in a highly laminated shale reservoir as the hydraulic fracture propagation is significantly hampered. High contrast in the in-situ stresses related strike-slip developed thereby shortens the extent of SRV. However, far field nature fractures that were not connected to

  12. Response of aquatic macrophyte biomass to limnological changes under water level fluctuation in tropical reservoirs

    Directory of Open Access Journals (Sweden)

    E. G. Moura Júnior

    2018-03-01

    Full Text Available Abstract We evaluated the response of the biomass of aquatic macrophytes under limnological changes after water level fluctuation (WLF of two tropical reservoirs (R1 and R2, located in northeastern Brazil. Initially we tested the hypothesis that post-WLF limnological conditions and biomass of macrophytes increase or decrease, depending on the variable or species. We monitored a 4 × 50 m permanent plot, in four expeditions per period (pre- or post-WLF, assessing species biomass and 10 limnological variables. We utilized 0.25 × 0.25 m quadrats for biomass. Once the effect of WLF in limnological variables and species biomass was confirmed, we utilized Canonical Correspondence Analysis to understand the relationship between limnological variables and species biomass. The abundant and/or dominant species in pre-WLF of R1 ( Pistia stratiotes, Eichhornia crassipes and Salvinia auriculata and R2 (Paspalidium geminatum and S. auriculata reduced their biomass post-WLF and were correlated with temperature, total phosphorous and nitrate. The reduced biomass of P. stratiotes, E. crassipes and S. auriculata in post-WLF widened resource availability, allowing coexistence of species. Therefore, we suggest that the change of limnological conditions in post-WLF in artificial lakes acts only as a moderator factor of the interspecific interaction (especially coexistence, without direct relation between these conditions and species biomass.

  13. Chemical Flooding in Heavy-Oil Reservoirs: From Technical Investigation to Optimization Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Si Le Van

    2016-09-01

    Full Text Available Heavy-oil resources represent a large percentage of global oil and gas reserves, however, owing to the high viscosity, enhanced oil recovery (EOR techniques are critical issues for extracting this type of crude oil from the reservoir. According to the survey data in Oil & Gas Journal, thermal methods are the most widely utilized in EOR projects in heavy oil fields in the US and Canada, and there are not many successful chemical flooding projects for heavy oil reported elsewhere in the world. However, thermal methods such as steam injection might be restricted in cases of thin formations, overlying permafrost, or reservoir depths over 4500 ft, for which chemical flooding becomes a better option for recovering crude oil. Moreover, owing to the considerable fluctuations in the oil price, chemical injection plans should be employed consistently in terms of either technical or economic viewpoints. The numerical studies in this work aim to clarify the predominant chemical injection schemes among the various combinations of chemical agents involving alkali (A, surfactant (S and polymer (P for specific heavy-oil reservoir conditions. The feasibilities of all potential injection sequences are evaluated in the pre-evaluation stage in order to select the most efficient injection scheme according to the variation in the oil price which is based on practical market values. Finally, optimization procedures in the post-evaluation stage are carried out for the most economic injection plan by an effective mathematic tool with the purpose of gaining highest Net Present Value (NPV of the project. In technical terms, the numerical studies confirm the predominant performances of sequences in which alkali-surfactant-polymer (ASP solution is injected after the first preflushing water whereby the recovery factor can be higher than 47%. In particular, the oil production performances are improved by injecting a buffering viscous fluid right after the first chemical slug

  14. Hydrological Response Unit Analysis Using AVSWAT 2000 for Keuliling Reservoir Watershed, Aceh Province, Indonesia

    Directory of Open Access Journals (Sweden)

    . Azmeri

    2015-04-01

    Full Text Available Sediments deposition derived from the erosion in upstream areas can lead to river siltation or canals downstream irrigation. According to the complexity of erosion problem at Keuliling reservoir, it is essential that topography, hydrology, soil type and land use to be analyzed comprehensively. Software used to analyze is AVSWAT 2000 (Arc View Soil and Water Assessment Tools-2000, one of the additional tool of ArcView program. The results obtained are the watershed delineation map, soil type map to produce soil erodibility factor (K which indicates the resistance of soil particles toward exfoliation, land use map to produce crop management factor (C and soil conservation and its management factors (P. Hydrology analysis includes soil type, land use and utility for the erosion rate analysis through Hydrologic Response Unit (HRU. The biggest HRU value of sub-basin is on area 5 and the lowest one is on area 10. All four HRU in sub-basin area 5 are potentially donating high value for HRU. In short, this area has the longest slope length so that it has a large LS factor. About 50% of the land was covered by bushes which gain higher C factor rather than forest. Moreover, it has contour crop conservation technique with 9-20 % declivity resulting in having dominant factor of P. Soil type is dominated by Meucampli Formation which has soil erodibility factor with high level of vulnerable toward the rainfall kinetic energy. All in all, the vast majority of HRU parameters in this sub-basin area obtain the highest HRU value. Hydrology analysis, soil type, and use-land are useful for land area analysis that is susceptible to erosion which was identified through Hydrologic Response Unit (HRU using GIS. As the matter of fact, spatially studies constructed with GIS can facilitate the agency to determine critical areas which are needed to be aware or fully rehabilitated.

  15. Response of littoral macrophytes to water level fluctuations in a storage reservoir

    Directory of Open Access Journals (Sweden)

    Krolová M.

    2013-05-01

    Full Text Available Lakes and reservoirs that are used for water supply and/or flow regulations have usually poorly developed littoral macrophyte communities, which impairs ecological potential in terms of the EU Water Framework Directive. The aim of our study was to reveal controlling factors for the growth of littoral macrophytes in a storage reservoir with fluctuating water level (Lipno Reservoir, Czech Republic. Macrophytes occurred in this reservoir only in the eulittoral zone i.e., the shoreline region between the highest and the lowest seasonal water levels. Three eulittoral sub-zones could be distinguished: the upper eulittoral with a stable community of perennial species with high cover, the middle eulittoral with relatively high richness of emergent and amphibious species present at low cover values, and the lower eulittoral devoid of permanent vegetation. Cover and species composition in particular sub-zones were primarily influenced by the duration and timing of flooding, followed by nutrient limitation and strongly reducing conditions in the flooded organic sediment. Our results stress the ecological importance of eulittoral zone in reservoirs with fluctuating water levels where macrophyte growth can be supported by targeted management of water level, thus helping reservoir managers in improving the ecological potential of this type of water bodies.

  16. Impact of Allogeneic Hematopoietic Stem Cell Transplantation on the HIV Reservoir and Immune Response in 3 HIV-Infected Individuals.

    Science.gov (United States)

    Koelsch, Kersten K; Rasmussen, Thomas A; Hey-Nguyen, William J; Pearson, Chester; Xu, Yin; Bailey, Michelle; Marks, Katherine H; Sasson, Sarah C; Taylor, Mark S; Tantau, Robyn; Obeid, Solange; Milner, Brad; Morrissey, Orla; Pinto, Angie N; Suzuki, Kazuo; Busch, Michael P; Keating, Sheila M; Kaiser, Philipp; Yukl, Steven; Wong, Joseph K; Hiener, Bonnie M; Palmer, Sarah; Zaunders, John; Post, Jeffrey J; Chan, Derek J; Avery, Sharon; Milliken, Sam T; Kelleher, Anthony D; Lewin, Sharon R; Cooper, David A

    2017-07-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) can lead to significant changes to the HIV reservoir and HIV immune responses, indicating that further characterization of HIV-infected patients undergoing HSCT is warranted. We studied 3 patients who underwent HSCT after either reduced intensity conditioning or myeloablative conditioning regimen. We measured HIV antigens and antibodies (Ag/Ab), HIV-specific CD4 T-cell responses, HIV RNA, and DNA in plasma, peripheral blood mononuclear cells, isolated CD4 T cells from peripheral blood, and lymph node cells. The patients remained on antiretroviral therapy throughout the follow-up period. All patients have been in continued remission for 4-6 years post-HSCT. Analyses of HIV RNA and DNA levels showed substantial reductions in HIV reservoir-related measurements in all 3 patients, changes in immune response varied with pronounced reductions in 2 patients and a less dramatic reduction in 1 patient. One patient experienced unexpected viral rebound 4 years after HSCT. These 3 cases highlight the substantial changes to the HIV reservoir and the HIV immune response in patients undergoing allogeneic HSCT. The viral rebound observed in 1 patient indicates that replication competent HIV can re-emerge several years after HSCT despite these marked changes.

  17. FOR STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Charles McCormick; Roger Hester

    2002-04-29

    verified the modeling capability of a simplified intrinsic viscosity equation. These results imply that the simplified intrinsic viscosity equation is adequate in modeling polymer coil size response to solvent composition, temperature and polymer molecular weight. The equation can be used to direct efforts to produce superior polymers for mobility control during flooding of reservoirs at elevated temperatures.

  18. The Intracranial Volume Pressure Response in Increased Intracranial Pressure Patients: Clinical Significance of the Volume Pressure Indicator.

    Science.gov (United States)

    Lai, Hung-Yi; Lee, Ching-Hsin; Lee, Ching-Yi

    2016-01-01

    For patients suffering from primary brain injury, monitoring intracranial pressure alone is not enough to reflect the dynamic intracranial condition. In our previous study, a segment of the pressure-volume curve can be expressed by the parabolic regression model with single indicator "a". The aim of this study is to evaluate if the indicator "a" can reflect intracranial conditions. Patients with traumatic brain injury, spontaneous intracranial hemorrhage, and/or hydrocephalus who had external ventricular drainage from January 2009 to February 2010 were included. The successive volume pressure response values were obtained by successive drainage of cerebral spinal fluid from intracranial pressure 20-25 mm Hg to 10 mm Hg. The relationship between withdrawn cerebral spinal fluid volume and intracranial pressure was analyzed by the parabolic regression model with single parameter "a". The overall mean for indicator "a" was 0.422 ± 0.046. The mean of "a" in hydrocephalus was 0.173 ± 0.024 and in severe intracranial mass with slender ventricle, it was 0.663 ± 0.062. The two extreme intracranial conditions had a statistical significant difference (ppressure-volume curve can reflect the dynamic intracranial condition and is comparable in different situations. A significantly larger indicator "a" with increased intracranial pressure is always observed in severe intracranial mass lesions with cerebral edema. A significantly smaller indicator "a" with increased intracranial pressure is observed in hydrocephalus. Brain computed tomography should be performed early if a rapid elevation of indicator "a" is detected, as it can reveal some ongoing intracranial pathology prior to clinical deterioration. Increased intracranial pressure was frequently observed in patients with intracranial pathology. The progression can be differentiated using the pattern of the volume pressure indicator.

  19. Hypertension, and blood pressure response to graded exercise in ...

    African Journals Online (AJOL)

    Hypertension, and blood pressure response to graded exercise in young obese and non- athletic Nigerian university students. ... onset of hypertension and thus other cardiovascular diseases and less tolerant to physical exercises. Our results add to the evidence that hypertension is common among obese young adults.

  20. Use of an Ethanol-Driven Pressure Cell to Measure Hydrostatic Pressure Response of Protein-Stabilized Gold Nanoclusters

    Science.gov (United States)

    2016-01-01

    ARL-TR-7577 ● JAN 2016 US Army Research Laboratory Use of an Ethanol -Driven Pressure Cell to Measure Hydrostatic Pressure...ARL-TR-7577 ● JAN 2016 US Army Research Laboratory Use of an Ethanol -Driven Pressure Cell to Measure Hydrostatic Pressure Response of...DATES COVERED (From - To) May 2014–September 2014 4. TITLE AND SUBTITLE Use of an Ethanol -Driven Pressure Cell to Measure Hydrostatic Pressure

  1. Wavenumber-frequency Spectra of Pressure Fluctuations Measured via Fast Response Pressure Sensitive Paint

    Science.gov (United States)

    Panda, J.; Roozeboom, N. H.; Ross, J. C.

    2016-01-01

    The recent advancement in fast-response Pressure-Sensitive Paint (PSP) allows time-resolved measurements of unsteady pressure fluctuations from a dense grid of spatial points on a wind tunnel model. This capability allows for direct calculations of the wavenumber-frequency (k-?) spectrum of pressure fluctuations. Such data, useful for the vibro-acoustics analysis of aerospace vehicles, are difficult to obtain otherwise. For the present work, time histories of pressure fluctuations on a flat plate subjected to vortex shedding from a rectangular bluff-body were measured using PSP. The light intensity levels in the photographic images were then converted to instantaneous pressure histories by applying calibration constants, which were calculated from a few dynamic pressure sensors placed at selective points on the plate. Fourier transform of the time-histories from a large number of spatial points provided k-? spectra for pressure fluctuations. The data provides first glimpse into the possibility of creating detailed forcing functions for vibro-acoustics analysis of aerospace vehicles, albeit for a limited frequency range.

  2. A numerical index for evaluating phytoplankton response to changes in nutrient levels in deep mediterranean reservoirs

    Directory of Open Access Journals (Sweden)

    Nicola SECHI

    2009-02-01

    Full Text Available This paper proposes a new ecological index based on phytoplankton (MedPTI as suggested by the European Directive 2000/60/CE, Water Framework Directive (WFD. The index is a useful tool to verify the impacts of eutrophication in Mediterranean reservoirs belonging to different categories of the WFD. Multiple data sets were employed to develop the MedPTI index. The calibration data set included data collected from 30 Sardinian reservoirs in 1994. A list of 44 selected taxa was obtained and used for index calculation. A second dataset including 48 averaged annual values from 10 reservoirs was used. Results showed good correlation between MedPTI and concentration of total phosphorus, which was the limiting nutrient in these reservoirs. The trophic classifications determined using the index agreed with the results from the OECD probabilistic model on the same series of data. Finally, the index was included in an international exercise to compare the definition of reference conditions and quality class boundaries against indices used in other Mediterranean countries.

  3. Operational design and pressure response of large-scale compressed air energy storage in porous formations

    Science.gov (United States)

    Wang, Bo; Bauer, Sebastian

    2017-04-01

    With the rapid growth of energy production from intermittent renewable sources like wind and solar power plants, large-scale energy storage options are required to compensate for fluctuating power generation on different time scales. Compressed air energy storage (CAES) in porous formations is seen as a promising option for balancing short-term diurnal fluctuations. CAES is a power-to-power energy storage, which converts electricity to mechanical energy, i.e. highly pressurized air, and stores it in the subsurface. This study aims at designing the storage setup and quantifying the pressure response of a large-scale CAES operation in a porous sandstone formation, thus assessing the feasibility of this storage option. For this, numerical modelling of a synthetic site and a synthetic operational cycle is applied. A hypothetic CAES scenario using a typical anticline structure in northern Germany was investigated. The top of the storage formation is at 700 m depth and the thickness is 20 m. The porosity and permeability were assumed to have a homogenous distribution with a value of 0.35 and 500 mD, respectively. According to the specifications of the Huntorf CAES power plant, a gas turbine producing 321 MW power with a minimum inlet pressure of 43 bars at an air mass flowrate of 417 kg/s was assumed. Pressure loss in the gas wells was accounted for using an analytical solution, which defines a minimum bottom hole pressure of 47 bars. Two daily extraction cycles of 6 hours each were set to the early morning and the late afternoon in order to bypass the massive solar energy production around noon. A two-year initial filling of the reservoir with air and ten years of daily cyclic operation were numerically simulated using the Eclipse E300 reservoir simulator. The simulation results show that using 12 wells the storage formation with a permeability of 500 mD can support the required 6-hour continuous power output of 321MW, which corresponds an energy output of 3852 MWh per

  4. Influence of clay and silica on permeability and capillary entry pressure of chalk reservoirs in the North Sea

    DEFF Research Database (Denmark)

    Røgen, Birte; Fabricius, Ida Lykke

    2002-01-01

    specific surface area. Fifty-nine Tor and Ekofisk Formation chalk samples from five North Sea chalk reservoirs were investigated. All contain quartz and clay minerals, most commonly kaolinite and smectite, with trace amounts of illite. The contents of calcite and quartz are inversely correlated and both...

  5. Petroleum reservoir data for testing simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, J.M.; Harrison, W.

    1980-09-01

    This report consists of reservoir pressure and production data for 25 petroleum reservoirs. Included are 5 data sets for single-phase (liquid) reservoirs, 1 data set for a single-phase (liquid) reservoir with pressure maintenance, 13 data sets for two-phase (liquid/gas) reservoirs and 6 for two-phase reservoirs with pressure maintenance. Also given are ancillary data for each reservoir that could be of value in the development and validation of simulation models. A bibliography is included that lists the publications from which the data were obtained.

  6. Cardiovascular responses of women to lower body negative pressure

    Science.gov (United States)

    Frey, M. A. B.; Mathes, K. L.; Hoffler, G. W.

    1986-01-01

    The effects of lower body negative pressure (LBNP) on the cardiovascular response of 20 women between 23-43 years are evaluated. Calf circumference and cardiovascular data were recorded for women in the follicular and luteal phases of the menstrual cycle at -30, -40, and -50 mm Hg LBNP. The data reveal that the two menstrual phases did not cause differences in the way women respond to LBNP. It is observed that during LBNP calf circumference is enlarged; transthoracic impedance, and heart rate are increased; stroke volume, left ventricular ejection time, the Heather Index of contractility and systolic pressure, and cardiac output are reduced; and total peripheral resistance is elevated. The experimental data are compared to Montgomery et al. (1979). It is noted that the response of women to -50 mm Hg LBNP is similar to that of men; however, women adapt to stresses on the cardiovascular system with greater heart rate adjustments.

  7. A coupled FE and scaled boundary FE-approach for the earthquake response analysis of arch dam-reservoir-foundation system

    International Nuclear Information System (INIS)

    Wang Yi; Lin Gao; Hu Zhiqiang

    2010-01-01

    For efficient and accurate modelling of arch dam-reservoir-foundation system a coupled Finite Element method (FEM) and Scaled Boundary Finite Element method (SBFEM) is developed. Both the dam-foundation interaction and the dam-reservoir interaction including the effect of reservoir boundary absorption are taken into account. The arch dam is modelled by FEM, while the reservoir domain and the unbounded foundation are modelled by SBFEM. In order to make comparison with the results available in the literature, the Morrow Point arch dam is selected for numerical analysis. The analyses are carried out in the frequency domain, and then the time-domain response of the dam-reservoir-foundation system is obtained by Inverse Fourier Transform.

  8. Reservoir-Scale Biological Community Response to Trace Element Additions in a Northern Montana Oil Field

    Science.gov (United States)

    Connors, D. E.; Bradfish, J.; DeBruyn, R. P.; Zemetra, J.; Mitchell, H.

    2017-12-01

    In subsurface oil bearing formations, microbial growth and metabolism is restricted due to a lack of elements other than carbon, hydrogen, and oxygen required for cell structure and as cofactors. A chemical treatment that adds these elements back into the formation was deployed into an oil reservoir in Northern Montana, with the intent of increasing biogenic methane generation. Samples of water from producing wells in the reservoir were collected anaerobically, and analyzed for geochemical content, and cells from the water were collected and analyzed via 16S rRNA gene DNA sequencing to determine the makeup of the microbial community over the course of twelve months of treatment, and for two years after. Prior to chemical treatment, this reservoir was depleted in elements required for enzyme co-factors in the methanogenesis metabolic pathway (Co, Mo, Ni, W, Zn) as well as nitrogen and phosphorus. Most the microbial community was composed of chemoheterotrophic bacteria associated with the biodegradation of large carbon molecules, with a small community of acetoclastic methanogens. During and after additions of the depleted elements, the metabolism of the community in the reservoir shifted towards chemoautotrophs and hydrogenotrophic methanogens, and the cell density increased. After treatment was ended, cell counts stabilized at a new equilibrium concentration, and the autotrophic metabolism was maintained. The pre-treatment community was dependent on energy input from solubilized oil molecules, whereas the post-treatment community more effectively utilized dissolved organics and carbon dioxide as carbon sources for fixation and respiration. This study demonstrates the capability of microbial communities to rapidly reorganize in the environment when provided with an influx of the elements required for growth and metabolism.

  9. Investigating Multiphase Flow Phenomena in Fine-Grained Reservoir Rocks: Insights from Using Ethane Permeability Measurements over a Range of Pore Pressures

    Directory of Open Access Journals (Sweden)

    Eric Aidan Letham

    2018-01-01

    Full Text Available The ability to quantify effective permeability at the various fluid saturations and stress states experienced during production from shale oil and shale gas reservoirs is required for efficient exploitation of the resources, but to date experimental challenges prevent measurement of the effective permeability of these materials over a range of fluid saturations. To work towards overcoming these challenges, we measured effective permeability of a suite of gas shales to gaseous ethane over a range of pore pressures up to the saturated vapour pressure. Liquid/semiliquid ethane saturation increases due to adsorption and capillary condensation with increasing pore pressure resulting in decreasing effective permeability to ethane gas. By how much effective permeability to ethane gas decreases with adsorption and capillary condensation depends on the pore size distribution of each sample and the stress state that effective permeability is measured at. Effective permeability decreases more at higher stress states because the pores are smaller at higher stress states. The largest effective permeability drops occur in samples with dominant pore sizes in the mesopore range. These pores are completely blocked due to capillary condensation at pore pressures near the saturated vapour pressure of ethane. Blockage of these pores cuts off the main fluid flow pathways in the rock, thereby drastically decreasing effective permeability to ethane gas.

  10. Pavement Response to Variable Tyre Pressure of Heavy Vehicles

    Directory of Open Access Journals (Sweden)

    Arshad Ahmad Kamil

    2016-01-01

    Full Text Available In recent years, the effect of overinflated tyre pressure and increased heavy vehicles’ axle load on flexible pavements has become a subject of great concern because of the higher stress levels induced and damage caused to road pavements. This paper aims to evaluate the effect of variable tyre inflation pressures (using actual tyre contact/footprint area to determine the responses of flexible pavement. A full scale experiment was conducted on a heavy vehicle with 1:1:2 axle configuration, 10 R 20 tyre size and attached trailer with constant axle load. Measurements were made for actual tyre-pavement contact area. KENPAVE linear elastic program was then used to analyse the effects of the measured actual tyre-pavement contact area and the results was compared using conventional circular tyre contact area. A comparative analysis was then made between the actual contact area and the conventional circular tyre contact area. It was found that high tyre inflation pressure produce smaller contact area, giving more detrimental effect on the flexible pavement. It was also found that the temperature of tyres when the heavy vehicles are operational give less significant impact on tyre inflation pressure for the Malaysian climate.

  11. Mechanisms and pharmacogenetic signals underlying thiazide diuretics blood pressure response.

    Science.gov (United States)

    Shahin, Mohamed H; Johnson, Julie A

    2016-04-01

    Thiazide (TZD) diuretics are among the most commonly prescribed antihypertensives globally; however their chronic blood pressure (BP) lowering mechanism remains unclear. Herein we discuss the current evidence regarding specific mechanisms regulating the antihypertensive effects of TZDs, suggesting that TZDs act via multiple complex and interacting mechanisms, including natriuresis with short term use and direct vasodilatory effects chronically. Additionally, we review pharmacogenomics signals that have been associated with TZDs BP-response in several cohorts (i.e. NEDD4L, PRKCA, EDNRA-GNAS, and YEATS4) and discuss how these genes might be related to TZD BP-response mechanism. Understanding the association between these genes and TZD BP mechanism might facilitate the development of new drugs and therapeutic approaches based on a deeper understanding of the determinants of BP-response. Copyright © 2016. Published by Elsevier Ltd.

  12. Pressurized water-reactor feedwater piping response to water hammer

    International Nuclear Information System (INIS)

    Arthur, D.

    1978-03-01

    The nuclear power industry is interested in steam-generator water hammer because it has damaged the piping and components at pressurized water reactors (PWRs). Water hammer arises when rapid steam condensation in the steam-generator feedwater inlet of a PWR causes depressurization, water-slug acceleration, and slug impact at the nearest pipe elbow. The resulting pressure pulse causes the pipe system to shake, sometimes violently. The objective of this study is to evaluate the potential structural effects of steam-generator water hammer on feedwater piping. This was accomplished by finite-element computation of the response of two sections of a typical feedwater pipe system to four representative water-hammer pulses. All four pulses produced high shear and bending stresses in both sections of pipe. Maximum calculated pipe stresses varied because the sections had different characteristics and were sensitive to boundary-condition modeling

  13. Blood Pressure Response during Cardiopulmonary Exercise Testing in Heart Failure.

    Science.gov (United States)

    Il'Giovine, Zachary J; Solomon, Nicole; DeVore, Adam D; Wojdyla, Daniel; Patel, Chetan B; Rogers, Joseph G

    2018-02-21

    The prognostic value of peak VO2 and VE/VCO2 slope measured during cardiopulmonary exercise (CPX) testing has been well established in patients with advanced heart failure, but blood pressure response to exercise is less well characterized. We retrospectively studied 151 outpatients who underwent CPX testing as part of an advanced heart failure (HF) evaluation. The outcome of interest was failure of medical management, defined by death, cardiac transplantation, or left ventricular assist device placement. Patients were stratified into tertiles by change in systolic blood pressure (SBP) ( 20 mmHg were associated with an increased hazard (HR 1.046, 95% CI 1.018, 1.075). In conclusion, changes in SBP during CPX testing provide additional prognostic information above standard clinical variables. The peculiar increase in risk noted in those with a rise in SBP > 20 mmHg is less clear and needs to be investigated further.

  14. Displacement response of a concrete arch dam to seasonal temperature fluctuations and reservoir level rise during the first filling period: evidence from geodetic data

    OpenAIRE

    Cemal Ozer Yigit; Salih Alcay; Ayhan Ceylan

    2016-01-01

    The present study evaluates the dynamic behaviour of the Ermenek Dam, the second highest dam in Turkey, based on conventional geodetic measurements and Finite Element Model (FEM) analyses during its first filling period. In total, eight periods of measured deformation are considered from the end of construction until the reservoir reached its full capacity. The displacement response of the dam to the reservoir level and to seasonal temperature variations is examined in detail. Time series of ...

  15. Hypertensive response to raised intracranial pressure in infancy.

    OpenAIRE

    Kaiser, A M; Whitelaw, A G

    1988-01-01

    Mean arterial pressure and intracranial pressure were measured serially in six infants with intracranial hypertension (intracranial pressure greater than 20 mm Hg), and cerebral perfusion pressure was calculated from their difference. Overall, mean arterial pressure increased with rising intracranial pressure at a mean rate of 0.20 mm Hg/mm Hg. This caused a fall in cerebral perfusion pressure with increasing intracranial pressure at a mean rate of 0.80 mm Hg/mm Hg overall, although cerebral ...

  16. Decoupling Analysis on Pressure Fluctuation and Needle Valve Response for High Pressure Common Rail Injector

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2017-01-01

    Full Text Available In the process of multiple injections, the influence of different injections makes the controlling of cycle fuel injection quantity more difficult. The high pressure common rail (HPCR simulation model is established in AMESim environment. Through the method of combining numerical simulation and experiment test, it is found that the strong coupling of pressure fluctuation and needle valve response is the fundamental reason, which leads to the fluctuation of main injection fuel quantity (MIFQ with dwell time (DT. The result shows that the largest fluctuation quantity is 3.6mm3 when the reference value of main injection is 60.0mm3. Non-damping LC hydraulic system model is also established. Through the analysis of the model, reducing the length-diameter ratio of internal oil duct and the delivery chamber volume are decoupling methods to the strong coupling.

  17. Well testing in gas hydrate reservoirs

    OpenAIRE

    Kome, Melvin Njumbe

    2015-01-01

    Reservoir testing and analysis are fundamental tools in understanding reservoir hydraulics and hence forecasting reservoir responses. The quality of the analysis is very dependent on the conceptual model used in investigating the responses under different flowing conditions. The use of reservoir testing in the characterization and derivation of reservoir parameters is widely established, especially in conventional oil and gas reservoirs. However, with depleting conventional reserves, the ...

  18. Phytoplankton Composition and Abundance in Restored Maltański Reservoir under the Influence of Physico-Chemical Variables and Zooplankton Grazing Pressure

    Science.gov (United States)

    Kozak, Anna; Gołdyn, Ryszard; Dondajewska, Renata

    2015-01-01

    In this paper we present the effects of environmental factors and zooplankton food pressure on phytoplankton in the restored man-made Maltański Reservoir (MR). Two methods of restoration: biomanipulation and phosphorus inactivation have been applied in the reservoir. Nine taxonomical groups of phytoplankton represented in total by 183 taxa were stated there. The richest groups in respect of taxa number were green algae, cyanobacteria and diatoms. The diatoms, cryptophytes, chrysophytes, cyanobacteria, green algae and euglenophytes dominated in terms of abundance and/or biomass. There were significant changes among environmental parameters resulting from restoration measures which influenced the phytoplankton populations in the reservoir. These measures led to a decrease of phosphorus concentration due to its chemical inactivation and enhanced zooplankton grazing as a result of planktivorous fish stocking. The aim of the study is to analyse the reaction of phytoplankton to the restoration measures and, most importantly, to determine the extent to which the qualitative and quantitative composition of phytoplankton depends on variables changing under the influence of restoration in comparison with other environmental variables. We stated that application of restoration methods did cause significant changes in phytoplankton community structure. The abundance of most phytoplankton taxa was negatively correlated with large zooplankton filter feeders, and positively with zooplankton predators and concentrations of ammonium nitrogen and partly of phosphates. However, restoration was insufficient in the case of decreasing phytoplankton abundance. The effects of restoration treatments were of less importance for the abundance of phytoplankton than parameters that were independent of the restoration. This was due to the continuous inflow of large loads of nutrients from the area of the river catchment. PMID:25906352

  19. Responses of Microbial Community Composition to Temperature Gradient and Carbon Steel Corrosion in Production Water of Petroleum Reservoir

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Li

    2017-12-01

    Full Text Available Oil reservoir production systems are usually associated with a temperature gradient and oil production facilities frequently suffer from pipeline corrosion failures. Both bacteria and archaea potentially contribute to biocorrosion of the oil production equipment. Here the response of microbial populations from the petroleum reservoir to temperature gradient and corrosion of carbon steel coupons were investigated under laboratory condition. Carbon steel coupons were exposed to production water from a depth of 1809 m of Jiangsu petroleum reservoir (China and incubated for periods of 160 and 300 days. The incubation temperatures were set at 37, 55, and 65°C to monitoring mesophilic, thermophilic and hyperthermophilic microorganisms associated with anaerobic carbon steel corrosion. The results showed that corrosion rate at 55°C (0.162 ± 0.013 mm year-1 and 37°C (0.138 ± 0.008 mm year-1 were higher than that at 65°C (0.105 ± 0.007 mm year-1, and a dense biofilm was observed on the surface of coupons under all biotic incubations. The microbial community analysis suggests a high frequency of bacterial taxa associated with families Porphyromonadaceae, Enterobacteriaceae, and Spirochaetaceae at all three temperatures. While the majority of known sulfate-reducing bacteria, in particular Desulfotignum, Desulfobulbus and Desulfovibrio spp., were predominantly observed at 37°C; Desulfotomaculum spp., Thermotoga spp. and Thermanaeromonas spp. as well as archaeal members closely related to Thermococcus and Archaeoglobus spp. were substantially enriched at 65°C. Hydrogenotrophic methanogens of the family Methanobacteriaceae were dominant at both 37 and 55°C; acetoclastic Methanosaeta spp. and methyltrophic Methanolobus spp. were enriched at 37°C. These observations show that temperature changes significantly alter the microbial community structure in production fluids and also affected the biocorrosion of carbon steel under anaerobic conditions.

  20. [Response of Algae to Nitrogen and Phosphorus Concentration and Quantity of Pumping Water in Pumped Storage Reservoir].

    Science.gov (United States)

    Wan, You-peng; Yin, Kui-hao; Peng, Sheng-hua

    2015-06-01

    Taking a pumped storage reservoir located in southern China as the research object, the paper established a three-dimensional hydrodynamic and eutrophication model of the reservoir employing EFDC (environmental fluid dynamics code) model, calibrated and verified the model using long-term hydraulic and water quality data. Based on the model results, the effects of nitrogen and phosphorus concentrations on the algae growth were analyzed, and the response of algae to nitrogen and phosphorus concentration and quantity of pumping water was also calculated. The results showed that the nitrogen and phosphorus concentrations had little limit on algae growth rate in the reservoir. In the nutrients reduction scenarios, reducing phosphorus would gain greater algae biomass reduction than reducing nitrogen. When reducing 60 percent of nitrogen, the algae biomass did not decrease, while 12.4 percent of algae biomass reduction could be gained with the same reduction ratio of phosphorus. When the reduction ratio went to 90 percent, the algae biomass decreased by 17.9 percent and 35.1 percent for nitrogen and phosphorus reduction, respectively. In the pumping water quantity regulation scenarios, the algae biomass decreased with the increasing pumping water quantity when the pumping water quantity was greater than 20 percent of the current value; when it was less than 20 percent, the algae biomass increased with the increasing pumping water quantity. The algae biomass decreased by 25.7 percent when the pumping water quantity was doubled, and increased by 38.8 percent when it decreased to 20 percent. The study could play an important role in supporting eutrophication controlling in water source area.

  1. Physical fitness and cardiovascular response to lower body negative pressure

    Science.gov (United States)

    Raven, P. B.; Rohm-Young, D.; Blomqvist, C. G.

    1984-01-01

    Klein et al. (1977) have questioned the concept of endurance training as an appropriate means of preparing for prolonged space flights. Their opinion was mainly based on reports of endurance athletes who had a decreased tolerance to orthostatic or gravitational stress induced by lower body negative pressure (LBNP), upright tilt, or whole body water immersion. The present investigation had the objective to determine if the hemodynamic response to LBNP is different between a high and average fit group of subjects. In addition, the discrete aspect of cardiovascular function which had been altered by chronic training was to be identified. On the basis of the results of experiments conducted with 14 young male volunteers, it is concluded that the reflex response to central hypovolemia is altered by endurance exercise training.

  2. A direct method for determining complete positive and negative capillary pressure curves for reservoir rock using the centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Spinler, E.A.; Baldwin, B.A. [Phillips Petroleum Co., Bartlesville, OK (United States)

    1997-08-01

    A method is being developed for direct experimental determination of capillary pressure curves from saturation distributions produced during centrifuging fluids in a rock plug. A free water level is positioned along the length of the plugs to enable simultaneous determination of both positive and negative capillary pressures. Octadecane as the oil phase is solidified by temperature reduction while centrifuging to prevent fluid redistribution upon removal from the centrifuge. The water saturation is then measured via magnetic resonance imaging. The saturation profile within the plug and the calculation of pressures for each point of the saturation profile allows for a complete capillary pressure curve to be determined from one experiment. Centrifuging under oil with a free water level into a 100 percent water saturated plug results in the development of a primary drainage capillary pressure curve. Centrifuging similarly at an initial water saturation in the plug results in the development of an imbibition capillary pressure curve. Examples of these measurements are presented for Berea sandstone and chalk rocks.

  3. Interaction of bovine peripheral blood polymorphonuclear cells and Leptospira species; innate responses in the natural bovine reservoir host.

    Science.gov (United States)

    Cattle are the reservoir hosts of Leptospira borgpetersenii serovar Hardjo, and also be reservoir hosts of other Leptospira species such as L. kirschneri, and L. interrogans. As a reservoir host, cattle shed Leptospira, infecting other animals, including humans. Previous studies with human and murin...

  4. Responses of spatial-temporal dynamics of bacterioplankton community to large-scale reservoir operation: a case study in the Three Gorges Reservoir, China

    OpenAIRE

    Li, Zhe; Lu, Lunhui; Guo, Jinsong; Yang, Jixiang; Zhang, Jiachao; He, Bin; Xu, Linlin

    2017-01-01

    Large rivers are commonly regulated by damming, yet the effects of such disruption on bacterioplankton community structures have not been adequately studied. The aim of this study was to explore the biogeographical patterns present under dam regulation and to uncover the major drivers structuring bacterioplankton communities. Bacterioplankton assemblages in the Three Gorges Reservoir (TGR) were analyzed using Illumina Miseq sequencing by comparing seven sites located within the TGR before and...

  5. APPLICATION OF INTEGRATED RESERVOIR MANAGEMENT AND RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jack Bergeron; Tom Blasingame; Louis Doublet; Mohan Kelkar; George Freeman; Jeff Callard; David Moore; David Davies; Richard Vessell; Brian Pregger; Bill Dixon; Bryce Bezant

    2000-03-01

    Reservoir performance and characterization are vital parameters during the development phase of a project. Infill drilling of wells on a uniform spacing, without regard to characterization does not optimize development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, especially carbonate reservoirs. These reservoirs are typically characterized by: (1) large, discontinuous pay intervals; (2) vertical and lateral changes in reservoir properties; (3) low reservoir energy; (4) high residual oil saturation; and (5) low recovery efficiency. The operational problems they encounter in these types of reservoirs include: (1) poor or inadequate completions and stimulations; (2) early water breakthrough; (3) poor reservoir sweep efficiency in contacting oil throughout the reservoir as well as in the nearby well regions; (4) channeling of injected fluids due to preferential fracturing caused by excessive injection rates; and (5) limited data availability and poor data quality. Infill drilling operations only need target areas of the reservoir which will be economically successful. If the most productive areas of a reservoir can be accurately identified by combining the results of geological, petrophysical, reservoir performance, and pressure transient analyses, then this ''integrated'' approach can be used to optimize reservoir performance during secondary and tertiary recovery operations without resorting to ''blanket'' infill drilling methods. New and emerging technologies such as geostatistical modeling, rock typing, and rigorous decline type curve analysis can be used to quantify reservoir quality and the degree of interwell communication. These results can then be used to develop a 3-D simulation model for prediction of infill locations. The application of reservoir surveillance techniques to identify additional reservoir ''pay'' zones

  6. Response of phytoplankton to an experimental fish culture in net cages in a subtropical reservoir.

    Science.gov (United States)

    Bartozek, E C R; Bueno, N C; Feiden, A; Rodrigues, L C

    2016-01-01

    This study aimed to evaluate nutrients concentration and spatial-temporal changes in phytoplankton biovolume during an experimental fish culture in net cages in a lateral arm of Salto Caxias reservoir, Brazil. Two sampling stations were placed in the affected lateral arm and other two in a cageless lateral arm. Neither abiotic variables nor phytoplankton biovolume presented significant differences between the treatments. Only temporal changes were confirmed by the analysis performed. Both lateral arms were classified as oligotrophic, reflecting low influence of the net cages. Phytoplankton growth seems to be limited by nitrogen. Biovolume values were, in general, low and five major functional groups were recognized (E, F, G, K and P). In summer higher biovolume values were observed and representatives of Chlorophyceae and Cyanobacteria belonging to the functional groups F and K, respectively, were the most important. In winter phytoplankton was mainly composed by Bacillariophyceae taxa from P group. G group was also restricted to winter and E group occurred in winter and summer. The variations recorded in phytoplankton structure appear to have been mainly influenced by seasonal changes in temperature, precipitation and nutrients availability. The effects of net cages on the abiotic variables and phytoplankton biovolume appear to have been small, probably due to the small number of net cages employed and the system dilution capacity. However, a permanent monitoring of phytoplankton is recommended, since this environment has a carrying capacity, from which the trophic state may increase.

  7. BWR/5 Pressure-Suppression Pool Response during an SBO

    Directory of Open Access Journals (Sweden)

    Javier Ortiz-Villafuerte

    2013-01-01

    Full Text Available RELAP/SCDAPSIM Mod 3.4 has been used to simulate a station blackout occurring at a BWR/5 power station. Further, a simplified model of a wet well and dry well has been added to the NSSS model to study the response of the primary containment during the evolution of this accident. The initial event leading to severe accident was considered to be a LOOP with simultaneous scram. The results show that RCIC alone can keep the core fully covered, but even in this case about 30% of the original liquid water inventory in the PSP is vaporized. During the SBO, without RCIC, this inventory is reduced about 5% more within six hours. Further, a significant pressure rise occurs in containment at about the time when a sharp increase of heat generation occurs in RPV due to cladding oxidation. Failure temperature of fuel clad is also reached at this point. As the accident progresses, conditions for containment venting can be reached in about nine hours, although there still exists considerable margin before reaching containment design pressure. Detailed information of accident progress in reactor vessel and containment is presented and discussed.

  8. Interaction of bovine peripheral blood polymorphonuclear cells and Leptospira species; innate responses in the natural bovine reservoir host.

    Directory of Open Access Journals (Sweden)

    Jennifer H Wilson-Welder

    2016-07-01

    Full Text Available Cattle are the reservoir hosts of Leptospira borgpetersenii serovar Hardjo, and can also be reservoir hosts of other Leptospira species such as L. kirschneri, and L. interrogans. As a reservoir host, cattle shed Leptospira, infecting other animals, including humans. Previous studies with human and murine neutrophils have shown activation of neutrophil extracellular trap or NET formation, and upregulation of inflammatory mediators by neutrophils in the presence of Leptospira. Humans, companion animals and most widely studied models of Leptospirosis are of acute infection, hallmarked by systemic inflammatory response, neutrophilia and septicemia. In contrast, cattle exhibit chronic infection with few outward clinical signs aside from reproductive failure. Taking into consideration that there is host species variation in innate immunity, especially in pathogen recognition and response, the interaction of bovine peripheral blood polymorphonuclear cells (PMNs and several Leptospira strains was evaluated. Studies including bovine-adapted strains, human pathogen strains, a saprophyte and inactivated organisms. Incubation of PMNs with Leptospira did induce slight activation of neutrophil NETs, greater than unstimulated cells but less than the quantity from E. coli P4 stimulated PMNs. Very low but significant from non-stimulated, levels of reactive oxygen peroxides were produced in the presence of all Leptospira strains and E. coli P4. Similarly, significant levels of reactive nitrogen intermediaries (NO2 was produced from PMNs when incubated with the Leptospira strains and greater quantities in the presence of E. coli P4. PMNs incubated with Leptospira induced RNA transcripts of IL-1β, MIP-1α, and TNF-α, with greater amounts induced by live organisms when compared to heat-inactivated leptospires. Transcript for inflammatory cytokine IL-8 was also induced, at similar levels regardless of Leptospira strain or viability. However, incubation of

  9. Displacement response of a concrete arch dam to seasonal temperature fluctuations and reservoir level rise during the first filling period: evidence from geodetic data

    Directory of Open Access Journals (Sweden)

    Cemal Ozer Yigit

    2016-07-01

    Full Text Available The present study evaluates the dynamic behaviour of the Ermenek Dam, the second highest dam in Turkey, based on conventional geodetic measurements and Finite Element Model (FEM analyses during its first filling period. In total, eight periods of measured deformation are considered from the end of construction until the reservoir reached its full capacity. The displacement response of the dam to the reservoir level and to seasonal temperature variations is examined in detail. Time series of apparent total displacements at the middle of the crest of the dam exhibits periodicity and linear trends. Correlation analysis revealed that periodic and linear displacement responses of the dam are related to variations of seasonal temperature and linearly increased reservoir level, respectively, indicating a relation between temperature, water load and dam deformation. It is also concluded that measured deformations based on geodetic data show good agreement with the predicted deformation obtained by the FEM analysis.

  10. Normal values of pulmonary capillary wedge pressure and the blood pressure response to the Valsalva manoeuvre in healthy elderly subjects.

    NARCIS (Netherlands)

    Remmen, J.J.; Aengevaeren, W.R.M.; Verheugt, F.W.A.; Jansen, R.W.M.M.

    2005-01-01

    The blood pressure response to the Valsalva manoeuvre is related to pulmonary capillary wedge pressure (PCWP) and can be used to diagnose heart failure. However, this has never been studied specifically in the elderly, in whom the prevalence of heart failure is highest. Furthermore, normal values of

  11. Field demonstration of an active reservoir pressure management through fluid injection and displaced fluid extractions at the Rock Springs Uplift, a priority geologic CO2 storage site for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zunsheng [Univ. of Wyoming, Laramie, WY (United States)

    2017-04-05

    This report provides the results from the project entitled Field Demonstration of Reservoir Pressure Management through Fluid Injection and Displaced Fluid Extraction at the Rock Springs Uplift, a Priority Geologic CO2 Storage Site for Wyoming (DE-FE0026159 for both original performance period (September 1, 2015 to August 31, 2016) and no-cost extension (September 1, 2016 to January 6, 2017)).

  12. Blood Pressure Response to Submaximal Exercise Test in Adults

    Directory of Open Access Journals (Sweden)

    Katarzyna Wielemborek-Musial

    2016-01-01

    Full Text Available Background. The assessment of blood pressure (BP response during exercise test is an important diagnostic instrument in cardiovascular system evaluation. The study aim was to determine normal values of BP response to submaximal, multistage exercise test in healthy adults with regard to their age, gender, and workload. Materials and Methods. The study was conducted in randomly selected normotensive subjects (n=1015, 512 females and 498 males, aged 18–64 years (mean age 42.1 ± 12.7 years divided into five age groups. All subjects were clinically healthy with no chronic diseases diagnosed. Exercise stress tests were performed using Monark bicycle ergometer until a minimum of 85% of physical capacity was reached. BP was measured at rest and at peak of each exercise test stage. Results. The relations between BP, age, and workload during exercise test were determined by linear regression analysis and can be illustrated by the equations: systolic BP (mmHg = 0.346 × load (W + 135.76 for males and systolic BP (mmHg = 0.103 × load (W + 155.72 for females. Conclusions. Systolic BP increases significantly and proportionally to workload increase during exercise test in healthy adults. The relation can be described by linear equation which can be useful in diagnostics of cardiovascular diseases.

  13. Analysis of the pressure response of high angle multiple (HAM) fractures intersecting a welbore; Kokeisha multi fracture (HAM) kosei ni okeru atsuryoku oto kaiseki ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ujo, S.; Osato, K. [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Arihara, N. [Waseda University, Tokyo (Japan); Schroeder, R.

    1996-05-01

    This paper reports pressure response analysis on wells piercing a high angle multi (HAM) fracture model. In this model which is defined on a three-dimensional space, a plurality of slanted fractures intersect with wells at high angles (however, intersection of fractures with each other is not considered). With respect to the pressure response analysis method using this model, the paper presents a basic differential equation on pressure drawdown and boundary conditions in the wells taking flows in the fractures pseudo-linear, as well as external boundary conditions in calculation regions (a reservoir spreads to an infinite distance, and its top and bottom are closed by non-water permeating beds). The paper also indicates that results of calculating a single vertical fracture model and a slanted fracture model by using a numerical computation program (MULFRAC) based on the above equations agree well respectively with the existing calculation results (calculations performed by Erlougher and Cinco et al). 5 refs., 6 figs.

  14. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neutral reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  15. FOR STIMUL-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Charles McCormick; Roger Hester

    2004-03-26

    suggest that the two dimensionless groups are indeed related by a universal constant. This model has identified the parameters that are important to fluid mobility, thereby revealing methods to enhance solution performance when using polyions solutions as displacing fluids in oil reservoirs.

  16. Advantageous Reservoir Characterization Technology in Extra Low Permeability Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Yutian Luo

    2017-01-01

    Full Text Available This paper took extra low permeability reservoirs in Dagang Liujianfang Oilfield as an example and analyzed different types of microscopic pore structures by SEM, casting thin sections fluorescence microscope, and so on. With adoption of rate-controlled mercury penetration, NMR, and some other advanced techniques, based on evaluation parameters, namely, throat radius, volume percentage of mobile fluid, start-up pressure gradient, and clay content, the classification and assessment method of extra low permeability reservoirs was improved and the parameter boundaries of the advantageous reservoirs were established. The physical properties of reservoirs with different depth are different. Clay mineral variation range is 7.0%, and throat radius variation range is 1.81 μm, and start pressure gradient range is 0.23 MPa/m, and movable fluid percentage change range is 17.4%. The class IV reservoirs account for 9.56%, class II reservoirs account for 12.16%, and class III reservoirs account for 78.29%. According to the comparison of different development methods, class II reservoir is most suitable for waterflooding development, and class IV reservoir is most suitable for gas injection development. Taking into account the gas injection in the upper section of the reservoir, the next section of water injection development will achieve the best results.

  17. Response of tertiary centres to pressure changes. Is there a mechano-electrical association?

    Science.gov (United States)

    Sideris, D A; Toumanidis, S T; Kostis, E B; Stagiannis, K; Spyropoulos, G; Moulopoulos, S D

    1990-01-01

    To investigate the mechanism of pressure related ventricular arrhythmias by examining them during atrioventricular (AV) block. Complete AV block, where all ventricular beats are ectopic, was induced by AV node ablation and/or by toxic digitalisation, and rhythm changes were studied while arterial blood pressure was repeatedly raised and lowered. 15 anaesthetised mongrel dogs, weight 15-28 kg, were used. AV block was induced in eight by chemical or mechanical ablation of the AV node. In five of these and in seven other dogs, 5.0-7.5 mg digoxin was also given. Following AV block due to ablation, a heart rate increase (or no change) was found in 87.5% of 56 arterial pressure increases produced by elevation of an open arterial blood reservoir or by metaraminol infusion, but in only 21.8% of 55 pressure decreases caused by arterial bleeding (p much less than 0.001). Following AV block due to digitalisation, the equivalent figures were 96% of 50 pressure increases and 27.3% of 55 pressure decreases (p much less than 0.001). While arterial pressure was increased there was moderate acceleration of the escape rhythm, then appearance of premature ventricular beats, then non-sustained and finally sustained ventricular tachycardia. The reverse occurred, with some hysteresis, on decreasing the arterial pressure. In five of the digitalised animals, arterial pressure reduction to nearly zero caused reproducible sudden arrest, with resumption of the ordinary escape rhythm on increasing the pressure again. The findings suggest the possibility of two kinds of ectopic rhythm in AV block: the "normal" escape rhythm which is only moderately affected by arterial pressure changes; and an "abnormal" faster pressure dependent rhythm which is generated by high arterial pressure and abolished by pressure near zero, as if there were a mechano-electrical association. This abnormal rhythm may prevail completely in digitalis toxicity so that if cardiac arrest occurs, no automaticity can be

  18. Surrogate reservoir models for CSI well probabilistic production forecast

    Directory of Open Access Journals (Sweden)

    Saúl Buitrago

    2017-09-01

    Full Text Available The aim of this work is to present the construction and use of Surrogate Reservoir Models capable of accurately predicting cumulative oil production for every well stimulated with cyclic steam injection at any given time in a heavy oil reservoir in Mexico considering uncertain variables. The central composite experimental design technique was selected to capture the maximum amount of information from the model response with a minimum number of reservoir models simulations. Four input uncertain variables (the dead oil viscosity with temperature, the reservoir pressure, the reservoir permeability and oil sand thickness hydraulically connected to the well were selected as the ones with more impact on the initial hot oil production rate according to an analytical production prediction model. Twenty five runs were designed and performed with the STARS simulator for each well type on the reservoir model. The results show that the use of Surrogate Reservoir Models is a fast viable alternative to perform probabilistic production forecasting of the reservoir.

  19. On-farm irrigation reservoirs for surface water storage in eastern Arkansas: Trends in construction in response to aquifer depletion

    Science.gov (United States)

    Yaeger, M. A.; Reba, M. L.; Massey, J. H.; Adviento-Borbe, A.

    2017-12-01

    On-farm surface water storage reservoirs have been constructed to address declines in the Mississippi River Valley Alluvial aquifer, the primary source of irrigation for most of the row crops grown in eastern Arkansas. These reservoirs and their associated infrastructure represent significant investments in financial and natural resources, and may cause producers to incur costs associated with foregone crop production and long-term maintenance. Thus, an analysis of reservoir construction trends in the Grand Prairie Critical Groundwater Area (GPCGA) and Cache River Critical Groundwater Area (CRCGA) was conducted to assist future water management decisions. Between 1996 and 2015, on average, 16 and 4 reservoirs were constructed per year, corresponding to cumulative new reservoir surface areas of 161 and 60 ha yr-1, for the GPCGA and the CRCGA, respectively. In terms of reservoir locations relative to aquifer status, after 1996, 84.5% of 309 total reservoirs constructed in the GPCGA and 91.0% of 78 in the CRCGA were located in areas with remaining saturated aquifer thicknesses of 50% or less. The majority of new reservoirs (74% in the GPCGA and 63% in the CRCGA) were constructed on previously productive cropland. The next most common land use, representing 11% and 15% of new reservoirs constructed in the GPCGA and CRCGA, respectively, was the combination of a field edge and a ditch, stream, or other low-lying area. Less than 10% of post-1996 reservoirs were constructed on predominately low-lying land, and the use of such lands decreased in both critical groundwater areas during the past 20 years. These disparities in reservoir construction rates, locations, and prior land uses is likely due to groundwater declines being first observed in the GPCGA as well as the existence of two large-scale river diversion projects under construction in the GPCGA that feature on-farm storage as a means to offset groundwater use.

  20. Ductile shear zones can induce hydraulically over-pressured fractures in deep hot-dry rock reservoirs: a new target for geothermal exploration?

    Science.gov (United States)

    Schrank, C. E.; Karrech, A.; Regenauer-Lieb, K.

    2014-12-01

    It is notoriously difficult to create and maintain permeability in deep hot-dry rock (HDR) geothermal reservoirs with engineering strategies. However, we predict that long-lived, slowly deforming HDR reservoirs likely contain hydraulically conductive, over-pressured fracture systems, provided that (a) the underlying lower crust and/or mantle are not entirely depleted of fluids and (b) the fracture system has not been drained into highly permeable overlying rocks. Such fracture systems could be targeted for the extraction of geothermal energy. Our prediction hinges on the notion that polycrystalline creep through matter transfer by a liquid phase (dissolution-precipitation creep) is a widespread mechanism for extracting fluids from the lower crust and mantle. Such processes - where creep cavities form during the slow, high-temperature deformation of crystalline solids, e.g., ceramics, metals, and rocks - entail the formation of (intergranular) fluid-assisted creep fractures. They constitute micron-scale voids formed along grain boundaries due to incompatibilities arising from diffusion or dislocation creep. Field and laboratory evidence suggest that the process leading to creep fractures may generate a dynamic permeability in the ductile crust, thus extracting fluids from this domain. We employed an elasto-visco-plastic material model that simulates creep fractures with continuum damage mechanics to model the slow contraction of high-heat-producing granites overlain by sedimentary rocks in 2D. The models suggest that deformation always leads to the initiation of a horizontal creep-damage front in the lower crust. This front propagates upwards towards the brittle-ductile transition (BDT) during protracted deformation where it collapses into highly damaged brittle-ductile shear zones. If the BDT is sufficiently shallow or finite strain sufficiently large, these shear zones trigger brittle faults emerging from their tips, which connect to the sub-horizontal damage

  1. Near 7-day response of ocean bottom pressure to atmospheric surface pressure and winds in the northern South China Sea

    Science.gov (United States)

    Zhang, Kun; Zhu, Xiao-Hua; Zhao, Ruixiang

    2018-02-01

    Ocean bottom pressures, observed by five pressure-recording inverted echo sounders (PIESs) from October 2012 to July 2014, exhibit strong near 7-day variability in the northern South China Sea (SCS) where long-term in situ bottom pressure observations are quite sparse. This variability was strongest in October 2013 during the near two years observation period. By joint analysis with European Center for Medium-Range Weather Forecasts (ECMWF) data, it is shown that the near 7-day ocean bottom pressure variability is closely related to the local atmospheric surface pressure and winds. Within a period band near 7 days, there are high coherences, exceeding 95% significance level, of observed ocean bottom pressure with local atmospheric surface pressure and with both zonal and meridional components of the wind. Ekman pumping/suction caused by the meridional component of the wind in particular, is suggested as one driving mechanism. A Kelvin wave response to the near 7-day oscillation would propagate down along the continental slope, observed at the Qui Nhon in the Vietnam. By multiple and partial coherence analyses, we find that local atmospheric surface pressure and Ekman pumping/suction show nearly equal influence on ocean bottom pressure variability at near 7-day periods. A schematic diagram representing an idealized model gives us a possible mechanism to explain the relationship between ocean bottom pressure and local atmospheric forcing at near 7-day periods in the northern SCS.

  2. Dynamic Response of Dam-Reservoir Systems: Review and a Semi-Analytical Proposal

    Directory of Open Access Journals (Sweden)

    Paulo Marcelo Vieira Ribeiro

    Full Text Available Abstract This paper presents a review of current techniques employed for dynamic analysis of concrete gravity dams under seismic action. Traditional procedures applied in design bureaus, such as the Pseudo-Static method, often neglect structural dynamic properties, as well as ground amplification effects. A practical alternative arises with the Pseudo-Dynamic method, which considers a simplified spectrum response in the fundamental mode. The authors propose a self-contained development and detailed examples of this latter method, including a comparison with finite element models using transient response of fluid-structure systems. It is verified that application of the traditional procedure should be done carefully and limited to extremely rigid dams. On the other hand, the proposed development is straightforward and in agreement with finite element results for general cases where dam flexibility plays an important role.

  3. Blood pressure morning surge, exercise blood pressure response and autonomic nervous system.

    Science.gov (United States)

    Tanindi, Asli; Ugurlu, Murat; Tore, Hasan Fehmi

    2015-08-01

    We investigated blood pressure (BP) response to exercise with respect to BP morning surge (MS), and the association between MS, exercise treadmill test (ETT) and heart rate variability (HRV) indices. Eighty-four healthy subjects without hypertension were enrolled. Ambulatory BP monitoring and 24-hour Holter recordings were obtained for sleep-trough MS and HRV indices: low-frequency (LF) component, high-frequency (HF) component and LF/HF ratio. ETT was performed, and BPs were obtained at rest, end of each stage, and recovery. Third-minute heart rate recovery (HRR) and BP recovery ratio (BPRR) were calculated. When analysed in quartiles of MS, systolic BP at low workloads was higher in the highest than in the lowest quartile, although maximum BPs at maximum exercise were not significantly different. BPRR was highest in the highest quartile in contrast to HRR, which was lowest in the highest quartile. LF/HF was highest during both at daytime and night-time in the highest quartile. BPRR and LF/HF were positively, and HRR was inversely associated with MS. Subjects with a high MS have higher BP at low workloads, at which most daily activities are performed, and impairment in some indices, which indirectly reflect the autonomic nervous system.

  4. Response of fish communities to multiple pressures: Development of a total anthropogenic pressure intensity index.

    Science.gov (United States)

    Poikane, Sandra; Ritterbusch, David; Argillier, Christine; Białokoz, Witold; Blabolil, Petr; Breine, Jan; Jaarsma, Nicolaas G; Krause, Teet; Kubečka, Jan; Lauridsen, Torben L; Nõges, Peeter; Peirson, Graeme; Virbickas, Tomas

    2017-05-15

    Lakes in Europe are subject to multiple anthropogenic pressures, such as eutrophication, habitat degradation and introduction of alien species, which are frequently inter-related. Therefore, effective assessment methods addressing multiple pressures are needed. In addition, these systems have to be harmonised (i.e. intercalibrated) to achieve common management objectives across Europe. Assessments of fish communities inform environmental policies on ecological conditions integrating the impacts of multiple pressures. However, the challenge is to ensure consistency in ecological assessments through time, across ecosystem types and across jurisdictional boundaries. To overcome the serious comparability issues between national assessment systems in Europe, a total anthropogenic pressure intensity (TAPI) index was developed as a weighted combination of the most common pressures in European lakes that is validated against 10 national fish-based water quality assessment systems using data from 556 lakes. Multi-pressure indices showed significantly higher correlations with fish indices than single-pressure indices. The best-performing index combines eutrophication, hydromorphological alterations and human use intensity of lakes. For specific lake types also biological pressures may constitute an important additional pressure. The best-performing index showed a strong correlation with eight national fish-based assessment systems. This index can be used in lake management for assessing total anthropogenic pressure on lake ecosystems and creates a benchmark for comparison of fish assessments independent of fish community composition, size structure and fishing-gear. We argue that fish-based multiple-pressure assessment tools should be seen as complementary to single-pressure tools offering the major advantage of integrating direct and indirect effects of multiple pressures over large scales of space and time. Copyright © 2017 The Authors. Published by Elsevier B.V. All

  5. Responses of azeotropes and relative volatilities to pressure variations

    DEFF Research Database (Denmark)

    Abildskov, Jens; O’Connell, John P.

    2015-01-01

    of two columns. Because operating costs are highly sensitive to the pressure dependence of azeotropic compositions, reliable and accurate phase equilibrium thermodynamic property information is needed to computationally explore pressure variation for such processes. An analysis of property modeling has......Mixtures with azeotropes cannot be separated by simple distillation since the vapor and liquid compositions are the same. One option to overcome this limitation is to vary the applied pressure to shift the azeotropic composition out of the range of a single column or use pressure-swing operation...

  6. Thermodynamic evolution of the Los Azufres, Mexico, geothermal reservoir from 1982 to 2002

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, Victor Manuel; Barragan, Rosa Maria [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico); Torres, Marco Antonio [Comision Federal de Electricidad, Residencia Los Azufres, Campamento Agua Fria, Los Azufres, Michoacan (Mexico)

    2005-10-01

    An investigation has been made of the response of the Los Azufres geothermal reservoir to 20 years of development, beginning in 1982. The simulator WELFLO was used to characterize the thermodynamic conditions of the reservoir fluids. The first response to exploitation consisted of a decrease in pressure and an increase in enthalpy. Small decreases in reservoir pressure associated with large increases in fluid enthalpy characterize the long-term response in the northern production area. In the southern production area, long-term changes include decreases in pressure and mass flow rate, increases in steam production and, in wells affected by injection, increases in both pressure and total mass flow rate. These changes reflect the effects of boiling, cooling and fluid mixing, processes resulting from large-scale fluid production. (author)

  7. Responses of spatial-temporal dynamics of bacterioplankton community to large-scale reservoir operation: a case study in the Three Gorges Reservoir, China.

    Science.gov (United States)

    Li, Zhe; Lu, Lunhui; Guo, Jinsong; Yang, Jixiang; Zhang, Jiachao; He, Bin; Xu, Linlin

    2017-02-13

    Large rivers are commonly regulated by damming, yet the effects of such disruption on bacterioplankton community structures have not been adequately studied. The aim of this study was to explore the biogeographical patterns present under dam regulation and to uncover the major drivers structuring bacterioplankton communities. Bacterioplankton assemblages in the Three Gorges Reservoir (TGR) were analyzed using Illumina Miseq sequencing by comparing seven sites located within the TGR before and after impoundment. This approach revealed ecological and spatial-temporal variations in bacterioplankton community composition along the longitudinal axis. The community was dynamic and dominated by Proteobacteria and Actinobacteria phyla, encompassing 39.26% and 37.14% of all sequences, respectively, followed by Bacteroidetes (8.67%) and Cyanobacteria (3.90%). The Shannon-Wiener index of the bacterioplankton community in the flood season (August) was generally higher than that in the impoundment season (November). Principal Component Analysis of the bacterioplankton community compositions showed separation between different seasons and sampling sites. Results of the relationship between bacterioplankton community compositions and environmental variables highlighted that ecological processes of element cycling and large dam disturbances are of prime importance in driving the assemblages of riverine bacterioplankton communities.

  8. Production Decline Analysis for Two-Phase Flow in Multifractured Horizontal Well in Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Wei-Yang Xie

    2015-01-01

    Full Text Available After multistage fracturing, the flowback of fracturing fluid will cause two-phase flow through hydraulic fractures in shale gas reservoirs. With the consideration of two-phase flow and desorbed gas transient diffusion in shale gas reservoirs, a two-phase transient flow model of multistage fractured horizontal well in shale gas reservoirs was created. Accurate solution to this flow model is obtained by the use of source function theory, Laplace transform, three-dimensional eigenvalue method, and orthogonal transformation. According to the model’s solution, the bilogarithmic type curves of the two-phase model are illustrated, and the production decline performance under the effects of hydraulic fractures and shale gas reservoir properties are discussed. The result obtained in this paper has important significance to understand pressure response characteristics and production decline law of two-phase flow in shale gas reservoirs. Moreover, it provides the theoretical basis for exploiting this reservoir efficiently.

  9. Limiting the blood pressure response in young males during ...

    African Journals Online (AJOL)

    Studies have shown that resistance exercises are beneficial in the lowering of blood pressure. This is of great significance to hypertensive patients. Unfortunately the acute effect that resistance exercises have on blood pressure can be harmful. The seated single leg press was used in this study due to the availability of ...

  10. Driving time modulates accommodative response and intraocular pressure.

    Science.gov (United States)

    Vera, Jesús; Diaz-Piedra, Carolina; Jiménez, Raimundo; Morales, José M; Catena, Andrés; Cardenas, David; Di Stasi, Leandro L

    2016-10-01

    Driving is a task mainly reliant on the visual system. Most of the time, while driving, our eyes are constantly focusing and refocusing between the road and the dashboard or near and far traffic. Thus, prolonged driving time should produce visual fatigue. Here, for the first time, we investigated the effects of driving time, a common inducer of driver fatigue, on two ocular parameters: the accommodative response (AR) and the intraocular pressure (IOP). A pre/post-test design has been used to assess the impact of driving time on both indices. Twelve participants (out of 17 recruited) completed the study (5 women, 24.42±2.84years old). The participants were healthy and active drivers with no visual impairment or pathology. They drove for 2h in a virtual driving environment. We assessed AR and IOP before and after the driving session, and also collected subjective measures of arousal and fatigue. We found that IOP and AR decreased (i.e., the accommodative lag increased) after the driving session (p=0.03 and p<0.001, respectively). Moreover, the nearest distances tested (20cm, 25cm, and 33cm) induced the highest decreases in AR (corrected p-values<0.05). Consistent with these findings, the subjective levels of arousal decreased and levels of fatigue increased after the driving session (all p-values<0.001). These results represent an innovative step towards an objective, valid, and reliable assessment of fatigue-impaired driving based on visual fatigue signs. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. For Stimul-Responsive Polymers with Enhanced Efficiency in Reservoir Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Charles McCormick; Roger Hester

    2003-02-28

    Acrylamide-based hydrophobically modified (HM) polybetaines containing N-butylphenylacrylamide (BPAM) and varying amounts of either sulfobetaine (3-(2-acrylamido-2-methylpropanedimethylammonio)-1-propanesulfonate, AMPDAPS) or carboxybetaine (4-(2-acrylamido-2-methylpropyldimethylammonio) butanoate, AMPDAB) comonomers were synthesized via micellar copolymerization. The terpolymers were characterized via {sup 13}C NMR and UV spectroscopies, classical and dynamic light scattering, and potentiometric titration. The response of aqueous polymer solutions to various external stimuli, including changes in solution pH, electrolyte concentration, and the addition of small molecule surfactants, was investigated using surface tension and rheological measurements. Low charge density terpolymers were found to show greater viscosity enhancement upon the addition of surfactant compared to the high charge density terpolymers. The addition of sodium dodecyl sulfate (SDS) produced the largest maximum in solution viscosity, while N-dodecyl-N,N,N-trimethylammonium bromide (DTAB), N-dodecyl-N,N-dimethylammonio-1-propanesulfonate (SB3-12), and Triton X-100 tended to show reduced viscosity enhancement. In most cases, the high charge density carboxybetaine terpolymer exhibited diminished solution viscosities upon surfactant addition. In our last report, we discussed solution thermodynamic theory that described changes in polymer coil conformation as a function of solution temperature and polymer molecular weight. These polymers contained no ionic charges. In this report, we expand polymer solution theory to account for the electrostatic interactions present in solutions of charged polymers. Polymers with ionic charges are referred to as polyions or polyelectrolytes.

  12. Non-linear Heart Rate and Blood Pressure Interaction in Response to Lower-Body Negative Pressure

    Directory of Open Access Journals (Sweden)

    Ajay K. Verma

    2017-10-01

    Full Text Available Early detection of hemorrhage remains an open problem. In this regard, blood pressure has been an ineffective measure of blood loss due to numerous compensatory mechanisms sustaining arterial blood pressure homeostasis. Here, we investigate the feasibility of causality detection in the heart rate and blood pressure interaction, a closed-loop control system, for early detection of hemorrhage. The hemorrhage was simulated via graded lower-body negative pressure (LBNP from 0 to −40 mmHg. The research hypothesis was that a significant elevation of causal control in the direction of blood pressure to heart rate (i.e., baroreflex response is an early indicator of central hypovolemia. Five minutes of continuous blood pressure and electrocardiogram (ECG signals were acquired simultaneously from young, healthy participants (27 ± 1 years, N = 27 during each LBNP stage, from which heart rate (represented by RR interval, systolic blood pressure (SBP, diastolic blood pressure (DBP, and mean arterial pressure (MAP were derived. The heart rate and blood pressure causal interaction (RR↔SBP and RR↔MAP was studied during the last 3 min of each LBNP stage. At supine rest, the non-baroreflex arm (RR→SBP and RR→MAP showed a significantly (p < 0.001 higher causal drive toward blood pressure regulation compared to the baroreflex arm (SBP→RR and MAP→RR. In response to moderate category hemorrhage (−30 mmHg LBNP, no change was observed in the traditional marker of blood loss i.e., pulse pressure (p = 0.10 along with the RR→SBP (p = 0.76, RR→MAP (p = 0.60, and SBP→RR (p = 0.07 causality compared to the resting stage. Contrarily, a significant elevation in the MAP→RR (p = 0.004 causality was observed. In accordance with our hypothesis, the outcomes of the research underscored the potential of compensatory baroreflex arm (MAP→RR of the heart rate and blood pressure interaction toward differentiating a simulated moderate category hemorrhage from

  13. Gender Differences in Behavioral and Neural Responses to Unfairness Under Social Pressure

    OpenAIRE

    Zheng, Li; Ning, Reipeng; Li, Lin; Wei, Chunli; Cheng, Xuemei; Zhou, Chu; Guo, Xiuyan

    2017-01-01

    Numerous studies have revealed the key role of social pressure on individuals’ decision-making processes. However, the impact of social pressure on unfairness-related decision-making processes remains unclear. In the present study, we investigated how social pressure modulated men’s and women’s responses in an ultimatum game. Twenty women and eighteen men played the ultimatum game as responders in the scanner, where fair and unfair offers were tendered by proposers acting alone (low pressure)...

  14. Influence of aerobic exercise training on post-exercise responses of aortic pulse pressure and augmentation pressure in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Nobuhiko eAkazawa

    2015-10-01

    Full Text Available Central arterial blood pressure (BP is more predictive of future cardiovascular events than is brachial BP because it reflects the BP load imposed on the left ventricle with greater accuracy. However, little is known about the effects of exercise training on central hemodynamic response to acute exercise. The purpose of the present study was to determine the influence of an aerobic exercise regimen on the response of aortic BP after a single aerobic exercise in postmenopausal women. Nine healthy postmenopausal women (age: 61 ± 2 years participated in a 12-week aerobic exercise training regimen. Before and after the training, each subjects performed a single bout of cycling at ventilatory thresholds for 30 min. We evaluated the post-exercise aortic BP response, which was estimated via the general transfer function from applanation tonometry. After the initial pre-training aerobic exercise session, aortic BP did not change significantly: however, aortic pulse pressure and augmentation pressure were significantly attenuated after the single aerobic exercise session following the 12-week training regimen. The present study demonstrated that a regular aerobic exercise training regimen induced the post-exercise reduction of aortic pulse pressure and augmentation pressure. Regular aerobic exercise training may enhance post-exercise reduction in aortic BP.

  15. Blood pressure response to low level static contractions

    DEFF Research Database (Denmark)

    Fallentin, Nils; Jørgensen, Kurt

    1992-01-01

    muscles at forces corresponding to 10% and 40% MVC. Mean value for endurance time at 10% MVC was significantly longer for flexion [111.3 (SD 56.1) min] than for extension [18.1 (SD 7.5) min;n = 7]. At 40% MVC the difference in mean endurance time disappeared [2.3 (SD 0.7) min for elbow flexion and 2.3 (SD...... the circulation to the muscles was arrested just prior to the cessation of the contraction, blood pressure only partly recovered and remained elevated for as long as the occlusion persisted, indicating the level of pressure-raising muscle chemoreflexes. Based on blood pressure recordings obtained during...

  16. Influence of aerobic exercise training on post-exercise responses of aortic pulse pressure and augmentation pressure in postmenopausal women

    OpenAIRE

    Akazawa, Nobuhiko; Ra, Song-Gyu; Sugawara, Jun; Maeda, Seiji

    2015-01-01

    Central arterial blood pressure (BP) is more predictive of future cardiovascular events than is brachial BP because it reflects the BP load imposed on the left ventricle with greater accuracy. However, little is known about the effects of exercise training on central hemodynamic response to acute exercise. The purpose of the present study was to determine the influence of an aerobic exercise regimen on the response of aortic BP after a single aerobic exercise in postmenopausal women. Nine hea...

  17. Institutional Analytics: A Response to the Pressures of Academic Capitalism

    Science.gov (United States)

    O'Keefe, Molly Eleanor

    2017-01-01

    The higher education sector today faces an environment unlike any it has seen before. Serving a wide variety of internal and external stakeholders and facing diverse and fast-changing economic, social, and political pressures, universities can benefit from corporate-like approaches such as the use of analytics to inform strategic decision-making…

  18. Instrumentation for Examining Microbial Response to Changes In Environmental Pressures

    Science.gov (United States)

    Blaich, J.; Storrs, A.; Wang, J.; Ouandji, C.; Arismendi, D.; Hernandez, J.; Sardesh, N.; Ibanez, C. R.; Owyang, S.; Gentry, D.

    2016-12-01

    The Automated Adaptive Directed Evolution Chamber (AADEC) is a device that allows operators to generate a micro-scale analog of real world systems that can be used to model the local-scale effects of climate change on microbial ecosystems. The AADEC uses an artificial environment to expose cultures of micro-organisms to environmental pressures, such as UV-C radiation, chemical toxins, and temperature. The AADEC autonomously exposes micro-organisms to slection pressures. This improves upon standard manual laboratory techniques: the process can take place over a longer period of time, involve more stressors, implement real-time adjustments based on the state of the population, and minimize the risk of contamination. We currently use UV-C radiation as the main selection pressure, UV-C is well studied both for its cell and DNA damaging effects as a type of selection pressure and for its related effectiveness as a mutagen; having these functions united makes it a good choice for a proof of concept. The AADEC roadmap includes expansion to different selection pressures, including heavy metal toxicity, temperature, and other forms of radiation. The AADEC uses closed-loop control to feedback the current state of the culture to the AADEC controller that modifies selection pressure intensity during experimentation, in this case culture density and growth rate. Culture density and growth rate are determined by measuring the optical density of the culture using 600 nm light. An array of 600 nm LEDs illuminate the culture and photodiodes are used to measure the shadow on the opposite side of the chamber. Previous experiments showed that we can produce a million fold increase to UV-C radiation over seven iterations. The most recent implements a microfluidic system that can expose cultures to multiple different selection pressures, perform non-survival based selection, and autonomously perform hundreds of exposure cycles. A scalable pump system gives the ability to pump in various

  19. Instrumentation for Examining Microbial Response to Changes In Environmental Pressures

    Science.gov (United States)

    Blaich, Justin; Storrs, Aaron; Wang, Jonathan; Ouandji, Cynthia; Arismendi, Dillon; Hernandez, Juliana; Sardesh, Nina; Ibanez, Cory; Owyang, Stephanie; Gentry, Diana

    2016-01-01

    The Automated Adaptive Directed Evolution Chamber (AADEC) is a device that allows operators to generate a micro-scale analog of real world systems that can be used to model the local-scale effects of climate change on microbial ecosystems. The AADEC uses an artificial environment to expose cultures of micro-organisms to environmental pressures, such as UV-C radiation, chemical toxins, and temperature. The AADEC autonomously exposes micro-organisms to selection pressures. This improves upon standard manual laboratory techniques: the process can take place over a longer period of time, involve more stressors, implement real-time adjustments based on the state of the population, and minimize the risk of contamination. We currently use UV-C radiation as the main selection pressure, UV-C is well studied both for its cell and DNA damaging effects as a type of selection pressure and for its related effectiveness as a mutagen; having these functions united makes it a good choice for a proof of concept. The AADEC roadmap includes expansion to different selection pressures, including heavy metal toxicity, temperature, and other forms of radiation.The AADEC uses closed-loop control to feedback the current state of the culture to the AADEC controller that modifies selection pressure intensity during experimentation, in this case culture density and growth rate. Culture density and growth rate are determined by measuring the optical density of the culture using 600 nm light. An array of 600 nm LEDs illuminate the culture and photodiodes are used to measure the shadow on the opposite side of the chamber.Previous experiments showed that we can produce a million fold increase to UV-C radiation over seven iterations. The most recent implements a microfluidic system that can expose cultures to multiple different selection pressures, perform non-survival based selection, and autonomously perform hundreds of exposure cycles. A scalable pump system gives the ability to pump in various

  20. Sleep deprivation increases blood pressure in healthy normotensive elderly and attenuates the blood pressure response to orthostatic challenge.

    Science.gov (United States)

    Robillard, Rébecca; Lanfranchi, Paola A; Prince, François; Filipini, Daniel; Carrier, Julie

    2011-03-01

    To determine how aging affects the impact of sleep deprivation on blood pressure at rest and under orthostatic challenge. Subjects underwent a night of sleep and 24.5 h of sleep deprivation in a crossover counterbalanced design. Sleep laboratory. Sixteen healthy normotensive men and women: 8 young adults (mean 24 years [SD 3.1], range 20-28 years) and 8 elderly adults (mean 64.1 years [SD 3.4], range 60-69 years). Sleep deprivation. Brachial cuff arterial blood pressure and heart rate were measured in semi-recumbent and upright positions. These measurements were compared across homeostatic sleep pressure conditions and age groups. Sleep deprivation induced a significant increase in systolic and diastolic blood pressure in elderly but not young adults. Moreover, sleep deprivation attenuated the systolic blood pressure orthostatic response in both age groups. Our results suggest that sleep deprivation alters the regulatory mechanisms of blood pressure and might increase the risk of hypertension in healthy normotensive elderly.

  1. Water coning in porous media reservoirs for compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; McCann, R.A.

    1981-06-01

    The general purpose of this work is to define the hydrodynamic and thermodynamic response of a CAES porous media reservoir subjected to simulated air mass cycling. This research will assist in providing design guidelines for the efficient and stable operation of the air storage reservoir. This report presents the analysis and results for the two-phase (air-water), two-dimensional, numerical modeling of CAES porous media reservoirs. The effects of capillary pressure and relative permeability were included. The fluids were considered to be immisicible; there was no phase change; and the system was isothermal. The specific purpose of this analysis was to evaluate the reservoir parameters that were believed to be important to water coning. This phenomenon may occur in reservoirs in which water underlies the air storage zone. It involves the possible intrusion of water into the wellbore or near-wellbore region. The water movement is in response to pressure gradients created during a reservoir discharge cycle. Potential adverse effects due to this water movement are associated with the pressure response of the reservoir and the geochemical stability of the near-wellbore region. The results obtained for the simulated operation of a CAES reservoir suggest that water coning should not be a severe problem, due to the slow response of the water to the pressure gradients and the relatively short duration in which those gradients exist. However, water coning will depend on site-specific conditions, particularly the fluid distributions following bubble development, and, therefore, a water coning analysis should be included as part of site evaluation.

  2. Advances in photonic reservoir computing

    Science.gov (United States)

    Van der Sande, Guy; Brunner, Daniel; Soriano, Miguel C.

    2017-05-01

    We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir's complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  3. Pressure Response of Various Gases in a Pneumatic Resistance Capacitance System and Pipe

    Science.gov (United States)

    Peng, J.; Youn, C.; Tadano, K.; Kagawa, T.

    2017-10-01

    City gas, such as propane and methane, is widely used as a fuel in households and factories. Recently, hydrogen as a clean and efficient fuel has been proposed for fuel cell vehicles. However, few studies have investigated pressure control and response of gases considering their properties. This study investigated the static flow rate characteristics in an orifice with four gases—air, propane, methane, and hydrogen. Then, a pressure response experiment was performed using a pneumatic resistance capacitance system comprising an isothermal chamber and a nozzle flapper, and the time constant of the pressure response with various gases was analysed with a mathematical model. The simulation results agreed with the experimental data. Finally, the differences in pressure propagation in a pipe with various gases were explicated by a pressure response experiment. The results showed that the pressure response speed of hydrogen is faster than that of the other three gases because of its small molecular weight. Therefore, the pressure control equipment of hydrogen needs a high response speed.

  4. Simulation of microbubble response to ambient pressure changes

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2008-01-01

    . The behaviour of two different contrast agents was investigated as a function of driving pulse and ambient overpressure, pov. Simulations of Levovist using a rectangular driving pulse show an almost linear reduction in the subharmonic component as pov is increased. For a 20 cycles driving pulse, a reduction...... of 4.6 dB is observed when changing pov from 0 to 25 kPa. Increasing the pulse duration makes the reduction even more clear. For a pulse with 64 cycles, the reduction is 9.9 dB. This simulation is in good correspondence with measurement results presented by Shi et al. 1999, who found a linear reduction...... of 9.6 dB. Further simulations of Levovist show that also the shape and the acoustic pressure of the driving pulse are very important factors. The best pressure sensitivity of Levovist was found to be 0.88 dB/kPa. For Sonazoid, a sensitivity of 0.71 dB/kPa has been found, although the reduction...

  5. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    Science.gov (United States)

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  6. Practice guideline: Idiopathic normal pressure hydrocephalus: Response to shunting and predictors of response

    Science.gov (United States)

    Halperin, John J.; Kurlan, Roger; Schwalb, Jason M.; Cusimano, Michael D.; Gronseth, Gary; Gloss, David

    2015-01-01

    Objective: We evaluated evidence for utility of shunting in idiopathic normal pressure hydrocephalus (iNPH) and for predictors of shunting effectiveness. Methods: We identified and classified relevant published studies according to 2004 and 2011 American Academy of Neurology methodology. Results: Of 21 articles, we identified 3 Class I articles. Conclusions: Shunting is possibly effective in iNPH (96% chance subjective improvement, 83% chance improvement on timed walk test at 6 months) (3 Class III). Serious adverse event risk was 11% (1 Class III). Predictors of success included elevated Ro (1 Class I, multiple Class II), impaired cerebral blood flow reactivity to acetazolamide (by SPECT) (1 Class I), and positive response to either external lumbar drainage (1 Class III) or repeated lumbar punctures. Age may not be a prognostic factor (1 Class II). Data are insufficient to judge efficacy of radionuclide cisternography or aqueductal flow measurement by MRI. Recommendations: Clinicians may choose to offer shunting for subjective iNPH symptoms and gait (Level C). Because of significant adverse event risk, risks and benefits should be carefully weighed (Level B). Clinicians should inform patients with iNPH with elevated Ro and their families that they have an increased chance of responding to shunting compared with those without such elevation (Level B). Clinicians may counsel patients with iNPH and their families that (1) positive response to external lumbar drainage or to repeated lumbar punctures increases the chance of response to shunting, and (2) increasing age does not decrease the chance of shunting being successful (both Level C). PMID:26644048

  7. Circulatory responses to lower body negative pressure in young Afghans and Danes

    DEFF Research Database (Denmark)

    Asmar, Ali; Bülow, Jens; Simonsen, Lene

    2014-01-01

    PURPOSE: We have previously shown that Afghans residing in Denmark for at least 12 years exhibit a lower 24-h ambulatory blood pressure compared to Danes. The purpose of this study was to test the hypothesis that the lower blood pressure reflects attenuated compensatory baroreflex responses...

  8. LINEAR KERNEL SUPPORT VECTOR MACHINES FOR MODELING PORE-WATER PRESSURE RESPONSES

    Directory of Open Access Journals (Sweden)

    KHAMARUZAMAN W. YUSOF

    2017-08-01

    Full Text Available Pore-water pressure responses are vital in many aspects of slope management, design and monitoring. Its measurement however, is difficult, expensive and time consuming. Studies on its predictions are lacking. Support vector machines with linear kernel was used here to predict the responses of pore-water pressure to rainfall. Pore-water pressure response data was collected from slope instrumentation program. Support vector machine meta-parameter calibration and model development was carried out using grid search and k-fold cross validation. The mean square error for the model on scaled test data is 0.0015 and the coefficient of determination is 0.9321. Although pore-water pressure response to rainfall is a complex nonlinear process, the use of linear kernel support vector machine can be employed where high accuracy can be sacrificed for computational ease and time.

  9. On-line measurements of response time of temperature and pressure sensors in PWRs

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2004-01-01

    A review of modern techniques for in-situ response time testing of resistance temperature detectors (RTDs), and pressure, level and flow transmitters is presented. These techniques have been developed and validated for use in pressurized and boiling water reactors. The significance of the modern techniques is that they permit testing of installed sensors at process operating conditions and thereby provide the actual in-service response times of the sensors. (author)

  10. Reservoir microseismicity at the Ekofisk Oil Field

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, J.T.; Fairbanks, T.D. [Nambe Geophysical, Inc., Santa Fe, NM (United States); Albright, J.N. [Los Alamos National Lab., NM (United States); Boade, R.R. [Phillips Petroleum Co., Bartlesville, OK (United States); Dangerfield, J.; Landa, G.H. [Phillips Petroleum Co., Tananger (Norway)

    1994-07-01

    A triaxial, downhole geophone was deployed within the Ekofisk oil reservoir for monitoring ambient microseismicity as a test to determine if microearthquake signals generated from discrete shear failure of the reservoir rock could be detected. The results of the test were positive. During 104 hours of monitoring, 572 discrete events were recorded which have been identified as shear-failure microearthquakes. Reservoir microseismicity was detected at large distances (1000 m) from the monitor borehole and at rates (> 5 events per hour) which may allow practical characterization of the reservoir rock and overburden deformation induced by reservoir pressure changes.

  11. Challenges of reservoir properties and production history matching in a CHOPS reservoir study

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Mahbub [Department of Geoscience, University of Calgary (Canada)

    2011-07-01

    In order to meet increasing world energy demand, wells have to be drilled within very thin reservoir beds. This paper, we present one of the solutions for optimizing the reservoir characterization. Reservoir characterization is the process between the discovery of a property and the reservoir management phase. Principal data for reservoir modeling are: 4D Seismic interpretation, wireline log interpretation, core analysis, and petrophysical analysis. Reservoir conditions, perforation and completion technology are the key issues to the production rate of cold production. Reservoir modeling intends to minimize the risk factor, maximize production, and help determine the location for infill drillings. Cold heavy oil production with sand (CHOPS) is a method for enhancing primary production from heavy oil reservoirs. Gravitational forces, natural fluid pressure gradients and foamy oil flow phenomena are the major driving forces of the CHOPS mechanism. Finally, Reservoir characterization allows better understanding of permeability and porosity prediction.

  12. Step Response Characteristics of Polymer/Ceramic Pressure-Sensitive Paint

    Directory of Open Access Journals (Sweden)

    Anshuman Pandey

    2015-09-01

    Full Text Available Experiments and numerical simulations have been used in this work to understand the step response characteristics of Polymer/Ceramic Pressure-Sensitive Paint (PC-PSP. A recently developed analytical model describing the essential physics in PC-PSP quenching kinetics is used, which includes the effect of both diffusion time scale and luminescent lifetime on the net response of PC-PSP. Step response simulations using this model enables an understanding of the effects of parameters, such as the diffusion coefficient of O2 in the polymer/ceramic coating, attenuation of excitation light, ambient luminescent lifetime, sensitivity, and the magnitude and direction of pressure change on the observed response time scales of PC-PSP. It was found that higher diffusion coefficient and greater light attenuation lead to faster response, whereas longer ambient lifetime and larger sensitivity lead to slower response characteristics. Due to the inherent non-linearity of the Stern-Volmer equation, response functions also change with magnitude and direction of the pressure change. Experimental results from a shock tube are presented where the effects of varying the roughness, pressure jump magnitude and luminophore probe have been studied. Model parameters have been varied to obtain a good fit to experimental results and this optimized model is then used to obtain the response time for a step decrease in pressure, an estimate of which is currently not obtainable from experiments.

  13. Step Response Characteristics of Polymer/Ceramic Pressure-Sensitive Paint.

    Science.gov (United States)

    Pandey, Anshuman; Gregory, James W

    2015-09-03

    Experiments and numerical simulations have been used in this work to understand the step response characteristics of Polymer/Ceramic Pressure-Sensitive Paint (PC-PSP). A recently developed analytical model describing the essential physics in PC-PSP quenching kinetics is used, which includes the effect of both diffusion time scale and luminescent lifetime on the net response of PC-PSP. Step response simulations using this model enables an understanding of the effects of parameters, such as the diffusion coefficient of O₂ in the polymer/ceramic coating, attenuation of excitation light, ambient luminescent lifetime, sensitivity, and the magnitude and direction of pressure change on the observed response time scales of PC-PSP. It was found that higher diffusion coefficient and greater light attenuation lead to faster response, whereas longer ambient lifetime and larger sensitivity lead to slower response characteristics. Due to the inherent non-linearity of the Stern-Volmer equation, response functions also change with magnitude and direction of the pressure change. Experimental results from a shock tube are presented where the effects of varying the roughness, pressure jump magnitude and luminophore probe have been studied. Model parameters have been varied to obtain a good fit to experimental results and this optimized model is then used to obtain the response time for a step decrease in pressure, an estimate of which is currently not obtainable from experiments.

  14. In-situ measurement of response time of RTDs and pressure transmitters in nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Riner, J.L.

    1993-01-01

    Response time measurements are performed once every fuel cycle on most safety-related temperature and pressure sensors in a majority of nuclear power plants in the US. This paper provides a review of the methods that are used for these measurements. The methods are referred to as the Loop Current Step Response (LCSR) test, which is used for response time testing of temperature sensors, and noise analysis and power interrupt (PI) tests, which are used for response time testing of pressure, level, and flow transmitters

  15. Pressure/cross-sectional area relations in the proximal urethra of healthy males. Part III: the time dependent pressure response following forced dilation: standardization of a technique

    DEFF Research Database (Denmark)

    Bagi, Per

    2002-01-01

    The urethral response to a sudden forced dilation was studied in ten healthy male volunteers aged from 27 to 71 years. Measurements were performed from the bladder neck and beyond the region of high pressure using a specially designed probe. The pressure response after dilation showed a character......The urethral response to a sudden forced dilation was studied in ten healthy male volunteers aged from 27 to 71 years. Measurements were performed from the bladder neck and beyond the region of high pressure using a specially designed probe. The pressure response after dilation showed...

  16. Numerical simulation of a ramjet inlet flowfield in response to large amplitude combustor pressure oscillation

    Science.gov (United States)

    Hsieh, T.; Wardlaw, A. B., Jr.; Coakley, T.

    1984-01-01

    The unsteady flow of a two-dimensional ramjet inlet is studied numerically by solving the Navier-Stokes equation with a two-equation turbulence model. Unsteadiness is introduced by prescribing the pressure disturbance at the inlet exit plane. The case with a sinusoidal exit plane pressure fluctuation of 20 percent of the steady exit pressure is considered. The resulting flow field exhibits a complicated interaction between the terminal shock, separation pockets and core flow. The exit plane properties feature a non-linear response to the imposed sinusoidal pressure variation.

  17. Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south-eastern Brazil

    Directory of Open Access Journals (Sweden)

    D. D. C. D. Melo

    2016-11-01

    Full Text Available Droughts are particularly critical for Brazil because of impacts on water supply and because most (70 % of its electricity is derived from hydroelectric generation. The Paraná basin (PB, a major hydroelectric producing region with 32 % (60 million people of Brazil's population, recently experienced the most severe drought since the 1960s, compromising the water supply for 11 million people in São Paulo. The objective of this study is to quantify linkages between meteorological and hydrological droughts based on remote sensing, modelling, and monitoring data using the Paraná River basin in south-eastern Brazil as a case study. Two major meteorological droughts were identified in the early 2000s and 2014, with precipitation 20–50 % below the long-term mean. Total water storage change estimated from the Gravity Recovery and Climate Experiment (GRACE satellites declined by 150 km3 between April 2011 and April 2015. Simulated soil moisture storage declined during the droughts, resulting in decreased runoff into reservoirs. As a result, reservoir storage decreased by 30 % relative to the system's maximum capacity, with negative trends ranging from 17 (May 1997–April 2001 to 25 km3 yr−1 (May 2011–April 2015. Storage in upstream reservoirs is mostly controlled by natural climate forcing, whereas storage in downstream reservoirs also reflects dam operations. This study emphasizes the importance of integrating remote sensing, modelling, and monitoring data to evaluate droughts and to establish a preliminary understanding of the linkages between a meteorological and hydrological drought for future management.

  18. Pressure and pressure derivative analysis for injection tests with variable temperature without type-curve matching

    International Nuclear Information System (INIS)

    Escobar, Freddy Humberto; Martinez, Javier Andres; Montealegre Matilde

    2008-01-01

    The analysis of injection tests under nonisothermic conditions is important for the accurate estimation of the reservoir permeability and the well's skin factor; since previously an isothermical system was assumed without taking into account a moving temperature front which expands with time plus the consequent changes in both viscosity and mobility between the cold and the hot zone of the reservoir which leads to unreliable estimation of the reservoir and well parameters. To construct the solution an analytical approach presented by Boughrara and Peres (2007) was used. That solution was initially introduced for the calculation of the injection pressure in an isothermic system. It was later modified by Boughrara and Reynolds (2007) to consider a system with variable temperature in vertical wells. In this work, the pressure response was obtained by numerical solution of the anisothermical model using the Gauss Quadrature method to solve the integrals, and assuming that both injection and reservoir temperatures were kept constant during the injection process and the water saturation is uniform throughout the reservoir. For interpretation purposes, a technique based upon the unique features of the pressure and pressure derivative curves were used without employing type-curve matching (TDS technique). The formulation was verified by its application to field and synthetic examples. As expected, increasing reservoir temperature causes a decrement in the mobility ratio, then estimation of reservoir permeability is some less accurate from the second radial flow, especially, as the mobility ratio increases

  19. Blood pressure response to conventional and low-dose enalapril in chronic renal failure

    DEFF Research Database (Denmark)

    Elung-Jensen, Thomas; Heisterberg, Jens; Kamper, Anne-Lise

    2003-01-01

    AIMS: In chronic renal failure, the clearance of most ACE inhibitors including enalapril is reduced. Hence, with conventional dosage, plasma enalaprilat may be markedly elevated. It is unclear whether this excess of drug exposure affords an improved control of blood pressure. The aim of the present...... study was to evaluate short-term blood pressure response to two different plasma levels of enalaprilat. METHODS: As part of an open, randomized, controlled trial of the effect of high and low dosage of enalapril on the progression of renal failure, short-term blood pressure response was evaluated. Data...

  20. Chemoreceptor Responsiveness at Sea Level Does Not Predict the Pulmonary Pressure Response to High Altitude.

    Science.gov (United States)

    Hoiland, Ryan L; Foster, Glen E; Donnelly, Joseph; Stembridge, Mike; Willie, Chris K; Smith, Kurt J; Lewis, Nia C; Lucas, Samuel J E; Cotter, Jim D; Yeoman, David J; Thomas, Kate N; Day, Trevor A; Tymko, Mike M; Burgess, Keith R; Ainslie, Philip N

    2015-07-01

    The hypoxic ventilatory response (HVR) at sea level (SL) is moderately predictive of the change in pulmonary artery systolic pressure (PASP) to acute normobaric hypoxia. However, because of progressive changes in the chemoreflex control of breathing and acid-base balance at high altitude (HA), HVR at SL may not predict PASP at HA. We hypothesized that resting oxygen saturation as measured by pulse oximetry (Spo₂) at HA would correlate better than HVR at SL with PASP at HA. In 20 participants at SL, we measured normobaric, isocapnic HVR (L/min · -%Spo₂⁻¹) and resting PASP using echocardiography. Both resting Spo₂ and PASP measures were repeated on day 2 (n = 10), days 4 to 8 (n = 12), and 2 to 3 weeks (n = 8) after arrival at 5,050 m. These data were also collected at 5,050 m in life-long HA residents (ie, Sherpa [n = 21]). Compared with SL, Spo₂ decreased from 98.6% to 80.5% (P HVR at SL was not related to Spo₂ or PASP at any time point at 5,050 m (all P > .05). Sherpa had lower PASP (P .50), there was a weak relationship in the Sherpa (R² = 0.16, P = .07). We conclude that neither HVR at SL nor resting Spo₂ at HA correlates with elevations in PASP at HA.

  1. Microbial Life in an Underground Gas Storage Reservoir

    Science.gov (United States)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In

  2. An improved sample loading technique for cellular metabolic response monitoring under pressure

    Science.gov (United States)

    Gikunda, Millicent Nkirote

    To monitor cellular metabolism under pressure, a pressure chamber designed around a simple-to-construct capillary-based spectroscopic chamber coupled to a microliter-flow perfusion system is used in the laboratory. Although cyanide-induced metabolic responses from Saccharomyces cerevisiae (baker's yeast) could be controllably induced and monitored under pressure, previously used sample loading technique was not well controlled. An improved cell-loading technique which is based on use of a secondary inner capillary into which the sample is loaded then inserted into the capillary pressure chamber, has been developed. As validation, we demonstrate the ability to measure the chemically-induced metabolic responses at pressures of up to 500 bars. This technique is shown to be less prone to sample loss due to perfusive flow than the previous techniques used.

  3. Gender Differences in Behavioral and Neural Responses to Unfairness Under Social Pressure.

    Science.gov (United States)

    Zheng, Li; Ning, Reipeng; Li, Lin; Wei, Chunli; Cheng, Xuemei; Zhou, Chu; Guo, Xiuyan

    2017-10-18

    Numerous studies have revealed the key role of social pressure on individuals' decision-making processes. However, the impact of social pressure on unfairness-related decision-making processes remains unclear. In the present study, we investigated how social pressure modulated men's and women's responses in an ultimatum game. Twenty women and eighteen men played the ultimatum game as responders in the scanner, where fair and unfair offers were tendered by proposers acting alone (low pressure) or by proposers endorsed by three supporters (high pressure). Results showed that men rejected more, whereas women accepted more unfair offers in the high versus low pressure context. Neurally, pregenual anterior cingulate cortex activation in women positively predicted their acceptance rate difference between contexts. In men, stronger right anterior insula activation and increased connectivity between right anterior insula and dorsal anterior cingulate cortex were observed when they receiving unfair offers in the high than low pressure context. Furthermore, more bilateral anterior insula and left dorsolateral prefrontal cortex activations were found when men rejected (relative to accepted) unfair offers in the high than low pressure context. These findings highlighted gender differences in the modulation of behavioral and neural responses to unfairness by social pressure.

  4. Reservoir Simulations of Low-Temperature Geothermal Reservoirs

    Science.gov (United States)

    Bedre, Madhur Ganesh

    The eastern United States generally has lower temperature gradients than the western United States. However, West Virginia, in particular, has higher temperature gradients compared to other eastern states. A recent study at Southern Methodist University by Blackwell et al. has shown the presence of a hot spot in the eastern part of West Virginia with temperatures reaching 150°C at a depth of between 4.5 and 5 km. This thesis work examines similar reservoirs at a depth of around 5 km resembling the geology of West Virginia, USA. The temperature gradients used are in accordance with the SMU study. In order to assess the effects of geothermal reservoir conditions on the lifetime of a low-temperature geothermal system, a sensitivity analysis study was performed on following seven natural and human-controlled parameters within a geothermal reservoir: reservoir temperature, injection fluid temperature, injection flow rate, porosity, rock thermal conductivity, water loss (%) and well spacing. This sensitivity analysis is completed by using ‘One factor at a time method (OFAT)’ and ‘Plackett-Burman design’ methods. The data used for this study was obtained by carrying out the reservoir simulations using TOUGH2 simulator. The second part of this work is to create a database of thermal potential and time-dependant reservoir conditions for low-temperature geothermal reservoirs by studying a number of possible scenarios. Variations in the parameters identified in sensitivity analysis study are used to expand the scope of database. Main results include the thermal potential of reservoir, pressure and temperature profile of the reservoir over its operational life (30 years for this study), the plant capacity and required pumping power. The results of this database will help the supply curves calculations for low-temperature geothermal reservoirs in the United States, which is the long term goal of the work being done by the geothermal research group under Dr. Anderson at

  5. The dynamic pressure response to rapid dilatation of the resting urethra in healthy women

    DEFF Research Database (Denmark)

    Bagi, P; Thind, P; Colstrup, H

    1993-01-01

    The urethral pressure response to a sudden forced dilatation was studied at the bladder neck, in the high-pressure zone and in the distal urethra in ten healthy female volunteers. The pressure response was fitted with a double exponential function of the form Pt = Pequ + P alpha e-t/tau alpha + P...... beta e-t/tau beta, where Pequ, P alpha and P beta are constants, and tau alpha and tau beta are time constants; this equation has previously been demonstrated to describe the pressure decay following dilatation. On the basis of a theoretical model the elastic and viscous constants for the urethral...... a detailed assessment of static and dynamic urethral responses to dilatation which can be applied as an experimental simulation of urine ingression, and is therefore presumed to be of value in the evaluation of normal and pathological urethral sphincter function....

  6. [Multivariate response model with multilevel and its application in the influencing factors of blood pressure].

    Science.gov (United States)

    Yang, Yongli; Fu, Pengyu; Xie, Jing; Zhang, Weidong; Zhang, Meixi; Wang, Chongjian; Ping, Zhiguang; Hu, Dongsheng

    2009-09-01

    To explore the application of multivariate response model with multilevel in the influencing factors of blood pressure. Two response model with three-level was fitted under MLwin 2.02 software. The correlation coefficient between systolic blood pressure (SBP) and diastolic blood pressure (DBP) was 0.949 at region level, and 0.701 at individual level. SBP and DBP level increased with age, while the regression coefficient of age on SBP was significantly higher than on DBP, beta was 0.720 (SBP) and 0.118 (DBP) individually (chi2 = 4284.56, P response model with multilevel can be used to analyze the hierarchy structure data, and it is also a good tool to analyze the influencing factors of blood pressure.

  7. Modeling the dynamic response of pressures in a distributed helium refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, John Carl [Illinois Inst. of Technology, Chicago, IL (United States)

    1997-12-01

    A mathematical model is created of the dynamic response of pressures caused by flow inputs to an existing distributed helium refrigeration system. The dynamic system studied consists of the suction and discharge pressure headers and compressor portions of the refrigeration system used to cool the superconducting magnets of the Tevatron accelerator at the Fermi National Accelerator Laboratory. The modeling method involves identifying the system from data recorded during a series of controlled tests, with effort made to detect locational differences in pressure response around the four mile accelerator circumference. A review of the fluid mechanics associated with the system indicates linear time invariant models are suitable for the identification, particularly since the governing equations of one dimensional fluid flow are approximated by linear differential equations. An outline of the experimental design and the data acquisition system are given, followed by a detailed description of the modeling, which utilized the Matlab programming language and associated System Identification Toolbox. Two representations of the system are presented. One, a black box model, provides a multi-input, multi-output description assembled from the results of single input step function testing. This description indicates definite variation in pressure response with distance from the flow input location, and also suggests subtle differences in response with the input location itself. A second system representation is proposed which details the relation between continuous flow changes and pressure response, and provides explanation of a previously unappreciated pressure feedback internal to the system.

  8. Modeling the dynamic response of pressures in a distributed helium refrigeration system

    International Nuclear Information System (INIS)

    Brubaker, J.C.

    1997-12-01

    A mathematical model is created of the dynamic response of pressures caused by flow inputs to an existing distributed helium refrigeration system. The dynamic system studied consists of the suction and discharge pressure headers and compressor portions of the refrigeration system used to cool the superconducting magnets of the Tevatron accelerator at the Fermi National Accelerator Laboratory. The modeling method involves identifying the system from data recorded during a series of controlled tests, with effort made to detect locational differences in pressure response around the four mile accelerator circumference. A review of the fluid mechanics associated with the system indicates linear time invariant models are suitable for the identification, particularly since the governing equations of one dimensional fluid flow are approximated by linear differential equations. An outline of the experimental design and the data acquisition system are given, followed by a detailed description of the modeling, which utilized the Matlab programming language and associated System Identification Toolbox. Two representations of the system are presented. One, a black box model, provides a multi-input, multi-output description assembled from the results of single input step function testing. This description indicates definite variation in pressure response with distance from the flow input location, and also suggests subtle differences in response with the input location itself. A second system representation is proposed which details the relation between continuous flow changes and pressure response, and provides explanation of a previously unappreciated pressure feedback internal to the system

  9. Entrepreneurs’ Responses to Illegitimate Institutional Pressures in Monterrey, Mexico

    DEFF Research Database (Denmark)

    Ramirez, Jacobo

    2014-01-01

    The mass media can play an important role in capturing the dynamic between social groups and the institutional environment. To investigate entrepreneurs’ responses to the impact of organized crime and violence on Small and Medium-Sized Enterprises (SMEs) in Monterrey, Mexico, a deductive Content...... Discourse Analysis (CDA) was developed. The sample was constructed by integrating international newspapers available in the database FACTIVA and Mexican newspapers from 2006 to 2012. The results made it possible to observe the dynamic between informal and formal institutions in the emergence of adaptation...... of SMEs’ business model. The adaptations observed tend to respond to the change in the behavior of social groups in Monterrey, Mexico, as a consequence of organized crime and violence. This chapter explores this CDA....

  10. The emergency response guidelines for the Westinghouse pressurized water reactor

    International Nuclear Information System (INIS)

    Dekens, J.P.; Bastien, R.; Prokopovich, S.R.

    1985-01-01

    The Three Mile Island accident has demonstrated that the guidance provided for mitigating the consequences of design basis accidents could be inadequate when multiple incidents, failures or errors occur during or after the accident. Westinghouse and the Westinghouse Owners Group have developed new Emergency Response Guidelines (E.R.G.). The E.R.G. are composed of two independent sets of procedures and of a systematic tool to continuously evaluate the plant safety throughout the response to an accident. a) The Optimal Recovery Guidelines are entered each time the reactor is tripped or the Emergency Core Cooling System is actuated. An immediate verification of the automatic protective actuations is performed and the accident diagnosis process is initiated. When nature of the accident is identified, the operator is transferred to the applicable recovery procedure and subprocedures. A permanent rediagnosis is performed throughout the application of the optimal Recovery Guidelines and cross connections are provided to the adequate procedure if an error in diagnosis is identified. b) Early in the course of the accident, the operating staff initiates monitoring of the Critical Safety Functions. These are defined as the set of functions ensuring the integrity of the physical barriers against radioactivity release. The review of these functions is peformed continuously through a cyclic application of the status trees. c) The Function Restoration Guidelines are entered when the Critical Safety Function monitoring identifies a challenge to one of the functions. Depending on the severity of the challenge, the transfer to a Function Restoration Guideline can be immediate for a severe challenge or delayed for a minor challenge. Those guidelines are independent of the scenario of the accident, but only based on plant parameters and equipment availability

  11. Differential effects of proteins and carbohydrates on postprandial blood pressure-related responses

    NARCIS (Netherlands)

    Teunissen-Beekman, Karianna F. M.; Dopheide, Janneke; Geleijnse, Johanna M.; Bakker, Stephan J. L.; Brink, Elizabeth J.; de Leeuw, Peter W.; Serroyen, Jan; van Baak, Marleen A.

    2014-01-01

    Diet composition may affect blood pressure (BP), but the mechanisms are unclear. The aim of the present study was to compare postprandial BP-related responses to the ingestion of pea protein, milk protein and egg-white protein. In addition, postprandial BP-related responses to the ingestion of

  12. A reservoir simulation approach for modeling of naturally fractured reservoirs

    Directory of Open Access Journals (Sweden)

    H. Mohammadi

    2012-12-01

    Full Text Available In this investigation, the Warren and Root model proposed for the simulation of naturally fractured reservoir was improved. A reservoir simulation approach was used to develop a 2D model of a synthetic oil reservoir. Main rock properties of each gridblock were defined for two different types of gridblocks called matrix and fracture gridblocks. These two gridblocks were different in porosity and permeability values which were higher for fracture gridblocks compared to the matrix gridblocks. This model was solved using the implicit finite difference method. Results showed an improvement in the Warren and Root model especially in region 2 of the semilog plot of pressure drop versus time, which indicated a linear transition zone with no inflection point as predicted by other investigators. Effects of fracture spacing, fracture permeability, fracture porosity, matrix permeability and matrix porosity on the behavior of a typical naturally fractured reservoir were also presented.

  13. Cardiovascular regulatory response to lower body negative pressure following blood volume loss

    Science.gov (United States)

    Shimizu, M.; Ghista, D. N.; Sandler, H.

    1979-01-01

    An attempt is made to explain the cardiovascular regulatory responses to lower body negative pressure (LBNP) stress, both in the absence of and following blood or plasma volume loss, the latter being factors regularly observed with short- or long-term recumbency or weightlessness and associated with resulting cardiovascular deconditioning. Analytical expressions are derived for the responses of mean venous pressure and blood volume pooled in the lower body due to LBNP. An analysis is presented for determining the HR change due to LBNP stress following blood volume loss. It is concluded that the reduced orthostatic tolerance following long-term space flight or recumbency can be mainly attributed to blood volume loss, and that the associated cardiovascular responses characterizing this orthostatic intolerance is elicited by the associated central venous pressure response.

  14. Bending response of an artificial muscle in high-pressure water environments

    Science.gov (United States)

    Nakabo, Yoshihiro; Takagi, Kentaro; Mukai, Toshiharu; Yoshida, Hiroshi; Asaka, Kinji

    2005-05-01

    Ionic Polymer-Metal Composites (IPMCs) are soft actuators, generally referred to as "artificial muscles" which are made out of high polymer gel films of perfluorosulfonic acid chemically plated with gold. These composites bend by applying a low voltage between electrodes on both sides. The actuator is soft and works in water. It bends silently, responds quickly and has a long life. In our previous work, snake-like swimming robots and a 3DOF 2-D manipulator have been developed. In this research we have investigated the bending response of an IPMC artificial muscle in high-pressure water environments, with future applications in deep-sea actuators and robots. The artificial muscles have an advantage over electric motors because they do not need sealing from water, which is difficult in high-pressure water environments. Bending responses of artificial muscles were measured at three different pressure levels, 30MPa, 70MPa and 100MPa. The maximum pressure, 100MPa is the same pressure as the deepest ocean on earth, (10,000m.) From experiments, there was found to be almost no difference with that at normal water pressure of 1Pa. We present detailed results of responses of these artificial muscles including current responses and videos of bending motion with respect to combinations of several different input voltages, frequencies and wave patterns.

  15. Advances in photonic reservoir computing

    Directory of Open Access Journals (Sweden)

    Van der Sande Guy

    2017-05-01

    Full Text Available We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir’s complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  16. Rate of rise in diastolic blood pressure influences vascular sympathetic response to mental stress

    Science.gov (United States)

    El Sayed, Khadigeh; Macefield, Vaughan G.; Hissen, Sarah L.; Joyner, Michael J.

    2016-01-01

    Key points Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress.In this study, we examined the early blood pressure responses (including the peak, time of peak and rate of rise in blood pressure) to mental stress in positive and negative responders.Negative MSNA responders to mental stress exhibit a more rapid rise in diastolic pressure at the onset of the stressor, suggesting a baroreflex‐mediated suppression of MSNA. In positive responders there is a more sluggish rise in blood pressure during mental stress, which appears to be MSNA‐driven.This study suggests that whether MSNA has a role in the pressor response is dependent upon the reactivity of blood pressure early in the task. Abstract Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress. The aim was to examine the early blood pressure response to stress in positive and negative responders and thus its influence on the direction of change in MSNA. Blood pressure and MSNA were recorded continuously in 21 healthy young males during 2 min mental stressors (mental arithmetic, Stroop test) and physical stressors (cold pressor, handgrip exercise, post‐exercise ischaemia). Participants were classified as negative or positive responders according to the direction of the mean change in MSNA during the stressor tasks. The peak changes, time of peak and rate of changes in blood pressure were compared between groups. During mental arithmetic negative responders experienced a significantly greater rate of rise in diastolic blood pressure in the first minute of the task (1.3 ± 0.5 mmHg s−1) compared with positive responders (0.4 ± 0.1 mmHg s−1; P = 0.03). Similar results were found for the Stroop test. Physical tasks elicited robust parallel increases in blood

  17. The impact of azimuthal anisotropy on seismic AVO and petrophysical response in a fractured Wabamun gas reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Rex, B.; Goodway, B.; Martin, C.; Uswak, G. [EnCana Corp., Calgary, AB (Canada)

    2003-07-01

    A reliable method for determining fracture density and orientation is needed to properly evaluate fractured carbonate reservoirs. This paper examines the potential of using the azimuthal information contained in seismic amplitude versus offset (AVO) analysis at a gas well drilled in the Resthaven prospect in the Smokey sub-basin of north-west Alberta. A low angle fault is present in Wabamun limestone, and near vertical fractures create strong anisotropic horizontal transverse isotropy (HTI) intervals in the footwall of the thrust. The AVO method was used to define the extent of the HTI interval. A method was proposed to map the boundary of the fractured reservoir. The study also examined the potential for LMR analysis which is commonly used in isotropic environments. Applying LMR to the Resthaven prospect required some reevaluation of local relationships between LMR and the in-situ HTI environment. LMR was shown to be a powerful tool if the interpreter understands the limitations of the model on which it is based. 6 refs., 13 figs.

  18. Chronotopic and blood pressure response to oral glucose load in chagas' disease

    Directory of Open Access Journals (Sweden)

    Maria Elena Guariento

    Full Text Available Cardiac chronotropic and pressor responses after an oral load of glucose were assessed in sixteen Chagasic subjects and 28 controls by means of blood pressure and pulse rate measurements. Cardiovascular response was correlated with serum insulin and glucose levels. The experiment identified a subgroup of Chagasic subjects (n=8 with a hypoinsulinemic behavior presenting less chronotropic and pressor responses than controls. This may indicate a lower insulin activity and/or an early Autonomic Nervous System dysfunction in this subgroup.

  19. Step Response Characteristics of Polymer/Ceramic Pressure-Sensitive Paint

    OpenAIRE

    Pandey, Anshuman; Gregory, James W.

    2015-01-01

    Experiments and numerical simulations have been used in this work to understand the step response characteristics of Polymer/Ceramic Pressure-Sensitive Paint (PC-PSP). A recently developed analytical model describing the essential physics in PC-PSP quenching kinetics is used, which includes the effect of both diffusion time scale and luminescent lifetime on the net response of PC-PSP. Step response simulations using this model enables an understanding of the effects of parameters, such as the...

  20. Intrathecal fentanyl abolishes the exaggerated blood pressure response to cycling in hypertensive men

    DEFF Research Database (Denmark)

    Barbosa, Thales C; Vianna, Lauro C; Fernandes, Igor A

    2016-01-01

    . In the present study, we tested whether the attenuation of these neural signals in hypertensive patients could normalize their abnormal increase in blood pressure during physical activity. Attenuation of the neural signals from the leg muscles with intrathecal fentanyl injection reduced the blood pressure...... of fentanyl, a μ-opioid receptor agonist, aiming to attenuate the central projection of opioid-sensitive group III and IV muscle afferent nerves. The cardiovascular response to exercise of these subjects was compared with that of six normotensive men. During cycling, the hypertensive group demonstrated...... an exaggerated increase in blood pressure compared to the normotensive group (mean ± SEM: +17 ± 3 vs. +8 ± 1 mmHg, respectively; P 0.05). Fentanyl inhibited the blood pressure response to exercise...

  1. Blood pressure response to conventional and low-dose enalapril in chronic renal failure

    DEFF Research Database (Denmark)

    Elung-Jensen, Thomas; Heisterberg, Jens; Kamper, Anne-Lise

    2003-01-01

    AIMS: In chronic renal failure, the clearance of most ACE inhibitors including enalapril is reduced. Hence, with conventional dosage, plasma enalaprilat may be markedly elevated. It is unclear whether this excess of drug exposure affords an improved control of blood pressure. The aim of the present...... study was to evaluate short-term blood pressure response to two different plasma levels of enalaprilat. METHODS: As part of an open, randomized, controlled trial of the effect of high and low dosage of enalapril on the progression of renal failure, short-term blood pressure response was evaluated. Data...... potassium concentrations at day 90 and patients in the low group experienced a slight increase in GFR. CONCLUSIONS: In moderate to severe chronic renal insufficiency the same degree of blood pressure control was achieved on low as well as moderate daily doses of enalapril. This was irrespective...

  2. Application backwards characteristics analysis method to dynamic response of metals under high pressure

    Directory of Open Access Journals (Sweden)

    Pan Hao

    2015-01-01

    Full Text Available Dynamic yield strength of metals/alloys depends on loading pressure and rates sensitively. With the development of laser interferometer measurement system, extracting strength information from window/free surface velocity profiles in shock and ramp loading experiments is becoming an important method to investigate materials’ dynamic response under high pressure and high strain rates. Backwards characteristics analysis method (BCAM can analyze the velocity profiles more reasonable because it accounts for bending of the incoming characteristics due to impedance mismatch between the sample and window. Synthetic analyses of reverse impact experiment and graded-density impactor loading-releasing experiment suggest that BCAM can give more accurate results including sound speed-particle velocity and yield strength at high pressure than incremental impedance matching method. We use BCAM to analyze velocity profiles of Sn in shock-release experiments and obtain its shear modulus and yield strength at different shock pressure and investigate its phase transition and dynamic unloading response.

  3. Response of blood pressure to maximum exercise in hypertensive patients under different therapeutic programs

    Directory of Open Access Journals (Sweden)

    Carreira Maria Angela Magalhães de Queiroz

    2000-01-01

    Full Text Available OBJECTIVE: To evaluate the behavior of blood pressure during exercise in patients with hypertension controlled by frontline antihypertension drugs. METHODS: From 979ergometric tests we retrospectively selected 49 hipertensive patients (19 males. The age was 53±12 years old and normal range rest arterial pressure ( or = 10 mmHg/MET; or increase of diastolic pressure greater than 15 mmHg. RESULTS: Physiologic response of arterial blood pressure occurred in 50% of patients on beta blockers, the best one (p<0.05, in 36% and 31% on calcium antagonists and on diuretics, respectively, and in 20% on angiotensin converting enzyme inhibitor, the later the leastr one (p<0.05. CONCLUSION: Beta-blockers were more effective than calcium antagonists, diuretics and angiotensin-converting enzyme inhibitors in controlling blood pressure during exercise, and angiotensin converting enzyme inhibitors the least effective drugs.

  4. Improved fast response pressure gauge for shock reflection studies in ionized gases.

    Science.gov (United States)

    Hanson, R. K.; Baganoff, D.

    1972-01-01

    An improved design is presented for a fast response pressure gauge (0.1 microsec risetime) suitable for short duration measurements on the end wall of a shock tube. The design includes standard components to facilitate gauge construction, and it utilizes dual capacitive sensing elements together with a signal differencing scheme to permit use of the gauge in ionized gases. Pressure-time records obtained with the gauge are presented showing details of pressure profiles on the shock tube end wall for reflecting shock waves in ionized gases.

  5. Determination of the response time of pressure transducers using the direct method

    International Nuclear Information System (INIS)

    Perillo, S.R.P.

    1994-01-01

    The available methods to determine the response time of nuclear safety related pressure transducers are discussed, with emphasis to the direct method. In order to perform the experiments, a Hydraulic Ramp Generator was built. The equipment produces ramp pressure transients simultaneously to a reference transducer and to the transducer under test. The time lag between the output of the two transducers, when they reach a predetermined setpoint, is measured as the time delay of the transducer under test. Some results using the direct method to determine the time delay of pressure transducers (1 E Class Conventional) are presented. (author). 18 refs, 35 figs, 12 tabs

  6. Ambulatory blood pressure responses and the circumplex model of mood: a 4-day study.

    Science.gov (United States)

    Jacob, R G; Thayer, J F; Manuck, S B; Muldoon, M F; Tamres, L K; Williams, D M; Ding, Y; Gatsonis, C

    1999-01-01

    The relation between mood or emotions and concurrent ambulatory blood pressure responses holds both fundamental and clinical interest. The primary sample consisted of 69 normotensive or borderline hypertensive but otherwise healthy adult males. The validation sample consisted of 85 healthy male undergraduate college students. Both samples underwent half-hourly 24-hour ambulatory blood pressure measurements on four separate workdays, 1 week apart. At each ambulatory measurement, subjects recorded their behavior, environment, and mood. The circular mood scale, a circular visual analogue scale based on the circumplex model of mood, was used to reflect the totality of a participant's affective state space. Longitudinal random effects regression models were applied in the data analysis. The results for both samples were quite similar. Sleep and posture had the greatest influence on ambulatory blood pressure and heart rate. The effects of the environmental setting, social setting, and consumption were modest but statistically significant. Independent of these covariates, mood exerted a significant effect on blood pressure and heart rate. Relative to the "mellow" default category, blood pressure increased both for "anxious/annoyed" and "elated/happy" and decreased during "disengaged/sleepy" mood. The range of mood-related blood pressure estimates was 6.0/3.7 mm Hg. The pattern of blood pressure responses suggests that they were related to the degree of engagement of a mood rather than the degree of unpleasantness. The hypothesis that posits that negative affect-related cardiovascular reactivity mediates the observed correlation between negative affect and disease risk should be reconsidered.

  7. Measurement of response time and detection of degradation in pressure sensor/sensing-line systems

    International Nuclear Information System (INIS)

    Buchanan, M.E.; Miller, L.F.; Kerlin, T.W.; Ragan, G.; March-Leuba, J.; Thie, J.A.

    1985-01-01

    A team evaluated several methods for remote measurement of the response time and detection of degradation (blockage or air in lines) of pressure sensor/sensing line systems typical of nuclear power plants. A method was developed for obtaining the response time of force-balance pressure transmitters by briefly interrupting the power supply to the transmitter. The data thus generated are then analyzed in conjunction with a model to predict transmitter response to an actual pressure perturbation. The research team also evaluated a pressure perturbation method for determining the asymptotic delay time of a pressure-sensing line and found that this method yields accurate results for essentially unblocked sensing lines. However, these pressure perturbation tests are not recommended for use in nuclear power plants because they are difficult to implement on-line. A third method for remote measurement applied noise analysis method that yielded accurate estimates of asymptotic delay times for blockage or air in sensing lines. Even though noise analysis methods worked well in the laboratory, it is recommended that further evaluation be performed in operating nuclear plants. (orig.)

  8. Measurement of response time and detection of degradation in pressure sensor/sensing line systems

    International Nuclear Information System (INIS)

    Buchanan, M.E.; Miller, L.F.; Thie, J.A.; Kerlin, T.W.; Ragan, G.E.; March-Leuba, J.

    1985-09-01

    A team evaluated several methods for remote measurement of the response time and detection of degradation (blockage or air in lines) of pressure sensor/sensing line systems typical of nuclear power plants. A method was developed for obtaining the response time of force-balance pressure transmitters by briefly interrupting the power supply to the transmitter. The data thus generated are then analyzed in conjunction with a model to predict transmitter response to an actual pressure perturbation. The research team also evaluated a pressure perturbation method for determining the asymptotic delay time of a pressure-sensing line and found that this method yields accurate results for essentially unblocked sensing lines. However, these pressure perturbation tests are not recommended for use in nuclear power plants because they are difficult to implement on-line. A third method for remote measurement applied noise analysis methods that yielded accurate estimates of asymptotic delay times for blockage or air in sensing lines. Even though noise analysis methods worked well in the laboratory, it is recommended that further evaluation be performed in operating nuclear plants

  9. Load response of periodontal ligament: assessment of fluid flow, compressibility, and effect of pore pressure.

    Science.gov (United States)

    Bergomi, Marzio; Wiskott, H W Anselm; Botsis, John; Mellal, Aïssa; Belser, Urs C

    2010-01-01

    The periodontal ligament (PDL) functions both in tension and in compression. The presence of an extensive vascular network inside the tissue suggests a significant contribution of the fluid phase to the mechanical response. This study examined the load response of bovine PDL under different pore pressure levels. A custom-made pressure chamber was constructed. Rod-shaped specimens comprising portions of dentine, bone, and intervening layer of PDL were extracted from bovine mandibular molars. The dentine ends of the specimens were secured to the actuator while the bone ends were affixed to the load cell. The entire assemblage was surrounded by the pressure chamber, which was then filled with saline. Specimens loaded at 1.0 Hz sinusoidal displacement were subjected to four different environmental fluid pressures (i.e., pressures of 0.0-1.0 MPa). The video images recorded during the tests were analyzed to determine whether or not fluid exchange between the PDL and the surrounding medium took place during mechanical loading. A value for the tissue's apparent Poisson ratio was also determined. The following observations were made: (1) fluid was squeezed out and pumped into the ligament during the compressive and tensile loading phases, (2) the PDL was highly compressible, and (3) the pore pressure had no influence on the mechanical response of the PDL. The present tests emphasized the biphasic structure of PDL tissue, which should be considered as a porous solid matrix through which fluid can freely flow.

  10. On the mechanisms of reservoir-induced seismicity

    Science.gov (United States)

    Chen, Linyue

    Reservoir-induced seismicity (RIS) is caused by failure of pre-existing fractures due to reservoir impoundment or water level changes. More than one hundred RIS cases have been observed around the world, with the largest event reaching a magnitude M6.3. We have used detailed data collected around the world to study the mechanisms of RIS. Impoundment of a reservoir can change the frictional strength of a fault by elastic loading and by pore pressure diffusion. Stress and strength changes were calculated for 53 well-located earthquakes at Monticello Reservoir, South Carolina where detailed information of the fault planes and reservoir filling was known. The calculations showed that the diffusion of pore pressure is primarily responsible for the earthquakes, and that strength changes ≤0.1 MPa are enough to trigger RIS, indicating that large parts of crust are very near the state of critical failure. Monticello Reservoir was impounded in 1977 and the seismicity had decayed to background level by 1992. There was a sudden increase in seismicity starting at the end of 1996, at a time when there were no water level changes in the reservoir. This new seismicity occurred in isolated new hypocentral areas with no previous earthquakes. Analyses showed that the new seismicity was caused by the coupled effects of chemical reactions and pore pressure diffusion. Of the nineteen cases of RIS in China, fifteen are located in carbonate rocks. Chemical reactions between water and the carbonate rocks are responsible for the seismicity. Detailed spatial and temporal data of seismicity associated with reservoir impoundment, geothermal and oilfield exploitation and fluid injection were collected in the study. Hydraulic diffusivity and permeability values in the seismogenic areas were estimated from these data. The results showed that in the seismogenic areas with induced seismicity, hydraulic diffusivity values lie in the range of 0.1 to 10 m2/s and the permeability values are in the

  11. Performance Analysis of Depleted Oil Reservoirs for Underground Gas Storage

    Directory of Open Access Journals (Sweden)

    Dr. C.I.C. Anyadiegwu

    2014-02-01

    Full Text Available The performance of underground gas storage in depleted oil reservoir was analysed with reservoir Y-19, a depleted oil reservoir in Southern region of the Niger Delta. Information on the geologic and production history of the reservoir were obtained from the available field data of the reservoir. The verification of inventory was done to establish the storage capacity of the reservoir. The plot of the well flowing pressure (Pwf against the flow rate (Q, gives the deliverability of the reservoir at various pressures. Results of the estimated properties signified that reservoir Y-19 is a good candidate due to its storage capacity and its flow rate (Q of 287.61 MMscf/d at a flowing pressure of 3900 psig

  12. Modeling transducer impulse responses for predicting calibrated pressure pulses with the ultrasound simulation program Field II

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2010-01-01

    FIELD II is a simulation software capable of predicting the field pressure in front of transducers having any complicated geometry. A calibrated prediction with this program is, however, dependent on an exact voltage-to-surface acceleration impulse response of the transducer. Such impulse response...... is not calculated by FIELD II. This work investigates the usability of combining a one-dimensional multilayer transducer modeling principle with the FIELD II software. Multilayer here refers to a transducer composed of several material layers. Measurements of pressure and current from Pz27 piezoceramic disks...... transducer model and the FIELD II software in combination give good agreement with measurements....

  13. A new method for measuring the response time of the high pressure ionization chamber

    International Nuclear Information System (INIS)

    Wang, Zhentao; Shen, Yixiong; An, Jigang

    2012-01-01

    Time response is an important performance characteristic for gas-pressurized ionization chambers. To study the time response, it is especially crucial to measure the ion drift time in high pressure ionization chambers. In this paper, a new approach is proposed to study the ion drift time in high pressure ionization chambers. It is carried out with a short-pulsed X-ray source and a high-speed digitizer. The ion drift time in the chamber is then determined from the digitized data. By measuring the ion drift time of a 15 atm xenon testing chamber, the method has been proven to be effective in the time response studies of ionization chambers. - Highlights: ► A method for measuring response time of high pressure ionization chamber is proposed. ► A pulsed X-ray producer and a digital oscilloscope are used in the method. ► The response time of a 15 atm Xenon testing ionization chamber has been measured. ► The method has been proved to be simple, feasible and effective.

  14. Biochemical and ultrastructural changes in the liver of European perch (Perca fluviatilis L. in response to cyanobacterial bloom in the Gruža reservoir

    Directory of Open Access Journals (Sweden)

    Perendija Branka R.

    2011-01-01

    Full Text Available We investigated the biochemical and ultrastructural changes in the liver of the freshwater fish, European perch (Perca fluviatilis, in response to Aphanizomenon flos-aquae bloom in the Gruža Reservoir, Serbia. The activities of total manganese- and copper zinc-containing superoxide dismutase (Tot SOD, Mn-SOD, Cu/Zn-SOD, catalase (CAT, glutathione peroxidase (GSH-Px, glutathione reductase (GR and biotransformation phase II enzyme glutathione-S-transferase (GST, as well as concentrations of total glutathione (GSH and sulfhydryl (-SH groups were examined before and during the bloom period. Mn-SOD activity was significantly higher, while the activities of Cu/Zn-SOD, CAT and GSH-Px and the concentration of the -SH groups were significantly lower during the bloom. The ultrastructure of the liver revealed necrotic and apoptotic damage to the hepatocytes during the bloom period. Our work represents the first study to report the influences of an Aphanizomenon flos-aquae bloom in the Gruža Reservoir on antioxidant biomarkers and on histopathological alterations in the liver of the freshwater fish European perch (Perca fluviatilis.

  15. Beluga (Delphinapterus leucas granulocytes and monocytes display variable responses to in vitro pressure exposures

    Directory of Open Access Journals (Sweden)

    Laura A Thompson

    2015-05-01

    Full Text Available While it is widely known that marine mammals possess adaptations which allow them to make repetitive and extended dives to great depths without suffering ill effects seen in humans, the response of marine mammal immune cells to diving is unknown. Renewed interest in marine mammal dive physiology has arisen due to reports of decompression sickness-like symptoms and embolic damage in stranded and by-caught animals, and there is concern over whether anthropogenic activities can impact marine mammal health by disrupting adaptive dive responses and behavior. This work addresses the need for information concerning marine mammal immune function during diving by evaluating granulocyte and monocyte phagocytosis, and granulocyte activation in belugas (n=4 in comparison with humans (n=4, with and without in vitro pressure exposures. In addition, the potential for additional stressors to impact immune function was investigated by comparing the response of beluga cells to pressure between baseline and stressor conditions. Granulocyte and monocyte phagocytosis, as well as granulocyte activation, were compared between pressure exposed and non-exposed cells for each condition, between different pressure profiles and between conditions using mixed generalized linear models (α=0.05. The effects of pressure varied between species as well by depth, compression/decompression rates, and length of exposures, and condition for belugas. Pressure induced changes in granulocyte and monocyte function in belugas could serve a protective function against dive-related pathologies and differences in the response between humans and belugas could reflect degrees of dive adaptation. The alteration of these responses during physiologically challenging conditions may increase the potential for dive-related in jury and disease in marine mammals.

  16. Experimental and computational analysis of pressure response in a multiphase flow loop

    Science.gov (United States)

    Morshed, Munzarin; Amin, Al; Rahman, Mohammad Azizur; Imtiaz, Syed

    2016-07-01

    The characteristics of multiphase fluid flow in pipes are useful to understand fluid mechanics encountered in the oil and gas industries. In the present day oil and gas exploration is successively inducing subsea operation in the deep sea and arctic condition. During the transport of petroleum products, understanding the fluid dynamics inside the pipe network is important for flow assurance. In this case the information regarding static and dynamic pressure response, pressure loss, optimum flow rate, pipe diameter etc. are the important parameter for flow assurance. The principal aim of this research is to represents computational analysis and experimental analysis of multi-phase (L/G) in a pipe network. This computational study considers a two-phase fluid flow through a horizontal flow loop with at different Reynolds number in order to determine the pressure distribution, frictional pressure loss profiles by volume of fluid (VOF) method. However, numerical simulations are validated with the experimental data. The experiment is conducted in 76.20 mm ID transparent circular pipe using water and air in the flow loop. Static pressure transducers are used to measure local pressure response in multiphase pipeline.

  17. Insights into aquifer vulnerability and potential recharge zones from the borehole response to barometric pressure changes

    Science.gov (United States)

    El Araby, Mahmoud; Odling, Noelle; Clark, Roger; West, Jared

    2010-05-01

    Borehole water levels fluctuate in response to deformation of the surrounding aquifer caused by surface loading due to barometric pressure or strain caused by Earth and ocean tides. The magnitude and nature of this response mainly depend on the hydraulic properties of the aquifer and overlying units and borehole design. Thus water level responses reflect the effectiveness of a confining unit as a protective layer against aquifer contamination (and therefore groundwater vulnerability) and to potential aquifer recharge/discharge zones. In this study, time series of borehole water levels and barometric pressure are being investigated using time series analysis and signal processing techniques with the aim of developing a methodology for assessing recharge/discharge distribution and groundwater vulnerability in the confined/semi-confined part of the Chalk aquifer in East Yorkshire, UK. The chalk aquifer in East Yorkshire is an important source for industrial and domestic water supply. The aquifer water quality is threatened by surface pollution particularly by nitrates from agricultural fertilizers. The confined/semi-confined part of this aquifer is covered by various types of superficial deposits resulting in a wide range of the aquifer's degree of confinement. A number of boreholes have been selected for monitoring to cover all these various types of confining units. Automatic pressure transducers are installed to record water levels and barometric pressure measurements at each borehole on 15 minutes recording intervals. In strictly confined aquifers, borehole water level response to barometric pressure is an un-drained instantaneous response and is a constant fraction of the barometric pressure changes. This static confined constant is called the barometric efficiency which can be estimated simply by the slope of a regression plot of water levels versus barometric pressure. However, in the semi confined aquifer case this response is lagged due to water movement

  18. Production induced boiling and cold water entry in the Cerro Prieto geothermal reservoir indicated by chemical and physical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Grant, M.A. (DSIR, Wellington, New Zealand); Truesdell, A.H.; Manon, A.

    1981-01-01

    Chemical and physical data suggest that the relatively shallow western part of the Cerro Prieto reservoir is bounded below by low permeability rocks, and above and at the sides by an interface with cooler water. There is no continuous permeability barrier around or immediately above the reservoir. Permeability within the reservoir is dominantly intergranular. Mixture with cooler water rather than boiling is the dominant cooling process in the natural state, and production causes displacement of hot water by cooler water, not by vapor. Local boiling occurs near most wells in response to pressure decreases, but no general vapor zone has formed.

  19. Integrated experimental test program on waterhammer pressure pulses and associated structural responses within a feedwater sparger

    Energy Technology Data Exchange (ETDEWEB)

    Nurkkala, P.; Hoikkanen, J. [Imatran Voima Oy, Vantaa (Finland)

    1997-12-31

    This paper describes the methods and systems as utilized in an integrated experimental thermohydraulic/mechanics analysis test program on waterhammer pressure pulses within a revised feedwater sparger of a Loviisa generation VVER-440-type reactor. This program was carried out in two stages: (1) measurements with a strictly limited set of operating parameters at Loviisa NPP, and (2) measurements with the full set of operating parameters on a test article simulating the revised feedwater sparger. The experiments at Loviisa NPS served as an invaluable source of information on the nature of waterhammer pressure pulses and structural responses. These tests thus helped to set the objectives and formulate the concept for series of tests on a test article to study the water hammer phenomena. The heavily instrumented full size test article of a steam generator feedwater sparger was placed within a pressure vessel simulating the steam generator. The feedwater sparger was subjected to the full range of operating parameters which were to result in waterhammer pressure pulse trains of various magnitudes and duration. Two different designs of revised feedwater sparger were investigated (i.e. `grounded` and `with goose neck`). The following objects were to be met within this program: (1) establish the thermohydraulic parameters that facilitate the occurrence of water hammer pressure pulses, (2) provide a database for further analysis of the pressure pulse phenomena, (3) establish location and severity of these water hammer pressure pulses, (4) establish the structural response due to these pressure pulses, (5) provide input data for structural integrity analysis. (orig.). 3 refs.

  20. Evaluation of Different Dose-Response Models for High Hydrostatic Pressure Inactivation of Microorganisms.

    Science.gov (United States)

    Buzrul, Sencer

    2017-09-07

    Modeling of microbial inactivation by high hydrostatic pressure (HHP) requires a plot of the log microbial count or survival ratio versus time data under a constant pressure and temperature. However, at low pressure and temperature values, very long holding times are needed to obtain measurable inactivation. Since the time has a significant effect on the cost of HHP processing it may be reasonable to fix the time at an appropriate value and quantify the inactivation with respect to pressure. Such a plot is called dose-response curve and it may be more beneficial than the traditional inactivation modeling since short holding times with different pressure values can be selected and used for the modeling of HHP inactivation. For this purpose, 49 dose-response curves (with at least 4 log 10 reduction and ≥5 data points including the atmospheric pressure value ( P = 0.1 MPa), and with holding time ≤10 min) for HHP inactivation of microorganisms obtained from published studies were fitted with four different models, namely the Discrete model, Shoulder model, Fermi equation, and Weibull model, and the pressure value needed for 5 log 10 ( P ₅) inactivation was calculated for all the models above. The Shoulder model and Fermi equation produced exactly the same parameter and P ₅ values, while the Discrete model produced similar or sometimes the exact same parameter values as the Fermi equation. The Weibull model produced the worst fit (had the lowest adjusted determination coefficient (R² adj ) and highest mean square error (MSE) values), while the Fermi equation had the best fit (the highest R² adj and lowest MSE values). Parameters of the models and also P ₅ values of each model can be useful for the further experimental design of HHP processing and also for the comparison of the pressure resistance of different microorganisms. Further experiments can be done to verify the P ₅ values at given conditions. The procedure given in this study can also be extended

  1. Environmental and social pressure as drivers of corporate social responsibility in a globalizing world

    DEFF Research Database (Denmark)

    Haleem, Fazli; Farooq, Sami; Boer, Harry

    2014-01-01

    Studies of drivers of corporate social responsibility (CSR) practices that also explore the influence of company size and location are rare. This paper fills this gap by showing the extent to which environmental and social pressures affect the efforts companies put into implementing internal and ...

  2. Intrinsic pressure response of a single mode cyclo olefin polymer fiber bragg grating

    DEFF Research Database (Denmark)

    Pedersen, Jens Kristian Mølgaard; Woyessa, Getinet; Nielsen, Kristian

    2016-01-01

    The intrinsic pressure response of a Fibre Bragg Grating (FBG) inscribed in a single-mode cyclo olefin polymer (COP) microstructured polymer optical fibre (mPOF) in the range 0-200 bar is investigated for the first time. In order to efficiently suppress the effects from changes in temperature...

  3. Development of gas and gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    In the study of gas reservoir development, the first year topics are restricted on reservoir characterization. There are two types of reservoir characterization. One is the reservoir formation characterization and the other is the reservoir fluid characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. The results of conditional simulation has higher confidence level than the unconditional simulation because conditional simulation considers the sample location as well as distance correlation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. From the liquid volume fraction with pressure drop, the phase behavior of reservoir fluid can be estimated. The calculation results of fluid recombination, constant composition expansion, and constant volume depletion are matched very well with the experimental data. In swelling test of the reservoir fluid with lean gas, the accuracy of dew point pressure forecast depends on the component characterization. (author). 28 figs., 10 tabs.

  4. Well responses to barometric-pressure fluctuations in confined and semi-confined aquifers

    Science.gov (United States)

    Mohammed, G. A.; Jin, W.; Butler, J. J., Jr.; Reboulet, E. C.

    2009-04-01

    Modern data logger and sensor technology enable well responses to barometric pressure changes to be monitored at a high frequency and precision. In this presentation, we demonstrate that such monitoring data can be utilized not just for the conventional calculation of a well's barometric efficiency but also to provide valuable information for site characterization applications. We investigate the water-level responses of wells in confined and semi-confined aquifers to changes in barometric pressure and show how simple analytical solutions can be fit to experimentally determined barometric response functions to place bounds on the properties of the confining bed. We demonstrate our approach at the Larned Research Site, located along the Arkansas River in south-central Kansas in the Great Plains region of the United States. The site contains monitoring wells tapping an unconsolidated, semi-confined aquifer (High Plains Aquifer) overlain by a clay unit and a shallow, unconfined aquifer. Water levels and atmospheric pressure have been monitored in the wells at 15-minute intervals for up to seven years. The spatial and temporal changes in the barometric response functions provide important insights on the degree of confinement and its change in space and time. Short term (hour or less) response functions indicate a classical confined aquifer, whereas long term responses (day) show semi-confined behavior, an indication that the air pressure exerted on the water table is being transmitted downward through the confining bed. The barometric response functions vary little in space, indicating the homogeneity of the confining bed, but do vary temporally as a function of the water table elevation and the pneumatic diffusivity of the vadose zone.

  5. Investigation of diffusivity coefficient of Asmari reservoir by well test analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shadizadeh, S.R. [Petroleum Univ. of Technology, Tehran (Iran, Islamic Republic of); Amiri, M.; Zaferanieh, M. [National Iranian Oil Co., Tehran (Iran, Islamic Republic of)

    2007-07-01

    One of the greatest challenges facing petroleum engineers is to characterize the physical nature of subterranean reservoirs from which crude oil is produced. The quality of reservoir description determines the results of numerical simulations of reservoir performance. The ways by which information can be obtained include seismic and geological studies; well drilling data; well pressure testing; and analysis of reservoir performance through history matching. This paper presented the results of a study in which the Asmari field in southern onshore Iran was characterized. The field went into production in 1970. To date, a total of 39 wells have been completed in the Asmari and Bangestan groups of this field. Pan System software was used in this study to analyze the well test data. Parameters such as permeability, skin factor, wellbore storage, average reservoir pressure, diffusivity coefficient and productivity index are calculated for each well. In particular, the diffusivity coefficient for the Asmari sedimentary layer was determined. This dimensionless reservoir parameter is a ratio of a medium's capacity for transmissibility of fluid to capacity. Diffusivity offers a quantitative measure for the rate of response during transient fluid flow. All available information such as petrophysical data, PVT data, production data and pressure build up data of the completed wells in Asmari formation were collected. Twenty one data tests were then analyzed. A correlation between productivity index and the diffusivity coefficient for the Asmari formation was subsequently obtained. It was concluded that permeability is one of the most important parameter in reservoir engineering calculations. Different completion of well number 1 showed that the diffusivity coefficient and productivity index of carbonate layer is less than in the sandstone layer. It was determined that the western part of the reservoir is suitable for drilling new wells.13 refs., 5 tabs., 7 figs.

  6. The effect of interaction between reservoir and multi-layer foundation on the dynamic response of a typical arch dam (Karaj dam) to ''p'' and ''s'' waves

    International Nuclear Information System (INIS)

    Mohammadi, Pedram Mosahebi; Noorzad, Asadollah; Rahimian, Mohammad; Omidvar, Babak

    2009-01-01

    Analysis of the dynamic response of a three-dimensional arch dam is conducted taking into account the effects of dam-reservoir and dam-foundation interactions. The Karaj arch-dam in Iran is considered as a case study. The dam, fluid, and foundation domains are treated as substructures and modeled with boundary elements. The foundation domain is assumed to be layered and infinite. This study focuses on the effect of geotechnical conditions on the dynamic response of the dam to harmonic P and S waves. Latest investigations show that the foundation flexibility leads to a reduction in the response through radiation of energy. In this research, it is shown that the effect of soil layers may cause amplification of response in some frequency ranges. This study emphasizes the necessity of comprehensive modeling for site effects to resolve such problems. Also, by identifying the bands of excitation frequencies to which the dam may be more sensitive, it helps in the selection of the most critical earthquake records (as random phenomena) to be used in time domain analysis. (author)

  7. Whole body heat stress attenuates the pressure response to muscle metaboreceptor stimulation in humans

    Science.gov (United States)

    Cui, Jian; Blaha, Cheryl

    2016-01-01

    The effects of whole body heat stress on sympathetic and cardiovascular responses to stimulation of muscle metaboreceptors and mechanoreceptors remains unclear. We examined the muscle sympathetic nerve activity (MSNA), blood pressure, and heart rate in 14 young healthy subjects during fatiguing isometric handgrip exercise, postexercise circulatory occlusion (PECO), and passive muscle stretch during PECO. The protocol was performed under normothermic and whole body heat stress (increase internal temperature ~0.6°C via a heating suit) conditions. Heat stress increased the resting MSNA and heart rate. Heat stress did not alter the mean blood pressure (MAP), heart rate, and MSNA responses (i.e., changes) to fatiguing exercise. During PECO, whole body heat stress accentuated the heart rate response [change (Δ) of 5.8 ± 1.5 to Δ10.0 ± 2.1 beats/min, P = 0.03], did not alter the MSNA response (Δ16.4 ± 2.8 to Δ17.3 ± 3.8 bursts/min, P = 0.74), and lowered the MAP response (Δ20 ± 2 to Δ12 ± 1 mmHg, P heat stress prevented the MAP and MSNA responses to stretch during PECO (both P > 0.05). These data suggest that whole body heat stress attenuates the pressor response due to metaboreceptor stimulation, and the sympathetic nerve response due to mechanoreceptor stimulation. PMID:27763873

  8. Evaluation of pressure response in the Los Alamos controlled air incinerator during three incident scenarios

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Elsberry, K.; Thompson, T.K.; Pendergrass, J.A.

    1996-01-01

    The Los Alamos Controlled Air Incinerator (CAI) is a system designed to accept radioactive mixed waste containing alpha-emitting radionuclides. A mathematical model was developed to predict the pressure response throughout the offgas treatment system of the CAI during three hypothetical incident scenarios. The scenarios examined included: (1) loss of burner flame and failure of the flame safeguard system with subsequent reignition of fuel gas in the primary chamber, (2) pyrolytic gas buildup from a waste package due to loss of induced draft and subsequent restoration of induced draft, and (3) accidental charging of propellant spray cans in a solid waste package to the primary chamber during a normal feed cycle. For each of the three scenarios, the finite element computer model was able to determine the transient pressure surge and decay response throughout the system. Of particular interest were the maximum absolute pressures attainable at critical points in the system as well as maximum differential pressures across the high efficiency particulate air (HEPA) filters. Modeling results indicated that all three of the scenarios resulted in maximum HEPA filter differential pressures well below the maximum allowable levels

  9. An accurate measurement of the Rosemount 1152 differential pressure cell response time

    International Nuclear Information System (INIS)

    Hinds, H.W.; Gao, Y.; Tonner, P.D.

    1997-01-01

    The primary heat-transport (PHT) system of a CANDU reactor includes four quadrants of reactor coolant channels, each fed from its own inlet header through a large number of inlet feeders. As part of the safety shutdown system 1 (SDS1) and Reactor Regulating System (RRS) of CANDU reactors, differential-pressure (DP) cells are used to monitor the reactor coolant flows in each quadrant and to register changes with a prescribed response time. This paper describes an accurate in-situ measurement of the response time of two Rosemount 1152 DPA22PB DP cells, one from SDS1 and one from an RRS fully instrumented channel. The response time measurement was done using high-frequency pressure-measurement devises temporarily installed on the high- and low-pressure sides of the DP cells. The results suggest that the actual time constant of the Rosemount DP cell is much faster than indicated in the specification which is based on the traditional instrument-air-step-response measurement method. Furthermore, the actual time constant is much faster than that assumed in the safety analysis report. An examination of the instrument-air-step-response method indicates that is produces conservative estimates of time constants, especially for small time constants. If further work confirms this finding it suggests that the actual time constant may be increased considerably without exceeding the time constant assumed in the safety analysis. (author)

  10. Reliability and responsiveness of algometry for measuring pressure pain threshold in patients with knee osteoarthritis.

    Science.gov (United States)

    Mutlu, Ebru Kaya; Ozdincler, Arzu Razak

    2015-06-01

    [Purpose] This study aimed to establish the intrarater reliability and responsiveness of a clinically available algometer in patients with knee osteoarthritis as well as to determine the minimum-detectable-change and standard error of measurement of testing to facilitate clinical interpretation of temporal changes. [Subjects] Seventy-three patients with knee osteoarthritis were included. [Methods] Pressure pain threshold measured by algometry was evaluated 3 times at 2-min intervals over 2 clinically relevant sites-mediolateral to the medial femoral tubercle (distal) and lateral to the medial malleolus (local)-on the same day. Intrarater reliability was estimated by intraclass correlation coefficients. The minimum-detectable-change and standard error of measurement were calculated. As a measure of responsiveness, the effect size was calculated for the results at baseline and after treatment. [Results] The intrarater reliability was almost perfect (intraclass correlation coefficient = 0.93-0.97). The standard error of measurement and minimum-detectable-change were 0.70-0.66 and 1.62-1.53, respectively. The pressure pain threshold over the distal site was inadequately responsive in knee osteoarthritis, but the local site was responsive. The effect size was 0.70. [Conclusion] Algometry is reliable and responsive to assess measures of pressure pain threshold for evaluating pain patients with knee osteoarthritis.

  11. Time response measurements of Rosemount Pressure Transmitters (model 3154) of Angra-1 power plant

    International Nuclear Information System (INIS)

    Santos, Roberto Carlos dos; Pereira, Iraci Martinez; Justino, Marcelo C.; Silva, Marcos C.

    2017-01-01

    This paper shows the Response of time five Rosemount model 3154N pressure transmitter from the Angra I Nuclear Power Plant. The tests were performed using the Hydraulic Ramp and Pressure Step Generator from the Sensor Response Time Measurement laboratory of CEN - Nuclear Engineering Center of IPEN. For each transmitter, damping was adjusted so that the time constant was less than or equal to 500 ms. This value has been determined so that the total value of the protection chain response time does not exceed the established maximum value of 2 seconds. For each transmitter ten tests were performed, obtaining mean values of time constant of 499.7 ms, 464.1 ms, 473.8 ms, 484.7 ms and 511.5 ms, with mean deviations 0.85%, 0.24%, 0.97%, 1.26% and 0.64% respectively. (author)

  12. Skin microvascular and metabolic response to pressure relief maneuvers in people with spinal cord injury

    Science.gov (United States)

    Ramella-Roman, Jessica C.; Le, Du V. N.; Ghassemi, Pejhman; Nguyen, Thu A.; Lichy, Alison; Groah, Suzanne

    2013-02-01

    Clinician's recommendations on wheelchair pressure reliefs in the context of the high prevalence of pressure ulcers that occur in people with spinal cord injury is not supported by strong experimental evidence. Some data indicates that altered tissue perfusion and oxygenation occurring under pressure loads, such as during sitting, induce various pathophysiologic changes that may lead to pressure ulcers. Pressure causes a cascade of responses, including initial tissue hypoxia, which leads to ischemia, vascular leakage, tissue acidification, compensatory angiogenesis, thrombosis, and hyperemia, all of which may lead to tissue damage. We have developed an advanced skin sensor that allows measurement of oxygenation in addition to perfusion, and can be safely used during sitting. The sensor consists of a set of fiber optics probes, spectroscopic and Laser Doppler techniques that are used to obtain parameters of interest. The overriding goal of this project is to develop the evidence base for clinical recommendations on pressure reliefs. In this paper we will illustrate the experimental apparatus as well as some preliminary results of a small clinical trial conducted at the National Rehabilitation Hospital.

  13. Articular cartilage compression: how microstructural response influences pore pressure in relation to matrix health.

    Science.gov (United States)

    Fick, James M; Thambyah, Ashvin; Broom, Neil D

    2010-04-01

    Our research investigated the influence of degeneration on both the pore-pressure development and microstructural response of cartilage during indentation with a flat-porous-indenter. Experiments were conducted to link the mechanical and structural responses of normal and degenerate articular cartilage. We found that from the instant of loading the degenerate matrix generated a higher peak hydrostatic excess pore pressure in a shorter period of time than the normal matrix. Following the attainment of this peak value the pore pressure in both tissue groups then gradually decayed toward zero over time, thus demonstrating a classical consolidation response. The microstructural analysis provided a unique insight into the influence of degeneration on the mechanisms of internal stress-sharing within the loaded matrix. Both disruption of the articular surface and general matrix destructuring results in an altered deformation field in both the directly loaded and nondirectly loaded regions. It is argued that the higher levels of matrix shear combined with less of the applied load being redirected into the wider cartilage continuum accounts for the elevated levels of peak hydrostatic pore pressure generated in the degenerate matrix.

  14. Experimental study on the response characteristics of coal permeability to pore pressure under loading and unloading conditions

    Science.gov (United States)

    Ye, Zhiwei; Zhang, Lei; Hao, Dingyi; Zhang, Cun; Wang, Chen

    2017-10-01

    In order to study the response characteristics of coal permeability to pore pressure, seepage experiments under different simulated in situ stresses on loading and unloading paths are carried out using the self-developed Gas Flow and Displacement Testing Apparatus (GFDTA) system. Based on the analysis of the experimental data, the relationship between average pore pressure and permeability is found to basically obey the function distribution of a two degree polynomial. In this paper, two aspects of the relationship between permeability and pore pressure are explained: the Klinbenberg effect and expansion, and the penetration of the initial fracture. Under low pore pressure, the decrease in the Klinbenberg effect is the main reason for the decrease in permeability with increased pore pressure. Under relatively high pore pressure, the increase in pore pressure leads to the initial fracture expansion and penetration of the coal sample, which causes an increase in permeability. In order to evaluate the sensitivity of the permeability response to pore pressure changes, the permeability dispersion and pore pressure sensitivity coefficients are defined. After the sensitivity analysis, it was concluded that the loading history changed the fracture structure of the original coal sample and reduced its permeability sensitivity to pore pressure. Under low pore pressure, the Klinbenberg effect is the reason for the decrease in pore pressure sensitivity. Lastly, the permeability-pore pressure relationship is divided into three stages to describe the different response characteristics individually.

  15. Reservoir-induced seismicity at Castanhao reservoir, NE Brazil

    Science.gov (United States)

    Nunes, B.; do Nascimento, A.; Ferreira, J.; Bezerra, F.

    2012-04-01

    Our case study - the Castanhão reservoir - is located in NE Brazil on crystalline rock at the Borborema Province. The Borborema Province is a major Proterozoic-Archean terrain formed as a consequence of convergence and collision of the São Luis-West Africa craton and the São Francisco-Congo-Kasai cratons. This reservoir is a 60 m high earth-filled dam, which can store up to 4.5 billion m3 of water. The construction begun in 1990 and finished in October 2003.The first identified reservoir-induced events occurred in 2003, when the water level was still low. The water reached the spillway for the first time in January 2004 and, after that, an increase in seismicity occured. The present study shows the results of a campaign done in the period from November 19th, 2009 to December 31th, 2010 at the Castanhão reservoir. We deployed six three-component digital seismographic station network around one of the areas of the reservoir. We analyzed a total of 77 events which were recorded in at least four stations. To determine hypocenters and time origin, we used HYPO71 program (Lee & Lahr, 1975) assuming a half-space model with following parameters: VP= 5.95 km/s and VP/VS=1.73. We also performed a relocation of these events using HYPODD (Waldhauser & Ellsworth, 2000) programme. The input data used we used were catalogue data, with all absolute times. The results from the spatio-temporal suggest that different clusters at different areas and depths are triggered at different times due to a mixture of: i - pore pressure increase due to diffusion and ii - increase of pore pressure due to the reservoir load.

  16. Stressor-response modeling using the 2D water quality model and regression trees to predict chlorophyll-a in a reservoir system

    Science.gov (United States)

    Park, Yongeun; Pachepsky, Yakov A.; Cho, Kyung Hwa; Jeon, Dong Jin; Kim, Joon Ha

    2015-10-01

    To control algal blooms, the stressor-response relationships between water quality metrics, environmental variables, and algal growth need to be better understood and modeled. Machine-learning methods have been suggested as means to express the stressor-response relationships that are found when applying mechanistic water quality models. The objective of this work was to evaluate the efficiency of regression trees in the development of a stressor-response model for chlorophyll-a (Chl-a) concentrations, using the results from site-specific mechanistic water quality modeling. The 2-dimensional hydrodynamic and water quality model (CE-QUAL-W2) model was applied to simulate water quality using four-year observational data and additional scenarios of air temperature increases for the Yeongsan Reservoir in South Korea. Regression tree modeling was applied to the results of these simulations. Given the well-expressed seasonality in the simulated Chl-a dynamics, separate regression trees were developed for months from May to September. The regression trees provided a reasonably accurate representation of the stressor-response dependence generated by the CE-QUAL-W2 model. Different stressors were then selected as split variables for different months, and, in most cases, splits by the same stressor variable yielded the same correlation sign between the variable and the Chl-a concentration. Compared to physical variables, nutrient content appeared to better predict Chl-a responses. The highest Chl-a temperature sensitivities were found for May and June. Regression tree splits based on ammonium concentration resulted in a consistent trend of greater sensitivity in the groups of samples with higher ammonium concentrations. Regression tree models provided a transparent visual representation of the stressor-response relationships for Chl-a and its sensitivity. Overall, the representation of relationships using classification and regression tools can be considered a useful

  17. On the Versatility of Rheoreversible, Stimuli-responsive Hydraulic-Fracturing Fluids for Enhanced Geothermal Systems: Effect of Reservoir pH

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Carlos A.; Shao, Hongbo; Bonneville, Alain; Varga, Tamas; Zhong, Lirong

    2016-04-25

    Abstract The primary challenge for the feasibility of enhanced geothermal systems (EGS) is to cost-effectively create high-permeability reservoirs inside deep crystalline bedrock. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. These authors recently reported an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing due to in situ volume expansion and gel formation. The potential of this novel fracturing fluid is evaluated in this work towards its application at geothermal sites under different pH conditions. Laboratory-scale fracturing experiments using Coso Geothermal rock cores under different pH environments were performed followed by X-ray microtomography characterization. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable polyallylamine (PAA) consistently and reproducibly creates/propagates fracture networks through highly impermeable crystalline rock from Coso EGS sites at considerably lower effective stress as compared to conventional fracturing fluids. In addition, permeability was significantly enhanced in a wide range of formation-water pH values. This effective, and environmentally-friendly fracturing fluid technology represents a potential alternative to conventional fracturing fluids.

  18. Microvascular pressure responses of second-generation rats chronically exposed to 2 g centrifugation

    Science.gov (United States)

    Richardson, D. R.; Knapp, C. F.

    1977-01-01

    Preliminary results are presented for a study aimed at a quantitative comparison of microvascular dynamics in second-generation rats reared in a 2-g force field produced by centrifugation with similar data from animals reared in a centrifuge that produced only a 1-g force. It is shown that the pressure distribution in the mesenteric microvasculature of the second generation of rats reared in a 2-g environment, as well as the animals' blood pressure response to epinephrine, are significantly different compared to their 1-g counterparts. In particular, 1-g and 2-g chronic centrifugation enhances the arterial blood pressure, and the 2-g force field attenuates the pressor effects of norepinephrine.

  19. Two-dimensional simulation of the Raft River geothermal reservoir and wells. [SINDA-3G program

    Energy Technology Data Exchange (ETDEWEB)

    Kettenacker, W.C.

    1977-03-01

    Computer models describing both the transient reservoir pressure behavior and the time dependent temperature response of the wells at the Raft River, Idaho, Geothermal Resource were developed. A horizontal, two-dimensional, finite-difference model for calculating pressure effects was constructed to simulate reservoir performance. Vertical, two-dimensional, finite-difference, axisymmetric models for each of the three existing wells at Raft River were also constructed to describe the transient temperature and hydraulic behavior in the vicinity of the wells. All modeling was done with the use of the thermal hydraulics computer program SINDA-3G. The models are solved simultaneously with one input deck so that reservoir-well interaction may occur. The model predicted results agree favorably with the test data.

  20. Weather forecasting by insects: modified sexual behaviour in response to atmospheric pressure changes.

    Science.gov (United States)

    Pellegrino, Ana Cristina; Peñaflor, Maria Fernanda Gomes Villalba; Nardi, Cristiane; Bezner-Kerr, Wayne; Guglielmo, Christopher G; Bento, José Maurício Simões; McNeil, Jeremy N

    2013-01-01

    Prevailing abiotic conditions may positively or negatively impact insects at both the individual and population levels. For example while moderate rainfall and wind velocity may provide conditions that favour development, as well as movement within and between habitats, high winds and heavy rains can significantly decrease life expectancy. There is some evidence that insects adjust their behaviours associated with flight, mating and foraging in response to changes in barometric pressure. We studied changes in different mating behaviours of three taxonomically unrelated insects, the curcurbit beetle, Diabrotica speciosa (Coleoptera), the true armyworm moth, Pseudaletia unipuncta (Lepidoptera) and the potato aphid, Macrosiphum euphorbiae (Hemiptera), when subjected to natural or experimentally manipulated changes in atmospheric pressure. In response to decreasing barometric pressure, male beetles exhibited decreased locomotory activity in a Y-tube olfactometer with female pheromone extracts. However, when placed in close proximity to females, they exhibited reduced courtship sequences and the precopulatory period. Under the same situations, females of the true armyworm and the potato aphid exhibited significantly reduced calling behaviour. Neither the movement of male beetles nor the calling of armyworm females differed between stable and increasing atmospheric pressure conditions. However, in the case of the armyworm there was a significant decrease in the incidence of mating under rising atmospheric conditions, suggesting an effect on male behaviour. When atmospheric pressure rose, very few M. euphorbiae oviparae called. This was similar to the situation observed under decreasing conditions, and consequently very little mating was observed in this species except under stable conditions. All species exhibited behavioural modifications, but there were interspecific differences related to size-related flight ability and the diel periodicity of mating activity. We

  1. Reproducibility of exaggerated blood pressure response to exercise in healthy patients.

    Science.gov (United States)

    Sharabi, Y; Almer, Z; Hanin, A; Messerli, F H; Ben-Cnaan, R; Grossman, E

    2001-06-01

    An exaggerated blood pressure response (ExBPR) to exercise has been shown to be predictive of future hypertension and left ventricular hypertrophy. The aim of this study was to test the reproducibility over time of ExBPR and to better characterize patients who consistently respond in this manner. During periodical health examination, patients underwent routine treadmill exercise testing. ExBPR was said to be present if systolic blood pressure and/or diastolic blood pressure at peak exercise exceeded 200 mm Hg and 100 mm Hg, respectively. Over the past 25 years, 117 healthy patients with ExBPR performed 2 to 7 consecutive treadmill exercise tests. According to subsequent ExBPR, these patients were divided into a concordant group-those who had at least two-thirds repetitions of the ExBPR-and a discordant group-those who had less than two-thirds repetitions. For comparison, we identified patients who did not have ExBPR (control group). Of the 117 patients who had ExBPR, only 18 (15.4%) were in the concordant group in subsequent tests. No clinical features were found to characterize patients in the concordant group. In the two study groups, the variability of blood pressure measurements during stress was significantly greater than in the control group. Also, systolic blood pressure measurements at rest and after 3 minutes of recovery were significantly lower in the control group. ExBPR to exercise is rarely reproducible, and there are no clinical findings characterizing those who consistently respond in this manner. Thus the prognostic importance of blood pressure response to exercise should be reconsidered.

  2. Investigation of the spatial variability and possible origins of wind-induced air pressure fluctuations responsible for pressure pumping

    Science.gov (United States)

    Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Zeeman, Matthias; Longdoz, Bernard; Schindler, Dirk

    2017-04-01

    The exchange of greenhouse gases between the soil and the atmosphere is highly relevant for the climate of the Earth. Recent research suggests that wind-induced air pressure fluctuations can alter the soil gas transport and therefore soil gas efflux significantly. Using a newly developed method, we measured soil gas transport in situ in a well aerated forest soil. Results from these measurements showed that the commonly used soil gas diffusion coefficient is enhanced up to 30% during periods of strong wind-induced air pressure fluctuations. The air pressure fluctuations above the forest floor are only induced at high above-canopy wind speeds (> 5 m s-1) and lie in the frequency range 0.01-0.1 Hz. Moreover, the amplitudes of air pressure fluctuations in this frequency range show a clear quadratic dependence on mean above-canopy wind speed. However, the origin of these wind-induced pressure fluctuations is still unclear. Airflow measurements and high-precision air pressure measurements were conducted at three different vegetation-covered sites (conifer forest, deciduous forest, grassland) to investigate the spatial variability of dominant air pressure fluctuations, their origin and vegetation-dependent characteristics. At the conifer forest site, a vertical profile of air pressure fluctuations was measured and an array consisting of five pressure sensors were installed at the forest floor. At the grassland site, the air pressure measurements were compared with wind observations made by ground-based LIDAR and spatial temperature observations from a fibre-optic sensing network (ScaleX Campaign 2016). Preliminary results show that at all sites the amplitudes of relevant air pressure fluctuations increase with increasing wind speed. Data from the array measurements reveal that there are no time lags between the air pressure signals of different heights, but a time lag existed between the air pressure signals of the sensors distributed laterally on the forest floor

  3. Pressure Overload-Induced Cardiac Hypertrophy Response Requires Janus Kinase 2-Histone Deacetylase 2 Signaling

    Directory of Open Access Journals (Sweden)

    Huang Ying

    2014-11-01

    Full Text Available Pressure overload induces cardiac hypertrophy through activation of Janus kinase 2 (Jak2, however, the underlying mechanisms remain largely unknown. In the current study, we tested whether histone deacetylase 2 (HDAC2 was involved in the process. We found that angiotensin II (Ang-II-induced re-expression of fetal genes (Atrial natriuretic peptide (ANP and brain natriuretic peptide (BNP in cultured cardiomyocytes was prevented by the Jak2 inhibitor AG-490 and HDAC2 inhibitor Trichostatin-A (TSA, or by Jak2/HDAC2 siRNA knockdown. On the other hand, myocardial cells with Jak2 or HDAC2 over-expression were hyper-sensitive to Ang-II. In vivo, pressure overload by transverse aorta binding (AB induced a significant cardiac hypertrophic response as well as re-expression of ANP and BNP in mice heart, which were markedly reduced by AG-490 and TSA. Significantly, AG-490, the Jak2 inhibitor, largely suppressed pressure overload-/Ang-II-induced HDAC2 nuclear exportation in vivo and in vitro. Meanwhile, TSA or HDAC2 siRNA knockdown reduced Ang-II-induced ANP/BNP expression in Jak2 over-expressed H9c2 cardiomyocytes. Together, these results suggest that HDAC2 might be a downstream effector of Jak2 to mediate cardiac hypertrophic response by pressure overload or Ang-II.

  4. NRC staff review of licensee responses to pressure-locking and thermal-binding issue

    Energy Technology Data Exchange (ETDEWEB)

    Rathbun, H.J.

    1996-12-01

    Commercial nuclear power plant operating experience has indicated that pressure locking and thermal binding represent potential common mode failure mechanisms that can cause safety-related power-operated gate valves to fail in the closed position, thus rendering redundant safety-related systems incapable of performing their safety functions. In Generic Letter (GL) 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves,{close_quotes} the U.S. Nuclear Regulatory Commission (NRC) staff requested that nuclear power plant licensees take certain actions to ensure that valves susceptible to pressure locking or thermal binding are capable of performing their safety functions within the current licensing bases of the facility. The NRC staff has received summary information from licensees in response to GL 95-07 describing actions they have taken to prevent the occurrence of pressure locking and thermal binding. The NRC staff has developed a systematic process to help ensure uniform and consistent review of licensee submittals in response to GL 95-07.

  5. Chronic binge alcohol consumption during pregnancy alters rat maternal uterine artery pressure response.

    Science.gov (United States)

    Naik, Vishal D; Lunde-Young, Emilie R; Davis-Anderson, Katie L; Orzabal, Marcus; Ivanov, Ivan; Ramadoss, Jayanth

    2016-11-01

    We aimed to investigate pressure-dependent maternal uterine artery responses and vessel remodeling following gestational binge alcohol exposure. Two groups of pregnant rats were used: the alcohol group (28.5% wt/v, 6.0 g/kg, once-daily orogastric gavage in a binge paradigm between gestational day (GD) 5-19) and pair-fed controls (isocalorically matched). On GD20, excised, pressurized primary uterine arteries were studied following equilibration (60 mm Hg) using dual chamber arteriograph. The uterine artery diameter stabilized at 20 mm Hg, showed passive distension at 40 mm Hg, and redeveloped tone at 60 mm Hg. An alcohol effect (P = 0.0025) was observed on the percent constriction of vessel diameter with greater pressure-dependent myogenic constriction. Similar alcohol effect was noted with lumen diameter response (P = 0.0020). The percent change in media:lumen ratio was higher in the alcohol group (P alcohol affects pressure-induced uterine artery reactivity, inward-hypotrophic remodeling, and adaptations critical for nutrient delivery to the fetus. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Computational Fluid Dynamics Simulation of Combustion Instability in Solid Rocket Motor : Implementation of Pressure Coupled Response Function

    OpenAIRE

    S. Saha; D. Chakraborty

    2016-01-01

    Combustion instability in solid propellant rocket motor is numerically simulated by implementing propellant response function with quasi steady homogeneous one dimensional formulation. The convolution integral of propellant response with pressure history is implemented through a user defined function in commercial computational fluid dynamics software. The methodology is validated against literature reported motor test and other simulation results. Computed amplitude of pressure fluctuations ...

  7. The use of paleo-thermo-barometers and coupled thermal, fluid flow and pore fluid pressure modelling for hydrocarbon and reservoir prediction in fold and thrust belts

    NARCIS (Netherlands)

    Roure, F.; Andriessen, P.A.M.; Callot, J.P.; Ferket, H.; Gonzales, E.; Guilhaumou, N.; Hardebol, N.J.; Lacombe, O.; Malandain, J.; Mougin, P.; Muska, K.; Ortuno, S.; Sassi, W.; Swennen, R.; Vilasi, N.

    2010-01-01

    Basin modelling tools are now more efficient to reconstruct palinspastic structural cross sections and compute the history of temperature, pore-fluid pressure and fluid flow circulations in complex structural settings. In many cases and especially in areas where limited erosion occurred, the use of

  8. Oscillatory blood pressure response to the onset of cycling exercise in men

    DEFF Research Database (Denmark)

    Barbosa, Thales C; Fernandes, Igor A; Magalhães-Jr, Nisval

    2015-01-01

    to this pattern is unclear. What is the main finding and its importance? We demonstrate that attenuation of group III/IV muscle afferent feedback by spinal fentanyl impairs the pressor response after 10 s of moderate leg cycling exercise, but this afferent feedback does not appear to be necessary for induction...... of the oscillatory pattern of blood pressure at the onset of exercise. We investigated whether attenuation of the central projections of group III/IV skeletal muscle afferents via lumbar intrathecal administration of the μ-opioid receptor agonist fentanyl affects the oscillatory blood pressure (BP) response...... to the onset of dynamic exercise. Eight healthy, recreationally active men (28 ± 3 years old) performed 40 s of cycling at 80 W (60 r.p.m.) before (control) and after fentanyl administration, while heart rate, stroke volume, cardiac output, systolic, mean and diastolic BP and total vascular conductance were...

  9. Chickamauga reservoir embayment study - 1990

    Energy Technology Data Exchange (ETDEWEB)

    Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

    1992-12-01

    The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

  10. Reliability and responsiveness of algometry for measuring pressure pain threshold in patients with knee osteoarthritis

    OpenAIRE

    Mutlu, Ebru Kaya; Ozdincler, Arzu Razak

    2015-01-01

    [Purpose] This study aimed to establish the intrarater reliability and responsiveness of a clinically available algometer in patients with knee osteoarthritis as well as to determine the minimum-detectable-change and standard error of measurement of testing to facilitate clinical interpretation of temporal changes. [Subjects] Seventy-three patients with knee osteoarthritis were included. [Methods] Pressure pain threshold measured by algometry was evaluated 3 times at 2-min intervals over 2 cl...

  11. Effect of Algerian Varieties Dates on Glycemic, Arterial Blood Pressure and Satiety Responses

    OpenAIRE

    Gourchala Freha, Mihoub Fatma, Derradj Meriem, Henchiri Cherifa

    2016-01-01

    The purpose of our study is to determine the Glycemic Indexes (GIs)of three Algerians varieties of dates in healthy subjects, evaluate the satiety and effect on arterial pressure after their consumption. We have first documented the chemical composition of the dates. 10 healthy subjects consumed the dates (carbohydrates content of 50 g) in order to determine the GIs. The responses of glycaemia were monitored during two hours after the dates taking and compared to the reference glucose. In a r...

  12. Skeletal muscle signaling and the heart rate and blood pressure response to exercise

    DEFF Research Database (Denmark)

    Mortensen, Stefan P; Svendsen, Jesper H; Ersbøll, Mads

    2013-01-01

    Endurance training lowers heart rate and blood pressure responses to exercise, but the mechanisms and consequences remain unclear. To determine the role of skeletal muscle for the cardioventilatory response to exercise, 8 healthy young men were studied before and after 5 weeks of 1-legged knee......-extensor training and 2 weeks of deconditioning of the other leg (leg cast). Hemodynamics and muscle interstitial nucleotides were determined during exercise with the (1) deconditioned leg, (2) trained leg, and (3) trained leg with atrial pacing to the heart rate obtained with the deconditioned leg. Heart rate...

  13. Response of Renal Podocytes to Excessive Hydrostatic Pressure: a Pathophysiologic Cascade in a Malignant Hypertension Model

    Directory of Open Access Journals (Sweden)

    Ramzia Abu Hamad

    2017-12-01

    Full Text Available Background/Aims: Renal injuries induced by increased intra-glomerular pressure coincide with podocyte detachment from the glomerular basement membrane (GBM. In previous studies, it was demonstrated that mesangial cells have a crucial role in the pathogenesis of malignant hypertension. However, the exact pathophysiological cascade responsible for podocyte detachment and its relationship with mesangial cells has not been fully elucidated yet and this was the aim of the current study. Methods: Rat renal mesangial or podocytes were exposed to high hydrostatic pressure in an in-vitro model of malignant hypertension. The resulted effects on podocyte detachment, apoptosis and expression of podocin and integrinβ1 in addition to Angiotensin-II and TGF-β1 generation were evaluated. To simulate the paracrine effect podocytes were placed in mesangial cell media pre-exposed to pressure, or in media enriched with Angiotensin-II, TGF-β1 or receptor blockers. Results: High pressure resulted in increased Angiotensin-II levels in mesangial and podocyte cells. Angiotensin-II via the AT1 receptors reduced podocin expression and integrinβ1, culminating in detachment of both viable and apoptotic podocytes. Mesangial cells exposed to pressure had a greater increase in Angiotensin-II than pressure-exposed podocytes. The massively increased concentration of Angiotensin-II by mesangial cells, together with increased TGF-β1 production, resulted in increased apoptosis and detachment of non-viable apoptotic podocytes. Unlike the direct effect of pressure on podocytes, the mesangial mediated effects were not related to changes in adhesion proteins expression. Conclusions: Hypertension induces podocyte detachment by autocrine and paracrine effects. In a direct response to pressure, podocytes increase Angiotensin-II levels. This leads, via AT1 receptors, to structural changes in adhesion proteins, culminating in viable podocyte detachment. Paracrine effects of

  14. Evaluation of Different Dose-Response Models for High Hydrostatic Pressure Inactivation of Microorganisms

    Directory of Open Access Journals (Sweden)

    Sencer Buzrul

    2017-09-01

    Full Text Available Modeling of microbial inactivation by high hydrostatic pressure (HHP requires a plot of the log microbial count or survival ratio versus time data under a constant pressure and temperature. However, at low pressure and temperature values, very long holding times are needed to obtain measurable inactivation. Since the time has a significant effect on the cost of HHP processing it may be reasonable to fix the time at an appropriate value and quantify the inactivation with respect to pressure. Such a plot is called dose-response curve and it may be more beneficial than the traditional inactivation modeling since short holding times with different pressure values can be selected and used for the modeling of HHP inactivation. For this purpose, 49 dose-response curves (with at least 4 log10 reduction and ≥5 data points including the atmospheric pressure value (P = 0.1 MPa, and with holding time ≤10 min for HHP inactivation of microorganisms obtained from published studies were fitted with four different models, namely the Discrete model, Shoulder model, Fermi equation, and Weibull model, and the pressure value needed for 5 log10 (P5 inactivation was calculated for all the models above. The Shoulder model and Fermi equation produced exactly the same parameter and P5 values, while the Discrete model produced similar or sometimes the exact same parameter values as the Fermi equation. The Weibull model produced the worst fit (had the lowest adjusted determination coefficient (R2adj and highest mean square error (MSE values, while the Fermi equation had the best fit (the highest R2adj and lowest MSE values. Parameters of the models and also P5 values of each model can be useful for the further experimental design of HHP processing and also for the comparison of the pressure resistance of different microorganisms. Further experiments can be done to verify the P5 values at given conditions. The procedure given in this study can also be extended for

  15. Reservoir triggering seismicity in Greece: An evidence based review

    Science.gov (United States)

    Pavlou, Kyriaki; Drakatos, George; Kouskouna, Vasiliki; Makropoulos, Konstantinos

    2017-04-01

    First filling and water fluctuation in artificial lakes and reservoirs are known causes of local seismicity. In Greece, 117 dams were built over the past 60 years, of which, however, only 22 have a capacity greater than 20x206cm3 and could thus affect seismicity in a meaningful way. Most of these larger dams have been constructed and operated by the Greek Public Power Corporation (PPC). The paper aims at a comprehensive review of all relevant studies, undertaken so far, and critically examines the evidence of reservoir triggering seismicity and possible accelerated earthquake occurrence provided. The main reservoirs examined include the Marathon, Kremasta, Pournari, Ilarion and Polyphyto artificial lakes, all of which have recorded seismic events associated with their filling and/or operation for the time period up to 2010. Seismic activity that correlates with maximum or minimum water level fluctuations leads to conclusions about a possible triggering seismicity due to a pore pressure diffusion (drained or un-drained response). In each case we review the cross-correlation coefficients between the reservoir levels and triggered events, and discuss the reasons for their association from an engineering geological (mechanical properties of rocks and formations) and seismological (triggered events) perspective. Our work suggests that, whilst in these cases PCC performs very well the task of hydrological and energy management of the reservoirs, it is crucially important to monitor and validate the daily seismicity at and around the artificial lakes for a better understanding of the upmost limit of triggered seismicity, and possible triggered landslides in the areas surrounding its main reservoirs.

  16. Approaches to identifying reservoir heterogeneity and reserve growth opportunities from subsurface data: The Oficina Formation, Budare field, Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, D.S.; Raeuchle, S.K.; Holtz, M.H. [Bureau of Economic Geology, Austin, TX (United States)] [and others

    1997-08-01

    We applied an integrated geologic, geophysical, and engineering approach devised to identify heterogeneities in the subsurface that might lead to reserve growth opportunities in our analysis of the Oficina Formation at Budare field, Venezuela. The approach involves 4 key steps: (1) Determine geologic reservoir architecture; (2) Investigate trends in reservoir fluid flow; (3) Integrate fluid flow trends with reservoir architecture; and (4) Estimate original oil-in-place, residual oil saturation, and remaining mobile oil, to identify opportunities for reserve growth. There are three main oil-producing reservoirs in the Oficina Formation that were deposited in a bed-load fluvial system, an incised valley-fill, and a barrier-strandplain system. Reservoir continuity is complex because, in addition to lateral facies variability, the major Oficina depositional systems were internally subdivided by high-frequency stratigraphic surfaces. These surfaces define times of intermittent lacustrine and marine flooding events that punctuated the fluvial and marginal marine sedimentation, respectively. Syn and post depositional faulting further disrupted reservoir continuity. Trends in fluid flow established from initial fluid levels, response to recompletion workovers, and pressure depletion data demonstrated barriers to lateral and vertical fluid flow caused by a combination of reservoir facies pinchout, flooding shale markers, and the faults. Considerable reserve growth potential exists at Budare field because the reservoir units are highly compartment by the depositional heterogeneity and structural complexity. Numerous reserve growth opportunities were identified in attics updip of existing production, in untapped or incompletely drained compartments, and in field extensions.

  17. Estimation of barometric pressure response in borehole strainmeter with typhoon events in Taiwan

    Science.gov (United States)

    Chiu, Chun-Ying; Hu, Jyr-Ching; Liu, Chi-Ching

    2017-04-01

    Taiwan is located in an active collisional boundary of Philippine Sea plate and Eurasian plate in a convergence rate of 82 mm/yr, which results in high frequent seismicity and destructive big earthquakes. In order to monitor the strain change from pre-slip events, 13 Gladwin Tensor Strainmeters (GTSM) were installed in a depth of 200 m in western Foothills of Taiwan since 2003. The previous studies demonstrated that the broad environmental signs of barometry, rainfall, tide and groundwater should be calibrated to detect the tectonic signal. The previous study from borehole strainmeter of PBO in western US suggested that the strainmeter gauge time series were divided into records of approximately 60 days, overlapping when possible by 30 days. In order to determine the barometric pressure response of each gauge, the gauge outputs and atmospheric pressure data were band-pass-filtered to exclude frequencies outside the 4-6 day band. The results showed that sixty day records had a good correlation between the atmospheric pressure and the strainmeter gauge time series. Due to the climatic characteristics of annual rainfall could reach to 2500 mm in Taiwan, the long duration of gauge time series will be distributed by rainfall signal. Thus we suggest to divide the gauge time series records of approximately 30 days, overlapping when possible by 5 days. A good correlation of between the atmospheric pressure and the strainmeter gauge time series were identified by using a band-pass-filtered to exclude frequencies outside the 3-7 day band. In addition, we can use the linear regression from gauge time series and barometric drop due to the before the typhoon events with no interference of rainfall events. The average atmospheric pressure response coefficients of the strainmeters are about -0.14 -0.38 µstrain/KPa.

  18. Liquid oil production from shale gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, James J.

    2018-04-03

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  19. Cardiovascular regulation in humans in response to oscillatory lower body negative pressure

    Science.gov (United States)

    Levenhagen, D. K.; Evans, J. M.; Wang, M.; Knapp, C. F.

    1994-01-01

    The frequency response characteristics of human cardiovascular regulation during hypotensive stress have not been determined. We therefore exposed 10 male volunteers to seven frequencies (0.004-0.1 Hz) of oscillatory lower body negative pressure (OLBNP; 0-50 mmHg). Fourier spectra of arterial pressure (AP), central venous pressure (CVP), stroke volume (SV), cardiac output (CO), heart rate (HR), and total peripheral resistance (TPR) were determined and first harmonic mean, amplitude, and phase angles with respect to OLBNP are presented. AP was relatively well regulated as demonstrated by small oscillations in half amplitude (3.5 mmHg) that were independent of OLBNP frequency and similar to unstressed control spectra. Due to the biomechanics of the system, the magnitudes of oscillations in calf circumference (CC) and CVP decreased with increasing frequency; therefore, we normalized responses by these indexes of the fluid volume shifted. The ratios of oscillations in AP to oscillations in CC increased by an order of magnitude, whereas oscillations in CVP to oscillations in CC and oscillations in AP to oscillations in CVP both tripled between 0.004 and 0.1 Hz. Therefore, even though the amount of fluid shifted by OLBNP decreased with increasing frequency, the magnitude of both CVP and AP oscillations per volume of fluid shifted increased (peaking at 0.08 Hz). The phase relationships between variables, particularly the increasing lags in SV and TPR, but not CVP, indicated that efferent responses with lags of 5-6 s could account for the observed responses. We conclude that, at frequencies below 0.02 Hz, the neural system of humans functioned optimally in regulating AP; OLBNP-induced decreases in SV (by as much as 50%) were counteracted by appropriate oscillations in HR and TPR responses. As OLBNP frequency increased, SV, TPR, and HR oscillations increasingly lagged the input and became less optimally timed for AP regulation.

  20. THE INFLUENCE OF THE HABITATS AND ANTHROPOGENIC PRESSURE ON BIRDS, OBSERVED DURING FEBRUARY 2013 – JANUARY 2014 ON THE DAM RESERVOIRS FROM THE ARGEŞ RIVER BETWEEN VÂLCELE AND GOLEŞTI

    Directory of Open Access Journals (Sweden)

    Adrian Mestecăneanu

    2016-07-01

    Full Text Available The habitats and the anthropogenic pressure are two major causes that affect the presence of birds in every place where they live. The species from the dam reservoirs from the Argeş River do not constitute an exception, the more so as these water bodies are created by people and are situated in an area with a dense network of human settlements. Even if the aspects were discussed with other occasions, we propound here another approaching. Some considerations regarding the main forms of anthropogenic pressure (the hydrotechnical factor, the anthropogenic disturb, the pollution with rubbish, the fishing and the nautical sporting activities exercised on the birds from the area are made. The anthropogenic disturb appeared to be the most important factor on the general scale, in opposition with the fishing and the nautical sporting activities, which, although have strong impact at local level, seem to be the least significant ones. Of the five accumulation lakes taken into consideration (Vâlcele, Budeasa, Bascov, Piteşti and Goleşti, Budeasa is the best affected and Goleşti, the least one. The habitats have a considerable importance, regarding the land cover, and a smaller one, from a phytocoenologic perspective.

  1. Dissecting Low Atmospheric Pressure Stress: Transcriptome Responses to the Components of Hypobaria in Arabidopsis.

    Science.gov (United States)

    Zhou, Mingqi; Callaham, Jordan B; Reyes, Matthew; Stasiak, Michael; Riva, Alberto; Zupanska, Agata K; Dixon, Mike A; Paul, Anna-Lisa; Ferl, Robert J

    2017-01-01

    Controlled hypobaria presents biology with an environment that is never encountered in terrestrial ecology, yet the apparent components of hypobaria are stresses typical of terrestrial ecosystems. High altitude, for example, presents terrestrial hypobaria always with hypoxia as a component stress, since the relative partial pressure of O 2 is constant in the atmosphere. Laboratory-controlled hypobaria, however, allows the dissection of pressure effects away from the effects typically associated with altitude, in particular hypoxia, as the partial pressure of O 2 can be varied. In this study, whole transcriptomes of plants grown in ambient (97 kPa/pO 2 = 21 kPa) atmospheric conditions were compared to those of plants transferred to five different atmospheres of varying pressure and oxygen composition for 24 h: 50 kPa/pO 2 = 10 kPa, 25 kPa/pO 2 = 5 kPa, 50 kPa/pO 2 = 21 kPa, 25 kPa/pO 2 = 21 kPa, or 97 kPa/pO 2 = 5 kPa. The plants exposed to these environments were 10 day old Arabidopsis seedlings grown vertically on hydrated nutrient plates. In addition, 5 day old plants were also exposed for 24 h to the 50 kPa and ambient environments to evaluate age-dependent responses. The gene expression profiles from roots and shoots showed that the hypobaric response contained more complex gene regulation than simple hypoxia, and that adding back oxygen to normoxic conditions did not completely alleviate gene expression changes in hypobaric responses.

  2. Dissecting Low Atmospheric Pressure Stress: Transcriptome Responses to the Components of Hypobaria in Arabidopsis

    Science.gov (United States)

    Zhou, Mingqi; Callaham, Jordan B.; Reyes, Matthew; Stasiak, Michael; Riva, Alberto; Zupanska, Agata K.; Dixon, Mike A.; Paul, Anna-Lisa; Ferl, Robert J.

    2017-01-01

    Controlled hypobaria presents biology with an environment that is never encountered in terrestrial ecology, yet the apparent components of hypobaria are stresses typical of terrestrial ecosystems. High altitude, for example, presents terrestrial hypobaria always with hypoxia as a component stress, since the relative partial pressure of O2 is constant in the atmosphere. Laboratory-controlled hypobaria, however, allows the dissection of pressure effects away from the effects typically associated with altitude, in particular hypoxia, as the partial pressure of O2 can be varied. In this study, whole transcriptomes of plants grown in ambient (97 kPa/pO2 = 21 kPa) atmospheric conditions were compared to those of plants transferred to five different atmospheres of varying pressure and oxygen composition for 24 h: 50 kPa/pO2 = 10 kPa, 25 kPa/pO2 = 5 kPa, 50 kPa/pO2 = 21 kPa, 25 kPa/pO2 = 21 kPa, or 97 kPa/pO2 = 5 kPa. The plants exposed to these environments were 10 day old Arabidopsis seedlings grown vertically on hydrated nutrient plates. In addition, 5 day old plants were also exposed for 24 h to the 50 kPa and ambient environments to evaluate age-dependent responses. The gene expression profiles from roots and shoots showed that the hypobaric response contained more complex gene regulation than simple hypoxia, and that adding back oxygen to normoxic conditions did not completely alleviate gene expression changes in hypobaric responses. PMID:28443120

  3. Final Scientific/Technical Report: Characterizing the Response of the Cascadia Margin Gas Hydrate Reservoir to Bottom Water Warming Along the Upper Continental Slope

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Evan A. [Univ. of Washington, Seattle, WA (United States); Johnson, H. Paul [Univ. of Washington, Seattle, WA (United States); Salmi, Marie [Univ. of Washington, Seattle, WA (United States); Whorley, Theresa [Univ. of Washington, Seattle, WA (United States)

    2017-11-10

    continental shelf at water depths <180 m and at the upper limit of methane hydrate stability along the Washington margin. 5) The majority of the seeps cored during the 2014 research expedition on the R/V Thompson contained abundant authigenic carbonate indicating that they are locations of long-lived seepage rather than emergent seep systems related to methane hydrate dissociation. Despite the evidence for enhanced methane seepage at the upper limit of methane hydrate stability along the Washington margin, we found no unequivocal evidence for active methane hydrate dissociation as a source of fluid and gas at the seeps surveyed. The pore fluid and bottom water chemistry shows that the seeps are fed by a variety of fluid and methane sources, but that methane hydrate dissociation, if occurring, is not widespread and is only a minor source (below the detection limit of our methods). Collectively, these results provide a significant advance in our understanding of the thermal structure of the Cascadia subduction zone and the fluid and methane sources feeding seeps along the upper continental slope of the Washington-sector of the Cascadia margin. Though we did not find unequivocal evidence for methane hydrate dissociation as a source of water and methane at the upper pressure-temperature limit of methane hydrate stability at present, continued warming of North Pacific Intermediate Water in the future has the potential to impact the methane hydrate reservoir in sediments at greater depths along the slope. Thus, this study provides a strong foundation and the necessary characterization of the background state of seepage at the upper limit of methane hydrate stability for future investigations of this important process.

  4. Effects of genetic variation in H3K79 methylation regulatory genes on clinical blood pressure and blood pressure response to hydrochlorothiazide

    Science.gov (United States)

    2012-01-01

    Background Nearly one-third of the United States adult population suffers from hypertension. Hydrochlorothiazide (HCTZ), one of the most commonly used medications to treat hypertension, has variable efficacy. The renal epithelial sodium channel (ENaC) provides a mechanism for fine-tuning sodium excretion, and is a major regulator of blood pressure homeostasis. DOT1L, MLLT3, SIRT1, and SGK1 encode genes in a pathway that controls methylation of the histone H3 globular domain at lysine 79 (H3K79), thereby modulating expression of the ENaCα subunit. This study aimed to determine the role of variation in these regulatory genes on blood pressure response to HCTZ, and secondarily, untreated blood pressure. Methods We investigated associations between genetic variations in this candidate pathway and HCTZ blood pressure response in two separate hypertensive cohorts (clinicaltrials.gov NCT00246519 and NCT00005520). In a secondary, exploratory analysis, we measured associations between these same genetic variations and untreated blood pressure. Associations were measured by linear regression, with only associations with P ≤ 0.01 in one cohort and replication by P ≤ 0.05 in the other cohort considered significant. Results In one cohort, a polymorphism in DOT1L (rs2269879) was strongly associated with greater systolic (P = 0.0002) and diastolic (P = 0.0016) blood pressure response to hydrochlorothiazide in Caucasians. However, this association was not replicated in the other cohort. When untreated blood pressure levels were analyzed, we found directionally similar associations between a polymorphism in MLLT3 (rs12350051) and greater untreated systolic (P < 0.01 in both cohorts) and diastolic (P < 0.05 in both cohorts) blood pressure levels in both cohorts. However, when further replication was attempted in a third hypertensive cohort and in smaller, normotensive samples, significant associations were not observed. Conclusions Our data suggest polymorphisms in DOT1L, MLLT3

  5. Photosynthesis and growth response of almond to increased atmospheric ozone partial pressures

    Energy Technology Data Exchange (ETDEWEB)

    Retzlaff, W.A.; Williams, L.E. (Univ. of California, Davis (United States) Kearney Agricultural Center, Parlier, CA (United States)); DeJong, T.M. (Univ. of California, Davis (United States))

    Uniform nursery stock of five almond cultivars [Prunus dulcis (Mill) D.A. Webb syn. P. amygdalus Batsch, cv. Butte, Carmel, Mission, Nonpareil, and Sonora] propagated on peach (P. domstica L. Batsch.) rootstock were exposed to three different atmospheric ozone (O[sub 3]) partial pressures. The trees were planted in open-top fumigation chambers on 19 Apr. 1989 at the University of California Kearny Agricultural Center located in the San Joaquin Valley of California. Exposures of the trees to three atmospheric O[sub 3] partial pressures lasted from 1 June to 2 Nov. 1989. The mean 12-h [0800-2000 h Pacific Daylight Time (PDT)] O[sub 3] partial pressures measured in the open-top chambers during the experimental period were 0.038, 0.060, and 0.112 [mu]Pa Pa[sup [minus]1] O[sub 3] in the charcoal filtered, ambient, and ambient + O[sub 3] treatments, respectively. Leaf net CO[sub 2] assimilation, trunk cross-sectional area growth, and root, trunk, foliage, and total dry weight of Nonpareil were reduced by increased atmospheric O[sub 3] partial pressures. Mission was unaffected by O[sub 3] and Butte, Carmel, and Sonora were intermediate in their responses. Foliage of Nonpareil also abscised prematurely in the ambient and ambient + O[sub 3] treatments. The results indicate that there are almond cultivars that are sensitive to O[sub 3] exposure.

  6. Photosynthesis and growth response of almond to increased atmospheric ozone partial pressures

    International Nuclear Information System (INIS)

    Retzlaff, W.A.; Williams, L.E.; DeJong, T.M.

    1992-01-01

    Uniform nursery stock of five almond cultivars [Prunus dulcis (Mill) D.A. Webb syn. P. amygdalus Batsch, cv. Butte, Carmel, Mission, Nonpareil, and Sonora] propagated on peach (P. domstica L. Batsch.) rootstock were exposed to three different atmospheric ozone (O 3 ) partial pressures. The trees were planted in open-top fumigation chambers on 19 Apr. 1989 at the University of California Kearny Agricultural Center located in the San Joaquin Valley of California. Exposures of the trees to three atmospheric O 3 partial pressures lasted from 1 June to 2 Nov. 1989. The mean 12-h [0800-2000 h Pacific Daylight Time (PDT)] O 3 partial pressures measured in the open-top chambers during the experimental period were 0.038, 0.060, and 0.112 μPa Pa -1 O 3 in the charcoal filtered, ambient, and ambient + O 3 treatments, respectively. Leaf net CO 2 assimilation, trunk cross-sectional area growth, and root, trunk, foliage, and total dry weight of Nonpareil were reduced by increased atmospheric O 3 partial pressures. Mission was unaffected by O 3 and Butte, Carmel, and Sonora were intermediate in their responses. Foliage of Nonpareil also abscised prematurely in the ambient and ambient + O 3 treatments. The results indicate that there are almond cultivars that are sensitive to O 3 exposure

  7. Transcriptomics reveal several gene expression patterns in the piezophile Desulfovibrio hydrothermalis in response to hydrostatic pressure.

    Directory of Open Access Journals (Sweden)

    Amira Amrani

    Full Text Available RNA-seq was used to study the response of Desulfovibrio hydrothermalis, isolated from a deep-sea hydrothermal chimney on the East-Pacific Rise at a depth of 2,600 m, to various hydrostatic pressure growth conditions. The transcriptomic datasets obtained after growth at 26, 10 and 0.1 MPa identified only 65 differentially expressed genes that were distributed among four main categories: aromatic amino acid and glutamate metabolisms, energy metabolism, signal transduction, and unknown function. The gene expression patterns suggest that D. hydrothermalis uses at least three different adaptation mechanisms, according to a hydrostatic pressure threshold (HPt that was estimated to be above 10 MPa. Both glutamate and energy metabolism were found to play crucial roles in these mechanisms. Quantitation of the glutamate levels in cells revealed its accumulation at high hydrostatic pressure, suggesting its role as a piezolyte. ATP measurements showed that the energy metabolism of this bacterium is optimized for deep-sea life conditions. This study provides new insights into the molecular mechanisms linked to hydrostatic pressure adaptation in sulfate-reducing bacteria.

  8. An Analytical Method to Determine the Response of a Micro Capacitive Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Ashwin Simha

    2011-07-01

    Full Text Available The response of a capacitive pressure sensor is generally represented by a fourth order partial differential equation which is complex to solve and does not possess an exact solution. Several attempts have been made earlier through various techniques such as the Galerkin method, Finite Difference Method etc. In this paper an attempt has been made to develop a simple approximate analytical approach to determine the response of a capacitive pressure sensor whose diaphragm is designed to undergo very small deflections (typically less than 25 % of the thickness. The non-uniform gap between the electrodes is mathematically expressed as a combination of the initial gap between the electrodes (in the undeformed state and a displacement function in (x, y. The proposed displacement function is then utilized in evaluating the capacitance as a function of the applied pressure. The results obtained from the analytical approach are benchmarked against those obtained from COMSOL Multiphysics®, a popular Finite Element Analysis tool in the MEMS industry. It is observed that the results obtained from COMSOL Multiphysics® and those from the analytical approach are in good agreement with a maximum deviation of about 3.38 %.

  9. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers

    Science.gov (United States)

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng

    2015-01-01

    Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual ‘cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields—the fast-growing photonic crystal and shape-memory polymer technologies—enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349

  10. Cutaneous and renal vasodilatory response to local pressure application: A comparative study in mice.

    Science.gov (United States)

    Begey, Anne-Laure; Liu, Kiao Ling; Lo, Ming; Josset-Lamaugarny, Audrey; Picard, Nicolas; Gauthier, Catherine; Fromy, Berengere; Sigaudo-Roussel, Dominique; Dubourg, Laurence

    2018-01-01

    We have reported a novel relationship involving mechanical stimulation and vasodilation in rodent and human skin, referred to as pressure-induced vasodilation (PIV). It is unknown whether this mechanism exists in kidney and reflects the microcirculation in deep organs. Therefore, we compared the skin and kidney PIV to determine whether their changes were similar. In anesthetized mice fed a normal salt-diet, laser Doppler flux (LDF) signals were measured when an increase in local pressure was applied to the surface of the head skin with the rate of 2.2Pa/s (1mmHg/min) and to the left kidney with a rate of 4.4Pa/s (2mmHg/min). The mechanism underlying renal PIV was also investigated. The skin and kidney PIV were also compared during salt load (4% NaCl diet). The kidney had higher baseline LDF and vascular conductance compared to those of the skin. Pressure application increased the LDF in the kidney as well as in the skin with a comparable maximal magnitude (about 25% from baseline value), despite different kinetics of PIV evolution. As we previously reported in the skin, the kidney PIV response was mediated by the activation of transient receptor potential vanilloid type 1 channels, the release of calcitonin gene-related peptide, and the participation of prostaglandins and nitric oxide. In the absence of hypertension, high salt intake abolished the cutaneous PIV response and markedly impaired the renal one. PIV response in the mouse kidney results from a neuro-vascular interaction. Despite some differences between the skin and the kidney PIV, the similarities in their response and signaling mechanisms suggest that the cutaneous microcirculation could reflect, in part, the microcirculation of the renal cortex. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The use of source and Green's functions to model pressure ...

    African Journals Online (AJOL)

    . Appropriate flow period delineation methods are discussed. Results show that as an enlarged reservoir, flow attains pseudosteady state at late times when reservoir dimensionless pressure is inversely proportional to the reservoir ...

  12. [Recording of ventricular pressure by conventional catheter manometer systems. I. Minimal requirements of blood pressure recording systems and estimation of frequency response characteristics].

    Science.gov (United States)

    Hellige, G

    1976-01-01

    Parallel recordings of pressure pulses by conventional catheter manometer systems and catheter tip manometer demonstrate severe errors in the peak velocity of pressure rise estimated by conventional systems. This fact is due to inadequate dynamic response characteristics of conventional systems in relation to the frequency content of pressure curves. During cardiac rest the error in dp/dt max is less than 10% if the frequency response of the recording system is uniform up to 10 Hz, the corresponding value under maximal cardiac stimulation is about 40 Hz. This is equal to the first 10 harmonics of heart rate. The examination of left and right ventricular pressure curves leads to similar results. The experimental determination of dynamic response characteristics of cathermanometer systems requires a test system producing suitable sinus or step functions, parallel high fidelity recording of pressure functions to be recommended. A simple test station is described. Examinations of temperature influence on catheter material and resulting changes in dynamic response characteristics were carried out. The incubation of catheters at the temperature of 37 degrees C is indispensable. A new diagram for simplifying the interpretation of results is described. Other publications are discussed in viewpoint of employed techniques and representation of results.

  13. Geosynchronous magnetic field responses to fast solar wind dynamic pressure enhancements: MHD field model

    Directory of Open Access Journals (Sweden)

    T. R. Sun

    2012-08-01

    Full Text Available We performed global MHD simulations of the geosynchronous magnetic field in response to fast solar wind dynamic pressure (Pd enhancements. Taking three Pd enhancement events in 2000 as examples, we found that the main features of the total field B and the dominant component Bz can be efficiently predicted by the MHD model. The predicted B and Bz varies with local time, with the highest level near noon and a slightly lower level around mid-night. However, it is more challenging to accurately predict the responses of the smaller component at the geosynchronous orbit (i.e., Bx and By. In contrast, the limitations of T01 model in predicting responses to fast Pd enhancements are presented.

  14. A rate equation model of stomatal responses to vapour pressure deficit and drought

    Directory of Open Access Journals (Sweden)

    Shanahan ST

    2002-08-01

    Full Text Available Abstract Background Stomata respond to vapour pressure deficit (D – when D increases, stomata begin to close. Closure is the result of a decline in guard cell turgor, but the link between D and turgor is poorly understood. We describe a model for stomatal responses to increasing D based upon cellular water relations. The model also incorporates impacts of increasing levels of water stress upon stomatal responses to increasing D. Results The model successfully mimics the three phases of stomatal responses to D and also reproduces the impact of increasing plant water deficit upon stomatal responses to increasing D. As water stress developed, stomata regulated transpiration at ever decreasing values of D. Thus, stomatal sensitivity to D increased with increasing water stress. Predictions from the model concerning the impact of changes in cuticular transpiration upon stomatal responses to increasing D are shown to conform to experimental data. Sensitivity analyses of stomatal responses to various parameters of the model show that leaf thickness, the fraction of leaf volume that is air-space, and the fraction of mesophyll cell wall in contact with air have little impact upon behaviour of the model. In contrast, changes in cuticular conductance and membrane hydraulic conductivity have significant impacts upon model behaviour. Conclusion Cuticular transpiration is an important feature of stomatal responses to D and is the cause of the 3 phase response to D. Feed-forward behaviour of stomata does not explain stomatal responses to D as feedback, involving water loss from guard cells, can explain these responses.

  15. Pressure and time dependence of the cardiopulmonary reflex response in patients with hypertensive cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Otto M.E.B.

    2004-01-01

    Full Text Available The first minutes of the time course of cardiopulmonary reflex control evoked by lower body negative pressure (LBNP in patients with hypertensive cardiomyopathy have not been investigated in detail. We studied 15 hypertensive patients with left ventricular dysfunction (LVD and 15 matched normal controls to observe the time course response of the forearm vascular resistance (FVR during 3 min of LBNP at -10, -15, and -40 mmHg in unloading the cardiopulmonary receptors. Analysis of the average of 3-min intervals of FVR showed a blunted response of the LVD patients at -10 mmHg (P = 0.03, but a similar response in both groups at -15 and -40 mmHg. However, using a minute-to-minute analysis of the FVR at -15 and -40 mmHg, we observed a similar response in both groups at the 1st min, but a marked decrease of FVR in the LVD group at the 3rd min of LBNP at -15 mmHg (P = 0.017, and -40 mmHg (P = 0.004. Plasma norepinephrine levels were analyzed as another neurohumoral measurement of cardiopulmonary receptor response to LBNP, and showed a blunted response in the LVD group at -10 (P = 0.013, -15 (P = 0.032 and -40 mmHg (P = 0.004. We concluded that the cardiopulmonary reflex response in patients with hypertensive cardiomyopathy is blunted at lower levels of LBNP. However, at higher levels, the cardiopulmonary reflex has a normal initial response that decreases progressively with time. As a consequence of the time-dependent response, the cardiopulmonary reflex response should be measured over small intervals of time in clinical studies.

  16. Analysis of pressure wave transients and seismic response in LMFBR piping systems using the SHAPS code

    International Nuclear Information System (INIS)

    Zeuch, W.R.; Wang, C.Y.

    1985-01-01

    This paper presents some of the current capabilities of the three-dimensional piping code SHAPS and demonstrates their usefulness in handling analyses encountered in typical LMFBR studies. Several examples demonstrate the utility of the SHAPS code for problems involving fluid-structure interactions and seismic-related events occurring in three-dimensional piping networks. Results of two studies of pressure wave propagation demonstrate the dynamic coupling of pipes and elbows producing global motion and rigorous treatment of physical quantities such as changes in density, pressure, and strain energy. Results of the seismic analysis demonstrate the capability of SHAPS to handle dynamic structural response within a piping network over an extended transient period of several seconds. Variation in dominant stress frequencies and global translational frequencies were easily handled with the code. 4 refs., 10 figs

  17. Driver-Pressure-State-Impact-Response (DPSIR) analysis and risk assessment for soil compaction

    DEFF Research Database (Denmark)

    Schjønning, Per; van den Akker, Jan J.H.; Keller, Thomas

    2015-01-01

    Compaction of subsoil is a hidden but persistent damage that impairs a range of soil functions and ecosystem services. We analyzed the soil compaction issue in the Driver-Pressure-State-Impact-Response (DPSIR) context. The driving force (DPSIR-D) is the farmers' efforts to sustain economic...... viability. This entails a steady increase in the size and weight of the agricultural machinery (DPSIR-P) exerting the specific pressures on the soil system. Simulations using historical data for agricultural machinery show significant increases in the mechanical stresses exerted on the soil profile during...... the last five decades. Surveys and comparative measurements (DPSIR-S) in the literature indicate that much of the European subsoil is compacted to critical levels for cropping. This calls for changes in agricultural management (DPSIR-R). Mechanical stresses impact the soil (DPSIR-I) by reducing the volume...

  18. Cardiovascular response to lower body negative pressure stimulation before, during, and after space flight

    Science.gov (United States)

    Baisch, F.; Beck, L.; Blomqvist, G.; Wolfram, G.; Drescher, J.; Rome, J. L.; Drummer, C.

    2000-01-01

    BACKGROUND: It is well known that space travel cause post-flight orthostatic hypotension and it was assumed that autonomic cardiovascular control deteriorates in space. Lower body negative pressure (LBNP) was used to assess autonomic function of the cardiovascular system. METHODS: LBNP tests were performed on six crew-members before and on the first days post-flight in a series of three space missions. Additionally, two of the subjects performed LBNP tests in-flight. LBNP mimics fluid distribution of upright posture in a gravity independent way. It causes an artificial sequestration of blood, reduces preload, and filtrates plasma into the lower part of the body. Fluid distribution was assessed by bioelectrical impedance and anthropometric measurements. RESULTS: Heart rate, blood pressure, and total peripheral resistance increased significantly during LBNP experiments in-flight. The decrease in stroke volume, the increased pooling of blood, and the increased filtration of plasma into the lower limbs during LBNP indicated that a plasma volume reduction and a deficit of the interstitial volume of lower limbs rather than a change in cardiovascular control was responsible for the in-flight response. Post-flight LBNP showed no signs of cardiovascular deterioration. The still more pronounced haemodynamic changes during LBNP reflected the expected behaviour of cardiovascular control faced with less intravascular volume. In-flight, the status of an intra-and extravascular fluid deficit increases sympathetic activity, the release of vasoactive substances and consequently blood pressure. Post-flight, blood pressure decreases significantly below pre-flight values after restoration of volume deficits. CONCLUSION: We conclude that the cardiovascular changes in-flight are a consequence of a fluid deficit rather than a consequence of changes in autonomic signal processing.

  19. The Methane Hydrate Reservoir System

    Science.gov (United States)

    Flemings, P. B.; Liu, X.

    2007-12-01

    We use multi phase flow modeling and field examples (Hydrate Ridge, offshore Oregon and Blake Ridge, offshore North Carolina) to demonstrate that the methane hydrate reservoir system links traditional and non- traditional hydrocarbon system components: free gas flow is a fundamental control on this system. As in a traditional hydrocarbon reservoir, gas migrates into the hydrate reservoir as a separate phase (secondary migration) where it is trapped in a gas column beneath the base of the hydrate layer. With sufficient gas supply, buoyancy forces exceed either the capillary entry pressure of the cap rock or the fracture strength of the cap rock, and gas leaks into the hydrate stability zone, or cap rock. When gas enters the hydrate stability zone and forms hydrate, it becomes a very non traditional reservoir. Free gas forms hydrate, depletes water, and elevates salinity until pore water is too saline for further hydrate formation: salinity and hydrate concentration increase upwards from the base of the regional hydrate stability zone (RHSZ) to the seafloor and the base of the hydrate stability zone has significant topography. Gas chimneys couple the free gas zone to the seafloor through high salinity conduits that are maintained at the three-phase boundary by gas flow. As a result, significant amounts of gaseous methane can bypass the RHSZ, which implies a significantly smaller hydrate reservoir than previously envisioned. Hydrate within gas chimneys lie at the three-phase boundary and thus small increases in temperature or decreases in pressure can immediately transport methane into the ocean. This type of hydrate deposit may be the most economical for producing energy because it has very high methane concentrations (Sh > 70%) located near the seafloor, which lie on the three-phase boundary.

  20. Successful application of MPD (managed pressure drilling) for prevention, control, and detection of borehole ballooning in tight gas reservoir in Cuervito Field, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa, A.; Acevedo, O.; Nieto, L. [Petrobras (United States); Lambarria, J.E. [PEMEX Exploration and Production (Mexico); Perez, H. [Weatherford (United States)

    2011-07-01

    The Cuervito field is an oil play located in the Burgos Basin in northeastern Mexico. In order to reach the highest yielding sands, wells in the Cuervito field are usually set up with 3 casings. However, the ballooning effect, an elastoplastic behavior of a well's walls, occurs during drilling operations, leading to loss of circulation. Two methods, based on geological and geopressure data, were found to minimize this effect: either putting in an extra casing, or using an unconventional drilling technique. As the managed pressure drilling (MPD) technique is less complex and more elegant, a pilot project was implemented using this method on a well. Results showed that MPD minimized lost time and enhanced drilling efficiency. This paper demonstrated that the use of MPD in the Cuervito field is a good solution for identifying and controlling the ballooning effect and this technique was successfully applied to the next 3 wells drilled subsequently.

  1. Effect of hindlimb suspension on cardiovascular responses to sympathomimetics and lower body negative pressure

    Science.gov (United States)

    Overton, J. Michael; Tipton, Charles M.

    1990-01-01

    To determine whether hindlimb suspension is associated with the development of cardiovascular deconditioning, male rats were studied before and after undergoing one of three treatment conditions for 9 days: (1) cage control (n = 15, CON), (2) horizontal suspension (n = 15, HOZ), and (3) head-down suspension (n = 18, HDS). Testing included lower body negative pressure administered during chloralose-urethan anesthesia and graded doses of sympathomimetic agents (norepinephrine, phenylephrine, and tyramine) administered to conscious unrestrained animals. Both HDS and HOZ were associated with a small decrease in the hypotensive response to lower body negative pressure. The HOZ group, but not the HDS group, exhibited augmented reflex tachycardia. Furthermore, both HDS and HOZ groups manifested reduced pressor responses to phenylephrine after treatment. These reductions were associated with significantly attenuated increases in mesenteric vascular resistance. However, baroreflex control of heart rate was not altered by the treatment conditions. Collectively, these results indicate that 9 days of HDS in rats does not elicit hemodynamic response patterns generally associated with cardiovascular deconditioning induced by hypogravic conditions.

  2. Water resources review: Wheeler Reservoir, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.

  3. Measuring fluid pressure

    International Nuclear Information System (INIS)

    Lee, A.S.

    1978-01-01

    A method and apparatus are described for measuring the pressure of a fluid having characteristics that make it unsuitable for connection directly to a pressure gauge. The method is particularly suitable for the periodic measurement of the pressure of a supply of liquid Na to Na-lubricated bearings of pumps for pumping Na from a reservoir to the bearing via a filter, the reservoir being contained in a closed vessel containing an inert blanket gas, such as Ar, above the Na. (UK)

  4. Shared Selective Pressures on Fungal and Human Metabolic Pathways Lead to Divergent yet Analogous Genetic Responses.

    Science.gov (United States)

    Eidem, Haley R; McGary, Kriston L; Rokas, Antonis

    2015-06-01

    Reduced metabolic efficiency, toxic intermediate accumulation, and deficits of molecular building blocks, which all stem from disruptions of flux through metabolic pathways, reduce organismal fitness. Although these represent shared selection pressures across organisms, the genetic signatures of the responses to them may differ. In fungi, a frequently observed signature is the physical linkage of genes from the same metabolic pathway. In contrast, human metabolic genes are rarely tightly linked; rather, they tend to show tissue-specific coexpression. We hypothesized that the physical linkage of fungal metabolic genes and the tissue-specific coexpression of human metabolic genes are divergent yet analogous responses to the range of selective pressures imposed by disruptions of flux. To test this, we examined the degree to which the human homologs of physically linked metabolic genes in fungi (fungal linked homologs or FLOs) are coexpressed across six human tissues. We found that FLOs are significantly more correlated in their expression profiles across human tissues than other metabolic genes. We obtained similar results in analyses of the same six tissues from chimps, gorillas, orangutans, and macaques. We suggest that when selective pressures remain stable across large evolutionary distances, evidence of selection in a given evolutionary lineage can become a highly reliable predictor of the signature of selection in another, even though the specific adaptive response in each lineage is markedly different. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Intranasal Immunization with Pressure Inactivated Avian Influenza Elicits Cellular and Humoral Responses in Mice.

    Directory of Open Access Journals (Sweden)

    Shana P C Barroso

    Full Text Available Influenza viruses pose a serious global health threat, particularly in light of newly emerging strains, such as the avian influenza H5N1 and H7N9 viruses. Vaccination remains the primary method for preventing acquiring influenza or for avoiding developing serious complications related to the disease. Vaccinations based on inactivated split virus vaccines or on chemically inactivated whole virus have some important drawbacks, including changes in the immunogenic properties of the virus. To induce a greater mucosal immune response, intranasally administered vaccines are highly desired as they not only prevent disease but can also block the infection at its primary site. To avoid these drawbacks, hydrostatic pressure has been used as a potential method for viral inactivation and vaccine production. In this study, we show that hydrostatic pressure inactivates the avian influenza A H3N8 virus, while still maintaining hemagglutinin and neuraminidase functionalities. Challenged vaccinated animals showed no disease signs (ruffled fur, lethargy, weight loss, and huddling. Similarly, these animals showed less Evans Blue dye leakage and lower cell counts in their bronchoalveolar lavage fluid compared with the challenged non-vaccinated group. We found that the whole inactivated particles were capable of generating a neutralizing antibody response in serum, and IgA was also found in nasal mucosa and feces. After the vaccination and challenge we observed Th1/Th2 cytokine secretion with a prevalence of IFN-γ. Our data indicate that the animals present a satisfactory immune response after vaccination and are protected against infection. Our results may pave the way for the development of a novel pressure-based vaccine against influenza virus.

  6. Reservoir fisheries of Asia

    International Nuclear Information System (INIS)

    Silva, S.S. De.

    1990-01-01

    At a workshop on reservoir fisheries research, papers were presented on the limnology of reservoirs, the changes that follow impoundment, fisheries management and modelling, and fish culture techniques. Separate abstracts have been prepared for three papers from this workshop

  7. Features of energetic particle radial profiles inferred from geosynchronous responses to solar wind dynamic pressure enhancements

    Directory of Open Access Journals (Sweden)

    Y. Shi

    2009-02-01

    Full Text Available Determination of the radial profile of phase space density of relativistic electrons at constant adiabatic invariants is crucial for identifying the source for them within the outer radiation belt. The commonly used method is to convert flux observed at fixed energy to phase space density at constant first, second and third adiabatic invariants, which requires an empirical global magnetic field model and thus might produce some uncertainties in the final results. From a different perspective, in this paper we indirectly infer the shape of the radial profile of phase space density of relativistic electrons near the geosynchronous region by statistically examining the geosynchronous energetic flux response to 128 solar wind dynamic pressure enhancements during the years 2000 to 2003. We thus avoid the disadvantage of using empirical magnetic field models. Our results show that the flux response is species and energy dependent. For protons and low-energy electrons, the primary response to magnetospheric compression is an increase in flux at geosynchronous orbit. For relativistic electrons, the dominant response is a decrease in flux, which implies that the phase space density decreases toward increasing radial distance at geosynchronous orbit and leads to a local peak inside of geosynchronous orbit. The flux response of protons and non-relativistic electrons could result from a phase density that increases toward increasing radial distance, but this cannot be determined for sure due to the particle energization associated with pressure enhancements. Our results for relativistic electrons are consistent with previous results obtained using magnetic field models, thus providing additional confirmation that these results are correct and indicating that they are not the result of errors in their selected magnetic field model.

  8. Large reservoirs: Chapter 17

    Science.gov (United States)

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  9. Cellular and molecular responses of Neurospora crassa to non-thermal plasma at atmospheric pressure

    Science.gov (United States)

    Park, Gyungsoon; Ryu, Young H.; Hong, Young J.; Choi, Eun H.; Uhm, Han S.

    2012-02-01

    Filamentous fungi have been rarely explored in terms of plasma treatments. This letter presents the cellular and molecular responses of the filamentous fungus Neurospora crassa to an argon plasma jet at atmospheric pressure. The viability and cell morphology of N. crassa spores exposed to plasma were both significantly reduced depending on the exposure time when treated in water. The intracellular genomic DNA content was dramatically reduced in fungal tissues after a plasma treatment and the transcription factor tah-3 was found to be required for fungal tolerance to a harsh plasma environment.

  10. High hydrostatic pressure influences the in vitro response to xenobiotics in Dicentrarchus labrax liver

    International Nuclear Information System (INIS)

    Lemaire, Benjamin; Mignolet, Eric; Debier, Cathy; Calderon, Pedro Buc; Thomé, Jean Pierre; Rees, Jean François

    2016-01-01

    Highlights: • The methodology of precision-cut liver slices was applied to the European seabass. • Liver slices remained viable and functional in short-term co-exposure studies. • CYP1A induction was blocked in slices exposed to an AhR agonist at high pressure. • HSP70 induction was lower in slices exposed to an AhR agonist at high pressure. • Oxidative stress responses to tBHP were less pronounced at high pressure. - Abstract: Hydrostatic pressure (HP) increases by about 1 atmosphere (0.1 MPa) for each ten-meter depth increase in the water column. This thermodynamical parameter could well influence the response to and effects of xenobiotics in the deep-sea biota, but this possibility remains largely overlooked. To grasp the extent of HP adaptation in deep-sea fish, comparative studies with living cells of surface species exposed to chemicals at high HP are required. We initially conducted experiments with precision-cut liver slices of a deep-sea fish (Coryphaenoides rupestris), co-exposed for 15 h to the aryl hydrocarbon receptor (AhR) agonist 3-methylcholanthrene at HP levels representative of the surface (0.1 MPa) and deep-sea (5–15 MPa; i.e., 500–1500 m depth) environments. The transcript levels of a suite of stress-responsive genes, such as the AhR battery CYP1A, were subsequently measured (Lemaire et al., 2012; Environ. Sci. Technol. 46, 10310–10316). Strikingly, the AhR agonist-mediated increase of CYP1A mRNA content was pressure-dependently reduced in C. rupestris. Here, the same co-exposure scenario was applied for 6 or 15 h to liver slices of a surface fish, Dicentrarchus labrax, a coastal species presumably not adapted to high HP. Precision-cut liver slices of D. labrax were also used in 1 h co-exposure studies with the pro-oxidant tert-butylhydroperoxide (tBHP) as to investigate the pressure-dependence of the oxidative stress response (i.e., reactive oxygen production, glutathione and lipid peroxidation status). Liver cells remained

  11. High hydrostatic pressure influences the in vitro response to xenobiotics in Dicentrarchus labrax liver

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, Benjamin; Mignolet, Eric; Debier, Cathy [Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 2, B-1348 Louvain-la-Neuve (Belgium); Calderon, Pedro Buc [Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B-1200 Woluwé-Saint-Lambert (Belgium); Thomé, Jean Pierre [Laboratoire d’Ecologie Animale et Ecotoxicologie, Université de Liège, Allée du 6 août 15, B-4000 Liège (Belgium); Rees, Jean François, E-mail: jf.rees@uclouvain.be [Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 2, B-1348 Louvain-la-Neuve (Belgium)

    2016-04-15

    Highlights: • The methodology of precision-cut liver slices was applied to the European seabass. • Liver slices remained viable and functional in short-term co-exposure studies. • CYP1A induction was blocked in slices exposed to an AhR agonist at high pressure. • HSP70 induction was lower in slices exposed to an AhR agonist at high pressure. • Oxidative stress responses to tBHP were less pronounced at high pressure. - Abstract: Hydrostatic pressure (HP) increases by about 1 atmosphere (0.1 MPa) for each ten-meter depth increase in the water column. This thermodynamical parameter could well influence the response to and effects of xenobiotics in the deep-sea biota, but this possibility remains largely overlooked. To grasp the extent of HP adaptation in deep-sea fish, comparative studies with living cells of surface species exposed to chemicals at high HP are required. We initially conducted experiments with precision-cut liver slices of a deep-sea fish (Coryphaenoides rupestris), co-exposed for 15 h to the aryl hydrocarbon receptor (AhR) agonist 3-methylcholanthrene at HP levels representative of the surface (0.1 MPa) and deep-sea (5–15 MPa; i.e., 500–1500 m depth) environments. The transcript levels of a suite of stress-responsive genes, such as the AhR battery CYP1A, were subsequently measured (Lemaire et al., 2012; Environ. Sci. Technol. 46, 10310–10316). Strikingly, the AhR agonist-mediated increase of CYP1A mRNA content was pressure-dependently reduced in C. rupestris. Here, the same co-exposure scenario was applied for 6 or 15 h to liver slices of a surface fish, Dicentrarchus labrax, a coastal species presumably not adapted to high HP. Precision-cut liver slices of D. labrax were also used in 1 h co-exposure studies with the pro-oxidant tert-butylhydroperoxide (tBHP) as to investigate the pressure-dependence of the oxidative stress response (i.e., reactive oxygen production, glutathione and lipid peroxidation status). Liver cells remained

  12. HMGB1/TLR4 signaling induces an inflammatory response following high-pressure renal pelvic perfusion in a porcine model.

    Science.gov (United States)

    Shao, Yi; Sha, Minglei; Chen, Lei; Li, Deng; Lu, Jun; Xia, Shujie

    2016-11-01

    Percutaneous nephrolithotomy (PCNL) causes a rapid increase in renal pelvic pressure in the kidney, which induces an inflammatory response. High-mobility group box-1 (HMGB1) is known to trigger the recruitment of inflammatory cells and the release of proinflammatory cytokines following ischemia reperfusion injury in the kidney, but the contribution of HMGB1 to the inflammatory response following high-pressure renal pelvic perfusion has not been investigated. In this study, high-pressure renal pelvic perfusion was induced in anesthetized pigs to examine the effect of HMGB1 on the inflammatory response. HMGB1 levels in the kidney increased following high-pressure renal pelvic perfusion, together with elevated levels of inflammatory cytokines in the plasma and kidney and an accumulation of neutrophils and macrophages. Inhibition of HMGB1 alleviated this inflammatory response while perfusion with recombinant HMGB1 had an augmentative effect, confirming the involvement of HMGB1 in the inflammatory response to high-pressure renal pelvic perfusion. HMGB1 regulated the inflammatory response by activating Toll-like receptor 4 (TLR4) signaling. In conclusion, this study has demonstrated that HMGB1/TLR4 signaling contributes to the inflammatory response following high-pressure renal pelvic perfusion in a porcine model and has implications for the management of inflammation after PCNL. Copyright © 2016 the American Physiological Society.

  13. Ventilator-induced central venous pressure variation can predict fluid responsiveness in post-operative cardiac surgery patients

    NARCIS (Netherlands)

    Cherpanath, T. G. V.; Geerts, B. F.; Maas, J. J.; de Wilde, R. B. P.; Groeneveld, A. B.; Jansen, J. R.

    2016-01-01

    Ventilator-induced dynamic hemodynamic parameters such as stroke volume variation (SVV) and pulse pressure variation (PPV) have been shown to predict fluid responsiveness in contrast to static hemodynamic parameters such as central venous pressure (CVP). We hypothesized that the ventilator-induced

  14. Determinants of abnormal blood pressure response to exercise in coronary artery disease

    International Nuclear Information System (INIS)

    Hakki, A.H.; Munley, B.M.; Hadjimiltiades, S.; Meissner, M.D.; Iskandrian, A.S.

    1986-01-01

    This study assessed the determinants of exercise-induced abnormal systolic blood pressure (BP) response in 127 patients with documented coronary artery disease (CAD) who underwent exercise thallium-201 scintigraphy. Three types of systolic BP response to exercise were identified: an increase by more than 20 mm Hg (group I, n = 74); an increase by 20 mm Hg or less (group II, n = 36); and a decrease of at least 10 mm Hg (group III, n = 17). The 3 groups were not significantly different in age, gender or medications. The number of segments with perfusion defects was significantly higher in groups II and III than group I (group III, 2.9 +/- 1.5; group II, 2.9 +/- 2.1; and group I, 1.8 +/- 1.4, p = 0.009). Prior myocardial infarction, abnormal left ventricular ejection fraction, and multivessel CAD were more common in group III than in groups I and II. Stepwise discriminant analysis of 15 relevant clinical, angiographic and exercise scintigraphic descriptors showed that the number of thallium perfusion defects, abnormal LV ejection fraction at rest and multivessel CAD to be important predictors of hypotensive BP response. Multivariate analysis, however, showed that the number of thallium perfusion defects was the only important predictor of the hypotensive response. Thus, it is the functional significance of CAD assessed by the extent of thallium perfusion abnormalities rather than the extent of CAD or left ventricular dysfunction at rest that determines the systolic BP response to exercise

  15. Nonlinearity measurement for low-pressure encapsulated MEMS gyroscopes by transient response

    Science.gov (United States)

    Wei, Yumiao; Dong, Yonggui; Huang, Xianxiang; Zhang, Zhili

    2018-02-01

    To measure the nonlinear dynamic features of micromechanical gyroscopes, a non-parametric method based on Hilbert transform is proposed. Using a sequence of frequency stepping sinusoidal pulses as the excitation signal, a set of transient responses in the vicinity of the resonant frequency are obtained. The envelopes of the time-domain response signals are calculated by Hilbert transform. The location of the resonant frequency, as well as whether the gyroscope is working in linear or nonlinear region, can be approximately assessed from the waveform of the envelopes. In order to obtain the dynamic parameters of the gyroscope, a modified FREEVIB algorithm is designed for analyzing the free damped oscillation signals. The instantaneous amplitudes and instantaneous frequencies that extracted by Hilbert transform are further processed by singular spectrum analysis (SSA). Numerical simulation results indicate that the algorithm behaves better anti-noise performance and can be practically used for processing the experimentally sampled transient signals. Vibrating ring microgyroscopes are experimentally tested under different air pressure (10-100 Pa). From the largest response segment of the response sequences, qualification of the operation state, i.e. whether the gyroscope is working in the nonlinear region, is obtained from the envelope of the forced transient signal. Other parameters, including the Backbone, frequency response function (FRF) and Q-value curves, are calculated from the free damped oscillation signals. The results are in good agreement with those obtained by traditional frequency sweeping method.

  16. Anger response styles and blood pressure: at least don't ruminate about it!

    Science.gov (United States)

    Hogan, Brenda E; Linden, Wolfgang

    2004-02-01

    Research on anger suggests a link with blood pressure (BP), but the findings are complex and highly variable; this is at least partly attributable to measurement issues. In this study we used a new model of anger responding that comprises 6 independent anger response styles in 2 dimensions: Aggression, Assertion, Social Support Seeking, Diffusion, Avoidance, and Rumination. Linear and interactive relations between the anger response styles and resting and ambulatory BP were tested, controlling for traditional risk factors and level of hostility. Data from 2 samples of different cardiovascular health status were examined. In Study 1, 109 healthy participants (45 men and 64 women) were recruited. Study 2 involved a sample of 159 hypertensive patients (90 men and 69 women). All participants provided demographic and health information; completed the Behavioral Anger Response Questionnaire, a hostility measure; and underwent resting BP measurement. Study 2 participants also provided 24-hr ambulatory BPs. Examination of linear effects revealed inconsistent associations between anger response styles and BP. The moderating effect of Rumination on the relationship between the other anger response styles and BP was examined next. Rumination had a deleterious influence on the relation between Avoidance and Assertion and resting and ambulatory BP levels. The moderating influence of Rumination on Social Support Seeking varied between the genders. Overall, the results suggest that rumination is a critical moderating variable in the relation of anger and BP.

  17. Low pressure proportional counters in radiation protection. Improvements to energy response and sensitivity

    International Nuclear Information System (INIS)

    Edwards, A.A.

    1989-01-01

    Calculations of the dose equivalent response and sensitivity of a low pressure proportional counter as a function of neutron energy are presented. The calculations show that changing the gas composition can result in a significant change to the energy response of the counter. In particular, replacing tissue-equivalent gas by hydrogen produces an improvement in energy response of the basic thin walled counter. With tissue-equivalent gas the response varies by a factor 6 while for hydrogen the variation is only a factor 3. A weighting function to convert pulse height to quality factor which is close to the QF-LET relationship recommended by ICRP was used. Variations of this function produced only marginal improvements to the energy response. It is also shown that an improvement in sensitivity of about 1.5 to 2.0 occurs in the neutron energy region 100 keV to 1 MeV where the tissue-equivalent gas filled counter is least sensitive. (author)

  18. The physiological response of soft tissue to periodic repositioning as a strategy for pressure ulcer prevention.

    Science.gov (United States)

    Woodhouse, Marjolein; Worsley, Peter R; Voegeli, David; Schoonhoven, Lisette; Bader, Dan L

    2015-02-01

    Individuals who have reduced mobility are at risk of developing pressure ulcers if they are subjected to sustained static postures. To reduce this risk, clinical guidelines advocate healthcare professionals reposition patients regularly. Automated tilting mechanisms have recently been introduced to provide periodic repositioning. This study compared the performance of such a prototype mattress to conventional manual repositioning. Ten healthy participants (7 male and 3 female, aged 23-66 years) were recruited to compare the effects of an automated tilting mattress to standard manual repositioning, using the 30° tilt. Measures during the tilting protocols (supine, right and left tilt) included comfort and safety scores, interface pressures, inclinometer angles and transcutaneous gas tensions (sacrum and shoulder). Data from these outcomes were compared between each protocol. Results indicated no significant differences for either interface pressures or transcutaneous gas responses between the two protocols (P>0.05 in both cases). Indeed a small proportion of participants (~30%) exhibited changes in transcutaneous oxygen and carbon dioxide values in the shoulder during a right tilt for both protocols. The tilt angles at the sternum and the pelvis were significantly less in the automated tilt compared to the manual tilt (mean difference=9.4-11.5°, Pmattress. Although further studies are required to assess its performance in maintaining tissue viability, an automated tilting mattress offers the ability to periodically reposition vulnerable individuals, with potential economic savings to health services. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Social support is associated with blood pressure responses in parents caring for children with developmental disabilities.

    Science.gov (United States)

    Gallagher, Stephen; Whiteley, Jenny

    2012-01-01

    The present study tested whether parents caring for children with developmental disabilities would have higher blood pressure compared to parents of typically developing children (controls). It also examined the psychosocial factors underlying this observation. Thirty-five parents of children with developmental disability and thirty controls completed standard measures of perceived stress, child challenging behaviours and social support and wore an ambulatory blood pressure (BP) monitor throughout the day, for one day. Relative to controls, parents caring for children with developmental disabilities reported poorer psychosocial functioning and had a higher mean systolic BP. Of the psychosocial predictors, only social support was found to be predictive. Moreover, variations in social support accounted for some of the between group differences with the β for parental group attenuated from .42 to .34 in regression analyses. It appears that social support may influence blood pressure responses in parental caregivers. Finally, our findings underscore the importance of providing psychosocial interventions to improve the health of family caregivers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Pivotal role of cardiomyocyte TGF-β signaling in the murine pathological response to sustained pressure overload

    NARCIS (Netherlands)

    Koitabashi, Norimichi; Danner, Thomas; Zaiman, Ari L.; Pinto, Yigal M.; Rowell, Janelle; Mankowski, Joseph; Zhang, Dou; Nakamura, Taishi; Takimoto, Eiki; Kass, David A.

    2011-01-01

    The cardiac pathological response to sustained pressure overload involves myocyte hypertrophy and dysfunction along with interstitial changes such as fibrosis and reduced capillary density. These changes are orchestrated by mechanical forces and factors secreted between cells. One such secreted

  1. Pressure/cross-sectional area relations in the proximal urethra of healthy males: the time dependent pressure response following forced dilation. Part IV: results in healthy volunteers

    DEFF Research Database (Denmark)

    Bagi, Per; Bøtker-Rasmussen; Kristensen, Jørgen Kvist

    2002-01-01

    The significance of the anatomical location and age on the urethral response to a sudden forced dilation was studied in 30 healthy males aged 23-85 years. The pressure decay after dilation was fitted with a double exponential function of the form: P(t) = P(equ) + P(alpha)e(-t/tau(alpha) + P...

  2. Seismic response of the Pickering pressure relief duct to the 1985 Nahanni earthquake

    International Nuclear Information System (INIS)

    Ghobarah, A.

    1995-05-01

    The objective of this study is to examine the structural response of the Pickering pressure relief duct when subjected to the ground motion records of the 1985 Nahanni earthquake (December 23, 05:16 GMT, Site 1 - Iverson, N.W.T.). It also includes an estimate of the possible impact on the nuclear safety function of the duct. The structural models developed in an earlier study were used in this analysis. The response to the earthquake ground motion was determined on the basis of the estimated capacities of various components of the duct. The ability of the structure to fulfill its nuclear safety function is discussed. (author). 6 refs., 1 tab., 17 figs

  3. The blood pressure-induced diameter response of retinal arterioles decreases with increasing diabetic maculopathy

    DEFF Research Database (Denmark)

    Frederiksen, Christian Alcaraz; Jeppesen, Peter; Knudsen, Søren Tang

    2006-01-01

    isometric exercise in normal persons (diameter response: -0.70+/-0.48%) and in patients with no retinopathy (-1.15+/-0.44%), but dilated in patients with mild retinopathy (0.41+/-0.49%) and diabetic maculopathy (0.54+/-0.44%), p=0.01. Retinal thickness was normal in Group A (260+/-5.0 microm), Group B (257......BACKGROUND: The aim of the study was to compare the diameter response of retinal arterioles and retinal thickness in patients with different stages of diabetic maculopathy during an increase in the arterial blood pressure. METHODS: Four groups each consisting of 19 individuals were studied. Group...... A consisted of normal individuals and groups B-D consisted of type 2 diabetic patients matched for diabetes duration, age, and gender, and characterized by: Group B no retinopathy, Group C mild retinopathy, Group D maculopathy not requiring laser treatment. The diameter changes of a large retinal arteriole...

  4. FRACTURED PETROLEUM RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Abbas Firoozabadi

    1999-06-11

    different from that of gas displacement processes. The work is of experimental nature and clarifies several misconceptions in the literature. Based on experimental results, it is established that the main reason for high efficiency of solution gas drive from heavy oil reservoirs is due to low gas mobility. Chapter III presents the concept of the alteration of porous media wettability from liquid-wetting to intermediate gas-wetting. The idea is novel and has not been introduced in the petroleum literature before. There are significant implications from such as proposal. The most direct application of intermediate gas wetting is wettability alteration around the wellbore. Such an alteration can significantly improve well deliverability in gas condensate reservoirs where gas well deliverability decreases below dewpoint pressure. Part I of Chapter III studies the effect of gravity, viscous forces, interfacial tension, and wettability on the critical condensate saturation and relative permeability of gas condensate systems. A simple phenomenological network model is used for this study, The theoretical results reveal that wettability significantly affects both the critical gas saturation and gas relative permeability. Gas relative permeability may increase ten times as contact angle is altered from 0{sup o} (strongly liquid wet) to 85{sup o} (intermediate gas-wetting). The results from the theoretical study motivated the experimental investigation described in Part II. In Part II we demonstrate that the wettability of porous media can be altered from liquid-wetting to gas-wetting. This part describes our attempt to find appropriate chemicals for wettability alteration of various substrates including rock matrix. Chapter IV provides a comprehensive treatment of molecular, pressure, and thermal diffusion and convection in porous media Basic theoretical analysis is presented using irreversible thermodynamics.

  5. Local predation pressure predicts the strength of mobbing responses in tropical birds

    Directory of Open Access Journals (Sweden)

    Luis SANDOVAL, David R. WILSON

    2012-10-01

    Full Text Available Many birds join cooperative mobbing aggregations and collectively harass predators. Individuals participating in these ephemeral associations benefit by deterring the predator, but also incur energetic costs and increased risk of predation. Explaining the evolution of mobbing is challenging because individuals could prevail by selfishly seeking safety while allowing others to mob. An important step in understanding the evolution of mobbing is to identify factors affecting its expression. The ecological constraints model suggests that animals are more likely to cooperate under adverse environmental conditions, such as when local predation pressure is high. We tested this prediction by comparing the mobbing responses of several species of birds to the local abundance of their primary predator, the ferruginous pygmy-owl Glaucidium brasilianum. We used acoustic playback to elicit mobbing responses in environments where owls were common, uncommon, or rare. Stimuli were either the song of a ferruginous pygmy-owl or the mobbing calls of three of the owl’s common prey species. During each playback, we characterized mobbing responses by noting the number of species and individuals that approached the loudspeaker, as well as the closest approach by any bird. Mobbing responses to both stimuli were strong in locations where Ferruginous Pygmy-owls were common, intermediate where owls were uncommon, and weak where they were rare. This pattern persisted even after controlling for differences in species richness and composition among the three environments. Results support the ecological constraints model and provide strong evidence that intense predation pressure increases the expression of cooperative mobbing in tropical birds [Current Zoology 58 (5: 781-790, 2012].

  6. Modeling and Analysis of The Pressure Die Casting Using Response Surface Methodology

    International Nuclear Information System (INIS)

    Kittur, Jayant K.; Herwadkar, T. V.; Parappagoudar, M. B.

    2010-01-01

    Pressure die casting is successfully used in the manufacture of Aluminum alloys components for automobile and many other industries. Die casting is a process involving many process parameters having complex relationship with the quality of the cast product. Though various process parameters have influence on the quality of die cast component, major influence is seen by the die casting machine parameters and their proper settings. In the present work, non-linear regression models have been developed for making predictions and analyzing the effect of die casting machine parameters on the performance characteristics of die casting process. Design of Experiments (DOE) with Response Surface Methodology (RSM) has been used to analyze the effect of effect of input parameters and their interaction on the response and further used to develop nonlinear input-output relationships. Die casting machine parameters, namely, fast shot velocity, slow shot to fast shot change over point, intensification pressure and holding time have been considered as the input variables. The quality characteristics of the cast product were determined by porosity, hardness and surface rough roughness (output/responses). Design of experiments has been used to plan the experiments and analyze the impact of variables on the quality of casting. On the other-hand Response Surface Methodology (Central Composite Design) is utilized to develop non-linear input-output relationships (regression models). The developed regression models have been tested for their statistical adequacy through ANOVA test. The practical usefulness of these models has been tested with some test cases. These models can be used to make the predictions about different quality characteristics, for the known set of die casting machine parameters, without conducting the experiments.

  7. Stream, Lake, and Reservoir Management.

    Science.gov (United States)

    Dai, Jingjing; Mei, Ying; Chang, Chein-Chi

    2017-10-01

    This review on stream, lake, and reservoir management covers selected 2016 publications on the focus of the following sections: Stream, lake, and reservoir management • Water quality of stream, lake, and reservoirReservoir operations • Models of stream, lake, and reservoir • Remediation and restoration of stream, lake, and reservoir • Biota of stream, lake, and reservoir • Climate effect of stream, lake, and reservoir.

  8. Responses of blood pressure and lactate levels to various aquatic exercise movements in postmenopausal women.

    Science.gov (United States)

    Chien, K-Y; Chen, W-C; Kan, N-W; Hsu, M-C; Lee, S-L

    2015-12-01

    Middle-aged and elderly women represent the main attending group in head-out aquatic exercise (HOAE). Blood pressure (BP) significantly increases both during water immersion and aquatic walking. Based on risk concerns, it is important to evaluate BP responses in postmenopausal women doing HOAE. The aim of this study was to determine BP, lactate levels, and rating of perceived exertion (RPE) changes associated with performing 3 different movements at 3 levels of exercise intensity in water. Twelve postmenopausal women (59.9±0.6 years old) participated in 3 aquatic trials involving running (RU), rocking (RO), and scissor kicks (SK) on separate days. Systolic BP, mean arterial pressure (MAP), lactate levels, RPE, and motion cadence were measured at rest; upon reaching 50%, 65%, and 80% of heart rate reserve for 6 minutes; and 10 and 30 minutes after exercise. Under similar RPE responses at 3 levels of intensity, SK resulted in higher systolic BP, MAP, and lactate levels than RO at 10 minutes after exercise (Pexercise (Pexercise intensity (Pexercise. These findings suggest that RO movement in aquatic exercises is more suitable for people at high risk for cardiovascular disease.

  9. Radiation-use efficiency response to vapor pressure deficit for maize and sorghum

    International Nuclear Information System (INIS)

    Kiniry, J.R.; Landivar, J.A.; Witt, M.; Gerik, T.J.; Cavero, J.; Wade, L.J.

    1998-01-01

    Variability within a crop species in the amount of dry mass produced per unit intercepted solar radiation, or radiation-use efficiency (RUE), is important for the quantification of plant productivity. RUE has been used to integrate (1) leaf area, (2) solar radiation interception, and (3) productivity per unit leaf area into crop productivity. Responsiveness of RUE to vapor pressure deficit (VPD) should relate closely to responsiveness of CO 2 exchange rate (CER) to VPD. The objective of this study was to compare independent RUE measurements to published response functions relating VPD with RUE of maize (Zea mays L.) and grain sorghum [Sorghum bicolor L. (Moench)]. Data sets from five locations covering a wide range of mean VPD values were compared to published response functions. Predicted RUE values were nearly always within the 95% confidence intervals of measurements. Measured RUE of maize decreased as VPD increased from 0.9 to 1.7 kPa. For sorghum, measured values of RUE agreed closely with predictions. RUE of sorghum decreased as VPD increased from 1.1 to 2.2 kPa. The relative RUE:VPD responses for these two species were similar to CER:VPD responses reported in the literature. Thus, these RUE:VPD responses may be general and appear to be related to carbon exchange rates. We calculated the expected impacts of VPD on RUE at three USA locations during maize and sorghum growing seasons. The RUE:VPD equations offer hope in describing location effects and time-of-year effects on RUE. (author)

  10. Blood pressure responses to dietary sodium: Association with autonomic cardiovascular function in normotensive adults.

    Science.gov (United States)

    Matthews, Evan L; Brian, Michael S; Edwards, David G; Stocker, Sean D; Wenner, Megan M; Farquhar, William B

    2017-12-01

    Blood pressure responses to dietary sodium vary widely person-to-person. Salt sensitive rodent models display altered autonomic function, a trait thought to contribute to poor cardiovascular health. Thus, we hypothesized that increased salt sensitivity (SS) in normotensive humans would be associated with increased muscle sympathetic nerve activity (MSNA), decreased high frequency heart rate variability (HF-HRV), and decreased baroreflex sensitivity. Healthy normotensive men and women completed 1week of high (300mmol·day -1 ) and 1week of low (20mmol·day -1 ) dietary sodium (random order) with 24h mean arterial pressure (MAP) assessed on the last day of each diet to assess SS. Participants returned to the lab under habitual sodium conditions for testing. Forty-two participants are presented in this analysis, 19 of which successful MSNA recordings were obtained (n=42: age 39±2yrs., BMI 24.3±0.5kg·(m 2 ) -1 , MAP 83±1mmHg, habitual urine sodium 93±7mmol·24h -1 ; n=19: MSNA burst frequency 20±2 bursts·min -1 ). The variables of interest were linearly regressed over the magnitude of SS. Higher SS was associated with increased MSNA (burst frequency: r=0.469, p=0.041), decreased HF-HRV (r=-0.349, p=0.046), and increased LF/HF-HRV (r=0.363, p=0.034). SS was not associated with sympathetic or cardiac baroreflex sensitivity (p>0.05). Multiple regression analysis accounting for age found that age, not SS, independently predicted HF-HRV (age adjusted no longer significant; p=0.369) and LF/HF-HRV (age adjusted p=0.273). These data suggest that age-related salt sensitivity of blood pressure in response to dietary sodium is associated with altered resting autonomic cardiovascular function. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Impact of blood pressure cuff inflation rates on flow-mediated dilatation and contralateral arm response.

    Science.gov (United States)

    Lin, H-F; Dhindsa, M S; Tarumi, T; Miles, S C; Umpierre, D; Tanaka, H

    2012-01-01

    Flow-mediated dilatation (FMD) is widely used as an index of nitric oxide-mediated vasodilator function, yet its methodology has not been well established. Previous research indicates that a rapid inflation of a blood pressure cuff evokes systemic vasoconstriction, as it was observed even on non-occluded contralateral arm. This would potentially contribute to the variability of FMD readings and complicate the emerging evidence that non-occluded contralateral arm fingertip temperature responses during the FMD procedure may be an indicator of the presence of coronary artery disease. To test the hypotheses that rapid inflation of a blood pressure cuff could reduce FMD values and influence contralateral vasodilatory states, 33 apparently healthy adults (18 males and 15 females, 29±6 years) were studied in two randomized FMD trials. The blood flow-occluding cuff was inflated rapidly (inflation trials (5.9±0.6 vs 5.9±0.4%). There were no differences in reactive hyperaemia (6.4±1.6 vs 6.2±1.7 AU), shear stress (80±20 vs 77±17 dyn cm(-2)) and fingertip temperature rebound (TR; 1.8±1.2 vs 1.9±1.0 °C) between the rapid and slow inflation. Changes in finger temperature on the contralateral (non-occluded) arm were positively associated with those on the occluded arm (r=0.26 to 0.61, Pinflating a blood pressure cuff do not affect FMD and TR response, and that neurovascular-induced vasodilatation of the contralateral arm was not observed regardless of cuff inflation rates.

  12. Status of Wheeler Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

  13. Nuclear register applications and pressure tests to foresee reservoirs exploitation with water drive; Aplicaciones de registros nucleares y pruebas de presion para predecir el grado de explotacion de reservorios con impulsion de agua

    Energy Technology Data Exchange (ETDEWEB)

    Osorio F, X.; Redosado G, V. [PETROPERU S.A., Lima (Peru)

    1994-12-31

    This paper illustrates how the pulsed neutron log and well test analysis aid proper reservoir management in strong water reservoirs. These techniques have been applied to Cetico reservoir which belongs to Corrientes Field which is located in the Peruvian Jungle. Corrientes is the most important field operated by PETROPERU S.A. As a result of the analysis we current know the present areal water saturation distribution and also have improve the reservoir characterization al of which is being used for increasing the oil production and reserves. (author). 4 refs, 7 figs, 3 tabs.

  14. COSTING MODELS FOR WATER SUPPLY DISTRIBUTION: PART III- PUMPS, TANKS, AND RESERVOIRS

    Science.gov (United States)

    Distribution systems are generally designed to ensure hydraulic reliability. Storage tanks, reservoirs and pumps are critical in maintaining this reliability. Although storage tanks, reservoirs and pumps are necessary for maintaining adequate pressure, they may also have a negati...

  15. The evolution of mechanisms driving the stomatal response to vapor pressure deficit.

    Science.gov (United States)

    McAdam, Scott A M; Brodribb, Timothy J

    2015-03-01

    Stomatal responses to vapor pressure deficit (VPD) are a principal means by which vascular land plants regulate daytime transpiration. While much work has focused on characterizing and modeling this response, there remains no consensus as to the mechanism that drives it. Explanations range from passive regulation by leaf hydration to biochemical regulation by the phytohormone abscisic acid (ABA). We monitored ABA levels, leaf gas exchange, and water status in a diversity of vascular land plants exposed to a symmetrical, mild transition in VPD. The stomata in basal lineages of vascular plants, including gymnosperms, appeared to respond passively to changes in leaf water status induced by VPD perturbation, with minimal changes in foliar ABA levels and no hysteresis in stomatal action. In contrast, foliar ABA appeared to drive the stomatal response to VPD in our angiosperm samples. Increased foliar ABA level at high VPD in angiosperm species resulted in hysteresis in the recovery of stomatal conductance; this was most pronounced in herbaceous species. Increased levels of ABA in the leaf epidermis were found to originate from sites of synthesis in other parts of the leaf rather than from the guard cells themselves. The transition from a passive regulation to ABA regulation of the stomatal response to VPD in the earliest angiosperms is likely to have had critical implications for the ecological success of this lineage. © 2015 American Society of Plant Biologists. All Rights Reserved.

  16. The Evolution of Mechanisms Driving the Stomatal Response to Vapor Pressure Deficit1[OPEN

    Science.gov (United States)

    McAdam, Scott A.M.; Brodribb, Timothy J.

    2015-01-01

    Stomatal responses to vapor pressure deficit (VPD) are a principal means by which vascular land plants regulate daytime transpiration. While much work has focused on characterizing and modeling this response, there remains no consensus as to the mechanism that drives it. Explanations range from passive regulation by leaf hydration to biochemical regulation by the phytohormone abscisic acid (ABA). We monitored ABA levels, leaf gas exchange, and water status in a diversity of vascular land plants exposed to a symmetrical, mild transition in VPD. The stomata in basal lineages of vascular plants, including gymnosperms, appeared to respond passively to changes in leaf water status induced by VPD perturbation, with minimal changes in foliar ABA levels and no hysteresis in stomatal action. In contrast, foliar ABA appeared to drive the stomatal response to VPD in our angiosperm samples. Increased foliar ABA level at high VPD in angiosperm species resulted in hysteresis in the recovery of stomatal conductance; this was most pronounced in herbaceous species. Increased levels of ABA in the leaf epidermis were found to originate from sites of synthesis in other parts of the leaf rather than from the guard cells themselves. The transition from a passive regulation to ABA regulation of the stomatal response to VPD in the earliest angiosperms is likely to have had critical implications for the ecological success of this lineage. PMID:25637454

  17. Reservoir Identification: Parameter Characterization or Feature Classification

    Science.gov (United States)

    Cao, J.

    2017-12-01

    The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601

  18. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and

  19. Reservoir creep and induced seismicity: inferences from geomechanical modeling of gas depletion in the Groningen field

    Science.gov (United States)

    van Wees, Jan-Diederik; Osinga, Sander; Van Thienen-Visser, Karin; Fokker, Peter A.

    2018-03-01

    The Groningen gas field in the Netherlands experienced an immediate reduction in seismic events in the year following a massive cut in production. This reduction is inconsistent with existing models of seismicity predictions adopting compaction strains as proxy, since reservoir creep would then result in a more gradual reduction of seismic events after a production stop. We argue that the discontinuity in seismic response relates to a physical discontinuity in stress loading rate on faults upon the arrest of pressure change. The stresses originate from a combination of the direct poroelastic effect through the pressure changes and the delayed effect of ongoing compaction after cessation of reservoir production. Both mechanisms need to be taken into account. To this end, we employed finite-element models in a workflow that couples Kelvin-Chain reservoir creep with a semi-analytical approach for the solution of slip and seismic moment from the predicted stress change. For ratios of final creep and elastic compaction up to 5, the model predicts that the cumulative seismic moment evolution after a production stop is subject to a very moderate increase, 2-10 times less than the values predicted by the alternative approaches using reservoir compaction strain as proxy. This is in agreement with the low seismicity in the central area of the Groningen field immediately after reduction in production. The geomechanical model findings support scope for mitigating induced seismicity through adjusting rates of pressure change by cutting down production.

  20. Effect of ventilation pressure on alveolar fluid clearance and beta-agonist responses in mice.

    Science.gov (United States)

    Yu, Erin N Z; Traylor, Zachary P; Davis, Ian C

    2009-10-01

    High tidal volume ventilation is detrimental to alveolar fluid clearance (AFC), but effects of ventilation pressure (P) on AFC are unknown. In anesthetized BALB/c mice ventilated at constant tidal volume (8 ml/kg), mean AFC rate was 12.8% at 6 cmH(2)O P, but increased to 37.3% at 18 cmH(2)O P. AFC rate declined at 22 cmH(2)O P, which also induced lung damage. Increased AFC at 18 cmH(2)O P did not result from elevated plasma catecholamines, hypercapnia, or hypocapnia, but was due to augmented Na(+) and Cl(-) absorption. PKA agonists and beta-agonists stimulated AFC at 10 cmH(2)O P by upregulating amiloride-sensitive Na(+) transport. However, at 18 cmH(2)O P, PKA agonists and beta-agonists reduced AFC. At 15 cmH(2)O P, the AFC rate was intermediate (mean 26.6%), and forskolin and beta-agonists had no effect. Comparable P dependency of AFC and beta-agonist responsiveness was found in C57BL/6 mice. The effect on AFC of increasing P to 18 cmH(2)O was blocked by adenosine deaminase or an A(2b)-adenosine receptor antagonist, and could be mimicked by adenosine in mice ventilated at 10 cmH(2)O P. Modulation of adenosine signaling also resulted in altered responsiveness to beta-agonists. These findings indicate that, in the normal mouse lung, basal AFC rates and responses to beta-agonists are impacted by ventilation pressure in an adenosine-dependent manner.

  1. Pressure/cross-sectional area relations in the proximal urethra of healthy males: the time dependent pressure response following forced dilation. Part IV: results in healthy volunteers

    DEFF Research Database (Denmark)

    Bagi, Per; Bøtker-Rasmussen; Kristensen, Jørgen Kvist

    2002-01-01

    The significance of the anatomical location and age on the urethral response to a sudden forced dilation was studied in 30 healthy males aged 23-85 years. The pressure decay after dilation was fitted with a double exponential function of the form: P(t) = P(equ) + P(alpha)e(-t/tau(alpha) + P...... of the pressure decay following dilation proved significantly related to age in all urethral segments. The causal background for this correlation is uncertain, but may be discovered in age dependent changes in the periluminal tissue composition, or in changing neuromuscular activity in these structures....

  2. Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, T.N.; Witherspoon, P.A.

    1977-05-01

    Results of the production and interference tests conducted on the geothermal wells RRGE 1 and RRGE 2 in Raft River Valley, Idaho during September--November, 1975 are presented. In all, three tests were conducted, two of them being short-duration production tests and one, a long duration interference test. In addition to providing estimates on the permeability and storage parameters of the geothermal reservoir, the tests also indicated the possible existence of barrier boundaries. The data collected during the tests also indicated that the reservoir pressure varies systematically in response to the changes in the Earth's gravitational field caused by the passage of the sun and the moon. Overall, the results of the tests indicate that the geothermal reservoir in southern Raft River valley is fairly extensive and significantly permeable and merits further exploration.

  3. Blood Pressure Genetic Risk Score Predicts Blood Pressure Responses to Dietary Sodium and Potassium: The GenSalt Study (Genetic Epidemiology Network of Salt Sensitivity).

    Science.gov (United States)

    Nierenberg, Jovia L; Li, Changwei; He, Jiang; Gu, Dongfeng; Chen, Jichun; Lu, Xiangfeng; Li, Jianxin; Wu, Xigui; Gu, C Charles; Hixson, James E; Rao, Dabeeru C; Kelly, Tanika N

    2017-12-01

    We examined the association between genetic risk score (GRS) for blood pressure (BP), based on single nucleotide polymorphisms identified in previous BP genome-wide association study meta-analyses, and salt and potassium sensitivity of BP among participants of the GenSalt study (Genetic Epidemiology Network of Salt Sensitivity). The GenSalt study was conducted among 1906 participants who underwent a 7-day low-sodium (51.3 mmol sodium/d), 7-day high-sodium (307.8 mmol sodium/d), and 7-day high-sodium plus potassium (60 mmol potassium/d) intervention. BP was measured 9× at baseline and at the end of each intervention period using a random zero sphygmomanometer. Associations between systolic BP (SBP), diastolic BP, and mean arterial pressure GRS and respective SBP, diastolic BP, and mean arterial pressure responses to the dietary interventions were assessed using mixed linear regression models that accounted for familial dependencies and adjusted for age, sex, field center, body mass index, and baseline BP. As expected, baseline SBP, diastolic BP, and mean arterial pressure significantly increased per quartile increase in GRS ( P =2.7×10 -8 , 9.8×10 -8 , and 6.4×10 -6 , respectively). In contrast, increasing GRS quartile conferred smaller SBP, diastolic BP, and mean arterial pressure responses to the low-sodium intervention ( P =1.4×10 -3 , 0.02, and 0.06, respectively) and smaller SBP responses to the high-sodium and potassium interventions ( P =0.10 and 0.05). In addition, overall findings were similar when examining GRS as a continuous measure. Contrary to our initial hypothesis, we identified an inverse relationship between BP GRS and salt and potassium sensitivity of BP. These data may provide novel implications on the relationship between BP responses to dietary sodium and potassium and hypertension. © 2017 American Heart Association, Inc.

  4. Behavioural thermoregulation of largemouth bass (Micropterus salmoides): response of naive fish to the thermal gradient in a nuclear reactor cooling reservoir

    International Nuclear Information System (INIS)

    Zimmerman, L.C.; Standora, E.A.; Spotila, J.R.

    1989-01-01

    1.1. We studied patterns of temperature selection of naive largemouth bass (Micropterus salmoides) transplanted from an adjacent normothermic site to a cooling reservoir for a nuclear reactor Lethally hot (> 45°C) water entered the reservoir periodically.2.2. Temperature-sensing radio transmitters, which were surgically implanted in 10 fish, enabled us to monitor movement of bass during different times of year in the thermally heterogeneous environment.3.3. Naive bass exhibited a range of reactive thermoregulatory behaviours which led half of them to cool-water refuges in the reservoir. Moreover, some bass appeared to learn the thermal characteristics of the refuges.4.4. These behaviours were sufficient for 30% of the naive fish to survive extreme thermal conditions

  5. Fluid Shifts: Otoacoustical Emission Changes in Response to Posture and Lower Body Negative Pressure

    Science.gov (United States)

    Melgoza, R.; Kemp, D.; Ebert, D.; Danielson, R.; Stenger, M.; Hargens, A.; Dulchavsky, S.

    2016-01-01

    INTRODUCTION: The purpose of the NASA Fluid Shifts Study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to correlate these findings with vision changes and other elements of the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. Due to the invasive nature of direct measures of ICP, a noninvasive technique of monitoring ICP is desired for use during spaceflight. The phase angle and amplitude of otoacoustic emissions (OAEs) have been shown to be sensitive to posture change and ICP (1, 2), therefore use of OAEs is an attractive option. OAEs are low-level sounds produced by the sensory cells of the cochlea in response to auditory stimulation. These sounds travel peripherally from the cochlea, through the oval window, to the ear canal where they can be recorded. OAE transmission is sensitive to changes in the stiffness of the oval window, occurring as a result of changes in cochlear pressure. Increased stiffness of the oval window largely affects the transmission of sound from the cochlea at frequencies between 800 Hz and 1600 Hz. OAEs can be self-recorded in the laboratory or on the ISS using a handheld device. Our primary objectives regarding OAE measures in this experiment were to 1) validate this method during preflight testing of each crewmember (while sitting, supine and in head-down tilt position), and 2) determine if OAE measures (and presumably ICP) are responsive to lower body negative pressure and to spaceflight. METHODS: Distortion-product otoacoustic emissions (DPOAEs) and transient evoked otoacoustic emissions (TEOAEs) were recorded preflight using the Otoport Advance OAE system (Otodynamics Ltd., Hatfield, UK). Data were collected in four conditions (seated

  6. Comparison of the compressive yield response of aggregated suspensions: Pressure filtration, centrifugation, and osmotic consolidation

    International Nuclear Information System (INIS)

    Miller, K.T.; Melant, R.M.; Zukoski, C.F.

    1996-01-01

    The compressive rheological responses of suspensions containing flocculated kaolin, alumina (average particle sizes of 0.2 and 0.5 microm), and hydrous zirconia (average particle sizes of 8, 57, and 139 nm) particles have been measured using three different techniques: pressure filtration, volume fraction profile during centrifugation, and sediment height during centrifugation at multiple spinning speeds. While the volume fraction profile technique appears to be experimentally most robust, equivalent responses are found using the different techniques, indicating that the compressive yield stress is a material property of a given suspension. The compressive yield stress of each suspension increases rapidly with volume fraction but cannot be generally described using simple power-law or exponential fits. The compressive yield stress also increases with the inverse square of particle size. The packing behavior of the suspensions undergoing osmotic consolidation is compared with the mechanical compressive yield response. Some suspensions exhibited the same packing behavior as in the mechanical techniques, while others consistently packed to higher densities during osmotic consolidation. Although equivalent osmotic and mechanical loads do not always result in the same volume fractions, the similar increases in volume fraction with applied driving force suggest that both the osmotic and mechanical techniques are controlled by the force needed to rearrange the particle network

  7. Efficacy of 24-Hour Blood Pressure Monitoring in Evaluating Response to Percutaneous Transluminal Renal Angioplasty.

    Science.gov (United States)

    Jujo, Kentaro; Saito, Katsumi; Ishida, Issei; Furuki, Yuho; Ouchi, Taisuke; Kim, Ahsung; Suzuki, Yuki; Sekiguchi, Haruki; Yamaguchi, Junichi; Ogawa, Hiroshi; Hagiwara, Nobuhisa

    2016-08-25

    Percutaneous transluminal renal angioplasty (PTRA) improves patency in atherosclerotic renal artery stenosis (ARAS), but improvement in clinic blood pressure (BP) is seen in only 20-40% of patients who undergo PTRA. This study investigated the effects of PTRA on BP lowering, assessed on 24-h ambulatory BP monitoring (ABPM), and identified preoperative features predictive of satisfactory BP improvement after PTRA. Of 1,753 consecutive patients undergoing coronary angiography, 31 patients with angiographically significant ARAS and translesional pressure gradient (TLPG) >20 mmHg underwent PTRA. ABPM was performed before, at 1 month and at 1 year after PTRA; patients with average systolic ABPM-BP decrease >10 mmHg at 1 month from baseline were categorized as responders. There was no obvious relationship between clinic BP and ABPM-BP at baseline. ABPM-BP was significantly higher in responders at baseline (SBP: 148 vs. 126 mmHg, PABPM-BP achieved a larger decrease in ABPM-BP, but the severity of stenosis reflected by TLPG; renal duplex findings; and neurohumoral parameters other than baseline renal function, did not differ between the groups. Clinic BP does not represent daily hemodynamic status, whereas high ABPM-BP is a potent predictor of satisfactory BP response to PTRA. (Circ J 2016; 80: 1922-1930).

  8. Direct Writing of Three-Dimensional Macroporous Photonic Crystals on Pressure-Responsive Shape Memory Polymers.

    Science.gov (United States)

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Wang, Bingchen; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2015-10-28

    Here we report a single-step direct writing technology for making three-dimensional (3D) macroporous photonic crystal patterns on a new type of pressure-responsive shape memory polymer (SMP). This approach integrates two disparate fields that do not typically intersect: the well-established templating nanofabrication and shape memory materials. Periodic arrays of polymer macropores templated from self-assembled colloidal crystals are squeezed into disordered arrays in an unusual shape memory "cold" programming process. The recovery of the original macroporous photonic crystal lattices can be triggered by direct writing at ambient conditions using both macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly, this shape memory disorder-order transition is reversible and the photonic crystal patterns can be erased and regenerated hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes. Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to rewritable high-density optical data storage media.

  9. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    International Nuclear Information System (INIS)

    Álvarez, V; Cárcel, S; Cervera, A; Díaz, J; Ferrario, P; Gil, A; Gómez-Cadenas, J J; Borges, F I G; Conde, C A N; Fernandes, L M P; Freitas, E D C; Cebrián, S; Dafni, T; Gómez, H; Egorov, M; Gehman, V M; Goldschmidt, A; Esteve, R; Evtoukhovitch, P; Ferreira, A L

    2013-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas.

  10. A practical model for pressure probe system response estimation (with review of existing models)

    Science.gov (United States)

    Hall, B. F.; Povey, T.

    2018-04-01

    The accurate estimation of the unsteady response (bandwidth) of pneumatic pressure probe systems (probe, line and transducer volume) is a common practical problem encountered in the design of aerodynamic experiments. Understanding the bandwidth of the probe system is necessary to capture unsteady flow features accurately. Where traversing probes are used, the desired traverse speed and spatial gradients in the flow dictate the minimum probe system bandwidth required to resolve the flow. Existing approaches for bandwidth estimation are either complex or inaccurate in implementation, so probes are often designed based on experience. Where probe system bandwidth is characterized, it is often done experimentally, requiring careful experimental set-up and analysis. There is a need for a relatively simple but accurate model for estimation of probe system bandwidth. A new model is presented for the accurate estimation of pressure probe bandwidth for simple probes commonly used in wind tunnel environments; experimental validation is provided. An additional, simple graphical method for air is included for convenience.

  11. Cardiovascular responses of men and women to lower body negative pressure

    Science.gov (United States)

    Montgomery, L. D.; Kirk, P. J.; Payne, P. A.; Gerber, R. L.; Newton, S. D.; Williams, B. A.

    1977-01-01

    Changes in blood flow and blood redistribution were measured by impedance plethysmography in the pelvic and leg regions of six male and four female subjects during three 5-min exposures to -20, -40, and -60 mm Hg lower body negative pressure (LBNP). Female subjects demonstrated significantly higher mean heart rate and lower leg blood flow indices than the male subjects during the recumbent control periods. Men had slightly higher mean resting systolic and diastolic blood pressures and higher mean control pelvic blood indices. Women demonstrated significantly less blood pooling in the legs and slightly less in the pelvic region than the men. All of the 18 tests with male subjects at -60 mm Hg were completed without initial signs of syncope, while only two of the tests with women were completed successfully without the subject exhibiting presyncopal conditions. Results indicate that impedance plethysmography can be used to measure segmental cardiovascular responses during LBNP and that females may be less tolerant to -60 mm Hg LBNP than males.

  12. Learning from Stakeholder Pressure and Embeddedness: The Roles of Absorptive Capacity in the Corporate Social Responsibility of Dutch Agribusinesses

    NARCIS (Netherlands)

    Ingenbleek, Paul; Dentoni, Domenico

    2016-01-01

    In spite of much research on corporate social responsibility (CSR) responses to secondary stakeholders (i.e., social movements, activists, media, civil society and non-governmental organizations), the debate on how companies learn from pressure and collaboration with these societal groups is still

  13. Development of a compositional model fully coupled with geomechanics and its application to tight oil reservoir simulation

    Science.gov (United States)

    Xiong, Yi

    solutions and results of a commercial simulator before conducting numerical studies. The numerical studies demonstrate the effect of capillary pressure on VLE, and further on production performance. The significant effect of capillary pressure on VLE leads to the suppression of bubble-point pressure and more light components dissolved in the oil phase. Consequently it is observed that there is smaller gas saturation, larger mole fractions of light components, and faster pressure decreasing at reservoir conditions; meanwhile less gas and more oil are produced at surface. The substantial decrease in reservoir pore pressure results in a large increase of effective stress, which induces the changes of rock properties and influences the production performance. The stress-induced degradation of permeability undermines the production performance, and the geomechanical effect on the permeability of natural fractures is mainly responsible for the undermined production performance. The reduction of pore size due to the geomechanical effect could increase the capillary pressure, which enlarges the influence of capillarity on VLE and further suppresses bubble-point pressure. On the other hand, the effect of capillary pressure on VLE influences the fluid flow and therefore influences the effective stress through the flow-stress coupling process. Thus the interaction between pore confinement and rock compaction can be modeled with MSFLOW_COM, and illustrated through numerical studies. This research provides a three-dimensional numerical tool for accurately modeling porous and fractured tight oil reservoirs. The developed simulator is able to assist scientists and engineers to study and understand the complex multiphase, multi-component fluid flow behaviors in tight oil reservoirs.

  14. Hemodynamic responses to seated and supine lower body negative pressure - Comparison with +Gz acceleration

    Science.gov (United States)

    Polese, Alvese; Sandler, Harold; Montgomery, Leslie D.

    1992-01-01

    The hemodynamic responses to LBNP in seated subjects and in subjects in supine body positions were compared and were correlated with hemodynamic changes which occurred during a simulated (by centrifugation) Shuttle reentry acceleration with a slow onset rate of 0.002 G/s and during gradual onset exposures to +3 Gz and +4 Gz. Results demonstrate that seated LBNP at a level of -40 mm Hg can serve as a static simulator for changes in the heart rate and in mean blood pressure induced by gradual onset acceleration stress occurring during Shuttle reentry. The findings also provide a rationale for using LBNP during weightlessness as a means of imposing G-loading on the circulation prior to reentry.

  15. Muscle tissue oxygenation, pressure, electrical, and mechanical responses during dynamic and static voluntary contractions

    DEFF Research Database (Denmark)

    Vedsted, Pernille; Blangsted, Anne Katrine; Søgaard, Karen

    2006-01-01

    Dynamic muscle contractions have been shown to cause greater energy turnover and fatigue than static contractions performed at a corresponding force level. Therefore, we hypothesized that: (1) electro- (EMG) and mechanomyography (MMG), intramuscular pressure (IMP), and reduction in muscle oxygen...... similar in spite of major differences in the MMG and EMG responses of the muscle during contraction periods. This may relate to the surprisingly lower IMP in DYN than IST....... tension (rTO(2)) would be larger during dynamic (DYN) than intermittent static (IST) low force contractions; and that (2) oxygen tension would remain lower in the resting periods subsequent to DYN as compared to those following IST. Eight subjects performed elbow flexions with identical time...

  16. Sensitivity Analysis of Methane Hydrate Reservoirs: Effects of Reservoir Parameters on Gas Productivity and Economics

    Science.gov (United States)

    Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.

    2008-12-01

    This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP

  17. Influence of Pachymetry and Intraocular Pressure on Dynamic Corneal Response Parameters in Healthy Patients.

    Science.gov (United States)

    Vinciguerra, Riccardo; Elsheikh, Ahmed; Roberts, Cynthia J; Ambrósio, Renato; Kang, David Sung Yong; Lopes, Bernardo T; Morenghi, Emanuela; Azzolini, Claudio; Vinciguerra, Paolo

    2016-08-01

    To evaluate the influence of pachymetry, age, and intraocular pressure in normal patients and to provide normative values for all dynamic corneal response parameters (DCRs) provided by dynamic Scheimpflug analysis. Seven hundred five healthy patients were included in this multicenter retrospective study. The biomechanical response data were analyzed to obtain normative values with their dependence on corrected and clinically validated intraocular pressure estimates developed using the finite element method (bIOP), central corneal thickness (CCT), and age, and to evaluate the influence of bIOP, CCT, and age. The results showed that all DCRs were correlated with bIOP except deflection amplitude (DefA) ratio, highest concavity (HC) radius, and inverse concave radius. The analysis of the relationship of DCRs with CCT indicated that HC radius, inverse concave radius, deformation amplitude (DA) ratio, and DefA ratio were correlated with CCT (rho values of 0.343, -0.407, -0.444, and -0.406, respectively). The age group subanalysis revealed that primarily whole eye movement followed by DA ratio and inverse concave radius were the parameters that were most influenced by age. Finally, custom software was created to compare normative values to imported examinations. HC radius, inverse concave radius, DA ratio, and DefA ratio were shown to be suitable parameters to evaluate in vivo corneal biomechanics due to their independence from IOP and their correlation with pachymetry and age. The creation of normative values allows the interpretation of an abnormal examination without the need to match every case with another normal patient matched for CCT and IOP. [J Refract Surg. 2016;32(8):550-561.]. © 2016 Vinciguerra, Elsheikh, Roberts, et al.: licensee SLACK Incorporated.

  18. Calibration of Seismic Attributes for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Wayne D. Pennington

    2002-09-29

    developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.

  19. CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Wayne D. Pennington; Horacio Acevedo; Aaron Green; Joshua Haataja; Shawn Len; Anastasia Minaeva; Deyi Xie

    2002-10-01

    productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.

  20. Calibration of Seismic Attributes for Reservoir Characterization; ANNUAL

    International Nuclear Information System (INIS)

    Pennington, Wayne D.; Acevedo, Horacio; Green, Aaron; Len, Shawn; Minavea, Anastasia; Wood, James; Xie, Deyi

    2002-01-01

    This project has completed the initially scheduled third year of the contract, and is beginning a fourth year, designed to expand upon the tech transfer aspects of the project. From the Stratton data set, demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the Boonsville data set , developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Teal South data set provided a surprising set of data, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines

  1. Reduction on OFF-responses of Electroretinogram in Monkeys with Long-term High Intraocular Pressure.

    Science.gov (United States)

    Liu, Ke-Gao; Peng, Xiao-Yan; Zhang, Zheng; Sun, Hua; Yang, Di-Ya; Wang, Ning-Li

    2017-11-20

    There are ON- and OFF-pathways in the normal vertebrate retina. Short- and long-flash electroretinogram (ERG) are suitable methods to observe the function of ON- and OFF-pathways in vivo, respectively. It is clear that high intraocular pressure (IOP) might cause dysfunction of cone-dominated photopic negative response (PhNR) in monkeys with high IOP in ON-pathway. However, whether cone-dominated OFF-responses are also affected is less known. The aim of this study was to observe photopic OFF-responses of ERG in monkeys with high IOP. Nine monkeys were involved in the experiment from January 2006 to December 2016. High IOP was induced in the right eye by laser coagulation of the mid-trabecular meshwork in five monkeys. Six years after the laser coagulation, both short- and long-flash of the photopic ERG were recorded. Stimulus light was red flashes superimposed on a blue background. Four normal monkeys were examined under the same ERG protocols as controls. Paired t- test was used to compare the difference of each ERG parameter between the lasered eye and the fellow eye. Analysis of variance (ANOVA) with Tukey adjustment was adopted to calculate the differences among the lasered eye, the fellow eye, and the eyes of normal monkeys. The mean amplitude of a-wave (11.73 ± 2.05) and PhNR (8.67 ± 2.44) in lasered eyes was significantly lower than that of a-wave (21.47 ± 3.15) and PhNR (22.05 ± 3.42) in fellow eyes (P = 0.03 and P = 0.01, respectively) in response to short flash. The mean amplitude of d-wave (1.60 ± 0.59) and i-wave (3.13 ± 0.64) was significantly reduced in the lasered eyes than that of d-wave (4.01 ± 0.56) and i-wave (8.79 ± 1.75) in the fellow eyes (P = 0.02 and P = 0.02, respectively) in response to long flash. Reduced OFF-responses are recorded in monkeys with high IOP when dysfunction of photoreceptor is involved. The reduced OFF-responses to long-flash stimulus show evidence of anomalous retinal circuitry in glaucomatous retinopathy.

  2. Numerical study on seismic response of the reactor coolant pump in Advanced Passive Pressurized Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    De, Cheng, E-mail: 0100209064@sjtu.edu.cn; Zhen-Qiang, Yao, E-mail: zqyaosjtu@gmail.com; Ya-bo, Xue; Hong, Shen

    2014-10-15

    Highlights: • An artificial accelerogram of the specified SSE is generated. • A dynamic FE model of the RCP in AP1000 (with gyroscopic and FSI effects) is developed. • The displacement, force, moment and stress in the RCP during the earthquake are summarized. - Abstract: The reactor coolant pump in the Advanced Passive Pressurized Water Reactor is a kind of nuclear canned-motor pump. The pump is classified as Seismic Category I, which must function normally during the Safe Shutdown Earthquake. When the nuclear power plant is located in seismically active region, the seismic response of the reactor coolant pump may become very important for the safety assessment of the whole nuclear power plant. In this article, an artificial accelerogram is generated. The response spectrum of the artificial accelerogram fits well with the design acceleration spectrum of the Safe Shutdown Earthquake. By applying the finite element modeling method, the dynamic finite element models of the rotor and stator in the reactor coolant pump are created separately. The rotor and stator are coupled by the journal bearings and the annular flow between the rotor and stator. Then the whole dynamic model of the reactor coolant pump is developed. Time domain analysis which uses the improved state-space Newmark method of a direct time integration scheme is carried out to investigate the response of the reactor coolant pump under the horizontal seismic load. The results show that the reactor coolant pump responds differently in the direction of the seismic load and in the perpendicular direction. During the Safe Shutdown Earthquake, the displacement response, the shear force, the moment and the journal bearing reaction forces in the reactor coolant pump are analyzed.

  3. Analysis of injection tests in liquid-dominated geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.M.

    1984-12-01

    The objective was to develop procedures for analyzing nonisothermal injection test data during the early phases of injection. In particular, methods for determining the permeability-thickness of the formation, skin factor of the well and tracking the movement of the thermal front have been developed. The techniques developed for interpreting injection pressure transients are closely akin to conventional groundwater and petroleum techniques for evaluating these parameters. The approach taken was to numerically simulate injection with a variety of temperatures, reservoir parameters and flowrates, in order to determine the characteristic responses due to nonisothermal injection. Two characteristic responses were identified: moving front dominated behavior and composite reservoir behavior. Analysis procedures for calculating the permeability-thickness of the formation and the skin factor of the well have been developed for each of these cases. In order to interpret the composite reservior behavior, a new concept has been developed; that of a ''fluid skin factor'', which accounts for the steady-state pressure buildup due to the region inside the thermal front. Based on this same concept, a procedure for tracking the movement of the thermal front has been established. The results also identify the dangers of not accounting the nonisothermal effects when analyzing injection test data. Both the permeability-thickness and skin factor of the well can be grossly miscalculated if the effects of the cold-region around the well are not taken into consideration. 47 refs., 30 figs., 14 tabs.

  4. Tumor Interstitial Fluid Pressure as an Early-Response Marker for Anticancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Stephane Ferretti

    2009-09-01

    Full Text Available Solid tumors have a raised interstitial fluid pressure (IFP due to high vessel permeability, low lymphatic drainage, poor perfusion, and high cell density around the blood vessels. To investigate tumor IFP as an early-response biomarker, we have tested the effect of seven anticancer chemotherapeutics including cytotoxics and targeted cytostatics in 13 experimental tumor models. IFP was recorded with the wick-in-needle method. Models were either ectopic or orthotopic and included mouse and rat syngeneic as well as human xenografts in nude mice. The mean basal IFP was between 4.4 and 15.2mm Hg; IFP was lowest in human tumor xenografts and highest in rat syngeneic models. Where measured, basal IFP correlated positively with relative tumor blood volume (rTBV determined by dynamic contrast-enhanced magnetic resonance imaging. Most chemotherapeutics sooner (2 or 3 days or later (6 or 7 days lowered tumor IFP significantly, and the cytotoxic patupilone caused the greatest decrease in IFP. In rat mammary orthotopic BN472 tumors, significant drug-induced decreases in IFP and rTBV correlated positively with each other for both patupilone and the cytostatic vatalanib. In the two orthotopic models studied, early decreases in IFP were significantly (P ≤ .005 correlated with late changes in tumor volume. Thus, drug-induced decreases in tumor IFP are an early marker of response to therapy, which could aid clinical development.

  5. High hydrostatic pressure influences the in vitro response to xenobiotics in Dicentrarchus labrax liver.

    Science.gov (United States)

    Lemaire, Benjamin; Mignolet, Eric; Debier, Cathy; Calderon, Pedro Buc; Thomé, Jean Pierre; Rees, Jean François

    2016-04-01

    Hydrostatic pressure (HP) increases by about 1 atmosphere (0.1MPa) for each ten-meter depth increase in the water column. This thermodynamical parameter could well influence the response to and effects of xenobiotics in the deep-sea biota, but this possibility remains largely overlooked. To grasp the extent of HP adaptation in deep-sea fish, comparative studies with living cells of surface species exposed to chemicals at high HP are required. We initially conducted experiments with precision-cut liver slices of a deep-sea fish (Coryphaenoides rupestris), co-exposed for 15h to the aryl hydrocarbon receptor (AhR) agonist 3-methylcholanthrene at HP levels representative of the surface (0.1MPa) and deep-sea (5-15MPa; i.e., 500-1500m depth) environments. The transcript levels of a suite of stress-responsive genes, such as the AhR battery CYP1A, were subsequently measured (Lemaire et al., 2012; Environ. Sci. Technol. 46, 10310-10316). Strikingly, the AhR agonist-mediated increase of CYP1A mRNA content was pressure-dependently reduced in C. rupestris. Here, the same co-exposure scenario was applied for 6 or 15h to liver slices of a surface fish, Dicentrarchus labrax, a coastal species presumably not adapted to high HP. Precision-cut liver slices of D. labrax were also used in 1h co-exposure studies with the pro-oxidant tert-butylhydroperoxide (tBHP) as to investigate the pressure-dependence of the oxidative stress response (i.e., reactive oxygen production, glutathione and lipid peroxidation status). Liver cells remained viable in all experiments (adenosine triphosphate content). High HP precluded the AhR agonist-mediated increase of CYP1A mRNA expression in D. labrax, as well as that of glutathione peroxidase, and significantly reduced that of heat shock protein 70. High HP (1h) also tended per se to increase the level of oxidative stress in liver cells of the surface fish. Trends to an increased resistance to tBHP were also noted. Whether the latter observation truly

  6. Response of currents and water quality to changes in dam operations in Hoover Reservoir, Columbus, Ohio, August 24–28, 2015

    Science.gov (United States)

    Vonins, Branden L.; Jackson, P. Ryan

    2017-05-25

    Hoover Reservoir, an important drinking water supply for the City of Columbus, Ohio, has been the source of a series of taste and odor problems in treated drinking water during the past few years. These taste and odor problems were caused by the compounds geosmin and 2-methylisoborneol, which are thought to have been related to cyanobacteria blooms. In an effort to reduce the phosphorus available for cyanobacteria blooms at fall turnover, the City of Columbus began experimenting with the dam’s selective withdrawal system to remove excess phosphorus in the hypolimnion, which is released from bottom sediments during summer anoxic conditions.The U.S. Geological Survey completed two synoptic survey campaigns to assess distributions of water quality and water velocity in the lower part of Hoover Reservoir to provide information on the changes to reservoir dynamics caused by changing dam operations. One campaign (campaign 1) was done while water was being withdrawn from the reservoir through the dam’s middle gate and the other (campaign 2) while water was being withdrawn through the dam’s lower gate. Velocities were measured using an acoustic Doppler current profiler, and water-quality parameters were measured using an autonomous underwater vehicle equipped with water-quality sensors. Along with the water-quality and water-velocity data, meteorological, inflow and outflow discharges, and independent water-quality data were compiled to monitor changes in other parameters that affect reservoir behavior. Monthly nutrient data, collected by the City of Columbus, were also analyzed for trends in concentration during periods of expected stratification.Based on the results of the two campaigns, when compared to withdrawing water through the middle gate, withdrawing water through the lower gate seemed to increase shear-driven mixing across the thermocline, which resulted in an increase in the depth of the epilimnion throughout the lower part of Hoover Reservoir. The

  7. Assessing complexity of skin blood flow oscillations in response to locally applied heating and pressure in rats: Implications for pressure ulcer risk

    Science.gov (United States)

    Liao, Fuyuan; O'Brien, William D.; Jan, Yih-Kuen

    2013-10-01

    The objective of this study was to investigate the effects of local heating on the complexity of skin blood flow oscillations (BFO) under prolonged surface pressure in rats. Eleven Sprague-Dawley rats were studied: 7 rats underwent surface pressure with local heating (△t=10 °C) and 4 rats underwent pressure without heating. A pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The loading period was divided into nonoverlapping 30 min epochs. For each epoch, multifractal detrended fluctuation analysis (MDFA) was utilized to compute DFA coefficients and complexity of endothelial related metabolic, neurogenic, and myogenic frequencies of BFO. The results showed that under surface pressure, local heating led to a significant decrease in DFA coefficients of myogenic frequency during the initial epoch of loading period, a sustained decrease in complexity of myogenic frequency, and a significantly higher degree of complexity of metabolic frequency during the later phase of loading period. Surrogate tests showed that the reduction in complexity of myogenic frequency was associated with a loss of nonlinearity whereas increased complexity of metabolic frequency was associated with enhanced nonlinearity. Our results indicate that increased metabolic activity and decreased myogenic response due to local heating manifest themselves not only in magnitudes of metabolic and myogenic frequencies but also in their structural complexity. This study demonstrates the feasibility of using complexity analysis of BFO to monitor the ischemic status of weight-bearing skin and risk of pressure ulcers.

  8. Pigmented and albino rats differ in their responses to moderate, acute and reversible intraocular pressure elevation.

    Science.gov (United States)

    Gurdita, Akshay; Tan, Bingyao; Joos, Karen M; Bizheva, Kostadinka; Choh, Vivian

    2017-06-01

    To compare the electrophysiological and morphological responses to acute, moderately elevated intraocular pressure (IOP) in Sprague-Dawley (SD), Long-Evans (LE) and Brown Norway (BN) rat eyes. Eleven-week-old SD (n = 5), LE (n = 5) and BN (n = 5) rats were used. Scotopic threshold responses (STRs), Maxwellian flash electroretinograms (ERGs) or ultrahigh-resolution optical coherence tomography (UHR-OCT) images of the rat retinas were collected from both eyes before, during and after IOP elevation of one eye. IOP was raised to ~35 mmHg for 1 h using a vascular loop, while the other eye served as a control. STRs, ERGs and UHR-OCT images were acquired on 3 days separated by 1 day of no experimental manipulation. There were no significant differences between species in baseline electroretinography. However, during IOP elevation, peak positive STR amplitudes in LE (mean ± standard deviation 259 ± 124 µV) and BN (228 ± 96 µV) rats were about fourfold higher than those in SD rats (56 ± 46 µV) rats (p = 0.0002 for both). Similarly, during elevated IOP, ERG b-wave amplitudes were twofold higher in LE and BN rats compared to those of SD rats (947 ± 129 µV and 892 ± 184 µV, vs 427 ± 138 µV; p = 0.0002 for both). UHR-OCT images showed backward bowing in all groups during IOP elevation, with a return to typical form about 30 min after IOP elevation. Differences in the loop-induced responses between the strains are likely due to different inherent retinal morphology and physiology.

  9. Influence of atmospheric vapour pressure deficit on ozone responses of snap bean (Phaseolus vulgaris L.) genotypes.

    Science.gov (United States)

    Fiscus, Edwin L; Booker, Fitzgerald L; Sadok, Walid; Burkey, Kent O

    2012-04-01

    Environmental conditions influence plant responses to ozone (O(3)), but few studies have evaluated individual factors directly. In this study, the effect of O(3) at high and low atmospheric vapour pressure deficit (VPD) was evaluated in two genotypes of snap bean (Phaseolus vulgaris L.) (R123 and S156) used as O(3) bioindicator plants. Plants were grown in outdoor controlled-environment chambers in charcoal-filtered air containing 0 or 60 nl l(-1) O(3) (12 h average) at two VPDs (1.26 and 1.96 kPa) and sampled for biomass, leaf area, daily water loss, and seed yield. VPD clearly influenced O(3) effects. At low VPD, O(3) reduced biomass, leaf area, and seed yield substantially in both genotypes, while at high VPD, O(3) had no significant effect on these components. In clean air, high VPD reduced biomass and yield by similar fractions in both genotypes compared with low VPD. Data suggest that a stomatal response to VPD per se may be lacking in both genotypes and it is hypothesized that the high VPD resulted in unsustainable transpiration and water deficits that resulted in reduced growth and yield. High VPD- and water-stress-induced stomatal responses may have reduced the O(3) flux into the leaves, which contributed to a higher yield compared to the low VPD treatment in both genotypes. At low VPD, transpiration increased in the O(3) treatment relative to the clean air treatment, suggesting that whole-plant conductance was increased by O(3) exposure. Ozone-related biomass reductions at low VPD were proportionally higher in S156 than in R123, indicating that differential O(3) sensitivity of these bioindicator plants remained evident when environmental conditions were conducive for O(3) effects. Assessments of potential O(3) impacts on vegetation should incorporate interacting factors such as VPD.

  10. Political Strategies as a Response to Public and Private Stakeholder Pressures

    DEFF Research Database (Denmark)

    Heidenreich, Stefan; Puck, Jonas F.; Nell, Phillip Christopher

    2012-01-01

    We aim at providing a more precise differentiation of external stakeholder pressures and their impact on multinational corporation (MNC) subsidiaries’ political strategies. Thus, we analyse whether external stakeholder pressures entail a more intense use of political strategies, and whether press...

  11. Responses of intra-abdominal pressure and abdominal muscle activity during dynamic trunk loading in man.

    Science.gov (United States)

    Cresswell, A G

    1993-01-01

    The purpose of this study was to determine and compare interactions between the abdominal musculature and intra-abdominal pressure (IAP) during controlled dynamic and static trunk muscle loading. Myoelectric activity was recorded in six subjects from the rectus abdominis, obliquus externus, obliquus internus, transversus abdominis and erector spinae muscles using surface and intra-muscular fine-wire electrodes. The IAP was recorded intra-gastrically. Trunk flexions and extensions were performed lying on one side on a swivel table. An adjustable brake provided different friction loading conditions, while adding weights to an unbraked swivel table afforded various levels of inertial loading. During trunk extensions at all friction loads, IAP was elevated (1.8-7.2 kPa) with concomitant activity in transversus abdominis and obliquus internus muscles--little or no activity was seen from rectus abdominis and obliquus externus muscles. For inertia loading during trunk extension, IAP levels were somewhat lower (1.8-5.6 kPa) and displayed a second peak when abdominal muscle activity occurred in the course of decelerating the movement. For single trunk flexions with friction loading, IAP was higher than that seen in extension conditions and increased with added resistance. For inertial loading during trunk flexion, IAP showed two peaks, the larger first peak matched peak forward acceleration and general abdominal muscle activation, while the second corresponded to peak deceleration and was accompanied by activity in transversus abdominis and erector spinae muscles. It was apparent that different loading strategies produced markedly different patterns of response in both trunk musculature and intra-abdominal pressure.

  12. Differential recruitment of mechanisms for myogenic responses according to luminal pressure and arterial types.

    Science.gov (United States)

    Baek, Eun Bok; Jin, Chunzi; Park, Su Jung; Park, Kyung Sun; Yoo, Hae Young; Jeon, Ju Hong; Earm, Yung E; Kim, Sung Joon

    2010-06-01

    Mechanosensitive nonselective cation channels (NSC(ms)), protein kinase C (PKC), and Rho kinase (ROCK) are suggested as underlying mechanisms for the myogenic contractile response (MR) to luminal pressure (P(lum)). Here we compared relative contributions from these mechanisms using pharmacological inhibitors in rabbit middle cerebral (RbCA), rat middle cerebral (RtCA), rat femoral (RtFA), and rat mesenteric (RtMA) small arteries. Inner diameters of pressurized arteries under various P(lum) were video-analyzed. 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS, 10 microM) was used as a blocker of NSC(ms). In general, RbCA and RtCA showed higher P(lum) sensitivity of MR than RtFA and RtMA. Ten micromolars of DIDS commonly decreased MRs more effectively at low P(lum) (40-60 mmHg) in all tested arteries except RtCA. In RbCA, PKC inhibitors (100 nM of Go6976 or Go6983) decreased the MR at relatively high P(lum) (80-100 mmHg) whereas ROCK inhibitor (Y-27632, 1 microM) showed a P(lum)-independent inhibition. In RtMA and RtCA, PKC inhibitors (Go6976 and Go6983) had no significant effect whereas Y-27632 generally inhibited the MR. In RtFA, neither PKC inhibitor nor Y-27632 alone affected MRs. Interestingly, in the presence of 10 microM DIDS, Go6983 and Y-27632 decreased the MR of RtFA. In RtMA, it was notable that the MR decreased spontaneously on repeated protocol of P(lum) increase, and the 'run-down' could be effective reversed by maxi-K(+) channel blocker (tetraethylammonium or iberiotoxin). In summary, our study shows the variability of MRs according to the arterial types in terms of their pressure sensitivity and underlying mechanisms that are recruited according to P(lum).

  13. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...

  14. SILTATION IN RESERVOIRS

    African Journals Online (AJOL)

    Calls have been made to the government through various media to assist its populace in combating this nagging problem. It was concluded that sediment maximum accumulation is experienced in reservoir during the periods of maximum flow. Keywords: reservoir model, siltation, sediment, catchment, sediment transport. 1.

  15. Dynamic reservoir well interaction

    NARCIS (Netherlands)

    Sturm, W.L.; Belfroid, S.P.C.; Wolfswinkel, O. van; Peters, M.C.A.M.; Verhelst, F.J.P.C.M.

    2004-01-01

    In order to develop smart well control systems for unstable oil wells, realistic modeling of the dynamics of the well is essential. Most dynamic well models use a semi-steady state inflow model to describe the inflow of oil and gas from the reservoir. On the other hand, reservoir models use steady

  16. Reservoir Engineering Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.; Schwarz, W.J.

    1977-12-14

    The Reservoir Engineering Management Program being conducted at Lawrence Berkeley Laboratory includes two major tasks: 1) the continuation of support to geothermal reservoir engineering related work, started under the NSF-RANN program and transferred to ERDA at the time of its formation; 2) the development and subsequent implementation of a broad plan for support of research in topics related to the exploitation of geothermal reservoirs. This plan is now known as the GREMP plan. Both the NSF-RANN legacies and GREMP are in direct support of the DOE/DGE mission in general and the goals of the Resource and Technology/Resource Exploitation and Assessment Branch in particular. These goals are to determine the magnitude and distribution of geothermal resources and reduce risk in their exploitation through improved understanding of generically different reservoir types. These goals are to be accomplished by: 1) the creation of a large data base about geothermal reservoirs, 2) improved tools and methods for gathering data on geothermal reservoirs, and 3) modeling of reservoirs and utilization options. The NSF legacies are more research and training oriented, and the GREMP is geared primarily to the practical development of the geothermal reservoirs. 2 tabs., 3 figs.

  17. MIKROMITSETY- MIGRANTS IN MINGECHEVIR RESERVOIR

    Directory of Open Access Journals (Sweden)

    M. A. Salmanov

    2017-01-01

    Full Text Available Aim. It is hardly possible to predict the continued stability of the watercourse ecosystems without the study of biological characteristics and composition of organisms inhabiting them. In the last 35-40 years, environmental conditions of the Mingachevir reservoir are determined by the stationary anthropogenic pressure. It was found that such components of plankton as algae, bacteria and fungi play a leading role in the transformation and migration of pollutants. The role of the three groups of organisms is very important in maintaining the water quality by elimination of pollutants. Among the organisms inhabiting the Mingachevir Reservoir, micromycetes have not yet been studied. Therefore, the study of the species composition and seasonal dynamics, peculiarities of their growth and development in the environment with the presence of some of the pollutants should be considered to date.Methods. In order to determine the role of micromycetes-migrants in the mineralization of organic substrates, as an active participant of self-purification process, we used water samples from the bottom sediments as well as decaying and skeletonized stalks of cane, reeds, algae, macrophytes, exuvia of insects and fish remains submerged in water.Findings. For the first time, we obtained the data on the quality and quantity of microscopic mycelial fungi in freshwater bodies on the example of the Mingachevir water reservoir; we also studied the possibilities for oxygenating the autochthonous organic matter of allochthonous origin with micromycetes-migrants.Conclusions. It was found that the seasonal development of micromycetes-migrants within the Mingachevir reservoir is characterized by an increase in the number of species in the summer and a gradual reduction in species diversity in the fall. 

  18. Experimental Investigation on Dilation Mechanisms of Land-Facies Karamay Oil Sand Reservoirs under Water Injection

    Science.gov (United States)

    Lin, Botao; Jin, Yan; Pang, Huiwen; Cerato, Amy B.

    2016-04-01

    The success of steam-assisted gravity drainage (SAGD) is strongly dependent on the formation of a homogeneous and highly permeable zone in the land-facies Karamay oil sand reservoirs. To accomplish this, hydraulic fracturing is applied through controlled water injection to a pair of horizontal wells to create a dilation zone between the dual wells. The mechanical response of the reservoirs during this injection process, however, has remained unclear for the land-facies oil sand that has a loosely packed structure. This research conducted triaxial, permeability and scanning electron microscopy (SEM) tests on the field-collected oil sand samples. The tests evaluated the influences of the field temperature, confining stress and injection pressure on the dilation mechanisms as shear dilation and tensile parting during injection. To account for petrophysical heterogeneity, five reservoir rocks including regular oil sand, mud-rich oil sand, bitumen-rich oil sand, mudstone and sandstone were investigated. It was found that the permeability evolution in the oil sand samples subjected to shear dilation closely followed the porosity and microcrack evolutions in the shear bands. In contrast, the mudstone and sandstone samples developed distinct shear planes, which formed preferred permeation paths. Tensile parting expanded the pore space and increased the permeability of all the samples in various degrees. Based on this analysis, it is concluded that the range of injection propagation in the pay zone determines the overall quality of hydraulic fracturing, while the injection pressure must be carefully controlled. A region in a reservoir has little dilation upon injection if it remains unsaturated. Moreover, a cooling of the injected water can strengthen the dilation potential of a reservoir. Finally, it is suggested that the numerical modeling of water injection in the Karamay oil sand reservoirs must take into account the volumetric plastic strain in hydrostatic loading.

  19. Long-term Response of Cerebrospinal Fluid Pressure in Patients with Idiopathic Intracranial Hypertension - A Prospective Observational Study.

    Science.gov (United States)

    Gafoor, V Abdul; Smita, B; Jose, James

    2017-01-01

    Idiopathic intracranial hypertension (IIH) is increased intracranial pressure (ICP) with normal cerebrospinal fluid (CSF) contents, in the absence of an intracranial mass, hydrocephalus, or other identifiable causes. The current knowledge of the treatment outcome of IIH is limited, and the data on the natural history of this entity are scant. The objective of the study is to study the treatment response of IIH by serially measuring the CSF opening pressure and to delineate the factors influencing the same. A prospective observational study in a cohort of fifty patients with IIH in whom CSF opening pressure was serially measured at pre-specified intervals. The mean CSF opening pressure at baseline was 302.4 ± 51.69 mm of H 2 O (range: 220-410). Even though a higher body mass index (BMI) showed a trend toward a higher CSF opening pressure, the association was not significant ( P = 0.168). However, the age of the patient had a significant negative correlation with the CSF pressure ( P = 0.006). The maximum reduction in CSF pressure occurred in the first 3 months of treatment, and thereafter it plateaued. Remission was attained in 12 (24%) patients. BMI had the strongest association with remission ( P = 0.001). In patients with IIH, treatment response is strongly related to BMI. However, patients with normal BMI are also shown to relapse and hence should have continuous, long-term follow-up. The reduction in CSF pressure attained in the first 3 months could reflect the long-term response to treatment.

  20. First assessment of the ecological status of Karaoun reservoir, Lebanon

    International Nuclear Information System (INIS)

    Fadel, A.; Lemaire, B.; Vinc on Leite, B.; Tassin, B.; Amacha, N.; Slim, K.; Atoui, A.

    2014-01-01

    Many reservoirs have been constructed throughout the world during the 20th century, with many also suffering from eutrophication. The resulting increased phytoplankton biomass in reservoirs impairs their use. Except for Lake Kinneret, the environmental status of lakes and reservoirs in the Middle East is poorly documented. Karaoun reservoir, also known as Qaroun, Qaraoun or Qarun, is the largest water body in Lebanon, having been constructed for irrigation and hydropower production. This present study reviews Karaoun reservoir, including its characteristics, uses, water quality and phytoplankton succession, to assess the environmental status of the reservoir on the basis of the few existing previous publications about the reservoir. Since 2004, which is 39 years after its construction, the reservoir is considered to be hypereutrophic, with low phytoplankton biodiversity and regular blooms of toxic cyanobacteria. The nutrient and trace metal concentrations would not prevent use of the reservoir for a drinking water supply for Beirut, as is currently being planned, although not all the micropollutants in the lake were documented. Karaoun reservoir is compared to other monitored lakes and reservoirs around the Mediterranean Sea. They share annual toxic cyanobacteria blooms of Aphanizomenon ovalisporum and of Microcystis aeruginosa. The phytoplankton composition and succession of Karaoun reservoir is more similar to El Gergal reservoir (Spain) than nearby natural lakes such as Lake Kinneret (Israel) and Lake Trichonis (Greece). Phytoplankton diversity in Karaoun reservoir was the lowest, due to higher nutrient concentrations and a larger decrease in water level in the dry season. Karaoun reservoir represents an interesting example of the potential response of the phytoplankton community in other lakes and reservoirs during the drought periods expected to occur as a result of global climate change. (author)

  1. Blood pressure response during resistance training of different work to rest ratio.

    Science.gov (United States)

    Paulo, Anderson Caetano; Tricoli, Valmor; Queiroz, Andréia C C; Laurentino, Gilberto; Forjaz, Cláudia L M

    2017-06-22

    Changes in the work to rest ratio (W:R) of resistance training protocols (RTP) (i.e. decreasing work and/or increasing rest) reduce the marked elevation in blood pressure (BP) that occurs during RTP execution. However, whether changes in RTP protocol structure without changing W:R can change BP responses to RTP is unknown. To investigate the effect of different structures of rest intervals and number of repetitions per set on BP response among RTP equated and nonequated for W:R, 20 normotensive participants (25±4 years) performed four different RTP of the leg extension exercise with the same work but different W:R structures. Two protocols followed the recommendations for cardiovascular disorders: I) HIGHW:R-3x15:44s - 3x15:44s (setxreps:rest between sets), which has high W:R (45reps:88s) and II) LOWW:R-3x15:88s - 3x15:88s, which has low W:R (45reps:176s). The other two protocols were W:R-equated to LOWW:R (45reps:176s): III) LOWW:R-9x5:22s and IV) LOWW:R-45x1:4s. Systolic BP (ΔSBP) and diastolic BP (ΔDBP) were assessed by finger photoplethysmography. There were significant main effects for ΔSBP following RTP (p LOWW:R-45x1:4s > LOWW:R-9x5:22s (+87±5 and +84±5 vs. +61±4 vs. 57±4 mmHg). For ΔDBP, there was a significant interaction between RTP and moment (p LOWW:R-3x15:88s > LOWW:R-45x1:4s > LOWW:R-9x5:22s (+53±5 vs. +49±5 vs. +44±4 vs. +38±3 mmHg). R-3x15:44s produced the highest increase in ΔDBP and LOWW:R-9x5:22s produced the lowest increase in ΔSBP and ΔDBP. Our findings may help the development of RT protocols that may mitigate pressure peaks without changing important exercise variables (i.e. volume or duration).

  2. Response margins investigation of piping dynamic analyses using the independent support motion method and PVRC [Pressure Vessel Research Committee] damping

    International Nuclear Information System (INIS)

    Bezler, P.; Wang, Y.K.; Reich, M.

    1988-03-01

    An evaluation of Independent Support Motion (ISM) response spectrum methods of analysis coupled with the Pressure Vessel Research Committee (PVRC) recommendation for damping, to compute the dynamic component of the seismic response of piping systems, was completed. Response estimates for five piping/structural systems were developed using fourteen variants of the ISM response spectrum method, the Uniform Support Motions response spectrum method and the ISM time history analysis method, all based on the PVRC recommendations for damping. The ISM/PVRC calculational procedures were found to exhibit orderly characteristics with levels of conservatism comparable to those obtained with the ISM/uniform damping procedures. Using the ISM/PVRC response spectrum method with absolute combination between group contributions provided consistently conservative results while using the ISM/PVRC response spectrum method with square root sum of squares combination between group contributions provided estimates of response which were deemed to be acceptable

  3. Saturation distributions in heavy oil reservoirs

    Science.gov (United States)

    Staten, Joshua Todd

    Models that describe conventional reservoirs can be used to explore the possibility of heavier-than-water oil. Steam-assisted gravity drainage (SAGD) is a common process in reservoirs with extra heavy oils (oil sands). In some cases, oil that is heavier than water is present in these reservoirs. The segregation of oil and water may cause issues for recovery. It is important to understand the initial saturation distribution of oil and water for proper design of injection. It was found through simulation that the heavy oil would pool towards the bottom of a heavy oil reservoir with water remaining on top of the oil. With capillary pressure, the heavy oil and water will form a transition zone. The extent of the transition zone is dependent on the density gradient of the oil, the density difference between the oil and water, and the slope of the capillary pressure saturation profile. This finding influences the positioning of production piping in steam-assisted gravity drainage (SAGD) as well as possible geological pooling areas for recovery. The possibility of a water zone between oil zones increases the risk of missing oil in the reservoir when drilling or perforating.

  4. Subharmonic response from ultrasound contrast microbubbles for noninvasive blood pressure estimation

    Science.gov (United States)

    Katiyar, Amit; Sarkar, Kausik; Forsberg, Flemming

    2010-11-01

    Estimation of local organ-level blood pressure can help in diagnosing and monitoring heart and vascular diseases. Subharmonic signals from ultrasound contrast microbubbles have been proposed as a noninvasive alternative to the current practice of using manometer-tipped catheter. Approximately 10dB linear decrease in subharmonic component with 25 kPa pressure increase (typical blood pressure variation) has been reported for several contrast microbubbles. Here we report a theoretical investigation of the underlying phenomenon. We first study the well established model of a free microbubble to show that reduction of subharmonic with ambient pressure increase occurs only below a certain excitation frequency. Above this critical frequency, subharmonic signal increases with ambient pressure. Furthermore, where it decreases with ambient pressure, the relationship is linear only above certain excitation pressure. The dependence of the critical frequency on bubble radius and possibly bubble size distribution is discussed. We also report similar behavior for several models for encapsulated contrast microbubbles.

  5. An experimental unification of reservoir computing methods.

    Science.gov (United States)

    Verstraeten, D; Schrauwen, B; D'Haene, M; Stroobandt, D

    2007-04-01

    Three different uses of a recurrent neural network (RNN) as a reservoir that is not trained but instead read out by a simple external classification layer have been described in the literature: Liquid State Machines (LSMs), Echo State Networks (ESNs) and the Backpropagation Decorrelation (BPDC) learning rule. Individual descriptions of these techniques exist, but a overview is still lacking. Here, we present a series of experimental results that compares all three implementations, and draw conclusions about the relation between a broad range of reservoir parameters and network dynamics, memory, node complexity and performance on a variety of benchmark tests with different characteristics. Next, we introduce a new measure for the reservoir dynamics based on Lyapunov exponents. Unlike previous measures in the literature, this measure is dependent on the dynamics of the reservoir in response to the inputs, and in the cases we tried, it indicates an optimal value for the global scaling of the weight matrix, irrespective of the standard measures. We also describe the Reservoir Computing Toolbox that was used for these experiments, which implements all the types of Reservoir Computing and allows the easy simulation of a wide range of reservoir topologies for a number of benchmarks.

  6. Compilation and analysis of hydrogeological pressure responses to field activities in Olkiluoto during 2006-2009

    International Nuclear Information System (INIS)

    Vaittinen, T.; Pentti, E.

    2013-11-01

    Groundwater flow characteristics provide essential input for the construction and safety assessment of a disposal facility for spent nuclear fuel. On the Olkiluoto site flow connections have been studied in deep drillholes by means of long-term pumping tests, various interference tests, and by interpreting the measured hydraulic heads. This report focuses on the assessment of measured hydraulic heads during 2006-2009. Hydraulic heads have been measured both in open and in packed-off drillholes since 1991. The interpretation of the hydraulic connections is based on observed changes in hydraulic head distribution caused by certain investigation activities on the site. Field activities may increase the head, e.g. drilling, or more typically decrease the head, e.g. flush pumping after drilling, difference flow logging with pumping, and both temporary and currently stable inflows into underground facilities caused by the construction of ONKALO. Processing of the head observations has been developed by determining section-specific corrections for natural fluctuation of the groundwater. The objective of the corrections is to remove natural fluctuation of the groundwater table and sea level, tidal effect, and atmospheric pressure to improve detection of changes in hydraulic head caused by field activities. Time series of observations are compared to schedules of field activities and values for responses are calculated. In addition to temporary responses head drawdown at the end of 2009 is estimated. Analysed responses are mainly related to pumpings from open drillholes and to construction of the access tunnel and the shafts through the hydrogeological HZ19 system until June 2008. Since July 2008 the strongest responses are caused by excavation of the access tunnel and pre-grouting of the shafts through the hydrogeological HZ20 system. Based on the head observations in packed-off drillholes, sub-horizontal hydraulic zones form a layered system at the ONKALO area

  7. A numerical study of stress/strain response to oil development in reservoir rocks-a case study in Xingshugang area of Daqing Anticline

    International Nuclear Information System (INIS)

    Li Zian; Ma Teng; Yi Jin; Zhu Jiangjian; Lin Ge; Zhang Lu; Zhu Yan; Sun Yaliang; Zhu Jun

    2010-01-01

    Formation pressure and the underground stress field will be disturbed by high pressure injection and production activities during oilfield development. Such disturbance will induce the deformation of formation rock, sometimes causing formation to slip. As a result, production wells and/or injection wells will encounter sanding, casing deformation, or even casing shear problems. This article introduced a simulation study on formation pressure and the underground stress field variation during injection and production activities in the Xingshugang area of the Daqing Anticline, Songliao Basin, China. The relationships of injection pressure to formation pressure, underground stress field variation, and strain variation were investigated in this paper.

  8. Cardiac Autonomic and Blood Pressure Responses to an Acute Bout of Kettlebell Exercise.

    Science.gov (United States)

    Wong, Alexei; Nordvall, Michael; Walters-Edwards, Michelle; Lastova, Kevin; Francavillo, Gwendolyn; Summerfield, Liane; Sanchez-Gonzalez, Marcos

    2017-10-07

    Kettlebell (KB) training has become an extremely popular exercise program for improving both muscle strength and aerobic fitness. However, the cardiac autonomic modulation and blood pressure (BP) responses induced by an acute KB exercise session are currently unknown. Understanding the impact of this exercise modality on the post-exercise autonomic modulation and BP would facilitate appropriate exercise prescription in susceptible populations. The present study evaluated the effects of an acute session of KB exercise on heart rate variability (HRV) and BP responses in healthy individuals. Seventeen (M=10, F=7) healthy subjects completed either a KB or non-exercise control trial in randomized order. HRV and BP measurements were collected at baseline, 3, 10 and 30 min after each trial. There were significant increases (P < 0.01) in heart rate, markers of sympathetic activity (nLF) and sympathovagal balance (nLF/nHF) for 30 min after the trial KB trial, while no changes from baseline were observed after the control trial. There were also significant decreases (P < 0.01) in markers of vagal tone (RMMSD, nHF) for 30 min as well as (P < 0.01) systolic BP and diastolic BP at 10 and 30 min after the trial KB trial while no changes from baseline were observed after the control trial. Our findings indicate that KB exercise increases sympathovagal balance for 30 min post-intervention which is concurrent with an important hypotensive effect. Further research is warranted to evaluate the potential clinical application of KB training in populations that might benefit from post-exercise hypotension, such as hypertensives.

  9. The mechanism study between 3D Space-time deformation and injection or extraction of gas pressure change, the Hutubi Underground gas storage

    Science.gov (United States)

    Xiaoqiang, W.; Li, J.; Daiqing, L.; Li, C.

    2017-12-01

    The surface deformation of underground gas reservoir with the change of injection pressure is an excellent opportunity to study the load response under the action of tectonic movement and controlled load. This paper mainly focuses on the elastic deformation of underground structure caused by the change of the pressure state of reservoir rock under the condition of the irregular change of pressure in the underground gas storage of Hutubi, the largest underground gas storage in Xinjiang, at the same time, it makes a fine study on the fault activities of reservoir and induced earthquakes along with the equilibrium instability caused by the reservoir. Based on the 34 deformation integrated observation points and 3 GPS continuous observation stations constructed in the underground gas storage area of Hutubi, using modern measurement techniques such as GPS observation, precise leveling survey, flow gravity observation and so on, combined with remote sensing technology such as InSAR, the 3d space-time sequence images of the surface of reservoir area under pressure change were obtained. Combined with gas well pressure, physical parameters and regional seismic geology and geophysical data, the numerical simulation and analysis of internal changes of reservoir were carried out by using elastic and viscoelastic model, the deformation mechanical relationship of reservoir was determined and the storage layer under controlled load was basically determined. This research is financially supported by National Natural Science Foundation of China (Grant No.41474016, 41474051, 41474097)

  10. Limited-transpiration response to high vapor pressure deficit in crop species.

    Science.gov (United States)

    Sinclair, Thomas R; Devi, Jyostna; Shekoofa, Avat; Choudhary, Sunita; Sadok, Walid; Vadez, Vincent; Riar, Mandeep; Rufty, Thomas

    2017-07-01

    Water deficit under nearly all field conditions is the major constraint on plant yields. Other than empirical observations, very little progress has been made in developing crop plants in which specific physiological traits for drought are expressed. As a consequence, there was little known about under what conditions and to what extent drought impacts crop yield. However, there has been rapid progress in recent years in understanding and developing a limited-transpiration trait under elevated atmospheric vapor pressure deficit to increase plant growth and yield under water-deficit conditions. This review paper examines the physiological basis for the limited-transpiration trait as result of low plant hydraulic conductivity, which appears to be related to aquaporin activity. Methodology was developed based on aquaporin involvement to identify candidate genotypes for drought tolerance of several major crop species. Cultivars of maize and soybean are now being marketed specifically for arid conditions. Understanding the mechanism of the limited-transpiration trait has allowed a geospatial analyses to define the environments in which increased yield responses can be expected. This review highlights the challenges and approaches to finally develop physiological traits contributing directly to plant improvement for water-limited environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Optimizing pressurized liquid extraction of microbial lipids using the response surface method.

    Science.gov (United States)

    Cescut, J; Severac, E; Molina-Jouve, C; Uribelarrea, J-L

    2011-01-21

    Response surface methodology (RSM) was used for the determination of optimum extraction parameters to reach maximum lipid extraction yield with yeast. Total lipids were extracted from oleaginous yeast (Rhodotorula glutinis) using pressurized liquid extraction (PLE). The effects of extraction parameters on lipid extraction yield were studied by employing a second-order central composite design. The optimal condition was obtained as three cycles of 15 min at 100°C with a ratio of 144 g of hydromatrix per 100 g of dry cell weight. Different analysis methods were used to compare the optimized PLE method with two conventional methods (Soxhlet and modification of Bligh and Dyer methods) under efficiency, selectivity and reproducibility criteria thanks to gravimetric analysis, GC with flame ionization detector, High Performance Liquid Chromatography linked to Evaporative Light Scattering Detector (HPLC-ELSD) and thin-layer chromatographic analysis. For each sample, the lipid extraction yield with optimized PLE was higher than those obtained with referenced methods (Soxhlet and Bligh and Dyer methods with, respectively, a recovery of 78% and 85% compared to PLE method). Moreover, the use of PLE led to major advantages such as an analysis time reduction by a factor of 10 and solvent quantity reduction by 70%, compared with traditional extraction methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Precipitation response of monsoon low-pressure systems to an idealized uniform temperature increase

    Science.gov (United States)

    Sørland, Silje Lund; Sorteberg, Asgeir; Liu, Changhai; Rasmussen, Roy

    2016-06-01

    The monsoon low-pressure systems (LPSs) are one of the most rain-bearing synoptic-scale systems developing during the Indian monsoon. We have performed high-resolution, convection-permitting experiments of 10 LPS cases with the Weather Research and Forecasting regional model, to investigate the effect of an idealized uniform temperature increase on the LPS intensification and precipitation. Perturbed runs follow a surrogate climate change approach, in which a uniform temperature perturbation is specified, but the large-scale flow and relative humidity are unchanged. The differences between control and perturbed simulations are therefore mainly due to the imposed warming and moisture changes and their feedbacks to the synoptic-scale flow. Results show that the LPS precipitation increases by 13%/K, twice the imposed moisture increase, which is on the same order as the Clausius-Clapeyron relation. This large precipitation increase is attributed to the feedbacks in vertical velocity and atmospheric stability, which together account for the high sensitivity. In the perturbed simulations the LPSs have higher propagation speeds and are more intense. The storms intensification to the uniform temperature perturbation can be interpreted in terms of the conditional instability of second kind mechanism where the condensational heating increases along with low-level convergence and vertical velocity in response to temperature and moisture increases. As a result, the surface low deepens.

  13. Conformance Control in Heterogeneous Oil Reservoirs with Polymer Gels and Nano-Spheres

    NARCIS (Netherlands)

    Lenchenkov, N.

    2017-01-01

    In many oil fields, water is injected into a reservoir to displace oil to the production wells. During the injection process, oil is pushed by water towards production wells which have a lower pressure than the rest of the reservoir. If the reservoir is homogeneous, then a good sweep efficiency of

  14. Well test analysis of horizontal wells in a two-layered reservoir ...

    African Journals Online (AJOL)

    reservoir drained from each layer by a horizontal well. Reservoir mathematical model are derived for each layer so that analysis can be done strictly for each layered reservoir. Procedures for obtaining all the directional permeabilities, wellbore skin, degree of crossflow and individual layers average pressures are discussed ...

  15. Blood pressure regulation, cognition, and depression in response to orthostatic challenge in African American children: an initial investigation.

    Science.gov (United States)

    Stress, Maureen

    2003-01-01

    Poor blood pressure regulation (BPR) in response to orthostasis could contribute to cerebral hypoperfusion and cell damage. The authors of this study examined neuropsychological function and mood in relation to BPR following orthostatic challenge in African American children, aged 6 to 9 years. Participants (N = 33) laid supine for 5 minutes, before having their BP taken. Participants then stood and had BP measured again at 1, 3, and 5 minutes. After a rest, the authors administrated neuropsychological and depression tests while the participants were seated. The authors calculated the difference between supine and 1-minute standing systolic blood pressure (SBP) and pulse pressure (PP) scores. In response to orthostatic challenge, smaller increases in SBP were predictive of decreased verbal memory whereas smaller increases in PP were associated with increased depressive symptomatology and poor prospective memory. In conclusion, less effective BPR was associated with increased depression and poor performance on some neuropsychological tests.

  16. Distending Pressure Did Not Activate Acute Phase or Inflammatory Responses in the Airways and Lungs of Fetal, Preterm Lambs.

    Directory of Open Access Journals (Sweden)

    Rebecca Y Petersen

    Full Text Available Mechanical ventilation at birth causes airway injury and lung inflammation in preterm sheep. Continuous positive airway pressure (CPAP is being increasingly used clinically to transition preterm infants at birth.To test if distending pressures will activate acute phase reactants and inflammatory changes in the airways of fetal, preterm lambs.The head and chest of fetal lambs at 128±1 day GA were surgically exteriorized. With placental circulation intact, fetal lambs were then randomized to one of five 15 minute interventions: PEEP of 0, 4, 8, 12, or 16 cmH2O. Recruitment volumes were recorded. Fetal lambs remained on placental support for 30 min after the intervention. The twins of each 0 cmH2O animal served as controls. Fetal lung fluid (FLF, bronchoalveolar lavage fluid (BAL, right mainstem bronchi and peripheral lung tissue were evaluated for inflammation.Recruitment volume increased from 0.4±0.04 mL/kg at 4 cmH2O to 2.4±0.3 mL/kg at 16 cmH2O. The lambs were surfactant deficient, and all pressures were below the opening inflection pressure on pressure-volume curve. mRNA expression of early response genes and pro-inflammatory cytokines did not increase in airway tissue or lung tissue at any pressure compared to controls. FLF and BAL also did not have increases in early response proteins. No histologic changes or Egr-1 activation was present at the pressures used.Distending pressures as high as 16 cmH2O did not recruit lung volume at birth and did not increase markers of injury in the lung or airways in non-breathing preterm fetal sheep.

  17. Sediment management for reservoir

    International Nuclear Information System (INIS)

    Rahman, A.

    2005-01-01

    All natural lakes and reservoirs whether on rivers, tributaries or off channel storages are doomed to be sited up. Pakistan has two major reservoirs of Tarbela and Managla and shallow lake created by Chashma Barrage. Tarbela and Mangla Lakes are losing their capacities ever since first impounding, Tarbela since 1974 and Mangla since 1967. Tarbela Reservoir receives average annual flow of about 62 MAF and sediment deposits of 0.11 MAF whereas Mangla gets about 23 MAF of average annual flows and is losing its storage at the rate of average 34,000 MAF annually. The loss of storage is a great concern and studies for Tarbela were carried out by TAMS and Wallingford to sustain its capacity whereas no study has been done for Mangla as yet except as part of study for Raised Mangla, which is only desk work. Delta of Tarbala reservoir has advanced to about 6.59 miles (Pivot Point) from power intakes. In case of liquefaction of delta by tremor as low as 0.12g peak ground acceleration the power tunnels I, 2 and 3 will be blocked. Minimum Pool of reservoir is being raised so as to check the advance of delta. Mangla delta will follow the trend of Tarbela. Tarbela has vast amount of data as reservoir is surveyed every year, whereas Mangla Reservoir survey was done at five-year interval, which has now been proposed .to be reduced to three-year interval. In addition suspended sediment sampling of inflow streams is being done by Surface Water Hydrology Project of WAPDA as also some bed load sampling. The problem of Chasma Reservoir has also been highlighted, as it is being indiscriminately being filled up and drawdown several times a year without regard to its reaction to this treatment. The Sediment Management of these reservoirs is essential and the paper discusses pros and cons of various alternatives. (author)

  18. Dynamic pressure probe response tests for robust measurements in periodic flows close to probe resonating frequency

    Science.gov (United States)

    Ceyhun Şahin, Fatma; Schiffmann, Jürg

    2018-02-01

    A single-hole probe was designed to measure steady and periodic flows with high fluctuation amplitudes and with minimal flow intrusion. Because of its high aspect ratio, estimations showed that the probe resonates at a frequency two orders of magnitude lower than the fast response sensor cut-off frequencies. The high fluctuation amplitudes cause a non-linear behavior of the probe and available models are neither adequate for a quantitative estimation of the resonating frequencies nor for predicting the system damping. Instead, a non-linear data correction procedure based on individual transfer functions defined for each harmonic contribution is introduced for pneumatic probes that allows to extend their operating range beyond the resonating frequencies and linear dynamics. This data correction procedure was assessed on a miniature single-hole probe of 0.35 mm inner diameter which was designed to measure flow speed and direction. For the reliable use of such a probe in periodic flows, its frequency response was reproduced with a siren disk, which allows exciting the probe up to 10 kHz with peak-to-peak amplitudes ranging between 20%-170% of the absolute mean pressure. The effect of the probe interior design on the phase lag and amplitude distortion in periodic flow measurements was investigated on probes with similar inner diameters and different lengths or similar aspect ratios (L/D) and different total interior volumes. The results suggest that while the tube length consistently sets the resonance frequency, the internal total volume affects the non-linear dynamic response in terms of varying gain functions. A detailed analysis of the introduced calibration methodology shows that the goodness of the reconstructed data compared to the reference data is above 75% for fundamental frequencies up to twice the probe resonance frequency. The results clearly suggest that the introduced procedure is adequate to capture non-linear pneumatic probe dynamics and to

  19. Journal Publication in Chile, Colombia, and Venezuela: University Responses to Global, Regional, and National Pressures and Trends

    Science.gov (United States)

    Delgado, Jorge Enrique

    2011-01-01

    Background. This project was motivated by the impressive growth that scholarly/scientific journals in Latin America have shown in recent decades. That advance is attributed to global, regional, and national pressures and trends, as well as a response to obstacles that scholars/researchers from the region face to be published in prestigious…

  20. Stroke volume variation does not predict fluid responsiveness in patients with septic shock on pressure support ventilation

    DEFF Research Database (Denmark)

    Perner, A; Faber, T

    2006-01-01

    Stroke volume variation (SVV)--as measured by the pulse contour cardiac output (PiCCO) system--predicts the cardiac output response to a fluid challenge in patients on controlled ventilation. Whether this applies to patients on pressure support ventilation is unknown....

  1. Association between non-alcoholic hepatic steatosis and hyper reactive blood pressure response on the exercise treadmill test

    OpenAIRE

    Laurinavicius, A.G.; Bittencourt, M.S.; Blaha, M.J.; Nary, F.C.; Kashiwagi, N.M.; Conceiçao, R.D.; Meneghelo, R.S.; Prado, R.R.; Carvalho, J.A.M.; Nasir, K.; Blumenthal, R.S.; Santos, R.D.

    2016-01-01

    Aims: Non-alcoholic hepatic steatosis (HS) is associated with hypertension and increased cardiovascular risk. While Blood pressure hyper-reactive response (HRR) during peak exercise indicates an increased risk of incident hypertension and increased cardiovascular risk, no data on the association of non-alcoholic HS and HRR exists. In this study, we have evaluated the association of HS with HRR.

  2. Driver-Pressure-State-Impact-Response (DPSIR) analysis and risk assessment for soil compaction-A European perspective

    NARCIS (Netherlands)

    Schjønning, Per; Akker, van den J.J.H.; Keller, Thomas; Greve, M.H.; Lamandé, Mathieu; Simojoki, Asko; Stettler, Matthias; Arvidsson, Johan; Breuning-Madsen, Henrik

    2015-01-01

    Compaction of subsoil is a hidden but persistent damage that impairs a range of soil functions and ecosystem services. We analyzed the soil compaction issue in the Driver-Pressure-State-Impact-Response (DPSIR) context. The driving force (DPSIR-D) is the farmers' efforts to sustain economic

  3. Blood pressure responses to LBNP in nontrained and trained hypertensive rats

    Science.gov (United States)

    Bedford, T. G.; Tipton, C. M.

    1992-01-01

    To study the influences of 16 wk of endurance training on the reflex regulation of resting blood pressure, nontrained (NT) and trained (T) female hypertensive rats (SHR) were subjected to conditions of lower body negative pressure (LBNP). Measurements of muscle cytochrome oxidase activity and run time to exhaustion indicated that the animals were endurance trained. The rats (NT = 6, T = 7) were tranquilized with 300-600 micrograms.kg-1 diazepam (IV) before heart rates and blood pressures were measured over a range of 2.5-10.0 mm Hg of negative pressure. When subjected to conditions of LBNP, the reflex tachycardia of the T group was greater than the NT at the lower (-2.5 and -5.0 mm Hg) negative pressures. Although arterial pressure declines were similar in both groups, the T group experienced significantly less of a decline in central venous pressure than the NT animals. When chlorisondamine was used as a ganglionic blocker (2.5 mg.kg-1, IV), the fall in CVP at 10 mm Hg negative pressure was greater for the NT group while the fall in the initial systemic arterial pressure was more for the T group. From these results we concluded that training had altered the interaction between cardiopulmonary and arterial baroreflexes in these hypertensive rats and a nonneural component had been altered such as cardiac function.

  4. Permeability Variation Models for Unsaturated Coalbed Methane Reservoirs

    Directory of Open Access Journals (Sweden)

    Lv Yumin

    2016-05-01

    Full Text Available A large number of models have been established to describe permeability variation with the depletion of reservoir pressure to date. However, no attempt has been made to draw enough attention to the difference in the effect of various factors on permeability variation in different production stages of unsaturated CoalBed Methane (CBM reservoirs. This paper summarizes the existing and common permeability models, determines the relationship between various effects (effective stress effect, matrix shrinkage effect and Klinkenberg effect and desorption characteristics of the recovery of unsaturated CBM reservoirs, then establishes two improved models to quantificationally describe permeability variation, and finally discusses the effects of various factors (gas saturation, cleat porosity, Poisson’s ratio and shrinkage coefficient on permeability variation. The results show that permeability variation during the recovery of unsaturated CBM reservoirs can be divided into two stages: the first one is that permeability variation is only affected by the effective stress effect, and the second is that permeability variation is affected by the combination of the effective stress effect, matrix shrinkage effect and Klinkenberg effect. In the second stage, matrix shrinkage effect and Klinkenberg effect play much more significant role than the effective stress effect, which leads to an increase in permeability with depletion of reservoir pressure. Sensitivity analysis of parameters in the improved models reveals that those parameters associated with gas saturation, such as gas content, reservoir pressure, Langmuir volume and Langmuir pressure, have a significant impact on permeability variation in the first stage, and the important parameters in the second stage are the gas content, reservoir pressure, Langmuir volume, Langmuir pressure, Poisson’s ratio, Young’s modulus and shrinkage coefficient during the depletion of reservoir pressure. A comparative

  5. Cardiovascular responses to lead are biphasic, while methylmercury, but not inorganic mercury, monotonically increases blood pressure in rats.

    Science.gov (United States)

    Wildemann, Tanja M; Mirhosseini, Naghmeh; Siciliano, Steven D; Weber, Lynn P

    2015-02-03

    Cardiovascular diseases, such as heart attack and stroke, are the major cause of death worldwide. It is well known that a high number of environmental and physiological risk factors contribute to the development of cardiovascular diseases. Although risk factors are additive, increased blood pressure (hypertension) is the greatest risk factor. Over the last two decades, a growing number of epidemiological studies associate environmental exposure to lead or mercury species with hypertension. However, cardiovascular effects beyond blood pressure are rarely studied and thresholds for effect are not yet clear. To explore effects of lead or mercury species on the cardiovascular system, normal male Wistar rats were exposed to a range of doses of lead, inorganic mercury or methylmercury through the drinking water for four weeks. High-resolution ultrasound was used to measure heart and vascular function (carotid artery blood flow) at baseline and at the end of the exposure, while blood pressure was measured directly in the femoral artery at the end of the 4-week exposure. After 4 weeks, blood pressure responses to lead were biphasic. Low lead levels decreased blood pressure, dilated the carotid artery and increased cardiac output. At higher lead doses, rats had increased blood pressure. In contrast, methylmercury-exposed rats had increased blood pressure at all doses despite dilated carotid arteries. Inorganic mercury did not show any significant cardiovascular effects. Based on the current study, the benchmark dose level 10% (BMDL10s) for systolic blood pressure for lead, inorganic mercury and methylmercury are 1.1, 1.3 and 1.0 μg/kg-bw/d, respectively. However, similar total mercury blood levels attributed to inorganic mercury or methylmercury produced strikingly different results with inorganic mercury having no observable effect on the cardiovascular system but methylmercury increasing systolic and pulse pressures. Therefore, adverse cardiovascular effects cannot be

  6. Right ventricular pressure response to exercise in adults with isolated ventricular septal defect closed in early childhood.

    Science.gov (United States)

    Moller, Thomas; Lindberg, Harald; Lund, May Brit; Holmstrom, Henrik; Dohlen, Gaute; Thaulow, Erik

    2018-03-06

    We previously demonstrated an abnormally high right ventricular systolic pressure response to exercise in 50% of adolescents operated on for isolated ventricular septal defect. The present study investigated the prevalence of abnormal right ventricular systolic pressure response in 20 adult (age 30-45 years) patients who underwent surgery for early ventricular septal defect closure and its association with impaired ventricular function, pulmonary function, or exercise capacity. The patients underwent cardiopulmonary tests, including exercise stress echocardiography. Five of 19 patients (26%) presented an abnormal right ventricular systolic pressure response to exercise ⩾ 52 mmHg. Right ventricular systolic function was mixed, with normal tricuspid annular plane systolic excursion and fractional area change, but abnormal tricuspid annular systolic motion velocity (median 6.7 cm/second) and isovolumetric acceleration (median 0.8 m/second2). Left ventricular systolic and diastolic function was normal at rest as measured by the peak systolic velocity of the lateral wall and isovolumic acceleration, early diastolic velocity, and ratio of early diastolic flow to tissue velocity, except for ejection fraction (median 53%). The myocardial performance index was abnormal for both the left and right ventricle. Peak oxygen uptake was normal (mean z score -0.4, 95% CI -2.8-0.3). There was no association between an abnormal right ventricular systolic pressure response during exercise and right or left ventricular function, pulmonary function, or exercise capacity. Abnormal right ventricular pressure response is not more frequent in adult patients compared with adolescents. This does not support the theory of progressive pulmonary vascular disease following closure of left-to-right shunts.

  7. Response of soil physico-chemical properties to restoration approaches and submergence in the water level fluctuation zone of the Danjiangkou Reservoir, China.

    Science.gov (United States)

    Shu, Xiao; Zhang, KeRong; Zhang, QuanFa; Wang, WeiBo

    2017-11-01

    With the completion of the Danjiangkou Dam, the impoundment and drainage of dams can significantly alter shorelines, hydrological regime, and sediment and can result in the loss of soil and original riparian vegetation. Revegetation may affect soil properties and have broad important implications both for ecological services and soil recovery. In this work, we investigated the soil properties under different restoration approaches, and before and after submergence in the water level fluctuation zone (WLFZ) of the Danjiangkou Reservoir. Soil physical (bulk density and soil moisture), chemical (pH, soil organic carbon, nitrogen, phosphorus and potassium contents), and heavy metals were determined. This study reported that restoration approaches have impacts on soil moisture, pH, N, soil organic carbon, P, K and heavy metals in the WLFZ of the Danjiangkou Reservoir. Our results indicated that different restoration approaches could increase the soil moisture while decrease soil pH. Higher soil organic carbon in propagule banks transplantation (PBT) and shrubs restoration (SR) indicate that PBT and SR may provide soil organic matter more quickly than trees restoration (TR). SR and TR could significantly improve the soil total P and available P. PBT and SR could improve the soil total K and available K. SR and TR could significantly promote Cu and Zn adsorption, and Pb and Fe release by plant. Submergence could significantly affect the soil pH, NO 3 - -N, NH 4 + -N, total P and available P. Submergence could promote NO 3 - -N and available P adsorption, and NH 4 + -N and total P release by soil. The soil quality index (SQI) values implied that TR and PBT greatly improved soil quality. The present study suggests that PBT and TR could be effective for soil restoration in WLFZ of the Danjiangkou Reservoir. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Antenatal hypoxia induces programming of reduced arterial blood pressure response in female rat offspring: role of ovarian function.

    Directory of Open Access Journals (Sweden)

    DaLiao Xiao

    Full Text Available In utero exposure to adverse environmental factors increases the risk of cardiovascular disease in adulthood. The present study tested the hypothesis that antenatal hypoxia causes a gender-dependent programming of altered arterial blood pressure response (BP in adult offspring. Time-dated pregnant rats were divided into normoxic and hypoxic (10.5% O2 from days 15 to 21 of gestation groups. The experiments were conducted in adult offspring. Antenatal hypoxia caused intrauterine growth restriction, and resulted in a gender-dependent increase Angiotensin II (Ang II-induced BP response in male offspring, but significant decrease in BP response in female offspring. The baroreflex sensitivity was not significantly altered. Consistent with the reduced blood pressure response, antenatal hypoxia significantly decreased Ang II-induced arterial vasoconstriction in female offspring. Ovariectomy had no significant effect in control animals, but significantly increased Ang II-induced maximal BP response in prenatally hypoxic animals and eliminated the difference of BP response between the two groups. Estrogen replacement in ovariectomized animals significantly decreased the BP response to angiotensin II I only in control, but not in hypoxic animals. The result suggests complex programming mechanisms of antenatal hypoxia in regulation of ovary function. Hypoxia-mediated ovary dysfunction results in the phenotype of reduced vascular contractility and BP response in female adult offspring.

  9. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.

    1995-02-01

    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  10. Central injection of captopril inhibits the blood pressure response to intracerebroventricular choline

    Directory of Open Access Journals (Sweden)

    N. Isbil-Buyukcoskun

    2001-06-01

    Full Text Available In the present study, we investigated the involvement of the brain renin-angiotensin system in the effects of central cholinergic stimulation on blood pressure in conscious, freely moving normotensive rats. In the first step, we determined the effects of intracerebroventricular (icv choline (50, 100 and 150 µg on blood pressure. Choline increased blood pressure in a dose-dependent manner. In order to investigate the effects of brain renin-angiotensin system blockade on blood pressure increase induced by choline (150 µg, icv, an angiotensin-converting enzyme inhibitor, captopril (25 and 50 µg, icv, was administered 3 min before choline. Twenty-five µg captopril did not block the pressor effect of choline, while 50 µg captopril blocked it significantly. Our results suggest that the central renin-angiotensin system may participate in the increase in blood pressure induced by icv choline in normotensive rats.

  11. Barometric pressure change and heart rate response during sleeping at 3000 m altitude

    Science.gov (United States)

    Horiuchi, Masahiro; Endo, Junko; Handa, Yoko; Nose, Hiroshi

    2017-12-01

    We investigated effects of change in barometric pressure (P B) with climate change on heart rate (HR) during sleep at 3000 m altitude. Nineteen healthy adults (15 males and four females; mean age 32 years) participated in this study. We measured P B (barometry) and HR (electrocardiography) every minute during their overnight stay in a mountain lodge at 3000 m. We also measured resting arterial oxygen saturation (SpO2) and evaluated symptoms of acute mountain sickness (AMS) by using the Lake Louise Questionnaire at 2305 and 3000 m, respectively. P B gradually decreased during the night at the speed of approximately - 0.5 hPa/h. We found that HR during sleep decreased linearly as P B decreased in all subjects, with significance (r = 0.492-0.893; all, P < 0.001). Moreover, cross correlation analysis revealed that HR started to decrease after 15 min following the decrease in P B, on average. SpO2 was 93.8 ± 1.7% at 2305 m before climbing, then decreased significantly to 90.2 ± 2.2% at the lodge before going to bed, and further decreased to 87.5 ± 2.7% after waking (all, P < 0.05). Four of the 19 subjects showed a symptom of AMS after waking (21%). Further, the decrease in HR in response to a given decrease in P B (ΔHR/ΔPB) was negatively related with a decrease in SpO2 from before going to bed to after waking at 3000 m (r = - 0.579, P = 0.009) and with total AMS scores after waking (r = 0.489, P = 0.033).

  12. Noninvasive assessment of intracranial pressure in dogs by use of biomechanical response behavior, diagnostic imaging, and finite element analysis.

    Science.gov (United States)

    Madison, Adrienne M; Sharma, Ajay; Haidekker, Mark A

    2015-08-01

    OBJECTIVE :To develop a novel method for use of diagnostic imaging, finite element analysis (FEA), and simulated biomechanical response behavior of brain tissue in noninvasive assessment and estimation of intracranial pressure (ICP) of dogs. MRI data for 5 dogs. MRI data for 5 dogs (1 with a geometrically normal brain that had no detectable signs of injury or disease and 4 with various degrees of geometric abnormalities) were obtained from a digital imaging archiving and communication system database. Patient-specific 3-D models composed of exact brain geometries were constructed from MRI images. Finite element analysis was used to simulate and observe patterns of nonlinear biphasic biomechanical response behavior of geometrically normal and abnormal canine brains at various levels of decreasing cerebral perfusion pressure and increasing ICP. Changes in biomechanical response behavior were detected with FEA for decreasing cerebral perfusion pressure and increasing ICP. Abnormalities in brain geometry led to observable changes in deformation and biomechanical response behavior for increased ICP, compared with results for geometrically normal brains. In this study, patient-specific critical ICP was identified, which could be useful as a method to predict the onset of brain herniation. Results indicated that it was feasible to apply FEA to brain geometry obtained from MRI data of clinical patients and to use biomechanical response behavior resulting from increased ICP as a diagnostic and prognostic method to noninvasively assess or classify levels of brain injury in clinical veterinary settings.

  13. Response characteristics for thermal and pressure devices commonly used for monitoring nasal and oral airflow during sleep studies.

    Science.gov (United States)

    Gehring, J M; Cho, J-G; Wheatley, J R; Amis, T C

    2014-03-01

    We examined thermocouple and pressure cannulae responses to oral and nasal airflow using a polyester model of a human face, with patent nasal and oral orifices instrumented with a dual thermocouple (F-ONT2A, Grass) or a dual cannula (0588, Braebon) pressure transducer (± 10 cm H2O, Celesco) system. Tidal airflow was generated using a dual compartment facemask with pneumotachographs (Fleisch 2) connected to the model orifices. During nasal breathing: thermocouple amplitude = 0.38 Ln [pneumotachograph amplitude] + 1.31 and pressure cannula amplitude = 0.93 [pneumotachograph amplitude](2.15); during oral breathing: thermocouple amplitude = 0.44 Ln [pneumotachograph amplitude] + 1.07 and pressure cannula amplitude = 0.33 [pneumotachograph amplitude](1.72); (all range ∼ 0.1-∼ 4.0 L s(-1); r(2) > 0.7). For pneumotachograph amplitudes oral airflow, whereas nasal pressure cannula amplitude/unit change in pneumotachograph amplitude was almost four times that for oral. Increasing oral orifice area from 0.33 cm(2) to 2.15 cm(2) increased oral thermocouple amplitude/unit change in pneumotachograph amplitude by ∼ 58% but decreased pressure cannula amplitude/unit change in pneumotachograph amplitude by 49%. For pneumotachograph amplitudes up to 1 L s(-1), alterations in inspiratory/expiratory ratios or total respiratory time did not affect the sensitivity of either nasal or oral pressure cannulae or the nasal thermocouple, but the oral thermocouple sensitivity was influenced by respiratory cycle time. Different nasal and oral responses influence the ability of these systems to quantitatively assess nasal and oral airflow and oro-nasal airflow partitioning.

  14. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    Science.gov (United States)

    Shams, Bilal; Yao, Jun; Zhang, Kai; Zhang, Lei

    2017-08-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources. In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days. In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery

  15. Dynamical response of particulate-loaded materials. I. Pressure-shear loading of alumina particles in an epoxy matrix

    International Nuclear Information System (INIS)

    Chhabildas, L.C.; Swegle, J.W.

    1982-01-01

    Results of a pressure-shear impact experiment conducted on alumina-filled epoxy are presented. In the pressure-shear experiment the coupled longitudinal and transverse motion generated by the normal impact of Y-cut quartz is transmitted into an alumina-filled epoxy sample. This provides data on the response of the sample material to more general loading conditions than those obtained in the uniaxial strain configuration and allows the development of more complete material models. Experimental results are presented in this paper, and a model for alumina-filled epoxy which incorporates the data is presented in the following paper [J. Appl. Phys. 53, xxxx (1982)

  16. Modeling of Damage, Permeability Changes and Pressure Responses during Excavation of the TSX Tunnel in Granitic Rock at URL, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Borgesson, Lennart; Chijimatsu, Masakazu; Hernelind, Jan; Jing, Lanru; Kobayashi, Akira; Nguyen, Son

    2008-08-01

    This paper presents numerical modeling of excavation-induced damage, permeability changes, and fluid-pressure responses during excavation of the TSX tunnel at the underground research laboratory (URL) in Canada. Four different numerical models were applied, using a wide range of approaches to model damage and permeability changes in the excavation disturbed zone (EDZ) around the tunnel. Using in situ calibration of model parameters the modeling could reproduce observed spatial distribution of damage and permeability changes around the tunnel, as a combination of disturbance induced by stress redistribution around the tunnel and by the drill-and-blast operation. The modeling showed that stress-induced permeability increase above the tunnel is a result of micro and macrofracturing under high deviatoric (shear) stress, whereas permeability increases alongside the tunnel as a result of opening of existing microfractures under decreased mean stress. The remaining observed fracturing and permeability changes around the periphery of the tunnel were attributed to damage from the drill-and-blast operation. Moreover, a reasonably good agreement was achieved between simulated and observed excavation-induced pressure responses around the TSX tunnel for 1 year following its excavation. The simulations showed that these pressure responses are caused by poroelastic effects as a result of increasing or decreasing mean stress, with corresponding contraction or expansion of the pore volume. The simulation results for pressure evolution were consistent with previous studies, indicating that the observed pressure responses could be captured in a Biot model using a relatively low Biot-Willis coefficient, {alpha} {approx} 0.2, a porosity of n {approx} 0.007, and a relatively low permeability of k {approx} 2 x 10{sup -22} m{sup 2}, which is consistent with the very tight, unfractured granite at the site.

  17. Integration into JRODOS the models of radionuclide transport in rivers, reservoirs and coastal waters to support the emergency response in early accidental stages

    Energy Technology Data Exchange (ETDEWEB)

    Zheleznyak, M.; Bezhenar, R.; Boyko, O.; Ievdin, I.; Koshebutsky, V.; Maderich, V. [Institute of Mathematical Machines and Systems, National Academy of Sciences of Ukraine (Ukraine); Raskob, W.; Trybushnyi, D. [Karlsruhe Institute of Technology, Institut fuer Kern- und Energietechnik (Germany)

    2014-07-01

    The decision support system for offsite nuclear emergency management RODOS (Real-time on-line decision support), developed under several EC RTD Framework Programs, contains many models related to support decision making in case of a nuclear or radiological emergency. Based on the request of the end users, it was re-engineered based on the JAVA technology and further named JRODOS. The consequences of the Fukushima Daiichi Nuclear Power Plant accident clearly demonstrated the importance of modeling tools predicting the radionuclide transport in marine and freshwater environment and assessing the doses to the public via the aquatic food chain to improve decision making in general. As a consequence, such an activity was launched as part of the European project PREPARE aiming to integrate the 3-dimensional model THREETOX for the radionuclide transport in coastal waters, estuaries, deep lakes, and reservoirs into hydrological model chain of JRODOS - JHDM (JRODOS Hydrological Dispersion Module). So far JHDM contains several aquatic radionuclide transport models describing the sequence of the processes 'atmospheric fallout to watershed' - 'radionuclide inflow to a river net' - 'radionuclide transport in river' - 'doses via aquatic pathways'. The implementation of the THREETOX model into this chain by developing also a user friendly interface will extend the applicability of JRODOS to deep fresh water bodies and marine coastal waters. This paper describes the assessment capabilities of this advanced model chain for two examples of the JRODOS implementation in Ukraine. JRODOS is installed in the emergency centers for two Ukrainian Nuclear Power Plants (NPP) - Zaporizzhya NPP (ZNPP) and Rivne NPP (RNPP). The different models of the JHDM were customized for these NPPs taking into account the characteristics of the water bodies in the surroundings of the NPPs. For the RNPP, located at the bank of the Sozh River which is a tributary of the

  18. CO2 plume management in saline reservoir sequestration

    Science.gov (United States)

    Frailey, S.M.; Finley, R.J.

    2011-01-01

    A significant difference between injecting CO2 into saline aquifers for sequestration and injecting fluids into oil reservoirs or natural gas into aquifer storage reservoirs is the availability and use of other production and injection wells surrounding the primary injection well(s). Of major concern for CO2 sequestration using a single well is the distribution of pressure and CO2 saturation within the injection zone. Pressure is of concern with regards to caprock integrity and potential migration of brine or CO2 outside of the injection zone, while CO2 saturation is of interest for storage rights and displacement efficiency. For oil reservoirs, the presence of additional wells is intended to maximize oil recovery by injecting CO2 into the same hydraulic flow units from which the producing wells are withdrawing fluids. Completing injectors and producers in the same flow unit increases CO2 throughput, maximizes oil displacement efficiency, and controls pressure buildup. Additional injectors may surround the CO2 injection well and oil production wells in order to provide external pressure to these wells to prevent the injected CO2 from migrating from the pattern between two of the producing wells. Natural gas storage practices are similar in that to reduce the amount of "cushion" gas and increase the amount of cycled or working gas, edge wells may be used for withdrawal of gas and center wells used for gas injection. This reduces loss of gas to the formation via residual trapping far from the injection well. Moreover, this maximizes the natural gas storage efficiency between the injection and production wells and reduces the areal extent of the natural gas plume. Proposed U.S. EPA regulations include monitoring pressure and suggest the "plume" may be defined by pressure in addition to the CO2 saturated area. For pressure monitoring, it seems that this can only be accomplished by injection zone monitoring wells. For pressure, these wells would not need to be very

  19. Domestic Institutions and Market Pressures as Drivers of Corporate Social Responsibility

    DEFF Research Database (Denmark)

    Brown, Dana; Knudsen, Jette Steen

    2015-01-01

    of company CSR initiatives revealed in their external reporting. We conduct case studies of two large British companies (Glaxo Smith Kline and Barclays) as well as two large Danish companies (Novo Nordisk and Danske Bank). We find that market pressures rather than domestic institutions determine the content...... structures by either ‘substituting’ or ‘mirroring’ national models of capitalism. An alternative set of explanations views company CSR programmes as determined by market pressures. We examine the role of domestic institutions and market pressure as drivers of CSR through an evaluation of the content...

  20. Potential high fluence response of pressure vessel internals constructed from austenitic stainless steels

    International Nuclear Information System (INIS)

    Garner, F.A.; Greenwood, L.R.; Harrod, D.L.

    1993-08-01

    Many of the in-core components in pressurized water reactors are constructed of austenitic stainless steels. The potential behavior of these components can be predicted using data on similar steels irradiated at much higher displacement rates in liquid-metal reactors or water-cooled mixed-spectrum reactors. Consideration of the differences between the pressurized water environment and that of the other reactors leads to the conclusion that significant amounts of void swelling, irradiation creep, and embrittlement will occur in some components, and that the level of damage per atomic displacement may be larger in the pressurized water environment

  1. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    Science.gov (United States)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  2. Fluid Pressure and Temperature Response at the Nankai Trough Megasplay Fault: Initial Results of the SmartPlug Borehole Observatory

    Science.gov (United States)

    Hammerschmidt, S.; Kopf, A.; Expedition 332 Scientists, T.

    2011-12-01

    suggesting the same, so far unresolved triggering mechanism. The reason for the other distinct peaks remains unclear at this point. Regarding the long-term and medium-term transients in the pressure and temperature data, respectively, no satisfying explanations were found. For the pressure transients, due to the similar characteristics, related mechanisms can be suggested. The results obtained so far exclude any seismogenic event at the Megasplay Fault or within the accretionary prism to be responsible for the observed pore pressure and temperature variations. After the 15-months deployment, the SmartPlug temporary borehole observatory got replaced with an extended GeniusPlug, which also represents an instrumented bridge plug in the cased borehole. In addition to monitoring pressure and temperature, the GeniusPlug contains a 30cm-long unit hosting an osmotically driven geochemical fluid sampler as well as chambers for microbiological experiments under in situ conditions. The instrument is designed to give a full 2-year record of pressure and temperature data and material for geochemical and biological analysis. Recovery with D/V Chikyu is envisaged for 2012.

  3. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2001-09-14

    made. Petrophysical and engineering property characterization is progressing. Data on reservoir production rate and pressure history at Appleton and Vocation Fields have been tabulated, and porosity data from core analysis has been correlated with porosity as observed from well log response. Data integration is on schedule, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database for reservoir characterization, modeling and simulation for the reef and carbonate shoal reservoirs for each of these fields.

  4. Double product response and diastolic blood pressure in treadmill, stationary bicycle and muscular circuit exercises

    Directory of Open Access Journals (Sweden)

    Leandro Teixeira Paranhos Lopes

    2006-08-01

    Full Text Available Among the various causes for cardiovascular problems affecting the world population nowadays, the most relevant risk factors is sedentary lifestyle. Many studies have been carried out to analyse and elucidate main adaptations on the cardiovascular system stimulated by different sorts of exercises.In this way, this study had aimed at comparing the acute response of double product (DP and diastolic blood pressure (DBP after treadmill (TRM, stationary bicycle (BIC or muscle circuit training (MCT exercises. Nine individuals (6 women and 3 men exercised at 60% of heart rate reserve (HRR on the TRM and BIC and at 60% of one repetition maximum (1RM in MCT. The results showed that pre- and post-effort DP were significantly difference in all three exercises. However, DP did not differ among exercise types. The hypotensive DBP pos-effort response was greater in MCT. According to the results, it was concluded that there is no difference on the heart work demand rate estimated by DP among the three exercises and MCT at 60% 1RM provokes a greater hypotensive DBP post-effort response. . Resumo Entre as diversas causas de problemas cardiovasculares que afetam a população mundial, na atualidade, o sedentarismo é apontado como um dos fatores de risco mais relevantes. Vários estudos têm se preocupado em analisar e esclarecer as principais adaptações provocadas pelos diferentes tipos de exercícios sobre o sistema cardiovascular. Seguindo esta linha o presente trabalho teve como objetivo analisar e comparar a resposta aguda do duplo produto (DP e a pressão arterial diastólica (PAD em exercício de esteira, bicicleta estacionária e circuito na musculação. Foram avaliados nove indivíduos sendo seis mulheres e três homens, na esteira, a 60% da freqüência cardíaca de reserva (FCR, na bicicleta estacionária, a 60% FCR e circuito de musculação a 60% de 1 repetição máxima (1RM. Os resultados encontrados apresentaram diferença significativa do DP

  5. Reduced-Order Model for Leakage Through an Open Wellbore from the Reservoir due to Carbon Dioxide Injection

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-07-26

    Potential CO2 leakage through existing open wellbores is one of the most significant hazards that need to be addressed in geologic carbon sequestration (GCS) projects. In the framework of the National Risk Assessment Partnership (NRAP) which requires fast computations for uncertainty analysis, rigorous simulation of the coupled wellbore-reservoir system is not practical. We have developed a 7,200-point look-up table reduced-order model (ROM) for estimating the potential leakage rate up open wellbores in response to CO2 injection nearby. The ROM is based on coupled simulations using T2Well/ECO2H which was run repeatedly for representative conditions relevant to NRAP to create a look-up table response-surface ROM. The ROM applies to a wellbore that fully penetrates a 20-m thick reservoir that is used for CO2 storage. The radially symmetric reservoir is assumed to have initially uniform pressure, temperature, gas saturation, and brine salinity, and it is assumed these conditions are held constant at the far-field boundary (100 m away from the wellbore). In such a system, the leakage can quickly reach quasi-steady state. The ROM table can be used to estimate both the free-phase CO2 and brine leakage rates through an open well as a function of wellbore and reservoir conditions. Results show that injection-induced pressure and reservoir gas saturation play important roles in controlling leakage. Caution must be used in the application of this ROM because well leakage is formally transient and the ROM lookup table was populated using quasi-steady simulation output after 1000 time steps which may correspond to different physical times for the various parameter combinations of the coupled wellbore-reservoir system.

  6. Observations of wave-induced pore pressure gradients and bed level response on a surf zone sandbar

    Science.gov (United States)

    Anderson, Dylan; Cox, Dan; Mieras, Ryan; Puleo, Jack A.; Hsu, Tian-Jian

    2017-06-01

    Horizontal and vertical pressure gradients may be important physical mechanisms contributing to onshore sediment transport beneath steep, near-breaking waves in the surf zone. A barred beach was constructed in a large-scale laboratory wave flume with a fixed profile containing a mobile sediment layer on the crest of the sandbar. Horizontal and vertical pore pressure gradients were obtained by finite differences of measurements from an array of pressure transducers buried within the upper several centimeters of the bed. Colocated observations of erosion depth were made during asymmetric wave trials with wave heights between 0.10 and 0.98 m, consistently resulting in onshore sheet flow sediment transport. The pore pressure gradient vector within the bed exhibited temporal rotations during each wave cycle, directed predominantly upward under the trough and then rapidly rotating onshore and downward as the wavefront passed. The magnitude of the pore pressure gradient during each phase of rotation was correlated with local wave steepness and relative depth. Momentary bed failures as deep as 20 grain diameters were coincident with sharp increases in the onshore-directed pore pressure gradients, but occurred at horizontal pressure gradients less than theoretical critical values for initiation of the motion for compact beds. An expression combining the effects of both horizontal and vertical pore pressure gradients with bed shear stress and soil stability is used to determine that failure of the bed is initiated at nonnegligible values of both forces.type="synopsis">type="main">Plain Language SummaryThe pressure gradient present within the seabed beneath breaking waves may be an important physical mechanism transporting sediment. A large-scale laboratory was used to replicate realistic surfzone conditions in controlled tests, allowing for horizontal and vertical pressure gradient magnitudes and the resulting sediment bed response to be observed with precise instruments

  7. Stroke volume variation compared with pulse pressure variation and cardiac index changes for prediction of fluid responsiveness in mechanically ventilated patients

    Directory of Open Access Journals (Sweden)

    Randa Aly Soliman

    2015-04-01

    Conclusions: Baseline stroke volume variation ⩾8.15% predicted fluid responsiveness in mechanically ventilated patients with acute circulatory failure. The study also confirmed the ability of pulse pressure variation to predict fluid responsiveness.

  8. Are Geotehrmal Reservoirs Stressed Out?

    Science.gov (United States)

    Davatzes, N. C.; Laboso, R. C.; Layland-Bachmann, C. E.; Feigl, K. L.; Foxall, W.; Tabrez, A. R.; Mellors, R. J.; Templeton, D. C.; Akerley, J.

    2017-12-01

    Crustal permeability can be strongly influenced by developing connected networks of open fractures. However, the detailed evolution of a fracture network, its extent, and the persistence of fracture porosity are difficult to analyze. Even in fault-hosted geothermal systems, where heat is brought to the surface from depth along a fault, hydrothermal flow is heterogeneously distributed. This is presumably due to variations in fracture density, connectivity, and attitude, as well as variations in fracture permeability caused by sealing of fractures by precipitated cements or compaction. At the Brady Geothermal field in Nevada, we test the relationship between the modeled local stress state perturbed by dislocations representing fault slip or volume changes in the geothermal reservoir inferred from surface deformation measured by InSAR and the location of successful geothermal wells, hydrothermal activity, and seismicity. We postulate that permeability is favored in volumes that experience positive Coulomb stress changes and reduced compression, which together promote high densities of dilatant fractures. Conversely, permeability can be inhibited in locations where Coulomb stress is reduced, compression promotes compaction, or where the faults are poorly oriented in the stress field and consequently slip infrequently. Over geologic time scales spanning the development of the fault system, these local stress states are strongly influenced by the geometry of the fault network relative to the remote stress driving slip. At shorter time scales, changes in fluid pressure within the fracture network constituting the reservoir cause elastic dilations and contractions. We integrate: (1) direct observations of stress state and fractures in boreholes and the mapped geometry of the fault network; (2) evidence of permeability from surface hydrothermal features, production/injection wells and surface deformations related to pumping history; and (3) seismicity to test the

  9. The physiological response of soft tissue to periodic repositioning as a strategy for pressure ulcer prevention

    NARCIS (Netherlands)

    Woodhouse, M.; Worsley, P.R.; Voegeli, D.; Schoonhoven, L.; Bader, D.L.

    2015-01-01

    BACKGROUND: Individuals who have reduced mobility are at risk of developing pressure ulcers if they are subjected to sustained static postures. To reduce this risk, clinical guidelines advocate healthcare professionals reposition patients regularly. Automated tilting mechanisms have recently been

  10. Using an expiratory resistor, arterial pulse pressure variations predict fluid responsiveness during spontaneous breathing: an experimental porcine study.

    Science.gov (United States)

    Dahl, Michael K; Vistisen, Simon T; Koefoed-Nielsen, Jacob; Larsson, Anders

    2009-01-01

    Fluid responsiveness prediction is difficult in spontaneously breathing patients. Because the swings in intrathoracic pressure are minor during spontaneous breathing, dynamic parameters like pulse pressure variation (PPV) and systolic pressure variation (SPV) are usually small. We hypothesized that during spontaneous breathing, inspiratory and/or expiratory resistors could induce high arterial pressure variations at hypovolemia and low variations at normovolemia and hypervolemia. Furthermore, we hypothesized that SPV and PPV could predict fluid responsiveness under these conditions. Eight prone, anesthetized and spontaneously breathing pigs (20 to 25 kg) were subjected to a sequence of 30% hypovolemia, normovolemia, and 20% and 40% hypervolemia. At each volemic level, the pigs breathed in a randomized order either through an inspiratory and/or an expiratory threshold resistor (7.5 cmH2O) or only through the tracheal tube without any resistor. Hemodynamic and respiratory variables were measured during the breathing modes. Fluid responsiveness was defined as a 15% increase in stroke volume (DeltaSV) following fluid loading. Stroke volume was significantly lower at hypovolemia compared with normovolemia, but no differences were found between normovolemia and 20% or 40% hypervolemia. Compared with breathing through no resistor, SPV was magnified by all resistors at hypovolemia whereas there were no changes at normovolemia and hypervolemia. PPV was magnified by the inspiratory resistor and the combined inspiratory and expiratory resistor. Regression analysis of SPV or PPV versus DeltaSV showed the highest R2 (0.83 for SPV and 0.52 for PPV) when the expiratory resistor was applied. The corresponding sensitivity and specificity for prediction of fluid responsiveness were 100% and 100%, respectively, for SPV and 100% and 81%, respectively, for PPV. Inspiratory and/or expiratory threshold resistors magnified SPV and PPV in spontaneously breathing pigs during hypovolemia

  11. Reproductive biomarkers responses induced by xenoestrogens in the characid fish Astyanax fasciatus inhabiting a South American reservoir: An integrated field and laboratory approach

    International Nuclear Information System (INIS)

    Prado, Paula S.; Pinheiro, Ana Paula B.; Bazzoli, Nilo; Rizzo, Elizete

    2014-01-01

    Field studies evaluating the effects of endocrine disruption chemicals (EDCs) on the fish reproduction are scarce worldwide. The goal of this study was to assess hepatic levels of vitellogenin (Vtg), zona radiata proteins (Zrp) and insulin-like growth factors (IGF-I and IGF-II), and relating them to reproductive endpoints in a wild fish population habiting a reservoir that receive domestic sewage, agricultural and industrial residues. Adult fish Astyanax fasciatus were sampled during the reproductive season in five sites from the Furnas Reservoir, Grande River, and Paraguay–Paraná basin. As a control to field data, fish were experimentally exposed via dietary intake, to oestradiol benzoate (OB) for 7 days. Fish from site with little anthropogenic interference showed hepatic levels of Vtg, Zrp and IGF-I and IGF-II similar to those from the non-treated experimental group. In sites located immediately downstream from the municipal wastewater discharges, the water total oestrogen was >120 ng/l, and male fish displayed increased Vtg and Zrp and decreased IGF-I levels similar to OB treated fish. In females, levels of Vtg, Zrp, IGF-I and IGF-II suggest an impairment of final oocyte maturation and spawning, as also detected by frequency of over-ripening, follicular atresia and fecundity. At the sites that receive agricultural and industrial residues, the water total oestrogen was <50 ng/l and females showed decreased Zrp and increased IGF-II levels associated to reduced diameter of vitellogenic follicles, indicating an inhibition of oocyte growth. Overall, the current study reports oestrogenic contamination impairing the reproduction of a wild fish from a hydroeletric reservoir and, the data contribute to improving the current knowledge on relationship between hepatic Vtg, Zrp and IGF-I and IGF-II, and reproductive endpoints in a teleost fish. In addition, our data point out novel reproductive biomarkers (IGF-I, IGF-II and over-ripening) to assessing xenoestrogenic

  12. Reproductive biomarkers responses induced by xenoestrogens in the characid fish Astyanax fasciatus inhabiting a South American reservoir: An integrated field and laboratory approach

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Paula S.; Pinheiro, Ana Paula B. [Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P. 486, 30161-970, Minas Gerais (Brazil); Bazzoli, Nilo [Programa de Pós-Graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte 30535-610, Minas Gerais (Brazil); Rizzo, Elizete, E-mail: ictio@icb.ufmg.br [Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P. 486, 30161-970, Minas Gerais (Brazil)

    2014-05-01

    Field studies evaluating the effects of endocrine disruption chemicals (EDCs) on the fish reproduction are scarce worldwide. The goal of this study was to assess hepatic levels of vitellogenin (Vtg), zona radiata proteins (Zrp) and insulin-like growth factors (IGF-I and IGF-II), and relating them to reproductive endpoints in a wild fish population habiting a reservoir that receive domestic sewage, agricultural and industrial residues. Adult fish Astyanax fasciatus were sampled during the reproductive season in five sites from the Furnas Reservoir, Grande River, and Paraguay–Paraná basin. As a control to field data, fish were experimentally exposed via dietary intake, to oestradiol benzoate (OB) for 7 days. Fish from site with little anthropogenic interference showed hepatic levels of Vtg, Zrp and IGF-I and IGF-II similar to those from the non-treated experimental group. In sites located immediately downstream from the municipal wastewater discharges, the water total oestrogen was >120 ng/l, and male fish displayed increased Vtg and Zrp and decreased IGF-I levels similar to OB treated fish. In females, levels of Vtg, Zrp, IGF-I and IGF-II suggest an impairment of final oocyte maturation and spawning, as also detected by frequency of over-ripening, follicular atresia and fecundity. At the sites that receive agricultural and industrial residues, the water total oestrogen was <50 ng/l and females showed decreased Zrp and increased IGF-II levels associated to reduced diameter of vitellogenic follicles, indicating an inhibition of oocyte growth. Overall, the current study reports oestrogenic contamination impairing the reproduction of a wild fish from a hydroeletric reservoir and, the data contribute to improving the current knowledge on relationship between hepatic Vtg, Zrp and IGF-I and IGF-II, and reproductive endpoints in a teleost fish. In addition, our data point out novel reproductive biomarkers (IGF-I, IGF-II and over-ripening) to assessing xenoestrogenic

  13. Reactivity of hydrocarbons in response to injection of a CO2/O2 mixture under depleted reservoir conditions: experimental and numerical modeling

    International Nuclear Information System (INIS)

    Pacini-Petitjean, Claire

    2015-01-01

    The geological storage of CO 2 (CO 2 Capture-Storage - CCS) and the Enhanced Oil Recovery (EOR) by CO 2 injection into petroleum reservoirs could limit CO 2 atmospheric accumulation. However, CO 2 can be associated with oxygen. To predict the hydrocarbon evolution under these conditions involves the study of oxidation mechanisms. Oxidation experiment and kinetic detailed modeling were carried out with pure compounds. The comparison between experimental and modeling results led to the construction of a hydrocarbon oxidation kinetic model and emphasized the parameters leading to auto ignition. The good agreement between our experiments and modeling are promising for the development of a tool predicting the critical temperature leading to auto-ignition and the evolution of hydrocarbon composition, to estimate the stability of a petroleum system in CO 2 injection context. (author) [fr

  14. Understanding and Mitigating Reservoir Compaction: an Experimental Study on Sand Aggregates

    Science.gov (United States)

    Schimmel, M.; Hangx, S.; Spiers, C. J.

    2016-12-01

    Fossil fuels continue to provide a source for energy, fuels for transport and chemicals for everyday items. However, adverse effects of decades of hydrocarbons production are increasingly impacting society and the environment. Production-driven reduction in reservoir pore pressure leads to a poro-elastic response of the reservoir, and in many occasions to time-dependent compaction (creep) of the reservoir. In turn, reservoir compaction may lead to surface subsidence and could potentially result in induced (micro)seismicity. To predict and mitigate the impact of fluid extraction, we need to understand production-driven reservoir compaction in highly porous siliciclastic rocks and explore potential mitigation strategies, for example, by using compaction-inhibiting injection fluids. As a first step, we investigate the effect of chemical environment on the compaction behaviour of sand aggregates, comparable to poorly consolidated, highly porous sandstones. The sand samples consist of loose aggregates of Beaujean quartz sand, sieved into a grainsize fraction of 180-212 µm. Uniaxial compaction experiments are performed at an axial stress of 35 MPa and temperature of 80°C, mimicking conditions of reservoirs buried at three kilometres depth. The chemical environment during creep is either vacuum-dry or CO2-dry, or fluid-saturated, with fluids consisting of distilled water, acid solution (CO2-saturated water), alkaline solution (pH 9), aluminium solution (pH 3) and solution with surfactants (i.e., AMP). Preliminary results show that compaction of quartz sand aggregates is promoted in a wet environment compared to a dry environment. It is inferred that deformation is controlled by subcritical crack growth when dry and stress corrosion cracking when wet, both resulting in grain failure and subsequent grain rearrangement. Fluids inhibiting these processes, have the potential to inhibit aggregate compaction.

  15. Learning from Stakeholder Pressure and Embeddedness: The Roles of Absorptive Capacity in the Corporate Social Responsibility of Dutch Agribusinesses

    Directory of Open Access Journals (Sweden)

    Paul T. M. Ingenbleek

    2016-10-01

    Full Text Available In spite of much research on corporate social responsibility (CSR responses to secondary stakeholders (i.e., social movements, activists, media, civil society and non-governmental organizations, the debate on how companies learn from pressure and collaboration with these societal groups is still open. Building upon stakeholder and knowledge management theories, this paper analyzes how secondary stakeholder pressure and embeddedness influence agribusiness companies’ absorptive capacity and their CSR strategies. Data are obtained from 152 Dutch agribusiness company managers. The results highlight that, first, absorptive capacity influences companies’ new product innovation, product positioning and organizational innovation to be more oriented towards CSR. Second, stakeholder embeddedness of agribusiness companies triggers absorptive capacity more than pressure from them. Third, stakeholder pressure and embeddedness also have direct (i.e., not mediated by companies’ absorptive capacity yet weaker effects on CSR organizational innovation and product positioning. Findings corroborate the idea that firms develop innovative CSR strategies when they combine internal reflection processes and partnerships with secondary stakeholders.

  16. Analysis of the dynamic response of a double rupture disc assembly to simulated sodium-water reaction pressure pulses

    International Nuclear Information System (INIS)

    Leonard, J.R.

    1980-03-01

    A series of double rupture disc experiments were conducted in 1979 to evaluate the dynamic response characteristics of this pressure relief apparatus. The tests were performed in a facility with water simulating sodium and rising pressure pulses representative of the pressure increase resulting from a water/steam leak from a steam generator into sodium in the intermediate heat transport system of a breeder reactor power plant. Maximum source pressures ranged in magnitude from 50 psi to 800 psi. Dynamic response characteristics of each of the two rupture discs were similar to those observed in larger scale sodium-water experiments conducted in the Series I and Series II Large Leak Test Program at the Energy Technology Engineering Center. The SRI double rupture disc dynamic behavior was found to be consistent and amendable to modelling in the TRANSWRAP II computer code. A series of correlations which represent rupture disc buckling parameters were developed for use in the TRANSWRAP II code. The semi-empirical modeling of the rupture discs in the TRANSWRAP II code showed very good agreement with the experimental results

  17. Performance analysis for an irreversible variable temperature heat reservoir closed intercooled regenerated Brayton cycle

    International Nuclear Information System (INIS)

    Wang Wenhua; Chen Lingen; Sun Fengrui; Wu Chih

    2003-01-01

    In this paper, the theory of finite time thermodynamics is used in the performance analysis of an irreversible closed intercooled regenerated Brayton cycle coupled to variable temperature heat reservoirs. The analytical formulae for dimensionless power and efficiency, as functions of the total pressure ratio, the intercooling pressure ratio, the component (regenerator, intercooler, hot and cold side heat exchangers) effectivenesses, the compressor and turbine efficiencies and the thermal capacity rates of the working fluid and the heat reservoirs, the pressure recovery coefficients, the heat reservoir inlet temperature ratio, and the cooling fluid in the intercooler and the cold side heat reservoir inlet temperature ratio, are derived. The intercooling pressure ratio is optimized for optimal power and optimal efficiency, respectively. The effects of component (regenerator, intercooler and hot and cold side heat exchangers) effectivenesses, the compressor and turbine efficiencies, the pressure recovery coefficients, the heat reservoir inlet temperature ratio and the cooling fluid in the intercooler and the cold side heat reservoir inlet temperature ratio on optimal power and its corresponding intercooling pressure ratio, as well as optimal efficiency and its corresponding intercooling pressure ratio are analyzed by detailed numerical examples. When the heat transfers between the working fluid and the heat reservoirs are executed ideally, the pressure drop losses are small enough to be neglected and the thermal capacity rates of the heat reservoirs are infinite, the results of this paper replicate those obtained in recent literature

  18. Microbial quality of soil from the Pampa biome in response to different grazing pressures

    Directory of Open Access Journals (Sweden)

    Rafael S. Vargas

    2015-06-01

    Full Text Available The aim of this study was to evaluate the impact of different grazing pressures on the activity and diversity of soil bacteria. We performed a long-term experiment in Eldorado do Sul, southern Brazil, that assessed three levels of grazing pressure: high pressure (HP, with 4% herbage allowance (HA, moderate pressure (MP, with 12% HA, and low pressure (LP, with 16% HA. Two reference areas were also assessed, one of never-grazed native vegetation (NG and another of regenerated vegetation after two years of grazing (RG. Soil samples were evaluated for microbial biomass and enzymatic (β-glucosidase, arylsulfatase and urease activities. The structure of the bacterial community and the population of diazotrophic bacteria were evaluated by RFLP of the 16S rRNA and nifH genes, respectively. The diversity of diazotrophic bacteria was assessed by partial sequencing of the 16S rDNA gene. The presence of grazing animals increased soil microbial biomass in MP and HP. The structures of the bacterial community and the populations of diazotrophic bacteria were altered by the different grazing managements, with a greater diversity of diazotrophic bacteria in the LP treatment. Based on the characteristics evaluated, the MP treatment was the most appropriate for animal production and conservation of the Pampa biome.

  19. Peripheral Microvascular Responses to Whole-Body Tilting, G(z) Centrifugation, and Lower Body Negative Pressure Stresses in Humans

    Science.gov (United States)

    Breit, G. A.; Watenpaugh, D. E.; Buckley, T. M.; Ballard, R. E.; Murthy, G.; Hargens, A. R.

    1994-01-01

    The response of the cutaneous microcirculation to orthostatic stress varies along the length of the body due to the interaction of central controls with regional responses to local blood pressure. We hypothesize that artificial orthostatic stresses such as Gz centrifugation and LBNP differ from whole-body tilting in terms of the distribution of microvascular blood flow. Cutaneous microvascular flows were measured by laser Doppler flowmetry at the neck, thigh, and leg of 15 normal subjects. Volunteers underwent stepwise head-up tilt (HUT) and short- and long-arm centrifugation protocols from supine control (0 Gz) to 0.2, 0.4, 0.6, 0.8, 1.0, 0.8, 0.6, 0.4, 0.2, and 0 Gz at the feet, for 30-s periods with 10-s transitions between levels. The same subjects underwent a corresponding supine LBNP protocol, up to 100 mmHg (in 20 mmHg increments) and back to zero pressure, which produced transmural pressure across blood vessels in the foot approximately equal to the HUT protocol. In general, application of all orthostatic stresses produced significant flow reductions in the lower body (p less than 0.05) and inconsistent changes in the neck. At low levels of each stress (0.4 Gz, 40 mmHg), LBNP generated the greatest relative reduction in flow in the lower body (-66.9+/-5.7%, thigh; -60.6 +/-5.7%, leg, mean +/- SE). HUT caused a less severe flow reduction than LBNP at the thigh and leg (-39.9 +/- 8.1% and -55.9+/-4.8%), while the effects induced by both forms of centrifugation were the least profound. Higher levels of each stress generally resulted in similar responses. These responses exhibit a consistent relationship to hypothesized changes in local microvascular transmural pressure, suggesting that myogenic and veno-arteriolar reflexes play a significant role in determining microvascular perfusion during orthostatic stress.

  20. Reservoir engineering studies of the Gladys McCall geopressured-geothermal resource. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lea, C.M.; Lee, K.; Miller, M.A.

    1993-09-01

    Transient pressure analysis techniques have been used to evaluate the performance of the Gladys McCall geopressured-geothermal reservoir. A fault-controlled aquifer influx model has also been developed to account for pressure support observed during both reservoir depletion and recovery phases. The Gladys McCall No. 1 well was drilled and completed in the lower Miocene geopressured sandstones under the US Department of energy geopressured-geothermal research program. The well was shut in october 1987 after producing over 27 MMstb of brine and 676 MMscf gas since October 1983. Eight pressure transient tests were conducted in the well. Analysis of transient pressure data provided a quantitative evaluation of reservoir characteristics, including: (a) formation transmissibility and skin, (b) the size and possible shape of the main producing reservoir, (c) characteristics of the pressure support mechanism. The pressure behavior of 1983 Reservoir Limits Test (RLT) suggested that the Gladys McCall reservoir might have a long narrow shape with the well located off-center. An elongated numerical model developed accordingly was able to reproduce the pressure characteristics show in the test. During both the reservoir production and shut-in periods, pressure buildup tests indicated some degree of external pressure support. Aquifer recharging was believed to be the main source. Based on reservoir material-balance calculations, an aquifer influx model was derived from a conceptual model of water leakage through a partially sealing fault into the reservoir under steady-state conditions. Moreover, a match of the pressure history required that the conductivity of the fault be a function of the pressure difference between the supporting aquifer and the reservoir.

  1. Reservoir engineering studies of the Gladys McCall geopressured-geothermal resource; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chen-Min; Less, K.; Miller, M.A.

    1994-01-01

    Transient pressure analysis techniques have been used to evaluate the performance of the Gladys McCall geopressured-geothermal reservoir. A fault-controlled aquifer influx model has also been developed to account for pressure support observed during both reservoir depletion and recovery phases. The Gladys McCall No. 1 well was drilled and completed in the lower Miocene geopressured sandstones under the US Department of Energy geopressured-geothermal research program. The well was shut in October 1987 after producing over 27 MMstb of brine and 676 MMscf gas since October 1983. Eight pressure transient tests were conducted in the well. Analysis of transient pressure data provided a quantitative evaluation of reservoir characteristics, including: (a) formation transmissibility and skin, (b) the size and possible shape of the main producing reservoir, and (c) characteristics of the pressure support mechanism. The pressure behavior of 1983 Reservoir Limits Test (RLT) suggested that the Gladys McCall reservoir might have a long narrow shape with the well located off-center. An elongated numerical model developed accordingly was able to reproduce the pressure characteristics shown in the test. During both the reservoir production and shut-in periods, pressure buildup tests indicated some degree of external pressure support. Aquifer recharging was believed to be the main source. Based on reservoir material-balance calculations, an aquifer influx model was derived from a conceptual model of water leakage through a partially sealing fault into the reservoir under steady-state conditions. Moreover, a match of the pressure history required that the conductivity of the fault be a function of the pressure difference between the supporting aquifer and the reservoir.

  2. Pressure response of vacancy ordered maghemite (γ-Fe2O3) and high pressure transformed hematite (α-Fe2O3)

    Science.gov (United States)

    Hearne, Giovanni; Pischedda, Vittoria

    2012-03-01

    Combined XRD and Mössbauer effect spectroscopy studies to high pressures of ˜30 GPa of vacancy ordered maghemite are presented. The vacancy ordered superstructure is robust and remains intact up to the pressure-induced onset transition to hematite at 13-16 GPa. The pressure transformed hematite is shown to be crystallographically textured, unlike the randomised low pressure maghemite phase. This arises out of a pressure or stress instigated topotactic transformation of the cubic-spinel to hexagonal-corundum structure. The textured sample permits us to obtain information on the spin reorientation behavior of the pressure transformed hematite in compression and decompression sequences. Spin reorientation is restricted to ˜15° over wide pressure ranges, attributable to the effect of entrapped vacancies in the high pressure structure. Thus there are structural and magnetic peculiarities specific to pressure transformed hematite not evident in pressurized hematite starting material. These are triggered by the maghemite→hematite transformation.

  3. Evaluation of responses to IE Bulletin 82-02: degradation of threaded fasteners in reactor coolant pressure boundary of pressurized-water-reactor plants

    International Nuclear Information System (INIS)

    Anderson, W.; Sterner, P.

    1985-05-01

    IE Bulletin 82-02 was issued by the NRC on June 2, 1982, to notify licensees about incidents of severe degradation of threaded fasteners. The bulletin required appropriate action including submittal of information from pressurized water reactors having an operating license. Responses from 41 licensees included their recent experience with degradation of threaded fasteners in primary system components. Data from recent regular inspections of reactor coolant pressure boundary component connections of 6-in. size and larger are compiled for technical evaluation. Statistical analysis is used to determine significant factors related to frequency of leakage incidents in connections, occurrence of degradation of bolts and studs, and the need for bolt replacement. Factors examined include the age of the plant, types of components, use of lubricants and sealants, and differences between plants. The compiled data indicate that, on the average, 10% of the bolted connections show evidence of leaking during an 18-month period. Also, 80% of the connections that show evidence of leakage undergo some degradation of the bolting. Results of the analysis show a significant decrease in the occurrence of bolting degradation events as the age of the plant increases. The data also show that valves are less subject to bolting corrosion. A group of 5 of the 41 plants accounted for about one-half of the reported leakage and corrosion events. The common characteristic found for four of these five plants was the lubricant used. The use of nickel-graphite based lubricants appears to offer a significantly reduced incidence of leakage and corrosion, based on late corrections to the reported data. The data also permit the conclusion that the use of molybdenum-disulfide-based lubricants and graphite-based lubricants results in a significantly increased incidence of leakage and corrosion. Reporting of data on lubricants was of poor quality and detracted from the value of the bulletin responses

  4. Monte Carlo Study on Gas Pressure Response of He-3 Tube in Neutron Porosity Logging

    Directory of Open Access Journals (Sweden)

    TIAN Li-li;ZHANG Feng;WANG Xin-guang;LIU Jun-tao

    2016-10-01

    Full Text Available Thermal neutrons are detected by (n,p reaction of Helium-3 tube in the compensated neutron logging. The helium gas pressure in the counting area influences neutron detection efficiency greatly, and then it is an important parameter for neutron porosity measurement accuracy. The variation law of counting rates of a near detector and a far one with helium gas pressure under different formation condition was simulated by Monte Carlo method. The results showed that with the increasing of helium pressure the counting rate of these detectors increased firstly and then leveled off. In addition, the neutron counting rate ratio and porosity sensitivity increased slightly, the porosity measurement error decreased exponentially, which improved the measurement accuracy. These research results can provide technical support for selecting the type of Helium-3 detector in developing neutron porosity logging.

  5. Age-related weakening of baroreflex-mediated sympathetic activity in spontaneously hypertensive rats in response to blood pressure reduction.

    Science.gov (United States)

    Prados, P; Santa, T; Fukushima, T; Homma, H; Kasai, C; Martin, M A; del Castillo, B; Imai, K

    1998-09-01

    Nicardipine, a dihydropyridine type calcium channel blocker, was infused into 4-, 6-, and 23-wk-old spontaneously hypertensive (SH) and age-matched normotensive Wistar-Kyoto (WKY) rats (under sodium thiobutabarbital anesthesia and ventilation, n = 4) through the left femoral vein, resulting in the reduction of blood pressure. In each rat, mean arterial blood pressure, heart rate, and the concentration of plasma catecholamines (CAs), norepinephrine (NE), and epinephrine (E) were concomitantly determined, and the correlations between these three variables were studied. During the infusion of nicardipine, the plasma concentration of CAs was measured with an automatic detection system in blood samples collected from the right femoral artery of each rat. The reduction in blood pressure induced by nicardipine brought about an increase in plasma CA levels. The blood pressure correlated well with the logarithm of plasma NE or E concentration according to the formula Y= -alpha log (X) + m (Y, blood pressure; X, concentration of plasma NE or E; a, slope; and m, intercept). The slopes (as) of 6-wk-old and 23-wk-old SH rats were significantly greater than those of aged-matched WKY rats, meaning that the increment in plasma CAs in response to a decrease in blood pressure was smaller in SH than in WKY rats of similar ages. However, no significant differences were found between the as of 4-wk-old SH and WKY rats. We conclude that the increment in the baroreflex-mediated sympathetic activity in response to a drop in blood pressure induced by nicardipine is similar or greater in prehypertensive SH than in normotensive WKY 4-wk-old rats, while the increment becomes smaller in SH rats with the onset of hypertension (6-wk-old rats), and is much less in fully hypertensive adult (23-wk-old) SH rats than in age-matched WKY rats. On the basis of these findings and previous data obtained by neurography, we conclude that plasma CAs can be used to evaluate baroreflex-mediated sympathetic

  6. Optimising reservoir operation

    DEFF Research Database (Denmark)

    Ngo, Long le

    Anvendelse af optimeringsteknik til drift af reservoirer er blevet et væsentligt element i vandressource-planlægning og -forvaltning. Traditionelt har reservoirer været styret af heuristiske procedurer for udtag af vand, suppleret i en vis udstrækning af subjektive beslutninger. Udnyttelse af...... reservoirer involverer en lang række interessenter med meget forskellige formål (f.eks. kunstig vanding, vandkraft, vandforsyning mv.), og optimeringsteknik kan langt bedre lede frem til afbalancerede løsninger af de ofte modstridende interesser. Afhandlingen foreslår en række tiltag, hvormed traditionelle...... driftsstrategier kan erstattes af optimale strategier baseret på den nyeste udvikling indenfor computer-baserede beregninger. Hovedbidraget i afhandlingen er udviklingen af et beregningssystem, hvori en simuleringsmodel er koblet til en model for optimering af nogle udvalgte beslutningsvariable, der i særlig grad...

  7. Worse cardiac remodeling in response to pressure overload in type 2 diabetes mellitus.

    Science.gov (United States)

    Gonçalves, N; Gomes-Ferreira, C; Moura, C; Roncon-Albuquerque, R; Leite-Moreira, A F; Falcão-Pires, I

    2016-08-15

    Diabetic cardiomyopathy is characterized by cardiac structural and functional abnormalities. Additionally, chronic pressure overload conditions are highly prevalent amongst diabetic population and this association leads to a more severe myocardial impairment. The differences in myocardial pathophysiology between type 1 and type 2 diabetes mellitus (DM) still remain to be clarified. Thus, we aimed to investigate biventricular structural and functional changes promoted by the two types of DM and the impact of concomitant chronic pressure overload. Wistar rats were injected with streptozotocin (Type 1 DM, T1DM) or fed with a hypercaloric diet (Type 2 DM, T2DM). Pressure overload was imposed in DM animals by aortic constriction and after 5weeks of DM the cardiac function and structure were evaluated. Both types of DM promoted hypertrophy, increased fibrosis and advanced glycation end-products deposition, in the two ventricles. Interestingly, the induced myocardial alterations were distinct. While T1DM stimulated a pronounced hypertrophy and extracellular matrix remodeling, T2DM induced functional impairment. The negative impact of the association of DM with aortic constriction was more pronounced in T2DM, promoting impaired function and increased stiffness, particularly in the right ventricle. Our study demonstrated that the two types of diabetes induce distinct cardiac alterations per se or when combined with chronic pressure overload. T1DM promoted a more extensive remodeling in cardiac structure while T2DM significantly impaired ventricular function. The impact of pressure overload was more notorious in T2DM as observed by worse myocardial remodeling, suggesting a higher susceptibility to the deleterious effects of chronic pressure overload, namely hypertension, among this diabetic population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Structural analysis of porous rock reservoirs subjected to conditions of compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Friley, J.R.

    1980-01-01

    Investigations are described which were performed to assess the structural behavior of porous rock compressed air energy storage (CAES) reservoirs subjected to loading conditions of temperature and pressure felt to be typical of such an operation. Analyses performed addressed not only the nominal or mean reservoir response but also the cyclic response due to charge/discharge operation. The analyses were carried out by assuming various geometrical and material related parameters of a generic site. The objective of this study was to determine the gross response of a generic porous reservoir. The site geometry for this study assumed a cylindrical model 122 m in dia and 57 m high including thicknesses for the cap, porous, and base rock formations. The central portion of the porous zone was assumed to be at a depth of 518 m and at an initial temperature of 20/sup 0/C. Cyclic loading conditions of compressed air consisted of pressure values in the range of 4.5 to 5.2 MPa and temperature values between 143 and 204/sup 0/C.Various modes of structural behavior were studied. These response modes were analyzed using loading conditions of temperature and pressure (in the porous zone) corresponding to various operational states during the first year of simulated site operation. The results of the structural analyses performed indicate that the most severely stressed region will likely be in the wellbore vicinity and hence highly dependent on the length of and placement technique utilized in the well production length. Analyses to address this specific areas are currently being pursued.

  9. Stimulus-response time to invasive blood pressure alarms: implications for the safety of critical-care patients

    Directory of Open Access Journals (Sweden)

    Adele Kuckartz Pergher

    Full Text Available Observational, descriptive, exploratory, case study with the objective of measuring the stimulus-response time of the team to alarms monitoring invasive blood pressure (IBP and analyzing the implications of this time for the safety of the patient. From January to March 2013, 60 hours of structured observation were conducted with registration of the alarms activated by IBP monitors in an adult ICU at a military hospital in the city of Rio de Janeiro. 76 IBP alarms were recorded (1.26 alarms/hour, 21 of which (28% were attended to and 55 (72% considered as fatigued. The average response time to the alarms was 2 min. 45 sec. The deficit in human resource and physical layout were factors determining the delay in response to the alarms. The increase in response times to these alarms may compromise the safety of patients with hemodynamic instability, especially in situations such as shock and the use of vasoactive drugs.

  10. Effect of Properties and Turgor Pressure on the Indentation Response of Plant Cells

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, Alan

    2018-01-01

    The indentation of plant cells by a conical indenter is modeled. The cell wall is represented as a spherical shell consisting of a relatively stiff thin outer layer and a softer thicker inner layer. The state of the interior of the cell is idealized as a specified turgor pressure. Attention...... is restricted to axisymmetric deformations, and the wall material is characterized as a viscoelastic solid with different properties for the inner and outer layers. Finite deformation, quasi-static calculations are carried out. The effects of outer layer stiffness, outer layer thickness, turgor pressure...

  11. Evolution of transverse piezoelectric response of lead zirconate titanate ceramics under hydrostatic pressure

    International Nuclear Information System (INIS)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Gao Junjie; Zhang, Chonghui; Yao Xi; Jin Li

    2009-01-01

    The piezoelectric properties of 31-mode resonators of lead zirconate titanate ceramics under hydrostatic pressure from 0.1 to 325 MPa were evaluated by a fitting method, in which mechanical loss was taken into account. Our results based on the fitting method showed a hydrostatic pressure independent tendency of the piezoelectric coefficient and the electromechanical coupling factor because the adopted PZT ceramic can be considered as a linear system in our experiment, while two misleading tendencies of piezoelectric coefficient were obtained based on the resonance method when ignoring the contribution of the mechanical loss. (fast track communication)

  12. Reduction on OFF-responses of Electroretinogram in Monkeys with Long-term High Intraocular Pressure

    Directory of Open Access Journals (Sweden)

    Ke-Gao Liu

    2017-01-01

    Conclusions: Reduced OFF-responses are recorded in monkeys with high IOP when dysfunction of photoreceptor is involved. The reduced OFF-responses to long-flash stimulus show evidence of anomalous retinal circuitry in glaucomatous retinopathy.

  13. The role of rainfall variability in reservoir storage management at ...

    African Journals Online (AJOL)

    Reservoir operation and management is usually patterned after the background of long standing water resources management experience. Reservoir management for optimum power production at any hydropower station requires constant assessment of the quantity of available water. The hydrographic responses of flow ...

  14. Incorporating Scale-Dependent Fracture Stiffness for Improved Reservoir Performance Prediction

    Science.gov (United States)

    Crawford, B. R.; Tsenn, M. C.; Homburg, J. M.; Stehle, R. C.; Freysteinson, J. A.; Reese, W. C.

    2017-12-01

    We present a novel technique for predicting dynamic fracture network response to production-driven changes in effective stress, with the potential for optimizing depletion planning and improving recovery prediction in stress-sensitive naturally fractured reservoirs. A key component of the method involves laboratory geomechanics testing of single fractures in order to develop a unique scaling relationship between fracture normal stiffness and initial mechanical aperture. Details of the workflow are as follows: tensile, opening mode fractures are created in a variety of low matrix permeability rocks with initial, unstressed apertures in the micrometer to millimeter range, as determined from image analyses of X-ray CT scans; subsequent hydrostatic compression of these fractured samples with synchronous radial strain and flow measurement indicates that both mechanical and hydraulic aperture reduction varies linearly with the natural logarithm of effective normal stress; these stress-sensitive single-fracture laboratory observations are then upscaled to networks with fracture populations displaying frequency-length and length-aperture scaling laws commonly exhibited by natural fracture arrays; functional relationships between reservoir pressure reduction and fracture network porosity, compressibility and directional permeabilities as generated by such discrete fracture network modeling are then exported to the reservoir simulator for improved naturally fractured reservoir performance prediction.

  15. Underground natural gas storage reservoir management: Phase 2. Final report, June 1, 1995--March 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, I.; Anthony, R.V.

    1996-12-31

    Gas storage operators are facing increased and more complex responsibilities for managing storage operations under Order 636 which requires unbundling of storage from other pipeline services. Low cost methods that improve the accuracy of inventory verification are needed to optimally manage this stored natural gas. Migration of injected gas out of the storage reservoir has not been well documented by industry. The first portion of this study addressed the scope of unaccounted for gas which may have been due to migration. The volume range was estimated from available databases and reported on an aggregate basis. Information on working gas, base gas, operating capacity, injection and withdrawal volumes, current and non-current revenues, gas losses, storage field demographics and reservoir types is contained among the FERC Form 2, EIA Form 191, AGA and FERC Jurisdictional databases. The key elements of this study show that gas migration can result if reservoir limits have not been properly identified, gas migration can occur in formation with extremely low permeability (0.001 md), horizontal wellbores can reduce gas migration losses and over-pressuring (unintentionally) storage reservoirs by reinjecting working gas over a shorter time period may increase gas migration effects.

  16. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  17. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  18. Session: Reservoir Technology

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

  19. On-line testing of response time and calibration of temperature and pressure sensors in nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    1995-01-01

    Periodic calibrations and response time measurements are necessary for temperature and pressure sensors in the safety systems of nuclear power plants. Conventional measurement methods require the test to be performed at the sensor location or involve removing the sensor from the process and performing the tests in a laboratory or on the bench. The conventional methods are time consuming and have the potential of causing wear and tear on the equipment, can expose the test personnel to radiation and other harsh environments, and increase the length of the plant outage. Also, the conventional methods do not account for the installation effects which may have an influence on sensor performance. On-line testing methods alleviate these problems by providing remote sensor response time and calibration capabilities. For temperature sensors such as Resistance Temperature Detectors (RTDs) and thermocouples, an on-line test method called the Loop Current Step Response (LCSR) technique has been developed, and for pressure transmitters, an on-line method called noise analysis which was available for reactor diagnostics was validated for response time testing applications. Both the LCSR and noise analysis tests are performed periodically in U.S. nuclear power plants to meet the plant technical specification requirements for response time testing of safety-related sensors. Automated testing of the calibration of both temperature and pressure sensors can be accomplished through an on-line monitoring system installed in the plant. The system monitors the DC output of the sensors over the fuel cycle to determine if any calibration drift has occurred. Changes in calibration can be detected using signal averaging and intercomparison methods and analytical redundancy techniques. (author)

  20. Nitrate decreases xanthine oxidoreductase-mediated nitrite reductase activity and attenuates vascular and blood pressure responses to nitrite

    Directory of Open Access Journals (Sweden)

    Célio Damacena-Angelis

    2017-08-01

    Full Text Available Nitrite and nitrate restore deficient endogenous nitric oxide (NO production as they are converted back to NO, and therefore complement the classic enzymatic NO synthesis. Circulating nitrate and nitrite must cross membrane barriers to produce their effects and increased nitrate concentrations may attenuate the nitrite influx into cells, decreasing NO generation from nitrite. Moreover, xanthine oxidoreductase (XOR mediates NO formation from nitrite and nitrate. However, no study has examined whether nitrate attenuates XOR-mediated NO generation from nitrite. We hypothesized that nitrate attenuates the vascular and blood pressure responses to nitrite either by interfering with nitrite influx into vascular tissue, or by competing with nitrite for XOR, thus inhibiting XOR-mediated NO generation. We used two independent vascular function assays in rats (aortic ring preparations and isolated mesenteric arterial bed perfusion to examine the effects of sodium nitrate on the concentration-dependent responses to sodium nitrite. Both assays showed that nitrate attenuated the vascular responses to nitrite. Conversely, the aortic responses to the NO donor DETANONOate were not affected by sodium nitrate. Further confirming these results, we found that nitrate attenuated the acute blood pressure lowering effects of increasing doses of nitrite infused intravenously in freely moving rats. The possibility that nitrate could compete with nitrite and decrease nitrite influx into cells was tested by measuring the accumulation of nitrogen-15-labeled nitrite (15N-nitrite by aortic rings using ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS. Nitrate exerted no effect on aortic accumulation of 15N-nitrite. Next, we used chemiluminescence-based NO detection to examine whether nitrate attenuates XOR-mediated nitrite reductase activity. Nitrate significantly shifted the Michaelis Menten saturation curve to the right, with a 3-fold increase in

  1. Physiological responses to low atmospheric pressure stunning and the implications for welfare

    NARCIS (Netherlands)

    Mckeegan, D.E.F.; Sandercock, D.A.; Gerritzen, M.A.

    2013-01-01

    In low atmospheric pressure stunning (LAPS), poultry are rendered unconscious before slaughter by gradually reducing oxygen tension in the atmosphere to achieve a progressive anoxia. The effects of LAPS are not instantaneous, so there are legitimate welfare concerns around the experience of birds

  2. Pipeline's natural frequency response due to internal pressure effect

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Andre L.L.; Guevara Junior, Nestor O. [Suporte - Consultoria e Projetos Ltda., Rio de Janeiro, RJ (Brazil); Galgoul, Nelson S. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Fernandes, Antonio C.; Coelho, Fabio M. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Coordenacao de Programas de Pos-graduacao de Engenharia

    2009-12-19

    A few years ago, a discussion about how internal pressure is treated in submarine pipelines has taken place. Galgoul et al (2004) have pointed out the conservatism of the latest recommendations for pipeline free-span evaluations associated to the way the axial force is considered in the determination of the pipeline natural frequency. Fyrileiv and Collberg (2005) have also discussed this point in defense of the effective axial force concept and its use in the natural frequency determination. In order to contribute to this aspect, an experimental test has been performed with a fully embedded pipeline which was pressurized. The main object consists in showing that the pipe is under tension (and not under compression) and, as a consequence, it is the authors' intention to prove that the natural frequency increases instead of reducing when the internal pressure is incremented. In addition to the test, a finite element model has been presented where this internal pressure effect is taken into account as it actually is (and not as an axial force) in order to show the real behavior of the wall stresses. Static analyses, as well as modal and transient analysis have been performed in order to compare theoretical results with the experimental test conducted. (author)

  3. High Pressure Reform: Examining Urban Schools' Response to Multiple School Choice Policies

    Science.gov (United States)

    Holme, Jennifer Jellison; Carkhum, Rian; Rangel, Virginia Snodgrass

    2013-01-01

    Over the past several decades, policymakers have sought to address the problem of school failure by exposing traditional public schools to competitive market forces. In this analysis, we examine how two traditional public schools in a "high pressure/high choice" urban school cluster in Texas responded to a number of overlapping choice…

  4. Social Support Is Associated with Blood Pressure Responses in Parents Caring for Children with Developmental Disabilities

    Science.gov (United States)

    Gallagher, Stephen; Whiteley, Jenny

    2012-01-01

    The present study tested whether parents caring for children with developmental disabilities would have higher blood pressure compared to parents of typically developing children (controls). It also examined the psychosocial factors underlying this observation. Thirty-five parents of children with developmental disability and thirty controls…

  5. Salt intake and blood pressure response to percutaneous renal denervation in resistant hypertension

    NARCIS (Netherlands)

    de Beus, Esther; de Jager, Rosa L; Beeftink, Martine M; Sanders, Margreet F; Spiering, Wilko; Vonken, Evert-Jan; Voskuil, Michiel; Bots, Michiel L; Blankestijn, Peter J; de Wit, G.A.; van Maarseveen, E.M.

    2017-01-01

    The effect of lowering sympathetic nerve activity by renal denervation (RDN) is highly variable. With the exception of office systolic blood pressure (BP), predictors of the BP-lowering effect have not been identified. Because dietary sodium intake influences sympathetic drive, and, conversely,

  6. A cardiovascular system model for lower-body negative pressure response

    Science.gov (United States)

    Mitchell, B. A., Jr.; Giese, R. P.

    1971-01-01

    Mathematical models used to study complex physiological control systems are discussed. Efforts were made to modify a model of the cardiovascular system for use in studying lower body negative pressure. A computer program was written which allows orderly, straightforward expansion to include exercise, metabolism (thermal stress), respiration, and other body functions.

  7. Bacterial-killing effect of atmospheric pressure non-equilibrium plasma jet and oral mucosa response.

    Science.gov (United States)

    Liu, Dexi; Xiong, Zilan; Du, Tianfeng; Zhou, Xincai; Cao, Yingguang; Lu, Xinpei

    2011-12-01

    Recently, plasma sterilization has attracted increasing attention in dental community for the atmospheric pressure non-equilibrium plasma jet (APNPs), which is driven by a kilohertz pulsed DC power, may be applied to the dental and oral diseases. However, it is still in doubt whether APNPs can effectively kill pathogenic bacteria in the oral cavity and produce no harmful effects on normal oral tissues, especially on normal mucosa. The aim of this study was to evaluate the bacterial-killing effect of APNPs in the biofilms containing a single breed of bacteria (Porphyromonas gingivalis, P.g.), and the pathological changes of the oral mucosa after treatment by APNPs. P.g. was incubated to form the biofilms in vitro, and the samples were divided into three groups randomly: group A (blank control); group B in which the biofilms were treated by APNPs (the setting of the equipment: 10 kHz, 1600 ns and 8 kV); group C in which the biofilms were exposed only to a gas jet without ignition of the plasma. Each group had three samples and each sample was processed for up to 5 min. The biofilms were then fluorescently stained, observed and photographed under a laser scanning confocal microscope. In the animal experiment, six male Japanese white rabbits were divided into two groups randomly (n=3 in each group) in terms of the different post-treatment time (1-day group and 5-day group). The buccal mucosa of the left side and the mucosa of the ventral surface of the tongue were treated by APNPs for 10 min in the same way as the bacterial biofilm experiment in each rabbit, and the corresponding mucosa of the other sides served as normal control. The clinical manifestations of the oral mucosa were observed and recorded every day. The rabbits were sacrificed one or five day(s) after APNPs treatment. The oral mucosa were harvested and prepared to haematoxylin and eosin-stained sections. Clinical observation and histopathological scores were used to assess mucosal changes. The results

  8. A model of blood pressure, heart rate, and vaso-vagal responses produced by vestibulo-sympathetic activation

    Directory of Open Access Journals (Sweden)

    Theodore eRaphan

    2016-03-01

    Full Text Available Blood Pressure (BP, comprised of recurrent systoles and diastoles, is controlled by central mechanisms to maintain blood flow. Periodic behavior of BP was modeled to study how peak amplitudes and frequencies of the systoles are modulated by vestibular activation. The model was implemented as a relaxation oscillator, driven by a central signal related to Desired BP. Relaxation oscillations were maintained by a second order system comprising two integrators and a threshold element in the feedback loop. The output signal related to BP was generated as a nonlinear function of the derivative of the first state variable, which is a summation of an input related to desired BP, feedback from the states, and an input from the vestibular system into one of one of the feedback loops. This nonlinear function was structured to best simulate the shapes of systoles and diastoles, the relationship between BP and Heart Rate (HR as well as the amplitude modulations of BP and Pulse Pressure. Increases in threshold in one of the feedback loops produced lower frequencies of HR, but generated large pulse pressures to maintain orthostasis, without generating a VasoVagal Response (VVR. Pulse pressures were considerably smaller in the anesthetized rats than during the simulations, but simulated pulse pressures were lowered by including saturation in the feedback loop. Stochastic changes in Threshold maintained the compensatory Baroreflex Sensitivity. Sudden decreases in Desired BP elicited non-compensatory VVRs with smaller pulse pressures, consistent with experimental data. The model suggests that the Vestibular Sympathetic Reflex modulates BP and HR of an oscillating system by manipulating parameters of the baroreflex feedback and the signals that maintain the oscillations. It also shows that a VVR is generated when the vestibular input triggers a marked reduction in Desired BP.

  9. Effects of meal ingestion on blood pressure and regional hemodynamic responses after exercise.

    Science.gov (United States)

    Endo, Masako Yamaoka; Fujihara, Chizuko; Miura, Akira; Kashima, Hideaki; Fukuba, Yoshiyuki

    2016-06-01

    This study investigated the combined effects of consuming a meal during postexercise hypotension (PEH) on hemodynamics. Nine healthy young male subjects performed each of three trials in random order: 1) cycling at 50% of heart rate reserve for 60 min, 2) oral ingestion of a carbohydrate liquid meal (75 g glucose), or 3) carbohydrate ingestion at 40 min after cycling exercise. Blood pressure, heart rate, cardiac output, and blood flow in the superior mesenteric (SMA), brachial, and popliteal arteries were measured continuously before and after each trial. Regional vascular conductance (VC) was calculated as blood flow/mean arterial pressure. Blood pressure decreased relative to baseline values (P < 0.05) after exercise cessation. Blood flow and VC in the calf and arm increased after exercise, whereas blood flow and VC in the SMA did not. Blood pressure did not change after meal ingestion; however, blood flow and VC significantly decreased in the brachial and popliteal arteries and increased in the SMA for 120 min after the meal (P < 0.05). When the meal was ingested during PEH, blood pressure decreased below PEH levels and remained decreased for 40 min before returning to postexercise levels. The sustained increase in blood flow and VC in the limbs after exercise was reduced to baseline resting levels immediately after the meal, postprandial cardiac output was unchanged by the increased blood flow in the SMA, and total VC and SMA VC increased. Healthy young subjects can suppress severe hypotension by vasoconstriction of the limbs even when carbohydrate is ingested during PEH. Copyright © 2016 the American Physiological Society.

  10. The timeline of blood pressure changes and hemodynamic responses during an experimental noise exposure.

    Science.gov (United States)

    Paunović, Katarina; Jakovljević, Branko; Stojanov, Vesna

    2018-02-16

    Noise exposure increases blood pressure and peripheral vascular resistance in both genders in an experimental setting, as previously reported by the authors. The aim of this re-analysis was to present the minute-by-minute timeline of blood pressure changes and hemodynamic events provoked by traffic noise in the young and healthy adults. The experiment consisted of three 10-min phases: rest in quiet conditions before noise (Leq = 40 dBA), exposure to recorded road-traffic noise (Leq = 89 dBA), and rest in quiet conditions after noise (Leq = 40 dBA). Participants' blood pressure, heart rate, and hemodynamic parameters (cardiac index and total peripheral resistance index) were concurrently measured with a thoracic bioimpedance device. The raw beat-to-beat data were collected from 112 participants, i.e., 82 women and 30 men, aged 19-32 years. The timeline of events was created by splitting each experimental phase into ten one-minute intervals (30 intervals in total). Four statistical models were fitted to answer the six study questions what is happening from one minute to another during the experiment. Blood pressure decreased during quiet phase before noise, increased in the first minute of noise exposure and then decreased gradually toward the end of noise exposure, and continued to decline to baseline values after noise exposure. The cardiac index showed a gradual decrease throughout the experiment, whereas total vascular resistance increased steadily during and after noise exposure. The timeline of events in this 30-min experiment provides insight into the hemodynamic processes underlying the changes of blood pressure before, during and after noise exposure. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Constructive Activation of Reservoir-Resident Microbes for Enhanced Oil Recovery

    Science.gov (United States)

    DeBruyn, R. P.

    2017-12-01

    Microbial communities living in subsurface oil reservoirs biodegrade oil, producing methane. If this process could create methane within the waterflooded pore spaces of an oilfield, the methane would be expected to remain and occupy pore space, decreasing water relative permeability, diverting water flow, and increasing oil recovery by expanding the swept zone of the waterflood. This approach was tested in an oilfield in northern Montana. Preliminary assessments were made of geochemical conditions and microbiological habitations. Then, a formulation of microbial activators, with composition tailored for the reservoir's conditions, was metered at low rates into the existing injection water system for one year. In the field, the responses observed included improved oil production performance; a slight increase in injection pressure; and increased time needed for tracers to move between injection and producing wells. We interpret these results to confirm that successful stimulation of the microbial community caused more methane to be created within the swept zone of the waterflooded reservoir. When the methane exsolved as water flowed between high-pressure injection and low-pressure production wells, the bubbles occupied pore space, reducing water saturation and relative permeability, and re-directing some water flow to "slower" unswept rock with lower permeability and higher oil saturation. In total, the waterflood's swept zone had been expanded to include previously-unflooded rock. This technology was applied in this field after screening based on careful anaerobic sampling, advanced microbiological analysis, and the ongoing success of its waterflood. No reservoir or geological or geophysical simulation models were employed, and physical modifications to field facilities were minor. This technology of utilizing existing microbial populations for enhanced oil recovery can therefore be considered for deployment into waterfloods where small scale, advanced maturity, or

  12. Abnormal pressure in hydrocarbon environments

    Science.gov (United States)

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  13. comparative evaluation of pressure distribution between horizontal

    African Journals Online (AJOL)

    user

    confirm or validate the results of conventional straight line methods like drawdown etc., thus it can be used when the straight line methods cannot adequately characterize the reservoir [2]. When a reservoir is bounded by water influx, information such as pressure distribution, are important in determining wellbore pressure ...

  14. The effect of blood volume loss on cardiovascular response to lower body negative pressure using a mathematical model

    Science.gov (United States)

    Karam, E. H.; Srinivasan, R. S.; Charles, J. B.; Fortney, S. M.

    1994-01-01

    Different mathematical models of varying complexity have been proposed in recent years to study the cardiovascular (CV) system. However, only a few of them specifically address the response to lower body negative pressure (LBNP), a stress that can be applied in weightlessness to predict changes in orthostatic tolerance. Also, the simulated results produced by these models agree only partially with experimental observations. In contrast, the model proposed by Melchior et al., and modified by Karam et al. is a simple representation of the CV system capable of accurately reproducing observed LBNP responses up to presyncopal levels. There are significant changes in LBNP response due to a loss of blood volume and other alterations that occur in weightlessness and related one-g conditions such as bedrest. A few days of bedrest can cause up to 15% blood volume loss (BVL), with consequent decreases in both stroke volume and cardiac output, and increases in heart rate, mean arterial pressure, and total peripheral resistance. These changes are more pronounced at higher levels of LBNP. This paper presents the results of a simulation study using our CV model to examine the effect of BVL on LBNP response.

  15. Pressure response of vacancy ordered maghemite (γ-Fe2O3) and high pressure transformed hematite (α-Fe2O3)

    International Nuclear Information System (INIS)

    Hearne, Giovanni; Pischedda, Vittoria

    2012-01-01

    Combined XRD and Mössbauer effect spectroscopy studies to high pressures of ∼30 GPa of vacancy ordered maghemite are presented. The vacancy ordered superstructure is robust and remains intact up to the pressure-induced onset transition to hematite at 13–16 GPa. The pressure transformed hematite is shown to be crystallographically textured, unlike the randomised low pressure maghemite phase. This arises out of a pressure or stress instigated topotactic transformation of the cubic-spinel to hexagonal-corundum structure. The textured sample permits us to obtain information on the spin reorientation behavior of the pressure transformed hematite in compression and decompression sequences. Spin reorientation is restricted to ∼15° over wide pressure ranges, attributable to the effect of entrapped vacancies in the high pressure structure. Thus there are structural and magnetic peculiarities specific to pressure transformed hematite not evident in pressurized hematite starting material. These are triggered by the maghemite→hematite transformation. - Graphical abstract: Pressure instigated topotactic transformation of vacancy ordered γ-Fe 2 O 3 →α-Fe 2 O 3 . There is restricted spin (B hf ) reorientation in the new pressure transformed hematite due to entrapped vacancies. The change in direction of V zz signifies a distortion of the FeO 6 octahedral local environment. Highlights: ► Robust vacancy ordered superstructure in maghemite to high pressures. ► Pressure instigated topotactic transformation to hematite and subsequent texture. ► Defect trapping in the pressure transformed hematite. ► Entrapped defects restricts spin reorientation in pressure transformed hematite. ► Contrasting behavior with pressurized hematite starting material.

  16. Numerical modeling of shear stimulation in naturally fractured geothermal reservoirs

    OpenAIRE

    Ucar, Eren

    2018-01-01

    Shear-dilation-based hydraulic stimulations are conducted to create enhanced geothermal systems (EGS) from low permeable geothermal reservoirs, which are initially not amenable to energy production. Reservoir stimulations are done by injecting low-pressurized fluid into the naturally fractured formations. The injection aims to activate critically stressed fractures by decreasing frictional strength and ultimately cause a shear failure. The shear failure leads to a permanent ...

  17. Chemical conditions of the Japanese neutral geothermal reservoirs

    International Nuclear Information System (INIS)

    Chiba, H.

    1991-01-01

    The aqueous speciation were calculated for fluids of seven Japanese geothermal systems. The aqueous composition as well as CO 2 partial pressure of fluid in neutral pH geothermal reservoir are controlled by silicate, calcite and anhydrite minerals. The chemical composition of neutral pH geothermal reservoir can be predictable if two parameters (e.g. temperature and one of the cation activities) are provided. (author)

  18. Tidal phenomena in reservoirs; Fenomeno de mare em reservatorios

    Energy Technology Data Exchange (ETDEWEB)

    Pinilla Cortes, John Freddy

    1997-06-01

    This work models the oceanic tidal effect on reservoirs by coupling geomechanic principles with equations for fluid in a deformable porous media. The coupling revealed the importance of establishing properly the system compressibility under the various possible configurations of the loading system. The basic models for infinite reservoir, constant outer-pressure reservoir and closed reservoir were considered. It was verified that it was possible to apply the superposition of effects on the solution for the basic models by carrying a simple transformation on the solution variable. The problem was treated by in the context of test analysis, concerning dimensionless form of variables and the inclusion of well effects. The solution for the infinite reservoir including tidal effects. The solution for the infinite reservoir including tidal effects was obtained in the Laplace space and was inverted numerically by using Crump's routine. The results were incorporated to conventional type curves, and were validated by comparison with real and simulated pressure test data. Finally, alternate practices were suggested to integrate the well test analysis in reservoirs affected by the tidal effect. (author)

  19. unconventional natural gas reservoirs

    International Nuclear Information System (INIS)

    Correa G, Tomas F; Osorio, Nelson; Restrepo R, Dora P

    2009-01-01

    This work is an exploration about different unconventional gas reservoirs worldwide: coal bed methane, tight gas, shale gas and gas hydrate? describing aspects such as definition, reserves, production methods, environmental issues and economics. The overview also mentioned preliminary studies about these sources in Colombia.

  20. Parallel reservoir simulator computations

    International Nuclear Information System (INIS)

    Hemanth-Kumar, K.; Young, L.C.

    1995-01-01

    The adaptation of a reservoir simulator for parallel computations is described. The simulator was originally designed for vector processors. It performs approximately 99% of its calculations in vector/parallel mode and relative to scalar calculations it achieves speedups of 65 and 81 for black oil and EOS simulations, respectively on the CRAY C-90

  1. A flexible pressure responsive device based on the interaction between silver nanoparticles and an aluminum reflector

    Science.gov (United States)

    Rankin, Alasdair; McGarry, Steven

    2018-01-01

    The unique and tunable optical properties of metal nanoparticles have attracted intense and sustained academic attention in recent years. In tandem with the demand for low-cost responsive materials, one particular topic of interest is the development of mechanically responsive device structures. This work describes the design, fabrication, and testing of a mechanically responsive plasmonic device structure that has been integrated onto a standard commercial plastic substrate. With a low actuation force and a visually perceivable color shift, this device would be attractive for applications requiring responsive features that can be activated by the human hand.

  2. The physiological response of soft tissue to periodic repositioning as a strategy for pressure ulcer prevention

    OpenAIRE

    Woodhouse, Marjolein; Worsley, Peter; Voegeli, David; Schoonhoven, Lisette; Bader, Dan L.

    2015-01-01

    Background: individuals who have reduced mobility are at risk of developing pressure ulcers if they are subjected to sustained static postures. To reduce this risk, clinical guidelines advocate healthcare professionals reposition patients regularly. Automated tilting mechanisms have recently been introduced to provide periodic repositioning. This study compared the performance of such a prototype mattress to conventional manual repositioning.Methods: ten healthy participants (7 male and 3 fem...

  3. Early 24-hour blood pressure response to Roux-en-Y gastric bypass in obese patients

    DEFF Research Database (Denmark)

    Pedersen, Julie S; Borup, Christian; Damgaard, Morten

    2017-01-01

    BMI 40.8 kg/m2) and 10 severely obese normotensive (mean BMI 41.7 kg/m2) patients underwent 24-h ambulatory blood pressure measurements (24 h ABPMs) before LRYGB and again day 1 and day 10 after LRYGB. No change in 24 h BP was observed day 1 after LRYGB. Day 10 after surgery both hypertensive...

  4. Effects of various transport inhibitors on oscillating TGF pressure responses in the rat

    DEFF Research Database (Denmark)

    Leyssac, P P; Holstein-Rathlou, N H

    1986-01-01

    caused by the solvent (Ringer solution). Acetazolamide (0.5 mM) stimulated a slow (30 mHz) oscillation and often activated a fast (130-190 mHz) rhythm. Furosemide (FUR) (0.1-2.0 mM) abolished the slow oscillation and caused the intratubular pressure to rise by 2-3 mm Hg. FUR (0.05 mM) caused partial...

  5. Blood Pressure Responses to Endovascular Stimulation: A Potential Therapy for Autonomic Disorders With Vasodilatation.

    Science.gov (United States)

    Naksuk, Niyada; Killu, Ammar M; Yogeswaran, Vidhushei; Desimone, Christopher V; Suddendorf, Scott H; Ladewig, Dorothy J; Powers, Joanne M; Weber, Sarah; Madhavan, Malini; Cha, Yong-Mei; Kapa, Suraj; Asirvatham, Samuel J

    2016-09-01

    We have previously shown that sympathetic ganglia stimulation via the renal vein rapidly increases blood pressure. This study further investigated the optimal target sites and effective energy levels for stimulation of the renal vasculatures and nearby sympathetic ganglia for rapid increase in blood pressure. The pre-study protocol for endovascular stimulations included 2 minutes of stimulation (1-150 V and 10 pulses per second) and at least 2 minutes of rest during poststimulation. If blood pressure and/or heart rate were changed during the stimulation, time to return to baseline was allowed prior to the next stimulation. In 11 acute canine studies, we performed 85 renal artery, 30 renal vein, and 8 hepatic vasculature stimulations. The mean arterial pressure (MAP) rapidly increased during stimulation of renal artery (95 ± 18 mmHg vs. 103 ± 15 mmHg; P vein (90 ± 16 mmHg vs. 102 ± 20 mmHg; P = 0.001), and hepatic vasculatures (74 ± 8 mmHg vs. 82 ± 11 mmHg; P = 0.04). Predictors of a significant increase in MAP were energy >10 V focused on the left renal artery, bilateral renal arteries, and bilateral renal veins (especially the mid segment). Overall, heart rate was unchanged, but muscle fasciculation was observed in 22.0% with an output >10 V (range 15-150 V). Analysis after excluding the stimulations that resulted in fasciculation yielded similar results to the main findings. Stimulation of intra-abdominal vasculatures promptly increased the MAP and thus may be a potential treatment option for hypotension in autonomic disorders. Predictors of optimal stimulation include energy delivery and the site of stimulation (for the renal vasculatures), which informs the design of subsequent research. © 2016 Wiley Periodicals, Inc.

  6. Optimal Complexity in Reservoir Modeling of an Eolian Sandstone for Carbon Sequestration Simulation

    Science.gov (United States)

    Li, S.; Zhang, Y.; Zhang, X.

    2011-12-01

    permeability, relative permeability, capillary pressure, rock compressibility, salinity, and reservoir temperature), while assuming identical production scenario (i.e., well configuration, rate, bottomhole pressure constraint) and boundary condition (i.e., model is part of a larger semi-infinite system where the injected gas can flow out). Results are compared among models to identify parameters that have 1st order influence on selected outcomes (i.e., CO2 storage ratio). The comparison indicates that, to capture the key sensitivity factors of the most complex model, an optimal reservoir model is the facies model ignoring soft-data conditioning. Based on these results, a response-surface prediction uncertainty analysis is underway to identify prediction envelope for each outcome, which will be further compared. Future work with also assess other depositional environments in an attempt to derive a set of geological modeling guidelines, one for each environment.

  7. Estimation of reservoir fluid volumes through 4-D seismic analysis on Gullfaks

    Energy Technology Data Exchange (ETDEWEB)

    Veire, H.S.; Reymond, S.B.; Signer, C.; Tenneboe, P.O.; Soenneland, L.; Schlumberger, Geco-Prakla

    1998-12-31

    4-D seismic has the potential to monitor hydrocarbon movement in reservoirs during production, and could thereby supplement the predictions of reservoir parameters offered by the reservoir simulator. However 4-D seismic is often more band limited than the vertical resolution required in the reservoir model. As a consequence the seismic data holds a composite response from reservoir parameter changes during production so that the inversion becomes non-unique. A procedure where data from the reservoir model are integrated with seismic data will be presented. The potential of such a procedure is demonstrated through a case study from a recent 4-D survey over the Gullfaks field. 2 figs.

  8. High-temperature vibrational response and high-pressure melting curve of lead

    International Nuclear Information System (INIS)

    Bhatt, N.K.; Thakore, B.Y.; Vyas, P.R.; Jani, A.R.

    2010-01-01

    The concept of mean-field potential (MFP) is an adequate description to evaluate vibrational contribution to the Helmholtz free energy at finite temperatures and pressures for condensed-state of matter. Once the total free energy is available, as an explicit function of temperature and volume (≡pressure), several thermodynamic properties can be calculated numerically using the text-book equations. While the MFP approach is robust, its applicability is extended to estimate atomic and vibrational properties of materials within the Debye model. In the present scheme, we propose energy-calculation based formula to calculate the Debye temperature. We discuss temperature dependence of Debye temperature, entropy and atomic mean-square displacements for elemental fcc-Pb. It is demonstrated that the present extended MFP (EMFP) scheme, allows one to include the effect of three choices for thermodynamic Grueneisen parameter, namely, due to Slater, due to Dugdale and MacDonald and the one due to free volume theory, on different physical properties. A much debatable dynamical phenomenon, a high pressure melting curve is also obtained, where melting temperature is now explicitly dependent on these three assumptions for the Grueneisen parameter. Results so obtained are discussed and compared with the recent first principles theoretical and experimental findings.

  9. High-temperature vibrational response and high-pressure melting curve of lead

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, N.K., E-mail: bhattnisarg@hotmail.co [Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388 120 (India); Thakore, B.Y. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388 120 (India); Vyas, P.R. [Department of Physics, Gujarat University, Ahmedabad 380 009 (India); Jani, A.R. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388 120 (India)

    2010-08-15

    The concept of mean-field potential (MFP) is an adequate description to evaluate vibrational contribution to the Helmholtz free energy at finite temperatures and pressures for condensed-state of matter. Once the total free energy is available, as an explicit function of temperature and volume ({identical_to}pressure), several thermodynamic properties can be calculated numerically using the text-book equations. While the MFP approach is robust, its applicability is extended to estimate atomic and vibrational properties of materials within the Debye model. In the present scheme, we propose energy-calculation based formula to calculate the Debye temperature. We discuss temperature dependence of Debye temperature, entropy and atomic mean-square displacements for elemental fcc-Pb. It is demonstrated that the present extended MFP (EMFP) scheme, allows one to include the effect of three choices for thermodynamic Grueneisen parameter, namely, due to Slater, due to Dugdale and MacDonald and the one due to free volume theory, on different physical properties. A much debatable dynamical phenomenon, a high pressure melting curve is also obtained, where melting temperature is now explicitly dependent on these three assumptions for the Grueneisen parameter. Results so obtained are discussed and compared with the recent first principles theoretical and experimental findings.

  10. Relation of serum uric acid to an exaggerated systolic blood pressure response to exercise testing in men with normotension.

    Science.gov (United States)

    Jae, Sae Young; Bunsawat, Kanokwan; Choi, Yoon-Ho; Kim, Yeon Soo; Touyz, Rhian M; Park, Jeong Bae; Franklin, Barry A

    2018-03-01

    The authors investigated the hypothesis that high serum uric acid concentrations may be related to an exaggerated systolic blood pressure (SBP) response to maximal exercise testing in men with normotension, independent of potential confounding variables. In 4640 healthy men with normotension who underwent maximal treadmill exercise testing and fasting blood chemistry studies, including serum uric acid concentrations, an exaggerated SBP response, defined as SBP ≥ 210 mm Hg, was detected in 152 men (3.3%). After adjusting for potential confounders, participants in the highest quartile of serum uric acid (>6.6 mg/dL) had a higher odds ratio of demonstrating an exaggerated SBP to maximal exercise (odds ratio, 2.19; 95% confidence interval, 1.24-3.86) compared with participants in the lowest quartile of serum uric acid (response to maximal exercise testing in men with normotension, independent of established coronary risk factors. ©2018 Wiley Periodicals, Inc.

  11. Effect of the Detector Width and Gas Pressure on the Frequency Response of a Micromachined Thermal Accelerometer

    Directory of Open Access Journals (Sweden)

    Johann Courteaud

    2011-05-01

    Full Text Available In the present work, the design and the environmental conditions of a micromachined thermal accelerometer, based on convection effect, are discussed and studied in order to understand the behavior of the frequency response evolution of the sensor. It has been theoretically and experimentally studied with different detector widths, pressure and gas nature. Although this type of sensor has already been intensively examined, little information concerning the frequency response modeling is currently available and very few experimental results about the frequency response are reported in the literature. In some particular conditions, our measurements show a cut-off frequency at −3 dB greater than 200 Hz. By using simple cylindrical and planar models of the thermal accelerometer and an equivalent electrical circuit, a good agreement with the experimental results has been demonstrated.

  12. Integration of rock typing methods for carbonate reservoir characterization

    International Nuclear Information System (INIS)

    Aliakbardoust, E; Rahimpour-Bonab, H

    2013-01-01

    Reservoir rock typing is the most important part of all reservoir modelling. For integrated reservoir rock typing, static and dynamic properties need to be combined, but sometimes these two are incompatible. The failure is due to the misunderstanding of the crucial parameters that control the dynamic behaviour of the reservoir rock and thus selecting inappropriate methods for defining static rock types. In this study, rock types were defined by combining the SCAL data with the rock properties, particularly rock fabric and pore types. First, air-displacing-water capillary pressure curues were classified because they are representative of fluid saturation and behaviour under capillary forces. Next the most important rock properties which control the fluid flow and saturation behaviour (rock fabric and pore types) were combined with defined classes. Corresponding petrophysical properties were also attributed to reservoir rock types and eventually, defined rock types were compared with relative permeability curves. This study focused on representing the importance of the pore system, specifically pore types in fluid saturation and entrapment in the reservoir rock. The most common tests in static rock typing, such as electrofacies analysis and porosity–permeability correlation, were carried out and the results indicate that these are not appropriate approaches for reservoir rock typing in carbonate reservoirs with a complicated pore system. (paper)

  13. 49 CFR 230.23 - Responsibility for general construction and safe working pressure.