WorldWideScience

Sample records for reservoir operations prey

  1. Optimising reservoir operation

    DEFF Research Database (Denmark)

    Ngo, Long le

    Anvendelse af optimeringsteknik til drift af reservoirer er blevet et væsentligt element i vandressource-planlægning og -forvaltning. Traditionelt har reservoirer været styret af heuristiske procedurer for udtag af vand, suppleret i en vis udstrækning af subjektive beslutninger. Udnyttelse af...... reservoirer involverer en lang række interessenter med meget forskellige formål (f.eks. kunstig vanding, vandkraft, vandforsyning mv.), og optimeringsteknik kan langt bedre lede frem til afbalancerede løsninger af de ofte modstridende interesser. Afhandlingen foreslår en række tiltag, hvormed traditionelle...

  2. Prediction of fish biomass, harvest and prey--predator relations in reservoirs

    International Nuclear Information System (INIS)

    Jenkins, R.M.

    1977-01-01

    Regression analyses of the effect of total dissolved solids on fish standing crops in 166 reservoirs produced formulas with coefficients of determination of 0.63 to 0.81. These formulas provide indexes to average biotic conditions and help to identify stressed aquatic environments. Simple predictive formulas are also presented for clupeid crops in various reservoir types, as clupeids are the fishes most frequently impinged or entrained at southern power plants. A method of calculating the adequacy of the available prey crop in relation to the predator crop is advanced to further aid in identification of perturbed prey populations. Assessment of stress as reflected by changes in sport fishing success can also be approached by comparison of the predicted harvest potential with actual fish harvest data. Use of these predictive indexes is recommended until more elaborate models are developed to identify power plant effects

  3. Ecological operation for Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    Wen-xian Guo

    2011-06-01

    Full Text Available The traditional operation of the Three Gorges Reservoir has mainly focused on water for flood control, power generation, navigation, water supply, and recreation, and given less attention to the negative impacts of reservoir operation on the river ecosystem. In order to reduce the negative influence of reservoir operation, ecological operation of the reservoir should be studied with a focus on maintaining a healthy river ecosystem. This study considered ecological operation targets, including maintaining the river environmental flow and protecting the spawning and reproduction of the Chinese sturgeon and four major Chinese carps. Using flow data from 1900 to 2006 at the Yichang gauging station as the control station data for the Yangtze River, the minimal and optimal river environmental flows were analyzed, and eco-hydrological targets for the Chinese sturgeon and four major Chinese carps in the Yangtze River were calculated. This paper proposes a reservoir ecological operation model, which comprehensively considers flood control, power generation, navigation, and the ecological environment. Three typical periods, wet, normal, and dry years, were selected, and the particle swarm optimization algorithm was used to analyze the model. The results show that ecological operation modes have different effects on the economic benefit of the hydropower station, and the reservoir ecological operation model can simulate the flood pulse for the requirements of spawning of the Chinese sturgeon and four major Chinese carps. According to the results, by adopting a suitable re-operation scheme, the hydropower benefit of the reservoir will not decrease dramatically while the ecological demand is met. The results provide a reference for designing reasonable operation schemes for the Three Gorges Reservoir.

  4. Operational trade-offs in reservoir control

    Science.gov (United States)

    Georgakakos, Aris P.

    1993-11-01

    Reservoir operation decisions require constant reevaluation in the face of conflicting objectives, varying hydrologic conditions, and frequent operational policy changes. Optimality is a relative concept very much dependent on the circumstances under which a decision is made. More than anything else, reservoir management authorities need the means to assess the impacts of various operational options. It is their responsibility to define what is desirable after a thorough evaluation of the existing circumstances. This article presents a model designed to generate operational trade-offs common among reservoir systems. The model avoids an all-encompassing problem formulation and distinguishes three operational modes (levels) corresponding to normal, drought, and flood operations. Each level addresses only relevant system elements and uses a static and a dynamic control module to optimize turbine performance within each planning period and temporally. The model is used for planning the operation of the Savannah River System.

  5. Measurement of Lake Roosevelt biota in relation to reservoir operations. Appendices 1991

    International Nuclear Information System (INIS)

    Griffith, J.R.; McDowell, A.C.; Scholz, A.T.

    1991-01-01

    This report consists of appendices A-F containing the biological data which were collected from Lake Roosevelt, Washington. The data are to be used in the design of a computer model that would predict biological responses of reservoir operations as part of the System Operation Review program. Major components of the model included: Quantification of impacts to phytoplankton, zooplanktons, benthic invertebrates, and fish caused by reservoir drawdowns and low water retention times; quantification of number, distribution, and use of fish food organisms in the reservoir by season; determination of seasonal growth of fish species as related to reservoir operations, prey abundance and utilization; and quantification of entrainment levels of zooplankton and fish as related to reservoir operations and water retention times

  6. Measurement of Lake Roosevelt biota in relation to reservoir operations. 1991 Annual report

    International Nuclear Information System (INIS)

    Griffith, J.R.; McDowell, A.C.; Scholz, A.T.

    1991-01-01

    The purpose of this study was to collect biological data from Lake Roosevelt to be used in the design of a computer model that would predict biological responses to reservoir operations as part of the System Operation Review program. Major components of the Lake Roosevelt model included: quantification of impacts to phytoplankton, zooplanktons, benthic invertebrates, and fish caused by reservoir drawdowns and low water retention times; quantification of number, distribution, and use of fish food organisms in the reservoir by season; determination of seasonal growth of fish species as related to reservoir operations, prey abundance and utilization; and quantification of entrainment levels of zooplankton and fish as related to reservoir operations and water retention times. This report summarized the data collected on Lake Roosevelt for 1991 and includes limnological, zooplankton, benthic macroinvertebrate, fishery, and reservoir operation data. Discussions cover reservoir operation affect upon zooplankton, benthic macroinvertebrates, and fish. Reservoir operations brought reservoir elevations to a low of 1,221.7 in April, the result of power operations and a flood control shift from Dworshak Dam, in Idaho, to Grand Coulee Dam. Water retention times were correspondingly low reaching a minimum of 14.7 days on April 27th

  7. Measurement of Lake Roosevelt Biota in Relation to Reservoir Operations; 1991 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Janelle R.; McDowell, Amy C.; Scholz, Allan T.

    1995-08-01

    The purpose of this study was to collect biological data from Lake Roosevelt to be used in the design of a computer model that would predict biological responses to reservoir operations as part of the System Operation Review program. Major components of the Lake Roosevelt model included: quantification of impacts to phytoplankton, zooplanktons, benthic invertebrates, and fish caused by reservoir drawdowns and low water retention times; quantification of number, distribution, and use of fish food organisms in the reservoir by season; determination of seasonal growth of fish species as related to reservoir operations, prey abundance and utilization; and quantification of entrainment levels of zooplankton and fish as related to reservoir operations and water retention times. This report summarized the data collected on Lake Roosevelt for 1991 and includes limnological, zooplankton, benthic macroinvertebrate, fishery, and reservoir operation data. Discussions cover reservoir operation affect upon zooplankton, benthic macroinvertebrates, and fish. Reservoir operations brought reservoir elevations to a low of 1,221.7 in April, the result of power operations and a flood control shift from Dworshak Dam, in Idaho, to Grand Coulee Dam. Water retention times were correspondingly low reaching a minimum of 14.7 days on April 27th.

  8. Interactions between walleyes and smallmouth bass in a Missouri River reservoir with consideration of the influence of temperature and prey

    Science.gov (United States)

    Wuellner, Melissa R.; Chipps, Steven R.; Willis, David W.; Adams, Wells E.

    2010-01-01

    Walleyes Sander vitreus are the most popular fish among South Dakota anglers, but smallmouth bass Micropterus dolomieu were introduced to provide new angling opportunities. Some walleye anglers have reported reductions in the quality of walleye fisheries since the introduction of smallmouth bass and attribute this to the consumption of young walleyes by smallmouth bass and competition for shared prey resources. We quantified the diets of walleyes and smallmouth bass in the lower reaches of Lake Sharpe (a Missouri River reservoir), calculated the diet overlap between the two predators, and determined whether they partitioned shared prey based on size. We also quantified walleye diets in the upper reach of the reservoir, which has a different prey base and allowed us to compare the growth rates of walleyes within Lake Sharpe. Age-0 gizzard shad Dorosoma cepedianum composed a substantial proportion of the diets of both predators, regardless of location, for most of the growing season; the patterns in shad vulnerability appeared to drive the observed patterns in diet overlap. Smallmouth bass appeared to consume a smaller size range of gizzard shad than did walleyes, which consumed a wide range. Smallmouth bass consumed Sander spp. in some months, but in very low quantities. Given that global climate change is expected to alter the population and community dynamics in Great Plains reservoirs, we also used a bioenergetics approach to predict the potential effects of limiting prey availability (specifically, the absence of gizzard shad and rainbow smelt Osmerus mordax) and increased water temperatures (as projected from global climate change models) on walleye and smallmouth bass growth. The models indicated that the absence of rainbow smelt from the diets of walleyes in upper Lake Sharpe would reduce growth but that the absence of gizzard shad would have a more marked negative effect on both predators at both locations. The models also indicated that higher

  9. Feeding Activity, Rate of Consumption, Daily Ration and Prey Selection of Major Predators in John Day Reservoir, 1985: Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, Douglas E.; United States. Bonneville Power Administration; U.S. Fish and Wildlife Service; National Fishery Research Center (U.S.)

    1986-10-01

    This report summarizes activities in 1985 to determine the extent of predation on juvenile salmonids in John Day Reservoir. To estimate consumption of juvenile salmonids we used the composition of the natural diet of predators and in the laboratory determined rate of gastric evacuation by predators. Salmonids were the single most important food item for northern squawfish (Ptychocheilus oregonensis) at McNary tailrace during all sampling periods and at John Day forebay during July. Salmonids accounted for 11.6% of the diet of walleye (Stizostedion vitreum vitreum) in 1985 which was about twice that found in previous years. Salmonids contributed little to smallmouth bass (Micropterus dolomieui) diet but comprised about 25% of the diet of channel catfish (Ictalurus punctatus). Composition of prey taxa in beach seine catches in 1985 was similar to 1983 and 1984 with chinook salmon (Oncorhynchus tschawytscha), northern squawfish, largescale sucker (Catostomus macrocheilus), and sand roller (Percopsis transmontana) dominating the catch at main channel stations and crappies (Pomoxis spp.) and largescale sucker dominating at backwater stations. Preliminary results of beach seine efficiency studies suggest that seine efficiency varied significantly among prey species and between substrate types in 1985. Results of digestion rate experiments indicate that gastric evacuation in northern squawfish can be predicted using water temperature, prey weight, predator weight and time. 19 refs., 19 figs., 13 tabs.

  10. Trophic feasibility of reintroducing anadromous salmonids in three reservoirs on the north fork Lewis River, Washington: Prey supply and consumption demand of resident fishes

    Science.gov (United States)

    Sorel, Mark H.; Hansen, Adam G.; Connelly, Kristin A.; Beauchamp, David A.

    2016-01-01

    The reintroduction of anadromous salmonids in reservoirs is being proposed with increasing frequency, requiring baseline studies to evaluate feasibility and estimate the capacity of reservoir food webs to support reintroduced populations. Using three reservoirs on the north fork Lewis River as a case study, we demonstrate a method to determine juvenile salmonid smolt rearing capacities for lakes and reservoirs. To determine if the Lewis River reservoirs can support reintroduced populations of juvenile stream-type Chinook Salmon Oncorhynchus tshawytscha, we evaluated the monthly production of daphniaDaphnia spp. (the primary zooplankton consumed by resident salmonids in the system) and used bioenergetics to model the consumption demand of resident fishes in each reservoir. To estimate the surplus of Daphnia prey available for reintroduced salmonids, we assumed a maximum sustainable exploitation rate and accounted for the consumption demand of resident fishes. The number of smolts that could have been supported was estimated by dividing any surplus Daphnia production by the simulated consumption demand of an individual Chinook Salmon fry rearing in the reservoir to successful smolt size. In all three reservoirs, densities of Daphnia were highest in the epilimnion, but warm epilimnetic temperatures and the vertical distribution of planktivores suggested that access to abundant epilimnetic prey was limited. By comparing accessible prey supply and demand on a monthly basis, we were able to identify potential prey supply bottlenecks that could limit smolt production and growth. These results demonstrate that a bioenergetics approach can be a valuable method of examining constraints on lake and reservoir rearing capacity, such as thermal structure and temporal food supply. This method enables numerical estimation of rearing capacity, which is a useful metric for managers evaluating the feasibility of reintroducing Pacific salmon Oncorhynchus spp. in lentic systems.

  11. Optimal Operation of Hydropower Reservoirs under Climate Change: The Case of Tekeze Reservoir, Eastern Nile

    Directory of Open Access Journals (Sweden)

    Fikru Fentaw Abera

    2018-03-01

    Full Text Available Optimal operation of reservoirs is very essential for water resource planning and management, but it is very challenging and complicated when dealing with climate change impacts. The objective of this paper was to assess existing and future hydropower operation at the Tekeze reservoir in the face of climate change. In this study, a calibrated and validated Soil and Water Assessment Tool (SWAT was used to model runoff inflow into the Tekeze hydropower reservoir under present and future climate scenarios. Inflow to the reservoir was simulated using hydro-climatic data from an ensemble of downscaled climate data based on the Coordinated Regional climate Downscaling Experiment over African domain (CORDEX-Africa with Coupled Intercomparison Project Phase 5 (CMIP5 simulations under Representative Concentration Pathway (RCP4.5 and RCP8.5 climate scenarios. Observed and projected inflows to Tekeze hydropower reservoir were used as input to the US Army Corps of Engineer’s Reservoir Evaluation System Perspective Reservoir Model (HEC-ResPRM, a reservoir operation model, to optimize hydropower reservoir release, storage and pool level. Results indicated that climate change has a clear impact on reservoir inflow and showed increase in annual and monthly inflow into the reservoir except in dry months from May to June under RCP4.5 and RCP8.5 climate scenarios. HEC-ResPRM optimal operation results showed an increase in Tekeze reservoir power storage potential up to 25% and 30% under RCP4.5 and RCP8.5 climate scenarios, respectively. This implies that Tekeze hydropower production will be affected by climate change. This analysis can be used by water resources planners and mangers to develop reservoir operation techniques considering climate change impact to increase power production.

  12. Estimation of Bank Erosion Due To Reservoir Operation in Cascade (Case Study: Citarum Cascade Reservoir

    Directory of Open Access Journals (Sweden)

    Sri Legowo

    2009-11-01

    Full Text Available Sedimentation is such a crucial issue to be noted once the accumulated sediment begins to fill the reservoir dead storage, this will then influence the long-term reservoir operation. The sediment accumulated requires a serious attention for it may influence the storage capacity and other reservoir management of activities. The continuous inflow of sediment to the reservoir will decrease the capacity of reservoir storage, the reservoir value in use, and the useful age of reservoir. Because of that, the rate of the sediment needs to be delayed as possible. In this research, the delay of the sediment rate is considered based on the rate of flow of landslide of the reservoir slope. The rate of flow of the sliding slope can be minimized by way of each reservoir autonomous efforts. This effort can be performed through; the regulation of fluctuating rate of reservoir surface current that does not cause suddenly drawdown and upraising as well. The research model is compiled using the searching technique of Non Linear Programming (NLP.The rate of bank erosion for the reservoir variates from 0.0009 to 0.0048 MCM/year, which is no sigrificant value to threaten the life time of reservoir.Mean while the rate of watershed sediment has a significant value, i.e: 3,02 MCM/year for Saguling that causes to fullfill the storage capacity in 40 next years (from years 2008.

  13. Assessing reservoir operations risk under climate change

    Science.gov (United States)

    Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T.

    2009-01-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios. Copyright 2009 by the American Geophysical Union.

  14. Multiobjective Optimization Modeling Approach for Multipurpose Single Reservoir Operation

    Directory of Open Access Journals (Sweden)

    Iosvany Recio Villa

    2018-04-01

    Full Text Available The water resources planning and management discipline recognizes the importance of a reservoir’s carryover storage. However, mathematical models for reservoir operation that include carryover storage are scarce. This paper presents a novel multiobjective optimization modeling framework that uses the constraint-ε method and genetic algorithms as optimization techniques for the operation of multipurpose simple reservoirs, including carryover storage. The carryover storage was conceived by modifying Kritsky and Menkel’s method for reservoir design at the operational stage. The main objective function minimizes the cost of the total annual water shortage for irrigation areas connected to a reservoir, while the secondary one maximizes its energy production. The model includes operational constraints for the reservoir, Kritsky and Menkel’s method, irrigation areas, and the hydropower plant. The study is applied to Carlos Manuel de Céspedes reservoir, establishing a 12-month planning horizon and an annual reliability of 75%. The results highly demonstrate the applicability of the model, obtaining monthly releases from the reservoir that include the carryover storage, degree of reservoir inflow regulation, water shortages in irrigation areas, and the energy generated by the hydroelectric plant. The main product is an operational graph that includes zones as well as rule and guide curves, which are used as triggers for long-term reservoir operation.

  15. System Dynamics Modeling of Multipurpose Reservoir Operation

    Directory of Open Access Journals (Sweden)

    Ebrahim Momeni

    2006-03-01

    Full Text Available System dynamics, a feedback – based object – oriented simulation approach, not only represents complex dynamic systemic systems in a realistic way but also allows the involvement of end users in model development to increase their confidence in modeling process. The increased speed of model development, the possibility of group model development, the effective communication of model results, and the trust developed in the model due to user participation are the main strengths of this approach. The ease of model modification in response to changes in the system and the ability to perform sensitivity analysis make this approach more attractive compared with systems analysis techniques for modeling water management systems. In this study, a system dynamics model was developed for the Zayandehrud basin in central Iran. This model contains river basin, dam reservoir, plains, irrigation systems, and groundwater. Current operation rule is conjunctive use of ground and surface water. Allocation factor for each irrigation system is computed based on the feedback from groundwater storage in its zone. Deficit water is extracted from groundwater.The results show that applying better rules can not only satisfy all demands such as Gawkhuni swamp environmental demand, but it can also  prevent groundwater level drawdown in future.

  16. Reservoir Operating Rule Optimization for California's Sacramento Valley

    Directory of Open Access Journals (Sweden)

    Timothy Nelson

    2016-03-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss1art6Reservoir operating rules for water resource systems are typically developed by combining intuition, professional discussion, and simulation modeling. This paper describes a joint optimization–simulation approach to develop preliminary economically-based operating rules for major reservoirs in California’s Sacramento Valley, based on optimized results from CALVIN, a hydro-economic optimization model. We infer strategic operating rules from the optimization model results, including storage allocation rules to balance storage among multiple reservoirs, and reservoir release rules to determine monthly release for individual reservoirs. Results show the potential utility of considering previous year type on water availability and various system and sub-system storage conditions, in addition to normal consideration of local reservoir storage, season, and current inflows. We create a simple simulation to further refine and test the derived operating rules. Optimization model results show particular insights for balancing the allocation of water storage among Shasta, Trinity, and Oroville reservoirs over drawdown and refill seasons, as well as some insights for release rules at major reservoirs in the Sacramento Valley. We also discuss the applicability and limitations of developing reservoir operation rules from optimization model results.

  17. Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients

    Czech Academy of Sciences Publication Activity Database

    Jezbera, Jan; Horňák, Karel; Šimek, Karel

    2006-01-01

    Roč. 8, č. 8 (2006), s. 1330-1339 ISSN 1462-2912. [SAME /9./. Helsinky, 21.08.2005-26.08.2005] R&D Projects: GA ČR(CZ) GA206/05/0007 Grant - others:MŠM(CZ) 60076658/01 Institutional research plan: CEZ:AV0Z60170517 Keywords : selectivity * flagellates * grazing * fluorescence * reservoir * nutrients Subject RIV: EE - Microbiology, Virology Impact factor: 4.630, year: 2006

  18. Fuzzy rule-based model for hydropower reservoirs operation

    Energy Technology Data Exchange (ETDEWEB)

    Moeini, R.; Afshar, A.; Afshar, M.H. [School of Civil Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2011-02-15

    Real-time hydropower reservoir operation is a continuous decision-making process of determining the water level of a reservoir or the volume of water released from it. The hydropower operation is usually based on operating policies and rules defined and decided upon in strategic planning. This paper presents a fuzzy rule-based model for the operation of hydropower reservoirs. The proposed fuzzy rule-based model presents a set of suitable operating rules for release from the reservoir based on ideal or target storage levels. The model operates on an 'if-then' principle, in which the 'if' is a vector of fuzzy premises and the 'then' is a vector of fuzzy consequences. In this paper, reservoir storage, inflow, and period are used as premises and the release as the consequence. The steps involved in the development of the model include, construction of membership functions for the inflow, storage and the release, formulation of fuzzy rules, implication, aggregation and defuzzification. The required knowledge bases for the formulation of the fuzzy rules is obtained form a stochastic dynamic programming (SDP) model with a steady state policy. The proposed model is applied to the hydropower operation of ''Dez'' reservoir in Iran and the results are presented and compared with those of the SDP model. The results indicate the ability of the method to solve hydropower reservoir operation problems. (author)

  19. Reservoir shorelines : a methodology for evaluating operational impacts

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, M.; Braund-Read, J.; Musgrave, B. [BC Hydro, Burnaby, BC (Canada)

    2009-07-01

    BC Hydro has been operating hydroelectric facilities for over a century in British Columbia. The integrity and stability of the shorelines and slopes bordering hydroelectric reservoirs is affected by changing water levels in the reservoir, natural processes of flooding, wind and wave action and modification of groundwater levels. Establishing setbacks landward of the shoreline are needed in order to protect useable shoreline property that may be at risk of flooding, erosion or instability due to reservoir operations. Many of the reservoirs in British Columbia are situated in steep, glaciated valleys with diverse geological, geomorphological and climatic conditions and a variety of eroding shorelines. As such, geotechnical studies are needed to determine the operational impacts on reservoir shorelines. Since the 1960s BC Hydro has been developing a methodology for evaluating reservoir impacts and determining the land around the reservoir perimeter that should remain as a right of way for operations while safeguarding waterfront development. The methodology was modified in the 1990s to include geomorphological and geological processes. However, uncertainties in the methodology still exist due to limited understanding of key issues such as rates of erosion and shoreline regression, immaturity of present day reservoir shorelines and impacts of climate change. 11 refs., 1 tab., 7 figs.

  20. Modelling of Reservoir Operations using Fuzzy Logic and ANNs

    Science.gov (United States)

    Van De Giesen, N.; Coerver, B.; Rutten, M.

    2015-12-01

    Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, , was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.

  1. Reservoirs operation and water resources utilization coordination in Hongshuihe basin

    Science.gov (United States)

    Li, Chonghao; Chi, Kaige; Pang, Bo; Tang, Hongbin

    2018-06-01

    In the recent decade, the demand for water resources has been increasing with the economic development. The reservoirs of cascade hydropower stations in Hongshuihe basin, which are constructed with a main purpose of power generation, are facing more integrated water resources utilization problem. The conflict between power generation of cascade reservoirs and flood control, shipping, environmental protection and water supply has become increasingly prominent. This paper introduces the general situation and integrated water demand of cascade reservoirs in Hongshuihe basin, and it analyses the impact of various types of integrated water demand on power generation and supply. It establishes mathematic models, constrained by various types of integrated water demand, to guide the operation and water resources utilization management of cascade reservoirs in Hongshuihe basin. Integrated water coordination mechanism of Hongshuihe basin is also introduced. It provides a technical and management guide and demonstration for cascade reservoirs operation and integrated water management at home and abroad.

  2. Feeding Activity, Rate of Consumption, Daily Ration and Prey Selection of Major Predators in John Day Reservoir, 1984 : Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Gerard A.; United States. Bonneville Power Administration; U.S. Fish and Wildlife Service; National Fishery Research Center (U.S.)

    1986-07-01

    The extent of predation on juvenile salmonids in John Day Reservoir was determined. Salmonids were the single most important food item by weight for northern squawfish (Ptychocheilus oregonensis) in the restricted zones at McNary tailrace and John Day forebay during all sampling periods. Salmonids accounted for 18.1% of the weight in the diet of walleyes (Stizostedion vitreum vitreum) in 1984 which was at least twice that found in previous years. In smallmouth bass (Micropterus dolomieui) salmonids contributed little to their diet whereas for channel catfish (Ictalurus punctatus) fish accounted for 64.1% of the weight in their diet with salmonids responsible for approximately half of this weight. An intensive search of the fisheries literature was conducted to review various fish capture and control techniques which might have potential as predation control measures for the major predators of juvenile salmonids in the Columbia River system. Most prey protection measures were judged to have high potential and direct predator control measures were judged to have moderate or low potential.

  3. Diffuser Operations at Spring Hollow Reservoir

    OpenAIRE

    Gantzer, Paul Anthony

    2002-01-01

    Stratification is a natural occurrence in deep lakes and reservoirs. This phenomenon results in two distinct layers, the warmer, less dense epilimnion on top and the colder, denser, hypolimnion on the bottom. The epilimnion remains saturated with dissolved oxygen (DO) from mass transfer with the atmosphere, while the hypolimnion continues to undergo oxygen-depleting processes. During seasons of high oxygen demand the hypolimnion often becomes anoxic and results in the release of compounds,...

  4. Advancing reservoir operation description in physically based hydrological models

    Science.gov (United States)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  5. Sudden water pollution accidents and reservoir emergency operations: impact analysis at Danjiangkou Reservoir.

    Science.gov (United States)

    Zheng, Hezhen; Lei, Xiaohui; Shang, Yizi; Duan, Yang; Kong, Lingzhong; Jiang, Yunzhong; Wang, Hao

    2018-03-01

    Danjiangkou Reservoir is the source reservoir of the Middle Route of the South-to-North Water Diversion Project (MRP). Any sudden water pollution accident in the reservoir would threaten the water supply of the MRP. We established a 3-D hydrodynamic and water quality model for the Danjiangkou Reservoir, and proposed scientific suggestions on the prevention and emergency management for sudden water pollution accidents based on simulated results. Simulations were performed on 20 hypothetical pollutant discharge locations and 3 assumed amounts, in order to model the effect of pollutant spreading under different reservoir operation types. The results showed that both the location and mass of pollution affected water quality; however, different reservoir operation types had little effect. Five joint regulation scenarios, which altered the hydrodynamic processes of water conveyance for the Danjiangkou and Taocha dams, were considered for controlling pollution dispersion. The results showed that the spread of a pollutant could be effectively controlled through the joint regulation of the two dams and that the collaborative operation of the Danjiangkou and Taocha dams is critical for ensuring the security of water quality along the MRP.

  6. Rates of consumption of juvenile salmonids and alternative prey fish by northern squawfish, walleyes, smallmouth bass, and channel catfish in John Day Reservoir, Columbia River

    International Nuclear Information System (INIS)

    Vigg, S.; Poe, T.P.; Prendergast, L.A.; Hansel, H.C.

    1991-01-01

    Adult northern squawfish Ptychocheilus oregonesis, walleyes Stizostedion vitreum, smallmouth bass Micropterus dolomieu, and channel catfish Ictalurus punctatus were sampled from four regions of John Day Reservoir from April to August 1983-1986 to quantify their consumption of 13 species of prey fish, particularly seaward-migrating juvenile Pacific salmon and steelhead (Oncorhynchus spp.). Consumption rates were estimated from field data on stomach contents and digestion rate relations determined in previous investigations. For each predator, consumption rates varied by reservoir area, month, time of day, and predator size or age. The greatest daily consumption of salmonids by northern squawfish and channel catfish occurred in the upper end of the reservoir below McNary Dam. Greatest daily predation by walleyes and smallmouth bass occurred in the middle and lower reservoir. Consumption rates of all predators were highest in July, concurrent with maximum temperature and abundance of juvenile salmonids. Feeding by the predators tended to peak after dawn and near midnight. Northern squawfish below McNary Dam exhibited this pattern, but fed mainly in the morning hours down-reservoir. The daily ration of total prey fish was highest for northern squawfish over 451 mm fork length, for walleyes 201-250 mm, for smallmouth bass 176-200 mm, and for channel catfish 401-450 mm. Averaged over all predator sizes and sampling months (April-August), the total daily ration (fish plus other prey) of smallmouth bass was about twice that of channel catfish, northern squawfish, and walleyes. However, northern squawfish was clearly the major predator on juvenile salmonids

  7. Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations

    Science.gov (United States)

    Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.

    2011-12-01

    HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of

  8. Reservoir operation schemes for water pollution accidents in Yangtze River

    Directory of Open Access Journals (Sweden)

    Xiao-kang Xin

    2012-03-01

    Full Text Available After the Three Gorges Reservoir starts running, it can not only take into consideration the interest of departments such as flood control, power generation, water supply, and shipping, but also reduce or eliminate the adverse effects of pollutants by discharge regulation. The evolution of pollutant plumes under different operation schemes of the Three Gorges Reservoir and three kinds of pollutant discharge types were calculated with the MIKE 21 AD software. The feasibility and effectiveness of the reservoir emergency operation when pollution accidents occur were investigated. The results indicate that the emergency operation produces significant effects on the instantaneous discharge type with lesser effects on the constant discharge type, the impact time is shortened, and the concentration of pollutant is reduced. Meanwhile, the results show that the larger the discharge is and the shorter the operation duration is, the more favorable the result is.

  9. Design and modeling of reservoir operation strategies for sediment management

    NARCIS (Netherlands)

    Sloff, C.J.; Omer, A.Y.A.; Heynert, K.V.; Mohamed, Y.A.

    2015-01-01

    Appropriate operation strategies that allow for sediment flushing and sluicing (sediment routing) can reduce rapid storage losses of (hydropower and water-supply) reservoirs. In this study we have shown, using field observations and computational models, that the efficiency of these operations

  10. Quantifying the robustness of optimal reservoir operation for the Xinanjiang-Fuchunjiang Reservoir Cascade

    NARCIS (Netherlands)

    Vonk, E.; Xu, YuePing; Booij, Martijn J.; Augustijn, Dionysius C.M.

    2016-01-01

    In this research we investigate the robustness of the common implicit stochastic optimization (ISO) method for dam reoperation. As a case study, we focus on the Xinanjiang-Fuchunjiang reservoir cascade in eastern China, for which adapted operating rules were proposed as a means to reduce the impact

  11. Decision Support System for Reservoir Management and Operation in Africa

    Science.gov (United States)

    Navar, D. A.

    2016-12-01

    Africa is currently experiencing a surge in dam construction for flood control, water supply and hydropower production, but ineffective reservoir management has caused problems in the region, such as water shortages, flooding and loss of potential hydropower generation. Our research aims to remedy ineffective reservoir management by developing a novel Decision Support System(DSS) to equip water managers with a technical planning tool based on the state of the art in hydrological sciences. The DSS incorporates a climate forecast model, a hydraulic model of the watershed, and an optimization model to effectively plan for the operation of a system of cascade large-scale reservoirs for hydropower production, while treating water supply and flood control as constraints. Our team will use the newly constructed hydropower plants in the Omo Gibe basin of Ethiopia as the test case. Using the basic HIDROTERM software developed in Brazil, the General Algebraic Modeling System (GAMS) utilizes a combination of linear programing (LP) and non-linear programming (NLP) in conjunction with real time hydrologic and energy demand data to optimize the monthly and daily operations of the reservoir system. We compare the DSS model results with the current reservoir operating policy used by the water managers of that region. We also hope the DSS will eliminate the current dangers associated with the mismanagement of large scale water resources projects in Africa.

  12. Rule Optimization monthly reservoir operation Salvajina

    International Nuclear Information System (INIS)

    Sandoval Garcia, Maria Clemencia; Santacruz Salazar, Santiago; Ramirez Callejas, Carlos A

    2007-01-01

    In the present study a model was designed for the optimization of the rule for monthly operation of the Salvajina dam (Colombia) based in the technology) of dynamic programming. The model maximizes the benefits for electric power generation, ensuring at the same time flood regulation in winter and pollution relief during the summer. For the optimization of the rule of operation, it was necessary to define the levels and volumes of reserve and holding required for the control of flood zones in the Cauca river and to provide an effluent minimal flow and assure a daily flow at the Juanchito station (located 141 km downstream from the dam) of the Cauca river, 90 % of the time during the most critical summer periods.

  13. Inflow forecasting using Artificial Neural Networks for reservoir operation

    Directory of Open Access Journals (Sweden)

    C. Chiamsathit

    2016-05-01

    Full Text Available In this study, multi-layer perceptron (MLP artificial neural networks have been applied to forecast one-month-ahead inflow for the Ubonratana reservoir, Thailand. To assess how well the forecast inflows have performed in the operation of the reservoir, simulations were carried out guided by the systems rule curves. As basis of comparison, four inflow situations were considered: (1 inflow known and assumed to be the historic (Type A; (2 inflow known and assumed to be the forecast (Type F; (3 inflow known and assumed to be the historic mean for month (Type M; and (4 inflow is unknown with release decision only conditioned on the starting reservoir storage (Type N. Reservoir performance was summarised in terms of reliability, resilience, vulnerability and sustainability. It was found that Type F inflow situation produced the best performance while Type N was the worst performing. This clearly demonstrates the importance of good inflow information for effective reservoir operation.

  14. Optimal reservoir operation policies using novel nested algorithms

    Science.gov (United States)

    Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri

    2015-04-01

    Historically, the two most widely practiced methods for optimal reservoir operation have been dynamic programming (DP) and stochastic dynamic programming (SDP). These two methods suffer from the so called "dual curse" which prevents them to be used in reasonably complex water systems. The first one is the "curse of dimensionality" that denotes an exponential growth of the computational complexity with the state - decision space dimension. The second one is the "curse of modelling" that requires an explicit model of each component of the water system to anticipate the effect of each system's transition. We address the problem of optimal reservoir operation concerning multiple objectives that are related to 1) reservoir releases to satisfy several downstream users competing for water with dynamically varying demands, 2) deviations from the target minimum and maximum reservoir water levels and 3) hydropower production that is a combination of the reservoir water level and the reservoir releases. Addressing such a problem with classical methods (DP and SDP) requires a reasonably high level of discretization of the reservoir storage volume, which in combination with the required releases discretization for meeting the demands of downstream users leads to computationally expensive formulations and causes the curse of dimensionality. We present a novel approach, named "nested" that is implemented in DP, SDP and reinforcement learning (RL) and correspondingly three new algorithms are developed named nested DP (nDP), nested SDP (nSDP) and nested RL (nRL). The nested algorithms are composed from two algorithms: 1) DP, SDP or RL and 2) nested optimization algorithm. Depending on the way we formulate the objective function related to deficits in the allocation problem in the nested optimization, two methods are implemented: 1) Simplex for linear allocation problems, and 2) quadratic Knapsack method in the case of nonlinear problems. The novel idea is to include the nested

  15. Optimizing Reservoir Operation to Adapt to the Climate Change

    Science.gov (United States)

    Madadgar, S.; Jung, I.; Moradkhani, H.

    2010-12-01

    Climate change and upcoming variation in flood timing necessitates the adaptation of current rule curves developed for operation of water reservoirs as to reduce the potential damage from either flood or draught events. This study attempts to optimize the current rule curves of Cougar Dam on McKenzie River in Oregon addressing some possible climate conditions in 21th century. The objective is to minimize the failure of operation to meet either designated demands or flood limit at a downstream checkpoint. A simulation/optimization model including the standard operation policy and a global optimization method, tunes the current rule curve upon 8 GCMs and 2 greenhouse gases emission scenarios. The Precipitation Runoff Modeling System (PRMS) is used as the hydrology model to project the streamflow for the period of 2000-2100 using downscaled precipitation and temperature forcing from 8 GCMs and two emission scenarios. An ensemble of rule curves, each associated with an individual scenario, is obtained by optimizing the reservoir operation. The simulation of reservoir operation, for all the scenarios and the expected value of the ensemble, is conducted and performance assessment using statistical indices including reliability, resilience, vulnerability and sustainability is made.

  16. Aspects of the winter predator--prey relationship between sauger and threadfin shad in Watts Bar Reservoir, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.V.; Griffith, J.S.; McLean, R.B.

    1978-04-01

    This study sought to determine the impact of cold-induced mortality and impingement of threadfin shad (Dorsoma petenense) on the food consumption and prey selection of sauger (Stizostedion canadense), and to estimate the ability of sauger to digest meals consumed at low temperatures in winter. Prey selection of sauger was monitored from November 1976 through April 1977. Stomach contents of 536 sauger indicated threadfin provided the entire forage base for sauger through January. Food consumption of sauger was reduced and prey selection shifted to other species after January due to the combined effects of predation, impingement, and natural mortality of cold-stressed threadfin. Threadfin shad of a size available to most sauger were virtually eliminated by February. From February through April some sauger utilized alternate prey species. Laboratory digestion rate studies of sauger indicated digestion of force-fed meals of 4 to 7 g fathead minnows (Pimephales promelas) could proceed to 90 percent completion in 54 h at 5 C, 47 hr at 10 C, and 25 hr at 15 C. Conclusions of this study are: (1) that threadfin shad were the most abundant and vulnerable prey species available to and utilized by sauger during the late fall and winter months; (2) extensive mortalities of threadfin due to cold-stress increased sauger predation on four alternate prey species; (3) sauger continued feeding and digesting meals at temperatures between 5 and 15 C every 1 to 3 days; (4) sauger stored excess energy available from threadfin early in the winter as visceral fat which was available later when food consumption was reduced.

  17. Aspects of the winter predator--prey relationship between sauger and threadfin shad in Watts Bar Reservoir, Tennessee

    International Nuclear Information System (INIS)

    McGee, M.V.; Griffith, J.S.; McLean, R.B.

    1978-01-01

    This study sought to determine the impact of cold-induced mortality and impingement of threadfin shad (Dorsoma petenense) on the food consumption and prey selection of sauger (Stizostedion canadense), and to estimate the ability of sauger to digest meals consumed at low temperatures in winter. Prey selection of sauger was monitored from November 1976 through April 1977. Stomach contents of 536 sauger indicated threadfin provided the entire forage base for sauger through January. Food consumption of sauger was reduced and prey selection shifted to other species after January due to the combined effects of predation, impingement, and natural mortality of cold-stressed threadfin. Threadfin shad of a size available to most sauger were virtually eliminated by February. From February through April some sauger utilized alternate prey species. Laboratory digestion rate studies of sauger indicated digestion of force-fed meals of 4 to 7 g fathead minnows (Pimephales promelas) could proceed to 90 percent completion in 54 h at 5 C, 47 hr at 10 C, and 25 hr at 15 C. Conclusions of this study are: (1) that threadfin shad were the most abundant and vulnerable prey species available to and utilized by sauger during the late fall and winter months; (2) extensive mortalities of threadfin due to cold-stress increased sauger predation on four alternate prey species; (3) sauger continued feeding and digesting meals at temperatures between 5 and 15 C every 1 to 3 days; (4) sauger stored excess energy available from threadfin early in the winter as visceral fat which was available later when food consumption was reduced

  18. Quantum heat engine operating between thermal and spin reservoirs

    Science.gov (United States)

    Wright, Jackson S. S. T.; Gould, Tim; Carvalho, André R. R.; Bedkihal, Salil; Vaccaro, Joan A.

    2018-05-01

    Landauer's erasure principle is a cornerstone of thermodynamics and information theory [R. Landauer, IBM J. Res. Dev. 5, 183 (1961), 10.1147/rd.53.0183]. According to this principle, erasing information incurs a minimum energy cost. Recently, Vaccaro and Barnett [J. A. Vaccaro and S. M. Barnett, Proc. R. Soc. A 467, 1770 (2011), 10.1098/rspa.2010.0577] explored information erasure in the context of multiple conserved quantities and showed that the erasure cost can be solely in terms of spin angular momentum. As Landauer's erasure principle plays a fundamental role in heat engines, their result considerably widens the possible configurations that heat engines can have. Motivated by this, we propose here an optical heat engine that operates under a single thermal reservoir and a spin angular momentum reservoir coupled to a three-level system with two energy degenerate ground states. The proposed heat engine operates without producing waste heat and goes beyond the traditional Carnot engine where the working fluid is subjected to two thermal baths at different temperatures.

  19. Design and development of bio-inspired framework for reservoir operation optimization

    Science.gov (United States)

    Asvini, M. Sakthi; Amudha, T.

    2017-12-01

    Frameworks for optimal reservoir operation play an important role in the management of water resources and delivery of economic benefits. Effective utilization and conservation of water from reservoirs helps to manage water deficit periods. The main challenge in reservoir optimization is to design operating rules that can be used to inform real-time decisions on reservoir release. We develop a bio-inspired framework for the optimization of reservoir release to satisfy the diverse needs of various stakeholders. In this work, single-objective optimization and multiobjective optimization problems are formulated using an algorithm known as "strawberry optimization" and tested with actual reservoir data. Results indicate that well planned reservoir operations lead to efficient deployment of the reservoir water with the help of optimal release patterns.

  20. Stochastic reservoir operation under drought with fuzzy objectives

    International Nuclear Information System (INIS)

    Parent, E.; Duckstein, L.

    1993-01-01

    Biojective reservoir operation under drought conditions is investigated using stochastic dynamic programming. As both objectives (irrigation water supply, water quality) can only be defined imprecisely, a fuzzy set approach is used to encode the decision maker (DM)'s preferences. The nature driven components are modeled by means of classical stage-state system analysis. The state is three dimensional (inflow memory, drought irrigation index, reservoir level); the decision vector elements are release and irrigation allocation. Stochasticity stems from the random nature of inflows and irrigation demands. The transition function includes a lag one inflow Markov model and mass balance equations. The human driven component is designed as a confluence of fuzzy objectives and constraints after Bellman and Zadeh. Fuzzy numbers are assessed to represent the DM's objectives by two different techniques, the direct one and indirect pairwise comparison. The real case study of the Neste river system in southwestern France is used to illustrate the approach; the result are compared to a classical sequential decision theoretical model derived earlier from the viewpoints of ease of modeling, computational efforts, plausibility and robustness of results

  1. A dimension reduction method for flood compensation operation of multi-reservoir system

    Science.gov (United States)

    Jia, B.; Wu, S.; Fan, Z.

    2017-12-01

    Multiple reservoirs cooperation compensation operations coping with uncontrolled flood play vital role in real-time flood mitigation. This paper come up with a reservoir flood compensation operation index (ResFCOI), which formed by elements of flood control storage, flood inflow volume, flood transmission time and cooperation operations period, then establish a flood cooperation compensation operations model of multi-reservoir system, according to the ResFCOI to determine a computational order of each reservoir, and lastly the differential evolution algorithm is implemented for computing single reservoir flood compensation optimization in turn, so that a dimension reduction method is formed to reduce computational complexity. Shiguan River Basin with two large reservoirs and an extensive uncontrolled flood area, is used as a case study, results show that (a) reservoirs' flood discharges and the uncontrolled flood are superimposed at Jiangjiaji Station, while the formed flood peak flow is as small as possible; (b) cooperation compensation operations slightly increase in usage of flood storage capacity in reservoirs, when comparing to rule-based operations; (c) it takes 50 seconds in average when computing a cooperation compensation operations scheme. The dimension reduction method to guide flood compensation operations of multi-reservoir system, can make each reservoir adjust its flood discharge strategy dynamically according to the uncontrolled flood magnitude and pattern, so as to mitigate the downstream flood disaster.

  2. Comparison of static and dynamic resilience for a multipurpose reservoir operation

    Science.gov (United States)

    Simonovic, Slobodan P.; Arunkumar, R.

    2016-11-01

    Reliability, resilience, and vulnerability are the traditional risk measures used to assess the performance of a reservoir system. Among these measures, resilience is used to assess the ability of a reservoir system to recover from a failure event. However, the time-independent static resilience does not consider the system characteristics, interaction of various individual components and does not provide much insight into reservoir performance from the beginning of the failure event until the full performance recovery. Knowledge of dynamic reservoir behavior under the disturbance offers opportunities for proactive and/or reactive adaptive response that can be selected to maximize reservoir resilience. A novel measure is required to provide insight into the dynamics of reservoir performance based on the reservoir system characteristics and its adaptive capacity. The reservoir system characteristics include, among others, reservoir storage curve, reservoir inflow, reservoir outflow capacity, and reservoir operating rules. The reservoir adaptive capacity can be expressed using various impacts of reservoir performance under the disturbance (like reservoir release for meeting a particular demand, socioeconomic consequences of reservoir performance, or resulting environmental state of the river upstream and downstream from the reservoir). Another way of expressing reservoir adaptive capacity to a disturbing event may include aggregated measures like reservoir robustness, redundancy, resourcefulness, and rapidity. A novel measure that combines reservoir performance and its adaptive capacity is proposed in this paper and named "dynamic resilience." The paper also proposes a generic simulation methodology for quantifying reservoir resilience as a function of time. The proposed resilience measure is applied to a single multipurpose reservoir operation and tested for a set of failure scenarios. The dynamic behavior of reservoir resilience is captured using the system

  3. Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy

    Science.gov (United States)

    Magee, T. M.; Clement, M. A.; Zagona, E. A.

    2012-12-01

    Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level

  4. Nested algorithms for optimal reservoir operation and their embedding in a decision support platform

    NARCIS (Netherlands)

    Delipetrev, B.

    2016-01-01

    Reservoir operation is a multi-objective optimization problem traditionally solved with dynamic programming (DP) and stochastic dynamic programming (SDP) algorithms. The thesis presents novel algorithms for optimal reservoir operation named nested DP (nDP), nested SDP (nSDP), nested reinforcement

  5. Effect of flow forecasting quality on benefits of reservoir operation - a case study for the Geheyan reservoir (China)

    NARCIS (Netherlands)

    Dong, Xiaohua; Dohmen-Janssen, Catarine M.; Booij, Martijn J.; Hulscher, Suzanne J.M.H.

    2006-01-01

    This paper presents a methodology to determine the effect of flow forecasting quality on the benefits of reservoir operation. The benefits are calculated in terms of the electricity generated, and the quality of the flow forecasting is defined in terms of lead time and accuracy of the forecasts. In

  6. Reservoir release patterns for hydropower operations at the Aspinall Unit on the Gunnison River, Colorado

    International Nuclear Information System (INIS)

    Yin, S.C.L.; Sedlacek, J.

    1995-05-01

    This report presents the development of reservoir release patterns for the Aspinall Unit, which includes Blue Mesa, Morrow Point, and Crystal Reservoirs on the Gunnison River in Colorado. Release patterns were assessed for two hydropower operational scenarios--seasonally adjusted steady flows and seasonally adjusted high fluctuating flows--and three representative hydrologic years--moderate (1987), dry (1989), and wet (1983). The release patterns for the operational scenarios were developed with the aid of monthly, daily, and hourly reservoir operational models, which simulate the linked operation of the three Aspinall Unit reservoirs. Also presented are reservoir fluctuations and downstream water surface elevations corresponding to the reservoir release patterns. Both of the hydropower operational scenarios evaluated are based on the ecological research flows proposed by the US Fish and Wildlife Service for the Aspinall Unit. The first operational scenario allows only seasonally adjusted steady flows (no hourly fluctuations at any dam within one day), whereas the second scenario permits high fluctuating flows from Blue Mesa and Morrow Point Reservoirs during certain times of the year. Crystal Reservoir would release a steady flow within each day under both operational scenarios

  7. Restoring Natural Streamflow Variability by Modifying Multi-purpose Reservoir Operation

    Science.gov (United States)

    Shiau, J.

    2010-12-01

    Multi-purpose reservoirs typically provide benefits of water supply, hydroelectric power, and flood mitigation. Hydroelectric power generations generally do not consume water. However, temporal distribution of downstream flows is highly changed due to hydro-peaking effects. Associated with offstream diversion of water supplies for municipal, industrial, and agricultural requirements, natural streamflow characteristics of magnitude, duration, frequency, timing, and rate of change is significantly altered by multi-purpose reservoir operation. Natural flow regime has long been recognized a master factor for ecosystem health and biodiversity. Restoration of altered flow regime caused by multi-purpose reservoir operation is the main objective of this study. This study presents an optimization framework that modifying reservoir operation to seeking balance between human and environmental needs. The methodology presented in this study is applied to the Feitsui Reservoir, located in northern Taiwan, with main purpose of providing stable water-supply and auxiliary purpose of electricity generation and flood-peak attenuation. Reservoir releases are dominated by two decision variables, i.e., duration of water releases for each day and percentage of daily required releases within the duration. The current releasing policy of the Feitsui Reservoir releases water for water-supply and hydropower purposes during 8:00 am to 16:00 pm each day and no environmental flows releases. Although greater power generation is obtained by 100% releases distributed within 8-hour period, severe temporal alteration of streamflow is observed downstream of the reservoir. Modifying reservoir operation by relaxing these two variables and reserve certain ratio of streamflow as environmental flow to maintain downstream natural variability. The optimal reservoir releasing policy is searched by the multi-criterion decision making technique for considering reservoir performance in terms of shortage ratio

  8. Modeling of reservoir operation in UNH global hydrological model

    Science.gov (United States)

    Shiklomanov, Alexander; Prusevich, Alexander; Frolking, Steve; Glidden, Stanley; Lammers, Richard; Wisser, Dominik

    2015-04-01

    Climate is changing and river flow is an integrated characteristic reflecting numerous environmental processes and their changes aggregated over large areas. Anthropogenic impacts on the river flow, however, can significantly exceed the changes associated with climate variability. Besides of irrigation, reservoirs and dams are one of major anthropogenic factor affecting streamflow. They distort hydrological regime of many rivers by trapping of freshwater runoff, modifying timing of river discharge and increasing the evaporation rate. Thus, reservoirs is an integral part of the global hydrological system and their impacts on rivers have to be taken into account for better quantification and understanding of hydrological changes. We developed a new technique, which was incorporated into WBM-TrANS model (Water Balance Model-Transport from Anthropogenic and Natural Systems) to simulate river routing through large reservoirs and natural lakes based on information available from freely accessible databases such as GRanD (the Global Reservoir and Dam database) or NID (National Inventory of Dams for US). Different formulations were applied for unregulated spillway dams and lakes, and for 4 types of regulated reservoirs, which were subdivided based on main purpose including generic (multipurpose), hydropower generation, irrigation and water supply, and flood control. We also incorporated rules for reservoir fill up and draining at the times of construction and decommission based on available data. The model were tested for many reservoirs of different size and types located in various climatic conditions using several gridded meteorological data sets as model input and observed daily and monthly discharge data from GRDC (Global Runoff Data Center), USGS Water Data (US Geological Survey), and UNH archives. The best results with Nash-Sutcliffe model efficiency coefficient in the range of 0.5-0.9 were obtained for temperate zone of Northern Hemisphere where most of large

  9. Simulation and optimisation modelling approach for operation of the Hoa Binh Reservoir, Vietnam

    DEFF Research Database (Denmark)

    Ngo, Long le; Madsen, Henrik; Rosbjerg, Dan

    2007-01-01

    Hoa Binh, the largest reservoir in Vietnam, plays an important role in flood control for the Red River delta and hydropower generation. Due to its multi-purpose character, conflicts and disputes in operating the reservoir have been ongoing since its construction, particularly in the flood season....... This paper proposes to optimise the control strategies for the Hoa Binh reservoir operation by applying a combination of simulation and optimisation models. The control strategies are set up in the MIKE 11 simulation model to guide the releases of the reservoir system according to the current storage level......, the hydro-meteorological conditions, and the time of the year. A heuristic global optimisation tool, the shuffled complex evolution (SCE) algorithm, is adopted for optimising the reservoir operation. The optimisation puts focus on the trade-off between flood control and hydropower generation for the Hoa...

  10. Evaluation of reservoir operation strategies for irrigation in the Macul Basin, Ecuador

    Directory of Open Access Journals (Sweden)

    Vicente Tinoco

    2016-03-01

    Full Text Available Study focus: An irrigation project is planned in the study basin for developing the agriculture as the main income in the region. The proposed water system comprises three large reservoirs damming the rivers Macul and Maculillo. The river basin planning and operation were investigated by modelling alternative reservoir operation strategies aiming at a sustainable balance between irrigation and river ecology by integrated reservoir/river management. New hydrological insights for the region: After simulation of long-term meteorological series in a model of the integrated water system, covering several historical extreme events, results indicate that the planned irrigation volumes are higher than the available water for a sustainable irrigation strategy. Two lines of action are suggested for reaching the target irrigation demands: design of a deficit irrigation system, and modifications to the reservoir's spillway height. Keywords: Reservoir operation, Conceptual model, Irrigation

  11. Effect of Streamflow Forecast Uncertainty on Real-Time Reservoir Operation

    Science.gov (United States)

    Zhao, T.; Cai, X.; Yang, D.

    2010-12-01

    Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (DPSF), and ensemble streamflow forecast (ESF), which represent forecast uncertainty in the form of deterministic forecast error, deterministic forecast error-based uncertainty distribution, and ensemble forecast errors, respectively. Compared to previous studies that treat these forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. In hydrology, there are various indices reflecting the magnitude of streamflow forecast uncertainty; meanwhile, few models illustrate the forecast uncertainty evolution process. This research introduces Martingale Model of Forecast Evolution (MMFE) from supply chain management and justifies its assumptions for quantifying the evolution of uncertainty in streamflow forecast as time progresses. Based on MMFE, this research simulates the evolution of forecast uncertainty in DSF, DPSF, and ESF, and applies the reservoir operation models (dynamic programming, DP; stochastic dynamic programming, SDP; and standard operation policy, SOP) to assess the effect of different forms of forecast uncertainty on real-time reservoir operation. Through a hypothetical single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases. Meanwhile, these effects also depend on the type of forecast product being used. In general, the utility of reservoir operation with ESF is nearly as high as the utility obtained with a perfect forecast; the utilities of DSF and DPSF are similar to each other but not as efficient as ESF. Moreover

  12. Significance of selective predation and development of prey protection measures for juvenile salmonids in the Columbia and Snake River reservoirs. Annual progress report, February 1993--February 1994

    International Nuclear Information System (INIS)

    Poe, T.P.

    1994-01-01

    This report addresses the problem of predator-prey interactions of juvenile salmonids in the Columbia and Snake River. Six papers are included on selective predation and prey protection. Attention is focused on monitoring the movements, the distribution, and the behavior of juvenile chinook salmon and northern squawfish

  13. Studies Regarding the Safety in Operation of Ezer Reservoir

    Directory of Open Access Journals (Sweden)

    Balan Isabela

    2014-05-01

    Full Text Available The dam of the non-permanent reservoir Ezer, located on Jijia river is an earth dam with a maximum height of 6.18 m, which provides a global retention to the canopy of 10.330 million cubic meters. The dam founded on weak, muddy soils suffered in the years 1989 and 1992 downstream slope failures of the fillings. It was found that hydrostatic levels were high in the piezometric wells and that consolidation of the foundation soil was reduced. This paper presents a brief history of the dam and aspects regarding the behaviour monitoring of Ezer non-permanent reservoir during the years 2000-2012.

  14. Measurement of Lake Roosevelt biota in relation to reservoir operations. Final report 1993

    International Nuclear Information System (INIS)

    Voeller, A.C.

    1993-01-01

    The purpose of this study was to collect biological data from Lake Roosevelt to be used in the design of a computer model that will predict biological responses to reservoir operations as part of the System Operation Review Program. This study worked in conjunction with Lake Roosevelt Monitoring Project which investigated the effectiveness of two kokanee salmon hatcheries. This report summarized the data collected from Lake Roosevelt from 1993 and includes limnological, reservoir operation, zooplankton, benthic macroinvertebrate, experimental trawling, and net-pen rainbow trout tagging data. Major components of the Lake Roosevelt model include quantification of impacts to zooplankton, benthic macroinvertebrates, and fish caused by reservoir drawdowns and low water retention times

  15. U.S. Army Corps of Engineers (USACE) Owned and Operated Reservoirs

    Data.gov (United States)

    Department of Homeland Security — This dataset shows maximum conservation pool or is a reasonable representation of the boundaries for reservoirs and lakes owned and operated by USACE. Data is from...

  16. The Improvement of Particle Swarm Optimization: a Case Study of Optimal Operation in Goupitan Reservoir

    Science.gov (United States)

    Li, Haichen; Qin, Tao; Wang, Weiping; Lei, Xiaohui; Wu, Wenhui

    2018-02-01

    Due to the weakness in holding diversity and reaching global optimum, the standard particle swarm optimization has not performed well in reservoir optimal operation. To solve this problem, this paper introduces downhill simplex method to work together with the standard particle swarm optimization. The application of this approach in Goupitan reservoir optimal operation proves that the improved method had better accuracy and higher reliability with small investment.

  17. Development and operation of Northern Natural's aquifer gas storage reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, E V

    1969-01-01

    There are no depleted (or nondepleted) oil and gas fields in Northern Natural Gas Co.'s market area. Consequently, when the search was started for a possible underground field, the company had to resort to the possibility of locating a water-filled, porous-rock formation (aquifer) in a geological structure which would form a suitable trap for gas storage. Geological research and exploratory drilling was carried on in S. Minnesota, E. Nebraska, and W.-central Iowa. An area located about 40 miles northwest of Des Moines, Iowa, near Redfield, appeared to have the most desirable characteristics for development of a gas-storage field. Drilling of deep developmental wells was started in late 1953 on a double- plunging anticline. The geological structure is similar to that of many oil and gas fields, but the porous formations contained only fresh water. To date, 2 major reservoirs and a minor reservoir have been developed in this structure. As much as 120 billion cu ft has been stored in the 3 reservoirs which supplied 43 billion cu ft gas withdrawals this past season from a total of 85 wells. A second aquifer gas-storage field is under development in N.-central Iowa about 15 miles northeast of Ft. Dodge.

  18. Duck Valley Reservoirs Fish Stocking and Operation and Maintenance, 2005-2006 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sellman, Jake; Dykstra, Tim [Shoshone-Paiute Tribes

    2009-05-11

    The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance (DV Fisheries) project is an ongoing resident fish program designed to enhance both subsistence fishing, educational opportunities for Tribal members of the Shoshone-Paiute Tribes, and recreational fishing facilities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View, Lake Billy Shaw, and Sheep Creek Reservoirs, the program also intends to afford and maintain healthy aquatic conditions for fish growth and survival, to provide superior facilities with wilderness qualities to attract non-Tribal angler use, and to offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period are divided into operations and maintenance plus monitoring and evaluation. Operation and maintenance of the three reservoirs include fences, roads, dams and all reservoir structures, feeder canals, water troughs and stock ponds, educational signs, vehicles and equipment, and outhouses. Monitoring and evaluation activities included creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, control of encroaching exotic vegetation, and community outreach and education. The three reservoirs are monitored in terms of water quality and fishery success. Sheep Creek Reservoir was the least productive as a result of high turbidity levels and constraining water quality parameters. Lake Billy Shaw trout were in poorer condition than in previous years potentially as a result of water quality or other factors. Mountain View Reservoir trout exhibit the best health of the three reservoirs and was the only reservoir to receive constant flows of water.

  19. Real-time reservoir operation considering non-stationary inflow prediction

    Science.gov (United States)

    Zhao, J.; Xu, W.; Cai, X.; Wang, Z.

    2011-12-01

    Stationarity of inflow has been a basic assumption for reservoir operation rule design, which is now facing challenges due to climate change and human interferences. This paper proposes a modeling framework to incorporate non-stationary inflow prediction for optimizing the hedging operation rule of large reservoirs with multiple-year flow regulation capacity. A multi-stage optimization model is formulated and a solution algorithm based on the optimality conditions is developed to incorporate non-stationary annual inflow prediction through a rolling, dynamic framework that updates the prediction from period to period and adopt the updated prediction in reservoir operation decision. The prediction model is ARIMA(4,1,0), in which parameter 4 stands for the order of autoregressive, 1 represents a linear trend, and 0 is the order of moving average. The modeling framework and solution algorithm is applied to the Miyun reservoir in China, determining a yearly operating schedule during the period from 1996 to 2009, during which there was a significant declining trend of reservoir inflow. Different operation policy scenarios are modeled, including standard operation policy (SOP, matching the current demand as much as possible), hedging rule (i.e., leaving a certain amount of water for future to avoid large risk of water deficit) with forecast from ARIMA (HR-1), hedging (HR) with perfect forecast (HR-2 ). Compared to the results of these scenarios to that of the actual reservoir operation (AO), the utility of the reservoir operation under HR-1 is 3.0% lower than HR-2, but 3.7% higher than the AO and 14.4% higher than SOP. Note that the utility under AO is 10.3% higher than that under SOP, which shows that a certain level of hedging under some inflow prediction or forecast was used in the real-world operation. Moreover, the impacts of discount rate and forecast uncertainty level on the operation will be discussed.

  20. Intelligent control for modeling of real-time reservoir operation, part II: artificial neural network with operating rule curves

    Science.gov (United States)

    Chang, Ya-Ting; Chang, Li-Chiu; Chang, Fi-John

    2005-04-01

    To bridge the gap between academic research and actual operation, we propose an intelligent control system for reservoir operation. The methodology includes two major processes, the knowledge acquired and implemented, and the inference system. In this study, a genetic algorithm (GA) and a fuzzy rule base (FRB) are used to extract knowledge based on the historical inflow data with a design objective function and on the operating rule curves respectively. The adaptive network-based fuzzy inference system (ANFIS) is then used to implement the knowledge, to create the fuzzy inference system, and then to estimate the optimal reservoir operation. To investigate its applicability and practicability, the Shihmen reservoir, Taiwan, is used as a case study. For the purpose of comparison, a simulation of the currently used M-5 operating rule curve is also performed. The results demonstrate that (1) the GA is an efficient way to search the optimal input-output patterns, (2) the FRB can extract the knowledge from the operating rule curves, and (3) the ANFIS models built on different types of knowledge can produce much better performance than the traditional M-5 curves in real-time reservoir operation. Moreover, we show that the model can be more intelligent for reservoir operation if more information (or knowledge) is involved.

  1. Studying Operation Rules of Cascade Reservoirs Based on Multi-Dimensional Dynamics Programming

    Directory of Open Access Journals (Sweden)

    Zhiqiang Jiang

    2017-12-01

    Full Text Available Although many optimization models and methods are applied to the optimization of reservoir operation at present, the optimal operation decision that is made through these models and methods is just a retrospective review. Due to the limitation of hydrological prediction accuracy, it is practical and feasible to obtain the suboptimal or satisfactory solution by the established operation rules in the actual reservoir operation, especially for the mid- and long-term operation. In order to obtain the optimized sample data with global optimality; and make the extracted operation rules more reasonable and reliable, this paper presents the multi-dimensional dynamic programming model of the optimal joint operation of cascade reservoirs and provides the corresponding recursive equation and the specific solving steps. Taking Li Xianjiang cascade reservoirs as a case study, seven uncertain problems in the whole operation period of the cascade reservoirs are summarized after a detailed analysis to the obtained optimal sample data, and two sub-models are put forward to solve these uncertain problems. Finally, by dividing the whole operation period into four characteristic sections, this paper extracts the operation rules of each reservoir for each section respectively. When compared the simulation results of the extracted operation rules with the conventional joint operation method; the result indicates that the power generation of the obtained rules has a certain degree of improvement both in inspection years and typical years (i.e., wet year; normal year and dry year. So, the rationality and effectiveness of the extracted operation rules are verified by the comparative analysis.

  2. Efficient operation of a multi-purpose reservoir in Chile: Tradeoffs between irrigation and hydropower production

    Science.gov (United States)

    Gonzalez Cabrera, J. M., Sr.; Olivares, M. A.

    2015-12-01

    This study proposes a method to develop efficient operational policies for a reservoir the southern Chile. The main water uses in this system are hydropower and irrigation, with conflicting seasonal demands. The conflict between these two uses is currently managed through a so-called "irrigation agreement" which defines a series of operational conditions on the reservoir by restricting volumes used for power production depending on reservoir storage level. Other than that, the reservoir operation is driven by cost-minimization over the power grid. Recent evidence shows an increasing degree of conflict in this basin, which suggests that the static approach of irrigation agreements, might no longer be appropriate. Moreover, this agreement could be revised in light of decreased water availability. This problem poses a challenge related to the spatial scope of analysis. Thus, irrigation benefits are driven by decisions made within the basin, whereas hydropower benefits depend on the operation of the entire power grid. Exploring the tradeoffs between these two water uses involves modeling both scales. The proposed methodology integrates information from both a grid-wide power operations model and a basin-wide agro-economic model into a decision model for optimal reservoir operation. The first model, a hydrothermal coordination tool, schedules power production by each plant in the grid, and allows capturing technical and economic aspects to the operation of hydropower reservoirs. The agro-economic model incorporates economic features of irrigation in the basin, and allows obtaining irrigation water demand functions. Finally, the results of both models are integrated into a single model for optimal reservoir operation considering the tradeoffs between the two uses. The result of the joint operation of water resources, show a flexible coordination of uses, revealing the opportunity cost of irrigation, which it gives the possibility of negotiating transfers of water to

  3. Development of Future Rule Curves for Multipurpose Reservoir Operation Using Conditional Genetic and Tabu Search Algorithms

    Directory of Open Access Journals (Sweden)

    Anongrit Kangrang

    2018-01-01

    Full Text Available Optimal rule curves are necessary guidelines in the reservoir operation that have been used to assess performance of any reservoir to satisfy water supply, irrigation, industrial, hydropower, and environmental conservation requirements. This study applied the conditional genetic algorithm (CGA and the conditional tabu search algorithm (CTSA technique to connect with the reservoir simulation model in order to search optimal reservoir rule curves. The Ubolrat Reservoir located in the northeast region of Thailand was an illustrative application including historic monthly inflow, future inflow generated by the SWAT hydrological model using 50-year future climate data from the PRECIS regional climate model in case of B2 emission scenario by IPCC SRES, water demand, hydrologic data, and physical reservoir data. The future and synthetic inflow data of reservoirs were used to simulate reservoir system for evaluating water situation. The situations of water shortage and excess water were shown in terms of frequency magnitude and duration. The results have shown that the optimal rule curves from CGA and CTSA connected with the simulation model can mitigate drought and flood situations than the existing rule curves. The optimal future rule curves were more suitable for future situations than the other rule curves.

  4. A prediction of Power Duration Curve from the Optimal Operation of the Multi Reservoirs System

    Directory of Open Access Journals (Sweden)

    Abdul Wahab Younis

    2013-04-01

    Full Text Available  This study aims of predication Power Duration Curves(PDC resulting from the optimal operation of the multi reservoirs system which comprises the reservoirs of Bakhma dam,Dokan dam and Makhool dam for the division of years over 30 years.Discrete Differential Dynamic Programming(DDDP has been employed to find the optimal operation of the said reservoirs.    PDC representing the relationship between the generated hydroelectric power and percentage of operation time equaled or exceeded . The importance of these curves lies in knowing the volume of electric power available for that percentage of operation time. The results have shown that the sum of yearly hydroelectric power for average Release and for the single operation was 5410,1604,2929(Mwfor the reservoirs of Bakhma, Dokan, Makhool dams, which resulted from the application of independent DDDP technology. Also, the hydroelectric power whose generation can be guranteed for 90% of the time is 344.91,107.7,188.15 (Mw for the single operation and 309.1,134.08,140.7 (Mw for the operation as a one system for the reservoirs of Bakhma, Dokan, and Makhool dams respectively.

  5. Incorporating teleconnection information into reservoir operating policies using Stochastic Dynamic Programming and a Hidden Markov Model

    Science.gov (United States)

    Turner, Sean; Galelli, Stefano; Wilcox, Karen

    2015-04-01

    Water reservoir systems are often affected by recurring large-scale ocean-atmospheric anomalies, known as teleconnections, that cause prolonged periods of climatological drought. Accurate forecasts of these events -- at lead times in the order of weeks and months -- may enable reservoir operators to take more effective release decisions to improve the performance of their systems. In practice this might mean a more reliable water supply system, a more profitable hydropower plant or a more sustainable environmental release policy. To this end, climate indices, which represent the oscillation of the ocean-atmospheric system, might be gainfully employed within reservoir operating models that adapt the reservoir operation as a function of the climate condition. This study develops a Stochastic Dynamic Programming (SDP) approach that can incorporate climate indices using a Hidden Markov Model. The model simulates the climatic regime as a hidden state following a Markov chain, with the state transitions driven by variation in climatic indices, such as the Southern Oscillation Index. Time series analysis of recorded streamflow data reveals the parameters of separate autoregressive models that describe the inflow to the reservoir under three representative climate states ("normal", "wet", "dry"). These models then define inflow transition probabilities for use in a classic SDP approach. The key advantage of the Hidden Markov Model is that it allows conditioning the operating policy not only on the reservoir storage and the antecedent inflow, but also on the climate condition, thus potentially allowing adaptability to a broader range of climate conditions. In practice, the reservoir operator would effect a water release tailored to a specific climate state based on available teleconnection data and forecasts. The approach is demonstrated on the operation of a realistic, stylised water reservoir with carry-over capacity in South-East Australia. Here teleconnections relating

  6. Cascade reservoir flood control operation based on risk grading and warning in the Upper Yellow River

    Science.gov (United States)

    Xuejiao, M.; Chang, J.; Wang, Y.

    2017-12-01

    Flood risk reduction with non-engineering measures has become the main idea for flood management. It is more effective for flood risk management to take various non-engineering measures. In this paper, a flood control operation model for cascade reservoirs in the Upper Yellow River was proposed to lower the flood risk of the water system with multi-reservoir by combining the reservoir flood control operation (RFCO) and flood early warning together. Specifically, a discharge control chart was employed to build the joint RFCO simulation model for cascade reservoirs in the Upper Yellow River. And entropy-weighted fuzzy comprehensive evaluation method was adopted to establish a multi-factorial risk assessment model for flood warning grade. Furthermore, after determining the implementing mode of countermeasures with future inflow, an intelligent optimization algorithm was used to solve the optimization model for applicable water release scheme. In addition, another model without any countermeasure was set to be a comparative experiment. The results show that the model developed in this paper can further decrease the flood risk of water system with cascade reservoirs. It provides a new approach to flood risk management by coupling flood control operation and flood early warning of cascade reservoirs.

  7. Derivation of Optimal Operating Rules for Large-scale Reservoir Systems Considering Multiple Trade-off

    Science.gov (United States)

    Zhang, J.; Lei, X.; Liu, P.; Wang, H.; Li, Z.

    2017-12-01

    Flood control operation of multi-reservoir systems such as parallel reservoirs and hybrid reservoirs often suffer from complex interactions and trade-off among tributaries and the mainstream. The optimization of such systems is computationally intensive due to nonlinear storage curves, numerous constraints and complex hydraulic connections. This paper aims to derive the optimal flood control operating rules based on the trade-off among tributaries and the mainstream using a new algorithm known as weighted non-dominated sorting genetic algorithm II (WNSGA II). WNSGA II could locate the Pareto frontier in non-dominated region efficiently due to the directed searching by weighted crowding distance, and the results are compared with those of conventional operating rules (COR) and single objective genetic algorithm (GA). Xijiang river basin in China is selected as a case study, with eight reservoirs and five flood control sections within four tributaries and the mainstream. Furthermore, the effects of inflow uncertainty have been assessed. Results indicate that: (1) WNSGA II could locate the non-dominated solutions faster and provide better Pareto frontier than the traditional non-dominated sorting genetic algorithm II (NSGA II) due to the weighted crowding distance; (2) WNSGA II outperforms COR and GA on flood control in the whole basin; (3) The multi-objective operating rules from WNSGA II deal with the inflow uncertainties better than COR. Therefore, the WNSGA II can be used to derive stable operating rules for large-scale reservoir systems effectively and efficiently.

  8. Determination of the Cascade Reservoir Operation for Optimal Firm-Energy Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Azmeri

    2013-08-01

    Full Text Available Indonesia today face a new paradigm in water management where aim to apply integrated water resources management has become unavoidable task in purpose of achieving greater level of effectiveness and efficiency. On of most interesting case study is the case of Citarum river, one of the most potential river for water supply in West Java, Indonesia. Alongside the river, Saguling, Cirata and Djuanda Reservoirs had been constructed in series/cascade. Saguling and Cirata reservoirs are particularly operated for hydroelectric power and Djuanda is multipurpose reservoir mainly operated for irrigation and contribute domestic water supply for Jakarta (capital city of Indonesia. Basically all reservoirs are relying on same resources, therefore this condition has considered addressing management and operational problem. Therefore, an approach toward new management and operation system are urgently required in order to achieve the effective and efficient output and to avoid conflicts of water used. This study aims to obtain energy production from Citarum Cascade Reservoir System using Genetic Algorithms optimization with the objective function to maximize firm-energy. Firm-energy is the minimum energy requirements must be available in a certain time period. Then, the result obtained by using the energy produced by GA is compared to the conventional searching technique of Non-Linier Programming (NLP. The GA derived operating curves reveal the higher energy and firm-energy than NLP model

  9. Designing adaptive operating rules for a large multi-purpose reservoir

    Science.gov (United States)

    Geressu, Robel; Rougé, Charles; Harou, Julien

    2017-04-01

    Reservoirs whose live storage capacity is large compared with annual inflow have "memory", i.e., their storage levels contain information about past inflows and reservoir operations. Such "long-memory" reservoirs can be found in basins in dry regions such as the Nile River Basin in Africa, the Colorado River Basin in the US, or river basins in Western and Central Asia. There the effects of a dry year have the potential to impact reservoir levels and downstream releases for several subsequent years, prompting tensions in transboundary basins. Yet, current reservoir operation rules in those reservoirs do not reflect this by integrating past climate history and release decisions among the factors that influence operating decisions. This work proposes and demonstrates an adaptive reservoir operating rule that explicitly accounts for the recent history of release decisions, and not only current storage level and near-term inflow forecasts. This implies adding long-term (e.g., multiyear) objectives to the existing short-term (e.g., annual) ones. We apply these operating rules to the Grand Ethiopian Renaissance Dam, a large reservoir under construction on the Blue Nile River. Energy generation has to be balanced with the imperative of releasing enough water in low flow years (e.g., the minimum 1, 2 or 3 year cumulative flow) to avoid tensions with downstream countries, Sudan and Egypt. Maximizing the minimum multi-year releases could be of interest for the Nile problem to minimize the impact on performance of the large High Aswan Dam in Egypt. Objectives include maximizing the average and minimum annual energy generation and maximizing the minimum annual, two year and three year cumulative releases. The system model is tested using 30 stochastically generated streamflow series. One can then derive adaptive release rules depending on the value of one- and two-year total releases with respect to thresholds. Then, there are 3 sets of release rules for the reservoir depending

  10. Applicability of adapted reservoir operation for water stress mitigation under dry year conditions

    NARCIS (Netherlands)

    Olsson, O.; Ikramova, M.; Bauer, M.; Froebrich, J.

    2010-01-01

    This paper introduces the conjunctive use of a deterministic water quality model and water balance criteria for supporting the assessment of simulation and to evaluate the effectiveness of proposed operation strategies. By this, the applicability of enhanced reservoir operation strategies addressing

  11. Evaluation of the operation of Yermasoyia surface and groundwater reservoirs

    International Nuclear Information System (INIS)

    Iacovides, I.S.

    1988-07-01

    The environmental isotope technique has been used in conjunction with hydrochemical methods to study the conjunctive use of surface and groundwater in the Yermasoyia area of Cyprus. The isotopes used in this study are 18 O, 2 H and 3 H. The isotopically enriched water in the Yermasoyia dam is released periodically in order to study the movement of the released water. From the stable isotopes and tritium data, it became evident that two regions can be distinguished in the aquifer, the Upper part and the Delta area. The secondary aquifer on either side of the river valley does not appear to receive any water from the seepage of the dam. The overall tracer average velocity in the aquifer was computed to be 16±3m per day and this is equivalent to a permeability of 160m per day. Water bodies originating from low frequency spills have been identified at the coast on the basis of oxygen-18 and tritium. A successful simulation of the reservoir for 1985 increased the confidence in the water balance and was used to verify the quantities estimated for evaporation and seepage. Refs, figs and tabs

  12. AI techniques for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands

    Science.gov (United States)

    Tsai, Wen-Ping; Chang, Fi-John; Chang, Li-Chiu; Herricks, Edwin E.

    2015-11-01

    Flow regime is the key driver of the riverine ecology. This study proposes a novel hybrid methodology based on artificial intelligence (AI) techniques for quantifying riverine ecosystems requirements and delivering suitable flow regimes that sustain river and floodplain ecology through optimizing reservoir operation. This approach addresses issues to better fit riverine ecosystem requirements with existing human demands. We first explored and characterized the relationship between flow regimes and fish communities through a hybrid artificial neural network (ANN). Then the non-dominated sorting genetic algorithm II (NSGA-II) was established for river flow management over the Shihmen Reservoir in northern Taiwan. The ecosystem requirement took the form of maximizing fish diversity, which could be estimated by the hybrid ANN. The human requirement was to provide a higher satisfaction degree of water supply. The results demonstrated that the proposed methodology could offer a number of diversified alternative strategies for reservoir operation and improve reservoir operational strategies producing downstream flows that could meet both human and ecosystem needs. Applications that make this methodology attractive to water resources managers benefit from the wide spread of Pareto-front (optimal) solutions allowing decision makers to easily determine the best compromise through the trade-off between reservoir operational strategies for human and ecosystem needs.

  13. River Stream-Flow and Zayanderoud Reservoir Operation Modeling Using the Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Saeed Jamali

    2007-12-01

    Full Text Available The Zayanderoud basin is located in the central plateau of Iran. As a result of population increase and agricultural and industrial developments, water demand on this basin has increased extensively. Given the importance of reservoir operation in water resource and management studies, the performance of fuzzy inference system (FIS for Zayanderoud reservoir operation is investigated in this paper. The model of operation consists of two parts. In the first part, the seasonal river stream-flow is forecasted using the fuzzy rule-based system. The southern oscillated index, rain, snow, and discharge are inputs of the model and the seasonal river stream-flow its output. In the second part, the operation model is constructed. The amount of releases is first optimized by a nonlinear optimization model and then the rule curves are extracted using the fuzzy inference system. This model operates on an "if-then" principle, where the "if" is a vector of fuzzy permits and "then" is the fuzzy result. The reservoir storage capacity, inflow, demand, and year condition factor are used as permits. Monthly release is taken as the consequence. The Zayanderoud basin is investigated as a case study. Different performance indices such as reliability, resiliency, and vulnerability are calculated. According to results, FIS works more effectively than the traditional reservoir operation methods such as standard operation policy (SOP or linear regression.

  14. Optimization of conventional rule curves coupled with hedging rules for reservoir operation

    DEFF Research Database (Denmark)

    Taghian, Mehrdad; Rosbjerg, Dan; Haghighi, Ali

    2014-01-01

    As a common approach to reservoir operating policies, water levels at the end of each time interval should be kept at or above the rule curve. In this study, the policy is captured using rationing of the target yield to reduce the intensity of severe water shortages. For this purpose, a hybrid...... to achieve the optimal water allocation and the target storage levels for reservoirs. As a case study, a multipurpose, multireservoir system in southern Iran is selected. The results show that the model has good performance in extracting the optimum policy for reservoir operation under both normal...... model is developed to optimize simultaneously both the conventional rule curve and the hedging rule. In the compound model, a simple genetic algorithm is coupled with a simulation program, including an inner linear programming algorithm. In this way, operational policies are imposed by priority concepts...

  15. Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    Directory of Open Access Journals (Sweden)

    H. Lauri

    2012-12-01

    Full Text Available The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekong within next 20–30 yr. We downscaled the output of five general circulation models (GCMs that were found to perform well in the Mekong region. For the simulation of reservoir operation, we used an optimisation approach to estimate the operation of multiple reservoirs, including both existing and planned hydropower reservoirs. For the hydrological assessment, we used a distributed hydrological model, VMod, with a grid resolution of 5 km × 5 km. In terms of climate change's impact on hydrology, we found a high variation in the discharge results depending on which of the GCMs is used as input. The simulated change in discharge at Kratie (Cambodia between the baseline (1982–1992 and projected time period (2032–2042 ranges from −11% to +15% for the wet season and −10% to +13% for the dry season. Our analysis also shows that the changes in discharge due to planned reservoir operations are clearly larger than those simulated due to climate change: 25–160% higher dry season flows and 5–24% lower flood peaks in Kratie. The projected cumulative impacts follow rather closely the reservoir operation impacts, with an envelope around them induced by the different GCMs. Our results thus indicate that within the coming 20–30 yr, the operation of planned hydropower reservoirs is likely to have a larger impact on the Mekong hydrograph than the impacts of climate change, particularly during the dry season. On the other hand, climate change will

  16. Complex relationship between seasonal streamflow forecast skill and value in reservoir operations

    Directory of Open Access Journals (Sweden)

    S. W. D. Turner

    2017-09-01

    Full Text Available Considerable research effort has recently been directed at improving and operationalising ensemble seasonal streamflow forecasts. Whilst this creates new opportunities for improving the performance of water resources systems, there may also be associated risks. Here, we explore these potential risks by examining the sensitivity of forecast value (improvement in system performance brought about by adopting forecasts to changes in the forecast skill for a range of hypothetical reservoir designs with contrasting operating objectives. Forecast-informed operations are simulated using rolling horizon, adaptive control and then benchmarked against optimised control rules to assess performance improvements. Results show that there exists a strong relationship between forecast skill and value for systems operated to maintain a target water level. But this relationship breaks down when the reservoir is operated to satisfy a target demand for water; good forecast accuracy does not necessarily translate into performance improvement. We show that the primary cause of this behaviour is the buffering role played by storage in water supply reservoirs, which renders the forecast superfluous for long periods of the operation. System performance depends primarily on forecast accuracy when critical decisions are made – namely during severe drought. As it is not possible to know in advance if a forecast will perform well at such moments, we advocate measuring the consistency of forecast performance, through bootstrap resampling, to indicate potential usefulness in storage operations. Our results highlight the need for sensitivity assessment in value-of-forecast studies involving reservoirs with supply objectives.

  17. Hybrid Multi-Objective Optimization of Folsom Reservoir Operation to Maximize Storage in Whole Watershed

    Science.gov (United States)

    Goharian, E.; Gailey, R.; Maples, S.; Azizipour, M.; Sandoval Solis, S.; Fogg, G. E.

    2017-12-01

    The drought incidents and growing water scarcity in California have a profound effect on human, agricultural, and environmental water needs. California experienced multi-year droughts, which have caused groundwater overdraft and dropping groundwater levels, and dwindling of major reservoirs. These concerns call for a stringent evaluation of future water resources sustainability and security in the state. To answer to this call, Sustainable Groundwater Management Act (SGMA) was passed in 2014 to promise a sustainable groundwater management in California by 2042. SGMA refers to managed aquifer recharge (MAR) as a key management option, especially in areas with high variation in water availability intra- and inter-annually, to secure the refill of underground water storage and return of groundwater quality to a desirable condition. The hybrid optimization of an integrated water resources system provides an opportunity to adapt surface reservoir operations for enhancement in groundwater recharge. Here, to re-operate Folsom Reservoir, objectives are maximizing the storage in the whole American-Cosumnes watershed and maximizing hydropower generation from Folsom Reservoir. While a linear programing (LP) module tends to maximize the total groundwater recharge by distributing and spreading water over suitable lands in basin, a genetic based algorithm, Non-dominated Sorting Genetic Algorithm II (NSGA-II), layer above it controls releases from the reservoir to secure the hydropower generation, carry-over storage in reservoir, available water for replenishment, and downstream water requirements. The preliminary results show additional releases from the reservoir for groundwater recharge during high flow seasons. Moreover, tradeoffs between the objectives describe that new operation performs satisfactorily to increase the storage in the basin, with nonsignificant effects on other objectives.

  18. Duck Valley Reservoirs Fish Stocking and Operation and Maintenance, 2006-2007 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sellman, Jake; Dykstra, Tim [Shoshone-Paiute Tribes

    2009-05-11

    The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance (DV Fisheries) project is an ongoing resident fish program that serves to partially mitigate the loss of anadromous fish that resulted from downstream construction of the hydropower system. The project's goals are to enhance subsistence fishing and educational opportunities for Tribal members of the Shoshone-Paiute Tribes and provide resident fishing opportunities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View, Lake Billy Shaw, and Sheep Creek Reservoirs, the program is also designed to maintain healthy aquatic conditions for fish growth and survival, to provide superior facilities with wilderness qualities to attract non-Tribal angler use, and to offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period are divided into operations and maintenance plus monitoring and evaluation. Operation and maintenance of the three reservoirs include fences, roads, dams and all reservoir structures, feeder canals, water troughs and stock ponds, educational signs, vehicles and equipment, and outhouses. Monitoring and evaluation activities included creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, control of encroaching exotic vegetation, and community outreach and education. The three reservoirs are monitored in terms of water quality and fishery success. Sheep Creek Reservoir was very unproductive this year as a fishery. Fish morphometric and water quality data indicate that the turbidity is severely impacting trout survival. Lake Billy Shaw was very productive as a fishery and received good ratings from anglers. Mountain View was also productive and anglers reported a high number of quality sized fish. Water quality

  19. Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: a case study of the Xinfengjiang reservoir in southern China

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2013-01-01

    The ever-increasing demand for water due to growth of population and socioeconomic development in the past several decades has posed a worldwide threat to water supply security and to the environmental health of rivers. This study aims to derive reservoir operating rules through establishing a multi-objective optimization model for the Xinfengjiang (XFJ) reservoir in the East River Basin in southern China to minimize water supply deficit and maximize hydropower generation. Additionally, to enhance the estimation of irrigation water demand from the downstream agricultural area of the XFJ reservoir, a conventional method for calculating crop water demand is improved using hydrological model simulation results. Although the optimal reservoir operating rules are derived for the XFJ reservoir with three priority scenarios (water supply only, hydropower generation only, and equal priority), the river environmental health is set as the basic demand no matter which scenario is adopted. The results show that the new rules derived under the three scenarios can improve the reservoir operation for both water supply and hydropower generation when comparing to the historical performance. Moreover, these alternative reservoir operating policies provide the flexibility for the reservoir authority to choose the most appropriate one. Although changing the current operating rules may influence its hydropower-oriented functions, the new rules can be significant to cope with the increasingly prominent water shortage and degradation in the aquatic environment. Overall, our results and methods (improved estimation of irrigation water demand and formulation of the reservoir optimization model) can be useful for local watershed managers and valuable for other researchers worldwide.

  20. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    Science.gov (United States)

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  1. Total output operation chart optimization of cascade reservoirs and its application

    International Nuclear Information System (INIS)

    Jiang, Zhiqiang; Ji, Changming; Sun, Ping; Wang, Liping; Zhang, Yanke

    2014-01-01

    Highlights: • We propose a new double nested model for cascade reservoirs operation optimization. • We use two methods to extract the output distribution ratio. • The adopted two methods perform better than the widely used methods at present. • Stepwise regression method performs better than mean value method on the whole. - Abstract: With the rapid development of cascade hydropower stations in recent decades, the cascade system composed of multiple reservoirs needs unified operation and management. However, the output distribution problem has not yet been solved reasonably when the total output of cascade system obtained, which makes the full utilization of hydropower resources in cascade reservoirs very difficult. Discriminant criterion method is a traditional and common method to solve the output distribution problem at present, but some shortcomings cannot be ignored in the practical application. In response to the above concern, this paper proposes a new total output operation chart optimization model and a new optimal output distribution model, the two models constitute to a double nested model with the goal of maximizing power generation. This paper takes the cascade reservoirs of Li Xianjiang River in China as an instance to obtain the optimal total output operation chart by the proposed double nested model and the 43 years historical runoff data, progressive searching method and progressive optimality algorithm are used in solving the model. In order to take the obtained total output operation chart into practical operation, mean value method and stepwise regression method are adopted to extract the output distribution ratios on the basis of the optimal simulation intermediate data. By comparing with discriminant criterion method and conventional method, the combined utilization of total output operation chart and output distribution ratios presents better performance in terms of power generation and assurance rate, which proves it is an effective

  2. Forecast Informed Reservoir Operations: Bringing Science and Decision-Makers Together to Explore Use of Hydrometeorological Forecasts to Support Future Reservoir Operations

    Science.gov (United States)

    Ralph, F. M.; Jasperse, J.

    2017-12-01

    Forecast Informed Reservoir Operations (FIRO) is a proposed strategy that is exploring inorporation of improved hydrometeorological forecasts of land-falling atmospheric rivers on the U.S. West Coast into reservoir operations. The first testbed for this strategy is Lake Mendocino, which is located in the East Fork of the 1485 mi2 Russian River Watershed in northern California. This project is guided by the Lake Mendocino FIRO Steering Committee (SC). The SC is an ad hoc committee that consists of water managers and scientists from several federal, state, and local agencies, and universities who have teamed to evaluate whether current or improved technology and scientific understanding can be utilized to improve water supply reliability, enhance flood mitigation and support recovery of listed salmon for the Russian River of northern California. In 2015, the SC created a detailed work plan, which included a Preliminary Viability Assessment, which has now been completed. The SC developed a vision that operational efficiency would be improved by using forecasts to inform decisions about releasing or storing water. FIRO would use available reservoir storage in an efficient manner by (1) better forecasting inflow (or lack of inflow) with enhanced technology, and (2) adapting operation in real time to meet the need for storage, rather than making storage available just in case it is needed. The envisioned FIRO strategy has the potential to simultaneously improve water supply reliability, flood protection, and ecosystem outcomes through a more efficient use of existing infrastructure while requiring minimal capital improvements in the physical structure of the dam. This presentation will provide an overview of the creation of the FIRO SC and how it operates, and describes the lessons learned through this partnership. Results in the FIRO Preliminary Viability Assessment will be summarized and next steps described.

  3. Simulation-optimization model of reservoir operation based on target storage curves

    Directory of Open Access Journals (Sweden)

    Hong-bin Fang

    2014-10-01

    Full Text Available This paper proposes a new storage allocation rule based on target storage curves. Joint operating rules are also proposed to solve the operation problems of a multi-reservoir system with joint demands and water transfer-supply projects. The joint operating rules include a water diversion rule to determine the amount of diverted water in a period, a hedging rule based on an aggregated reservoir to determine the total release from the system, and a storage allocation rule to specify the release from each reservoir. A simulation-optimization model was established to optimize the key points of the water diversion curves, the hedging rule curves, and the target storage curves using the improved particle swarm optimization (IPSO algorithm. The multi-reservoir water supply system located in Liaoning Province, China, including a water transfer-supply project, was employed as a case study to verify the effectiveness of the proposed join operating rules and target storage curves. The results indicate that the proposed operating rules are suitable for the complex system. The storage allocation rule based on target storage curves shows an improved performance with regard to system storage distribution.

  4. Impacts of operation of CVP regulating reservoirs on water temperature

    International Nuclear Information System (INIS)

    Vail, L.W.

    1996-01-01

    The Western Area Power Administration (Western) markets and transmits electric power throughout 15 western states. Western's Sierra Nevada Customer Service Region (Sierra Nevada Region) markets approximately 1,480 megawatts (MW) of firm power (and 100 MW of seasonal peaking capacity) from the Central Valley Project (CVP) and other sources and markets available nonfirm power from the Washoe Project. Western's mission is to sell and deliver electricity generated from CVP powerplants. The hydroelectric facilities of the CVP are operated by the Bureau of Reclamation (Reclamation). Reclamation manages and releases water in accordance with the various acts authorizing specific projects and with enabling legislation. Western's capacity and energy sales must be in conformance with the laws that govern its sale of electrical power. Further, Western's hydropower operations at each facility must comply with minimum and maximum flows and other constraints set by Reclamation, the U.S. Fish and Wildlife Service, or other agencies, acting in accord with law or policy

  5. Significance of Selective Predation and Development of Prey Protection Measures for Juvenile Salmonids in the Columbia and Snake River Reservoirs: Annual Progress Report, February 1991-February 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Poe, Thomas P.

    1992-12-31

    This document is the 1991 annual report of progress for the Bonneville Power Administration (BPA) research Project conducted by the US Fish and Wildlife Service (FWS). Our approach was to present the progress achieved during 1991 in a series of separate reports for each major project task. Each report is prepared in the format of a scientific paper and is able to stand alone, whatever the state of progress or completion. This project has two major goals. One is to understand the significance of selective predation and prey vulnerability by determining if substandard juvenile salmonids (dead, injured, stressed, diseased, or naive) are more vulnerable to predation by northern squawfish, than standard or normal juvenile salmonids. The second goal is to develop and test prey protection measures to control predation on juvenile salmonids by reducing predator-smolt encounters or predator capture efficiency.

  6. Assessing the operation rules of a reservoir system based on a detailed modelling-chain

    Science.gov (United States)

    Bruwier, M.; Erpicum, S.; Pirotton, M.; Archambeau, P.; Dewals, B.

    2014-09-01

    According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two muti-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking, to control floods, to produce hydropower and to reduce low-flow condition. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.

  7. Assessing the operation rules of a reservoir system based on a detailed modelling chain

    Science.gov (United States)

    Bruwier, M.; Erpicum, S.; Pirotton, M.; Archambeau, P.; Dewals, B. J.

    2015-03-01

    According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two multi-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking water, to control floods, to produce hydropower and to reduce low-flow conditions. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.

  8. Extraction of Static and Dynamic Reservoir Operation Rules by Genetic Programming

    Directory of Open Access Journals (Sweden)

    Habib Akbari Alashti

    2014-11-01

    Full Text Available Considering the necessity of desirable operation of limited water resources and assuming the significant role of dams in controlling and consuming the surface waters, highlights the advantageous of suitable operation rules for optimal and sustainable operation of dams. This study investigates the hydroelectric supply of a one-reservoir system of Karoon3 using nonlinear programming (NLP, genetic algorithm (GA, genetic programming (GP and fixed length gen GP (FLGGP in real-time operation of dam considering two approaches of static and dynamic operation rules. In static operation rule, only one rule curve is extracted for all months in a year whereas in dynamic operation rule, monthly rule curves (12 rules are extracted for each month of a year. In addition, nonlinear decision rule (NLDR curves are considered, and the total deficiency function as the target (objective function have been used for evaluating the performance of each method and approach. Results show appropriate efficiency of GP and FLGGP methods in extracting operation rules in both approaches. Superiority of these methods to operation methods yielded by GA and NLP is 5%. Moreover, according to the results, it can be remarked that, FLGGP method is an alternative for GP method, whereas the GP method cannot be used due to its limitations. Comparison of two approaches of static and dynamic operation rules demonstrated the superiority of dynamic operation rule to static operation rule (about 10% and therefore this method has more capabilities in real-time operation of the reservoirs systems.

  9. Reservoir adaptive operating rules based on both of historical streamflow and future projections

    Science.gov (United States)

    Zhang, Wei; Liu, Pan; Wang, Hao; Chen, Jie; Lei, Xiaohui; Feng, Maoyuan

    2017-10-01

    Climate change is affecting hydrological variables and consequently is impacting water resources management. Historical strategies are no longer applicable under climate change. Therefore, adaptive management, especially adaptive operating rules for reservoirs, has been developed to mitigate the possible adverse effects of climate change. However, to date, adaptive operating rules are generally based on future projections involving uncertainties under climate change, yet ignoring historical information. To address this, we propose an approach for deriving adaptive operating rules considering both historical information and future projections, namely historical and future operating rules (HAFOR). A robustness index was developed by comparing benefits from HAFOR with benefits from conventional operating rules (COR). For both historical and future streamflow series, maximizations of both average benefits and the robustness index were employed as objectives, and four trade-offs were implemented to solve the multi-objective problem. Based on the integrated objective, the simulation-based optimization method was used to optimize the parameters of HAFOR. Using the Dongwushi Reservoir in China as a case study, HAFOR was demonstrated to be an effective and robust method for developing adaptive operating rules under the uncertain changing environment. Compared with historical or projected future operating rules (HOR or FPOR), HAFOR can reduce the uncertainty and increase the robustness for future projections, especially regarding results of reservoir releases and volumes. HAFOR, therefore, facilitates adaptive management in the context that climate change is difficult to predict accurately.

  10. Guiding rational reservoir flood operation using penalty-type genetic algorithm

    Science.gov (United States)

    Chang, Li-Chiu

    2008-06-01

    SummaryReal-time flood control of a multi-purpose reservoir should consider decreasing the flood peak stage downstream and storing floodwaters for future usage during typhoon seasons. This study proposes a reservoir flood control optimization model with linguistic description of requirements and existing regulations for rational operating decisions. The approach involves formulating reservoir flood operation as an optimization problem and using the genetic algorithm (GA) as a search engine. The optimizing formulation is expressed not only by mathematical forms of objective function and constraints, but also by no analytic expression in terms of parameters. GA is used to search a global optimum of a mixture of mathematical and nonmathematical formulations. Due to the great number of constraints and flood control requirements, it is difficult to reach a solution without violating constraints. To tackle this bottleneck, the proper penalty strategy for each parameter is proposed to guide the GA searching process. The proposed approach is applied to the Shihmen reservoir in North Taiwan for finding the rational release and desired storage as a case study. The hourly historical data sets of 29 typhoon events that have hit the area in last thirty years are investigated bye the proposed method. To demonstrate the effectiveness of the proposed approach, the simplex method was performed. The results demonstrated that a penalty-type genetic algorithm could effectively provide rational hydrographs to reduce flood damage during the flood operation and to increase final storage for future usages.

  11. Monthly Optimal Reservoirs Operation for Multicrop Deficit Irrigation under Fuzzy Stochastic Uncertainties

    Directory of Open Access Journals (Sweden)

    Liudong Zhang

    2014-01-01

    Full Text Available An uncertain monthly reservoirs operation and multicrop deficit irrigation model was proposed under conjunctive use of underground and surface water for water resources optimization management. The objective is to maximize the total crop yield of the entire irrigation districts. Meanwhile, ecological water remained for the downstream demand. Because of the shortage of water resources, the monthly crop water production function was adopted for multiperiod deficit irrigation management. The model reflects the characteristics of water resources repetitive transformation in typical inland rivers irrigation system. The model was used as an example for water resources optimization management in Shiyang River Basin, China. Uncertainties in reservoir management shown as fuzzy probability were treated through chance-constraint parameter for decision makers. Necessity of dominance (ND was used to analyse the advantages of the method. The optimization results including reservoirs real-time operation policy, deficit irrigation management, and the available water resource allocation could be used to provide decision support for local irrigation management. Besides, the strategies obtained could help with the risk analysis of reservoirs operation stochastically.

  12. The role of predictive uncertainty in the operational management of reservoirs

    Directory of Open Access Journals (Sweden)

    E. Todini

    2014-09-01

    Full Text Available The present work deals with the operational management of multi-purpose reservoirs, whose optimisation-based rules are derived, in the planning phase, via deterministic (linear and nonlinear programming, dynamic programming, etc. or via stochastic (generally stochastic dynamic programming approaches. In operation, the resulting deterministic or stochastic optimised operating rules are then triggered based on inflow predictions. In order to fully benefit from predictions, one must avoid using them as direct inputs to the reservoirs, but rather assess the "predictive knowledge" in terms of a predictive probability density to be operationally used in the decision making process for the estimation of expected benefits and/or expected losses. Using a theoretical and extremely simplified case, it will be shown why directly using model forecasts instead of the full predictive density leads to less robust reservoir management decisions. Moreover, the effectiveness and the tangible benefits for using the entire predictive probability density instead of the model predicted values will be demonstrated on the basis of the Lake Como management system, operational since 1997, as well as on the basis of a case study on the lake of Aswan.

  13. Assessing ecosystem effects of reservoir operations using food web-energy transfer and water quality models

    Science.gov (United States)

    Saito, L.; Johnson, B.M.; Bartholow, J.; Hanna, R.B.

    2001-01-01

    We investigated the effects on the reservoir food web of a new temperature control device (TCD) on the dam at Shasta Lake, California. We followed a linked modeling approach that used a specialized reservoir water quality model to forecast operation-induced changes in phytoplankton production. A food web–energy transfer model was also applied to propagate predicted changes in phytoplankton up through the food web to the predators and sport fishes of interest. The food web–energy transfer model employed a 10% trophic transfer efficiency through a food web that was mapped using carbon and nitrogen stable isotope analysis. Stable isotope analysis provided an efficient and comprehensive means of estimating the structure of the reservoir's food web with minimal sampling and background data. We used an optimization procedure to estimate the diet proportions of all food web components simultaneously from their isotopic signatures. Some consumers were estimated to be much more sensitive than others to perturbations to phytoplankton supply. The linked modeling approach demonstrated that interdisciplinary efforts enhance the value of information obtained from studies of managed ecosystems. The approach exploited the strengths of engineering and ecological modeling methods to address concerns that neither of the models could have addressed alone: (a) the water quality model could not have addressed quantitatively the possible impacts to fish, and (b) the food web model could not have examined how phytoplankton availability might change due to reservoir operations.

  14. Completion of potential conflicts of interest through optimization of Rukoh reservoir operation in Pidie District, Aceh Province, Indonesia

    Science.gov (United States)

    Azmeri, Hadihardaja, Iwan K.; Shaskia, Nina; Admaja, Kamal Surya

    2017-11-01

    Rukoh Reservoir's construction was planned to be built in Krueng Rukoh Watershed with supplet ion from Krueng Tiro River. Rukoh Reservoir operating system as a multipurpose reservoir raised potential conflict of interest between raw water and irrigation water. In this study, the operating system of Rukoh Reservoirs was designed to supply raw water in Titeu Sub-District and replenish water shortage in Baro Irrigation Area which is not able to be served by the Keumala Weir. Reservoir operating system should be planned optimally so that utilization of water in accordance with service area demands. Reservoir operation method was analyzed by using optimization technique with nonlinear programming. Optimization of reservoir operation is intended to minimize potential conflicts of interest in the operation. Suppletion discharge from Krueng Tiro River amounted to 46.62%, which was calculated based on ratio of Baro and Tiro irrigation area. However, during dry seasons, water demands could not be fully met, so there was a shortage of water. By considering the rules to minimize potential conflicts of interest between raw water and irrigation water, it would require suppletion from Krueng Tiro amounted to 52.30%. The increment of suppletion volume could minimize conflicts of interest. It produced l00% reservoir reliability for raw water and irrigation demands. Rukoh reservoir could serve raw water demands of Titeu Sub-District and irrigation demands of Baro irrigation area which is covering an area of 6,047 hectars. Reservoir operation guidelines can specify reservoir water release to balance the demands and the target storage.

  15. Genetic Algorithm (GA Method for Optimization of Multi-Reservoir Systems Operation

    Directory of Open Access Journals (Sweden)

    Shervin Momtahen

    2006-01-01

    Full Text Available A Genetic Algorithm (GA method for optimization of multi-reservoir systems operation is proposed in this paper. In this method, the parameters of operating policies are optimized using system simulation results. Hence, any operating problem with any sort of objective function, constraints and structure of operating policy can be optimized by GA. The method is applied to a 3-reservoir system and is compared with two traditional methods of Stochastic Dynamic Programming and Dynamic Programming and Regression. The results show that GA is superior both in objective function value and in computational speed. The proposed method is further improved using a mutation power updating rule and a varying period simulation method. The later is a novel procedure proposed in this paper that is believed to help in solving computational time problem in large systems. These revisions are evaluated and proved to be very useful in converging to better solutions in much less time. The final GA method is eventually evaluated as a very efficient procedure that is able to solve problems of large multi-reservoir system which is usually impossible by traditional methods. In fact, the real performance of the GA method starts where others fail to function.

  16. Environmental hedging: A theory and method for reconciling reservoir operations for downstream ecology and water supply

    Science.gov (United States)

    Adams, L. E.; Lund, J. R.; Moyle, P. B.; Quiñones, R. M.; Herman, J. D.; O'Rear, T. A.

    2017-09-01

    Building reservoir release schedules to manage engineered river systems can involve costly trade-offs between storing and releasing water. As a result, the design of release schedules requires metrics that quantify the benefit and damages created by releases to the downstream ecosystem. Such metrics should support making operational decisions under uncertain hydrologic conditions, including drought and flood seasons. This study addresses this need and develops a reservoir operation rule structure and method to maximize downstream environmental benefit while meeting human water demands. The result is a general approach for hedging downstream environmental objectives. A multistage stochastic mixed-integer nonlinear program with Markov Chains, identifies optimal "environmental hedging," releases to maximize environmental benefits subject to probabilistic seasonal hydrologic conditions, current, past, and future environmental demand, human water supply needs, infrastructure limitations, population dynamics, drought storage protection, and the river's carrying capacity. Environmental hedging "hedges bets" for drought by reducing releases for fish, sometimes intentionally killing some fish early to reduce the likelihood of large fish kills and storage crises later. This approach is applied to Folsom reservoir in California to support survival of fall-run Chinook salmon in the lower American River for a range of carryover and initial storage cases. Benefit is measured in terms of fish survival; maintaining self-sustaining native fish populations is a significant indicator of ecosystem function. Environmental hedging meets human demand and outperforms other operating rules, including the current Folsom operating strategy, based on metrics of fish extirpation and water supply reliability.

  17. On the effects of adaptive reservoir operating rules in hydrological physically-based models

    Science.gov (United States)

    Giudici, Federico; Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo

    2017-04-01

    Recent years have seen a significant increase of the human influence on the natural systems both at the global and local scale. Accurately modeling the human component and its interaction with the natural environment is key to characterize the real system dynamics and anticipate future potential changes to the hydrological regimes. Modern distributed, physically-based hydrological models are able to describe hydrological processes with high level of detail and high spatiotemporal resolution. Yet, they lack in sophistication for the behavior component and human decisions are usually described by very simplistic rules, which might underperform in reproducing the catchment dynamics. In the case of water reservoir operators, these simplistic rules usually consist of target-level rule curves, which represent the average historical level trajectory. Whilst these rules can reasonably reproduce the average seasonal water volume shifts due to the reservoirs' operation, they cannot properly represent peculiar conditions, which influence the actual reservoirs' operation, e.g., variations in energy price or water demand, dry or wet meteorological conditions. Moreover, target-level rule curves are not suitable to explore the water system response to climate and socio economic changing contexts, because they assume a business-as-usual operation. In this work, we quantitatively assess how the inclusion of adaptive reservoirs' operating rules into physically-based hydrological models contribute to the proper representation of the hydrological regime at the catchment scale. In particular, we contrast target-level rule curves and detailed optimization-based behavioral models. We, first, perform the comparison on past observational records, showing that target-level rule curves underperform in representing the hydrological regime over multiple time scales (e.g., weekly, seasonal, inter-annual). Then, we compare how future hydrological changes are affected by the two modeling

  18. Technology strategy for integrated operations and real time reservoir management; Technology Target Areas; TTA5 - Integrated operations and RTRM

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    In Norway Integrated Operations (IO) is a concept which in the first phase (G1) has been used to describe how to integrate processes and people onshore and offshore using ICT solutions and facilities that improve onshore's ability to support offshore operationally. The second generation (G2) Integrated Operations aims to help operators utilize vendors' core competencies and services more efficiently. Utilizing digital services and vendor products, operators will be able to update reservoir models, drilling targets and well trajectories as wells are drilled, manage well completions remotely, optimize production from reservoir to export lines, and implement condition-based maintenance concepts. The total impact on production, recovery rates, costs and safety will be profound. When the international petroleum business moves to the Arctic region the setting is very different from what is the case on the Norwegian Continental Shelf (NCS) and new challenges will arise. The Norwegian Ministry of Environment has recently issued an Integrated Management Plan for the Barents Sea where one focus is on 'Monitoring of the Marine Environment in the North'. The Government aims to establish a new and more coordinated system for monitoring the marine ecosystems in the north. A representative group consisting of the major Operators, the Service Industry, Academia and the Authorities have developed the enclosed strategy for the OG21 Integrated Operations and Real Time Reservoir Management (IO and RTRM) Technology Target Area (TTA). Major technology and work process research and development gaps have been identified in several areas: Bandwidth down-hole to surface; Sensor development including Nano-technology; Cross discipline use of Visualisation, Simulation and model development particularly in Drilling and Reservoir management areas; Software development in terms of data handling, model updating and calculation speed; Enabling reliable and robust communications particularly for

  19. Technology strategy for integrated operations and real time reservoir management; Technology Target Areas; TTA5 - Integrated operations and RTRM

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    In Norway Integrated Operations (IO) is a concept which in the first phase (G1) has been used to describe how to integrate processes and people onshore and offshore using ICT solutions and facilities that improve onshore's ability to support offshore operationally. The second generation (G2) Integrated Operations aims to help operators utilize vendors' core competencies and services more efficiently. Utilizing digital services and vendor products, operators will be able to update reservoir models, drilling targets and well trajectories as wells are drilled, manage well completions remotely, optimize production from reservoir to export lines, and implement condition-based maintenance concepts. The total impact on production, recovery rates, costs and safety will be profound. When the international petroleum business moves to the Arctic region the setting is very different from what is the case on the Norwegian Continental Shelf (NCS) and new challenges will arise. The Norwegian Ministry of Environment has recently issued an Integrated Management Plan for the Barents Sea where one focus is on 'Monitoring of the Marine Environment in the North'. The Government aims to establish a new and more coordinated system for monitoring the marine ecosystems in the north. A representative group consisting of the major Operators, the Service Industry, Academia and the Authorities have developed the enclosed strategy for the OG21 Integrated Operations and Real Time Reservoir Management (IO and RTRM) Technology Target Area (TTA). Major technology and work process research and development gaps have been identified in several areas: Bandwidth down-hole to surface; Sensor development including Nano-technology; Cross discipline use of Visualisation, Simulation and model development particularly in Drilling and Reservoir management areas; Software development in terms of data handling, model updating and calculation speed; Enabling reliable and robust communications

  20. An effective streamflow process model for optimal reservoir operation using stochastic dual dynamic programming

    OpenAIRE

    Raso , L.; Malaterre , P.O.; Bader , J.C.

    2017-01-01

    International audience; This article presents an innovative streamflow process model for use in reservoir operational rule design in stochastic dual dynamic programming (SDDP). Model features, which can be applied independently, are (1) a multiplicative process model for the forward phase and its linearized version for the backward phase; and (2) a nonuniform time-step length that is inversely proportional to seasonal variability. The advantages are (1) guaranteeing positive streamflow values...

  1. Efficient Operation of a Multi-purpose Reservoir in Chile: Integration of Economic Water Value for Irrigation and Hydropower

    Science.gov (United States)

    Olivares, M. A.; Gonzalez Cabrera, J. M., Sr.; Moreno, R.

    2016-12-01

    Operation of hydropower reservoirs in Chile is prescribed by an Independent Power System Operator. This study proposes a methodology that integrates power grid operations planning with basin-scale multi-use reservoir operations planning. The aim is to efficiently manage a multi-purpose reservoir, in which hydroelectric generation is competing with other water uses, most notably irrigation. Hydropower and irrigation are competing water uses due to a seasonality mismatch. Currently, the operation of multi-purpose reservoirs with substantial power capacity is prescribed as the result of a grid-wide cost-minimization model which takes irrigation requirements as constraints. We propose advancing in the economic co-optimization of reservoir water use for irrigation and hydropower at the basin level, by explicitly introducing the economic value of water for irrigation represented by a demand function for irrigation water. The proposed methodology uses the solution of a long-term grid-wide operations planning model, a stochastic dual dynamic program (SDDP), to obtain the marginal benefit function for water use in hydropower. This marginal benefit corresponds to the energy price in the power grid as a function of the water availability in the reservoir and the hydrologic scenarios. This function allows capture technical and economic aspects to the operation of hydropower reservoir in the power grid and is generated with the dual variable of the power-balance constraint, the optimal reservoir operation and the hydrologic scenarios used in SDDP. The economic value of water for irrigation and hydropower are then integrated into a basin scale stochastic dynamic program, from which stored water value functions are derived. These value functions are then used to re-optimize reservoir operations under several inflow scenarios.

  2. Reservoir operation using El Niño forecasts-case study of Daule Peripa and Baba, Ecuador

    DEFF Research Database (Denmark)

    Gelati, Emiliano; Madsen, Henrik; Rosbjerg, Dan

    2014-01-01

    Reservoir operation is studied for the Daule Peripa and Baba system in Ecuador, where El Niño events cause anomalously heavy precipitation. Reservoir inflow is modelled by a Markov-switching model using El Niño-Southern Oscillation (ENSO) indices as input. Inflow is forecast using 9-month lead time...... Reservoir. Optimized operation is compared to historical management of Daule Peripa. Hypothetical management scenarios are used as the benchmark for the planned system, for which no operation policy is known. Upper bounds for operational performance are found via dynamic programming by assuming perfect...... knowledge of future inflow. The results highlight the advantages of combining inflow forecasts and storage targets in reservoir operation. © 2014 © 2014 IAHS Press....

  3. A real-time control framework for urban water reservoirs operation

    Science.gov (United States)

    Galelli, S.; Goedbloed, A.; Schwanenberg, D.

    2012-04-01

    Drinking water demand in urban areas is growing parallel to the worldwide urban population, and it is acquiring an increasing part of the total water consumption. Since the delivery of sufficient water volumes in urban areas represents a difficult logistic and economical problem, different metropolitan areas are evaluating the opportunity of constructing relatively small reservoirs within urban areas. Singapore, for example, is developing the so-called 'Four National Taps Strategies', which detects the maximization of water yields from local, urban catchments as one of the most important water sources. However, the peculiar location of these reservoirs can provide a certain advantage from the logistical point of view, but it can pose serious difficulties in their daily management. Urban catchments are indeed characterized by large impervious areas: this results in a change of the hydrological cycle, with decreased infiltration and groundwater recharge, and increased patterns of surface and river discharges, with higher peak flows, volumes and concentration time. Moreover, the high concentrations of nutrients and sediments characterizing urban discharges can cause further water quality problems. In this critical hydrological context, the effective operation of urban water reservoirs must rely on real-time control techniques, which can exploit hydro-meteorological information available in real-time from hydrological and nowcasting models. This work proposes a novel framework for the real-time control of combined water quality and quantity objectives in urban reservoirs. The core of this framework is a non-linear Model Predictive Control (MPC) scheme, which employs the current state of the system, the future discharges furnished by a predictive model and a further model describing the internal dynamics of the controlled sub-system to determine an optimal control sequence over a finite prediction horizon. The main advantage of this scheme stands in its reduced

  4. Operation of Dokan Reservoir under Stochastic Conditions as Regards the Inflows and the Energy Demands

    Science.gov (United States)

    Rashed, G. I.

    2018-02-01

    This paper presented a way of obtaining certain operating rules on time steps for the management of a large reservoir operation with a peak hydropower plant associated to it. The rules were allowed to have the form of non-linear regression equations which link a decision variable (here the water volume in the reservoir at the end of the time step) by several parameters influencing it. This paper considered the Dokan hydroelectric development KR-Iraq, which operation data are available for. It was showing that both the monthly average inflows and the monthly power demands are random variables. A model of deterministic dynamic programming intending the minimization of the total amount of the squares differences between the demanded energy and the generated energy is run with a multitude of annual scenarios of inflows and monthly required energies. The operating rules achieved allow the efficient and safe management of the operation and it is quietly and accurately known the forecast of the inflow and of the energy demand on the next time step.

  5. Dokan Hydropower Reservoir Operation under Stochastic Conditions as Regards the Inflows and the Energy Demands

    Science.gov (United States)

    Izat Rashed, Ghamgeen

    2018-03-01

    This paper presented a way of obtaining certain operating rules on time steps for the management of a large reservoir operation with a peak hydropower plant associated to it. The rules were allowed to have the form of non-linear regression equations which link a decision variable (here the water volume in the reservoir at the end of the time step) by several parameters influencing it. This paper considered the Dokan hydroelectric development KR-Iraq, which operation data are available for. It was showing that both the monthly average inflows and the monthly power demands are random variables. A model of deterministic dynamic programming intending the minimization of the total amount of the squares differences between the demanded energy and the generated energy is run with a multitude of annual scenarios of inflows and monthly required energies. The operating rules achieved allow the efficient and safe management of the operation and it is quietly and accurately known the forecast of the inflow and of the energy demand on the next time step.

  6. Integrating desalination to reservoir operation to increase redundancy for more secure water supply

    Science.gov (United States)

    Bhushan, Rashi; Ng, Tze Ling

    2016-08-01

    We investigate the potential of integrating desalination to existing reservoir systems to mitigate supply uncertainty. Desalinated seawater and wastewater are relatively reliable but expensive. Water from natural resources like reservoirs is generally cheaper but climate sensitive. We propose combining the operation of a reservoir and seawater and wastewater desalination plants for an overall system that is less vulnerable to scarcity and uncertainty, while constraining total cost. The joint system is modeled as a multiobjective optimization problem with the double objectives of minimizing risk and vulnerability, subject to a minimum limit on resilience. The joint model is applied to two cases, one based on the climate and demands of a location in India and the other of a location in California. The results for the Indian case indicate that it is possible for the joint system to reduce risk and vulnerability to zero given a budget increase of 20-120% under current climate conditions and 30-150% under projected future conditions. For the Californian case, this would require budget increases of 20-80% and 30-140% under current and future conditions, respectively. Further, our analysis shows a two-way interaction between the reservoir and desalination plants where the optimal operation of the former is just as much affected by the latter as the latter by the former. This highlights the importance of an integrated management approach. This study contributes to a greater quantitative understanding of desalination as a redundancy measure for adapting water supply infrastructures for a future of greater scarcity and uncertainty.

  7. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    Science.gov (United States)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  8. Reservoir operations under climate change: Storage capacity options to mitigate risk

    Science.gov (United States)

    Ehsani, Nima; Vörösmarty, Charles J.; Fekete, Balázs M.; Stakhiv, Eugene Z.

    2017-12-01

    Observed changes in precipitation patterns, rising surface temperature, increases in frequency and intensity of floods and droughts, widespread melting of ice, and reduced snow cover are some of the documented hydrologic changes associated with global climate change. Climate change is therefore expected to affect the water supply-demand balance in the Northeast United States and challenge existing water management strategies. The hydrological implications of future climate will affect the design capacity and operating characteristics of dams. The vulnerability of water resources systems to floods and droughts will increase, and the trade-offs between reservoir releases to maintain flood control storage, drought resilience, ecological flow, human water demand, and energy production should be reconsidered. We used a Neural Networks based General Reservoir Operation Scheme to estimate the implications of climate change for dams on a regional scale. This dynamic daily reservoir module automatically adapts to changes in climate and re-adjusts the operation of dams based on water storage level, timing, and magnitude of incoming flows. Our findings suggest that the importance of dams in providing water security in the region will increase. We create an indicator of the Effective Degree of Regulation (EDR) by dams on water resources and show that it is expected to increase, particularly during drier months of year, simply as a consequence of projected climate change. The results also indicate that increasing the size and number of dams, in addition to modifying their operations, may become necessary to offset the vulnerabilities of water resources systems to future climate uncertainties. This is the case even without considering the likely increase in future water demand, especially in the most densely populated regions of the Northeast.

  9. Development of a Reservoir System Operation Model for Water Sustainability in the Yaqui River Basin

    Science.gov (United States)

    Mounir, A.; Che, D.; Robles-Morua, A.; Kauneckis, D.

    2017-12-01

    The arid state of Sonora, Mexico underwent the Sonora SI project to provide additional water supply to the capital of Hermosillo. The main component of the project involves an interbasin transfer from the Yaqui River Basin (YRB) to the Sonora River Basin via the Independencia aqueduct. This project has generated conflicts over water among different social sectors in the YRB. To improve the management of the Yaqui reservoir system, we developed a daily watershed model. This model allowed us to predict the amount of water available in different regions of the basin. We integrated this simulation to an optimization model which calculates the best water allocation according to water rights established in Mexico's National Water Law. We compared different precipitation forcing scenarios: (1) a network of ground observations from Mexican water agencies during the historical period of 1980-2013, (2) gridded fields from the North America Land Data Assimilation System (NLDAS) at 12 km resolution, and (3) we will be studying a future forecast scenario. The simulation results were compared to historical observations at the three reservoirs existing in the YRB to generate confidence in the simulation tools. Our results are presented in the form of flow duration, reliability and exceedance frequency curves that are commonly used in the water management agencies. Through this effort, we anticipate building confidence among regional stakeholders in utilizing hydrological models in the development of reservoir operation policies.

  10. Effects of bubbling operations on a thermally stratified reservoir: implications for water quality amelioration.

    Science.gov (United States)

    Fernandez, R L; Bonansea, M; Cosavella, A; Monarde, F; Ferreyra, M; Bresciano, J

    2012-01-01

    Artificial thermal mixing of the water column is a common method of addressing water quality problems with the most popular method of destratification being the bubble curtain. The air or oxygen distribution along submerged multiport diffusers is based on similar basic principles as those of outfall disposal systems. Moreover, the disposal of sequestered greenhouse gases into the ocean, as recently proposed by several researchers to mitigate the global warming problem, requires analogous design criteria. In this paper, the influence of a bubble-plume is evaluated using full-scale temperature and water quality data collected in San Roque Reservoir, Argentina. A composite system consisting of seven separated diffusers connected to four 500 kPa compressors was installed at this reservoir by the end of 2008. The original purpose of this air bubble system was to reduce the stratification, so that the water body may completely mix under natural phenomena and remain well oxygenated throughout the year. By using a combination of the field measurements and modelling, this work demonstrates that thermal mixing by means of compressed air may improve water quality; however, if improperly sized or operated, such mixing can also cause deterioration. Any disruption in aeration during the destratification process, for example, may result in a reduction of oxygen levels due to the higher hypolimnetic temperatures. Further, the use of artificial destratification appears to have insignificant influence on reducing evaporation rates in relatively shallow impoundments such as San Roque reservoir.

  11. Optimizing Water Use and Hydropower Production in Operational Reservoir System Scheduling with RiverWare

    Science.gov (United States)

    Magee, T. M.; Zagona, E. A.

    2017-12-01

    Practical operational optimization of multipurpose reservoir systems is challenging for several reasons. Each purpose has its own constraints which may conflict with those of other purposes. While hydropower generation typically provides the bulk of the revenue, it is also among the lowest priority purposes. Each river system has important details that are specific to the location such as hydrology, reservoir storage capacity, physical limitations, bottlenecks, and the continuing evolution of operational policy. In addition, reservoir operations models include discrete, nonlinear, and nonconvex physical processes and if-then operating policies. Typically, the forecast horizon for scheduling needs to be extended far into the future to avoid near term (e.g., a few hours or a day) scheduling decisions that result in undesirable future states; this makes the computational effort much larger than may be expected. Put together, these challenges lead to large and customized mathematical optimization problems which must be solved efficiently to be of practical use. In addition, the solution process must be robust in an operational setting. We discuss a unique modeling approach in RiverWare that meets these challenges in an operational setting. The approach combines a Preemptive Linear Goal Programming optimization model to handle prioritized policies complimented by preprocessing and postprocessing with Rulebased Simulation to improve the solution with regard to nonlinearities, discrete issues, and if-then logic. An interactive policy language with a graphical user interface allows modelers to customize both the optimization and simulation based on the unique aspects of the policy for their system while the routine physical aspect of operations are modeled automatically. The modeler is aided by a set of compiled predefined functions and functions shared by other modelers. We illustrate the success of the approach with examples from daily use at the Tennessee Valley

  12. Remedial investigation/feasibility study report for lower Watts Bar Reservoir Operable Unit

    International Nuclear Information System (INIS)

    1994-08-01

    This document is the combined Remedial Investigation and Feasibility Study Report for the Lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch River. This area has received hazardous substances released over a period of 50 years from the U.S. Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received containments, including LWBR, must be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. Water-soluble contaminants released to ORR surface waters are rapidly diluted upon entering the Clinch River and then quickly transported downstream to the Tennessee River where further dilution occurs. Almost the entire quantity of these diluted contaminants rapidly flows through LWBR. In contrast, particle-associated contaminants tend to accumulate in the lower Clinch River and in LWBR in areas of sediment deposition. Those particle-associated contaminants that were released in peak quantities during the early years of ORR operations (e.g., mercury and 137 Cs) are buried under as much as 80 cm of cleaner sediment in LWBR. Certain contaminants, most notably polychlorinated biphenyls (PCBs), have accumulated in LWBR biota. The contamination of aquatic biota with PCBs is best documented for certain fish species and extends to reservoirs upstream of the ORR, indicating a contamination problem that is regional in scope and not specific to the ORR

  13. Effects of Coordinated Operation of Weirs and Reservoirs on the Water Quality of the Geum River

    Directory of Open Access Journals (Sweden)

    Jung Min Ahn

    2017-06-01

    Full Text Available Multifunctional weirs can be used to maintain water supply during dry seasons and to improve downstream water quality during drought conditions through discharge based on retained flux. Sixteen multifunctional weirs were recently constructed in four river systems as part of the Four Rivers Restoration Project. In this study, three multifunctional weirs in the Geum River Basin were investigated to analyze the environmental effects of multifunctional weir operation on downstream flow. To determine seasonal vulnerability to drought, the basin was evaluated using the Palmer Drought Severity Index (PDSI. Furthermore, the downstream flow regime and the effect on water quality improvement of a coordinated dam–multifunctional weir operation controlled by: (a a rainfall–runoff model; (b a reservoir optimization model; and (c a water quality model, were examined. A runoff estimate at each major location in the Geum River Basin was performed using the water quality model, and examined variation in downstream water quality depending on the operational scenario of each irrigation facility such as dams and weirs. Although the water quality was improved by the coordinated operation of the dams and weirs, when the discharged water quality is poor, the downstream water quality is not improved. Therefore, it is necessary to first improve the discharged water quality on the lower Geum River. Improvement of the water quality of main stream in the Geum River is important, but water quality from tributaries should also be improved. By applying the estimated runoff data to the reservoir optimization model, these scenarios will be utilized as basic parameters for assessing the optimal operation of the river.

  14. Remedial investigation/feasibility study report for Lower Watts Bar Reservoir Operable Unit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This document is the combined Remedial Investigation and Feasibility Study Report for the lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch river. This area has received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received contaminants, including LWBR, must be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. There is little data regarding the quantities of most contaminants potentially released from the ORR to the Clinch River, particularly for the early years of ORR operations. Estimates of the quantities released during this period are available for most radionuclides and some inorganic contaminants, indicating that releases 30 to 50 years ago were much higher than today. Since the early 1970s, the release of potential contaminants has been monitored for compliance with environmental law and reported in the annual environmental monitoring reports for the ORR.

  15. Remedial investigation/feasibility study report for Lower Watts Bar Reservoir Operable Unit

    International Nuclear Information System (INIS)

    1995-03-01

    This document is the combined Remedial Investigation and Feasibility Study Report for the lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch river. This area has received hazardous substances released over a period of 50 years from the US Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received contaminants, including LWBR, must be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. There is little data regarding the quantities of most contaminants potentially released from the ORR to the Clinch River, particularly for the early years of ORR operations. Estimates of the quantities released during this period are available for most radionuclides and some inorganic contaminants, indicating that releases 30 to 50 years ago were much higher than today. Since the early 1970s, the release of potential contaminants has been monitored for compliance with environmental law and reported in the annual environmental monitoring reports for the ORR

  16. Optimization of Multipurpose Reservoir Operation with Application Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Elahe Fallah Mehdipour

    2012-12-01

    Full Text Available Optimal operation of multipurpose reservoirs is one of the complex and sometimes nonlinear problems in the field of multi-objective optimization. Evolutionary algorithms are optimization tools that search decision space using simulation of natural biological evolution and present a set of points as the optimum solutions of problem. In this research, application of multi-objective particle swarm optimization (MOPSO in optimal operation of Bazoft reservoir with different objectives, including generating hydropower energy, supplying downstream demands (drinking, industry and agriculture, recreation and flood control have been considered. In this regard, solution sets of the MOPSO algorithm in bi-combination of objectives and compromise programming (CP using different weighting and power coefficients have been first compared that the MOPSO algorithm in all combinations of objectives is more capable than the CP to find solution with appropriate distribution and these solutions have dominated the CP solutions. Then, ending points of solution set from the MOPSO algorithm and nonlinear programming (NLP results have been compared. Results showed that the MOPSO algorithm with 0.3 percent difference from the NLP results has more capability to present optimum solutions in the ending points of solution set.

  17. Optimization of European call options considering physical delivery network and reservoir operation rules

    Science.gov (United States)

    Cheng, Wei-Chen; Hsu, Nien-Sheng; Cheng, Wen-Ming; Yeh, William W.-G.

    2011-10-01

    This paper develops alternative strategies for European call options for water purchase under hydrological uncertainties that can be used by water resources managers for decision making. Each alternative strategy maximizes its own objective over a selected sequence of future hydrology that is characterized by exceedance probability. Water trade provides flexibility and enhances water distribution system reliability. However, water trade between two parties in a regional water distribution system involves many issues, such as delivery network, reservoir operation rules, storage space, demand, water availability, uncertainty, and any existing contracts. An option is a security giving the right to buy or sell an asset; in our case, the asset is water. We extend a flow path-based water distribution model to include reservoir operation rules. The model simultaneously considers both the physical distribution network as well as the relationships between water sellers and buyers. We first test the model extension. Then we apply the proposed optimization model for European call options to the Tainan water distribution system in southern Taiwan. The formulation lends itself to a mixed integer linear programming model. We use the weighing method to formulate a composite function for a multiobjective problem. The proposed methodology provides water resources managers with an overall picture of water trade strategies and the consequence of each strategy. The results from the case study indicate that the strategy associated with a streamflow exceedence probability of 50% or smaller should be adopted as the reference strategy for the Tainan water distribution system.

  18. The use of contained nuclear explosions to create underground reservoirs, and experience of operating these for gas condensate storage

    International Nuclear Information System (INIS)

    Kedrovskij, O.L.; Myasnikov, K.V.; Leonov, E.A.; Romadin, N.M.; Dorodnov, V.F.; Nikiforov, G.A.

    1975-01-01

    Investigations on the creation of underground reservoirs by means of nuclear explosions have been going on in the Soviet Union for many years. In this paper the authors consider three main kinds of sites or formations that can be used for constructing reservoirs by this method, namely, low-permeable rocks, worked-out mines and rock salt formations. Formulae are given for predicting the mechanical effect of an explosion in rocks, taking their strength characteristics into account. Engineering procedures are described for sealing and restoring the emplacement holes, so that they can be used for operating the underground reservoir. Experience with the contruction and operation of a 50 000 m 3 gas-condensate reservoir in a rock salt formation is described. In the appendix to the paper a method is presented for calculating the stability of spherical cavities created by nuclear explosions in rock salt, allowing for the development of elasto-plastic deformations and creep

  19. Determining effective forecast horizons for multi-purpose reservoirs with short- and long-term operating objectives

    Science.gov (United States)

    Luchner, Jakob; Anghileri, Daniela; Castelletti, Andrea

    2017-04-01

    Real-time control of multi-purpose reservoirs can benefit significantly from hydro-meteorological forecast products. Because of their reliability, the most used forecasts range on time scales from hours to few days and are suitable for short-term operation targets such as flood control. In recent years, hydro-meteorological forecasts have become more accurate and reliable on longer time scales, which are more relevant to long-term reservoir operation targets such as water supply. While the forecast quality of such products has been studied extensively, the forecast value, i.e. the operational effectiveness of using forecasts to support water management, has been only relatively explored. It is comparatively easy to identify the most effective forecasting information needed to design reservoir operation rules for flood control but it is not straightforward to identify which forecast variable and lead time is needed to define effective hedging rules for operational targets with slow dynamics such as water supply. The task is even more complex when multiple targets, with diverse slow and fast dynamics, are considered at the same time. In these cases, the relative importance of different pieces of information, e.g. magnitude and timing of peak flow rate and accumulated inflow on different time lags, may vary depending on the season or the hydrological conditions. In this work, we analyze the relationship between operational forecast value and streamflow forecast horizon for different multi-purpose reservoir trade-offs. We use the Information Selection and Assessment (ISA) framework to identify the most effective forecast variables and horizons for informing multi-objective reservoir operation over short- and long-term temporal scales. The ISA framework is an automatic iterative procedure to discriminate the information with the highest potential to improve multi-objective reservoir operating performance. Forecast variables and horizons are selected using a feature

  20. Operational Precipitation prediction in Support of Real-Time Flash Flood Prediction and Reservoir Management

    Science.gov (United States)

    Georgakakos, K. P.

    2006-05-01

    The presentation will outline the implementation and performance evaluation of a number of national and international projects pertaining to operational precipitation estimation and prediction in the context of hydrologic warning systems and reservoir management support. In all cases, uncertainty measures of the estimates and predictions are an integral part of the precipitation models. Outstanding research issues whose resolution is likely to lead to improvements in the operational environment are presented. The presentation draws from the experience of the Hydrologic Research Center (http://www.hrc-lab.org) prototype implementation projects at the Panama Canal, Central America, Northern California, and South-Central US. References: Carpenter, T.M, and K.P. Georgakakos, "Discretization Scale Dependencies of the Ensemble Flow Range versus Catchment Area Relationship in Distributed Hydrologic Modeling," Journal of Hydrology, 2006, in press. Carpenter, T.M., and K.P. Georgakakos, "Impacts of Parametric and Radar Rainfall Uncertainty on the Ensemble Streamflow Simulations of a Distributed Hydrologic Model," Journal of Hydrology, 298, 202-221, 2004. Georgakakos, K.P., Graham, N.E., Carpenter, T.M., Georgakakos, A.P., and H. Yao, "Integrating Climate- Hydrology Forecasts and Multi-Objective Reservoir Management in Northern California," EOS, 86(12), 122,127, 2005. Georgakakos, K.P., and J.A. Sperfslage, "Operational Rainfall and Flow Forecasting for the Panama Canal Watershed," in The Rio Chagres: A Multidisciplinary Profile of a Tropical Watershed, R.S. Harmon, ed., Kluwer Academic Publishers, The Netherlands, Chapter 16, 323-334, 2005. Georgakakos, K. P., "Analytical results for operational flash flood guidance," Journal of Hydrology, doi:10.1016/j.jhydrol.2005.05.009, 2005.

  1. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neural reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers, geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  2. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neutral reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  3. Reservoir Operation Rules for Controlling Algal Blooms in a Tributary to the Impoundment of Three Gorges Dam

    Directory of Open Access Journals (Sweden)

    Jijian Lian

    2014-10-01

    Full Text Available Since the first impoundment of Three Gorges Dam in 2003, algal blooms occur frequently in the near-dam tributaries. It is widely recognized that the impoundment-induced change in hydrodynamic condition with the lower current velocity will make the eutrophication problem even more severe when an excessive amount of nutrients is already loaded into a reservoir and/or its tributaries. Operation tests carried out by Three Gorges Corporation in 2010 point to some feasible reservoir operation schemes that may have positive impacts on reducing the algal bloom level. In our study, an attempt is made to obtain, through a numerical hydrodynamic and water quality modeling and analysis, the reservoir operation rules that would reduce the level of algal blooms in the Xiangxi River (XXR, a near-dam tributary. Water movements and algal blooms in XXR are simulated and analyzed under different scenarios of one-day water discharge fluctuation or two-week water level variation. The model results demonstrate that the reservoir operations can further increase the water exchange between the mainstream of the Three Gorges Reservoir (TGR and the XXR tributary and thus move a larger amount of algae into the deep water where it will die. Analysis of the model results indicate that the water discharge fluctuation constituted of a lower valley-load flow and a larger flow difference for the short-term operation (within a day, the rise in water level for the medium-term operation (e.g., over weeks, and the combination of the above two for the long-term operation (e.g., over months can be the feasible reservoir operation rules in the non-flood season for TGR.

  4. SWOT data assimilation for operational reservoir management on the upper Niger River Basin

    Science.gov (United States)

    Munier, S.; Polebistki, A.; Brown, C.; Belaud, G.; Lettenmaier, D. P.

    2015-01-01

    The future Surface Water and Ocean Topography (SWOT) satellite mission will provide two-dimensional maps of water elevation for rivers with width greater than 100 m globally. We describe a modeling framework and an automatic control algorithm that prescribe optimal releases from the Selingue dam in the Upper Niger River Basin, with the objective of understanding how SWOT data might be used to the benefit of operational water management. The modeling framework was used in a twin experiment to simulate the "true" system state and an ensemble of corrupted model states. Virtual SWOT observations of reservoir and river levels were assimilated into the model with a repeat cycle of 21 days. The updated state was used to initialize a Model Predictive Control (MPC) algorithm that computed the optimal reservoir release that meets a minimum flow requirement 300 km downstream of the dam. The data assimilation results indicate that the model updates had a positive effect on estimates of both water level and discharge. The "persistence," which describes the duration of the assimilation effect, was clearly improved (greater than 21 days) by integrating a smoother into the assimilation procedure. We compared performances of the MPC with SWOT data assimilation to an open-loop MPC simulation. Results show that the data assimilation resulted in substantial improvements in the performances of the Selingue dam management with a greater ability to meet environmental requirements (the number of days the target is missed falls to zero) and a minimum volume of water released from the dam.

  5. Environmental and Water Quality Operational Studies. General Guidelines for Monitoring Contaminants in Reservoirs

    Science.gov (United States)

    1986-02-01

    espacially trte for the topics of sampling and analytical methods, statistical considerations, and the design of general water quality monitoring networks. For...and to the establishment and habitat differentiation of biological populations within reservoirs. Reservoir operatirn, esp- cially the timing...8217 % - - % properties of bottom sediments, as well as specific habitat associations of biological populations of reservoirs. Thus, such heterogeneities

  6. Natural and human drivers of salinity in reservoirs and their implications in water supply operation through a Decision Support System

    Science.gov (United States)

    Contreras, Eva; Gómez-Beas, Raquel; Linares-Sáez, Antonio

    2016-04-01

    Salt can be a problem when is originally in aquifers or when it dissolves in groundwater and comes to the ground surface or flows into streams. The problem increases in lakes hydraulically connected with aquifers affecting water quality. This issue is even more alarming when water resources are used for urban and irrigation supply and water quantity and quality restrict that water demand. This work shows a data based and physical modeling approach in the Guadalhorce reservoir, located in southern Spain. This water body receives salt contribution from mainly groundwater flow, getting salinity values in the reservoir from 3500 to 5500 μScm-1. Moreover, Guadalhorce reservoir is part of a complex system of reservoirs fed from the Guadalhorce River that supplies all urban, irrigation, tourism, energy and ecology water uses, which makes that implementation and validation of methods and tools for smart water management is required. Meteorological, hydrological and water quality data from several monitoring networks and data sources, with both historical and real time data during a 40-years period, were used to analyze the impact salinity. On the other hand, variables that mainly depend on the dam operation, such as reservoir water level and water outflow, were also analyzed to understand how they affect to salinity in depth and time. Finally surface and groundwater inflows to the reservoir were evaluated through a physically based hydrological model to forecast when the major contributions take place. Reservoir water level and surface and groundwater inflows were found to be the main drivers of salinity in the reservoir. When reservoir water level is high, daily water inflow around 0.4 hm3 causes changes in salinity (both drop and rise) up to 500 μScm-1, but no significant changes are found when water level falls 2-3 m. However the gradual water outflows due to dam operation and consequent decrease in reservoir water levels makes that, after dry periods, salinity

  7. Operational resilience of reservoirs to climate change, agricultural demand, and tourism: A case study from Sardinia.

    Science.gov (United States)

    Mereu, Simone; Sušnik, Janez; Trabucco, Antonio; Daccache, Andre; Vamvakeridou-Lyroudia, Lydia; Renoldi, Stefano; Virdis, Andrea; Savić, Dragan; Assimacopoulos, Dionysis

    2016-02-01

    Many (semi-) arid locations globally, and particularly islands, rely heavily on reservoirs for water supply. Some reservoirs are particularly vulnerable to climate and development changes (e.g. population change, tourist growth, hydropower demands). Irregularities and uncertainties in the fluvial regime associated with climate change and the continuous increase in water demand by different sectors will add new challenges to the management and to the resilience of these reservoirs. The resilience of vulnerable reservoirs must be studied in detail to prepare for and mitigate potential impacts of these changes. In this paper, a reservoir balance model is developed and presented for the Pedra e' Othoni reservoir in Sardinia, Italy, to assess resilience to climate and development changes. The model was first calibrated and validated, then forced with extensive ensemble climate data for representative concentration pathways (RCPs) 4.5 and 8.5, agricultural data, and with four socio-economic development scenarios. Future projections show a reduction in annual reservoir inflow and an increase in demand, mainly in the agricultural sector. Under no scenario is reservoir resilience significantly affected, the reservoir always achieves refill. However, this occurs at the partial expenses of hydropower production with implications for the production of renewable energy. There is also the possibility of conflict between the agricultural sector and hydropower sector for diminishing water supply. Pedra e' Othoni reservoir shows good resilience to future change mostly because of the disproportionately large basin feeding it. However this is not the case of other Sardinian reservoirs and hence a detailed resilience assessment of all reservoirs is needed, where development plans should carefully account for the trade-offs and potential conflicts among sectors. For Sardinia, the option of physical connection between reservoirs is available, as are alternative water supply measures

  8. Increasing Crop Yields in Water Stressed Countries by Combining Operations of Freshwater Reservoir and Wastewater Reclamation Plant

    Science.gov (United States)

    Bhushan, R.; Ng, T. L.

    2015-12-01

    Freshwater resources around the world are increasing in scarcity due to population growth, industrialization and climate change. This is a serious concern for water stressed countries, including those in Asia and North Africa where future food production is expected to be negatively affected by this. To address this problem, we investigate the potential of combining freshwater reservoir and wastewater reclamation operations. Reservoir water is the cheaper source of irrigation, but is often limited and climate sensitive. Treated wastewater is a more reliable alternative for irrigation, but often requires extensive further treatment which can be expensive. We propose combining the operations of a reservoir and a wastewater reclamation plant (WWRP) to augment the supply from the reservoir with reclaimed water for increasing crop yields in water stressed regions. The joint system of reservoir and WWRP is modeled as a multi-objective optimization problem with the double objective of maximizing the crop yield and minimizing total cost, subject to constraints on reservoir storage, spill and release, and capacity of the WWRP. We use the crop growth model Aquacrop, supported by The Food and Agriculture Organization of the United Nations (FAO), to model crop growth in response to water use. Aquacrop considers the effects of water deficit on crop growth stages, and from there estimates crop yield. We generate results comparing total crop yield under irrigation with water from just the reservoir (which is limited and often interrupted), and yield with water from the joint system (which has the potential of higher supply and greater reliability). We will present results for locations in India and Africa to evaluate the potential of the joint operations for improving food security in those areas for different budgets.

  9. On the effect of operation of the hydropower plant on the water quality of Rapel reservoir, central Chile

    Science.gov (United States)

    Rossel, V.; De La Fuente, A.

    2013-12-01

    Eutrophication of lakes and reservoirs is a common problem in systems with high incoming loads of nutrients. The consequent algae bloom related to the eutrophication alters the water quality and generates an incompatibility with the tourist and recreational activities. This study is focused on Rapel reservoir: an old, dentritic and monomictic reservoir, located in central Chile (34°S, 71.6°W), that has experienced numerous algae bloom events in the past years produced by high loads of nutrients, sediments and metals. This reservoir was originally constructed in 1968 for hydropower generation without environmental restrictions on its operation. Rapel is part of Chile's Central Interconnected System (SIC), and is controlled by an independent system operator (ISO) that decides the optimal allocation of water by minimizing the SIC's operation cost. As a result of this framework, Rapel reservoir operates based on a hydropeaking scheme, thus producing energy few hours a day while zero outflows are observed the remaining hours, impacting on Rapel river located downstream the reservoir. However, previous research showed that this hydropeaking has important effects on the hydrodynamic of the reservoir as well. Particularly, it enhances vertical mixing nears the dam, and reduces horizontal dispersion. Furthermore, hydropeaking defines the outflows water temperature, and the temperature profile near the dam. As a consequence of this role of hydropeaking on the hydrodynamics and mixing of Rapel reservoir, it is expected to be a link between hydropeaking and water quality. The aim of the study is to evaluate the impact of the operation of hydropower plant on the water quality of Rapel reservoir, for which the reservoir system is modeled using the three dimensional hydrodynamic and water quality model ELCOM-CAEDYM. Field data to validate the results and to define boundary and initial conditions are available for the austral summer period of 2009-2010. Different scenarios of

  10. The Application of GA, SMPSO and HGAPSO in Optimal Reservoirs Operation

    Directory of Open Access Journals (Sweden)

    Alireza Moghaddam

    2017-02-01

    Full Text Available Introduction: The reservoir operation is a multi-objective optimization problem with large-scale which consider reliability and the needs of hydrology, energy, agriculture and the environment. There were not the any algorithms with this ability which consider all the above-mentioned demands until now. Almost the existing algorithms usually solve a simple form of the problem for their limitations. In the recent decay the application of meta-heuristic algorithms were introduced into the water resources problem to overcome on some complexity, such as non-linear, non-convex and description of these problems which limited the mathematical optimization methods. In this paper presented a Simple Modified Particle Swarm Optimization Algorithm (SMPSO with applying a new factor in Particle Swarm Optimization (PSO algorithm. Then a new suggested hybrid method which called HGAPSO developed based on combining with Genetic algorithm (GA. In the end, the performance of GA, MPSO and HGAPSO algorithms on the reservoir operation problem is investigated with considering water supplying as objective function in a period of 60 months according to inflow data. Materials and Methods: The GA is one of the newer programming methods which use of the theory of evolution and survival in biology and genetics principles. GA has been developed as an effective method in optimization problems which doesn’t have the limitation of classical methods. The SMPSO algorithm is the member of swarm intelligence methods that a solution is a population of birds which know as a particle. In this collection, the birds have the individual artificial intelligence and develop the social behavior and their coordinate movement toward a specific destination. The goal of this process is the communication between individual intelligence with social interaction. The new modify factor in SMPSO makes to improve the speed of convergence in optimal answer. The HGAPSO is a suggested combination of GA

  11. Investigation on the effect of the reservoir variables and operational parameters on SAGD performance

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi Kiasari, H.; Naderifar, A. [AmirKabir University of Technology, Tehran (Iran, Islamic Republic of). Petroleum Engineering Dept.; Sedaee Sola, B. [University of Tehran (Iran, Islamic Republic of). Faculty of Engineering. Inst. of Petroleum Engineering], e-mail: sedaeesola@yahoo.com

    2010-04-15

    Steam injection is the most important thermal enhanced oil recovery method. One typical procedure is Steam- Assisted Gravity Drainage (SAGD), which is a promising recovery process to produce heavy oil and bitumen. The method ensures a stable displacement of steam at economical rates by using gravity as the driving force and a pair of horizontal wells for injection/production. There are numerous studies done on SAGD in conventional reservoirs, but the majority of them focus on the investigation of the process in microscopic scale. In this study, we investigate the SAGD process with a preheating period, using steam circulation in well pair on a field scale. The synthetic homogenous model was constructed by CMG and simulated using the STARS module. The effects of operational parameters, such as preheating period, vertical well spacing, well pair length, steam quality and production pressure, and reservoir variables, such as rock porosity and permeability, vertical-to-horizontal permeability ratio, thermal conductivity of the formation and rock heat capacity, on the SAGD performance were investigated. The results show that the preheating period affects mainly the initial stages of production. Due to preheating, the well pair communication with the higher vertical distances is also established; therefore, there was no considerable difference between oil productions in various well spacing cases. As steam quality increases, the oil production in later production times also increases. At shorter well pair, more steam can be injected per unit length of well, but, on the other hand, the production well recovers less heated oil area; therefore the well pair length should be optimized in all cases. By decreasing the production well bottom-hole pressure, more heated oil in near well region is produced; therefore, the injected steam raises more in the depleted area. The results of the simulations show that very low permeability leads to a fully unsuccessful SAGD process. In the

  12. SIMULATION AND OPTIMIZATION OF THE HYDRAULIC FRACTURING OPERATION IN A HEAVY OIL RESERVOIR IN SOUTHERN IRAN

    Directory of Open Access Journals (Sweden)

    REZA MASOOMI

    2017-01-01

    Full Text Available Extraction of oil from some Iranian reservoirs due to high viscosity of their oil or reducing the formation permeability due to asphaltene precipitation or other problems is not satisfactory. Hydraulic fracturing method increases production in the viscous oil reservoirs that the production rate is low. So this is very important for some Iranian reservoirs that contain these characteristics. In this study, hydraulic fracturing method has been compositionally simulated in a heavy oil reservoir in southern Iran. In this study, the parameters of the fracture half length, the propagation direction of the cracks and the depth of fracturing have been considered in this oil reservoir. The aim of this study is to find the best scenario which has the highest recovery factor in this oil reservoir. For this purpose the parameters of the length, propagation direction and depth of fracturing have been optimized in this reservoir. Through this study the cumulative oil production has been evaluated with the compositional simulation for the next 10 years in this reservoir. Also at the end of this paper, increasing the final production of this oil reservoir caused by optimized hydraulic fracturing has been evaluated.

  13. Adapting Reservoir Operations to Reduce the Multi-Sectoral Impacts of Flood Intensification in the Lower Susquehanna

    Science.gov (United States)

    Zatarain-Salazar, J.; Reed, P. M.; Quinn, J.

    2017-12-01

    This study characterizes how changes in reservoir operations can be used to better balance growing flood intensities and the conflicting multi-sectorial demands in the Lower Susequehanna River Basin (LSRB), USA. Tensions in the LSRB are increasing with urban population pressures, evolving energy demands, and growing flood-based infrastructure vulnerabilities. This study explores how re-operation of the Conowingo Reservoir, located in the LSRB, can improve the balance between competing demands for hydropower production, urban water supply to Chester, PA and Baltimore, MD, cooling water supply for the Peach Bottom Atomic Power Plant, recreation, federal environmental flow requirements and improved mitigation of growing flood hazards. The LSRB is also one of the most flood prone basins in the US, impacted by hurricanes and rain-on-snow induced flood events causing on average $100 million in economic losses and infrastructure damages to downstream settlements every year. The purpose of this study is to evaluate the consequences of mathematical formulation choices, uncertainty characterization and the value of information when defining the Conowingo reservoir's multi-purpose operations. This work seeks to strike a balance between the complexity and the efficacy of rival framings for the problem formulations used to discover effective operating policies. More broadly, the problem of intensifying urban floods in reservoir systems with complex multi-sectoral demands is broadly relevant to developed river basins globally.

  14. Succession of phytoplankton assemblages in response to large-scale reservoir operation: a case study in a tributary of the Three Gorges Reservoir, China.

    Science.gov (United States)

    Xiao, Yan; Li, Zhe; Guo, Jinsong; Fang, Fang; Smith, Val H

    2016-03-01

    The Three Gorges Dam (TGD) has greatly altered ecological and environmental conditions within the reservoir region, but it is not known how these changes affect phytoplankton structure and dynamics. Here, a bimonthly monitoring program was implemented from 2007 to 2009 to study the impact of damming on phytoplankton assemblages in the backwater area of the Pengxi River (PBA). By application of the phytoplankton functional group (C strategists, competitive species; S strategists, stress-tolerant species; R strategists, rapid propagation species), seasonal changes in phytoplankton relative to environmental variations were evaluated using ordination analysis. Seasonal patterns of phytoplankton dynamics were detected during this study, with CS/S strategists causing algal blooms from mid-spring to early summer, CS/CR strategists often observed during flood season, and CS strategists dominant during mid-autumn. CR/R groups dominated during winter and caused algal blooms in February. Our results indicated that phytoplankton assemblages were directly related to reservoir operation effects. Generally, the TGD had a low water level during flood season, resulting in a relatively short hydraulic retention time and intensive variability, which supported the cooccurrence of CS and CR species. During the winter drought season, water storage in the TGD increased the water level and the hydraulic retention time in the PBA, enabling R/CR strategists to overcome the sedimentation effect and to out-compete S/CS species in winter. As expected, these diversity patterns were significantly correlated with the hydraulic retention time and nutrient limitation pattern in the PBA. This study provides strategic insight for evaluating the impacts of reservoir operations on phytoplankton adaptation.

  15. Model Development to Establish Integrated Operational Rule Curves for Hungry Horse and Libby Reservoirs - Montana, 1996 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Marotz, Brian; Althen, Craig; Gustafson, Daniel

    1996-01-01

    Hungry Horse and Libby dams have profoundly affected the aquatic ecosystems in two major tributaries of the Columbia River by altering habitat and water quality, and by imposing barriers to fish migration. In 1980, the U.S. Congress passed the Pacific Northwest Electric Power Planning and Conservation Act, designed in part to balance hydropower development with other natural resources in the Columbia System. The Act formed the Northwest Power Planning Council (Council) who developed a program to protect, mitigate and enhance fish and wildlife on the Columbia River and its tributaries. Pursuant to the Council`s Fish and Wildlife Program for the Columbia River System (1987), we constructed computer models to simulate the trophic dynamics of the reservoir biota as related to dam operation. Results were used to develop strategies to minimize impacts and enhance the reservoir and riverine fisheries, following program measures 903(a)(1-4) and 903(b)(1-5). Two FORTRAN simulation models were developed for Hungry Horse and Libby reservoirs located in northwestern Montana. The models were designed to generate accurate, short-term predictions specific to two reservoirs and are not directly applicable to other waters. The modeling strategy, however, is portable to other reservoir systems where sufficient data are available. Reservoir operation guidelines were developed to balance fisheries concerns in the headwaters with anadromous species recovery actions in the lower Columbia (Biological Rule Curves). These BRCs were then integrated with power production and flood control to reduce the economic impact of basin-wide fisheries recovery actions. These Integrated Rule Curves (IRCs) were developed simultaneously in the Columbia Basin System Operation Review (SOR), the Council`s phase IV amendment process and recovery actions associated with endangered Columbia Basin fish species.

  16. Optimal Operation of a Network of Multi-purpose Reservoir : A Review

    NARCIS (Netherlands)

    Nay Myo Lin, N.M.; Rutten, M.M.

    2016-01-01

    Due to the effects of climate change and population growth, reservoirs play a more and more important role in water resources management. The management of a multi-reservoir system is complex due to the curse of dimensionalities, nonlinearities and conflicts between different objectives. The

  17. First report of the successful operation of a side stream supersaturation hypolimnetic oxygenation system in a eutrophic, shallow reservoir.

    Science.gov (United States)

    Gerling, Alexandra B; Browne, Richard G; Gantzer, Paul A; Mobley, Mark H; Little, John C; Carey, Cayelan C

    2014-12-15

    Controlling hypolimnetic hypoxia is a key goal of water quality management. Hypoxic conditions can trigger the release of reduced metals and nutrients from lake sediments, resulting in taste and odor problems as well as nuisance algal blooms. In deep lakes and reservoirs, hypolimnetic oxygenation has emerged as a viable solution for combating hypoxia. In shallow lakes, however, it is difficult to add oxygen into the hypolimnion efficiently, and a poorly designed hypolimnetic oxygenation system could potentially result in higher turbidity, weakened thermal stratification, and warming of the sediments. As a result, little is known about the viability of hypolimnetic oxygenation in shallow bodies of water. Here, we present the results from recent successful tests of side stream supersaturation (SSS), a type of hypolimnetic oxygenation system, in a shallow reservoir and compare it to previous side stream deployments. We investigated the sensitivity of Falling Creek Reservoir, a shallow (Zmax = 9.3 m) drinking water reservoir located in Vinton, Virginia, USA, to SSS operation. We found that the SSS system increased hypolimnetic dissolved oxygen concentrations at a rate of ∼1 mg/L/week without weakening stratification or warming the sediments. Moreover, the SSS system suppressed the release of reduced iron and manganese, and likely phosphorus, from the sediments. In summary, SSS systems hold great promise for controlling hypolimnetic oxygen conditions in shallow lakes and reservoirs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Derivation of optimal joint operating rules for multi-purpose multi-reservoir water-supply system

    Science.gov (United States)

    Tan, Qiao-feng; Wang, Xu; Wang, Hao; Wang, Chao; Lei, Xiao-hui; Xiong, Yi-song; Zhang, Wei

    2017-08-01

    The derivation of joint operating policy is a challenging task for a multi-purpose multi-reservoir system. This study proposed an aggregation-decomposition model to guide the joint operation of multi-purpose multi-reservoir system, including: (1) an aggregated model based on the improved hedging rule to ensure the long-term water-supply operating benefit; (2) a decomposed model to allocate the limited release to individual reservoirs for the purpose of maximizing the total profit of the facing period; and (3) a double-layer simulation-based optimization model to obtain the optimal time-varying hedging rules using the non-dominated sorting genetic algorithm II, whose objectives were to minimize maximum water deficit and maximize water supply reliability. The water-supply system of Li River in Guangxi Province, China, was selected for the case study. The results show that the operating policy proposed in this study is better than conventional operating rules and aggregated standard operating policy for both water supply and hydropower generation due to the use of hedging mechanism and effective coordination among multiple objectives.

  19. In the Way of Peacemaker Guide Curve between Water Supply and Flood Control for Short Term Reservoir Operation

    Science.gov (United States)

    Uysal, G.; Sensoy, A.; Yavuz, O.; Sorman, A. A.; Gezgin, T.

    2012-04-01

    Effective management of a controlled reservoir system where it involves multiple and sometimes conflicting objectives is a complex problem especially in real time operations. Yuvacık Dam Reservoir, located in the Marmara region of Turkey, is built to supply annual demand of 142 hm3 water for Kocaeli city requires such a complex management strategy since it has relatively small (51 hm3) effective capacity. On the other hand, the drainage basin is fed by both rainfall and snowmelt since the elevation ranges between 80 - 1548 m. Excessive water must be stored behind the radial gates between February and May in terms of sustainability especially for summer and autumn periods. Moreover, the downstream channel physical conditions constraint the spillway releases up to 100 m3/s although the spillway is large enough to handle major floods. Thus, this situation makes short term release decisions the challenging task. Long term water supply curves, based on historical inflows and annual water demand, are in conflict with flood regulation (control) levels, based on flood attenuation and routing curves, for this reservoir. A guide curve, that is generated using both water supply and flood control of downstream channel, generally corresponds to upper elevation of conservation pool for simulation of a reservoir. However, sometimes current operation necessitates exceeding this target elevation. Since guide curves can be developed as a function of external variables, the water potential of a basin can be an indicator to explain current conditions and decide on the further strategies. Besides, releases with respect to guide curve are managed and restricted by user-defined rules. Although the managers operate the reservoir due to several variable conditions and predictions, still the simulation model using variable guide curve is an urgent need to test alternatives quickly. To that end, using HEC-ResSim, the several variable guide curves are defined to meet the requirements by

  20. Monitoring algal blooms in drinking water reservoirs using the Landsat-8 Operational Land Imager

    Science.gov (United States)

    Keith, Darryl; Rover, Jennifer; Green, Jason; Zalewsky, Brian; Charpentier, Mike; Hursby, Glen; Bishop, Joseph

    2018-01-01

    In this study, we demonstrated that the Landsat-8 Operational Land Imager (OLI) sensor is a powerful tool that can provide periodic and system-wide information on the condition of drinking water reservoirs. The OLI is a multispectral radiometer (30 m spatial resolution) that allows ecosystem observations at spatial and temporal scales that allow the environmental community and water managers another means to monitor changes in water quality not feasible with field-based monitoring. Using the provisional Land Surface Reflectance product and field-collected chlorophyll-a (chl-a) concentrations from drinking water monitoring programs in North Carolina and Rhode Island, we compared five established approaches for estimating chl-aconcentrations using spectral data. We found that using the three band reflectance approach with a combination of OLI spectral bands 1, 3, and 5 produced the most promising results for accurately estimating chl-a concentrations in lakes (R2 value of 0.66; root mean square error value of 8.9 µg l−1). Using this model, we forecast the spatial and temporal variability of chl-a for Jordan Lake, a recreational and drinking water source in piedmont North Carolina and several small ponds that supply drinking water in southeastern Rhode Island.

  1. Effects of the uncertainty of energy price and water availability forecasts on the operation of Alpine hydropower reservoir systems

    Science.gov (United States)

    Anghileri, D.; Castelletti, A.; Burlando, P.

    2016-12-01

    European energy markets have experienced dramatic changes in the last years because of the massive introduction of Variable Renewable Sources (VRSs), such as wind and solar power sources, in the generation portfolios in many countries. VRSs i) are intermittent, i.e., their production is highly variable and only partially predictable, ii) are characterized by no correlation between production and demand, iii) have negligible costs of production, and iv) have been largely subsidized. These features result in lower energy prices, but, at the same time, in increased price volatility, and in network stability issues, which pose a threat to traditional power sources because of smaller incomes and higher maintenance costs associated to a more flexible operation of power systems. Storage hydropower systems play an important role in compensating production peaks, both in term of excess and shortage of energy. Traditionally, most of the research effort in hydropower reservoir operation has focused on modeling and forecasting reservoir inflow as well as designing reservoir operation accordingly. Nowadays, price variability may be the largest source of uncertainty in the context of hydropower systems, especially when considering medium-to-large reservoirs, whose storage can easily buffer small inflow fluctuations. In this work, we compare the effects of uncertain inflow and energy price forecasts on hydropower production and profitability. By adding noise to historic inflow and price trajectories, we build a set of synthetic forecasts corresponding to different levels of predictability and assess their impact on reservoir operating policies and performances. The study is conducted on different hydropower systems, including storage systems and pumped-storage systems, with different characteristics, e.g., different inflow-capacity ratios. The analysis focuses on Alpine hydropower systems where the hydrological regime ranges from purely ice and snow-melt dominated to mixed snow

  2. Multi-Objective Optimization of the Hedging Model for reservoir Operation Using Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    sadegh sadeghitabas

    2015-12-01

    Full Text Available Multi-objective problems rarely ever provide a single optimal solution, rather they yield an optimal set of outputs (Pareto fronts. Solving these problems was previously accomplished by using some simplifier methods such as the weighting coefficient method used for converting a multi-objective problem to a single objective function. However, such robust tools as multi-objective meta-heuristic algorithms have been recently developed for solving these problems. The hedging model is one of the classic problems for reservoir operation that is generally employed for mitigating drought impacts in water resources management. According to this method, although it is possible to supply the total planned demands, only portions of the demands are met to save water by allowing small deficits in the current conditions in order to avoid or reduce severe deficits in future. The approach heavily depends on economic and social considerations. In the present study, the meta-heuristic algorithms of NSGA-II, MOPSO, SPEA-II, and AMALGAM are used toward the multi-objective optimization of the hedging model. For this purpose, the rationing factors involved in Taleghan dam operation are optimized over a 35-year statistical period of inflow. There are two objective functions: a minimizing the modified shortage index, and b maximizing the reliability index (i.e., two opposite objectives. The results show that the above algorithms are applicable to a wide range of optimal solutions. Among the algorithms, AMALGAM is found to produce a better Pareto front for the values of the objective function, indicating its more satisfactory performance.

  3. Impact of upstream river inputs and reservoir operation on phosphorus fractions in water-particulate phases in the Three Gorges Reservoir.

    Science.gov (United States)

    Han, Chaonan; Zheng, Binghui; Qin, Yanwen; Ma, Yingqun; Yang, Chenchen; Liu, Zhichao; Cao, Wei; Chi, Minghui

    2018-01-01

    The impoundment of the Three Gorges Reservoir (TGR) has changed water-sand transport regime, with inevitable effects on phosphorus transport behavior in the TGR. In this study, we measured phosphorus fractions in water and suspended particles transported from upstream rivers of the TGR (the Yangtze River, the Jialing River and the Wu River) to reservoir inner region over the full operation schedule of the TGR. The aim was to determine how phosphorus fractions in water and particulate phases varied in response to natural hydrological processes and reservoir operations. The results showed that total phosphorus concentration (TP) in water in the TGR inner region was 0.17±0.05mg/L, which was lower than that in the Yangtze River (0.21±0.04mg/L) and the Wu River (0.23±0.03mg/L), but higher than that in the Jialing River (0.12±0.07mg/L). In the TGR inner region, there was no clear trend of total dissolved phosphorus (TDP), but total particulate phosphorus (TPP) showed a decreasing trend from tail area to head area because of particle deposition along the TGR mainstream. In addition, the concentrations of TPP in water and particulate phosphorus in a unit mass of suspended particles (PP) in the TGR inner region were higher in October 2014 and January 2015 (the impounding period and high water level period) than that in July 2015 (the low water level period). The temporal variations of PP and TPP concentrations in the TGR may be linked to the change of particle size distribution of suspended particles in the TGR. The particle size tended to be finer due to large-size particle deposition under stable hydrodynamic conditions in the process of TGR impoundment, resulting in high adsorption capacities of phosphorus in suspended particles. The results implied that phosphorus temporal variations in the TGR could exert different impacts on water quality in the TGR tributaries. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Impact of the operation of cascade reservoirs in upper Yangtze River on hydrological variability of the mainstream

    Science.gov (United States)

    Changjiang, Xu; Dongdong, Zhang

    2018-06-01

    As the impacts by climate changes and human activities are intensified, variability may occur in river's annual runoff as well as flood and low water characteristics. In order to understand the characteristics of variability in hydrological series, diagnosis and identification must be conducted specific to the variability of hydrological series, i.e., whether there was variability and where the variability began to occur. In this paper, the mainstream of Yangtze River was taken as the object of study. A model was established to simulate the impounding and operation of upstream cascade reservoirs so as to obtain the runoff of downstream hydrological control stations after the regulation by upstream reservoirs in different level years. The Range of Variability Approach was utilized to analyze the impact of the operation of upstream reservoirs on the variability of downstream. The results indicated that the overall hydrologic alterations of Yichang hydrological station in 2010 level year, 2015 level year and the forward level year were 68.4, 72.5 and 74.3 % respectively, belonging to high alteration in all three level years. The runoff series of mainstream hydrological stations presented variability in different degrees, where the runoff series of the four hydrological stations including Xiangjiaba, Gaochang and Wulong belonged to high alteration in the three level years; and the runoff series of Beibei hydrological station in 2010 level year belonged to medium alteration, and high alteration in 2015 level year and the forward level year. The study on the impact of the operation of cascade reservoirs in Upper Yangtze River on hydrological variability of the mainstream had important practical significance on the sustainable utilization of water resources, disaster prevention and mitigation, safe and efficient operation and management of water conservancy projects and stable development of the economic society.

  5. Assessment of Short Term Flood Operation Strategies Using Numerical Weather Prediction Data in YUVACΙK DAM Reservoir, Turkey

    Science.gov (United States)

    Uysal, G.; Yavuz, O.; Sensoy, A.; Sorman, A.; Akgun, T.; Gezgin, T.

    2011-12-01

    Yuvacik Dam Reservoir Basin, located in the Marmara region of Turkey with 248 km2 drainage area, has steep topography, mild and rainy climate thus induces high flood potential with fast flow response, especially to early spring and fall precipitation events. Moreover, the basin provides considerable snowmelt contribution to the streamflow during melt season since the elevation ranges between 80 - 1548 m. The long term strategies are based on supplying annual demand of 142 hm3 water despite a relatively small reservoir capacity of 51 hm3. This situation makes short term release decisions as the challenging task regarding the constrained downstream safe channel capacity especially in times of floods. Providing the demand of 1.5 million populated city of Kocaeli is the highest priority issue in terms of reservoir management but risk optimization is also required due to flood regulation. Although, the spillway capacity is 1560 m3/s, the maximum amount of water to be released is set as 100 m3/s by the regional water authority taking into consideration the downstream channel capacity which passes through industrial region of the city. The reservoir is a controlled one and it is possible to hold back the 15 hm3 additional water by keeping the gates closed. Flood regulation is set to achieve the maximum possible flood attenuation by using the full flood-control zone capacity in the reservoir before making releases in excess of the downstream safe-channel capacity. However, the operators still need to exceed flood regulation zones to take precautions for drought summer periods in order to supply water without any shortage that increases the risk in times of flood. Regarding to this circumstances, a hydrological model integrated reservoir modeling system, is applied to account for the physical behavior of the system. Hence, this reservoir modeling is carried out to analyze both previous decisions and also the future scenarios as a decision support tool for operators. In the

  6. Parasites as prey

    NARCIS (Netherlands)

    Goedknegt, M.A.; Welsh, J.E.; Thieltges, D.W.

    2012-01-01

    Parasites are usually considered to use their hosts as a resource for energy. However, there is increasing awareness that parasites can also become a resource themselves and serve as prey for other organisms. Here we describe various types of predation in which parasites act as prey for other

  7. Using a Bayesian Probabilistic Forecasting Model to Analyze the Uncertainty in Real-Time Dynamic Control of the Flood Limiting Water Level for Reservoir Operation

    DEFF Research Database (Denmark)

    Liu, Dedi; Li, Xiang; Guo, Shenglian

    2015-01-01

    Dynamic control of the flood limiting water level (FLWL) is a valuable and effective way to maximize the benefits from reservoir operation without exceeding the design risk. In order to analyze the impacts of input uncertainty, a Bayesian forecasting system (BFS) is adopted. Applying quantile water...... inflow values and their uncertainties obtained from the BFS, the reservoir operation results from different schemes can be analyzed in terms of benefits, dam safety, and downstream impacts during the flood season. When the reservoir FLWL dynamic control operation is implemented, there are two fundamental......, also deterministic water inflow was tested. The proposed model in the paper emphasizes the importance of analyzing the uncertainties of the water inflow forecasting system for real-time dynamic control of the FLWL for reservoir operation. For the case study, the selected quantile inflow from...

  8. An Alternative Approach to the Operation of Multinational Reservoir Systems: Application to the Amistad & Falcon System (Lower Rio Grande/Rí-o Bravo)

    Science.gov (United States)

    Serrat-Capdevila, A.; Valdes, J. B.

    2005-12-01

    An optimization approach for the operation of international multi-reservoir systems is presented. The approach uses Stochastic Dynamic Programming (SDP) algorithms, both steady-state and real-time, to develop two models. In the first model, the reservoirs and flows of the system are aggregated to yield an equivalent reservoir, and the obtained operating policies are disaggregated using a non-linear optimization procedure for each reservoir and for each nation water balance. In the second model a multi-reservoir approach is applied, disaggregating the releases for each country water share in each reservoir. The non-linear disaggregation algorithm uses SDP-derived operating policies as boundary conditions for a local time-step optimization. Finally, the performance of the different approaches and methods is compared. These models are applied to the Amistad-Falcon International Reservoir System as part of a binational dynamic modeling effort to develop a decision support system tool for a better management of the water resources in the Lower Rio Grande Basin, currently enduring a severe drought.

  9. GestAqua.AdaPT - Mediterranean river basin modeling and reservoir operation strategies for climate change adaptation

    Science.gov (United States)

    Alexandre Diogo, Paulo; Nunes, João Pedro; Marco, Machado; Aal, Carlo; Carmona Rodrigues, António; Beça, Pedro; Casanova Lino, Rafael; Rocha, João; Carvalho Santos, Cláudia

    2016-04-01

    Climate change (CC) scenarios for the Mediterranean region include an increase in the frequency and intensity of extreme weather events such as drought periods. higher average temperatures and evapotranspiration, combined with the decrease of annual precipitation may strongly affect the sustainability of water resources. In face of these risks, improving water management actions? by anticipating necessary operational measures is required to insure water quantity and quality according to the needs of the populations and irrigation in agriculture. This is clearly the case of the Alentejo region, southern Portugal, where present climatic conditions already pose significant challenges to water resources stakeholders, mainly from the agricultural and the urban supply sectors. With this in mind, the GestAqua.AdaPT project is underway during 2015 and 2016, aiming at analyzing CC impacts until 2100 and develop operational procedures to ensure water needs are adequately satisfied in the Monte Novo and Vigia reservoirs, which supply water for the city of Évora and nearby irrigation systems. Specific project objectives include: a) defining management and operational adaptation strategies aiming to ensure resource sustainability, both quantitatively and qualitatively; b) evaluate future potential costs and available alternatives to the regional water transfer infrastructure linked with the large Alqueva reservoir implemented in 2011; c) defining CC adaptation strategies to reduce irrigation water needs and d) identification of CC adaptation strategies which can be suitable also to other similar water supply systems. The methodology is centered on the implementation of a cascade of modeling tools, allowing the integrated simulation of the multiple variables under analysis. The project is based on CC scenarios resulting from the CORDEX project for 10 combinations of Global and regional climate models (GCMs and RCMs). The study follows by using two of these combinations

  10. A two-stage method of quantitative flood risk analysis for reservoir real-time operation using ensemble-based hydrologic forecasts

    Science.gov (United States)

    Liu, P.

    2013-12-01

    Quantitative analysis of the risk for reservoir real-time operation is a hard task owing to the difficulty of accurate description of inflow uncertainties. The ensemble-based hydrologic forecasts directly depict the inflows not only the marginal distributions but also their persistence via scenarios. This motivates us to analyze the reservoir real-time operating risk with ensemble-based hydrologic forecasts as inputs. A method is developed by using the forecast horizon point to divide the future time into two stages, the forecast lead-time and the unpredicted time. The risk within the forecast lead-time is computed based on counting the failure number of forecast scenarios, and the risk in the unpredicted time is estimated using reservoir routing with the design floods and the reservoir water levels of forecast horizon point. As a result, a two-stage risk analysis method is set up to quantify the entire flood risks by defining the ratio of the number of scenarios that excessive the critical value to the total number of scenarios. The China's Three Gorges Reservoir (TGR) is selected as a case study, where the parameter and precipitation uncertainties are implemented to produce ensemble-based hydrologic forecasts. The Bayesian inference, Markov Chain Monte Carlo, is used to account for the parameter uncertainty. Two reservoir operation schemes, the real operated and scenario optimization, are evaluated for the flood risks and hydropower profits analysis. With the 2010 flood, it is found that the improvement of the hydrologic forecast accuracy is unnecessary to decrease the reservoir real-time operation risk, and most risks are from the forecast lead-time. It is therefore valuable to decrease the avarice of ensemble-based hydrologic forecasts with less bias for a reservoir operational purpose.

  11. Prey detection and prey capture in copepod nauplii

    DEFF Research Database (Denmark)

    Bruno, Eleonora; Borg, Marc Andersen; Kiørboe, Thomas

    2012-01-01

    Copepod nauplii are either ambush feeders that feed on motile prey or they produce a feeding current that entrains prey cells. It is unclear how ambush and feeding-current feeding nauplii perceive and capture prey. Attack jumps in ambush feeding nauplii should not be feasible at low Reynolds...... (Temora longicornis). We demonstrate that the ambush feeders both detect motile prey remotely. Prey detection elicits an attack jump, but the jump is not directly towards the prey, such as has been described for adult copepods. Rather, the nauplius jumps past the prey and sets up an intermittent feeding...

  12. Impact of Risk Aversion on the Operation of Hydroelectric Reservoirs in the Presence of Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Nenad Jovanović

    2018-05-01

    Full Text Available The increasing share of renewable energy sources, such as wind and solar generation, has a direct impact on the planning and operation of power systems. In addition, the consideration of risk criteria within the decision support tools used by market participants (generation companies, energy services companies, and arbitrageurs is becoming a common activity given the increasing level of uncertainties faced by them. As a consequence, the behavior of market participants is affected by their level of risk aversion, and the application of equilibrium-based models is a common technique used in order to simulate their behavior. This paper presents a multi-stage market equilibrium model of risk-averse agents in order to analyze up to what extent the operation of hydro reservoirs can be affected by the risk-averse profile of market participants in a context of renewable energy source penetration and fuel price volatility.

  13. Correlation Analysis of Rainstorm Runoff and Density Current in a Canyon-Shaped Source Water Reservoir: Implications for Reservoir Optimal Operation

    Directory of Open Access Journals (Sweden)

    Yang Li

    2018-04-01

    Full Text Available Extreme weather has recently become frequent. Heavy rainfall forms storm runoff, which is usually very turbid and contains a high concentration of organic matter, therefore affecting water quality when it enters reservoirs. The large canyon-shaped Heihe Reservoir is the most important raw water source for the city of Xi’an. During the flood season, storm runoff flows into the reservoir as a density current. We determined the relationship among inflow peak discharge (Q, suspended sediment concentration, inflow water temperature, and undercurrent water density. The relationships between (Q and inflow suspended sediment concentration (CS0 could be described by the equation CS0 = 0.3899 × e0.0025Q, that between CS0 and suspended sediment concentration at the entrance of the main reservoir area S1 (CS1 was determined using CS1 = 0.0346 × e0.2335CS0, and air temperature (Ta and inflow water temperature (Tw based on the meteorological data were related as follows: Tw = 0.7718 × Ta + 1.0979. Then, we calculated the density of the undercurrent layer. Compared to the vertical water density distribution at S1 before rainfall, the undercurrent elevation was determined based on the principle of equivalent density inflow. Based on our results, we proposed schemes for optimizing water intake selection and flood discharge during the flood season.

  14. An Optimization Model for Kardeh Reservoir Operation Using Interval-Parameter, Multi-stage, Stochastic Programming

    Directory of Open Access Journals (Sweden)

    Fatemeh Rastegaripour

    2010-09-01

    Full Text Available The present study investigates water allocation of Kardeh Reservoir to domestic and agricultural users using an Interval Parameter, Multi-stage, Stochastic Programming (IMSLP under uncertainty. The advantages of the method include its dynamics nature, use of a pre-defined policy in its optimization process, and the use of interval parameter and probability under uncertainty conditions. Additionally, it offers different decision-making alternatives for different scenarios of water shortage. The required data were collected from Khorasan Razavi Regional Water Organization and from the Water and Wastewater Co. for the period 1988-2007. Results showed that, under the worst conditions, the water deficits expected to occur for each of the next 3 years will be 1.9, 2.55, and 3.11 million cubic meters for the domestic use and 0.22, 0.32, 0.75 million cubic meters for irrigation. Approximate reductions of 0.5, 0.7, and 1 million cubic meters in the monthly consumption of the urban community and enhanced irrigation efficiencies of about 6, 11, and 20% in the agricultural sector are recommended as approaches for combating the water shortage over the next 3 years.

  15. An Analytical Method for Deriving Reservoir Operation Curves to Maximize Social Benefits from Multiple Uses of Water in the Willamette River Basin

    Science.gov (United States)

    Moore, K. M.; Jaeger, W. K.; Jones, J. A.

    2013-12-01

    A central characteristic of large river basins in the western US is the spatial and temporal disjunction between the supply of and demand for water. Water sources are typically concentrated in forested mountain regions distant from municipal and agricultural water users, while precipitation is super-abundant in winter and deficient in summer. To cope with these disparities, systems of reservoirs have been constructed throughout the West. These reservoir systems are managed to serve two main competing purposes: to control flooding during winter and spring, and to store spring runoff and deliver it to populated, agricultural valleys during the summer. The reservoirs also provide additional benefits, including recreation, hydropower and instream flows for stream ecology. Since the storage capacity of the reservoirs cannot be used for both flood control and storage at the same time, these uses are traded-off during spring, as the most important, or dominant use of the reservoir, shifts from buffering floods to storing water for summer use. This tradeoff is expressed in the operations rule curve, which specifies the maximum level to which a reservoir can be filled throughout the year, apart from real-time flood operations. These rule curves were often established at the time a reservoir was built. However, climate change and human impacts may be altering the timing and amplitude of flood events and water scarcity is expected to intensify with anticipated changes in climate, land cover and population. These changes imply that reservoir management using current rule curves may not match future societal values for the diverse uses of water from reservoirs. Despite a broad literature on mathematical optimization for reservoir operation, these methods are not often used because they 1) simplify the hydrologic system, raising doubts about the real-world applicability of the solutions, 2) exhibit perfect foresight and assume stationarity, whereas reservoir operators face

  16. Integrating a Typhoon Event Database with an Optimal Flood Operation Model on the Real-Time Flood Control of the Tseng-Wen Reservoir

    Science.gov (United States)

    Chen, Y. W.; Chang, L. C.

    2012-04-01

    Typhoons which normally bring a great amount of precipitation are the primary natural hazard in Taiwan during flooding season. Because the plentiful rainfall quantities brought by typhoons are normally stored for the usage of the next draught period, the determination of release strategies for flood operation of reservoirs which is required to simultaneously consider not only the impact of reservoir safety and the flooding damage in plain area but also for the water resource stored in the reservoir after typhoon becomes important. This study proposes a two-steps study process. First, this study develop an optimal flood operation model (OFOM) for the planning of flood control and also applies the OFOM on Tseng-wun reservoir and the downstream plain related to the reservoir. Second, integrating a typhoon event database with the OFOM mentioned above makes the proposed planning model have ability to deal with a real-time flood control problem and names as real-time flood operation model (RTFOM). Three conditions are considered in the proposed models, OFOM and RTFOM, include the safety of the reservoir itself, the reservoir storage after typhoons and the impact of flooding in the plain area. Besides, the flood operation guideline announced by government is also considered in the proposed models. The these conditions and the guideline can be formed as an optimization problem which is solved by the genetic algorithm (GA) in this study. Furthermore, a distributed runoff model, kinematic-wave geomorphic instantaneous unit hydrograph (KW-GIUH), and a river flow simulation model, HEC-RAS, are used to simulate the river water level of Tseng-wun basin in the plain area and the simulated level is shown as an index of the impact of flooding. Because the simulated levels are required to re-calculate iteratively in the optimization model, applying a recursive artificial neural network (recursive ANN) instead of the HEC-RAS model can significantly reduce the computational burden of

  17. Prey detection and prey capture in copepod nauplii.

    Directory of Open Access Journals (Sweden)

    Eleonora Bruno

    Full Text Available Copepod nauplii are either ambush feeders that feed on motile prey or they produce a feeding current that entrains prey cells. It is unclear how ambush and feeding-current feeding nauplii perceive and capture prey. Attack jumps in ambush feeding nauplii should not be feasible at low Reynolds numbers due to the thick viscous boundary layer surrounding the attacking nauplius. We use high-speed video to describe the detection and capture of phytoplankton prey by the nauplii of two ambush feeding species (Acartia tonsa and Oithona davisae and by the nauplii of one feeding-current feeding species (Temora longicornis. We demonstrate that the ambush feeders both detect motile prey remotely. Prey detection elicits an attack jump, but the jump is not directly towards the prey, such as has been described for adult copepods. Rather, the nauplius jumps past the prey and sets up an intermittent feeding current that pulls in the prey from behind towards the mouth. The feeding-current feeding nauplius detects prey arriving in the feeding current but only when the prey is intercepted by the setae on the feeding appendages. This elicits an altered motion pattern of the feeding appendages that draws in the prey.

  18. Operational reservoir inflow forecasting with radar altimetry: The Zambezi case study

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.; Bauer-Gottwein, Peter

    2014-01-01

    uncertainty. Data assimilation is widely used in operational applications to update hydrological models with in situ discharge or level measurements. In areas where timely access to in situ data is not possible, remote sensing data products can be used in assimilation schemes. While river discharge itself...... cannot be measured from space, radar altimetry can track surface water level variations at crossing locations between the satellite ground track and the river system called virtual stations (VS). Use of radar altimetry versus traditional monitoring in operational settings is complicated by the low...

  19. 43 CFR 419.4 - What specific provisions govern operations of the reservoirs?

    Science.gov (United States)

    2010-10-01

    ... in the following sections of the TROA . . . Recitals, Definitions Recitals 1 through 9. Definitions (1) through (106). Satisfaction of provisions of law, general operational principles, protection of... 1.F. Administration Sections 2.A through 2.C. Accounting, reporting, forecasting, and monitoring...

  20. Large reservoirs: Chapter 17

    Science.gov (United States)

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    expressed effects, such as turbidity and water quality, zooplankton density and size composition, or fish growth rates and assemblage composition, are the upshot of large-scale factors operating outside reservoirs and not under the direct control of reservoir managers. Realistically, abiotic and biotic conditions in reservoirs are shaped by factors working inside and outside reservoirs, with the relative importance of external factors differing among reservoirs. With this perspective, large reservoirs are viewed from a habitat standpoint within the framework of a conceptual model in which individual reservoir characteristics are influenced by both local- and landscape-scale factors (Figure 17.1). In the sections that follow, how each element of this hierarchical model influences habitat and fish assemblages in reservoirs is considered. Important in-reservoir habitat issues and reservoirs as part of larger systems, where reservoir management requires looking for real solutions outside individual reservoirs are described.

  1. Forecasting analysis of runoff for reservoir regulation of dams and weirs in terms of hydro power plant operation

    International Nuclear Information System (INIS)

    Maradjieva, Mariana; Nikolov, Nikola

    2008-01-01

    In order to meet the needs of Hydropower Plant (HPP) production new algorithms and software were developed for daily, seasonal, annual and long-term control of the runoff for the design of dam and weirs. This control is carried out for monitored periods from 20 to 50 years. The control depends on economic considerations, namely that the accepted probability of required water power is 90%, i.e. concerning the runoff and in this way for the useful volume of water dams. The research is accomplished by a design with the observations. First the hydrometric stations are selected at the available analogy with the building project and then the correlative connection is found assessed by general and true correlative coefficients. The transferring to the project of the observations for the average annual and average monthly water discharges is made with the coefficient of the analogy. The theoretical probability curves are chosen with a minimum dispersion. By the last curves the average monthly distributions are settled with probability from 2% to 90% by statistical method. During the investigated period of the regulation the volumes of discharge, overflow and shortage are calculated as and the determination for the accepted volume of the reservoir if the normative probability of the need is executed. As well the power output of the HPP and its participation in the coverage of the charge diagram on the peak load, under peak load, daily and nightly part are determined in separate observed or forecasting periods. The upper problems about the design and the operation of HPP, water output, reservoir volume and coverage of the charge diagram are solved by iterations. Practical examples are given for the runoff and for the time forecasting system.

  2. Application of multi-agent simulation to evaluate the influence of reservoir operation strategies on the distribution of water availability in the semi-arid Jaguaribe basin, Brazil

    NARCIS (Netherlands)

    van Oel, P.R.; Krol, Martinus S.; Hoekstra, Arjen Ysbert

    2012-01-01

    Studying the processes responsible for the distribution of water resources in a river basin over space and time is of great importance for spatial planning. In this study a multi-agent simulation approach is applied for exploring the influence of alternative reservoir operation strategies on water

  3. [Effects of cascading hydropower dams operation on the structure and distribution pattern of benthic macroinvertebrate assemblages in Manwan Reservoir, Southwest China].

    Science.gov (United States)

    Li, Jin Peng; Dong, Shi Kui; Peng, Ming Chun; Wu, Xuan; Zhou, Fang; Yu, Yin

    2017-12-01

    Benthic macroinvertebrate assemblages are one of the biological groups in aquatic ecosystem most sensitive to the habitat change and degradation, and can be a biological indicator for the aquatic ecosystem change and succession in cascading hydropower dam reservoir. The middle and lower reaches of the Lancang River are key spot for international biodiversity conservation and ecological studies on the effects of cascading hydropower dam exploitation. In this study, the reservoir of Manwan hydropower dam, the first dam in Lancang-Mekong river main stream, was selected as the study site. The benthic macroinvertebrate assemblages were sampled in 2011 and 2016 respectively. Meanwhile, the survey data before impounding (natural river, 1996) and early stage of single dam (1997) were collected to conduct the overall analysis for structure, distribution pattern and evolution of benthic macroinvertebrate assemblages. The results showed that the dominant biological group was gradually changed from the Oligochaeta and Insecta to the Mollusca. Along the longitudinal gradient, the density and biomass of the benthic macroinvertebrate assemblages were remarkably increased in reservoir, especially in the lacustrine zone. As for the functional feeding group, the predator and gatherer-collector changed into filter-collector predominantly in lacustrine zone. With the cascading dams operation, the biotic index indicated that the water quality of reservoir in 2016 was better than in 2011. The evolution of benthic macroinvertebrate assemblages in the Manwan Reservoir was related to the operation of Xiaowan dam in the upper reach, the hydrological regime and siltation in the reservoir, and would continue with dynamic changes with the operation of the cascading hydropower dam.

  4. The Allometry of Prey Preferences

    Science.gov (United States)

    Kalinkat, Gregor; Rall, Björn Christian; Vucic-Pestic, Olivera; Brose, Ulrich

    2011-01-01

    The distribution of weak and strong non-linear feeding interactions (i.e., functional responses) across the links of complex food webs is critically important for their stability. While empirical advances have unravelled constraints on single-prey functional responses, their validity in the context of complex food webs where most predators have multiple prey remain uncertain. In this study, we present conceptual evidence for the invalidity of strictly density-dependent consumption as the null model in multi-prey experiments. Instead, we employ two-prey functional responses parameterised with allometric scaling relationships of the functional response parameters that were derived from a previous single-prey functional response study as novel null models. Our experiments included predators of different sizes from two taxonomical groups (wolf spiders and ground beetles) simultaneously preying on one small and one large prey species. We define compliance with the null model predictions (based on two independent single-prey functional responses) as passive preferences or passive switching, and deviations from the null model as active preferences or active switching. Our results indicate active and passive preferences for the larger prey by predators that are at least twice the size of the larger prey. Moreover, our approach revealed that active preferences increased significantly with the predator-prey body-mass ratio. Together with prior allometric scaling relationships of functional response parameters, this preference allometry may allow estimating the distribution of functional response parameters across the myriads of interactions in natural ecosystems. PMID:21998724

  5. The allometry of prey preferences.

    Directory of Open Access Journals (Sweden)

    Gregor Kalinkat

    Full Text Available The distribution of weak and strong non-linear feeding interactions (i.e., functional responses across the links of complex food webs is critically important for their stability. While empirical advances have unravelled constraints on single-prey functional responses, their validity in the context of complex food webs where most predators have multiple prey remain uncertain. In this study, we present conceptual evidence for the invalidity of strictly density-dependent consumption as the null model in multi-prey experiments. Instead, we employ two-prey functional responses parameterised with allometric scaling relationships of the functional response parameters that were derived from a previous single-prey functional response study as novel null models. Our experiments included predators of different sizes from two taxonomical groups (wolf spiders and ground beetles simultaneously preying on one small and one large prey species. We define compliance with the null model predictions (based on two independent single-prey functional responses as passive preferences or passive switching, and deviations from the null model as active preferences or active switching. Our results indicate active and passive preferences for the larger prey by predators that are at least twice the size of the larger prey. Moreover, our approach revealed that active preferences increased significantly with the predator-prey body-mass ratio. Together with prior allometric scaling relationships of functional response parameters, this preference allometry may allow estimating the distribution of functional response parameters across the myriads of interactions in natural ecosystems.

  6. Exploring the interactions between forecast accuracy, risk perception and perceived forecast reliability in reservoir operator's decision to use forecast

    Science.gov (United States)

    Shafiee-Jood, M.; Cai, X.

    2017-12-01

    Advances in streamflow forecasts at different time scales offer a promise for proactive flood management and improved risk management. Despite the huge potential, previous studies have found that water resources managers are often not willing to incorporate streamflow forecasts information in decisions making, particularly in risky situations. While low accuracy of forecasts information is often cited as the main reason, some studies have found that implementation of streamflow forecasts sometimes is impeded by institutional obstacles and behavioral factors (e.g., risk perception). In fact, a seminal study by O'Connor et al. (2005) found that risk perception is the strongest determinant of forecast use while managers' perception about forecast reliability is not significant. In this study, we aim to address this issue again. However, instead of using survey data and regression analysis, we develop a theoretical framework to assess the user-perceived value of streamflow forecasts. The framework includes a novel behavioral component which incorporates both risk perception and perceived forecast reliability. The framework is then used in a hypothetical problem where reservoir operator should react to probabilistic flood forecasts with different reliabilities. The framework will allow us to explore the interactions among risk perception and perceived forecast reliability, and among the behavioral components and information accuracy. The findings will provide insights to improve the usability of flood forecasts information through better communication and education.

  7. Correlation between hydrological drought, climatic factors, reservoir operation, and vegetation cover in the Xijiang Basin, South China

    Science.gov (United States)

    Lin, Qingxia; Wu, Zhiyong; Singh, Vijay P.; Sadeghi, S. H. R.; He, Hai; Lu, Guihua

    2017-06-01

    The Xijiang River is known as the Golden Watercourse because of its role in the development of the Pearl River Delta Regional Economic System in China, which was made possible by its abundant water resources. At present, the hydrological regime of the Xijiang River has now become complicated, the water shortages and successive droughts pose a threat to regional economic development. However, the complexity of hydroclimatological processes with emphasizes on drought has not been comprehended. In order to effectively predict and develop the adaptation strategies to cope with the water scarcity damage caused by hydrological droughts, it is essential to thoroughly analyze the relationship between hydrological droughts and pre/post-dependent hydroclimatological factors. To accomplish this, the extreme-point symmetric mode decomposition method (ESMD) was utilized to reveal the periodic variation in hydrological droughts that is characterized by the Standardized Drought Index (SDI). In addition, the cross-wavelet transform method was applied to investigate the correlation between large-scale climate indices and drought. The results showed that hydrological drought had the most significant response to spring ENSO (El Niño-Southern Oscillation), and the response lags in sub-basins were mostly 8-9 months except that in Yujiang River were mainly 5 or 8 months. Signal reservoir operation in the Yujiang River reduced drought severity by 52-95.8% from January to April over the 2003-2014 time period. Similarly, the cascade reservoir alleviated winter and spring droughts in the Hongshuihe River Basin. However, autumn drought was aggravated with severity increased by 41.9% in September and by 160.9% in October, so that the land surface models without considering human intervention must be used with caution in the hydrological simulation. The response lags of the VCI (Vegetation Condition Index) to hydrological drought were different in the sub-basins. The response lag for the

  8. Method of approximate electric modeling of oil reservoir operation with formation of a gas cap during mixed exploitation regime

    Energy Technology Data Exchange (ETDEWEB)

    Bragin, V A; Lyadkin, V Ya

    1969-01-01

    A potentiometric model is used to simulate the behavior of a reservoir in which pressure was dropped rapidly and solution gas migrated to the top of the structure forming a gas cap. Behavior of the system was represented by a differential equation, which was solved by an electrointegrator. The potentiometric model was found to closely represent past history of the reservoir, and to predict its future behavior. When this method is used in reservoirs where large pressure drops occur, repeated determination should be made at various time intervals, so that changes in relative permeability are taken into account.

  9. Effects of flood control and other reservoir operations on the water quality of the lower Roanoke River, North Carolina

    Science.gov (United States)

    Garcia, Ana Maria

    2012-01-01

    The Roanoke River is an important natural resource for North Carolina, Virginia, and the Nation. Flood plains of the lower Roanoke River, which extend from Roanoke Rapids Dam to Batchelor Bay near Albemarle Sound, support a large and diverse population of nesting birds, waterfowl, freshwater and anadromous fish, and other wildlife, including threatened and endangered species. The flow regime of the lower Roanoke River is affected by a number of factors, including flood-management operations at the upstream John H. Kerr Dam and Reservoir. A three-dimensional, numerical water-quality model was developed to explore links between upstream flows and downstream water quality, specifically in-stream dissolved-oxygen dynamics. Calibration of the hydrodynamics and dissolved-oxygen concentrations emphasized the effect that flood-plain drainage has on water and oxygen levels, especially at locations more than 40 kilometers away from the Roanoke Rapids Dam. Model hydrodynamics were calibrated at three locations on the lower Roanoke River, yielding coefficients of determination between 0.5 and 0.9. Dissolved-oxygen concentrations were calibrated at the same sites, and coefficients of determination ranged between 0.6 and 0.8. The model has been used to quantify relations among river flow, flood-plain water level, and in-stream dissolved-oxygen concentrations in support of management of operations of the John H. Kerr Dam, which affects overall flows in the lower Roanoke River. Scenarios have been developed to mitigate the negative effects that timing, duration, and extent of flood-plain inundation may have on vegetation, wildlife, and fisheries in the lower Roanoke River corridor. Under specific scenarios, the model predicted that mean dissolved-oxygen concentrations could be increased by 15 percent by flow-release schedules that minimize the drainage of anoxic flood-plain waters. The model provides a tool for water-quality managers that can help identify options that improve

  10. Spatio-temporal variations of carbon dioxide and its gross emission regulated by artificial operation in a typical hydropower reservoir in China.

    Science.gov (United States)

    Li, Zhe; Zhang, Zengyu; Xiao, Yan; Guo, Jinsong; Wu, Shengjun; Liu, Jing

    2014-05-01

    Supersaturation and excess emission of greenhouse gases in freshwater reservoirs have received a great deal of attention in recent years. Although impoundment of reservoirs has been shown to contribute to the net emission of greenhouse gases, reservoir age, geographical distribution, submerged soil type and artificial regulation also have a great impact on their emissions. To examine how large scale reservoir operation impact the water column CO2 and its air-water interface flux, a field study was conducted in 2010 to evaluate potential ecological processes that regulate the partial pressure of CO2 (pCO2) in the water column in the Pengxi River backwater area (PBA), a typical tributary in the Three Gorges Reservoir, China. Measurements of total alkalinity (TA), pH and water temperature were applied to compute the pCO2. And this approach was also validated by calculation of pCO2 from the dissolved inorganic carbon data of samples. Partial least squares (PLS) regression was used to determine how the dynamics of the water pCO2 were related to the available variables. The estimated pCO2 in our sample ranged from 26 to 4,087 μatm in the surface water. During low water operation from July to early September, there was an obvious pCO2 stratification, and pCO2 in the surface was almost unsaturated. This phenomenon was also observed in the spring bloom during discharge period. Conversely, there was no significant pCO2 stratification and the entire water column was supersaturated during high water operation from November to the following February. Significant correlation was observed between the magnitude of pCO2, DO and chlorophyll a, suggesting that phytoplankton dynamics regulate pCO2 in the PBA. The average areal rate of CO2 emissions from the Pengxi River ranged from 18.06 to 48.09 mmol m(-2) day(-1), with an estimated gross CO2 emission from the water surface of 14-37 t day(-1) in this area in 2010. Photosynthesis and respiration rates by phytoplankton might be the

  11. Evaluating the Implications of Climate Phenomenon Indices in Supporting Reservoir Operation Using the Artificial Neural Network and Decision-Tree Methods: A Case Study on Trinity Lake in Northern California

    Science.gov (United States)

    Yang, T.; Akbari Asanjan, A.; Gao, X.; Sorooshian, S.

    2016-12-01

    Reservoirs are fundamental human-built infrastructures that collect, store, and deliver fresh surface water in a timely manner for all kinds of purposes, including residential and industrial water supply, flood control, hydropower, and irrigation, etc. Efficient reservoir operation requires that policy makers and operators understand how reservoir inflows, available storage, and discharges are changing under different climatic conditions. Over the last decade, the uses of Artificial Intelligence and Data Mining (AI & DM) techniques in assisting reservoir management and seasonal forecasts have been increasing. Therefore, in this study, two distinct AI & DM methods, Artificial Neural Network (ANN) and Random Forest (RF), are employed and compared with respect to their capabilities of predicting monthly reservoir inflow, managing storage, and scheduling reservoir releases. A case study on Trinity Lake in northern California is conducted using long-term (over 50 years) reservoir operation records and 17 known climate phenomenon indices, i.e. PDO and ENSO, etc., as predictors. Results show that (1) both ANN and RF are capable of providing reasonable monthly reservoir storage, inflow, and outflow prediction with satisfactory statistics, and (2) climate phenomenon indices are useful in assisting monthly or seasonal forecasts of reservoir inflow and outflow. It is also found that reservoir storage has a consistent high autocorrelation effect, while inflow and outflow are more likely to be influenced by climate conditions. Using a Gini diversity index, RF method identifies that the reservoir discharges are associated with Southern Oscillation Index (SOI) and reservoir inflows are influenced by multiple climate phenomenon indices during different seasons. Furthermore, results also show that, during the winter season, reservoir discharges are controlled by the storage level for flood-control purposes, while, during the summer season, the flood-control operation is not as

  12. Response of currents and water quality to changes in dam operations in Hoover Reservoir, Columbus, Ohio, August 24–28, 2015

    Science.gov (United States)

    Vonins, Branden L.; Jackson, P. Ryan

    2017-05-25

    Hoover Reservoir, an important drinking water supply for the City of Columbus, Ohio, has been the source of a series of taste and odor problems in treated drinking water during the past few years. These taste and odor problems were caused by the compounds geosmin and 2-methylisoborneol, which are thought to have been related to cyanobacteria blooms. In an effort to reduce the phosphorus available for cyanobacteria blooms at fall turnover, the City of Columbus began experimenting with the dam’s selective withdrawal system to remove excess phosphorus in the hypolimnion, which is released from bottom sediments during summer anoxic conditions.The U.S. Geological Survey completed two synoptic survey campaigns to assess distributions of water quality and water velocity in the lower part of Hoover Reservoir to provide information on the changes to reservoir dynamics caused by changing dam operations. One campaign (campaign 1) was done while water was being withdrawn from the reservoir through the dam’s middle gate and the other (campaign 2) while water was being withdrawn through the dam’s lower gate. Velocities were measured using an acoustic Doppler current profiler, and water-quality parameters were measured using an autonomous underwater vehicle equipped with water-quality sensors. Along with the water-quality and water-velocity data, meteorological, inflow and outflow discharges, and independent water-quality data were compiled to monitor changes in other parameters that affect reservoir behavior. Monthly nutrient data, collected by the City of Columbus, were also analyzed for trends in concentration during periods of expected stratification.Based on the results of the two campaigns, when compared to withdrawing water through the middle gate, withdrawing water through the lower gate seemed to increase shear-driven mixing across the thermocline, which resulted in an increase in the depth of the epilimnion throughout the lower part of Hoover Reservoir. The

  13. The Iġnik Sikumi Field Experiment, Alaska North Slope: Design, operations, and implications for CO2−CH4 exchange in gas hydrate reservoirs

    Science.gov (United States)

    Boswell, Ray; Schoderbek, David; Collett, Timothy S.; Ohtsuki, Satoshi; White, Mark; Anderson, Brian J.

    2017-01-01

    The Iġnik Sikumi Gas Hydrate Exchange Field Experiment was conducted by ConocoPhillips in partnership with the U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and the U.S. Geological Survey within the Prudhoe Bay Unit on the Alaska North Slope during 2011 and 2012. The primary goals of the program were to (1) determine the feasibility of gas injection into hydrate-bearing sand reservoirs and (2) observe reservoir response upon subsequent flowback in order to assess the potential for CO2 exchange for CH4 in naturally occurring gas hydrate reservoirs. Initial modeling determined that no feasible means of injection of pure CO2 was likely, given the presence of free water in the reservoir. Laboratory and numerical modeling studies indicated that the injection of a mixture of CO2 and N2 offered the best potential for gas injection and exchange. The test featured the following primary operational phases: (1) injection of a gaseous phase mixture of CO2, N2, and chemical tracers; (2) flowback conducted at downhole pressures above the stability threshold for native CH4 hydrate; and (3) an extended (30-days) flowback at pressures near, and then below, the stability threshold of native CH4 hydrate. The test findings indicate that the formation of a range of mixed-gas hydrates resulted in a net exchange of CO2 for CH4 in the reservoir, although the complexity of the subsurface environment renders the nature, extent, and efficiency of the exchange reaction uncertain. The next steps in the evaluation of exchange technology should feature multiple well applications; however, such field test programs will require extensive preparatory experimental and numerical modeling studies and will likely be a secondary priority to further field testing of production through depressurization. Additional insights gained from the field program include the following: (1) gas hydrate destabilization is self-limiting, dispelling any notion of the potential for

  14. APPLICATION OF INTEGRATED RESERVOIR MANAGEMENT AND RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jack Bergeron; Tom Blasingame; Louis Doublet; Mohan Kelkar; George Freeman; Jeff Callard; David Moore; David Davies; Richard Vessell; Brian Pregger; Bill Dixon; Bryce Bezant

    2000-03-01

    Reservoir performance and characterization are vital parameters during the development phase of a project. Infill drilling of wells on a uniform spacing, without regard to characterization does not optimize development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, especially carbonate reservoirs. These reservoirs are typically characterized by: (1) large, discontinuous pay intervals; (2) vertical and lateral changes in reservoir properties; (3) low reservoir energy; (4) high residual oil saturation; and (5) low recovery efficiency. The operational problems they encounter in these types of reservoirs include: (1) poor or inadequate completions and stimulations; (2) early water breakthrough; (3) poor reservoir sweep efficiency in contacting oil throughout the reservoir as well as in the nearby well regions; (4) channeling of injected fluids due to preferential fracturing caused by excessive injection rates; and (5) limited data availability and poor data quality. Infill drilling operations only need target areas of the reservoir which will be economically successful. If the most productive areas of a reservoir can be accurately identified by combining the results of geological, petrophysical, reservoir performance, and pressure transient analyses, then this ''integrated'' approach can be used to optimize reservoir performance during secondary and tertiary recovery operations without resorting to ''blanket'' infill drilling methods. New and emerging technologies such as geostatistical modeling, rock typing, and rigorous decline type curve analysis can be used to quantify reservoir quality and the degree of interwell communication. These results can then be used to develop a 3-D simulation model for prediction of infill locations. The application of reservoir surveillance techniques to identify additional reservoir ''pay'' zones

  15. Optimization of multi-reservoir operation with a new hedging rule: application of fuzzy set theory and NSGA-II

    Science.gov (United States)

    Ahmadianfar, Iman; Adib, Arash; Taghian, Mehrdad

    2017-10-01

    The reservoir hedging rule curves are used to avoid severe water shortage during drought periods. In this method reservoir storage is divided into several zones, wherein the rationing factors are changed immediately when water storage level moves from one zone to another. In the present study, a hedging rule with fuzzy rationing factors was applied for creating a transition zone in up and down each rule curve, and then the rationing factor will be changed in this zone gradually. For this propose, a monthly simulation model was developed and linked to the non-dominated sorting genetic algorithm for calculation of the modified shortage index of two objective functions involving water supply of minimum flow and agriculture demands in a long-term simulation period. Zohre multi-reservoir system in south Iran has been considered as a case study. The results of the proposed hedging rule have improved the long-term system performance from 10 till 27 percent in comparison with the simple hedging rule, where these results demonstrate that the fuzzification of hedging factors increase the applicability and the efficiency of the new hedging rule in comparison to the conventional rule curve for mitigating the water shortage problem.

  16. Prey capture by harbour porpoises

    DEFF Research Database (Denmark)

    Verfuss, Ursula; Miller, Lee; Pilz, Peter

    their ultrasonic clicks as biosonar for orientation and detection of prey (mostly smaller pelagic and bottom dwelling fish), and for communication.  For studying wild animals, hydrophone arrays [Villadsgaard et al. J.Exp.Biol. 210 (2007)] and acoustic (time/depth) tags [Akamatsu et al. Deep Sea Research II 54...... (2007)] have been used.  For studying captive animals, arrays and video techniques [Verfuß et al. J.Exp.Biol. 208 (2005)] as well as miniature acoustic-behavioral tags [Deruiter et al. JASA 123 (2008)] have been used.  While searching for prey, harbor porpoises use clicks at long intervals (>50 ms......) that progressively decrease when closing on a landmark.  The source levels of captive animals reduce by about half for each halving of the distance to the target.  After detecting the prey, the click interval first stabilizes at about 50 ms and then becomes progressively shorter while approaching the prey...

  17. Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species.

    Science.gov (United States)

    Meng, Xin-You; Qin, Ni-Ni; Huo, Hai-Feng

    2018-12-01

    In this paper, a predator-prey system with harvesting prey and disease in prey species is given. In the absence of time delay, the existence and stability of all equilibria are investigated. In the presence of time delay, some sufficient conditions of the local stability of the positive equilibrium and the existence of Hopf bifurcation are obtained by analysing the corresponding characteristic equation, and the properties of Hopf bifurcation are given by using the normal form theory and centre manifold theorem. Furthermore, an optimal harvesting policy is investigated by applying the Pontryagin's Maximum Principle. Numerical simulations are performed to support our analytic results.

  18. Fortescue reservoir development and reservoir studies

    Energy Technology Data Exchange (ETDEWEB)

    Henzell, S.T.; Hicks, G.J.; Horden, M.J.; Irrgang, H.R.; Janssen, E.J.; Kable, C.W.; Mitchell, R.A.H.; Morrell, N.W.; Palmer, I.D.; Seage, N.W.

    1985-03-01

    The Fortescue field in the Gippsland Basin, offshore southeastern Australia is being developed from two platforms (Fortescue A and Cobia A) by Esso Australia Ltd. (operator) and BHP Petroleum. The Fortescue reservoir is a stratigraphic trap at the top of the Latrobe Group of sediments. It overlies the western flank of the Halibut and Cobia fields and is separated from them by a non-net sequence of shales and coals which form a hydraulic barrier between the two systems. Development drilling into the Fortescue reservoir commenced in April 1983 with production coming onstream in May 1983. Fortescue, with booked reserves of 44 stock tank gigalitres (280 million stock tank barrels) of 43/sup 0/ API oil, is the seventh major oil reservoir to be developed in the offshore Gippsland Basin by Esso/BHP. In mid-1984, after drilling a total of 20 exploration and development wells, and after approximately one year of production, a detailed three-dimensional, two-phase reservoir simulation study was performed to examine the recovery efficiency, drainage patterns, pressure performance and production rate potential of the reservoir. The model was validated by history matching an extensive suite of Repeat Formation Test (RFT) pressure data. The results confirmed the reserves basis, and demonstrated that the ultimate oil recovery from the reservoir is not sensitive to production rate. This result is consistent with studies on other high quality Latrobe Group reservoirs in the Gippsland Basin which contain undersaturated crudes and receive very strong water drive from the Basin-wide aquifer system. With the development of the simulation model during the development phase, it has been possible to more accurately define the optimal well pattern for the remainder of the development.

  19. MeProRisk - a toolbox for evaluating risks in exploration, development, and operation of geothermal reservoirs

    Science.gov (United States)

    Clauser, C.

    2009-04-01

    When developing geothermal resources, the risk of failure is still high when compared to hydrocarbon exploration. The MeProRisk projects aims at the improvement of strategies in all phases of the reservoir life cycle. It is a joint enterprise of five university institutes at RWTH Aachen University, Free University Berlin, and Kiel University. Two partners, namely Geophysica Beratunggesellschaft mbH, (Aachen), and RWE Dea AG (Hamburg) present the industrial side. It is funded by the German Ministry of Education and Science (BMBF). The key idea followed in this project is that the development of the understanding of a given reservoir is an iterative process. Starting from geological base knowledge and geophysical exploration one or more conceptual models will emerge, which will be incorporated in first numerical models. The use of inverse techniques in a broad sense will not only lead to an optimal model, but will produce uncertainty and resolution estimates for this model. This information may be used for further setup of optimal experiments, including the choice of exploration well locations. In later stages of reservoir development, the numerical models will be continuously updated based on the most recent models. Once wells have been drilled, the character of experiments shifts from static methods to dynamic interaction with the reservoir, e.g. by injection experiments and their monitoring. The use of all the methods with one simulation tool poses large challenges. Inverse problems require orders of magnitude larger computer resources, and the development of appropriate theoretical and numerical methods for this is on of the primary aims of this project. Due to the less obvious signatures of geothermally relevant targets, it is also necessary to improve the experimental base for model setup and update by developing new and better methods for some of the key problems in the case of geothermal targets. Among these are the development of methods to estimate

  20. Enhancement of the sweep efficiency of waterflooding operations by the in-situ microbial population of petroleum reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.R.; Vadie, A.A.; Stephens, J.O.; Azadpour, A.

    1995-12-31

    Live cores were obtained from five reservoirs using special precautions to prevent contamination by exogenous microorganisms and minimize exposure to oxygen. The depths from which the cores were obtained ranged from 2,705 ft to 6,568 ft. Core plugs were cut radially from live cores, encased in heat-shrink plastic tubes, placed in core holders, and fitted with inlets and outlets. Nutrient additions stimulated the in-situ microbial population to increase, dissolve stratal material, produce gases, and release oil. Reduction in flow through the core plugs was observed in some cases, while in other cases flow was increased, probably due to the dissolution of carbonates in the formation. A field demonstration of the ability of the in-situ microbial population to increase oil recovery by blocking the more permeable zones of the reservoir is currently underway. This demonstration is being conducted in the North Blowhorn Creek Unit situated in Lamar County, Alabama. Live cores were obtained from a newly drilled well in the field and tested as described above. The field project involves four test patterns each including one injector, four to five producers, and a comparable control injector with its four to five producers. Nutrient injection in the field began November 1994.

  1. Sub-indicator: Prey fish

    Science.gov (United States)

    Weidel, Brian C.; Dunlop, Erin

    2017-01-01

    Prey fish communities across the Great Lakes continue to change, although the direction and magnitude of those changes are not consistent across the lakes. The metrics used to categorize prey fish status in this and previous periods are based on elements that are common among each of the lake’s Fish Community Objectives and include diversity and the relative role of native species in the prey fish communities. The diversity index categorized three of lakes as ‘fair’, while Superior and Erie were ‘good’ (Table 1). The short term trend, from the previous period (2008-2010) to the current period (2011-2014) found diversity in Erie and Superior to be unchanging, but the other three lakes to be ‘deteriorating’, resulting in an overall trend categorization of ‘undetermined’ (Table 1). The long term diversity trend suggested Lakes Superior and Erie have the most diverse prey communities although the index for those prey fish have been quite variable over time (Figure 1). In Lake Huron, where non-native alewife have substantially declined, the diversity index has also declined. The continued dominance of alewife in Lake Ontario (96% of the prey fish biomass) resulted in the lowest diversity index value (Figure 1). The proportion of native species within the community was judged as ‘good’ in Lakes Superior and Huron, ‘fair’ in Michigan and Erie and ‘poor’ in Ontario (Table 2). The short term trend was improving in in all lakes except Michigan (‘deteriorating’) and Ontario (‘unchanging’), resulting in an overall short term trend of ‘undetermined’ (Table 2). Over the current period, Lake Superior consistently had the highest proportion native prey fish (87%) while Lake Ontario had the lowest (1%) (Figure 2). Lake Michigan’s percent native has declined as round goby increase and comprises a greater proportion of the community. Native prey fish make up 51% of Lake Erie, although basin-specific values differed (Figure 2). Most notably

  2. Availability and abundance of prey for the red-cockaded woodpecker.

    Energy Technology Data Exchange (ETDEWEB)

    Hanula, James, L.; Horn, Scott

    2004-12-31

    Red-cockaded woodpecker; Road to Recovery. Proceedings of the 4th Red-cockaded woodpecker Symposium. Ralph Costa and Susan J. Daniels, eds. Savannah, Georgia. January, 2003. Chapter 11. Prey, Fire, and Community Ecology. Pp 633-645. Abstract: Over a 10-year period we investigated red-cockaded woodpecker (Picoides borealis) prey use, sources of prey, prey distribution within trees and stands, and how forest management decisions affect prey abundance in South Carolina, Alabama, Georgia and Florida. Cameras were operated at 31 nest cavities to record nest visits with prey in 4 locations that ranged in foraging habitat from pine stands established in old fields to an old-growth stand in South Georgia. Examination of nearly 12,000 photographs recorded over 5 years revealed that, although red-cockaded woodpeckers used over 40 arthropods for food, the majority of the nestling diet is comprised of a relatively small number of common arthropods.

  3. Nutrient-based ecological consideration of a temporary river catchment affected by a reservoir operation to facilitate efficient management.

    Science.gov (United States)

    Tzoraki, Ourania A; Dörflinger, Gerald; Kathijotes, Nicholas; Kontou, Artemis

    2014-01-01

    The water quality status of the Kouris river in Cyprus was examined in order to fulfil the requirements for ecological quality as defined by the Water Framework Directive-2000/60/EC. Nitrate concentration (mean value) was increased in the Limnatis (2.8 mg L(-1)) tributary in comparison with the Kryos (2.1 mg L(-1)) and Kouris (1.0 mg L(-1)) tributaries depicting the influence of anthropogenic activities. The total maximum daily nutrients loads (TMDLs) based on the flow duration curves approach, showed that nutrients loads exceeded threshold values (33.3-75.6% in all hydrologic condition classes in the Kouris tributary, and 65-78% in the Limnatis tributary) especially under low flow conditions. The TMDL graph is intended to guide the temporal schedule for chemical sampling in all hydrologic classes. Kouris reservoir is an oligotrophic system, strongly influenced by the river's flash-flood character but also by the implemented management practices. Kouris river outflow, which was reduced to one-tenth in the post dam period altered the wetland hydrologic network and contributed to the decrease of aquifer thickness. Continuous evaluation and update of the River Basin Management Plans will be the basis for the sustainable development of the Kouris basin.

  4. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  5. Prey capture by harbor porpoises

    DEFF Research Database (Denmark)

    Miller, Lee; Verfuss, Ursula

    2009-01-01

    their ultrasonic clicks as biosonar for orientation and detection of prey (mostly smaller pelagic and bottom dwelling fish), and for communication. For studying wild animals, hydrophone arrays and acoustic (time/depth) tags have been used. For studying captive animals, arrays and video techniques as well...

  6. Economic Effects of Reservoir Re-operation Policy in the Rio Grande/Bravo for Sustainable Human and Environmental Water Management

    Science.gov (United States)

    Ortiz Partida, J. P.; Sandoval Solis, S.; Lane, B.

    2015-12-01

    A central challenge of integrated water management is the design and implementation of policies to allocate water to both humans and the environment in a sustainable manner. This study uses the results from a reach-scale water-planning model to quantify and compare the economic benefits of two water management policies: (1) a business as usual (Baseline) policy and (2) a proposed reservoir re-operation policy to provide environmental flows (EFs). Results show that the EF policy would increase water supply profit, slightly decrease recreational activities profit, and reduce costs from flood damage and environmental restoration compared to the Baseline policy. In addition to supporting ecological objectives, the proposed EF policy would increase the economic benefits of water management objectives.

  7. Two-prey one-predator model

    International Nuclear Information System (INIS)

    Elettreby, M.F.

    2009-01-01

    In this paper we propose a new multi-team prey-predator model, in which the prey teams help each other. We study its local stability. In the absence of predator, there is no help between the prey teams. So, we study the global stability and persistence of the model without help.

  8. Prey detection in a cruising copepod

    DEFF Research Database (Denmark)

    Kjellerup, Sanne; Kiørboe, Thomas

    2012-01-01

    . Yet, direct interception has been proposed to explain how rapidly cruising, blind copepods feed on non-motile phytoplankton prey. Here, we demonstrate a novel mechanism for prey detection in a cruising copepod, and describe how motile and non-motile prey are discovered by hydromechanical and tactile...

  9. The hydrodynamics of predator-prey interactions in zebrafish

    Science.gov (United States)

    McHenry, Matthew; Soto, Alberto; Carrillo, Andres; Byron, Margaret

    2017-11-01

    Hydrodynamics govern the behavior of fishes when they operate as predators or prey. In addition to the role of fluid forces in propulsion, fishes relay on flow stimuli to sense a predatory threat and to localize palatable prey. We have performed a series of experiments on zebrafish (Danio rerio) that aim to resolve the major factors that determine whether prey survive an encounter with a predator. Zebrafish serve as a model system in this pursuit because the adults prey on larvae of the same species and the larvae are often successful in evading the attacks of the adults. We use a combination of theoretical and experimental approaches to resolve the behavioral algorithms and kinematics that determined the outcome of these interactions. In this context, the hydrodynamics of intermediate Reynolds numbers largely determines the range of flow stimuli and the limits to locomotor performance at dictate prey survival. These principles have the potential to apply to a broad diversity of fishes and other aquatic animals. ONR: N00014-15-1-2249.

  10. Ensemble Flow Forecasts for Risk Based Reservoir Operations of Lake Mendocino in Mendocino County, California: A Framework for Objectively Leveraging Weather and Climate Forecasts in a Decision Support Environment

    Science.gov (United States)

    Delaney, C.; Hartman, R. K.; Mendoza, J.; Whitin, B.

    2017-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation and flow forecasts to inform the flood operations of reservoirs. The Ensemble Forecast Operations (EFO) alternative is a probabilistic approach of FIRO that incorporates ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, release decisions are made to manage forecasted risk of reaching critical operational thresholds. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to evaluate the viability of the EFO alternative to improve water supply reliability but not increase downstream flood risk. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The EFO alternative was simulated using a 26-year (1985-2010) ESP hindcast generated by the CNRFC. The ESP hindcast was developed using Global Ensemble Forecast System version 10 precipitation reforecasts processed with the Hydrologic Ensemble Forecast System to generate daily reforecasts of 61 flow ensemble members for a 15-day forecast horizon. Model simulation results demonstrate that the EFO alternative may improve water supply reliability for Lake Mendocino yet not increase flood risk for downstream areas. The developed operations framework can directly leverage improved skill in the second week of the forecast and is extendable into the S2S time domain given the demonstration of improved skill through a reliable reforecast of adequate historical duration and consistent with operationally available numerical weather predictions.

  11. Cesium reservoir and interconnective components

    International Nuclear Information System (INIS)

    1994-03-01

    The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW range. A thermionic converter must be supplied with cesium vapor for two reasons. Cesium atoms adsorbed on the surface of the emitter cause a reduction of the emitter work function to permit high current densities without excessive heating of the emitter. The second purpose of the cesium vapor is to provide space-charge neutralization in the emitter-collector gap so that the high current densities may flow across the gap unattenuated. The function of the cesium reservoir is to provide a source of cesium atoms, and to provide a reserve in the event that cesium is lost from the plasma by any mechanism. This can be done with a liquid cesium metal reservoir in which case it is heated to the desired temperature with auxiliary heaters. In a TFE, however, it is desirable to have the reservoir passively heated by the nuclear fuel. In this case, the reservoir must operate at a temperature intermediate between the emitter and the collector, ruling out the use of liquid reservoirs. Integral reservoirs contained within the TFE will produce cesium vapor pressures in the desired range at typical electrode temperatures. The reservoir material that appears to be the best able to meet requirements is graphite. Cesium intercalates easily into graphite, and the cesium pressure is insensitive to loading for a given intercalation stage. The goals of the cesium reservoir test program were to verify the performance of Cs-graphite reservoirs in the temperature-pressure range of interest to TFE operation, and to test the operation of these reservoirs after exposure to a fast neutron fluence corresponding to seven year mission lifetime. In addition, other materials were evaluated for possible use in the integral reservoir

  12. Smolt monitoring at the head of lower granite reservoir and lower Granite Dam, annual report 1999 operations.; ANNUAL

    International Nuclear Information System (INIS)

    United States. Bonneville Power Administration. Division of Fish and Wildlife; Idaho. Dept. of Fish and Game.

    2001-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 1999 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1999. Total annual hatchery chinook salmon catch at the Snake River trap was 440% of the 1998 number. The wild chinook catch was 603% of the previous year's catch. Hatchery steelhead trout catch was 93% of 1998 numbers. Wild steelhead trout catch was 68% of 1998 numbers. The Snake River trap collected 62 age-0 chinook salmon. During 1998 the Snake River trap captured 173 hatchery and 37 wild/natural sockeye salmon and 130 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 14 and were terminated for the season due to high flows on May 25. The trap was out of operation for 18 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 214%, and wild chinook salmon catch was 384% of 1998 numbers. The hatchery steelhead trout collection in 1999 was 210% of the 1998 numbers. Wild steelhead trout collection in 1999 was 203% of the 1998 catch. Trap operations began on March 14 and were terminated for the season due to high flows on May 21. The trap was out of operation for 17 d during the season due to high flow and debris

  13. Smolt monitoring at the head of Lower Granite Reservoir and Lower Granite Dam, annual report 1997 operations.; ANNUAL

    International Nuclear Information System (INIS)

    United States. Bonneville Power Administration. Division of Fish and Wildlife.

    1999-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1997 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1997. Total annual hatchery chinook salmon catch at the Snake River trap was 49% of the 1996 number but only 6% of the 1995 catch. The wild chinook catch was 77% of the 1996 but was only 13% of 1995. Hatchery steelhead trout catch was 18% of 1996 numbers but only 7% of the 1995 numbers. Wild steelhead trout catch was 22% of 1996 but only 11% of the 1995 numbers. The Snake River trap collected eight age-0 chinook salmon and one sockeye/kokanee salmon O. nerka. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations were terminated for the season due to high flows and trap damage on May 8 and were out of operation for 23 d due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 37% and wild chinook salmon catch was 60% of 1996 numbers but only 5% and 11% of 1995 catch, respectively. The 1997 hatchery steelhead trout collection was 13% of the 1996 catch and 32% of the 1995 numbers. Wild steelhead trout collection in 1997 was 21% of the 1996 catch and 13% of the 1995 numbers. Trap operations were terminated for the season due to high flows and trap damage on May 7 and were out of operation for 19 d due to high flow and debris

  14. Occurrence of enteropathogenic bacteria in birds of prey in Italy.

    Science.gov (United States)

    Gargiulo, A; Fioretti, A; Russo, T P; Varriale, L; Rampa, L; Paone, S; De Luca Bossa, L M; Raia, P; Dipineto, L

    2018-03-01

    The importance of wild birds as potential vectors of disease has received recent renewed empirical interest, especially regarding human health although information regarding the enteropathogenic bacteria in birds of prey continue to be scant. This study was performed with the aim to evaluate the occurrence of enteropathogenic bacteria (i.e. Campylobacter spp. Escherichia coli, Salmonella spp.) in birds of prey carcasses in Southern Italy. The results of the present study showed a prevalence of 33·1% (49/148) for Campylobacter spp. where all positive isolates (49/49) were identified as Campylobacter jejuni, and among these positive 12/49 were also identified as Campylobacter coli. Thus, 12/49 birds of prey showed mixed infections for both Campylobacter species. Differences in Campylobacter spp. prevalence between diurnal and nocturnal birds were statistically significant (P = 0·016). Escherichia coli showed a prevalence of 6·8% (10/148) and were serogrouped as O26 (n = 3), O55 (n = 2), O145 (n = 5). Salmonella spp. showed a prevalence of 6·8% (10/148) and were serotyped as S. Napoli (n = 4), Salmonella salamae (n = 3) and S. Typhimurium (n = 3). Although wildlife disease outbreaks have often been underreported in the broader context of global epidemiology, results of the present study suggest that birds of prey may serve as a reservoir of pathogens for livestock and human health, acting at the animal-human-ecosystem interface. This study confirms the role of birds of prey as a reservoir of enteropathogenic bacteria (i.e. Campylobacter spp., Escherichia coli, Salmonella spp.). Wild birds can contaminate environment with their faeces and play a crucial role in the transmission of pathogens to poultry and livestock farms and aquifers supplying water to humans. Furthermore, wild birds could disseminate pathogens within rescue and rehabilitation centres where they are admitted. © 2017 The Society for Applied Microbiology.

  15. When attempts at robbing prey turn fatal

    Science.gov (United States)

    Dejean, Alain; Corbara, Bruno; Azémar, Frédéric; Carpenter, James M.

    2012-07-01

    Because group-hunting arboreal ants spread-eagle insect prey for a long time before retrieving them, these prey can be coveted by predatory flying insects. Yet, attempting to rob these prey is risky if the ant species is also an effective predator. Here, we show that trying to rob prey from Azteca andreae workers is a fatal error as 268 out of 276 potential cleptobionts (97.1 %) were captured in turn. The ant workers hunt in a group and use the "Velcro®" principle to cling firmly to the leaves of their host tree, permitting them to capture very large prey. Exceptions were one social wasp, plus some Trigona spp. workers and flies that landed directly on the prey and were able to take off immediately when attacked. We conclude that in this situation, previously captured prey attract potential cleptobionts that are captured in turn in most of the cases.

  16. The FAST-T approach for operational, real time, short term hydrological forecasting: Results from the Betania Hydropower Reservoir case study

    Science.gov (United States)

    Domínguez, Efraín; Angarita, Hector; Rosmann, Thomas; Mendez, Zulma; Angulo, Gustavo

    2013-04-01

    A viable quantitative hydrological forecasting service is a combination of technological elements, personnel and knowledge, working together to establish a stable operational cycle of forecasts emission, dissemination and assimilation; hence, the process for establishing such system usually requires significant resources and time to reach an adequate development and integration in order to produce forecasts with acceptable levels of performance. Here are presented the results of this process for the recently implemented Operational Forecast Service for the Betania's Hydropower Reservoir - or SPHEB, located at the Upper-Magdalena River Basin (Colombia). The current scope of the SPHEB includes forecasting of water levels and discharge for the three main streams affluent to the reservoir, for lead times between +1 to +57 hours, and +1 to +10 days. The core of the SPHEB is the Flexible, Adaptive, Simple and Transient Time forecasting approach, namely FAST-T. This comprises of a set of data structures, mathematical kernel, distributed computing and network infrastructure designed to provide seamless real-time operational forecast and automatic model adjustment in case of failures in data transmission or assimilation. Among FAST-T main features are: an autonomous evaluation and detection of the most relevant information for the later configuration of forecasting models; an adaptively linearized mathematical kernel, the optimal adaptive linear combination or OALC, which provides a computationally simple and efficient algorithm for real-time applications; and finally, a meta-model catalog, containing prioritized forecast models at given stream conditions. The SPHEB is at present feed by the fraction of hydrological monitoring network installed at the basin that has telemetric capabilities via NOAA-GOES satellites (8 stages, approximately 47%) with data availability of about a 90% at one hour intervals. However, there is a dense network of 'conventional' hydro

  17. Impacts of Mechanical Macrophyte Removal Devices on Sediment Scouring in Littoral Habitats: II. Experimental Operation in the Littoral Zone of Eau Galle Reservoir, Wisconsin

    National Research Council Canada - National Science Library

    James, William F; Wright, David I; Barko, John W; Eakin, Harry L

    2006-01-01

    ... in Eau Galle Reservoir, Wisconsin. Mechanical macrophyte removal devices are an attractive, low-cost means of removing macrophytes in specific areas without herbicides or repeated mechanical harvesting...

  18. The modeling of predator-prey interactions

    OpenAIRE

    Muhammad Shakil; H. A. Wahab; Muhammad Naeem, et al.

    2015-01-01

    In this paper, we aim to study the interactions between the territorial animals like foxes and the rabbits. The territories for the foxes are considered to be the simple cells. The interactions between predator and its prey are represented by the chemical reactions which obey the mass action law. In this sense, we apply the mass action law for predator prey models and the quasi chemical approach is applied for the interactions between the predator and its prey to develop the modeled equations...

  19. An efficient linear approach in the reservoirs operation for electric power generation; Uma eficiente abordagem linear na operacao de reservatorios para geracao de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Zambon, Katia Livia

    1997-07-01

    A new approach for the Scheduling of Hydrothermal Systems, with a formulation that allows the solution of the problem through the linear programming techniques, otherwise the original form, which is complex and difficult is presented. The models were developed through a linear form for the generation function of hydroelectric plants, successive of the linearization of the cost function of the problem. The linear techniques used were the Simplex Method, with some modification that is is efficient, fast and simple. The important physical aspects of the system were preserved, like the individual representation of the hydroelectric plant, the features of cost function with the exponential increase and the head effect. Besides, this formulation can lead to stochastic approaches. All the optimization methods were implemented for the solution of the problem. The performance obtained were compared with each other and with that obtained through the non linear techniques. The algorithms showed to be efficient, with good results and very near to the optimal behavior of the reservoir operation planning obtained by traditional methods. (author)

  20. "Prey Play": Learning about Predators and Prey through an Interactive, Role-Play Game

    Science.gov (United States)

    Deaton, Cynthia C. M.; Dodd, Kristen; Drennon, Katherine; Nagle, Jack

    2012-01-01

    "Prey Play" is an interactive role-play activity that provides fifth-grade students with opportunities to examine predator-prey interactions. This four-part, role-play activity allows students to take on the role of a predator and prey as they reflect on the behaviors animals exhibit as they collect food and interact with one another, as well as…

  1. Prey size spectra and prey availability of larval and small juvenile cod

    DEFF Research Database (Denmark)

    Munk, Peter

    1997-01-01

    The aim of the present study is to describe the prey preference characteristics of cod larvae and assess preference variability in relation to species and size composition of copepod prey. A further aim is to examine the hypothesis that dietary prey size spectra remain the same during the larval ...... were indicated, dependent on location. The findings illustrate the usefulness of coupling dietary prey size spectra and biomass spectra of available prey sizes during studies of ichthyoplankton feeding ecology. (C) 1997 The Fisheries Society of the British Isles....

  2. Relating marten scat contents to prey consumed

    Science.gov (United States)

    William J. Zielinski

    1986-01-01

    A European ferret, Mustela putorius furo, was fed typical marten food items to discover the relationship between prey weight and number of scats produced per unit weight of prey. A correction factor was derived that was used in the analysis of pine marten, Martes americana, scats to produce a method capable of comparing foods on a...

  3. An environmental data base for all Hydro-Quebec reservoirs

    International Nuclear Information System (INIS)

    Demers, C.

    1988-01-01

    Hydro-Quebec has created two management positions specifically for reservoirs, namely Reservoir Ecology Advisor and Reservoir Management Advisor. To assist management decisions, a means was required of bringing together all existing environmental information for each reservoir operated by Hydro-Quebec, including storage reservoirs, auxiliary reservoirs and forebays. A relational database using Reflex software was developed on a network of Macintosh computers. The database contains five blocks of information: general information, and physical, physiochemical, biologic and socioeconomic characteristics for each reservoir. Data will be collected on over 100 sites, and the tool will form the basis for developing a medium-range study program on reservoir ecology. The program must take into account the physical, biological and socioeconomic aspects of the environment, as well as the concerns of management personnel operating the reservoirs, the local population, reservoir users, and various government departments. 2 figs

  4. Optimal intermittent search strategies: smelling the prey

    International Nuclear Information System (INIS)

    Revelli, J A; Wio, H S; Rojo, F; Budde, C E

    2010-01-01

    We study the kinetics of the search of a single fixed target by a searcher/walker that performs an intermittent random walk, characterized by different states of motion. In addition, we assume that the walker has the ability to detect the scent left by the prey/target in its surroundings. Our results, in agreement with intuition, indicate that the prey's survival probability could be strongly reduced (increased) if the predator is attracted (or repelled) by the trace left by the prey. We have also found that, for a positive trace (the predator is guided towards the prey), increasing the inhomogeneity's size reduces the prey's survival probability, while the optimal value of α (the parameter that regulates intermittency) ceases to exist. The agreement between theory and numerical simulations is excellent.

  5. Optimal intermittent search strategies: smelling the prey

    Energy Technology Data Exchange (ETDEWEB)

    Revelli, J A; Wio, H S [Instituto de Fisica de Cantabria, Universidad de Cantabria and CSIC, E-39005 Santander (Spain); Rojo, F; Budde, C E [Fa.M.A.F., Universidad Nacional de Cordoba, Ciudad Universitaria, X5000HUA Cordoba (Argentina)

    2010-05-14

    We study the kinetics of the search of a single fixed target by a searcher/walker that performs an intermittent random walk, characterized by different states of motion. In addition, we assume that the walker has the ability to detect the scent left by the prey/target in its surroundings. Our results, in agreement with intuition, indicate that the prey's survival probability could be strongly reduced (increased) if the predator is attracted (or repelled) by the trace left by the prey. We have also found that, for a positive trace (the predator is guided towards the prey), increasing the inhomogeneity's size reduces the prey's survival probability, while the optimal value of {alpha} (the parameter that regulates intermittency) ceases to exist. The agreement between theory and numerical simulations is excellent.

  6. Trade-off analysis of discharge-desiltation-turbidity and ANN analysis on sedimentation of a combined reservoir-reach system under multi-phase and multi-layer conjunctive releasing operation

    Science.gov (United States)

    Huang, Chien-Lin; Hsu, Nien-Sheng; Wei, Chih-Chiang; Yao, Chun-Hao

    2017-10-01

    Multi-objective reservoir operation considering the trade-off of discharge-desiltation-turbidity during typhoons and sediment concentration (SC) simulation modeling are the vital components for sustainable reservoir management. The purposes of this study were (1) to analyze the multi-layer release trade-offs between reservoir desiltation and intake turbidity of downstream purification plants and thus propose a superior conjunctive operation strategy and (2) to develop ANFIS-based (adaptive network-based fuzzy inference system) and RTRLNN-based (real-time recurrent learning neural networks) substitute SC simulation models. To this end, this study proposed a methodology to develop (1) a series of multi-phase and multi-layer sediment-flood conjunctive release modes and (2) a specialized SC numerical model for a combined reservoir-reach system. The conjunctive release modes involve (1) an optimization model where the decision variables are multi-phase reduction/scaling ratios and the timings to generate a superior total release hydrograph for flood control (Phase I: phase prior to flood arrival, Phase II/III: phase prior to/subsequent to peak flow) and (2) a combination method with physical limitations regarding separation of the singular hydrograph into multi-layer release hydrographs for sediment control. This study employed the featured signals obtained from statistical quartiles/sediment duration curve in mesh segmentation, and an iterative optimization model with a sediment unit response matrix and corresponding geophysical-based acceleration factors, for efficient parameter calibration. This research applied the developed methodology to the Shihmen Reservoir basin in Taiwan. The trade-off analytical results using Typhoons Sinlaku and Jangmi as case examples revealed that owing to gravity current and re-suspension effects, Phase I + II can de-silt safely without violating the intake's turbidity limitation before reservoir discharge reaches 2238 m3/s; however

  7. Reservoir floodplains support distinct fish assemblages

    Science.gov (United States)

    Miranda, Leandro E.; Wigen, S. L.; Dagel, Jonah D.

    2014-01-01

    Reservoirs constructed on floodplain rivers are unique because the upper reaches of the impoundment may include extensive floodplain environments. Moreover, reservoirs that experience large periodic water level fluctuations as part of their operational objectives seasonally inundate and dewater floodplains in their upper reaches, partly mimicking natural inundations of river floodplains. In four flood control reservoirs in Mississippi, USA, we explored the dynamics of connectivity between reservoirs and adjacent floodplains and the characteristics of fish assemblages that develop in reservoir floodplains relative to those that develop in reservoir bays. Although fish species richness in floodplains and bays were similar, species composition differed. Floodplains emphasized fish species largely associated with backwater shallow environments, often resistant to harsh environmental conditions. Conversely, dominant species in bays represented mainly generalists that benefit from the continuous connectivity between the bay and the main reservoir. Floodplains in the study reservoirs provided desirable vegetated habitats at lower water level elevations, earlier in the year, and more frequently than in bays. Inundating dense vegetation in bays requires raising reservoir water levels above the levels required to reach floodplains. Therefore, aside from promoting distinct fish assemblages within reservoirs and helping promote diversity in regulated rivers, reservoir floodplains are valued because they can provide suitable vegetated habitats for fish species at elevations below the normal pool, precluding the need to annually flood upland vegetation that would inevitably be impaired by regular flooding. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  8. Prey preferences of the jaguar Panthera onca reflect the post-Pleistocene demise of large prey.

    Directory of Open Access Journals (Sweden)

    Matt W Hayward

    2016-01-01

    Full Text Available Documenting the impacts of the Pleistocene megafaunal extinctions on predator-prey interactions is a challenge because of the incomplete fossil record and depauperate extant community structure. We used a comparative ecological approach to investigate whether the existing prey preference patterns of jaguars Panthera onca were potentially affected by the Pleistocene extinctions in the Americas compared with large felids in Africa and Asia. We reviewed the literature and found 25 studies reporting 3214 jaguar kills recorded throughout the species’ distribution. We found that jaguars significantly preferred capybara Hydrochaeris hydrochaeris and giant anteater Myrmecophaga tridactyla, and avoided agoutis, carnivorans, primates, black-eared opossum Didelphis marsupialis and tapirs. Generalised linear models showed that jaguars select prey primarily based on socio-ecological and behavioural traits (abundance and herd size, rather than morphological characteristics (body size. Nonetheless, their accessible prey weight range was 6-60 kg, preferred prey weight range was 45-85 kg, and mean mass of significantly preferred prey was 32 ± 13 kg leading to a predator to prey body mass ratio of 1:0.53, which is much less than that of other solitary felids. Compared with other large, solitary felids, jaguars have an unusual predator to prey body mass ratio, show limited effect of prey morphology as a driver of prey selection, lack evidence of optimal foraging beyond their preferred prey, and an absence of preferentially hunting on Cetartiodactyla herbivores. These features, coupled with the reduction in jaguar body mass since the Pleistocene, suggest that the loss of larger potential prey items within the preferred and accessible weight ranges at the end-Pleistocene still affects jaguar predatory behaviour. It may be that jaguars survived this mass extinction event by preferentially preying on relatively small species.

  9. The Dynamics of a Nonautonomous Predator-Prey Model with Infertility Control in the Prey

    Directory of Open Access Journals (Sweden)

    Xiaomei Feng

    2014-01-01

    Full Text Available A nonautonomous predator-prey model with infertility control in the prey is formulated and investigated. Threshold conditions for the permanence and extinction of fertility prey and infertility prey are established. Some new threshold values of integral form are obtained. For the periodic cases, these threshold conditions act as sharp threshold values for the permanence and extinction of fertility prey and infertility prey. There are also mounting concerns that the quantity of biological sterile drug is obtained in the process of the prevention and control of pest in the grasslands and farmland. Finally, two examples are given to illustrate the main results of this paper. The numerical simulations shown that, when the pest population is permanet, different dynamic behaviors may be found in this model, such as the global attractivity and the chaotic attractor.

  10. Gluttonous predators: how to estimate prey size when there are too many prey

    Directory of Open Access Journals (Sweden)

    MS. Araújo

    Full Text Available Prey size is an important factor in food consumption. In studies of feeding ecology, prey items are usually measured individually using calipers or ocular micrometers. Among amphibians and reptiles, there are species that feed on large numbers of small prey items (e.g. ants, termites. This high intake makes it difficult to estimate prey size consumed by these animals. We addressed this problem by developing and evaluating a procedure for subsampling the stomach contents of such predators in order to estimate prey size. Specifically, we developed a protocol based on a bootstrap procedure to obtain a subsample with a precision error of at the most 5%, with a confidence level of at least 95%. This guideline should reduce the sampling effort and facilitate future studies on the feeding habits of amphibians and reptiles, and also provide a means of obtaining precise estimates of prey size.

  11. Prey-mediated avoidance of an intraguild predator by its intraguild prey

    Science.gov (United States)

    Wilson, R.R.; Blankenship, T.L.; Hooten, M.B.; Shivik, J.A.

    2010-01-01

    Intraguild (IG) predation is an important factor influencing community structure, yet factors allowing coexistence of IG predator and IG prey are not well understood. The existence of spatial refuges for IG prey has recently been noted for their importance in allowing coexistence. However, reduction in basal prey availability might lead IG prey to leave spatial refuges for greater access to prey, leading to increased IG predation and fewer opportunities for coexistence. We determined how the availability of prey affected space-use patterns of bobcats (Lynx rufus, IG prey) in relation to coyote space-use patterns (Canis latrans, IG predators). We located animals from fall 2007 to spring 2009 and estimated bobcat home ranges and core areas seasonally. For each bobcat relocation, we determined intensity of coyote use, distance to water, small mammal biomass, and mean small mammal biomass of the home range during the season the location was collected. We built generalized linear mixed models and used Akaike Information Criteria to determine which factors best predicted bobcat space use. Coyote intensity was a primary determinant of bobcat core area location. In bobcat home ranges with abundant prey, core areas occurred where coyote use was low, but shifted to areas intensively used by coyotes when prey declined. High spatial variability in basal prey abundance allowed some bobcats to avoid coyotes while at the same time others were forced into more risky areas. Our results suggest that multiple behavioral strategies associated with spatial variation in basal prey abundance likely allow IG prey and IG predators to coexist. ?? 2010 Springer-Verlag.

  12. Are lemmings prey or predators?

    Science.gov (United States)

    Turchin, P.; Oksanen, L.; Ekerholm, P.; Oksanen, T.; Henttonen, H.

    2000-06-01

    Large oscillations in the populations of Norwegian lemmings have mystified both professional ecologists and lay public. Ecologists suspect that these oscillations are driven by a trophic mechanism: either an interaction between lemmings and their food supply, or an interaction between lemmings and their predators. If lemming cycles are indeed driven by a trophic interaction, can we tell whether lemmings act as the resource (`prey') or the consumer (`predator')? In trophic interaction models, peaks of resource density generally have a blunt, rounded shape, whereas peaks of consumer density are sharp and angular. Here we have applied several statistical tests to three lemming datasets and contrasted them with comparable data for cyclic voles. We find that vole peaks are blunt, consistent with their cycles being driven by the interaction with predators. In contrast, the shape of lemming peaks is consistent with the hypothesis that lemmings are functional predators, that is, their cycles are driven by their interaction with food plants. Our findings suggest that a single mechanism, such as interaction between rodents and predators, is unlikely to provide the `universal' explanation of all cyclic rodent dynamics.

  13. Hydrologic-agronomic-economic model for the optimal operation of the Yaqui river reservoir system using genetic algorithms; Modelo hidrologico-agronomico-economico para la operacion optima del sistema de presas del rio Yaqui, usando algoritmos geneticos

    Energy Technology Data Exchange (ETDEWEB)

    Minjares-Lugo, Jose Luis; Salmon-Castelo, Roberto Fernando; Oroz-Ramos, Lucas Antonio [Comision Nacional del Agua (Mexico); Cruz-Medina, Isidro Roberto [Instituto Tecnologico de Sonora (Mexico)

    2008-07-15

    The objective of this study is to develop an integrated hydrologic-agronomic-economic annual model for the optimal operation of the Yaqui River reservoir system to support irrigation and urban water supply in the watershed. The model solves for each year's water allocations by crop, maximizing annual agricultural income for a specified risk of reservoir shortages and spills. It accounts for adjustments in water supply arising from changes in precipitation and runoff uncertainty and from changes in water demand arising from variations in crop prices and production costs. Model predictions for the agricultural year 2000-2001 are compared with observed results to test the model's predictive ability. Results demonstrate that the model can be used to optimize and analyze reservoir system operation and for water resources management in the Irrigation District No. 041, providing a framework for improving the operation of a reservoir system, selecting an optimal cropping pattern according to its maximum economic benefits, and in the optimal monthly water releases from the reservoir system. The model considers the simultaneous operation of three dams and it is applied to the Irrigation District No. 041, Rio Yaqui. [Spanish] El objetivo de este estudio es desarrollar un modelo integral de optimizacion anual para definir la operacion del sistema de presas del rio Yaqui y la asignacion del volumen mensual de agua para la irrigacion de diferentes cultivos, asi como para satisfacer los requerimientos de uso urbano basado en las condiciones hidrologicas, agronomicas y economicas en la cuenca. El modelo maximiza los beneficios anuales netos del sector agricola, minimizando el riesgo de deficit o derrames en el sistema de presas; incluye cambios en el suministro de agua debido a la incertidumbre de las precipitaciones y del escurrimiento del rio y cambios en la demanda de agua provocados por la incertidumbre de los precios y costos de los cultivos. Se utilizaron datos del

  14. When prey provide more than food: mammalian predators appropriating the refugia of their prey

    Science.gov (United States)

    Bill Zielinski

    2015-01-01

    Some mammalian predators acquire both food and shelter from their prey, by eating them and using the refugia the prey construct. I searched the literature for examples of predators that exhibit this behavior and summarize their taxonomic affiliations, relative sizes, and distributions. I hypothesized that size ratios of species involved in this dynamic would be near 1....

  15. A Study of the Optimal Planning Model for Reservoir Sustainable Management- A Case Study of Shihmen Reservoir

    Science.gov (United States)

    Chen, Y. Y.; Ho, C. C.; Chang, L. C.

    2017-12-01

    The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.

  16. Model for energy planning of degraded river basins based on hydrological evaluation of hydroelectric reservoirs in operation; Modelo de planejamento energetico de bacias hidrograficas degradadas baseado na avaliacao hidrica de reservatorios hidreletricos em operacao

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Afonso Henriques Moreira [Universidade Federal de Itajuba (UNIFEI), MG (Brazil); Ferreira, Aloisio Caetano; Ottoni, Arthur Benedicto; Nogueira Neto, Claudio; Silva, Denis de Souza

    2008-07-01

    The human occupation of the hydrographic basin, made in the past without plans, generated alteration of the hydrology characteristics, presenting as direct consequence modifications of its hydric availabilities. Or either, the floods in the rainy periods and the droughts in the ones of dryness currently tend to be more frequent and with bigger intensity. These conditions have affected the operation as well as the planning of the hydroelectric reservoirs, that have generated energy in conditions of different hydric availabilities (worse) of those foreseeing at the time of the project. These situations result in uncertainties and energy losses for the investor as well as in the system. Under such premises, the present article analyzes the energy-economic influences of the deterioration of the hydric regimen of some on exploitations in operation to the system, located in basins degrades in the South, Southeastern and Northeast regions; enhancing the importance of the studies of hydric economy of these units of management (degraded basins) as subsidy of taking of decision for gradual recovery of its hydric availabilities; taking in account the energy optimization of the hydroelectric reservoirs in located operation as well as the minimization of inherent the financial losses to the uncertainties of its hydric resources. (author)

  17. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservior Fisheries, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, Bradley B.

    1985-06-01

    We are evaluating the potential impacts of Libby Reservoir operation on the fishery in Libby Reservoir. The sampling program has been tested and modified to provide data for developing an understanding of how reservoir operation impacts the reservoir fishery. Temperature appears to be an important variable influenced by reservoir operation which regulates fish and fish food production and distribution. 39 refs., 21 figs., 19 tabs.

  18. Selective Predation of a Stalking Predator on Ungulate Prey.

    Directory of Open Access Journals (Sweden)

    Marco Heurich

    Full Text Available Prey selection is a key factor shaping animal populations and evolutionary dynamics. An optimal forager should target prey that offers the highest benefits in terms of energy content at the lowest costs. Predators are therefore expected to select for prey of optimal size. Stalking predators do not pursue their prey long, which may lead to a more random choice of prey individuals. Due to difficulties in assessing the composition of available prey populations, data on prey selection of stalking carnivores are still scarce. We show how the stalking predator Eurasian lynx (Lynx lynx selects prey individuals based on species identity, age, sex and individual behaviour. To address the difficulties in assessing prey population structure, we confirm inferred selection patterns by using two independent data sets: (1 data of 387 documented kills of radio-collared lynx were compared to the prey population structure retrieved from systematic camera trapping using Manly's standardized selection ratio alpha and (2 data on 120 radio-collared roe deer were analysed using a Cox proportional hazards model. Among the larger red deer prey, lynx selected against adult males-the largest and potentially most dangerous prey individuals. In roe deer lynx preyed selectively on males and did not select for a specific age class. Activity during high risk periods reduced the risk of falling victim to a lynx attack. Our results suggest that the stalking predator lynx actively selects for size, while prey behaviour induces selection by encounter and stalking success rates.

  19. 49 CFR 393.50 - Reservoirs required.

    Science.gov (United States)

    2010-10-01

    ... using air or vacuum braking must have either reserve capacity, or a reservoir, that would enable the... have a condensate drain valve that can be manually operated. Automatic condensate drain valves may be...

  20. Prey responses to predator chemical cues: disentangling the importance of the number and biomass of prey consumed.

    Directory of Open Access Journals (Sweden)

    Michael W McCoy

    Full Text Available To effectively balance investment in predator defenses versus other traits, organisms must accurately assess predation risk. Chemical cues caused by predation events are indicators of risk for prey in a wide variety of systems, but the relationship between how prey perceive risk in relation to the amount of prey consumed by predators is poorly understood. While per capita predation rate is often used as the metric of relative risk, studies aimed at quantifying predator-induced defenses commonly control biomass of prey consumed as the metric of risk. However, biomass consumed can change by altering either the number or size of prey consumed. In this study we determine whether phenotypic plasticity to predator chemical cues depends upon prey biomass consumed, prey number consumed, or both. We examine the growth response of red-eyed treefrog tadpoles (Agalychnis callidryas to cues from a larval dragonfly (Anax amazili. Biomass consumed was manipulated by either increasing the number of prey while holding individual prey size constant, or by holding the number of prey constant and varying individual prey size. We address two questions. (i Do prey reduce growth rate in response to chemical cues in a dose dependent manner? (ii Does the magnitude of the response depend on whether prey consumption increases via number or size of prey? We find that the phenotypic response of prey is an asymptotic function of prey biomass consumed. However, the asymptotic response is higher when more prey are consumed. Our findings have important implications for evaluating past studies and how future experiments should be designed. A stronger response to predation cues generated by more individual prey deaths is consistent with models that predict prey sensitivity to per capita risk, providing a more direct link between empirical and theoretical studies which are often focused on changes in population sizes not individual biomass.

  1. SILTATION IN RESERVOIRS

    African Journals Online (AJOL)

    Keywords: reservoir model, siltation, sediment, catchment, sediment transport. 1. Introduction. Sediment ... rendered water storage structures useless in less than 25 years. ... reservoir, thus reducing the space available for water storage and ...

  2. Reservoir fisheries of Asia

    International Nuclear Information System (INIS)

    Silva, S.S. De.

    1990-01-01

    At a workshop on reservoir fisheries research, papers were presented on the limnology of reservoirs, the changes that follow impoundment, fisheries management and modelling, and fish culture techniques. Separate abstracts have been prepared for three papers from this workshop

  3. Analog readout for optical reservoir computers

    OpenAIRE

    Smerieri, Anteo; Duport, François; Paquot, Yvan; Schrauwen, Benjamin; Haelterman, Marc; Massar, Serge

    2012-01-01

    Reservoir computing is a new, powerful and flexible machine learning technique that is easily implemented in hardware. Recently, by using a time-multiplexed architecture, hardware reservoir computers have reached performance comparable to digital implementations. Operating speeds allowing for real time information operation have been reached using optoelectronic systems. At present the main performance bottleneck is the readout layer which uses slow, digital postprocessing. We have designed a...

  4. Evaluation of an Empirical Reservoir Shape Function to Define Sediment Distributions in Small Reservoirs

    Directory of Open Access Journals (Sweden)

    Bogusław Michalec

    2015-08-01

    Full Text Available Understanding and defining the spatial distribution of sediment deposited in reservoirs is essential not only at the design stage but also during the operation. The majority of research concerns the distribution of sediment deposition in medium and large water reservoirs. Most empirical methods do not provide satisfactory results when applied to the determination of sediment deposition in small reservoirs. Small reservoir’s volumes do not exceed 5 × 106 m3 and their capacity-inflow ratio is less than 10%. Long-term silting measurements of three small reservoirs were used to evaluate the method described by Rahmanian and Banihashemi for predicting sediment distributions in small reservoirs. Rahmanian and Banihashemi stated that their model of distribution of sediment deposition in water reservoir works well for a long duration operation. In the presented study, the silting rate was used in order to determine the long duration operation. Silting rate is a quotient of volume of the sediment deposited in the reservoir and its original volume. It was stated that when the silting rate had reached 50%, the sediment deposition in the reservoir may be described by an empirical reservoir depth shape function (RDSF.

  5. Microbiological survey of birds of prey pellets.

    Science.gov (United States)

    Dipineto, Ludovico; Bossa, Luigi Maria De Luca; Pace, Antonino; Russo, Tamara Pasqualina; Gargiulo, Antonio; Ciccarelli, Francesca; Raia, Pasquale; Caputo, Vincenzo; Fioretti, Alessandro

    2015-08-01

    A microbiological survey of 73 pellets collected from different birds of prey species housed at the Wildlife Rescue and Rehabilitation Center of Napoli (southern Italy) was performed. Pellets were analyzed by culture and biochemical methods as well as by serotyping and polymerase chain reaction. We isolated a wide range of bacteria some of them also pathogens for humans (i.e. Salmonella enterica serotype Typhimurium, Campylobacter coli, Escherichia coli O serogroups). This study highlights the potential role of birds of prey as asymptomatic carriers of pathogenic bacteria which could be disseminated in the environment not only through the birds of prey feces but also through their pellets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Prey capture by freely swimming flagellates

    Science.gov (United States)

    Andersen, Anders; Dolger, Julia; Nielsen, Lasse Tor; Kiorboe, Thomas

    2017-11-01

    Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. Here, we explore the dependence of swimming kinematics and prey clearance rate on flagellar arrangement and determine optimal flagellar arrangements and essential trade-offs. To describe near-cell flows around freely swimming flagellates we consider a model in which the cell is represented by a no-slip sphere and each flagellum by a point force. For uniflagellates pulled by a single flagellum the model suggests that a long flagellum favors fast swimming, whereas high clearance rate is favored by a very short flagellum. For biflagellates with both a longitudinal and a transversal flagellum we explore the helical swimming kinematics and the prey capture sites. We compare our predictions with observations of swimming kinematics, prey capture, and flows around common marine flagellates. The Centre for Ocean Life is a VKR Centre of Excellence supported by the Villum Foundation.

  7. Non-webbuilding spiders: prey specialists or generalists?

    Science.gov (United States)

    Nentwig, Wolfgang

    1986-07-01

    Feeding experiments were performed with seven species of non-webbuilding spiders and a variety of prey taxa. Some species were generally polyphagous whereas other spiders restricted their prey to a few groups. At one end of the spectrum of prey specialization the thomisid Misumena vatia is limited to a few taxa of possible prey (Table 1). The literature of prey records of non-webbuilding spiders is reviewed (Table 2) with special emphasis on oligophagous or monophagous spiders. Monophagous spiders are generally rare and have specialized on only a few prey taxa: social insects (ants, bees, termites) and spiders.

  8. Interactive effects of prey refuge and additional food for predator in a diffusive predator-prey system

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Tiwari, P. K.; Sasmal, S.K.

    2017-01-01

    a predator-prey system with prey refuge and additional food for predator apart from the focal prey in the presence of diffusion. Our main aim is to study the interactive effects of prey refuge and additional food on the system dynamics and especially on the controllability of prey (pest). Different types......Additional food for predators has been considered as one of the best established techniques in integrated pest management and biological conservation programs. In natural systems, there are several other factors, e.g., prey refuge, affect the success of pest control. In this paper, we analyze...... of Turing patterns such as stripes, spots, holes, and mixtures of them are obtained. It is found that the supply of additional food to the predator is unable to control the prey (pest) population when prey refuge is high. Moreover, when both prey refuge and additional food are low, spatial distribution...

  9. Simulation of California's Major Reservoirs Outflow Using Data Mining Technique

    Science.gov (United States)

    Yang, T.; Gao, X.; Sorooshian, S.

    2014-12-01

    The reservoir's outflow is controlled by reservoir operators, which is different from the upstream inflow. The outflow is more important than the reservoir's inflow for the downstream water users. In order to simulate the complicated reservoir operation and extract the outflow decision making patterns for California's 12 major reservoirs, we build a data-driven, computer-based ("artificial intelligent") reservoir decision making tool, using decision regression and classification tree approach. This is a well-developed statistical and graphical modeling methodology in the field of data mining. A shuffled cross validation approach is also employed to extract the outflow decision making patterns and rules based on the selected decision variables (inflow amount, precipitation, timing, water type year etc.). To show the accuracy of the model, a verification study is carried out comparing the model-generated outflow decisions ("artificial intelligent" decisions) with that made by reservoir operators (human decisions). The simulation results show that the machine-generated outflow decisions are very similar to the real reservoir operators' decisions. This conclusion is based on statistical evaluations using the Nash-Sutcliffe test. The proposed model is able to detect the most influential variables and their weights when the reservoir operators make an outflow decision. While the proposed approach was firstly applied and tested on California's 12 major reservoirs, the method is universally adaptable to other reservoir systems.

  10. Can species-specific prey responses to chemical cues explain prey susceptibility to predation?

    Science.gov (United States)

    Šmejkal, Marek; Ricard, Daniel; Sajdlová, Zuzana; Čech, Martin; Vejřík, Lukáš; Blabolil, Petr; Vejříková, Ivana; Prchalová, Marie; Vašek, Mojmír; Souza, Allan T; Brönmark, Christer; Peterka, Jiří

    2018-05-01

    The perception of danger represents an essential ability of prey for gaining an informational advantage over their natural enemies. Especially in complex environments or at night, animals strongly rely on chemoreception to avoid predators. The ability to recognize danger by chemical cues and subsequent adaptive responses to predation threats should generally increase prey survival. Recent findings suggest that European catfish ( Silurus glanis ) introduction induce changes in fish community and we tested whether the direction of change can be attributed to differences in chemical cue perception. We tested behavioral response to chemical cues using three species of freshwater fish common in European water: rudd ( Scardinius erythrophthalmus ), roach ( Rutilus rutilus ), and perch ( Perca fluviatilis ). Further, we conducted a prey selectivity experiment to evaluate the prey preferences of the European catfish. Roach exhibited the strongest reaction to chemical cues, rudd decreased use of refuge and perch did not alter any behavior in the experiment. These findings suggest that chemical cue perception might be behind community data change and we encourage collecting more community data of tested prey species before and after European catfish introduction to test the hypothesis. We conclude that used prey species can be used as a model species to verify whether chemical cue perception enhances prey survival.

  11. Predator-prey encounters in turbulent waters

    DEFF Research Database (Denmark)

    Mann, J.; Ott, Søren; Pécseli, H.L.

    2002-01-01

    With reference to studies of predator-prey encounters in turbulent waters, we demonstrate the feasibility of an experimental method for investigations of particle fluxes to an absorbing surface in turbulent flows. A laboratory experiment is carried out, where an approximately homogeneous and isot......With reference to studies of predator-prey encounters in turbulent waters, we demonstrate the feasibility of an experimental method for investigations of particle fluxes to an absorbing surface in turbulent flows. A laboratory experiment is carried out, where an approximately homogeneous...

  12. Wild North Island Robins (Petroica longipes respond to Prey Animacy

    Directory of Open Access Journals (Sweden)

    Alexis Garland

    2014-08-01

    Full Text Available North Island robins of New Zealand are a food hoarding species, which is unique in that they almost exclusively cache highly perishable hunted insects for later retrieval. In order to do so, they either kill and dismember or paralyze their prey for caching, depending on the prey size and kind. The present study comprises two experiments, using a Violation of Expectancy (VoE paradigm to examine variation in search behavior response to different prey conditions. The first experiment presents three different types of prey (mealworms, earthworms and locusts in expected (present and unexpected (absent conditions. The second experiment presents prey in varying states of animacy (alive and whole, dead and whole, dead and halved, and an inanimate stick and reveals prey in expected (same state or unexpected (differing state conditions. While robins did not respond with differential search times to different types of unexpectedly missing prey in Experiment 1, in Experiment 2 robins searched longer in conditions where prey was found in a differing state of animacy than initially shown. Robins also searched longer for prey when immediately consuming retrieved prey than when caching retrieved prey. Results indicate that North Island robins may be sensitive to prey animacy upon storage and retrieval of insect prey; such information could play a role in storage, pilfering and retrieval strategies of such a perishable food source.

  13. Application of integrated reservoir management and reservoir characterization to optimize infill drilling, Class II

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Jack; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill; Bezant, Bryce

    2000-03-16

    The major purpose of this project was to demonstrate the use of cost effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability carbonate reservoirs such as the North Robertson (Clearfork) Unit.

  14. Reservoir model for the Alameda Central waterflood

    Energy Technology Data Exchange (ETDEWEB)

    Randall, T E

    1968-01-01

    The basic approach used in developing the model to characterize the Alameda Central Unit Waterflood assumes continuity of the reservoir mechanics with time. The past performance was analyzed to describe the reservoir and future performance was assumed to follow the established patterns. To develop a mathematical picture of the Alameda Central Unit reservoir, a two-dimensional single-phase steady-state model was used in conjunction with material balance calculations, real-time conversion methods and oil-water interface advance calculations. The model was developed to optimize water injection allocation, determine the configuration of the frontal advance and evaluate the success of the waterflood. The model also provides a basis for continuing review and revision of the basic concepts of reservoir operation. The results of the reservoir study have confirmed the apparent lack of permeability orientation in the pool and indicate that the waterflood is progressing better than originally anticipated.

  15. Ultrasonic predator-prey interactions in water-convergent evolution with insects and bats in air?

    Science.gov (United States)

    Wilson, Maria; Wahlberg, Magnus; Surlykke, Annemarie; Madsen, Peter Teglberg

    2013-01-01

    Toothed whales and bats have independently evolved biosonar systems to navigate and locate and catch prey. Such active sensing allows them to operate in darkness, but with the potential cost of warning prey by the emission of intense ultrasonic signals. At least six orders of nocturnal insects have independently evolved ears sensitive to ultrasound and exhibit evasive maneuvers when exposed to bat calls. Among aquatic prey on the other hand, the ability to detect and avoid ultrasound emitting predators seems to be limited to only one subfamily of Clupeidae: the Alosinae (shad and menhaden). These differences are likely rooted in the different physical properties of air and water where cuticular mechanoreceptors have been adapted to serve as ultrasound sensitive ears, whereas ultrasound detection in water have called for sensory cells mechanically connected to highly specialized gas volumes that can oscillate at high frequencies. In addition, there are most likely differences in the risk of predation between insects and fish from echolocating predators. The selection pressure among insects for evolving ultrasound sensitive ears is high, because essentially all nocturnal predation on flying insects stems from echolocating bats. In the interaction between toothed whales and their prey the selection pressure seems weaker, because toothed whales are by no means the only marine predators placing a selection pressure on their prey to evolve specific means to detect and avoid them. Toothed whales can generate extremely intense sound pressure levels, and it has been suggested that they may use these to debilitate prey. Recent experiments, however, show that neither fish with swim bladders, nor squid are debilitated by such signals. This strongly suggests that the production of high amplitude ultrasonic clicks serve the function of improving the detection range of the toothed whale biosonar system rather than debilitation of prey.

  16. Ultrasonic predator-prey interactions in water– convergent evolution with insects and bats in air?

    Directory of Open Access Journals (Sweden)

    Maria eWilson

    2013-06-01

    Full Text Available Toothed whales and bats have independently evolved biosonar systems to navigate and locate and catch prey. Such active sensing allows them to operate in darkness, but with the potential cost of warning prey by the emission of intense ultrasonic signals. At least six orders of nocturnal insects have independently evolved ears sensitive to ultrasound and exhibit evasive maneuvers when exposed to bat calls. Among aquatic prey on the other hand, the ability to detect and avoid ultrasound emitting predators seems to be limited to only one subfamily of Clupeidae: the Alosinae (shad and menhaden. These differences are likely rooted in the different physical properties of air and water where cuticular mechanoreceptors have been adapted to serve as ultrasound sensitive ears, whereas ultrasound detection in water have called for sensory cells mechanically connected to highly specialized gas volumes that can oscillate at high frequencies. In addition, there are most likely differences in the risk of predation between insects and fish from echolocating predators. The selection pressure among insects for evolving ultrasound sensitive ears is high, because essentially all nocturnal predation on flying insects stems from echolocating bats. In the interaction between toothed whales and their prey the selection pressure seems weaker, because toothed whales are by no means the only marine predators placing a selection pressure on their prey to evolve specific means to detect and avoid them.Toothed whales can generate extremely intense sound pressure levels, and it has been suggested that they may use these to debilitate prey. Recent experiments however, show that neither fish with swim bladder, nor squid are debilitated by such signals. This strongly suggests that the production of high amplitude ultrasonic clicks serve the function of improving the detection range of the toothed whale biosonar system rather than debilitation of prey.

  17. Prey switching behaviour in the planktonic copepod Acartia tonsa

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Saiz, E.; Viitasalo, M.

    1996-01-01

    The copepod Acartia tonsa has 2 different prey encounter strategies. It can generate a feeding current to encounter and capture immobile prey (suspension feeding) or it can sink slowly and perceive motile prey by means of mechanoreceptors on the antennae (ambush feeding). We hypothesized that A....... tonsa adopts the feeding mode that generates the highest energy intake rate; i.e. that prey selection changes according to the relative concentrations of alternative prey (prey switching) and that the copepods spend disproportionately more time in the feeding mode that provides the greatest reward...... be captured by suspension feeding copepods. Finally, we demonstrate that turbulence favours the selection of ciliates as prey. We suggest that prey switching by copepods may provide survival windows for microzooplankters during blooms of net phytoplankton because predation pressure from the copepods...

  18. Balancing ecosystem services with energy and food security - Assessing trade-offs from reservoir operation and irrigation investments in Kenya's Tana Basin

    Science.gov (United States)

    Hurford, A. P.; Harou, J. J.

    2014-08-01

    Competition for water between key economic sectors and the environment means agreeing allocations is challenging. Managing releases from the three major dams in Kenya's Tana River basin with its 4.4 million inhabitants, 567 MW of installed hydropower capacity, 33 000 ha of irrigation and ecologically important wetlands and forests is a pertinent example. This research seeks firstly to identify and help decision-makers visualise reservoir management strategies which result in the best possible (Pareto-optimal) allocation of benefits between sectors. Secondly, it seeks to show how trade-offs between achievable benefits shift with the implementation of proposed new rice, cotton and biofuel irrigation projects. To approximate the Pareto-optimal trade-offs we link a water resources management simulation model to a multi-criteria search algorithm. The decisions or "levers" of the management problem are volume-dependent release rules for the three major dams and extent of investment in new irrigation schemes. These decisions are optimised for eight objectives covering the provision of water supply and irrigation, energy generation and maintenance of ecosystem services. Trade-off plots allow decision-makers to assess multi-reservoir rule-sets and irrigation investment options by visualising their impacts on different beneficiaries. Results quantify how economic gains from proposed irrigation schemes trade-off against the disturbance of ecosystems and local livelihoods that depend on them. Full implementation of the proposed schemes is shown to come at a high environmental and social cost. The clarity and comprehensiveness of "best-case" trade-off analysis is a useful vantage point from which to tackle the interdependence and complexity of "water-energy-food nexus" resource security issues.

  19. Balancing ecosystem services with energy and food security - assessing trade-offs for reservoir operation and irrigation investment in Kenya's Tana basin

    Science.gov (United States)

    Hurford, A. P.; Harou, J. J.

    2014-01-01

    Competition for water between key economic sectors and the environment means agreeing on allocation is challenging. Managing releases from the three major dams in Kenya's Tana River basin with its 4.4 million inhabitants, 567 MW of installed hydropower capacity, 33 000 ha of irrigation and ecologically important wetlands and forests is a pertinent example. This research seeks to identify and help decision-makers visualise reservoir management strategies which result in the best possible (Pareto-optimal) allocation of benefits between sectors. Secondly we seek to show how trade-offs between achievable benefits shift with the implementation of new proposed rice, cotton and biofuel irrigation projects. To identify the Pareto-optimal trade-offs we link a water resources management model to a multi-criteria search algorithm. The decisions or "levers" of the management problem are volume dependent release rules for the three major dams and extent of investment in new irrigation schemes. These decisions are optimised for objectives covering provision of water supply and irrigation, energy generation and maintenance of ecosystem services which underpin tourism and local livelihoods. Visual analytic plots allow decision makers to assess multi-reservoir rule-sets by understanding their impacts on different beneficiaries. Results quantify how economic gains from proposed irrigation schemes trade-off against disturbance of the flow regime which supports ecosystem services. Full implementation of the proposed schemes is shown to be Pareto-optimal, but at high environmental and social cost. The clarity and comprehensiveness of "best-case" trade-off analysis is a useful vantage point from which to tackle the interdependence and complexity of water-energy-food "nexus" challenges.

  20. Models of prey capture in larval fish

    NARCIS (Netherlands)

    Drost, M.R.

    1986-01-01

    The food uptake of larval carp and pike is described from high speed movies with synchronous lateral and ventral views.

    During prey intake by larval fishes the velocities of the created suction flow are high relative to their own size: 0.3 m/s for carp larvae of 6

  1. Lake Ontario benthic prey fish assessment, 2015

    Science.gov (United States)

    Weidel, Brian C.; Walsh, Maureen; Holden, Jeremy P.; Connerton, Michael J.

    2016-01-01

    Benthic prey fishes are a critical component of the Lake Ontario food web, serving as energy vectors from benthic invertebrates to native and introduced piscivores. Since the late 1970’s, Lake Ontario benthic prey fish status was primarily assessed using bottom trawl observations confined to the lake’s south shore, in waters from 8 – 150 m (26 – 492 ft). In 2015, the Benthic Prey Fish Survey was cooperatively adjusted and expanded to address resource management information needs including lake-wide benthic prey fish population dynamics. Effort increased from 55 bottom trawl sites to 135 trawl sites collected in depths from 8 - 225m (26 – 738 ft). The spatial coverage of sampling was also expanded and occurred in all major lake basins. The resulting distribution of tow depths more closely matched the available lake depth distribution. The additional effort illustrated how previous surveys were underestimating lake-wide Deepwater Sculpin, Myoxocephalus thompsonii, abundance by not sampling in areas of highest density. We also found species richness was greater in the new sampling sites relative to the historic sites with 11 new fish species caught in the new sites including juvenile Round Whitefish, Prosopium cylindraceum, and Mottled sculpin, Cottus bairdii. Species-specific assessments found Slimy Sculpin, Cottus cognatus abundance increased slightly in 2015 relative to 2014, while Deepwater Sculpin and Round Goby, Neogobius melanostomus, dramatically increased in 2015, relative to 2014. The cooperative, lake-wide Benthic Prey Fish Survey expanded our understanding of benthic fish population dynamics and habitat use in Lake Ontario. This survey’s data and interpretations influence international resource management decision making, such as informing the Deepwater Sculpin conservation status and assessing the balance between sport fish consumption and prey fish populations. Additionally a significant Lake Ontario event occurred in May 2015 when a single

  2. Killer whale prey - Determining prey selection by southern resident killer whales (SRKW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Prey selectivity by southern resident killer whales is being determined by analyses of fish scales and tissue from predation events and feces. Information on killer...

  3. Prey-Predator Model with a Nonlocal Bistable Dynamics of Prey

    Directory of Open Access Journals (Sweden)

    Malay Banerjee

    2018-03-01

    Full Text Available Spatiotemporal pattern formation in integro-differential equation models of interacting populations is an active area of research, which has emerged through the introduction of nonlocal intra- and inter-specific interactions. Stationary patterns are reported for nonlocal interactions in prey and predator populations for models with prey-dependent functional response, specialist predator and linear intrinsic death rate for predator species. The primary goal of our present work is to consider nonlocal consumption of resources in a spatiotemporal prey-predator model with bistable reaction kinetics for prey growth in the absence of predators. We derive the conditions of the Turing and of the spatial Hopf bifurcation around the coexisting homogeneous steady-state and verify the analytical results through extensive numerical simulations. Bifurcations of spatial patterns are also explored numerically.

  4. SRKW summer prey - Prey species and stock specific consumption estimates for SRKW in their summer range

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Southern Resident Killer Whales (SRKW) are listed as a Distinct Population Segment under the Endangered Species Act. Data concerning their prey species and stock...

  5. Prey aggregation is an effective olfactory predator avoidance strategy

    Directory of Open Access Journals (Sweden)

    Asa Johannesen

    2014-05-01

    Full Text Available Predator–prey interactions have a major effect on species abundance and diversity, and aggregation is a well-known anti-predator behaviour. For immobile prey, the effectiveness of aggregation depends on two conditions: (a the inability of the predator to consume all prey in a group and (b detection of a single large group not being proportionally easier than that of several small groups. How prey aggregation influences predation rates when visual cues are restricted, such as in turbid water, has not been thoroughly investigated. We carried out foraging (predation experiments using a fish predator and (dead chironomid larvae as prey in both laboratory and field settings. In the laboratory, a reduction in visual cue availability (in turbid water led to a delay in the location of aggregated prey compared to when visual cues were available. Aggregated prey suffered high mortality once discovered, leading to better survival of dispersed prey in the longer term. We attribute this to the inability of the dead prey to take evasive action. In the field (where prey were placed in feeding stations that allowed transmission of olfactory but not visual cues, aggregated (large groups and semi-dispersed prey survived for longer than dispersed prey—including long term survival. Together, our results indicate that similar to systems where predators hunt using vision, aggregation is an effective anti-predator behaviour for prey avoiding olfactory predators.

  6. Competition and Dispersal in Predator-Prey Waves

    NARCIS (Netherlands)

    Savill, N.J.; Hogeweg, P.

    1998-01-01

    Dispersing predators and prey can exhibit complex spatio-temporal wave-like patterns if the interactions between them cause oscillatory dynamics. We study the effect of these predator- prey density waves on the competition between prey populations and between predator popu- lations with different

  7. Predatory mites avoid ovipositing near counter-attacking prey

    NARCIS (Netherlands)

    Faraji, F.; Janssen, A.; Sabelis, M.W.

    2001-01-01

    Attacking prey is not without risk; predators may endure counterattackby the prey. Here, we study the oviposition behaviour of a predatory mite(Iphiseius degenerans) in relation to its prey, thewesternflower thrips (Frankliniella occidentalis). This thrips iscapable of killing the eggs of the

  8. Prey perception in feeding-current feeding copepods

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Goncalves, Rodrigo J.; Florian Couespel, Damien

    2016-01-01

    We reply to the comments of Paffenhöfer and Jiang () who argues that remote chemical prey perception is necessary for feeding-current feeding copepods to fulfill their nutritional requirements in a dilute ocean, that remote chemical prey detection may only be observed at very low prey concentrati......We reply to the comments of Paffenhöfer and Jiang () who argues that remote chemical prey perception is necessary for feeding-current feeding copepods to fulfill their nutritional requirements in a dilute ocean, that remote chemical prey detection may only be observed at very low prey...... cells have short intense leakage burst, only a very small fraction of prey cells would be available to the copepod at any instance in time and, thus would be inefficient at low prey concentration. Finally, we report a few new observations of prey capture in two species of copepods, Temora longicornis...... and Centropages hamatus, offered a 45-μm sized dinoflagellate at very low concentration. The observed short prey detection distances, up to a few prey cell radii, are consistent with mechanoreception and we argue briefly that near-field mechanoreception is the most likely and common prey perception mechanism...

  9. The functional response to prey density in an acarine system

    NARCIS (Netherlands)

    Fransz, H.G.

    1974-01-01

    Predacious mites are considered to be important natural enemies of phytophagous mites. Their efficiency in the natural control of prey populations depends on the relationships of the number of prey killed per predator per time unit and the oviposition rate on the one hand and prey density on the

  10. Does diet in lacertid lizards reflect prey availability? Evidence for selective predation in the Aeolian wall lizard, Podarcis raffonei (Mertens, 1952 (Reptilia, Lacertidae

    Directory of Open Access Journals (Sweden)

    Pietro Lo Cascio

    2011-06-01

    Full Text Available In this paper the invertebrate fauna occurring on Scoglio Faraglione, a tiny Aeolian island (AeolianArchipelago, NE Sicily inhabited by a population of the critically endangered lacertid lizard Podarcis raffonei(Mertens, 1952, was censused at different seasons and the resulting data were then compared with dataobtained analysing prey composition and prey abundance in the diet of the lizards occurring on the same islet.The diet of Podarcis raffonei was mainly based on insects and other arthropods. The results indicate that dietcomposition is not directly influenced by prey availability and temporal prey abundance, and that there isstrong evidence indicating selective predation. Lizards prey upon a number of arthropod categories fewer thanthat recorded in field. Some invertebrate taxa (e.g. Diptera and Gastropoda are really less attractive for lizardsand are rarely preyed or not preyed at all despite their spatial and/or temporal abundance. This suggests thatPodarcis raffonei is able to operate a hierarchical choice within the range of prey items constituting its preyspectrum, probably through the ability to discriminate between prey chemicals or visually oriented predation.

  11. Behavioral responses of birds of prey to large scale energy development in southcentral Washington

    International Nuclear Information System (INIS)

    Fitzner, R.E.

    1985-02-01

    The types of raptorial and semi-raptorial birds that use the Hanford environs are discussed along with the impacts of past operations and the recent WPPSS project on their populations. These findings add to our understanding of the population dynamics of the birds of prey community at the Hanford Site and the expected impacts of the WPPSS energy facilities. The results may have implications toward other large scale energy facilities, and may aid us in management of bird of prey communities throughout the grasslands of the western United States. 110 refs., 5 figs., 4 tabs

  12. Turing-Hopf bifurcations in a predator-prey model with herd behavior, quadratic mortality and prey-taxis

    Science.gov (United States)

    Liu, Xia; Zhang, Tonghua; Meng, Xinzhu; Zhang, Tongqian

    2018-04-01

    In this paper, we propose a predator-prey model with herd behavior and prey-taxis. Then, we analyze the stability and bifurcation of the positive equilibrium of the model subject to the homogeneous Neumann boundary condition. By using an abstract bifurcation theory and taking prey-tactic sensitivity coefficient as the bifurcation parameter, we obtain a branch of stable nonconstant solutions bifurcating from the positive equilibrium. Our results show that prey-taxis can yield the occurrence of spatial patterns.

  13. CO2 Saline Storage Demonstration in Colorado Sedimentary Basins. Applied Studies in Reservoir Assessment and Dynamic Processes Affecting Industrial Operations

    Energy Technology Data Exchange (ETDEWEB)

    Nummedal, Dag [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Doran, Kevin [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Sitchler, Alexis [Trustees Of The Colorado School Of Mines, Golden, CO (United States); McCray, John [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Mouzakis, Katherine [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Glossner, Andy [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Mandernack, Kevin [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Gutierrez, Marte [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Pranter, Matthew [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Rybowiak, Chris [Trustees Of The Colorado School Of Mines, Golden, CO (United States)

    2012-09-30

    This multitask research project was conducted in anticipation of a possible future increase in industrial efforts at CO2 storage in Colorado sedimentary basins. Colorado is already the home to the oldest Rocky Mountain CO2 storage site, the Rangely Oil Field, where CO2-EOR has been underway since the 1980s. The Colorado Geological Survey has evaluated storage options statewide, and as part of the SW Carbon Sequestration Partnership the Survey, is deeply engaged in and committed to suitable underground CO2 storage. As a more sustainable energy industry is becoming a global priority, it is imperative to explore the range of technical options available to reduce emissions from fossil fuels. One such option is to store at least some emitted CO2 underground. In this NETL-sponsored CO2 sequestration project, the Colorado School of Mines and our partners at the University of Colorado have focused on a set of the major fundamental science and engineering issues surrounding geomechanics, mineralogy, geochemistry and reservoir architecture of possible CO2 storage sites (not limited to Colorado). Those are the central themes of this final report and reported below in Tasks 2, 3, 4, and 6. Closely related to these reservoir geoscience issues are also legal, environmental and public acceptance concerns about pore space accessibility—as a precondition for CO2 storage. These are addressed in Tasks 1, 5 and 7. Some debates about the future course of the energy industry can become acrimonius. It is true that the physics of combustion of hydrocarbons makes it impossible for fossil energy to attain a carbon footprint anywhere nearly as low as that of renewables. However, there are many offsetting benefits, not the least that fossil energy is still plentiful, it has a global and highly advanced distribution system in place, and the footprint that the fossil energy infrastructure occupies is

  14. Water Operations Technical Support Program. Proceedings: CE Workshop on Reservoir Releases Held in Atlanta, Georgia on 28-30 October 1986.

    Science.gov (United States)

    1987-07-01

    hydroturbine operating during periods when the main turbine is shut down. The paper will address Alternatives Considered the alternatives evaluated...oxygen and the aerating hydroturbine discharges. Techniques relatively high initial and operating costs. It which have been physically tested include small...was estimated that an operating system to increase pore diffusers, draft tube air aspiration, vacuum the DO in the discharge from both hydroturbines

  15. Evaluation of sediment management strategies on reservoir storage depletion rate: a case study

    NARCIS (Netherlands)

    Ali, M.; Sterk, G.

    2010-01-01

    Sedimentation aspects have a major role during the design of new reservoir projects because life of the reservoir mainly depends upon sediment handling during reservoir operation. Therefore, proper sediment management strategies should be adopted to enhance the life span of reservoirs. Basha

  16. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...... dispersion equation in modeling the transport and the deposition of reservoir fines. It successfully predicts the unsymmetrical concentration profiles and the hyperexponential deposition in experiments....

  17. Are all prey created equal? A review and synthesis of differential predation on prey in substandard condition

    Science.gov (United States)

    Mesa, Matthew G.; Poe, Thomas P.; Gadomski, Dena M.; Petersen, James H.

    1994-01-01

    Our understanding of predator-prey interactions in fishes has been influenced largely by research assuming that the condition of the participants is normal. However, fish populations today often reside in anthropogenically altered environments and are subjected to many kinds of stressors, which may reduce their ecological performance by adversely affecting their morphology, physiology, or behaviour. One consequence is that either the predator or prey, or both, may be in a substandard condition at the time of an interaction. We reviewed the literature on predator-prey interactions in fishes where substandard prey were used as experimental groups. Although most of this research indicates that such prey are significantly more vulnerable to predation, prey condition has rarely been considered in ecological theory regarding predator-prey interactions. The causal mechanisms for increased vulnerability of substandard prey to predation include a failure to detect predators, lapses in decision-making, poor fast-start performance, inability to shoal effectively, and increased prey conspicuousness. Despite some problems associated with empirical predator-prey studies using substandard prey, their results can have theoretical and applied uses, such as in ecological modelling or justification of corrective measures to be implemented in the wild. There is a need for more corroborative field experimentation, a better understanding of the causal mechanisms behind differential predation, and increased incorporation of prey condition into the research of predator-prey modellers and theoreticians. If the concept of prey condition is considered in predator-prey interactions, our understanding of how such interactions influence the structure and dynamics of fish communities is likely to change, which should prove beneficial to aquatic ecosystems.

  18. Reflection Phenomena in Underground Pumped Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    Elena Pummer

    2018-04-01

    Full Text Available Energy storage through hydropower leads to free surface water waves in the connected reservoirs. The reason for this is the movement of water between reservoirs at different elevations, which is necessary for electrical energy storage. Currently, the expansion of renewable energies requires the development of fast and flexible energy storage systems, of which classical pumped storage plants are the only technically proven and cost-effective technology and are the most used. Instead of classical pumped storage plants, where reservoirs are located on the surface, underground pumped storage plants with subsurface reservoirs could be an alternative. They are independent of topography and have a low surface area requirement. This can be a great advantage for energy storage expansion in case of environmental issues, residents’ concerns and an unusable terrain surface. However, the reservoirs of underground pumped storage plants differ in design from classical ones for stability and space reasons. The hydraulic design is essential to ensure their satisfactory hydraulic performance. The paper presents a hybrid model study, which is defined here as a combination of physical and numerical modelling to use the advantages and to compensate for the disadvantages of the respective methods. It shows the analysis of waves in ventilated underground reservoir systems with a great length to height ratio, considering new operational aspects from energy supply systems with a great percentage of renewable energies. The multifaceted and narrow design of the reservoirs leads to complex free surface flows; for example, undular and breaking bores arise. The results show excessive wave heights through wave reflections, caused by the impermeable reservoir boundaries. Hence, their knowledge is essential for a successful operational and constructive design of the reservoirs.

  19. Neuromuscular control of prey capture in frogs.

    OpenAIRE

    Nishikawa, K C

    1999-01-01

    While retaining a feeding apparatus that is surprisingly conservative morphologically, frogs as a group exhibit great variability in the biomechanics of tongue protraction during prey capture, which in turn is related to differences in neuromuscular control. In this paper, I address the following three questions. (1) How do frog tongues differ biomechanically? (2) What anatomical and physiological differences are responsible? (3) How is biomechanics related to mechanisms of neuromuscular cont...

  20. Molecular prey identification in Central European piscivores

    OpenAIRE

    Thalinger, Bettina; Oehm, Johannes; Mayr, Hannes; Obwexer, Armin; Zeisler, Christiane; Traugott, Michael

    2015-01-01

    Abstract Diet analysis is an important aspect when investigating the ecology of fish?eating animals and essential for assessing their functional role in food webs across aquatic and terrestrial ecosystems. The identification of fish remains in dietary samples, however, can be time?consuming and unsatisfying using conventional morphological analysis of prey remains. Here, we present a two?step multiplex PCR system, comprised of six assays, allowing for rapid, sensitive and specific detection o...

  1. Infomechanical specializations for prey capture in knifefish

    Science.gov (United States)

    Maciver, Malcolm; Patankar, Neelesh; Curet, Oscar; Shirgaonkar, Anup

    2007-11-01

    How does an animal's mechanics and its information acquisition system work together to solve crucial behavioral tasks? We examine this question for the black ghost weakly electric knifefish (Apteronotus albifrons), which is a leading model system for the study of sensory processing in vertebrates. These animals hunt at night by detecting perturbations of a self-generated electric field caused by prey. While the fish searches for prey, it pitches at 30 . Fully resolved Navier-Stokes simulations of their swimming, which occurs through undulations of a long ribbon-like fin along the bottom edge of the body, indicates that this configuration enables maximal thrust while minimizing pitch moment. However, pitching the body also increases drag. Our analysis of the sensory volume for detection of prey shows this volume to be similar to a cylinder around the body. Thus, pitching the body enables a greater swept volume of scanned fluid. Examining the mechanical and information acquisition demands on the animal in this task gives insight into how these sometimes conflicting demands are resolved.

  2. Reservoir Engineering Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.; Schwarz, W.J.

    1977-12-14

    The Reservoir Engineering Management Program being conducted at Lawrence Berkeley Laboratory includes two major tasks: 1) the continuation of support to geothermal reservoir engineering related work, started under the NSF-RANN program and transferred to ERDA at the time of its formation; 2) the development and subsequent implementation of a broad plan for support of research in topics related to the exploitation of geothermal reservoirs. This plan is now known as the GREMP plan. Both the NSF-RANN legacies and GREMP are in direct support of the DOE/DGE mission in general and the goals of the Resource and Technology/Resource Exploitation and Assessment Branch in particular. These goals are to determine the magnitude and distribution of geothermal resources and reduce risk in their exploitation through improved understanding of generically different reservoir types. These goals are to be accomplished by: 1) the creation of a large data base about geothermal reservoirs, 2) improved tools and methods for gathering data on geothermal reservoirs, and 3) modeling of reservoirs and utilization options. The NSF legacies are more research and training oriented, and the GREMP is geared primarily to the practical development of the geothermal reservoirs. 2 tabs., 3 figs.

  3. Prey-predator dynamics with prey refuge providing additional food to predator

    International Nuclear Information System (INIS)

    Ghosh, Joydev; Sahoo, Banshidhar; Poria, Swarup

    2017-01-01

    Highlights: • The effects of interplay between prey refugia and additional food are reported. • Hopf bifurcation conditions are derived analytically. • Existence of unique limit cycle is shown analytically. • Predator extinction may be possible at very high prey refuge ecological systems. - Abstract: The impacts of additional food for predator on the dynamics of a prey-predator model with prey refuge are investigated. The equilibrium points and their stability behaviours are determined. Hopf bifurcation conditions are derived analytically. Most significantly, existence conditions for unique stable limit cycle in the phase plane are shown analytically. The analytical results are in well agreement with the numerical simulation results. Effects of variation of refuge level as well as the variation of quality and quantity of additional food on the dynamics are reported with the help of bifurcation diagrams. It is found that high quality and high quantity of additional food supports oscillatory coexistence of species. It is observed that predator extinction possibility in high prey refuge ecological systems may be removed by supplying additional food to predator population. The reported theoretical results may be useful to conservation biologist for species conservation in real world ecological systems.

  4. Prey preferences and prey acceptance in juvenile Brown Treesnakes (Boiga irregularis)

    Science.gov (United States)

    Lardner, Bjorn; Savidge, Julie A.; Rodda, Gordon H.; Reed, Robert N.

    2009-01-01

    On the Pacific island of Guam, control of the invasive Brown Treesnake (Boiga irregularis) relies largely on methods that use mice as bait. Juvenile B. irregularis feed primarily on lizards and their eggs, but little is known about their prey preference. We conducted an experiment to investigate preferences for, and acceptance of, dead geckos, skinks, and neonatal mice, in juvenile B. irregularis ranging from 290 mm to ca. 700 mm snout-vent length (SVL). Snakes of all sizes showed a preference for geckos over skinks and neonatal mice. Geckos were the first prey chosen in 87% of 224 initial trials (56 snakes subjected to four trials each; 33% would be expected from a random choice). The smallest snakes had the most pronounced preference. Although many of the snakes accepted neonatal mice and/or skinks, some snakes of all sizes were reluctant to feed on anything but geckos, especially when well fed. We also addressed the hypothesis that repeated encounters with a particular prey type increase a snake's preference for that prey. Our study does not support this hypothesis. Our results suggest that control methods relying solely on rodent bait may be inefficient for targeting snakes < 700 mm SVL and that individual heterogeneity in prey preference may cause a significant part of this juvenile cohort to be completely refractory to capture with rodent bait, even if the bait is dead and small enough to be readily swallowed.

  5. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1983-1987 Methods and Data Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Ian

    1989-12-01

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin. The authorized purpose of the dam is to provide power, flood control, and navigation and other benefits. Research began in May 1983 to determine how operations of Libby dam impact the reservoir fishery and to suggest ways to lessen these impacts. This study is unique in that it was designed to accomplish its goal through detailed information gathering on every trophic level in the reservoir system and integration of this information into a quantitative computer model. The specific study objectives are to: quantify available reservoir habitat, determine abundance, growth and distribution of fish within the reservoir and potential recruitment of salmonids from Libby Reservoir tributaries within the United States, determine abundance and availability of food organisms for fish in the reservoir, quantify fish use of available food items, develop relationships between reservoir drawdown and reservoir habitat for fish and fish food organisms, and estimate impacts of reservoir operation on the reservoir fishery. 115 refs., 22 figs., 51 tabs.

  6. Reservoir Greenhouse Gas Emissions at Russian HPP

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V. [St. Petersburg State Polytechnic University (Russian Federation); Savvichev, A. S. [Russian Academy of Sciences, S. N. Vinogradskii Institute of Microbiology (Russian Federation); Zinchenko, A. V. [A. I. Voeikov Main Geophysical Observatory (Russian Federation)

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  7. SOHO hunts elusive solar prey

    Science.gov (United States)

    1995-10-01

    SOHO will carry twelve sophisticated telescopes and other instruments, developed in record time by twelve international consortia involving scientific institutes in 15 countries. Roger M. Bonnet, the Director of ESA’s Scientific Programme said: "Each one of these instruments by itself would be enough to make major breakthroughs in our understanding of the Sun. But what makes SOHO such an exciting mission is that we will operate all the instruments together and find possible links between various phenomena at different levels in the volume of the Sun and in the interplanetary medium". Four years of intense efforts by space engineering teams in ESA and across Europe, under the leadership of the prime contractor Matra Marconi Space of Toulouse, France, have fulflled the dream of scientists who wished to build a superb space observatory for examining the Sun. SOHO, together with the four-spacecraft Cluster mission - which will explore near-Earth space, forms the Solar-Terrestrial Science Programme, the first cornerstone in ESA’s long-term programme 'Horizon 2000'. No night time for SOHO Instead of being placed in orbit around the Earth, SOHO will be lofted to a position where the gravitational pulls of the Earth and the Sun cancel each other out exactly, at 1.5 million kilometres sunward from the Earth. This is known in astronomy as the inner Lagrangian point after the French mathematician, Joseph Louis Lagrange, who first calculated its position near the end of the eighteenth century. SOHO will fly in an elliptical, or "halo" orbit around the Lagrangian point, with an orbit radius of about 600,000 kilometres, allowing the spacecraft to experience perpetual day. It will have a continuous, uninterrupted view of the Sun for twenty four hours of the day, all three hundred and sixty five days of the year, producing an extraordinary amount of data. All previous solar observatories have either been on the Earth or in orbit around our planet. On the Earth, telescopes are

  8. Review of the hydraulic behavior of Iguacu River in the region of Uniao da Vitoria and its impacts on operation of the Foz do Areia and Segredo reservoirs; Revisao do comportamento hidraulico do Rio Iguacu na regiao de Uniao da Vitoria e seu impacto na operacao hidraulica dos reservatorios de Foz do Areia e Segredo

    Energy Technology Data Exchange (ETDEWEB)

    Castanharo, Giancarlo; Buba, Homero [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil)]. E-mails: giancarlo.castanharo@copel.com; homero@copel.com

    2008-04-15

    The Foz do Areia reservoir, under certain combinations of events, may influence flood levels in the cities of Uniao da Vitoria and Porto Uniao, located upstream. To avoid this phenomenon constitutes the main purpose of the hydraulic operation of the Foz do Areia and Segredo reservoirs, after dams safety. To satisfy these objectives, first have to correctly quantify these effects by means of studying the hydraulic behavior of the river reach between the cities and the Foz do Areia reservoir. A description of the recent version of these studies is shown, which demanded significant efforts in modeling and obtaining topographical and hydrological data. A more critical scenery has resulted as compared to former studies, emphasizing the importance of the methods and parameters for the hydraulic operation proposed in this paper. (author)

  9. Sediment management for reservoir

    International Nuclear Information System (INIS)

    Rahman, A.

    2005-01-01

    All natural lakes and reservoirs whether on rivers, tributaries or off channel storages are doomed to be sited up. Pakistan has two major reservoirs of Tarbela and Managla and shallow lake created by Chashma Barrage. Tarbela and Mangla Lakes are losing their capacities ever since first impounding, Tarbela since 1974 and Mangla since 1967. Tarbela Reservoir receives average annual flow of about 62 MAF and sediment deposits of 0.11 MAF whereas Mangla gets about 23 MAF of average annual flows and is losing its storage at the rate of average 34,000 MAF annually. The loss of storage is a great concern and studies for Tarbela were carried out by TAMS and Wallingford to sustain its capacity whereas no study has been done for Mangla as yet except as part of study for Raised Mangla, which is only desk work. Delta of Tarbala reservoir has advanced to about 6.59 miles (Pivot Point) from power intakes. In case of liquefaction of delta by tremor as low as 0.12g peak ground acceleration the power tunnels I, 2 and 3 will be blocked. Minimum Pool of reservoir is being raised so as to check the advance of delta. Mangla delta will follow the trend of Tarbela. Tarbela has vast amount of data as reservoir is surveyed every year, whereas Mangla Reservoir survey was done at five-year interval, which has now been proposed .to be reduced to three-year interval. In addition suspended sediment sampling of inflow streams is being done by Surface Water Hydrology Project of WAPDA as also some bed load sampling. The problem of Chasma Reservoir has also been highlighted, as it is being indiscriminately being filled up and drawdown several times a year without regard to its reaction to this treatment. The Sediment Management of these reservoirs is essential and the paper discusses pros and cons of various alternatives. (author)

  10. FEASIBILITY STUDY OF SEDIMENT FLUSHING FROM MOSUL RESERVOIR, IRAQ

    Directory of Open Access Journals (Sweden)

    Thair Mahmood Al-Taiee

    2015-02-01

    Full Text Available The Feasibility of sediment flushing  from Mosul reservoir located northern iraq was conducted. Many up to date world criteria and indices for checking the efficiency of sediment flushing from reservoir which have been got through analyzing large amount of  data from many flushed reservoirs  in the world which were depended tested and applied in the present case study (Mosul Reservoir. These criteria and indices depend mainly on the hydrological , hydraulic and  topographical properties of the reservoirs in-addition to the operation plan of the reservoirs. They gave a good indication for checking the efficiency of the sediment flushing  process in the reservoirs. It was concluded that approximately the main criteria for the successful flushing sediment was  verified  in  Mosul  reservoir  such as  Sediment Balance Ratio   (SBR and the Long Term Capacity Ratio (LTCR,the shape factor  of reservoir (W/L and the hydraulic condition such as the percentage of (Qf/Qin and (Vf/Vin. This gave an indication that the processes of flushing sediment in Mosul reservoir is probably feasible and may be applied  in the future to maintain the water storage in the reservoir.

  11. Prey selectivity affects reproductive success of a corallivorous reef fish.

    Science.gov (United States)

    Brooker, Rohan M; Jones, Geoffrey P; Munday, Philip L

    2013-06-01

    Most animals consume a narrower range of food resources than is potentially available in the environment, but the underlying basis for these preferences is often poorly understood. Foraging theory predicts that prey selection should represent a trade-off between prey preferences based on nutritional value and prey availability. That is, species should consume preferred prey when available, but select less preferred prey when preferred prey is rare. We employed both field observation and laboratory experiments to examine the relationship between prey selection and preferences in the obligate coral-feeding filefish, Oxymonacanthus longirostris. To determine the drivers of prey selection, we experimentally established prey preferences in choice arenas and tested the consequences of prey preferences for key fitness-related parameters. Field studies showed that individuals fed almost exclusively on live corals from the genus Acropora. While diet was dominated by the most abundant species, Acropora nobilis, fish appeared to preferentially select rarer acroporids, such as A. millepora and A. hyacinthus. Prey choice experiments confirmed strong preferences for these corals, suggesting that field consumption is constrained by availability. In a longer-term feeding experiment, reproductive pairs fed on non-preferred corals exhibited dramatic reductions to body weight, and in hepatic and gonad condition, compared with those fed preferred corals. The majority of pairs fed preferred corals spawned frequently, while no spawning was observed for any pairs fed a non-preferred species of coral. These experiments suggest that fish distinguish between available corals based on their intrinsic value as prey, that reproductive success is dependent on the presence of particular coral species, and that differential loss of preferred corals could have serious consequences for the population success of these dietary specialists.

  12. Prey Selection of Scandinavian Wolves: Single Large or Several Small?

    Directory of Open Access Journals (Sweden)

    Håkan Sand

    Full Text Available Research on large predator-prey interactions are often limited to the predators' primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces and one small-sized ungulate; roe deer (Capreolus capreolus. Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves' choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population.

  13. Prey Selection of Scandinavian Wolves: Single Large or Several Small?

    Science.gov (United States)

    Eklund, Ann; Zimmermann, Barbara; Wikenros, Camilla; Wabakken, Petter

    2016-01-01

    Research on large predator-prey interactions are often limited to the predators’ primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves’ choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population. PMID:28030549

  14. Prey Selection of Scandinavian Wolves: Single Large or Several Small?

    Science.gov (United States)

    Sand, Håkan; Eklund, Ann; Zimmermann, Barbara; Wikenros, Camilla; Wabakken, Petter

    2016-01-01

    Research on large predator-prey interactions are often limited to the predators' primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves' choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population.

  15. Molecular prey identification in Central European piscivores.

    Science.gov (United States)

    Thalinger, Bettina; Oehm, Johannes; Mayr, Hannes; Obwexer, Armin; Zeisler, Christiane; Traugott, Michael

    2016-01-01

    Diet analysis is an important aspect when investigating the ecology of fish-eating animals and essential for assessing their functional role in food webs across aquatic and terrestrial ecosystems. The identification of fish remains in dietary samples, however, can be time-consuming and unsatisfying using conventional morphological analysis of prey remains. Here, we present a two-step multiplex PCR system, comprised of six assays, allowing for rapid, sensitive and specific detection of fish DNA in dietary samples. This approach encompasses 78 fish and lamprey species native to Central European freshwaters and enables the identification of 31 species, six genera, two families, two orders and two fish family clusters. All targeted taxa were successfully amplified from 25 template molecules, and each assay was specific when tested against a wide range of invertebrates and vertebrates inhabiting aquatic environments. The applicability of the multiplex PCR system was evaluated in a feeding trial, wherein it outperformed morphological prey analysis regarding species-specific prey identification in faeces of Eurasian otters. Additionally, a wide spectrum of fish species was detected in field-collected faecal samples and regurgitated pellets of Common Kingfishers and Great Cormorants, demonstrating the broad applicability of the approach. In conclusion, this multiplex PCR system provides an efficient, easy to use and cost-effective tool for assessing the trophic ecology of piscivores in Central Europe. Furthermore, the multiplex PCRs and the primers described therein will be applicable wherever DNA of the targeted fish species needs to be detected at high sensitivity and specificity. © 2015 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  16. Limit Cycles in Predator-Prey Models

    OpenAIRE

    Puchuri Medina, Liliana

    2017-01-01

    The classic Lotka-Volterra model belongs to a family of differential equations known as “Generalized Lotka-Volterra”, which is part of a classification of four models of quadratic fields with center. These models have been studied to address the Hilbert infinitesimal problem, which consists in determine the number of limit cycles of a perturbed hamiltonian system with center. In this work, we first present an alternative proof of the existence of centers in Lotka-Volterra predator-prey models...

  17. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.

    1995-02-01

    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  18. Assassin bug uses aggressive mimicry to lure spider prey.

    Science.gov (United States)

    Wignall, Anne E; Taylor, Phillip W

    2011-05-07

    Assassin bugs (Stenolemus bituberus) hunt web-building spiders by invading the web and plucking the silk to generate vibrations that lure the resident spider into striking range. To test whether vibrations generated by bugs aggressively mimic the vibrations generated by insect prey, we compared the responses of spiders to bugs with how they responded to prey, courting male spiders and leaves falling into the web. We also analysed the associated vibrations. Similar spider orientation and approach behaviours were observed in response to vibrations from bugs and prey, whereas different behaviours were observed in response to vibrations from male spiders and leaves. Peak frequency and duration of vibrations generated by bugs were similar to those generated by prey and courting males. Further, vibrations from bugs had a temporal structure and amplitude that were similar to vibrations generated by leg and body movements of prey and distinctly different to vibrations from courting males or leaves, or prey beating their wings. To be an effective predator, bugs do not need to mimic the full range of prey vibrations. Instead bugs are general mimics of a subset of prey vibrations that fall within the range of vibrations classified by spiders as 'prey'.

  19. Behavior of prey links midwater and demersal piscivorous reef fishes

    Directory of Open Access Journals (Sweden)

    Peter J. Auster

    Full Text Available Pelagic and demersal guilds of piscivorous fishes are linked by a variety of biological and physical processes that mediate interactions with common prey species. Understanding the behaviors of predators and prey can provide insight into the conditions that make such linkages possible. Here we report on the behaviors of mid-water piscivorous fishes and the responses of prey that produce feeding opportunities for demersal piscivorous fishes associated with "live bottom" ledge habitats off the coast of Georgia (northwest Atlantic Ocean. Prey taxa reduced nearest neighbor distances and retreated towards the seafloor during predatory attacks by mid-water fishes. Demersal fishes subsequently attacked and consumed prey in these ephemeral high density patches. No predation by demersal fishes was observed when prey species were at background densities. If the predator-prey interactions of demersal piscivorous fishes are commonly mediated by the predatory behavior of midwater piscivorous fishes and their prey, such indirect facilitative behaviors may be important in terms of the population processes (e.g., prey consumption and growth rates of these demersal fishes.

  20. Rapid prey evolution can alter the structure of predator-prey communities

    NARCIS (Netherlands)

    Friman, V. -P.; Jousset, A.; Buckling, A.

    Although microevolution has been shown to play an important role in pairwise antagonistic species interactions, its importance in more complex communities has received little attention. Here, we used two Pseudomonas fluorescens prey bacterial strains (SBW25 and F113) and Tetrahymena thermophila

  1. Coexistence for an Almost Periodic Predator-Prey Model with Intermittent Predation Driven by Discontinuous Prey Dispersal

    Directory of Open Access Journals (Sweden)

    Yantao Luo

    2017-01-01

    Full Text Available An almost periodic predator-prey model with intermittent predation and prey discontinuous dispersal is studied in this paper, which differs from the classical continuous and impulsive dispersal predator-prey models. The intermittent predation behavior of the predator species only happens in the channels between two patches where the discontinuous migration movement of the prey species occurs. Using analytic approaches and comparison theorems of the impulsive differential equations, sufficient criteria on the boundedness, permanence, and coexistence for this system are established. Finally, numerical simulations demonstrate that, for an intermittent predator-prey model, both the intermittent predation and intrinsic growth rates of the prey and predator species can greatly impact the permanence, extinction, and coexistence of the population.

  2. Interactions between striped bass and other gamefish in reservoirs

    Science.gov (United States)

    Miranda, Leandro E.; Raborn, Scott W.

    2013-01-01

    Competitive interactions among reservoir fishes may be pronounced because fish assemblages in these artificial environments have had little time to develop niche-partitioning strategies that alleviate negative interspecific interactions. Such interactions may at times have been intensified by introductions of predators such as striped bass Morone saxatilis, introduced to create additional fisheries and control pelagic clupeids. Possible interactions between existing fish assemblages and striped bass include predation and competition. While there is a perception among angler groups that predation by striped bass on co-existing game fish is significant, most studies have reported little or no predation on game fish my striped bass and have considered predation rare and inconsequential. Moreover, predation that occurs will likely be compensatory and fail to reduce overall game fish survival. Any indirect effect of striped bass predation by restricting prey-sized game fish to limited refuge sites remains unknown. Exploitative competition may be more common. Although infrequently, introduced striped bass have depleted prey resources shared with other piscivores, particularly when stocking rates have been high, when there is a high rate of natural reproduction, or when prey supply has plunged in response to environmental fluxes. Fluctuation in prey supply, associated with ordinary environmental variability, and associated time lages in prey supply and predator demand, preclude adjusting predator densities to exactly balance demand with supply. The frequency of low supply-demand rations varies across systems and exhibits seasonal trends. Nevertheless, chronic supply-demand imbalances are manageable where the predator assemblage is at least partially controlled through stocking, harvest regulations, or both. Because of the poor state of knowledge concerning the parameters defining balance and because uncontrollable annual fluctuations preclude exact management of

  3. The Coevolution of "Tyrannosaurus" & Its Prey: Could "Tyrannosaurus" Chase down & Kill a "Triceratops" for Lunch?

    Science.gov (United States)

    May, S. Randolph

    2014-01-01

    Students will analyze the coevolution of the predator-prey relationships between "Tyrannosaurus rex" and its prey species using analyses of animal speeds from fossilized trackways, prey-animal armaments, adaptive behaviors, bite marks on prey-animal fossils, predator-prey ratios, and scavenger competition. The students will be asked to…

  4. Diet choice of a predator in the wild: overabundance of prey and missed opportunities along the prey capture sequence

    OpenAIRE

    Brechbühl, Rolf; Casas, Jérôme; Bacher, Sven

    2012-01-01

    Optimal diet theory (ODT) postulates that predators adjust their foraging decisions by calculating a prey value from the potential biomass gain, handling time, prey vulnerability and encounter rate. Tests of ODT have however so far mainly been restricted to laboratory settings. By video surveillance, we gathered a large data set of more than 2000 field observations of crab spider (Misumena vatia) encounters with potential prey. We then tested whether the complex ODT or two simpler models (pre...

  5. Water in chalk reservoirs: 'friend or foe?'

    International Nuclear Information System (INIS)

    Hjuler, Morten Leth

    2004-01-01

    Most of the petroleum fields in the Norwegian sector of the North Sea are sandstone reservoirs; the oil and gas are trapped in different species of sandstone. But the Ekofisk Field is a chalk reservoir, which really challenges the operator companies. When oil is produced from chalk reservoirs, water usually gets in and the reservoir subsides. The subsidence may be expensive for the oil companies or be used to advantage by increasing the recovery rate. Since 60 per cent of the world's petroleum reserves are located in carbonate reservoirs, it is important to understand what happens as oil and gas are pumped out. Comprehensive studies at the Department of Petroleum Technology and Applied Geophysics at Stavanger University College in Norway show that the mechanical properties of chalk are considerably altered when the pores in the rock become saturated with oil/gas or water under different stress conditions. The processes are extremely complex. The article also maintains that the effects of injecting carbon dioxide from gas power plants into petroleum reservoirs should be carefully studied before this is done extensively

  6. Geophysical monitoring in a hydrocarbon reservoir

    Science.gov (United States)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  7. Feeding rates in the chaetognath Sagitta elegans : effects of prey size, prey swimming behaviour and small-scale turbulence

    DEFF Research Database (Denmark)

    Saito, H.; Kiørboe, Thomas

    2001-01-01

    distances. We develop a simple prey encounter rate model by describing the swimming prey as a 'force dipole' and assuming that a critical signal strength is required to elicit an attack. By fitting the model to the observations, a critical signal strength of 10(-2) cm s(-1) is estimated; this is very...... at rates up to an order of magnitude higher than similarly sized females, probably owing to differences in swimming behaviour. Sagitta elegans is an ambush predator that perceives its prey by hydromechanical signals. Faster swimming prey generates stronger signals and is, hence, perceived at longer...

  8. Evaluating prey switching in wolf-ungulate systems.

    Science.gov (United States)

    Garrott, Robert A; Bruggeman, Jason E; Becker, Matthew S; Kalinowski, Steven T; White, P J

    2007-09-01

    Wolf restoration has become a widely accepted conservation and management practice throughout North America and Europe, though the ecosystem effects of returning top carnivores remain both scientific and societal controversies. Mathematical models predicting and describing wolf-ungulate interactions are typically limited to the wolves' primary prey, with the potential for prey switching in wolf-multiple-ungulate systems only suggested or assumed by a number of investigators. We used insights gained from experiments on small taxa and field data from ongoing wolf-ungulate studies to construct a model of predator diet composition for a wolf-elk-bison system in Yellowstone National Park, Wyoming, USA. The model explicitly incorporates differential vulnerability of the ungulate prey types to predation, predator preference, differences in prey biomass, and the possibility of prey switching. Our model demonstrates wolf diet shifts with changes in relative abundance of the two prey, with the dynamics of this shift dependent on the combined influences of preference, differential vulnerability, relative abundances of prey, and whether or not switching occurs. Differences in vulnerability between elk and bison, and strong wolf preference for elk, result in an abrupt dietary shift occurring only when elk are very rare relative to bison, whereas incorporating switching initiates the dietary shift more gradually and at higher bison-elk ratios. We demonstrate how researchers can apply these equations in newly restored wolf-two-prey systems to empirically evaluate whether prey switching is occurring. Each coefficient in the model has a biological interpretation, and most can be directly estimated from empirical data collected from field studies. Given the potential for switching to dramatically influence predator-prey dynamics and the wide range of expected prey types and abundances in some systems where wolves are present and/or being restored, we suggest that this is an

  9. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, Roy; Clarke, Don; Walker, Scott

    1999-11-09

    The objectives of this quarterly report was to summarize the work conducted under each task during the reporting period April - June 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  10. The role of rainfall variability in reservoir storage management at ...

    African Journals Online (AJOL)

    Reservoir operation and management is usually patterned after the background of long standing water resources management experience. Reservoir management for optimum power production at any hydropower station requires constant assessment of the quantity of available water. The hydrographic responses of flow ...

  11. A New Method for Fracturing Wells Reservoir Evaluation in Fractured Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2014-01-01

    Full Text Available Natural fracture is a geological phenomenon widely distributed in tight formation, and fractured gas reservoir stimulation effect mainly depends on the communication of natural fractures. Therefore it is necessary to carry out the evaluation of this reservoir and to find out the optimal natural fractures development wells. By analyzing the interactions and nonlinear relationships of the parameters, it establishes three-level index system of reservoir evaluation and proposes a new method for gas well reservoir evaluation model in fractured gas reservoir on the basis of fuzzy logic theory and multilevel gray correlation. For this method, the Gaussian membership functions to quantify the degree of every factor in the decision-making system and the multilevel gray relation to determine the weight of each parameter on stimulation effect. Finally through fuzzy arithmetic operator between multilevel weights and fuzzy evaluation matrix, score, rank, the reservoir quality, and predicted production will be gotten. Result of this new method shows that the evaluation of the production coincidence rate reaches 80%, which provides a new way for fractured gas reservoir evaluation.

  12. Simulation of Reservoir Sediment Flushing of the Three Gorges Reservoir Using an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Xueying Li

    2016-05-01

    Full Text Available Reservoir sedimentation and its effect on the environment are the most serious world-wide problems in water resources development and utilization today. As one of the largest water conservancy projects, the Three Gorges Reservoir (TGR has been controversial since its demonstration period, and sedimentation is the major concern. Due to the complex physical mechanisms of water and sediment transport, this study adopts the Error Back Propagation Training Artificial Neural Network (BP-ANN to analyze the relationship between the sediment flushing efficiency of the TGR and its influencing factors. The factors are determined by the analysis on 1D unsteady flow and sediment mathematical model, mainly including reservoir inflow, incoming sediment concentration, reservoir water level, and reservoir release. Considering the distinguishing features of reservoir sediment delivery in different seasons, the monthly average data from 2003, when the TGR was put into operation, to 2011 are used to train, validate, and test the BP-ANN model. The results indicate that, although the sample space is quite limited, the whole sediment delivery process can be schematized by the established BP-ANN model, which can be used to help sediment flushing and thus decrease the reservoir sedimentation.

  13. Red fox prey demands and implications to prairie duck production

    Science.gov (United States)

    Sargeant, A.B.

    1978-01-01

    Experiments were conducted during spring and summer with 33 red foxes (Vulpes vulpes) to determine prey demands, feeding characteristics, and growth rates using natural foods. Pups began eating prey the 4th week after birth. Then, prey consumption averaged 1.38 and 1.90 kg/pup/week for weeks 5-8 and 9-12 of the denning season respectively, and 2.54 kg/pup/week for the postdenning period. Feeding by adults averaged 2.25 kg/adult/week. Free water was not needed by either pups or adults. About 90 percent of the prey offered to pups on simulated natural diets was consumed, remains varied with prey availability and prey type. Prey biomass required by a typical fox family was estimated at 18.5 kg/km2 for the 12-week denning season and 2.4 kg/km2/week for the postdenning period. Because of the large prey demands, ducks could represent a small part of the foxes' diet and yet be of consequence to the productivity of particular species. An example is provided for the mallard (Anas platyrhynchos).

  14. Determination of carnivores prey base by scat analysis in Samburu ...

    African Journals Online (AJOL)

    Administrator

    This study determined the prey base for four main carnivores found in Samburu community group ranches and ... a result of the hydrolysis of protein that acts as cement for the keratin ... prey component between predator species that may be attributed to ... causing ever-closer interaction between humans and wildlife. This is ...

  15. Stationary Patterns in One-Predator Two-Prey Models

    DEFF Research Database (Denmark)

    Pedersen, Michael; Zhigui, Lin

    1999-01-01

    Weakly-coupled elliptic system decribing models of simple three-species food webs such as the one-predator, two-prey modelis discussed. We show thatthere is no non-constant solution if diffusions or inter-specific competitions are strong, or if the intrinsic growths of the prey are slow...

  16. Stationary Patterns in One-Predator Two-Prey Models

    DEFF Research Database (Denmark)

    Pedersen, Michael; Zhigui, Lin

    1999-01-01

    Weakly-coupled elliptic system decribing models of simple three-species food webs such as the one-predator, two-prey model is discussed. We show that there is no non-constant solution if diffusions or inter-specific competitions are strong, or if the intrinsic growths of the prey are slow...

  17. Production of live prey for marine fish larvae

    OpenAIRE

    Kraul, S

    1989-01-01

    Tropical marine fish larvae vary in their requirements for live planktonic food. Selection of live prey species for culture depends on larval size and larval tolerance of water quality. This report describes some of the cultured prey species, and their uses and limits as effective food for fish larvae. Methods are presented for the culture of phytoplankton, rotifers, copepods, and other live feeds.

  18. Behavioral response races, predator-prey shell games, ecology of fear, and patch use of pumas and their ungulate prey.

    Science.gov (United States)

    Laundré, John W

    2010-10-01

    The predator-prey shell game predicts random movement of prey across the landscape, whereas the behavioral response race and landscape of fear models predict that there should be a negative relationship between the spatial distribution of a predator and its behaviorally active prey. Additionally, prey have imperfect information on the whereabouts of their predator, which the predator should incorporate in its patch use strategy. I used a one-predator-one-prey system, puma (Puma concolor)-mule deer (Odocoileus hemionus) to test the following predictions regarding predator-prey distribution and patch use by the predator. (1) Pumas will spend more time in high prey risk/low prey use habitat types, while deer will spend their time in low-risk habitats. Pumas should (2) select large forage patches more often, (3) remain in large patches longer, and (4) revisit individual large patches more often than individual smaller ones. I tested these predictions with an extensive telemetry data set collected over 16 years in a study area of patchy forested habitat. When active, pumas spent significantly less time in open areas of low intrinsic predation risk than did deer. Pumas used large patches more than expected, revisited individual large patches significantly more often than smaller ones, and stayed significantly longer in larger patches than in smaller ones. The results supported the prediction of a negative relationship in the spatial distribution of a predator and its prey and indicated that the predator is incorporating the prey's imperfect information about its presence. These results indicate a behavioral complexity on the landscape scale that can have far-reaching impacts on predator-prey interactions.

  19. Physical Model-Based Investigation of Reservoir Sedimentation Processes

    Directory of Open Access Journals (Sweden)

    Cheng-Chia Huang

    2018-03-01

    Full Text Available Sedimentation is a serious problem in the operations of reservoirs. In Taiwan, the situation became worse after the Chi-Chi Earthquake recorded on 21 September 1999. The sediment trap efficiency in several regional reservoirs has been sharply increased, adversely affecting the operations on water supplies. According to the field record, the average annual sediment deposition observed in several regional reservoirs in Taiwan has been increased. For instance, the typhoon event recorded in 2008 at the Wushe Reservoir, Taiwan, produced a 3 m sediment deposit upstream of the dam. The remaining storage capacity in the Wushe Reservoir was reduced to 35.9% or a volume of 53.79 million m3 for flood water detention in 2010. It is urgent that research should be conducted to understand the sediment movement in the Wushe Reservoir. In this study, a scale physical model was built to reproduce the flood flow through the reservoir, investigate the long-term depositional pattern, and evaluate sediment trap efficiency. This allows us to estimate the residual life of the reservoir by proposing a modification of Brune’s method. It can be presented to predict the lifespan of Taiwan reservoirs due to higher applicability in both the physical model and the observed data.

  20. Mrica Reservoir Sedimentation: Current Situation and Future Necessary Management

    Directory of Open Access Journals (Sweden)

    Puji Utomo

    2017-09-01

    Full Text Available Mrica Reservoir is one of many reservoirs located in Central Java that experienced a considerably high sedimentation during the last ten years. This condition has caused a rapid decrease in reservoir capacity. Various countermeasures have been introduced to reduce the rate of the reservoir sedimentation through catchment management and reservoir operation by means of flushing and/or dredging. However, the sedimentation remains intensive so that the fulfillment of water demand for electrical power generation was seriously affected. This paper presents the results of evaluation on the dynamics of the purpose of this research is to evaluate the sediment balance of the Mrica Reservoir based on two different scenarios, i.e. the existing condition and another certain type of reservoir management. The study on sediment balance was carried out by estimating the sediment inflow applying sheet erosion method in combination with the analysis of sediment rating curve. The measurement of the deposited sediment rate in the reservoir was conducted through the periodic echo sounding, whereas identification of the number of sediment that has been released from the reservoir was carried out through the observation on both flushing and dredging activities. The results show that during the last decade, the rate of the sediment inflow was approximately 5.869 MCM/year, whereas the released sediment from the reservoir was 4.097 MCM/year. In order to maintain the reservoir capacity, therefore, at least 1.772 MCM/year should be released from the reservoir by means of either flushing or dredging. Sedimentation management may prolong the reservoir’s service life to exceed the design life. Without sediment management, the lifetime of the reservoir would have finished by 2016, whereas with the proper management the lifetime may be extended to 2025.

  1. Feeding, prey selection and prey encounter mechanisms in the heterotrophic dinoflagellate Noctiluca scintillans

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Titelman, J.

    1998-01-01

    /or that microscale shear brings it into contact with prey. Noctiluca scintillans has a specific carbon content 1-2 orders of magnitude less than that typical for protists and, thus, an inflated volume. It also has a density slightly less than that of the ambient water and therefore ascends at high velocities...... (similar to 1 m h(- 1)). In stagnant water, clearance rates of latex spheres (5-80 mu m) increased approximately with prey particle size squared. This scaling is consistent with N.scintillans being an interception feeder. However, absolute clearance rates were substantially lower than those predicted...... higher rates than latex beads and other phytoplankters, particularly dinoflagellates. We propose that diatoms stick more efficiently than latex beads to the mucus of N.scintillans and that dinoflagellates reduce fatal contact behaviorally. We conclude that N.scintillans is an interception feeder...

  2. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  3. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  4. Functional responses of human hunters to their prey - why harvest statistics may not always reflect changes in prey population abundance

    DEFF Research Database (Denmark)

    Kahlert, Johnny Abildgaard; Fox, Anthony David; Heldbjerg, Henning

    pigeon Columba palumbus, coot Fulica atra, grey partridge Perdix perdix, roe deer Capreolus capreolus and brown hare Lepus europaeus in Denmark. If we consider hunting a form of predator-prey interaction, the annual kill can be viewed as a predator functional response to prey population size. Convergence...

  5. Harvesting policy for a delayed stage-structured Holling II predator-prey model with impulsive stocking prey

    International Nuclear Information System (INIS)

    Jiao Jianjun; Meng Xinzhu; Chen Lansun

    2009-01-01

    A predator-prey model with a stage structure for the predator, which improves the assumption that each individual predator has the same ability to capture prey, is proposed by Wang et al. [Wang W, Mulone G, Salemi F, Salone V. Permanence and stability of a stage-structured predator-prey model. J Math Anal Appl 2001;262:499-528]. It is assumed that immature individuals and mature individuals of the predator are divided by a fixed age and that immature predators do not have the ability to attack prey. We do economic management behavior for Wang model [Wang et al., 2001] by continuous harvesting on predator and impulsive stocking on prey. Then, a delayed stage-structured Holling type II predator-prey model with impulsive stocking prey and continuous harvesting predator is established. It is also assumed that the predating products of the predator is only to increase its bearing ability. We obtain the sufficient conditions of the global attractivity of predator-extinction boundary periodic solution and the permanence of the system. Our results show that the behavior of impulsive stocking prey plays an important role for the permanence of the system, and provide tactical basis for the biological resource management. Further, the numerical analysis is also inserted to illuminate the dynamics of the system.

  6. Prey risk allocation in a grazing ecosystem.

    Science.gov (United States)

    Gude, Justin A; Garrott, Robert A; Borkowski, John J; King, Fred

    2006-02-01

    Understanding the behaviorally mediated indirect effects of predators in ecosystems requires knowledge of predator-prey behavioral interactions. In predator-ungulate-plant systems, empirical research quantifying how predators affect ungulate group sizes and distribution, in the context of other influential variables, is particularly needed. The risk allocation hypothesis proposes that prey behavioral responses to predation risk depend on background frequencies of exposure to risk, and it can be used to make predictions about predator-ungulate-plant interactions. We determined non-predation variables that affect elk (Cervus elaphus) group sizes and distribution on a winter range in the Greater Yellowstone Ecosystem (GYE) using logistic and log-linear regression on surveys of 513 1-km2 areas conducted over two years. Employing model selection techniques, we evaluated risk allocation and other a priori hypotheses of elk group size and distributional responses to wolf (Canis lupus) predation risk while accounting for influential non-wolf-predation variables. We found little evidence that wolves affect elk group sizes, which were strongly influenced by habitat type and hunting by humans. Following predictions from the risk allocation hypothesis, wolves likely created a more dynamic elk distribution in areas that they frequently hunted, as elk tended to move following wolf encounters in those areas. This response should dilute elk foraging pressure on plant communities in areas where they are frequently hunted by wolves. We predict that this should decrease the spatial heterogeneity of elk impacts on grasslands in areas that wolves frequently hunt. We also predict that this should decrease browsing pressure on heavily browsed woody plant stands in certain areas, which is supported by recent research in the GYE.

  7. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  8. Competing conservation objectives for predators and prey: estimating killer whale prey requirements for Chinook salmon.

    Directory of Open Access Journals (Sweden)

    Rob Williams

    Full Text Available Ecosystem-based management (EBM of marine resources attempts to conserve interacting species. In contrast to single-species fisheries management, EBM aims to identify and resolve conflicting objectives for different species. Such a conflict may be emerging in the northeastern Pacific for southern resident killer whales (Orcinus orca and their primary prey, Chinook salmon (Oncorhynchus tshawytscha. Both species have at-risk conservation status and transboundary (Canada-US ranges. We modeled individual killer whale prey requirements from feeding and growth records of captive killer whales and morphometric data from historic live-capture fishery and whaling records worldwide. The models, combined with caloric value of salmon, and demographic and diet data for wild killer whales, allow us to predict salmon quantities needed to maintain and recover this killer whale population, which numbered 87 individuals in 2009. Our analyses provide new information on cost of lactation and new parameter estimates for other killer whale populations globally. Prey requirements of southern resident killer whales are difficult to reconcile with fisheries and conservation objectives for Chinook salmon, because the number of fish required is large relative to annual returns and fishery catches. For instance, a U.S. recovery goal (2.3% annual population growth of killer whales over 28 years implies a 75% increase in energetic requirements. Reducing salmon fisheries may serve as a temporary mitigation measure to allow time for management actions to improve salmon productivity to take effect. As ecosystem-based fishery management becomes more prevalent, trade-offs between conservation objectives for predators and prey will become increasingly necessary. Our approach offers scenarios to compare relative influence of various sources of uncertainty on the resulting consumption estimates to prioritise future research efforts, and a general approach for assessing the extent of

  9. Antimicrobial resistance determinants in Staphylococcus spp. recovered from birds of prey in Portugal.

    Science.gov (United States)

    Sousa, Margarida; Silva, Nuno; Igrejas, Gilberto; Silva, Filipe; Sargo, Roberto; Alegria, Nuno; Benito, Daniel; Gómez, Paula; Lozano, Carmen; Gómez-Sanz, Elena; Torres, Carmen; Caniça, Manuela; Poeta, Patrícia

    2014-07-16

    Antibiotic resistance among wild animals represent an emerging public health concern. The objective of this study was to analyze the staphylococcal nasal microbiota in birds of prey and their content in antimicrobial resistance determinants. Nasal samples from 16 birds of prey were collected, swabs were dipped and incubated into BHI broth [6.5% NaCl] and later seeded on manitol salt agar and oxacillin-resistance screening agar base media. Staphylococcal colonies were isolated from both media and were identified by biochemical and molecular methods. Susceptibility testing to 18 antimicrobial agents was performed by disk-diffusion method. Six of the 16 tested animals carried staphylococci (37.5%) and 7 isolates of the following species were recovered: Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Staphylococcus sciuri rodentium, Staphylococcus cohnii urealitycum, and Staphylococcus gallinarum. The S. aureus isolate was penicillin-resistant (with blaZ gene) but methicillin-susceptible and was ascribed to spa-type t012, sequence-type ST30 and agr-type III. The S. epidermidis isolate carried blaZ, mecA, mrs(A/B), mphC, tet(K), drfA, and fusC genes, ica operon, and was typed as ST35. The genes ant6'-Ia, tet(K), tet(L), dfrG, cat221, cat194, and cat223 were detected in S. saprophyticus or S. gallinarum isolates. Birds of prey seem to be a natural reservoir of S. aureus and coagulase-negative staphylococci resistant to multiple antibiotics. Due to the convergence between habitats, the contact between wildlife, other animals and humans is now more common and this involves an increased possibility of interchange of these microorganisms in the different ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Nagylengyel: an interesting reservoir. [Yugoslovia

    Energy Technology Data Exchange (ETDEWEB)

    Dedinszky, J

    1971-04-01

    The Nagylengyel oil field, discovered in 1951, has oil-producing formations mostly in the Upper-Triassic dolomites, in the Norian-Ractian transition formations, in the Upper-Cretaceous limestones and shales, and in the Miocene. The formation of the reservoir space occurred in many stages. A porous, cavernous fractured reservoir is developed in the Norian principal dolomite. A cavernous fractured reservoir exists in the Cretaceous limestone and in the Cretaceous shale and porous fractured reservoir is developed in the Miocene. The derivation of the model of the reservoir, and the conservative evaluation of the volume of the reservoir made it possible to use secondary recovery.

  11. Acoustic shadows help gleaning bats find prey, but may be defeated by prey acoustic camouflage on rough surfaces.

    Science.gov (United States)

    Clare, Elizabeth L; Holderied, Marc W

    2015-09-01

    Perceptual abilities of animals, like echolocating bats, are difficult to study because they challenge our understanding of non-visual senses. We used novel acoustic tomography to convert echoes into visual representations and compare these cues to traditional echo measurements. We provide a new hypothesis for the echo-acoustic basis of prey detection on surfaces. We propose that bats perceive a change in depth profile and an 'acoustic shadow' cast by prey. The shadow is more salient than prey echoes and particularly strong on smooth surfaces. This may explain why bats look for prey on flat surfaces like leaves using scanning behaviour. We propose that rather than forming search images for prey, whose characteristics are unpredictable, predators may look for disruptions to the resting surface (acoustic shadows). The fact that the acoustic shadow is much fainter on rougher resting surfaces provides the first empirical evidence for 'acoustic camouflage' as an anti-predator defence mechanism.

  12. The effect of structural complexity, prey density, and "predator-free space" on prey survivorship at created oyster reef mesocosms

    Science.gov (United States)

    Humphries, Austin T.; La Peyre, Megan K.; Decossas, Gary A.

    2011-01-01

    Interactions between predators and their prey are influenced by the habitat they occupy. Using created oyster (Crassostrea virginica) reef mesocosms, we conducted a series of laboratory experiments that created structure and manipulated complexity as well as prey density and “predator-free space” to examine the relationship between structural complexity and prey survivorship. Specifically, volume and spatial arrangement of oysters as well as prey density were manipulated, and the survivorship of prey (grass shrimp, Palaemonetes pugio) in the presence of a predator (wild red drum, Sciaenops ocellatus) was quantified. We found that the presence of structure increased prey survivorship, and that increasing complexity of this structure further increased survivorship, but only to a point. This agrees with the theory that structural complexity may influence predator-prey dynamics, but that a threshold exists with diminishing returns. These results held true even when prey density was scaled to structural complexity, or the amount of “predator-free space” was manipulated within our created reef mesocosms. The presence of structure and its complexity (oyster shell volume) were more important in facilitating prey survivorship than perceived refugia or density-dependent prey effects. A more accurate indicator of refugia might require “predator-free space” measures that also account for the available area within the structure itself (i.e., volume) and not just on the surface of a structure. Creating experiments that better mimic natural conditions and test a wider range of “predator-free space” are suggested to better understand the role of structural complexity in oyster reefs and other complex habitats.

  13. Seasonal Population Dynamics of a Specialized Termite-Eating Spider (Araneae: Ammoxenidae) and its Prey (Isoptera: Hodotermitidae)

    Czech Academy of Sciences Publication Activity Database

    Haddad, C. R.; Brabec, Marek; Pekár, S.; Fourie, R.

    2016-01-01

    Roč. 59, č. 3 (2016), s. 105-110 ISSN 0031-4056 Grant - others:GA ČR(CZ) GA15-14762S Institutional support: RVO:67985807 Keywords : activity * phenology * predator-prey dynamics * specialist * termite Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.000, year: 2016

  14. Oil Reservoir Production Optimization using Optimal Control

    DEFF Research Database (Denmark)

    Völcker, Carsten; Jørgensen, John Bagterp; Stenby, Erling Halfdan

    2011-01-01

    Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using the adjo...... reservoir using water ooding and smart well technology. Compared to the uncontrolled case, the optimal operation increases the Net Present Value of the oil field by 10%.......Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using...

  15. Appropriate flow forecasting for reservoir operation

    NARCIS (Netherlands)

    Dong, Xiaohua

    2005-01-01

    The aim of the study presented in this thesis is to develop and apply a methodology to determine the appropriate model application by including the water management objective explicitly, and to demonstrate its benefits.

  16. Parallel reservoir simulator computations

    International Nuclear Information System (INIS)

    Hemanth-Kumar, K.; Young, L.C.

    1995-01-01

    The adaptation of a reservoir simulator for parallel computations is described. The simulator was originally designed for vector processors. It performs approximately 99% of its calculations in vector/parallel mode and relative to scalar calculations it achieves speedups of 65 and 81 for black oil and EOS simulations, respectively on the CRAY C-90

  17. unconventional natural gas reservoirs

    International Nuclear Information System (INIS)

    Correa G, Tomas F; Osorio, Nelson; Restrepo R, Dora P

    2009-01-01

    This work is an exploration about different unconventional gas reservoirs worldwide: coal bed methane, tight gas, shale gas and gas hydrate? describing aspects such as definition, reserves, production methods, environmental issues and economics. The overview also mentioned preliminary studies about these sources in Colombia.

  18. A snail-eating snake recognizes prey handedness.

    Science.gov (United States)

    Danaisawadi, Patchara; Asami, Takahiro; Ota, Hidetoshi; Sutcharit, Chirasak; Panha, Somsak

    2016-04-05

    Specialized predator-prey interactions can be a driving force for their coevolution. Southeast Asian snail-eating snakes (Pareas) have more teeth on the right mandible and specialize in predation on the clockwise-coiled (dextral) majority in shelled snails by soft-body extraction. Snails have countered the snakes' dextral-predation by recurrent coil reversal, which generates diverse counterclockwise-coiled (sinistral) prey where Pareas snakes live. However, whether the snake predator in turn evolves any response to prey reversal is unknown. We show that Pareas carinatus living with abundant sinistrals avoids approaching or striking at a sinistral that is more difficult and costly to handle than a dextral. Whenever it strikes, however, the snake succeeds in predation by handling dextral and sinistral prey in reverse. In contrast, P. iwasakii with little access to sinistrals on small peripheral islands attempts and frequently misses capturing a given sinistral. Prey-handedness recognition should be advantageous for right-handed snail-eating snakes where frequently encountering sinistrals. Under dextral-predation by Pareas snakes, adaptive fixation of a prey population for a reversal gene instantaneously generates a sinistral species because interchiral mating is rarely possible. The novel warning, instead of sheltering, effect of sinistrality benefitting both predators and prey could further accelerate single-gene ecological speciation by left-right reversal.

  19. Tactile Experience Shapes Prey-Capture Behavior in Etruscan Shrews

    Directory of Open Access Journals (Sweden)

    Michael eBrecht

    2012-06-01

    Full Text Available A crucial role of tactile experience for the maturation of neural response properties in the somatosensory system is well established, but little is known about the role of tactile experience in the development of tactile behaviors. Here we study how tactile experience affects prey capture behavior in Etruscan shrews, Suncus etruscus. Prey capture in adult shrews is a high-speed behavior that relies on precise attacks guided by tactile Gestalt cues. We studied the role of tactile experience by three different approaches. First, we analyzed the hunting skills of young shrews right after weaning. We found that prey capture in young animals is most but not all aspects similar to that of adults. Second we performed whisker trimming for three to four weeks after birth. Such deprivation resulted in a lasting disruption of prey capture even after whisker re-growth: attacks lacked precise targeting and had a lower success rate. Third, we presented adult shrews with an entirely novel prey species, the giant cockroach. The shape of this roach is very different from the shrew’s normal (cricket prey and the thorax – the preferred point of attack in crickets – is protected a heavy cuticle. Initially shrews attacked giant roaches the same way they attack crickets and targeted the thoracic region. With progressive experience, however, shrews adopted a new attack strategy targeting legs and underside of the roaches while avoiding other body parts. Speed and efficiency of attacks improved. These data suggest that tactile experience shapes prey capture behavior.

  20. Quantification of Libby Reservoir Water Levels Needed to Maintain or Enhance Reservoir Fisheries, 1988-1996 Methods and Data Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Dalbey, Steven Ray

    1998-03-01

    The Libby Reservoir study is part of the Northwest Power Planning Council's resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. This report summarizes the data collected from Libby Reservoir during 1988 through 1996.

  1. Parental and embryonic experiences with predation risk affect prey offspring behaviour and performance.

    Science.gov (United States)

    Donelan, Sarah C; Trussell, Geoffrey C

    2018-03-14

    Because phenotypic plasticity can operate both within and between generations, phenotypic outcomes are often shaped by a complex history of environmental signals. For example, parental and embryonic experiences with predation risk can both independently and interactively influence prey offspring traits early in their life. Parental and embryonic risk experiences can also independently shape offspring phenotypes throughout an offspring's ontogeny, but the persistence of their interactive effects throughout offspring ontogeny is unknown. We examined the effects of parental and embryonic experiences with predation risk on the response of 1-year-old prey (the carnivorous snail, Nucella lapillus ) offspring to current predation risk. We found that parental and embryonic risk experiences had largely independent effects on offspring performance and that these effects were context dependent. Parental experience with risk had strong impacts on multiple offspring traits in the presence of current risk that generally improved offspring performance under risk, but embryonic risk experience had relatively weaker effects and only operated in the absence of current risk to reduce offspring growth. These results illustrate that past environmental experiences can dynamically shape organism phenotypes across ontogeny and that attention to these effects is key to a better understanding of predator/prey dynamics in natural systems. © 2018 The Author(s).

  2. Predicting prey population dynamics from kill rate, predation rate and predator-prey ratios in three wolf-ungulate systems.

    Science.gov (United States)

    Vucetich, John A; Hebblewhite, Mark; Smith, Douglas W; Peterson, Rolf O

    2011-11-01

    1. Predation rate (PR) and kill rate are both fundamental statistics for understanding predation. However, relatively little is known about how these statistics relate to one another and how they relate to prey population dynamics. We assess these relationships across three systems where wolf-prey dynamics have been observed for 41 years (Isle Royale), 19 years (Banff) and 12 years (Yellowstone). 2. To provide context for this empirical assessment, we developed theoretical predictions of the relationship between kill rate and PR under a broad range of predator-prey models including predator-dependent, ratio-dependent and Lotka-Volterra dynamics. 3. The theoretical predictions indicate that kill rate can be related to PR in a variety of diverse ways (e.g. positive, negative, unrelated) that depend on the nature of predator-prey dynamics (e.g. structure of the functional response). These simulations also suggested that the ratio of predator-to-prey is a good predictor of prey growth rate. That result motivated us to assess the empirical relationship between the ratio and prey growth rate for each of the three study sites. 4. The empirical relationships indicate that PR is not well predicted by kill rate, but is better predicted by the ratio of predator-to-prey. Kill rate is also a poor predictor of prey growth rate. However, PR and ratio of predator-to-prey each explained significant portions of variation in prey growth rate for two of the three study sites. 5. Our analyses offer two general insights. First, Isle Royale, Banff and Yellowstone are similar insomuch as they all include wolves preying on large ungulates. However, they also differ in species diversity of predator and prey communities, exploitation by humans and the role of dispersal. Even with the benefit of our analysis, it remains difficult to judge whether to be more impressed by the similarities or differences. This difficulty nicely illustrates a fundamental property of ecological

  3. Individual prey choices of octopuses: Are they generalist or specialist?

    Directory of Open Access Journals (Sweden)

    Jennifer A. MATHER, Tatiana S. LEITE, Allan T. BATISTA

    2012-08-01

    Full Text Available Prey choice is often evaluated at the species or population level. Here, we analyzed the diet of octopuses of different populations with the aim to assess the importance of individual feeding habits as a factor affecting prey choice. Two methods were used, an assessment of the extent to which an individual octopus made choices of species representative of those population (PSi and IS and 25% cutoff values for number of choices and percentage intake of individual on their prey. In one population of Octopus cf vulgaris in Bermuda individuals were generalist by IS=0.77, but most chose many prey of the same species, and were specialists on it by >75% intake. Another population had a wider prey selection, still generalist with PSi=0.66, but two individuals specialized by choices. In Bonaire, there was a wide range of prey species chosen, and the population was specialists by IS= 0.42. Individual choices revealed seven specialists and four generalists. A population of Octopus cyanea in Hawaii all had similar choices of crustaceans, so the population was generalist by IS with 0.74. But by individual choices, three were considered a specialist. A population of Enteroctopus dofleini from Puget Sound had a wide range of preferences, in which seven were also specialists, IS=0.53. By individual choices, thirteen were also specialists. Given the octopus specialty of learning during foraging, we hypothesize that both localized prey availability and individual personality differences could influence the exploration for prey and this translates into different prey choices across individuals and populations showed in this study [Current Zoology 58 (4: 597-603, 2012].

  4. Predator cannibalism can intensify negative impacts on heterospecific prey.

    Science.gov (United States)

    Takatsu, Kunio; Kishida, Osamu

    2015-07-01

    Although natural populations consist of individuals with different traits, and the degree of phenotypic variation varies among populations, the impact of phenotypic variation on ecological interactions has received little attention, because traditional approaches to community ecology assume homogeneity of individuals within a population. Stage structure, which is a common way of generating size and developmental variation within predator populations, can drive cannibalistic interactions, which can affect the strength of predatory effects on the predator's heterospecific prey. Studies have shown that predator cannibalism weakens predatory effects on heterospecific prey by reducing the size of the predator population and by inducing less feeding activity of noncannibal predators. We predict, however, that predator cannibalism, by promoting rapid growth of the cannibals, can also intensify predation pressure on heterospecific prey, because large predators have large resource requirements and may utilize a wider variety of prey species. To test this hypothesis, we conducted an experiment in which we created carnivorous salamander (Hynobius retardatus) populations with different stage structures by manipulating the salamander's hatch timing (i.e., populations with large or small variation in the timing of hatching), and explored the resultant impacts on the abundance, behavior, morphology, and life history of the salamander's large heterospecific prey, Rana pirica frog tadpoles. Cannibalism was rare in salamander populations having small hatch-timing variation, but was frequent in those having large hatch-timing variation. Thus, giant salamander cannibals occurred only in the latter. We clearly showed that salamander giants exerted strong predation pressure on frog tadpoles, which induced large behavioral and morphological defenses in the tadpoles and caused them to metamorphose late at large size. Hence, predator cannibalism arising from large variation in the timing

  5. Effects of water-supply reservoirs on streamflow in Massachusetts

    Science.gov (United States)

    Levin, Sara B.

    2016-10-06

    State and local water-resource managers need modeling tools to help them manage and protect water-supply resources for both human consumption and ecological needs. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a decision-support tool to estimate the effects of reservoirs on natural streamflow. The Massachusetts Reservoir Simulation Tool is a model that simulates the daily water balance of a reservoir. The reservoir simulation tool provides estimates of daily outflows from reservoirs and compares the frequency, duration, and magnitude of the volume of outflows from reservoirs with estimates of the unaltered streamflow that would occur if no dam were present. This tool will help environmental managers understand the complex interactions and tradeoffs between water withdrawals, reservoir operational practices, and reservoir outflows needed for aquatic habitats.A sensitivity analysis of the daily water balance equation was performed to identify physical and operational features of reservoirs that could have the greatest effect on reservoir outflows. For the purpose of this report, uncontrolled releases of water (spills or spillage) over the reservoir spillway were considered to be a proxy for reservoir outflows directly below the dam. The ratio of average withdrawals to the average inflows had the largest effect on spillage patterns, with the highest withdrawals leading to the lowest spillage. The size of the surface area relative to the drainage area of the reservoir also had an effect on spillage; reservoirs with large surface areas have high evaporation rates during the summer, which can contribute to frequent and long periods without spillage, even in the absence of water withdrawals. Other reservoir characteristics, such as variability of inflows, groundwater interactions, and seasonal demand patterns, had low to moderate effects on the frequency, duration, and magnitude of spillage. The

  6. Temperature and prey capture: opposite relationships in two predator taxa

    DEFF Research Database (Denmark)

    Kruse, Peter Dalgas; Toft, Søren; Sunderland, Keith

    2008-01-01

    to catch swiftly moving prey. 2. The first experiment examined the spontaneous locomotor activity of the predators and of fruit flies at different temperatures (5, 10, 15, 20, 25, and 30 °C) and light conditions (light, dark). A second experiment examined the effect of temperature and light...... different prey groups within the set of potential prey at different times of the day or at different seasons. The ability of many carabid beetles to forage at low temperatures may have nutritional benefits and increases the diversity of interactions in terrestrial food webs....

  7. A self-organized system of smart preys and predators

    Energy Technology Data Exchange (ETDEWEB)

    Rozenfeld, Alejandro F. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP, CONICET, Suc. 4, C.C. 16 (1900) La Plata (Argentina); Albano, Ezequiel V. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP, CONICET, Suc. 4, C.C. 16 (1900) La Plata (Argentina)]. E-mail: ealbano@inifta.unlp.edu.ar

    2004-11-22

    Based on the fact that, a standard prey-predator model (SPPM), exhibits irreversible phase transitions, belonging to the universality class of directed percolation (DP), between prey-predator coexistence and predator extinction [Phys. Lett. A 280 (2001) 45], a self-organized prey-predator model (SOPPM) is formulated and studied by means of extensive Monte Carlo simulations. The SOPPM is achieved defining the parameters of the SPPM as functions of the density of species. It is shown that the SOPPM self-organizes into an active state close the absorbing phase of the SPPM, and consequently their avalanche exponents also belong to the universality class of DP.

  8. Modelling prey consumption and switching by UK grey seals

    DEFF Research Database (Denmark)

    Smout, Sophie; Rindorf, Anna; Hammond, Philip S.

    2014-01-01

    Grey seals (Halichoerus grypus) are adaptable generalist predatorswhose diet includes commercial fish species such as cod. Consumption by the seals may reduce the size of some fish stocks or have an adverse effect on stock recovery programmes, especially because predation may trap sparse prey...... populations in a “predator pit”. To assess the likely impact of such effects, it is important to know how consumption and consequent predation mortality respond to the changing availability of prey.Wepresent a model of grey seal consumption as a function of the availability of multiple prey types [a Multi...

  9. Flood risk management for large reservoirs

    International Nuclear Information System (INIS)

    Poupart, M.

    2006-01-01

    Floods are a major risk for dams: uncontrolled reservoir water level may cause dam overtopping, and then its failure, particularly for fill dams. Poor control of spillway discharges must be taken into consideration too, as it can increase the flood consequences downstream. In both cases, consequences on the public or on properties may be significant. Spillway design to withstand extreme floods is one response to these risks, but must be complemented by strict operating rules: hydrological forecasting, surveillance and periodic equipment controls, operating guides and the training of operators are mandatory too, in order to guarantee safe operations. (author)

  10. Analysis of selected reservoirs functioning in the Wielkopolska region

    Directory of Open Access Journals (Sweden)

    Mariusz Sojka

    2017-12-01

    Full Text Available The paper presents the problems related to the functioning of reservoirs in the Wielkopolska province and suggests their possible solutions. The reservoirs chosen as examples include typical dam constructions with a single water body (Jeziorsko, Rydzyna, two water body objects with separated preliminary part (Stare Miasto, Kowalskie, Radzyny and lateral constructions (Pakosław, Jutrosin. The reservoirs were built in period from 1970 to 2014. They differ in construction, functions and water management rules. Analysis of the main problems related to the reservoir functioning is aimed at finding ways of improving the construction of new reservoirs that would satisfy increasingly stringent environmental and legal restrictions and the methods of water management in the reservoirs. On the basis of a questionnaire filled in by the reservoir operators, the main problem is water quality. Especially the huge inflow of biogenic compounds causes blooms of algae and overgrowth with riparian vegetation. Some difficulties are also related to management of the reservoirs of multi-purpose operation. It is difficult to take into account the requirements of environmental flow maintenance, flood protection, water supply for agriculture and water use for tourism and recreation and hydropower generation, etc.

  11. Benthic prey fish assessment, Lake Ontario 2013

    Science.gov (United States)

    Weidel, Brian C.; Walsh, Maureen; Connerton, Michael J.

    2014-01-01

    abundance and weight indices increased slightly as compared to 2012. The number index value of 16.6 was 30% of the maximum number observed in 2008 when the number index was 95.2. Round Goby density estimates from the 2013 fall benthic prey fish survey were 33 times greater than fall Slimy Sculpin density, indicating Round Goby are now the dominant Lake Ontario benthic prey fish.

  12. Toxoplasmosis in prey species and consequences for prevalence in feral cats: not all prey species are equal.

    Science.gov (United States)

    Afonso, E; Thulliez, P; Pontier, D; Gilot-Fromont, E

    2007-12-01

    Toxoplasma gondii is largely transmitted to definitive felid hosts through predation. Not all prey species represent identical risks of infection for cats because of differences in prey susceptibility, exposure and/or lifespan. Previously published studies have shown that prevalence in rodent and lagomorph species is positively correlated with body mass. We tested the hypothesis that different prey species have different infection risks by comparing infection dynamics of feral cats at 4 sites in the sub-Antarctic Kerguelen archipelago which differed in prey availability. Cats were trapped from 1994 to 2004 and anti-T. gondii IgG antibodies were detected using the modified agglutination test (> or =1:40). Overall seroprevalence was 51.09%. Antibody prevalence differed between sites, depending on diet and also on sex, after taking into account the effect of age. Males were more often infected than females and the difference between the sexes tended to be more pronounced in the site where more prey species were available. A difference in predation efficiency between male and female cats may explain this result. Overall, our results suggest that the composition of prey items in cat diet influences the risk of T. gondii infection. Prey compositon should therefore be considered important in any understanding of infection dynamics of T. gondii.

  13. Risk Analysis of Reservoir Operations Considering Short-Term Flood Control and Long-Term Water Supply: A Case Study for the Da-Han Creek Basin in Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Ming Cheng

    2017-06-01

    Full Text Available This study applies an integrated methodology to assess short-term over-levee risk and long-term water shortage risk in the Da-Han Creek basin, which is the most important flood control and water storage system in northern Taiwan. An optimization model for reservoir flood control and water supply is adopted, to determine reservoir releases based on synthetic inflow hydrographs during typhoons, which are generated by Monte Carlo simulations. The release is then used to calculate the water level at a downstream control point using a novel developed back-propagation neural network-based model, to reduce computational complexity and achieve automatic-efficient risk evaluation. The calculated downstream water levels and final reservoir water levels after a typhoon event are used to evaluate the mapped over-levee risk and water shortage risk, respectively. The results showed that the different upper limit settings for the reservoir have a significant influence on the variation of 1.19 × 10−5% to 75.6% of the water shortage risk. This occurs because of the insufficient inflow and narrow storage capacity of the Shih-Men Reservoir during drought periods. However, the upper limit settings have a minor influence (with a variation of only 0.149% to 0.157% on the over-levee risk in typhoon periods, because of the high protection standards for the downstream embankment.

  14. Reservoirs talk to pressure recorders

    Energy Technology Data Exchange (ETDEWEB)

    Pamenter, C B

    1968-02-01

    Keeping pace with increased demand for efficiency in secondary recovery schemes is the widening use of downhole tools charged with supplying data before and during the operation of the projects. One of the most important of these is the pressure recorder. This highly sensitive instrument, housed in a tough, slim steel case and lowered by drill pipe or cable, accurately measures the pressure of its downhole environment. This information is instantly available at the surface whenever a pressure reading is required. Typical applications of surface recorders often contribute are: (1) production practices such as checking surface and subsurface equipment, and special lifting problems; (2) well conditions including regular productivity indices, data observations and for interference studies; (3) secondary recovery projects, in both producing and injection wells; and (4) reservoir conditions where oil-water contacts and damaged zones need close attention.

  15. Chalk as a reservoir

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    , and the best reservoir properties are typically found in mudstone intervals. Chalk mudstones vary a lot though. The best mudstones are purely calcitic, well sorted and may have been redeposited by traction currents. Other mudstones are rich in very fine grained silica, which takes up pore space and thus...... basin, so stylolite formation in the chalk is controlled by effective burial stress. The stylolites are zones of calcite dissolution and probably are the source of calcite for porefilling cementation which is typical in water zone chalk and also affect the reservoirs to different extent. The relatively...... have hardly any stylolites and can have porosity above 40% or even 50% and thus also have relatively high permeability. Such intervals have the problem though, that increasing effective stress caused by hydrocarbon production results in mechanical compaction and overall subsidence. Most other chalk...

  16. Prey selection by a reintroduced lion population in the Greater ...

    African Journals Online (AJOL)

    Prey selection by a reintroduced lion population in the Greater Makalali Conservancy, South Africa. Dave Druce, Heleen Genis, Jonathan Braak, Sophie Greatwood, Audrey Delsink, Ross Kettles, Luke Hunter, Rob Slotow ...

  17. An investigation into the chemical composition of alternative invertebrate prey

    NARCIS (Netherlands)

    Oonincx, D.G.A.B.; Dierenfeld, E.S.

    2012-01-01

    The aim of this study was to determine the chemical composition of eight invertebrate species and evaluate their suitability as alternative prey. The species selected were rusty red cockroaches (Blatta lateralis), six-spotted cockroaches (Eublaberus distanti), Madagascar hissing cockroaches

  18. Analyses of stomach contents provide information on prey of ...

    African Journals Online (AJOL)

    spamer

    example. In this paper, information is presented on the cephalopods eaten by four species of shark. Initial studies had ..... Their prey selection supports sighting .... 18(1): 27 – 40. KLIMLEY, A. P. 1993 — Highly directional swimming by scal-.

  19. Interaction between Mesodinium rubrum and its prey: importance of prey concentration, irradiance and pH

    DEFF Research Database (Denmark)

    Moldrup, Morten; Hansen, Per Juel

    2007-01-01

    in mixed cultures of M. rubrum and Teleaulax sp. The functional and numerical response study showed that the threshold concentration of the cryptophyte Teleaulax sp. was 50 cells ml-1 and the maximum growth of M. rubrum was 0.23 and 0.49 d-1 for 20 and 100 µE m2 s-1, respectively. Calculation of ingestion...... to starvation showed that M. rubrum could survive for around 50 d without prey. These results are all discussed with respect to M. rubrum's adaptation to its environment....

  20. The effect of habitat structure on prey mortality depends on predator and prey microhabitat use

    Czech Academy of Sciences Publication Activity Database

    Klečka, Jan; Boukal S., David

    2014-01-01

    Roč. 176, č. 1 (2014), s. 183-191 ISSN 0029-8549 R&D Projects: GA ČR GAP505/10/0096 Grant - others:GA JU(CZ) 145/2010/P; EU Marie Curie European Grant(CZ) PERG04-GA-2008-239543 Institutional support: RVO:60077344 Keywords : predation * predator-prey interactions * habitat complexity Subject RIV: EH - Ecology , Behaviour Impact factor: 3.093, year: 2014 http://link.springer.com/article/10.1007%2Fs00442-014-3007-6

  1. Work reservoirs in thermodynamics

    International Nuclear Information System (INIS)

    Anacleto, Joaquim

    2010-01-01

    We stress the usefulness of the work reservoir in the formalism of thermodynamics, in particular in the context of the first law. To elucidate its usefulness, the formalism is then applied to the Joule expansion and other peculiar and instructive experimental situations, clarifying the concepts of configuration and dissipative work. The ideas and discussions presented in this study are primarily intended for undergraduate students, but they might also be useful to graduate students, researchers and teachers.

  2. Work reservoirs in thermodynamics

    Science.gov (United States)

    Anacleto, Joaquim

    2010-05-01

    We stress the usefulness of the work reservoir in the formalism of thermodynamics, in particular in the context of the first law. To elucidate its usefulness, the formalism is then applied to the Joule expansion and other peculiar and instructive experimental situations, clarifying the concepts of configuration and dissipative work. The ideas and discussions presented in this study are primarily intended for undergraduate students, but they might also be useful to graduate students, researchers and teachers.

  3. Do phytoseiid mites select the best prey species in terms of reproductive success?

    NARCIS (Netherlands)

    Dicke, M.; Sabelis, M.W.; Jong, de M.; Alers, M.P.T.

    1990-01-01

    Optimal foraging theory predicts that predators prefer those prey species that are most rewarding in terms of reproductive success, which is dependent on prey quality and prey availability. To investigate which selection pressures may have moulded prey preference in an acarine system consisting of

  4. Influence of prey body characteristics and performance on predator selection.

    Science.gov (United States)

    Holmes, Thomas H; McCormick, Mark I

    2009-03-01

    At the time of settlement to the reef environment, coral reef fishes differ in a number of characteristics that may influence their survival during a predatory encounter. This study investigated the selective nature of predation by both a multi-species predator pool, and a single common predator (Pseudochromis fuscus), on the reef fish, Pomacentrus amboinensis. The study focused on the early post-settlement period of P. amboinensis, when mortality, and hence selection, is known to be highest. Correlations between nine different measures of body condition/performance were examined at the time of settlement, in order to elucidate the relationships between different traits. Single-predator (P. fuscus) choice trials were conducted in 57.4-l aquaria with respect to three different prey characteristics [standard length (SL), body weight and burst swimming speed], whilst multi-species trials were conducted on open patch reefs, manipulating prey body weight only. Relationships between the nine measures of condition/performance were generally poor, with the strongest correlations occurring between the morphological measures and within the performance measures. During aquaria trials, P. fuscus was found to be selective with respect to prey SL only, with larger individuals being selected significantly more often. Multi-species predator communities, however, were selective with respect to prey body weight, with heavier individuals being selected significantly more often than their lighter counterparts. Our results suggest that under controlled conditions, body length may be the most important prey characteristic influencing prey survival during predatory encounters with P. fuscus. In such cases, larger prey size may actually be a distinct disadvantage to survival. However, these relationships appear to be more complex under natural conditions, where the expression of prey characteristics, the selectivity fields of a number of different predators, their relative abundance, and

  5. Signaling by decorating webs: luring prey or deterring predators?

    OpenAIRE

    Ren-Chung Cheng; I-Min Tso

    2007-01-01

    Many organisms convey false signals to mislead their prey or predators. Some orb-weaving spiders build conspicuous structures on webs called decorations. Web decorations and spider colorations are both suggested to be important signals involved in interactions between spiders and other organisms. There are several hypotheses about the functions of signaling by decorations, among which prey attraction had received much support, but empirical evidence regarding predator defense is controversial...

  6. Mountain lions prey selectively on prion-infected mule deer

    OpenAIRE

    Krumm, Caroline E.; Conner, Mary M.; Hobbs, N. Thompson; Hunter, Don O.; Miller, Michael W.

    2009-01-01

    The possibility that predators choose prey selectively based on age or condition has been suggested but rarely tested. We examined whether mountain lions (Puma concolor) selectively prey upon mule deer (Odocoileus hemionus) infected with chronic wasting disease, a prion disease. We located kill sites of mountain lions in the northern Front Range of Colorado, USA, and compared disease prevalence among lion-killed adult (?2 years old) deer with prevalence among sympatric deer taken by hunters i...

  7. Review and Evaluation of Reservoir Management Strategies for Harmful Algal Blooms

    Science.gov (United States)

    2017-07-28

    Abstract The purpose of this report is to review and evaluate available infor- mation regarding reservoir operation strategies for management of...12 3 Operations Management Examples ............................................................................ 16...report is to review and evaluate available information regarding reservoir operation strategies for management of harmful algal ERDC/EL TR-17-11 2

  8. Advantageous Reservoir Characterization Technology in Extra Low Permeability Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Yutian Luo

    2017-01-01

    Full Text Available This paper took extra low permeability reservoirs in Dagang Liujianfang Oilfield as an example and analyzed different types of microscopic pore structures by SEM, casting thin sections fluorescence microscope, and so on. With adoption of rate-controlled mercury penetration, NMR, and some other advanced techniques, based on evaluation parameters, namely, throat radius, volume percentage of mobile fluid, start-up pressure gradient, and clay content, the classification and assessment method of extra low permeability reservoirs was improved and the parameter boundaries of the advantageous reservoirs were established. The physical properties of reservoirs with different depth are different. Clay mineral variation range is 7.0%, and throat radius variation range is 1.81 μm, and start pressure gradient range is 0.23 MPa/m, and movable fluid percentage change range is 17.4%. The class IV reservoirs account for 9.56%, class II reservoirs account for 12.16%, and class III reservoirs account for 78.29%. According to the comparison of different development methods, class II reservoir is most suitable for waterflooding development, and class IV reservoir is most suitable for gas injection development. Taking into account the gas injection in the upper section of the reservoir, the next section of water injection development will achieve the best results.

  9. Optimization In Searching Daily Rule Curve At Mosul Regulating Reservoir, North Iraq Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Thair M. Al-Taiee

    2013-05-01

    Full Text Available To obtain optimal operating rules for storage reservoirs, large numbers of simulation and optimization models have been developed over the past several decades, which vary significantly in their mechanisms and applications. Rule curves are guidelines for long term reservoir operation. An efficient technique is required to find the optimal rule curves that can mitigate water shortage in long term operation. The investigation of developed Genetic Algorithm (GA technique, which is an optimization approach base on the mechanics of natural selection, derived from the theory of natural evolution, was carried out to through the application to predict the daily rule curve of  Mosul regulating reservoir in Iraq.  Record daily inflows, outflow, water level in the reservoir for 19 year (1986-1990 and (1994-2007 were used in the developed model for assessing the optimal reservoir operation. The objective function is set to minimize the annual sum of squared deviation from the desired downstream release and desired storage volume in the reservoir. The decision variables are releases, storage volume, water level and outlet (demand from the reservoir. The results of the GA model gave a good agreement during the comparison with the actual rule curve and the designed rating curve of the reservoir. The simulated result shows that GA-derived policies are promising and competitive and can be effectively used for daily reservoir operation in addition to the rational monthly operation and predicting also rating curve of reservoirs.

  10. The Dynamical Analysis of a Prey-Predator Model with a Refuge-Stage Structure Prey Population

    Directory of Open Access Journals (Sweden)

    Raid Kamel Naji

    2016-01-01

    Full Text Available We proposed and analyzed a mathematical model dealing with two species of prey-predator system. It is assumed that the prey is a stage structure population consisting of two compartments known as immature prey and mature prey. It has a refuge capability as a defensive property against the predation. The existence, uniqueness, and boundedness of the solution of the proposed model are discussed. All the feasible equilibrium points are determined. The local and global stability analysis of them are investigated. The occurrence of local bifurcation (such as saddle node, transcritical, and pitchfork near each of the equilibrium points is studied. Finally, numerical simulations are given to support the analytic results.

  11. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum

  12. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    Science.gov (United States)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  13. Mercury accumulation in bats near hydroelectric reservoirs in Peninsular Malaysia.

    Science.gov (United States)

    Syaripuddin, Khairunnisa; Kumar, Anjali; Sing, Kong-Wah; Halim, Muhammad-Rasul Abdullah; Nursyereen, Muhammad-Nasir; Wilson, John-James

    2014-09-01

    In large man-made reservoirs such as those resulting from hydroelectric dam construction, bacteria transform the relatively harmless inorganic mercury naturally present in soil and the submerged plant matter into toxic methylmercury. Methylmercury then enters food webs and can accumulate in organisms at higher trophic levels. Bats feeding on insects emerging from aquatic systems can show accumulation of mercury consumed through their insect prey. In this study, we investigated whether the concentration of mercury in the fur of insectivorous bat species was significantly higher than that in the fur of frugivorous bat species, sampled near hydroelectric reservoirs in Peninsular Malaysia. Bats were sampled at Temenggor Lake and Kenyir Lake and fur samples from the most abundant genera of the two feeding guilds-insectivorous (Hipposideros and Rhinolophus) and frugivorous (Cynopterus and Megaerops) were collected for mercury analysis. We found significantly higher concentrations of total mercury in the fur of insectivorous bats. Mercury concentrations also differed significantly between insectivorous bats sampled at the two sites, with bats from Kenyir Lake, the younger reservoir, showing higher mercury concentrations, and between the insectivorous genera, with Hipposideros bats showing higher mercury concentrations. Ten bats (H. cf. larvatus) sampled at Kenyir Lake had mercury concentrations approaching or exceeding 10 mg/kg, which is the threshold at which detrimental effects occur in humans, bats and mice.

  14. Radiocesium dynamics in herons inhabiting a contaminated reservoir system

    International Nuclear Information System (INIS)

    Dombey, A.H.; Paine, D.; McFarlane, R.W.

    1977-01-01

    The little blue heron (Florida caerulea) and the green heron (Butorides virescens) nest at a radionuclide-contaminated reservoir on the Savannah River Plant near Aiken, South Carolina. Green herons distributed their nests singly along the periphery of the reservoir but fed their nestlings exclusively upon amphibians collected from adjacent uncontaminated Carolina bays. Radiocesium burdens in green heron nestlings did not exceed 5 pCi/g wet wt. and 12 regurgitated food pellets averaged 0.2 pCi/g. Twelve pairs of little blue herons established a heronry upon a small island and fed their nestlings fish and amphibians foraged from within the differentially radionuclide-contaminated reservoir system. Nestlings within the same nest did not exhibit significant differences in body burdens, and the maximum radiocesium burden determined was 27.4 pCi/g wet wt. Substantial differences were found between nestlings from different nests however. The radiocesium level of 43 regurgitated food pellets had a high correlation with observed levels in the nestlings, and variation in food contamination is believed to be the major contributor in the observed variation in the nestlings. The variable contamination of primary prey species was correlated with the differentially contaminated foraging sites and indicates that adult little blue herons tended to spatially partition the available foraging areas. (author)

  15. Applications of the SWOT Mission to Reservoirs in the Mekong River Basin

    Science.gov (United States)

    Bonnema, M.; Hossain, F.

    2017-12-01

    The forthcoming Surface Water and Ocean Topography (SWOT) mission has the potential to significantly improve our ability to observe artificial reservoirs globally from a remote sensing perspective. By providing simultaneous estimates of reservoir water surface extent and elevation with near global coverage, reservoir storage changes can be estimated. Knowing how reservoir storage changes over time is critical for understanding reservoir impacts on river systems. In data limited regions, remote sensing is often the only viable method of retrieving such information about reservoir operations. When SWOT launches in 2021, it will join an array of satellite sensors with long histories of reservoir observation and monitoring capabilities. There are many potential synergies in the complimentary use of future SWOT observations with observations from current satellite sensors. The work presented here explores the potential benefits of utilizing SWOT observations over 20 reservoirs in the Mekong River Basin. The SWOT hydrologic simulator, developed by NASA Jet Propulsion Laboratory, is used to generate realistic SWOT observations, which are then inserted into a previously established remote sensing modeling framework of the 20 Mekong Basin reservoirs. This framework currently combines data from Landsat missions, Jason radar altimeters, and the Shuttle Radar and Topography Mission (SRTM), to provide monthly estimates of reservoir storage change. The incorporation of SWOT derived reservoir surface area and elevation into the model is explored in an effort to improve both accuracy and temporal resolution of observed reservoir operations.

  16. Nonlinear Filtering Effects of Reservoirs on Flood Frequency Curves at the Regional Scale: RESERVOIRS FILTER FLOOD FREQUENCY CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Li, Hong-Yi; Leung, Lai-Yung; Yigzaw, Wondmagegn Y.; Zhao, Jianshi; Lu, Hui; Deng, Zhiqun; Demissie, Yonas; Bloschl, Gunter

    2017-10-01

    Anthropogenic activities, e.g., reservoir operation, may alter the characteristics of Flood Frequency Curve (FFC) and challenge the basic assumption of stationarity used in flood frequency analysis. This paper presents a combined data-modeling analysis of the nonlinear filtering effects of reservoirs on the FFCs over the contiguous United States. A dimensionless Reservoir Impact Index (RII), defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume, is used to quantify reservoir regulation effects. Analyses are performed for 388 river stations with an average record length of 50 years. The first two moments of the FFC, mean annual maximum flood (MAF) and coefficient of variations (CV), are calculated for the pre- and post-dam periods and compared to elucidate the reservoir regulation effects as a function of RII. It is found that MAF generally decreases with increasing RII but stabilizes when RII exceeds a threshold value, and CV increases with RII until a threshold value beyond which CV decreases with RII. The processes underlying the nonlinear threshold behavior of MAF and CV are investigated using three reservoir models with different levels of complexity. All models capture the non-linear relationships of MAF and CV with RII, suggesting that the basic flood control function of reservoirs is key to the non-linear relationships. The relative roles of reservoir storage capacity, operation objectives, available storage prior to a flood event, and reservoir inflow pattern are systematically investigated. Our findings may help improve flood-risk assessment and mitigation in regulated river systems at the regional scale.

  17. Analysis of Sedimentation in Wonogiri Reservoir

    Directory of Open Access Journals (Sweden)

    Tri Joko Inti Budi Santosa

    2016-01-01

    Full Text Available The Wonogiri reservoir which has 730 million cubic meters of total storage, 90 square kilometers of water area, and 1260 square kilometers of catchment area, is located in the Wonogiri Regency, Central Java Province. It was first established in 1981 and began its operation in 1982 with the expectation that it would last for about 100 years. Today (2002 the reservoir has got a serious problem of sedimentation. The sedimentation is so large that it would decrease the capacity storage of the reservoir and would shorten the length of operation. Therefore, it is necessary to predict the sediment that comes into the reservoir. This research would be based on the total sediment calculation of the sedimentation, through some methods, such as echo sounding measured data, land erosion (USLE, the calculation of the sediment in rivers. This research calculates the sediment capacities based on the water flow data and the sediment rating curves in rivers of Keduang, Tirtomoyo, Temon, upstream reach of Bengawan Solo, Alang, and Wuryantoro. The suspended load was calculated based on the sediment rating curves, whereas the bed load was computed as the percentage of the suspended load. The sum of both calculation results would be the total sediment. The calculation result showed that the total sediment which has come into the reservoir is 6.68 million cubic meters per year. As a comparison, the writer noted that the former researcher using echo sounding method done by the Faculty of Geography of the Universitas Gadjah Mada in 1985, it found that the total sediment capacity which came into the reservoir was 6.60 million cubic meters per year or 5.40 mm per year of sheet erosion. The other research using echo sounding method done by JICA in 2000 found that the total sediment which had come into the reservoir was 4.50 million cubic meters per year or 3.50 mm per year of sheet erosion. By knowing the results of calculation of the total sediment, we can learn that

  18. Do lions Panthera leo actively select prey or do prey preferences simply reflect chance responses via evolutionary adaptations to optimal foraging?

    Directory of Open Access Journals (Sweden)

    Matt W Hayward

    Full Text Available Research on coursing predators has revealed that actions throughout the predatory behavioral sequence (using encounter rate, hunting rate, and kill rate as proxy measures of decisions drive observed prey preferences. We tested whether similar actions drive the observed prey preferences of a stalking predator, the African lion Panthera leo. We conducted two 96 hour, continuous follows of lions in Addo Elephant National Park seasonally from December 2003 until November 2005 (16 follows, and compared prey encounter rate with prey abundance, hunt rate with prey encounter rate, and kill rate with prey hunt rate for the major prey species in Addo using Jacobs' electivity index. We found that lions encountered preferred prey species far more frequently than expected based on their abundance, and they hunted these species more frequently than expected based on this higher encounter rate. Lions responded variably to non-preferred and avoided prey species throughout the predatory sequence, although they hunted avoided prey far less frequently than expected based on the number of encounters of them. We conclude that actions of lions throughout the predatory behavioural sequence, but particularly early on, drive the prey preferences that have been documented for this species. Once a hunt is initiated, evolutionary adaptations to the predator-prey interactions drive hunting success.

  19. Do lions Panthera leo actively select prey or do prey preferences simply reflect chance responses via evolutionary adaptations to optimal foraging?

    Science.gov (United States)

    Hayward, Matt W; Hayward, Gina J; Tambling, Craig J; Kerley, Graham I H

    2011-01-01

    Research on coursing predators has revealed that actions throughout the predatory behavioral sequence (using encounter rate, hunting rate, and kill rate as proxy measures of decisions) drive observed prey preferences. We tested whether similar actions drive the observed prey preferences of a stalking predator, the African lion Panthera leo. We conducted two 96 hour, continuous follows of lions in Addo Elephant National Park seasonally from December 2003 until November 2005 (16 follows), and compared prey encounter rate with prey abundance, hunt rate with prey encounter rate, and kill rate with prey hunt rate for the major prey species in Addo using Jacobs' electivity index. We found that lions encountered preferred prey species far more frequently than expected based on their abundance, and they hunted these species more frequently than expected based on this higher encounter rate. Lions responded variably to non-preferred and avoided prey species throughout the predatory sequence, although they hunted avoided prey far less frequently than expected based on the number of encounters of them. We conclude that actions of lions throughout the predatory behavioural sequence, but particularly early on, drive the prey preferences that have been documented for this species. Once a hunt is initiated, evolutionary adaptations to the predator-prey interactions drive hunting success.

  20. Disentangling mite predator-prey relationships by multiplex PCR.

    Science.gov (United States)

    Pérez-Sayas, Consuelo; Pina, Tatiana; Gómez-Martínez, María A; Camañes, Gemma; Ibáñez-Gual, María V; Jaques, Josep A; Hurtado, Mónica A

    2015-11-01

    Gut content analysis using molecular techniques can help elucidate predator-prey relationships in situations in which other methodologies are not feasible, such as in the case of trophic interactions between minute species such as mites. We designed species-specific primers for a mite community occurring in Spanish citrus orchards comprising two herbivores, the Tetranychidae Tetranychus urticae and Panonychus citri, and six predatory mites belonging to the Phytoseiidae family; these predatory mites are considered to be these herbivores' main biological control agents. These primers were successfully multiplexed in a single PCR to test the range of predators feeding on each of the two prey species. We estimated prey DNA detectability success over time (DS50), which depended on the predator-prey combination and ranged from 0.2 to 18 h. These values were further used to weight prey detection in field samples to disentangle the predatory role played by the most abundant predators (i.e. Euseius stipulatus and Phytoseiulus persimilis). The corrected predation value for E. stipulatus was significantly higher than for P. persimilis. However, because this 1.5-fold difference was less than that observed regarding their sevenfold difference in abundance, we conclude that P. persimilis is the most effective predator in the system; it preyed on tetranychids almost five times more frequently than E. stipulatus did. The present results demonstrate that molecular tools are appropriate to unravel predator-prey interactions in tiny species such as mites, which include important agricultural pests and their predators. © 2015 John Wiley & Sons Ltd.

  1. Prey handling using whole-body fluid dynamics in batoids.

    Science.gov (United States)

    Wilga, Cheryl D; Maia, Anabela; Nauwelaerts, Sandra; Lauder, George V

    2012-02-01

    Fluid flow generated by body movements is a foraging tactic that has been exploited by many benthic species. In this study, the kinematics and hydrodynamics of prey handling behavior in little skates, Leucoraja erinacea, and round stingrays, Urobatis halleri, are compared using kinematics and particle image velocimetry. Both species use the body to form a tent to constrain the prey with the pectoral fin edges pressed against the substrate. Stingrays then elevate the head, which increases the volume between the body and the substrate to generate suction, while maintaining pectoral fin contact with the substrate. Meanwhile, the tip of the rostrum is curled upwards to create an opening where fluid is drawn under the body, functionally analogous to suction-feeding fishes. Skates also rotate the rostrum upwards although with the open rostral sides and the smaller fin area weaker fluid flow is generated. However, skates also use a rostral strike behavior in which the rostrum is rapidly rotated downwards pushing fluid towards the substrate to potentially stun or uncover prey. Thus, both species use the anterior portion of the body to direct fluid flow to handle prey albeit in different ways, which may be explained by differences in morphology. Rostral stiffness and pectoral fin insertion onto the rostrum differ between skates and rays and this corresponds to behavioral differences in prey handling resulting in distinct fluid flow patterns. The flexible muscular rostrum and greater fin area of stingrays allow more extensive use of suction to handle prey while the stiff cartilaginous rostrum of skates lacking extensive fin insertion is used as a paddle to strike prey as well as to clear away sand cover. Copyright © 2011 Elsevier GmbH. All rights reserved.

  2. Advances in photonic reservoir computing

    Science.gov (United States)

    Van der Sande, Guy; Brunner, Daniel; Soriano, Miguel C.

    2017-05-01

    We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir's complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  3. Encapsulated microsensors for reservoir interrogation

    Science.gov (United States)

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  4. Optimizing withdrawal from drinking water reservoirs to reduce downstream temperature pollution and reservoir hypoxia.

    Science.gov (United States)

    Weber, M; Rinke, K; Hipsey, M R; Boehrer, B

    2017-07-15

    Sustainable management of drinking water reservoirs requires balancing the demands of water supply whilst minimizing environmental impact. This study numerically simulates the effect of an improved withdrawal scheme designed to alleviate the temperature pollution downstream of a reservoir. The aim was to identify an optimal withdrawal strategy such that water of a desirable discharge temperature can be supplied downstream without leading to unacceptably low oxygen concentrations within the reservoir. First, we calibrated a one-dimensional numerical model for hydrodynamics and oxygen dynamics (GLM-AED2), verifying that the model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, the model was extended to include an adaptive withdrawal functionality, allowing for a prescribed withdrawal temperature to be found, with the potential constraint of hypolimnetic oxygen concentration. Scenario simulations on epi-/metalimnetic withdrawal demonstrate that the model is able to autonomously determine the best withdrawal height depending on the thermal structure and the hypolimnetic oxygen concentration thereby optimizing the ability to supply a desirable discharge temperature to the downstream river during summer. This new withdrawal strategy also increased the hypolimnetic raw water volume to be used for drinking water supply, but reduced the dissolved oxygen concentrations in the deep and cold water layers (hypolimnion). Implications of the results for reservoir management are discussed and the numerical model is provided for operators as a simple and efficient tool for optimizing the withdrawal strategy within different reservoir contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Walleye consumption and long-term population trends following gizzard shad introduction into a Western South Dakota reservoir

    Science.gov (United States)

    Ward, M.J.; Willis, D.W.; Miller, B.H.; Chipps, S.R.

    2007-01-01

    The gizzard shad (Dorosoma cepedianum) was introduced into 1,955-ha Angostura Reservoir, South Dakota to provide increased prey resources for walleye (Sander vitreus). Linear correlation analysis indicated that following gizzard shad introduction, walleye catch-per-unit-effort and mean length at age have increased over time (r = 0.68 to 0.85, P = 0.02 to 0.001). Walleye stomach contents were collected monthly from April through September, 2004 to determine the extent to which age-0 gizzard shad were being utilized as prey during the growing season. Age-0 gizzard shad were absent from walleye diets from April to mid-July (pre-shad-available period); however, from mid-July through early September (shad-available period), age-0 gizzard shad were an important prey item in all walleye diets. Mean weight decreased for walleyes of ages 2-5 during the spring, before age-0 gizzard shad became available; however, growth rate of walleyes increased appreciably during the shad-available period and was attributable to consumption of age-0 shad prey. In Angostura Reservoir, which lies at the northwestern edge of the gizzard shad range, walleye population characteristics have improved following shad introduction and during 2004, age-0 shad directly affected walleye feeding and growth.

  6. All-optical reservoir computing.

    Science.gov (United States)

    Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-09-24

    Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  7. Biomechanics of predator-prey arms race in lion, zebra, cheetah and impala

    Science.gov (United States)

    Wilson, Alan M.; Hubel, Tatjana Y.; Wilshin, Simon D.; Lowe, John C.; Lorenc, Maja; Dewhirst, Oliver P.; Bartlam-Brooks, Hattie L. A.; Diack, Rebecca; Bennitt, Emily; Golabek, Krystyna A.; Woledge, Roger C.; McNutt, J. Weldon; Curtin, Nancy A.; West, Timothy G.

    2018-02-01

    The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator-prey pairs, lion-zebra and cheetah-impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator-prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate.

  8. Sequential assessment of prey through the use of multiple sensory cues by an eavesdropping bat

    Science.gov (United States)

    Page, Rachel A.; Schnelle, Tanja; Kalko, Elisabeth K. V.; Bunge, Thomas; Bernal, Ximena E.

    2012-06-01

    Predators are often confronted with a broad diversity of potential prey. They rely on cues associated with prey quality and palatability to optimize their hunting success and to avoid consuming toxic prey. Here, we investigate a predator's ability to assess prey cues during capture, handling, and consumption when confronted with conflicting information about prey quality. We used advertisement calls of a preferred prey item (the túngara frog) to attract fringe-lipped bats, Trachops cirrhosus, then offered palatable, poisonous, and chemically manipulated anurans as prey. Advertisement calls elicited an attack response, but as bats approached, they used additional sensory cues in a sequential manner to update their information about prey size and palatability. While both palatable and poisonous small anurans were readily captured, large poisonous toads were approached but not contacted suggesting the use of echolocation for assessment of prey size at close range. Once prey was captured, bats used chemical cues to make final, post-capture decisions about whether to consume the prey. Bats dropped small, poisonous toads as well as palatable frogs coated in toad toxins either immediately or shortly after capture. Our study suggests that echolocation and chemical cues obtained at close range supplement information obtained from acoustic cues at long range. Updating information about prey quality minimizes the occurrence of costly errors and may be advantageous in tracking temporal and spatial fluctuations of prey and exploiting novel food sources. These findings emphasize the sequential, complex nature of prey assessment that may allow exploratory and flexible hunting behaviors.

  9. Prey size selection and cannibalistic behaviour of juvenile barramundi Lates calcarifer.

    Science.gov (United States)

    Ribeiro, F F; Qin, J G

    2015-05-01

    This study assessed the cannibalistic behaviour of juvenile barramundi Lates calcarifer and examined the relationship between prey size selection and energy gain of cannibals. Prey handling time and capture success by cannibals were used to estimate the ratio of energy gain to energy cost in prey selection. Cannibals selected smaller prey despite its capability of ingesting larger prey individuals. In behavioural analysis, prey handling time significantly increased with prey size, but it was not significantly affected by cannibal size. Conversely, capture success significantly decreased with the increase of both prey and cannibal sizes. The profitability indices showed that the smaller prey provides the most energy return for cannibals of all size classes. These results indicate that L. calcarifer cannibals select smaller prey for more profitable return. The behavioural analysis, however, indicates that L. calcarifer cannibals attack prey of all size at a similar rate but ingest smaller prey more often, suggesting that prey size selection is passively orientated rather than at the predator's choice. The increase of prey escape ability and morphological constraint contribute to the reduction of intracohort cannibalism as fish grow larger. This study contributes to the understanding of intracohort cannibalism and development of strategies to reduce fish cannibalistic mortalities. © 2015 The Fisheries Society of the British Isles.

  10. Comparative growth and development of spiders reared on live and dead prey.

    Science.gov (United States)

    Peng, Yu; Zhang, Fan; Gui, Shaolan; Qiao, Huping; Hose, Grant C

    2013-01-01

    Scavenging (feeding on dead prey) has been demonstrated across a number of spider families, yet the implications of feeding on dead prey for the growth and development of individuals and population is unknown. In this study we compare the growth, development, and predatory activity of two species of spiders that were fed on live and dead prey. Pardosa astrigera (Lycosidae) and Hylyphantes graminicola (Lyniphiidae) were fed live or dead fruit flies, Drosophila melanogaster. The survival of P. astrigera and H. graminicola was not affected by prey type. The duration of late instars of P. astrigera fed dead prey were longer and mature spiders had less protein content than those fed live prey, whereas there were no differences in the rate of H. graminicola development, but the mass of mature spiders fed dead prey was greater than those fed live prey. Predation rates by P. astrigera did not differ between the two prey types, but H. graminicola had a higher rate of predation on dead than alive prey, presumably because the dead flies were easier to catch and handle. Overall, the growth, development and reproduction of H. graminicola reared with dead flies was better than those reared on live flies, yet for the larger P. astrigera, dead prey may suit smaller instars but mature spiders may be best maintained with live prey. We have clearly demonstrated that dead prey may be suitable for rearing spiders, although the success of the spiders fed such prey appears size- and species specific.

  11. Bathymetry and capacity of Shawnee Reservoir, Oklahoma, 2016

    Science.gov (United States)

    Ashworth, Chad E.; Smith, S. Jerrod; Smith, Kevin A.

    2017-02-13

    Shawnee Reservoir (locally known as Shawnee Twin Lakes) is a man-made reservoir on South Deer Creek with a drainage area of 32.7 square miles in Pottawatomie County, Oklahoma. The reservoir consists of two lakes connected by an equilibrium channel. The southern lake (Shawnee City Lake Number 1) was impounded in 1935, and the northern lake (Shawnee City Lake Number 2) was impounded in 1960. Shawnee Reservoir serves as a municipal water supply, and water is transferred about 9 miles by gravity to a water treatment plant in Shawnee, Oklahoma. Secondary uses of the reservoir are for recreation, fish and wildlife habitat, and flood control. Shawnee Reservoir has a normal-pool elevation of 1,069.0 feet (ft) above North American Vertical Datum of 1988 (NAVD 88). The auxiliary spillway, which defines the flood-pool elevation, is at an elevation of 1,075.0 ft.The U.S. Geological Survey (USGS), in cooperation with the City of Shawnee, has operated a real-time stage (water-surface elevation) gage (USGS station 07241600) at Shawnee Reservoir since 2006. For the period of record ending in 2016, this gage recorded a maximum stage of 1,078.1 ft on May 24, 2015, and a minimum stage of 1,059.1 ft on April 10–11, 2007. This gage did not report reservoir storage prior to this report (2016) because a sufficiently detailed and thoroughly documented bathymetric (reservoir-bottom elevation) survey and corresponding stage-storage relation had not been published. A 2011 bathymetric survey with contours delineated at 5-foot intervals was published in Oklahoma Water Resources Board (2016), but that publication did not include a stage-storage relation table. The USGS, in cooperation with the City of Shawnee, performed a bathymetric survey of Shawnee Reservoir in 2016 and released the bathymetric-survey data in 2017. The purposes of the bathymetric survey were to (1) develop a detailed bathymetric map of the reservoir and (2) determine the relations between stage and reservoir storage

  12. Fear on the move: predator hunting mode predicts variation in prey mortality and plasticity in prey spatial response.

    Science.gov (United States)

    Miller, Jennifer R B; Ament, Judith M; Schmitz, Oswald J

    2014-01-01

    Ecologists have long searched for a framework of a priori species traits to help predict predator-prey interactions in food webs. Empirical evidence has shown that predator hunting mode and predator and prey habitat domain are useful traits for explaining predator-prey interactions. Yet, individual experiments have yet to replicate predator hunting mode, calling into question whether predator impacts can be attributed to hunting mode or merely species identity. We tested the effects of spider predators with sit-and-wait, sit-and-pursue and active hunting modes on grasshopper habitat domain, activity and mortality in a grassland system. We replicated hunting mode by testing two spider predator species of each hunting mode on the same grasshopper prey species. We observed grasshoppers with and without each spider species in behavioural cages and measured their mortality rates, movements and habitat domains. We likewise measured the movements and habitat domains of spiders to characterize hunting modes. We found that predator hunting mode explained grasshopper mortality and spider and grasshopper movement activity and habitat domain size. Sit-and-wait spider predators covered small distances over a narrow domain space and killed fewer grasshoppers than sit-and-pursue and active predators, which ranged farther distances across broader domains and killed more grasshoppers, respectively. Prey adjusted their activity levels and horizontal habitat domains in response to predator presence and hunting mode: sedentary sit-and-wait predators with narrow domains caused grasshoppers to reduce activity in the same-sized domain space; more mobile sit-and-pursue predators with broader domains caused prey to reduce their activity within a contracted horizontal (but not vertical) domain space; and highly mobile active spiders led grasshoppers to increase their activity across the same domain area. All predators impacted prey activity, and sit-and-pursue predators generated strong

  13. Feeding behaviour of the nauplii of the marine calanoid copepod Paracartia grani Sars: Functional response, prey size spectrum, and effects of the presence of alternative prey.

    Directory of Open Access Journals (Sweden)

    Laura K Helenius

    Full Text Available Laboratory feeding experiments were conducted to study the functional response and prey size spectrum of the young naupliar stages of the calanoid copepod Paracartia grani Sars. Experiments were conducted on a range of microalgal prey of varying sizes and motility patterns. Significant feeding was found in all prey of a size range of 4.5-19.8 μm, with Holling type III functional responses observed for most prey types. The highest clearance rates occurred when nauplii fed on the dinoflagellate Heterocapsa sp. and the diatom Thalassiosira weissflogii (respectively, 0.61 and 0.70 mL ind-1 d-1, suggesting an optimal prey:predator ratio of 0.09. Additional experiments were conducted to examine the effects of the presence of alternative prey (either Heterocapsa sp. or Gymnodinium litoralis on the functional response to the haptophyte Isochrysis galbana. In the bialgal mixtures, clearance and ingestion rates of I. galbana along the range of the functional response were significantly reduced as a result of selectivity towards the larger, alternative prey. Paradoxically, relatively large prey trigger a perception response in the nauplii, but most likely such prey cannot be completely ingested and a certain degree of sloppy feeding may occur. Our results are further evidence of the complex prey-specific feeding interactions that are likely to occur in natural assemblages with several available prey types.

  14. Geothermal Reservoir Well Stimulation Program: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

  15. Predator and prey perception in copepods due to hydromechanical signals

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Visser, Andre

    1999-01-01

    of the different components of the fluid disturbance. We use this model to argue that prey perception depends on the absolute magnitude of the fluid velocity generated by the moving prey, while predator perception depends on the magnitude of one or several of the components of the fluid velocity gradients...... (deformation rate, vorticity, acceleration) generated by the predator. On the assumption that hydrodynamic disturbances are perceived through the mechanical bending of sensory setae, we estimate the magnitude of the signal strength due to each of the fluid disturbance components. We then derive equations...... for reaction distances as a function of threshold signal strength and the size and velocity of the prey or predator. We provide a conceptual framework for quantifying threshold signal strengths and, hence, perception distances. The model is illustrated by several examples, and we demonstrate, for example, (1...

  16. On multi-team predator-prey models

    International Nuclear Information System (INIS)

    Elettreby, M.F.; Saker, S.H.; Ahmed, E.

    2005-05-01

    Many creatures form teams. This has, at least, two main advantages: the first is the improvement in foraging, since looking for food in a team is more efficient than doing it alone. The second is that living in a team reduces predation risk due to early spotting of predators and that existing in a team gives a higher probability that the predator will attack another member of the team. In this paper models are given where two teams of predators interact with two teams of preys. The teams of each group (predators or preys) help each other. In this paper we propose three different versions of the multi-team predator prey model. We study the equilibrium solutions, the conditions of their local asymptotic stability, persistence and the global stability of the solution of one of the models. Some numerical simulations are done. (author)

  17. Influence of poisoned prey on foraging behavior of ferruginous hawks

    Science.gov (United States)

    Vyas, Nimish B.; Kuncir, Frank; Clinton, Criss C.

    2017-01-01

    We recorded 19 visits by ferruginous hawks (Buteo regalis) over 6 d at two black–tailed prairie dog (Cynomys ludovicianus) subcolonies poisoned with the rodenticide Rozol® Prairie Dog Bait (0.005% chlorophacinone active ingredient) and at an adjacent untreated subcolony. Before Rozol® application ferruginous hawks foraged in the untreated and treated subcolonies but after Rozol® application predation by ferruginous hawks was only observed in the treated subcolonies. We suggest that ferruginous hawks' preference for hunting in the treated subcolonies after Rozol® application was influenced by the availability of easy-to-capture prey, presumably due to Rozol® poisoning. The energetically beneficial behavior of favoring substandard prey may increase raptor encounters with rodenticide exposed animals if prey vulnerability has resulted from poisoning.

  18. Release from prey preservation behavior via prey switch allowed diversification of cuticular hydrocarbon profiles in digger wasps.

    Science.gov (United States)

    Wurdack, Mareike; Polidori, Carlo; Keller, Alexander; Feldhaar, Heike; Schmitt, Thomas

    2017-11-01

    The cuticle of insects is covered by a layer of hydrocarbons (CHC), whose original function is the protection from desiccation and pathogens. However, in most insects CHC profiles are species specific. While this variability among species was largely linked to communication and recognition functions, additional selective forces may shape insect CHC profiles. Here, we show that in Philanthinae digger wasps (Crabronidae) the CHC profile coevolved with a peculiar brood-care strategy. In particular, we found that the behavior to embalm prey stored in the nest with hydrocarbons is adaptive to protect larval food from fungi in those species hunting for Hymenoptera. The prey embalming secretion is identical in composition to the alkene-dominated CHC profile in these species, suggesting that their profile is adaptively conserved for this purpose. In contrast, prey embalming is not required in those species that switched to Coleoptera as prey. Released from this chemical brood-care strategy, Coleoptera-hunting species considerably diversified their CHC profiles. Differential needs to successfully protect prey types used as larval food have thus driven the diversification of CHCs profiles of female Philanthinae wasps. To the best of our knowledge, this is the first evidence of a direct link between selection pressure for food preservation and CHC diversity. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  19. Reservoir engineering and hydrogeology

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Summaries are included which show advances in the following areas: fractured porous media, flow in single fractures or networks of fractures, hydrothermal flow, hydromechanical effects, hydrochemical processes, unsaturated-saturated systems, and multiphase multicomponent flows. The main thrust of these efforts is to understand the movement of mass and energy through rocks. This has involved treating fracture rock masses in which the flow phenomena within both the fractures and the matrix must be investigated. Studies also address the complex coupling between aspects of thermal, hydraulic, and mechanical processes associated with a nuclear waste repository in a fractured rock medium. In all these projects, both numerical modeling and simulation, as well as field studies, were employed. In the theoretical area, a basic understanding of multiphase flow, nonisothermal unsaturated behavior, and new numerical methods have been developed. The field work has involved reservoir testing, data analysis, and case histories at a number of geothermal projects

  20. FRACTURED PETROLEUM RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Abbas Firoozabadi

    1999-06-11

    The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly

  1. Reservoir sedimentation; a literature survey

    NARCIS (Netherlands)

    Sloff, C.J.

    1991-01-01

    A survey of literature is made on reservoir sedimentation, one of the most threatening processes for world-wide reservoir performance. The sedimentation processes, their impacts, and their controlling factors are assessed from a hydraulic engineering point of view with special emphasis on

  2. Air–water CO2 and CH4 fluxes along a river–reservoir continuum: Case study in the Pengxi River, a tributary of the Yangtze River in the Three Gorges Reservoir, China

    Science.gov (United States)

    Water surface greenhouse gas (GHG) emissions in freshwater reservoirs are closely related to limnological processes in the water column. Affected by both reservoir operation and seasonal changes, variations in the hydro-morphological conditions in the river–reservoir continuum will create distinctiv...

  3. Microbial Enhanced Oil Recovery - Advanced Reservoir Simulation

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie

    the water phase. The biofilm formation implies that the concentration of bacteria near the inlet increases. In combination with surfactant production, the biofilm results in a higher surfactant concentration in the initial part of the reservoir. The oil that is initially bypassed in connection...... simulator. In the streamline simulator, the effect of gravity is introduced using an operator splitting technique. The gravity effect stabilizes oil displacement causing markedly improvement of the oil recovery, when the oil density becomes relatively low. The general characteristics found for MEOR in one......-dimensional simulations are also demonstrated both in two and three dimensions. Overall, this MEOR process conducted in a heterogeneous reservoir also produces more oil compared to waterflooding, when the simulations are run in multiple dimensions. The work presented in this thesis has resulted in two publications so far....

  4. Putting integrated reservoir characterization into practice - in house training

    Energy Technology Data Exchange (ETDEWEB)

    Wright, F.M. Jr.; Best, D.A.; Clarke, R.T. [Mobile Exploration and Producing Technical Center, Dallas, TX (United States)

    1997-08-01

    The need for even more efficient reservoir characterization and management has forced a change in the way Mobil Oil provides technical support to its production operations. We`ve learned that to be successful, a good understanding of the reservoir is essential. This includes an understanding of the technical and business significance of reservoir heterogeneities at different stages of field development. A multi-disciplinary understanding of the business of integrated reservoir characterization is essential and to facilitate this understanding, Mobil has developed a highly successful {open_quotes}Reservoir Characterization Field Seminar{close_quotes}. Through specific team based case studies that incorporate outcrop examples and data the program provides participants the opportunity to explore historic and alternative approaches to reservoir description, characterization and management. We explore appropriate levels and timing of data gathering, technology applications, risk assessment and management practices at different stages of field development. The case studies presented throughout the course are a unique element of the program which combine real life and hypothetical problem sets that explore how different technical disciplines interact, the approaches to a problem solving they use, the assumptions and uncertainties contained in their contributions and the impact those conclusions may have on other disciplines involved in the overall reservoir management process. The team building aspect of the course was an added bonus.

  5. Electrokinetic Flow in Microchannels with Finite Reservoir Size Effects

    International Nuclear Information System (INIS)

    Yan, D; Yang, C; Nguyen, N-T; Huang, X

    2006-01-01

    In electrokinetically-driven microfluidic applications, reservoirs are indispensable and have finite sizes. During operation processes, as the liquid level difference in reservoirs keeps changing as time elapses, the flow characteristics in a microchannel exhibit a combination of the electroosmotic flow and the time-dependent induced backpressure-driven flow. In this work, an assessment of the finite reservoir size effect on electroosmotic flows is presented theoretically and experimentally. A model is developed to describe the timedependent electrokinetic flow with finite reservoir size effects. The theoretical analysis shows that under certain conditions the finite reservoir size effect is significant. The important parameters that describe the effect of finite reservoir size on the flow characteristics are discussed. A new concept denoted as 'effective pumping period' is introduced to characterize the reservoir size effect. The proposed model clearly identifies the mechanisms of the finitereservoir size effects and is further confirmed by using micro-PIV technique. The results of this study can be used for facilitating the design of microfluidic devices

  6. Advances in photonic reservoir computing

    Directory of Open Access Journals (Sweden)

    Van der Sande Guy

    2017-05-01

    Full Text Available We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir’s complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  7. Optimization of Multipurpose Reservoir Systems Using Power Market Models

    DEFF Research Database (Denmark)

    Pereira-Cardenal, S. J.; Mo, B.; Riegels, N.

    2015-01-01

    optimal operation rules that maximize current and expected future benefits as a function of reservoir level, week of the year, and inflow state. The method was tested on the Iberian Peninsula and performed better than traditional approaches that use exogenous prices: resulting operation rules were more...

  8. The diet of reservoir perch before, during and after establishment of non-native tubenose goby

    Directory of Open Access Journals (Sweden)

    Všetičková Lucie

    2018-01-01

    Full Text Available In recent decades, gobiid species have increased their distribution throughout Europe and now often represent the dominant genus along many rivers and canals. In this study, we assessed the role of tubenose goby (Proterorhinus semilunaris as a prey species of native perch (Perca fluviatilis in a lowland reservoir soon after their initial introduction in 1994 (sampling started 1998 and 17 years after establishment (2011–2012. We compare these data with perch diet composition from before introduction (1981–1982. Our data indicate that tubenose gobies quickly became the dominant species along the reservoir bankside, making them an attractive prey for ≥1 + perch. There was a clear increasing trend in the numbers of larger perch caught along the rip-rap, with the largest fish clearly specialising on gobies. As such, introduction of tubenose gobies has had a pronounced effect on food web and population dynamics along the littoral zone. While goby numbers appear to have dropped significantly in recent years, apparently due to predation pressure, further studies are needed to assess whether such changes have had any general impact on population and food web dynamics within the reservoir.

  9. Revealing the role of predator interference in a predator-prey system with disease in prey population

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Kooi, B.W.; Biswas, B.

    2015-01-01

    Predation on a species subjected to an infectious disease can affect both the infection level and the population dynamics. There is an ongoing debate about the act of managing disease in natural populations through predation. Recent theoretical and empirical evidence shows that predation...... on infected populations can have both positive and negative influences on disease in prey populations. Here, we present a predator-prey system where the prey population is subjected to an infectious disease to explore the impact of predator on disease dynamics. Specifically, we investigate how...... on the strength of interference among predators, predators enhance or control disease outbreaks and population persistence. Moreover, the presence of multistable regimes makes the system very sensitive to perturbations and facilitates a number of regime shifts. Since, the habitat structure and the choice...

  10. Predator-Prey Dynamics in the Mesopelagic: Odontocete Foraging Ecology and Anti-predator Behavior of Prey

    Science.gov (United States)

    Benoit-Bird, K. J.

    2016-02-01

    We explored the behavior of Risso's dolphins foraging in scattering layers off California using an integrated approach comprising echosounders deployed in a deep-diving autonomous underwater vehicle, ship based acoustics, visual observations, direct prey sampling, and animal-borne tags on deep-diving predators. We identified three distinct prey layers: a persistent layer around 425 m, a vertically migrating layer around 300 m, and a layer intermittently present near 50 m, all of which were used by individual tagged animals. Active acoustic measurements demonstrated that Risso's dolphins dove to discrete prey layers throughout the day and night with only slightly higher detection rates at night. Dolphins were detected in all three layers during the day with over half of detections in the middle layer, 20% of detections in the deepest layer, and 10% falling outside the main layers. Dolphins were found less frequently in areas where the shallow, intermittent layer was absent, suggesting that this layer, while containing the smallest prey and the lowest densities of squid, was an important component of their foraging strategy. The deepest layer was targeted equally both during the day and at night. Using acoustic data collected from the AUV, we found layers were made up of distinct, small patches of animals of similar size and taxonomy adjacent to contrasting patches. Squid made up over 70% of the patches in which dolphins were found and more than 95% of those in deep water. Squid targeted by dolphins in deep water were also relatively large, indicating significant benefit from these relatively rare, physically demanding dives. Within these patches, prey formed tighter aggregations when Risso's dolphins were present. Careful integration of a suite of traditional and novel tools is providing insight into the ecology and dynamics of predator and prey in the mesopelagic.

  11. A Tool for Assessing Future Capacity Loss Due to Sedimentation in the United States' Reservoirs

    Science.gov (United States)

    Pinson, A. O.; Baker, B.; White, K. D.

    2017-12-01

    Federal reservoirs are critical components of the United States' water supply, flood risk management, hydropower and navigation infrastructure. These reservoirs included capacity for storage loss due to the deposition of sediment by inflowing streams in their original design. However, the actual rate of capacity loss experienced is controlled in part by climate, topography, soils, and land use/land cover, and may vary from the design. To assess the current and future vulnerability of its reservoirs to sedimentation. USACE has developed an online planning tool to identify USACE reservoirs where sedimentation is currently a problem (e.g., sedimentation rate exceeds design sedimentation rate, or zone losses disproportionately affect authorized purposes), and reservoirs where rates are expected to increase significantly in the future. The goal is to be able to prioritize operation and maintenance actions to minimize the effects of reservoir capacity loss on authorized purposes and help maximize reservoir use life.

  12. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  13. Is the red spotted green frog Hypsiboas punctatus (Anura: Hylidae) selecting its preys? The importance of prey availability.

    Science.gov (United States)

    López, Javier A; Scarabotti, Pablo A; Medrano, María C; Ghirardi, Romina

    2009-09-01

    The study of the feeding ecology of amphibians is an old issue in herpetology. Notwithstanding, the lack of food resources data in many studies of amphibians feeding has lead to partial understanding of frog feeding strategies. In this study we evaluate the trophic selectivity of a red spotted green frog (Hypsiboas punctatus) population from a Middle Paraná River floodplain pond in Argentina, and discuss the importance of prey availability data when interpreting results from diet analysis. We analyzed the gut contents of 47 H. punctatus adults and compared frog's diet with the environmental food resources. Prey availability was estimated by systematically seep-netting the microhabitat where anurans were localized foraging. We identified 33 taxonomic categories from gastrointestinal contents. Numerically, the most important prey categories were dipterans, followed by hemipterans, homopterans and coleopterans. The diet similarity between males and females was high and no statistical differences in diet composition were found. The most abundant food resources in the environment were dipterans, coleopterans, homopterans and collembolans. In order to assess whether frogs were selecting their preys, we calculated Pianka's niche overlap index and Jacobs' electivity index comparing gut contents to prey availability data. Trophic niche overlap was medium but significantly higher than expected by chance. The electivity index indicated that H. punctatus foraged dipterans slightly above their environmental abundance. Among the secondary preys, hemipterans were foraged selectively, homopterans were consumed in the same proportion to their occurrence in the environment, coleopterans were foraged quite under their availability and collembolans were practically ignored by frogs. Without food resources data, H. punctatus could be classified as a specialist feeder, but dipterans also were quite abundant in the environment. Our results show that H. punctatus fit better as a

  14. Study of pressure maintenance in the lower Gassi Touil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Ribuot, M.

    1969-11-01

    The Gassi Touil reservoir in the Sahara is a faulted anticline; the reservoir rock consists of a series of shales and sandstones. It has a primary gas cap in equilibrium with the oil. The oil-gas interface is at 1,642 m; the oil-water interface at 1,970 m. Initial pressure was substantially above hydrostatic. The reservoir contains about 97 million tons STO. A 3-phase, 3-dimensional computer model was used to study the recovery by primary depletion, and by pressure maintenance by gas or water injection. Water injection yields the maximum recovery, but its full efficiency is limited by the fact that only one row of wells can be drilled to the annulus where the wells penetrate only the oil zone. This operation must be supplemented with gas injection into the expanding gas cap in order to efficiently maintain in the reservoir pressure.

  15. Heavy oil reservoirs recoverable by thermal technology. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kujawa, P.

    1981-02-01

    This volume contains reservoir, production, and project data for target reservoirs thermally recoverable by steam drive which are equal to or greater than 2500 feet deep and contain heavy oil in the 8 to 25/sup 0/ API gravity range. Data were collected from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  16. Bifurcations and feedback control of a stage-structure exploited prey ...

    African Journals Online (AJOL)

    user

    Here, we have considered a stage structure prey-predator model with stage structure for ... N over the prey ,N β is the transition rate from mature predator population 2 ...... Mathematical Bioeconomics: The Optimal Management of Renewable ...

  17. An Objective Approach to Determining the Weight Ranges of Prey Preferred by and Accessible to the Five Large African Carnivores

    OpenAIRE

    Clements, Hayley S.; Tambling, Craig J.; Hayward, Matt W.; Kerley, Graham I. H.

    2014-01-01

    Broad-scale models describing predator prey preferences serve as useful departure points for understanding predator-prey interactions at finer scales. Previous analyses used a subjective approach to identify prey weight preferences of the five large African carnivores, hence their accuracy is questionable. This study uses a segmented model of prey weight versus prey preference to objectively quantify the prey weight preferences of the five large African carnivores. Based on simulations of kno...

  18. Trait-mediated diversification in nematode predator–prey systems

    NARCIS (Netherlands)

    Mulder, C.; Helder, J.; Vervoort, M.T.W.; Vonk, J.A.

    2011-01-01

    Nematodes are presumably the most numerous Metazoans in terrestrial habitats. They are represented at all trophic levels and are known to respond to nutrient limitation, prey availability, and microbial resources. Predatory nematodes reside at the highest trophic level, and as such their feeding

  19. Does colour polymorphism enhance survival of prey populations?

    Science.gov (United States)

    Wennersten, Lena; Forsman, Anders

    2009-01-01

    That colour polymorphism may protect prey populations from predation is an old but rarely tested hypothesis. We examine whether colour polymorphic populations of prey exposed to avian predators in an ecologically valid visual context were exposed to increased extinction risk compared with monomorphic populations. We made 2976 artificial pastry prey, resembling Lepidoptera larvae, in four different colours and presented them in 124 monomorphic and 124 tetramorphic populations on tree trunks and branches such that they would be exposed to predation by free-living birds, and monitored their ‘survival’. Among monomorphic populations, there was a significant effect of prey coloration on survival, confirming that coloration influenced susceptibility to visually oriented predators. Survival of polymorphic populations was inferior to that of monomorphic green populations, but did not differ significantly from monomorphic brown, yellow or red populations. Differences in survival within polymorphic populations paralleled those seen among monomorphic populations; the red morph most frequently went extinct first and the green morph most frequently survived the longest. Our findings do not support the traditional protective polymorphism hypothesis and are in conflict with those of earlier studies. As a possible explanation to our findings, we offer a competing ‘giveaway cue’ hypothesis: that polymorphic populations may include one morph that attracts the attention of predators and that polymorphic populations therefore may suffer increased predation compared with some monomorphic populations. PMID:19324729

  20. Prey, but not plant, chemical discrimination by the lizard ...

    African Journals Online (AJOL)

    We experimentally studied responses to food chemicals by Gerrhosaurus nigrolineatus, amember of a lizard genus endemic to subsaharan Africa. Gerrhosaur diets vary from insectivorous to omnivorous with a very large plant portion. The omnivorous G. validus responds strongly to chemical cues from prey and food plants.

  1. Echolocating bats cry out loud to detect their prey

    DEFF Research Database (Denmark)

    Surlykke, Annemarie; Kalko, Elisabeth K V

    2008-01-01

    Echolocating bats have successfully exploited a broad range of habitats and prey. Much research has demonstrated how time-frequency structure of echolocation calls of different species is adapted to acoustic constraints of habitats and foraging behaviors. However, the intensity of bat calls has b...

  2. Hydrodynamics of prey capture in sharks : effects of substrate

    NARCIS (Netherlands)

    Nauwelaerts, Sandra; Wilga, Cheryl; Sanford, Christopher; Lauder, George

    2007-01-01

    In suction feeding, a volume of water is drawn into the mouth of a predator. Previous studies of suction feeding in fishes have shown that significant fluid velocities are confined to a region within one mouth width from the mouth. Therefore, the predator must be relatively close to the prey to

  3. Direct identification of predator-prey dynamics in gyrokinetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Sumire, E-mail: sumire.kobayashi@lpp.polytechnique.fr; Gürcan, Özgür D [Laboratoire de Physique des Plasmas, CNRS, Paris-Sud, Ecole Polytechnique, UMR7648, F-91128 Palaiseau (France); Diamond, Patrick H. [University of California, San Diego, La Jolla, California 92093-0319 (United States)

    2015-09-15

    The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varying level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.

  4. Prey capture success and chick diet of Damara terns Sterna ...

    African Journals Online (AJOL)

    Feeding terns are affected by a variety of environmental conditions. We studied prey capture success of Damara terns Sterna balaenarum in relation to six variables at two breeding colonies in southern Namibia: tidal phase, wind speed, water clarity, cloud cover, water depth and locality. Damara terns dived most ...

  5. Predators are attracted to the olfactory signals of prey.

    Directory of Open Access Journals (Sweden)

    Nelika K Hughes

    2010-09-01

    Full Text Available Predator attraction to prey social signals can force prey to trade-off the social imperatives to communicate against the profound effect of predation on their future fitness. These tradeoffs underlie theories on the design and evolution of conspecific signalling systems and have received much attention in visual and acoustic signalling modes. Yet while most territorial mammals communicate using olfactory signals and olfactory hunting is widespread in predators, evidence for the attraction of predators to prey olfactory signals under field conditions is lacking.To redress this fundamental issue, we examined the attraction of free-roaming predators to discrete patches of scents collected from groups of two and six adult, male house mice, Mus domesticus, which primarily communicate through olfaction. Olfactorily-hunting predators were rapidly attracted to mouse scent signals, visiting mouse scented locations sooner, and in greater number, than control locations. There were no effects of signal concentration on predator attraction to their prey's signals.This implies that communication will be costly if conspecific receivers and eavesdropping predators are simultaneously attracted to a signal. Significantly, our results also suggest that receivers may be at greater risk of predation when communicating than signallers, as receivers must visit risky patches of scent to perform their half of the communication equation, while signallers need not.

  6. Insectivorous birds eavesdrop on the pheromones of their prey.

    Science.gov (United States)

    Saavedra, Irene; Amo, Luisa

    2018-01-01

    Chemical cues play a fundamental role in mate attraction and mate choice. Lepidopteran females, such as the winter moth (Operophtera brumata), emit pheromones to attract males in the reproductive period. However, these chemical cues could also be eavesdropped by predators. To our knowledge, no studies have examined whether birds can detect pheromones of their prey. O. brumata adults are part of the winter diet of some insectivorous tit species, such as the great tit (Parus major) and blue tit (Cyanistes caeruleus). We performed a field experiment aimed to disentangle whether insectivorous birds can exploit the pheromones emitted by their prey for prey location. We placed artificial larvae and a dispenser on branches of Pyrenean oak trees (Quercus pyrenaica). In half of the trees we placed an O. brumata pheromone dispenser and in the other half we placed a control dispenser. We measured the predation rate of birds on artificial larvae. Our results show that more trees had larvae with signs of avian predation when they contained an O. brumata pheromone than when they contained a control dispenser. Furthermore, the proportion of artificial larvae with signs of avian predation was greater in trees that contained the pheromone than in control trees. Our results indicate that insectivorous birds can exploit the pheromones emitted by moth females to attract males, as a method of prey detection. These results highlight the potential use of insectivorous birds in the biological control of insect pests.

  7. Chapter 22: Marbled Murrelet Food Habits and Prey Ecology

    Science.gov (United States)

    Esther E. Burkett

    1995-01-01

    Information on food habits of the Marbled Murrelet (Brachyramphus marmoratus) was compiled from systematic studies and anecdotal reports from Alaska to California. Major differences between the winter and summer diets were apparent, with euphausiids and mysids becoming more dominant during winter and spring. The primary invertebrate prey items were...

  8. Stochastic population oscillations in spatial predator-prey models

    International Nuclear Information System (INIS)

    Taeuber, Uwe C

    2011-01-01

    It is well-established that including spatial structure and stochastic noise in models for predator-prey interactions invalidates the classical deterministic Lotka-Volterra picture of neutral population cycles. In contrast, stochastic models yield long-lived, but ultimately decaying erratic population oscillations, which can be understood through a resonant amplification mechanism for density fluctuations. In Monte Carlo simulations of spatial stochastic predator-prey systems, one observes striking complex spatio-temporal structures. These spreading activity fronts induce persistent correlations between predators and prey. In the presence of local particle density restrictions (finite prey carrying capacity), there exists an extinction threshold for the predator population. The accompanying continuous non-equilibrium phase transition is governed by the directed-percolation universality class. We employ field-theoretic methods based on the Doi-Peliti representation of the master equation for stochastic particle interaction models to (i) map the ensuing action in the vicinity of the absorbing state phase transition to Reggeon field theory, and (ii) to quantitatively address fluctuation-induced renormalizations of the population oscillation frequency, damping, and diffusion coefficients in the species coexistence phase.

  9. Lionfish misidentification circumvents an optimized escape response by prey.

    Science.gov (United States)

    McCormick, Mark I; Allan, Bridie J M

    2016-01-01

    Invasive lionfish represent an unprecedented problem in the Caribbean basin, where they are causing major changes to foodwebs and habitats through their generalized predation on fishes and invertebrates. To ascertain what makes the red lionfish ( Pterois volitans ) such a formidable predator, we examined the reaction of a native damselfish prey, the whitetail damsel ( Pomacentrus chrysurus ), to a repeatable startle stimulus once they had been forewarned of the sight or smell of lionfish. Fast-start responses were compared with prey forewarned of a predatory rockcod ( Cephalopholis microprion ), a corallivorous butterflyfish ( Chaetodon trifasctiatus ) and experimental controls. Forewarning of the sight, smell or a combination of the two cues from a rockcod led to reduced escape latencies and higher response distances, speed and maximal speed compared with controls, suggesting that forewarning primed the prey and enabled a more effective escape response. In contrast, forewarning of lionfish did not affect the fast-start kinematics measured, which were the same as in the control and non-predatory butterflyfish treatments. Lionfish appear to be able to circumvent mechanisms commonly used by prey to identify predators and were misclassified as non-predatory, and this is likely to contribute to their success as predators.

  10. Testing for Camouflage Using Virtual Prey and Human "Predators"

    Science.gov (United States)

    Todd, Peter A.

    2009-01-01

    Camouflage is a prevalent feature of the natural world and as such has a ready appeal to students; however, it is a difficult subject to study using real predators and prey. This paper focuses how one fundamental type of camouflage, disruptive colouration (bold markings that break up the outline of the organism), can be tested using paper…

  11. Understanding the True Stimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf; Saad, Bilal; Negara, Ardiansyah; Sun, Shuyu

    2017-01-01

    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically

  12. Effects of Formation Damage on Productivity of Underground Gas Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    C.I.C. Anyadiegwu

    2013-12-01

    Full Text Available Analysis of the effects of formation damage on the productivity of gas storage reservoirs was performed with depleted oil reservoir (OB-02, located onshore, Niger Delta, Nigeria. Information on the reservoir and the fluids from OB-02 were collected and used to evaluate the deliverabilities of the gas storage reservoir over a 10-year period of operation. The results obtained were used to plot graphs of deliverability against permeability and skin respectively. The graphs revealed that as the permeability decreased, the skin increased, and hence a decrease in deliverability of gas from the reservoir during gas withdrawal. Over the ten years of operating the reservoir for gas storage, the deliverability and permeability which were initially 2.7 MMscf/d and 50 mD, with a skin of 0.2, changed to new values of 0.88 MMscf/d and 24 mD with the skin as 4.1 at the tenth year.

  13. Analysis of the influence of input data uncertainties on determining the reliability of reservoir storage capacity

    Directory of Open Access Journals (Sweden)

    Marton Daniel

    2015-12-01

    Full Text Available The paper contains a sensitivity analysis of the influence of uncertainties in input hydrological, morphological and operating data required for a proposal for active reservoir conservation storage capacity and its achieved values. By introducing uncertainties into the considered inputs of the water management analysis of a reservoir, the subsequent analysed reservoir storage capacity is also affected with uncertainties. The values of water outflows from the reservoir and the hydrological reliabilities are affected with uncertainties as well. A simulation model of reservoir behaviour has been compiled with this kind of calculation as stated below. The model allows evaluation of the solution results, taking uncertainties into consideration, in contributing to a reduction in the occurrence of failure or lack of water during reservoir operation in low-water and dry periods.

  14. Perceptual advertisement by the prey of stalking or ambushing predators.

    Science.gov (United States)

    Broom, Mark; Ruxton, Graeme D

    2012-12-21

    There has been previous theoretical explorations of the stability of signals by prey that they have detected a stalking or ambush predator, where such perceptual advertisement dissuades the predator from attacking. Here we use a game theoretical model to extend the theory to consider some empirically-motivated complexities: (i) many perceptual advertisement signals appear to have the potential to vary in intensity, (ii) higher intensity signals are likely to be most costly to produce, and (iii) some high-cost signals (such as staring directly at the predator) can only be utilised if the prey is very confident of the existence of a nearby predator (that is, there are reserved or unfakable signals). We demonstrate that these complexities still allow for stable signalling. However, we do not find solutions where prey use a range of signal intensities to signal different degrees of confidence in the proximity of a predator; with prey simply adopting a binary response of not signalling or always signalling at the same fixed level. However this fixed level will not always be the cheapest possible signal, and we predict that prey that require more certainty about proximity of a predator will use higher-cost signals. The availability of reserved signals does not prohibit the stability of signalling based on lower-cost signals, but we also find circumstances where only the reserved signal is used. We discuss the potential to empirically test our model predictions, and to develop theory further to allow perceptual advertisement to be combined with other signalling functions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The relative influence of prey abundance and co-breeders on the ...

    African Journals Online (AJOL)

    This study investigates if the reproductive performance of polyandrous Pale Chanting-goshawks, Melierax canorus, is governed by the abundance of dominant rodent-prey species or a co-breeding male participating fully in prey being delivered to the female and young. Polyandrous trios in prey-rich habitat, the only habitat ...

  16. Irreversible prey diapause as an optimal strategy of a physiologically extended Lotka-Volterra model

    NARCIS (Netherlands)

    Staňková, K.; Abate, A.; Sabelis, M.W.

    2013-01-01

    We propose an optimal control framework to describe intra-seasonal predator-prey interactions, which are characterized by a continuous-time dynamical model comprising predator and prey density, as well as the energy budget of the prey over the length of a season. The model includes a time-dependent

  17. Prey change behaviour with predation threat, but demographic effects vary with prey density: experiments with grasshoppers and birds.

    Science.gov (United States)

    Belovsky, Gary E; Laws, Angela Nardoni; Slade, Jennifer B

    2011-04-01

    Increasingly, ecologists emphasize that prey frequently change behaviour in the presence of predators and these behavioural changes can reduce prey survival and reproduction as much or more than predation itself. However, the effects of behavioural changes on survival and reproduction may vary with prey density due to intraspecific competition. In field experiments, we varied grasshopper density and threat of avian predation and measured grasshopper behaviour, survival and reproduction. Grasshopper behaviour changed with the threat of predation and these behavioural changes were invariant with grasshopper density. Behavioural changes with the threat of predation decreased per capita reproduction over all grasshopper densities; whereas the behavioural changes increased survival at low grasshopper densities and then decreased survival at high densities. At low grasshopper densities, the total reproductive output of the grasshopper population remained unchanged with predation threat, but declined at higher densities. The effects of behavioural changes with predation threat varied with grasshopper density because of a trade-off between survival and reproduction as intraspecific competition increased with density. Therefore, resource availability may need to be considered when assessing how prey behavioural changes with predation threat affect population and food web dynamics. © 2011 Blackwell Publishing Ltd/CNRS.

  18. Design Techniques and Reservoir Simulation

    Directory of Open Access Journals (Sweden)

    Ahad Fereidooni

    2012-11-01

    Full Text Available Enhanced oil recovery using nitrogen injection is a commonly applied method for pressure maintenance in conventional reservoirs. Numerical simulations can be practiced for the prediction of a reservoir performance in the course of injection process; however, a detailed simulation might take up enormous computer processing time. In such cases, a simple statistical model may be a good approach to the preliminary prediction of the process without any application of numerical simulation. In the current work, seven rock/fluid reservoir properties are considered as screening parameters and those parameters having the most considerable effect on the process are determined using the combination of experimental design techniques and reservoir simulations. Therefore, the statistical significance of the main effects and interactions of screening parameters are analyzed utilizing statistical inference approaches. Finally, the influential parameters are employed to create a simple statistical model which allows the preliminary prediction of nitrogen injection in terms of a recovery factor without resorting to numerical simulations.

  19. The Characteristics of Spanish Reservoirs

    National Research Council Canada - National Science Library

    Armengol, J; Merce, R

    2003-01-01

    Sau Reservoir was first filled in 1963 in a middle stretch of the Ter River, as part of a multi-use scheme, including hydroelectric power, agricultural irrigation, domestic and industrial water supply...

  20. Understanding the True Stimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf

    2017-06-06

    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically-induced fractures that connect the wellbore to a larger fracture surface area within the reservoir rock volume. Thus, accurate estimation of the stimulated reservoir volume (SRV) becomes critical for the reservoir performance simulation and production analysis. Micro-seismic events (MS) have been commonly used as a proxy to map out the SRV geometry, which could be erroneous because not all MS events are related to hydraulic fracture propagation. The case studies discussed here utilized a fully 3-D simulation approach to estimate the SRV. The simulation approach presented in this paper takes into account the real-time changes in the reservoir\\'s geomechanics as a function of fluid pressures. It is consisted of four separate coupled modules: geomechanics, hydrodynamics, a geomechanical joint model for interfacial resolution, and an adaptive re-meshing. Reservoir stress condition, rock mechanical properties, and injected fluid pressure dictate how fracture elements could open or slide. Critical stress intensity factor was used as a fracture criterion governing the generation of new fractures or propagation of existing fractures and their directions. Our simulations were run on a Cray XC-40 HPC system. The studies outcomes proved the approach of using MS data as a proxy for SRV to be significantly flawed. Many of the observed stimulated natural fractures are stress related and very few that are closer to the injection field are connected. The situation is worsened in a highly laminated shale reservoir as the hydraulic fracture propagation is significantly hampered. High contrast in the in-situ stresses related strike-slip developed thereby shortens the extent of SRV. However, far field nature fractures that were not connected to

  1. Identification of Environment Chase in Surround of Sermo Reservoir; and the Influence Possibility for Function and at the Age of Reservoi

    Directory of Open Access Journals (Sweden)

    Sudarmadji Sudarmadji

    2004-01-01

    Full Text Available Sermo reservoir is the only one belongs to Yogyakarta Special Province; it is relatively a new reservoir with the area of 1.9 kilometer square and its capacity of 25 million cubic meter: It started to operate since 1996 as flood control, irigation, water supply, tourism and fishery purposes. As a reservoir it could be considered to be a manmade lake, as its condition nearly similar to a lake. Since it operated (even during construction period there were some significant environmental changes within the reservoir and in the area around the reservoir due to the human activities. These changes could threat the sustainability of the reservoir itself This research aims to identiflr the human activities living around the reservoir and visitors coming to the area, and to evaluate the potensial of the activities to produce wastes which is discharging in into the reservoir; which may threat the sustainability of the reservoir: The observatorium in the field has been conducted in the area of the reservoir and its sorrounding. I t was firund fiom the observation that activities o f fishery using net (karamba, tourism altogether with its facilities, land use around the reservoir for agriculture purposes, mining of class C ore, have given a lot of contribution to wastes (liquid and solids and sediments into the reservoir: Those activities may cause water quality of the reservoir lo decrease as well as reducing the reservoir depth. Those situation was observed in the northern and north western parts of the reservoir Water quality degradation of the reservoir may threat reservoir as source of domestic water supply, while the sedimentation may reduce the life time of the reservoir The fishery and tourism activities was estimated as a main cause of water quality degradation, beside agricultural and domestic wastes originated from sattlement area around the reservoir: Sediments coming into the reservoir are derived fiom transported and movement of

  2. Mechanical work as a determinant of prey-handling behavior in the tokay gecko (Gekko gecko).

    Science.gov (United States)

    Andrews, C; Bertram, J E

    1997-01-01

    In this study an in vitro analysis of the force and mechanical work required to bite prey items of different size and physical character is combined with an in vivo analysis of prey-handling behavior in the tokay gecko (Gekko gecko). The force required to bite and the work of biting increase with prey size, but the rate of increase is prey specific, with crickets (Acheta domestica) requiring substantially more force and work per bite than larvae (Galleria mellonella and Manduca sexta) for all but the smallest prey. Prey-handling behavior is also prey specific. Geckos exert more bites per feeding event on small crickets than on small insect larvae, but the number of bites increases faster with prey mass for larvae than for crickets. Combination of the in vitro mechanical measurements with the in vivo behavior analysis allows the calculation of total mechanical work per feeding event and indicates that total work increases with prey size but that the difference between prey types is far less than predicted from the differences in structural properties of the prey. This occurs because the number of bites and work per bite relationships tend to cancel the differences in the total work necessary to process each prey type. Thus, when considering the effect of prey size, a 13-fold greater rate of increase in bite force and an 18-fold greater rate of increase of work per bit for crickets over larvae was partially compensated for by a threefold increase in the number of bites used on larvae relative to crickets. These results can be interpreted in two ways. The effect of mechanical work in feeding behavior suggests that the energetics of jaw adductor musculature could play a greater role in governing the feeding behavior of this lizard than has previously been expected. Alternatively, the scaling of work in feeding over a range of prey sizes suggests distinct differences in the geometric features of the prey that determine how they are processed.

  3. Chickamauga reservoir embayment study - 1990

    Energy Technology Data Exchange (ETDEWEB)

    Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

    1992-12-01

    The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

  4. Secure information transfer based on computing reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Szmoski, R.M.; Ferrari, F.A.S. [Department of Physics, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa (Brazil); Pinto, S.E. de S, E-mail: desouzapinto@pq.cnpq.br [Department of Physics, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa (Brazil); Baptista, M.S. [Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen (United Kingdom); Viana, R.L. [Department of Physics, Universidade Federal do Parana, 81531-990, Curitiba, Parana (Brazil)

    2013-04-01

    There is a broad area of research to ensure that information is transmitted securely. Within this scope, chaos-based cryptography takes a prominent role due to its nonlinear properties. Using these properties, we propose a secure mechanism for transmitting data that relies on chaotic networks. We use a nonlinear on–off device to cipher the message, and the transfer entropy to retrieve it. We analyze the system capability for sending messages, and we obtain expressions for the operating time. We demonstrate the system efficiency for a wide range of parameters. We find similarities between our method and the reservoir computing.

  5. Bacterial pathogens in a reactor cooling reservoir

    International Nuclear Information System (INIS)

    Kasweck, K.L.; Fliermans, C.B.

    1978-01-01

    The results of the sampling in both Par Pond and Clark Hill Reservoir are given. The frequency of isolation is a qualitative parameter which indicates how often the specified bacterium was isolated from each habitat. Initial scoping experiments demonstrated that a wider variety of pathogenic bacteria occur in Par Pond than in Clark Hill Reservoir. Such findings are interesting because Par Pond does not receive any human wastes directly, yet bacteria generally associated with human wastes are more frequently isolated from Par Pond. Previous studies have demonstrated that certain non-spore-forming enteric bacteria do not survive the intense heat associated with the cooling water when the reactor is operating. However, even when the reactor is not operating, cooling water, consisting of 10% makeup water from Savannah River, continues to flow into Par Pond. This flow provides a source of bacteria which inoculate Par Pond. Once the reactor is again operating, these same bacteria appear to be able to survive and grow within the Par Pond system. Thus, Par Pond and the associated lakes and canals of the Par Pond system provide a pool of pathogens that normally would not survive in natural waters

  6. Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information

    Science.gov (United States)

    Yang, Tiantian; Asanjan, Ata Akbari; Welles, Edwin; Gao, Xiaogang; Sorooshian, Soroosh; Liu, Xiaomang

    2017-04-01

    Reservoirs are fundamental human-built infrastructures that collect, store, and deliver fresh surface water in a timely manner for many purposes. Efficient reservoir operation requires policy makers and operators to understand how reservoir inflows are changing under different hydrological and climatic conditions to enable forecast-informed operations. Over the last decade, the uses of Artificial Intelligence and Data Mining [AI & DM] techniques in assisting reservoir streamflow subseasonal to seasonal forecasts have been increasing. In this study, Random Forest [RF), Artificial Neural Network (ANN), and Support Vector Regression (SVR) are employed and compared with respect to their capabilities for predicting 1 month-ahead reservoir inflows for two headwater reservoirs in USA and China. Both current and lagged hydrological information and 17 known climate phenomenon indices, i.e., PDO and ENSO, etc., are selected as predictors for simulating reservoir inflows. Results show (1) three methods are capable of providing monthly reservoir inflows with satisfactory statistics; (2) the results obtained by Random Forest have the best statistical performances compared with the other two methods; (3) another advantage of Random Forest algorithm is its capability of interpreting raw model inputs; (4) climate phenomenon indices are useful in assisting monthly or seasonal forecasts of reservoir inflow; and (5) different climate conditions are autocorrelated with up to several months, and the climatic information and their lags are cross correlated with local hydrological conditions in our case studies.

  7. Reservoir souring: it is all about risk mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Kuijvenhoven, Cor [Shell (Canada)

    2011-07-01

    The presence of H2S in produced fluid can be due to various sources, among which are heat/rock interaction and leaks from other reservoirs. This paper discusses the reasons, risk assessment and tools for mitigating reservoir souring. Uncontrolled microorganism activity can cause a sweet reservoir (without H2S) to become sour (production of H2S). The development of bacteria is one of the main causes of reservoir souring in unconventional gas fields. It is difficult to predict souring in seawater due to produced water re-injection (PWRI). Risk assessment and modeling techniques for reservoir souring are discussed. Some of the factors controlling H2S production include injection location, presence of scavenging minerals and biogenic souring. Mitigation methods such as biocide treatment of injection water, sulphate removal from seawater, microbial monitoring techniques such as the molecular microbiology method (MMM), and enumeration by serial dilution are explained. In summary, it can be concluded that reservoir souring is a long-term problem and should be assessed at the beginning of operations.

  8. A rationale for reservoir management economics

    International Nuclear Information System (INIS)

    Hickman, T.S.

    1995-01-01

    Significant economic benefits can be derived from the application f reservoir management. The key elements in economical reservoir management are the efficient use of available resources and optimization of reservoir exploitation through a multidisciplined approach. This paper describes various aspects of and approaches to reservoir management and provides case histories that support the findings

  9. The global stability of a delayed predator-prey system with two stage-structure

    International Nuclear Information System (INIS)

    Wang Fengyan; Pang Guoping

    2009-01-01

    Based on the classical delayed stage-structured model and Lotka-Volterra predator-prey model, we introduce and study a delayed predator-prey system, where prey and predator have two stages, an immature stage and a mature stage. The time delays are the time lengths between the immature's birth and maturity of prey and predator species. Results on global asymptotic stability of nonnegative equilibria of the delay system are given, which generalize and suggest that good continuity exists between the predator-prey system and its corresponding stage-structured system.

  10. Sabretoothed carnivores and the killing of large prey.

    Directory of Open Access Journals (Sweden)

    Ki Andersson

    Full Text Available Sabre-like canines clearly have the potential to inflict grievous wounds leading to massive blood loss and rapid death. Hypotheses concerning sabretooth killing modes include attack to soft parts such as the belly or throat, where biting deep is essential to generate strikes reaching major blood vessels. Sabretoothed carnivorans are widely interpreted as hunters of larger and more powerful prey than that of their present-day nonsabretoothed relatives. However, the precise functional advantage of the sabretooth bite, particularly in relation to prey size, is unknown. Here, we present a new point-to-point bite model and show that, for sabretooths, depth of the killing bite decreases dramatically with increasing prey size. The extended gape of sabretooths only results in considerable increase in bite depth when biting into prey with a radius of less than ∼10 cm. For sabretooths, this size-reversed functional advantage suggests predation on species within a similar size range to those attacked by present-day carnivorans, rather than "megaherbivores" as previously believed. The development of the sabretooth condition appears to represent a shift in function and killing behaviour, rather than one in predator-prey relations. Furthermore, our results demonstrate how sabretoothed carnivorans are likely to have evolved along a functionally continuous trajectory: beginning as an extension of a jaw-powered killing bite, as adopted by present-day pantherine cats, followed by neck-powered biting and thereafter shifting to neck-powered shear-biting. We anticipate this new insight to be a starting point for detailed study of the evolution of pathways that encompass extreme specialisation, for example, understanding how neck-powered biting shifts into shear-biting and its significance for predator-prey interactions. We also expect that our model for point-to-point biting and bite depth estimations will yield new insights into the behaviours of a broad range of

  11. Real-time optimisation of the Hoa Binh reservoir, Vietnam

    DEFF Research Database (Denmark)

    Richaud, Bertrand; Madsen, Henrik; Rosbjerg, Dan

    2011-01-01

    -time optimisation. First, the simulation-optimisation framework is applied for optimising reservoir operating rules. Secondly, real-time and forecast information is used for on-line optimisation that focuses on short-term goals, such as flood control or hydropower generation, without compromising the deviation...... in the downstream part of the Red River, and at the same time to increase hydropower generation and to save water for the dry season. The real-time optimisation procedure further improves the efficiency of the reservoir operation and enhances the flexibility for the decision-making. Finally, the quality......Multi-purpose reservoirs often have to be managed according to conflicting objectives, which requires efficient tools for trading-off the objectives. This paper proposes a multi-objective simulation-optimisation approach that couples off-line rule curve optimisation with on-line real...

  12. Prey preferences of the snow leopard (Panthera uncia: regional diet specificity holds global significance for conservation.

    Directory of Open Access Journals (Sweden)

    Salvador Lyngdoh

    Full Text Available The endangered snow leopard is a large felid that is distributed over 1.83 million km(2 globally. Throughout its range it relies on a limited number of prey species in some of the most inhospitable landscapes on the planet where high rates of human persecution exist for both predator and prey. We reviewed 14 published and 11 unpublished studies pertaining to snow leopard diet throughout its range. We calculated prey consumption in terms of frequency of occurrence and biomass consumed based on 1696 analysed scats from throughout the snow leopard's range. Prey biomass consumed was calculated based on the Ackerman's linear correction factor. We identified four distinct physiographic and snow leopard prey type zones, using cluster analysis that had unique prey assemblages and had key prey characteristics which supported snow leopard occurrence there. Levin's index showed the snow leopard had a specialized dietary niche breadth. The main prey of the snow leopard were Siberian ibex (Capra sibrica, blue sheep (Pseudois nayaur, Himalayan tahr (Hemitragus jemlahicus, argali (Ovis ammon and marmots (Marmota spp. The significantly preferred prey species of snow leopard weighed 55±5 kg, while the preferred prey weight range of snow leopard was 36-76 kg with a significant preference for Siberian ibex and blue sheep. Our meta-analysis identified critical dietary resources for snow leopards throughout their distribution and illustrates the importance of understanding regional variation in species ecology; particularly prey species that have global implications for conservation.

  13. Prey preferences of the snow leopard (Panthera uncia): regional diet specificity holds global significance for conservation.

    Science.gov (United States)

    Lyngdoh, Salvador; Shrotriya, Shivam; Goyal, Surendra P; Clements, Hayley; Hayward, Matthew W; Habib, Bilal

    2014-01-01

    The endangered snow leopard is a large felid that is distributed over 1.83 million km(2) globally. Throughout its range it relies on a limited number of prey species in some of the most inhospitable landscapes on the planet where high rates of human persecution exist for both predator and prey. We reviewed 14 published and 11 unpublished studies pertaining to snow leopard diet throughout its range. We calculated prey consumption in terms of frequency of occurrence and biomass consumed based on 1696 analysed scats from throughout the snow leopard's range. Prey biomass consumed was calculated based on the Ackerman's linear correction factor. We identified four distinct physiographic and snow leopard prey type zones, using cluster analysis that had unique prey assemblages and had key prey characteristics which supported snow leopard occurrence there. Levin's index showed the snow leopard had a specialized dietary niche breadth. The main prey of the snow leopard were Siberian ibex (Capra sibrica), blue sheep (Pseudois nayaur), Himalayan tahr (Hemitragus jemlahicus), argali (Ovis ammon) and marmots (Marmota spp). The significantly preferred prey species of snow leopard weighed 55±5 kg, while the preferred prey weight range of snow leopard was 36-76 kg with a significant preference for Siberian ibex and blue sheep. Our meta-analysis identified critical dietary resources for snow leopards throughout their distribution and illustrates the importance of understanding regional variation in species ecology; particularly prey species that have global implications for conservation.

  14. Morphology of seahorse head hydrodynamically aids in capture of evasive prey.

    Science.gov (United States)

    Gemmell, Brad J; Sheng, Jian; Buskey, Edward J

    2013-01-01

    Syngnathid fish (seahorses, pipefish and sea dragons) are slow swimmers yet capture evasive prey (copepods) using a technique known as the 'pivot' feeding, which involves rapid movement to overcome prey escape capabilities. However, this feeding mode functions only at short range and requires approaching very closely to hydrodynamically sensitive prey without triggering an escape. Here we investigate the role of head morphology on prey capture using holographic and particle image velocimetry (PIV). We show that head morphology functions to create a reduced fluid deformation zone, minimizing hydrodynamic disturbance where feeding strikes occur (above the end of the snout), and permits syngnathid fish to approach highly sensitive copepod prey (Acartia tonsa) undetected. The results explain how these animals can successfully employ short range 'pivot' feeding effectively on evasive prey. The need to approach prey with stealth may have selected for a head shape that produces lower deformation rates than other fish.

  15. Limno-reservoirs as a new landscape, environmental and touristic resource: Pareja Limno-reservoir as a case of study (Guadalajara, Spain)

    Science.gov (United States)

    Díaz-Carrión, I.; Sastre-Merlín, A.; Martínez-Pérez, S.; Molina-Navarro, E.; Bienes-Allas, R.

    2012-04-01

    A limno-reservoir is a hydrologic infrastructure with the main goal of generating a body of water with a constant level in the riverine zone of a reservoir, building a dam that makes de limno-reservoir independent from the main body of water. This dam can be built in the main river supplying the reservoir or any tributary as well flowing into it. Despite its novel conception and design, around a dozen are already operative in some Spanish reservoirs. This infrastructure allows the new water body to be independent of the main reservoir management, so the water level stability is its main distinctive characteristic. It leads to the development of environmental, sports and cultural initiatives; which may be included in a touristic exploitation in a wide sense. An opinion poll was designed in 2009 to be carried out the Pareja Limno-reservoir (Entrepeñas reservoir area, Tajo River Basin, central Spain). The results showed that for both, Pareja inhabitants and occasional visitors, the limno-reservoir has become an important touristic resource, mainly demanded during summer season. The performance of leisure activities (especially swimming) are being the main brand of this novel hydraulic and environmental infrastructure, playing a role as corrective and/or compensatory action which is needed to apply in order to mitigate the environmental impacts of the large hydraulic constructions.

  16. Small prey species' behaviour and welfare: implications for veterinary professionals.

    Science.gov (United States)

    McBride, E Anne

    2017-08-01

    People have obligations to ensure the welfare of animals under their care. Offences under the UK Animal Welfare Act are acts, or failures of action, causing unnecessary suffering. Veterinary professionals need to be able to provide current, scientifically based prophylactic advice, and respect the limits of their expertise. The ethical concept of a life worth living and the Five Freedoms are core to welfare. Behaviour is a central component, both influencing and influenced by physical health. Owners frequently misunderstand the behaviour of small prey mammals and how to meet their needs. This review provides insight into the physical-social (external) and the cognitive-emotional (internal) environments of small prey mammals, contextualised within an evolutionary perspective. This is extrapolated to captivity and practical suggestions given for meeting behavioural freedoms and enhancing client understanding and enjoyment of their animals, thereby improving welfare. © 2017 British Small Animal Veterinary Association.

  17. Environmental versus demographic variability in stochastic predator–prey models

    International Nuclear Information System (INIS)

    Dobramysl, U; Täuber, U C

    2013-01-01

    In contrast to the neutral population cycles of the deterministic mean-field Lotka–Volterra rate equations, including spatial structure and stochastic noise in models for predator–prey interactions yields complex spatio-temporal structures associated with long-lived erratic population oscillations. Environmental variability in the form of quenched spatial randomness in the predation rates results in more localized activity patches. Our previous study showed that population fluctuations in rare favorable regions in turn cause a remarkable increase in the asymptotic densities of both predators and prey. Very intriguing features are found when variable interaction rates are affixed to individual particles rather than lattice sites. Stochastic dynamics with demographic variability in conjunction with inheritable predation efficiencies generate non-trivial time evolution for the predation rate distributions, yet with overall essentially neutral optimization. (paper)

  18. Bifurcation Behavior Analysis in a Predator-Prey Model

    Directory of Open Access Journals (Sweden)

    Nan Wang

    2016-01-01

    Full Text Available A predator-prey model is studied mathematically and numerically. The aim is to explore how some key factors influence dynamic evolutionary mechanism of steady conversion and bifurcation behavior in predator-prey model. The theoretical works have been pursuing the investigation of the existence and stability of the equilibria, as well as the occurrence of bifurcation behaviors (transcritical bifurcation, saddle-node bifurcation, and Hopf bifurcation, which can deduce a standard parameter controlled relationship and in turn provide a theoretical basis for the numerical simulation. Numerical analysis ensures reliability of the theoretical results and illustrates that three stable equilibria will arise simultaneously in the model. It testifies the existence of Bogdanov-Takens bifurcation, too. It should also be stressed that the dynamic evolutionary mechanism of steady conversion and bifurcation behavior mainly depend on a specific key parameter. In a word, all these results are expected to be of use in the study of the dynamic complexity of ecosystems.

  19. Vertebrate predator-prey interactions in a seasonal environment

    DEFF Research Database (Denmark)

    Schmidt, Niels Martin; Berg, Thomas B; Forchhammer, Mads

    2008-01-01

    erminea predation and stabilising predation from the generalist predators, in Zackenbergdalen mainly the arctic fox Alopex lagopus. In Zackenbergdalen, however, the coupling between the specialist stoat and the lemming population is relatively weak. During summer, the predation pressure is high......The High Arctic, with its low number of species, is characterised by a relatively simple ecosystem, and the vertebrate predator-prey interactions in the valley Zackenbergdalen in Northeast Greenland are centred around the collared lemming Dicrostonyx groenlandicus and its multiple predators...

  20. The Neuronal Control of Flying Prey Interception in Dragonflies

    Science.gov (United States)

    2014-08-19

    Gonzalez-Bellido’s fluorescent dye ( Lucifer -yellow) injections illuminated for the first time the anatomy of the output regions of the TSDNs...out in Cape Cod (MA) to test the effect of bead size(C), and in the Olberg Laboratory (Union College, NY) to test the effect of bead speed by...AFRL-OSR-VA-TR-2014-0193 THE NEURONAL CONTROL OF FLYING PREY INTERCEPTION IN DRAGONFLIES Robert Olberg TRUSTEES OF UNION COLLEGE IN THE TOWN OF

  1. Nuclear register applications and pressure tests to foresee reservoirs exploitation with water drive

    International Nuclear Information System (INIS)

    Osorio F, X.; Redosado G, V.

    1994-01-01

    This paper illustrates how the pulsed neutron log and well test analysis aid proper reservoir management in strong water reservoirs. These techniques have been applied to Cetico reservoir which belongs to Corrientes Field which is located in the Peruvian Jungle. Corrientes is the most important field operated by PETROPERU S.A. As a result of the analysis we current know the present areal water saturation distribution and also have improve the reservoir characterization al of which is being used for increasing the oil production and reserves. (author). 4 refs, 7 figs, 3 tabs

  2. Trophic interaction between topmouth gudgeon (Pseudorasbora parva and the co-occurring species during summer in the Dniprodzerzhynsk reservoir

    Directory of Open Access Journals (Sweden)

    Didenko A.V.

    2015-01-01

    Full Text Available Topmouth gudgeon, Pseudorasbora parva is the most common invasive fish in Europe, which can compete with the juveniles of valuable commercial fishes. The goal of this work is to study the diet of topmouth gudgeon and trophic relationships with some native fishes inhabiting the littoral zone of the Dniprodzerzhynsk reservoir. The obtained relatively low values of diet overlaps between topmouth gudgeon and other co-occurring cyprinids such as juvenile roach, Rutilus rutilus; silver bream, Blicca bjoerkna; rudd, Scardinius erythrophthalmus; Prussian carp, Carassius gibelio and bleak, Abramis brama, indicate that it is not a serious food competitor for them, especially commercially valuable ones. On the contrary, high diet overlaps were observed among some native cyprinids such as juvenile roach, silver bream, rudd, and bleak. The major prey items of topmouth gudgeon were Chydorus sphaericus and chironomids, whereas other cyprinids selected Bosmina spp. This peculiarity may be due to different vertical distributions of these fish in the littoral zone of the reservoir, where topmouth gudgeon inhabit near-bottom water layers, where they preyed on near-bottom and benthic zooplankters and chironomids, while juvenile roach, silver bream, rudd, and juvenile and adult bleak live in higher water layers, where they preyed on pelagic zooplankton.

  3. Prey selection of Tawny owls (Strix aluco) on Yellow necked mouse and Bank Vole

    DEFF Research Database (Denmark)

    Forsom, H. M.; Sunde, P.; Overskaug, K.

    As predators owls may have a strong impact on mortality of their favourite prey, and may therefore act as important selective agents on their prey species. Little is known, however, about whether owls choose prey randomly or if some prey items suffer a higher risk of predation due to certain life...

  4. Mountain lions prey selectively on prion-infected mule deer

    Science.gov (United States)

    Krumm, Caroline E.; Conner, Mary M.; Hobbs, N. Thompson; Hunter, Don O.; Miller, Michael W.

    2010-01-01

    The possibility that predators choose prey selectively based on age or condition has been suggested but rarely tested. We examined whether mountain lions (Puma concolor) selectively prey upon mule deer (Odocoileus hemionus) infected with chronic wasting disease, a prion disease. We located kill sites of mountain lions in the northern Front Range of Colorado, USA, and compared disease prevalence among lion-killed adult (≥2 years old) deer with prevalence among sympatric deer taken by hunters in the vicinity of kill sites. Hunter-killed female deer were less likely to be infected than males (odds ratios (OR) = 0.2, 95% confidence intervals (CI) = 0.1–0.6; p = 0.015). However, both female (OR = 8.5, 95% CI = 2.3–30.9) and male deer (OR = 3.2, 95% CI = 1–10) killed by a mountain lion were more likely to be infected than same-sex deer killed in the vicinity by a hunter (p < 0.001), suggesting that mountain lions in this area actively selected prion-infected individuals when targeting adult mule deer as prey items. PMID:19864271

  5. Predator size and the suitability of a common prey.

    Science.gov (United States)

    Erickson, Kristin S; Morse, D H

    1997-02-01

     Although a predator's mass should influence the suitability of its prey, this subject has received little direct attention. We studied the capture and processing of an abundant syrphid fly Toxomerus marginatus (c. 4 mg) by 0.6- to 40-mg juvenile crab spiders Misumena vatia (Thomisidae) to determine how profitability, relative profitability (profitability/predator mass), overall gain in mass, and relative gain in mass differed with predator mass, and whether foraging changed concurrently. In multi-prey experiments, the smallest successful spiders (0.6-3.0 mg) extracted less mass from flies, and did so more slowly, than large spiders. This gain was proportionately similar to that of 10- to 40-mg spiders with access to many Toxomerus. However, many small spiders failed to capture flies. When we gave spiders only a single Toxomerus, the smallest ones again extracted mass more slowly than the large ones and increased in mass less than the large ones, but increased in mass proportionately more than large ones. Relative gain in mass from a single prey decreased with increasing spider mass. Spiders larger than 10 mg all extracted similar amounts of mass from a single Toxomerus at similar rates, but varied in time spent between captures. Thus, Toxomerus changes with spider mass from a large, hard-to-capture bonanza to a small, easy-to-capture item of low per capita value. However, Toxomerus is common enough that large spiders can capture it en masse, thereby compensating for its decline in per capita value.

  6. Brominated flame retardants in birds of prey from Flanders, Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Voorspoels, S.; Covaci, A.; Schepens, P. [Antwerp Univ., Wilrijk (Belgium). Toxicological Centre

    2004-09-15

    Since their introduction on the market, environmental levels of polybrominated diphenyl ethers (PBDEs) are continuously increasing. This is caused by spillage and emission during production and use, but also by improper disposal at the end-of-life of the products in which they are used. These chemicals are highly persistent and lipophilic which results in bioaccumulation in fatty tissues of biota and biomagnification throughout the food chain. Because PBDEs have a high toxicological potential, this biomagnification can have serious health consequences for top-predators, such as birds of prey. Data about PBDE concentrations in terrestrial biota, especially in birds of prey, is scarce. A rapid increase of PBDE concentrations has been seen in pooled guillemot (Uria algae) eggs from the Baltic proper7 during the late 1970's and early 1980's, followed by a decrease during the 1990's8. In herring gull eggs from the Great Lakes, the PBDE concentrations increased exponentially from 1981 to 2000. Most of the studies look at concentrations in eggs, while less is known about tissue levels and distribution of these pollutants in birds of prey.

  7. Jewelled spiders manipulate colour-lure geometry to deceive prey.

    Science.gov (United States)

    White, Thomas E

    2017-03-01

    Selection is expected to favour the evolution of efficacy in visual communication. This extends to deceptive systems, and predicts functional links between the structure of visual signals and their behavioural presentation. Work to date has primarily focused on colour, however, thereby understating the multicomponent nature of visual signals. Here I examined the relationship between signal structure, presentation behaviour, and efficacy in the context of colour-based prey luring. I used the polymorphic orb-web spider Gasteracantha fornicata , whose yellow- or white-and-black striped dorsal colours have been broadly implicated in prey attraction. In a manipulative assay, I found that spiders actively control the orientation of their conspicuous banded signals in the web, with a distinct preference for near-diagonal bearings. Further field-based study identified a predictive relationship between pattern orientation and prey interception rates, with a local maximum at the spiders' preferred orientation. There were no morph-specific effects on capture success, either singularly or via an interaction with pattern orientation. These results reveal a dynamic element in a traditionally 'static' signalling context, and imply differential functions for chromatic and geometric signal components across visual contexts. More broadly, they underscore how multicomponent signal designs and display behaviours may coevolve to enhance efficacy in visual deception. © 2017 The Author(s).

  8. Adjusting inkjet printhead parameters to deposit drugs into micro-sized reservoirs

    Directory of Open Access Journals (Sweden)

    Mau Robert

    2016-09-01

    Full Text Available Drug delivery systems (DDS ensure that therapeutically effective drug concentrations are delivered locally to the target site. For that reason, it is common to coat implants with a degradable polymer which contains drugs. However, the use of polymers as a drug carrier has been associated with adverse side effects. For that reason, several technologies have been developed to design polymer-free DDS. In literature it has been shown that micro-sized reservoirs can be applied as drug reservoirs. Inkjet techniques are capable of depositing drugs into these reservoirs. In this study, two different geometries of micro-sized reservoirs have been laden with a drug (ASA using a drop-on-demand inkjet printhead. Correlations between the characteristics of the drug solution, the operating parameters of the printhead and the geometric parameters of the reservoir are shown. It is indicated that wettability of the surface play a key role for drug deposition into micro-sized reservoirs.

  9. Bioenergetic evaluation of diel vertical migration by bull trout (Salvelinus confluentus) in a thermally stratified reservoir

    Science.gov (United States)

    Eckmann, Madeleine; Dunham, Jason B.; Connor, Edward J.; Welch, Carmen A.

    2018-01-01

    Many species living in deeper lentic ecosystems exhibit daily movements that cycle through the water column, generally referred to as diel vertical migration (DVM). In this study, we applied bioenergetics modelling to evaluate growth as a hypothesis to explain DVM by bull trout (Salvelinus confluentus) in a thermally stratified reservoir (Ross Lake, WA, USA) during the peak of thermal stratification in July and August. Bioenergetics model parameters were derived from observed vertical distributions of temperature, prey and bull trout. Field sampling confirmed that bull trout prey almost exclusively on recently introduced redside shiner (Richardsonius balteatus). Model predictions revealed that deeper (>25 m) DVMs commonly exhibited by bull trout during peak thermal stratification cannot be explained by maximising growth. Survival, another common explanation for DVM, may have influenced bull trout depth use, but observations suggest there may be additional drivers of DVM. We propose these deeper summertime excursions may be partly explained by an alternative hypothesis: the importance of colder water for gametogenesis. In Ross Lake, reliance of bull trout on warm water prey (redside shiner) for consumption and growth poses a potential trade-off with the need for colder water for gametogenesis.

  10. Twentieth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-01-26

    PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technical sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager

  11. Trophic State Evolution and Nutrient Trapping Capacity in a Transboundary Subtropical Reservoir: A 25-Year Study.

    Science.gov (United States)

    Cunha, Davi Gasparini Fernandes; Benassi, Simone Frederigi; de Falco, Patrícia Bortoletto; Calijuri, Maria do Carmo

    2016-03-01

    Artificial reservoirs have been used for drinking water supply, other human activities, flood control and pollution abatement worldwide, providing overall benefits to downstream water quality. Most reservoirs in Brazil were built during the 1970s, but their long-term patterns of trophic status, water chemistry, and nutrient removal are still not very well characterized. We aimed to evaluate water quality time series (1985-2010) data from the riverine and lacustrine zones of the transboundary Itaipu Reservoir (Brazil/Paraguay). We examined total phosphorus and nitrogen, chlorophyll a concentrations, water transparency, and phytoplankton density to look for spatial and temporal trends and correlations with trophic state evolution and nutrient retention. There was significant temporal and spatial water quality variation (P water quality and structure of the reservoir were mainly affected by one internal force (hydrodynamics) and one external force (upstream cascading reservoirs). Nutrient and chlorophyll a concentrations tended to be lower in the lacustrine zone and decreased over the 25-year timeframe. Reservoir operational features seemed to be limiting primary production and phytoplankton development, which exhibited a maximum density of 6050  org/mL. The relatively small nutrient concentrations in the riverine zone were probably related to the effect of the cascade reservoirs upstream of Itaipu and led to relatively low removal percentages. Our study suggested that water quality problems may be more pronounced immediately after the filling phase of the artificial reservoirs, associated with the initial decomposition of drowned vegetation at the very beginning of reservoir operation.

  12. Improved recovery from Gulf of Mexico reservoirs. Quarterly status report, January 1--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.

    1996-04-30

    On February 18, 1992, Louisiana State University with two technical subcontractors, BDM, Inc. and ICF, Inc., began a research program to estimate the potential oil and gas reserve additions that could result from the application of advanced secondary and enhanced oil recovery technologies and the exploitation of undeveloped and attic oil zones in the Gulf of Mexico oil fields that are related to piercement salt domes. This project is a one year continuation of this research and will continue work in reservoir description, extraction processes, and technology transfer. Detailed data will be collected for two previously studies reservoirs: a South Marsh Island reservoir operated by Taylor Energy and one additional Gulf of Mexico reservoir operated by Mobil. Additional reservoirs identified during the project will also be studied if possible. Data collected will include reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. The new data will be used to refine reservoir and geologic characterization of these reservoirs. Further laboratory investigation will provide additional simulation input data in the form of PVT properties, relative permeabilities, capillary pressure, and water compatibility. Geological investigations will be conducted to refine the models of mud-rich submarine fan architectures used by seismic analysts and reservoir engineers. Research on advanced reservoir simulation will also be conducted. This report describes a review of fine-grained submarine fans and turbidite systems.

  13. Effect of heat loss in a geothermal reservoir

    NARCIS (Netherlands)

    Ganguly, Sayantan; Tan, Lippong; Date, Abhijit; Mohan Kumar, Mandalagiri Subbarayappa

    This paper reports a three-dimensional (3D) numerical study to determine the effect of heat loss on the transient heat transport and temperature distribution in a geothermal reservoir. The operation of a geothermal power plant, which is essentially an injection-production process, involves

  14. Reservoir system optimisation using a penalty approach and a multi ...

    African Journals Online (AJOL)

    ... IV obtained several high-performance solutions of varied sizes and supply capabilities. This analysis revealed specific limitations of supply reliability and the expected storage states of one of the reservoirs. The analysis also obtained the ranges within which the optimal monthly operating rules for the system are expected.

  15. Noise-induced extinction for a ratio-dependent predator-prey model with strong Allee effect in prey

    Science.gov (United States)

    Mandal, Partha Sarathi

    2018-04-01

    In this paper, we study a stochastically forced ratio-dependent predator-prey model with strong Allee effect in prey population. In the deterministic case, we show that the model exhibits the stable interior equilibrium point or limit cycle corresponding to the co-existence of both species. We investigate a probabilistic mechanism of the noise-induced extinction in a zone of stable interior equilibrium point. Computational methods based on the stochastic sensitivity function technique are applied for the analysis of the dispersion of random states near stable interior equilibrium point. This method allows to construct a confidence domain and estimate the threshold value of the noise intensity for a transition from the coexistence to the extinction.

  16. Mutual Solubility of MEG, Water and Reservoir Fluid: Experimental Measurements and Modeling using the CPA Equation of State

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2011-01-01

    This work presents new experimental phase equilibrium data of binary MEG-reservoir fluid and ternary MEG-water-reservoir fluid systems at temperatures 275-326 K and at atmospheric pressure. The reservoir fluid consists of a natural gas condensate from a Statoil operated gas field in the North Sea...... compounds. It has also been extended to reservoir fluids in presence of water and polar chemicals using a Pedersen like characterization method with modified correlations for critical temperature, pressure and acentric factor. In this work CPA is applied to the prediction of mutual solubility of reservoir...

  17. Red trap colour of the carnivorous plant Drosera rotundifolia does not serve a prey attraction or camouflage function.

    Science.gov (United States)

    Foot, G; Rice, S P; Millett, J

    2014-01-01

    The traps of many carnivorous plants are red in colour. This has been widely hypothesized to serve a prey attraction function; colour has also been hypothesized to function as camouflage, preventing prey avoidance. We tested these two hypotheses in situ for the carnivorous plant Drosera rotundifolia. We conducted three separate studies: (i) prey attraction to artificial traps to isolate the influence of colour; (ii) prey attraction to artificial traps on artificial backgrounds to control the degree of contrast and (iii) observation of prey capture by D. rotundifolia to determine the effects of colour on prey capture. Prey were not attracted to green traps and were deterred from red traps. There was no evidence that camouflaged traps caught more prey. For D. rotundifolia, there was a relationship between trap colour and prey capture. However, trap colour may be confounded with other leaf traits. Thus, we conclude that for D. rotundifolia, red trap colour does not serve a prey attraction or camouflage function.

  18. Echolocating bats cry out loud to detect their prey.

    Directory of Open Access Journals (Sweden)

    Annemarie Surlykke

    Full Text Available Echolocating bats have successfully exploited a broad range of habitats and prey. Much research has demonstrated how time-frequency structure of echolocation calls of different species is adapted to acoustic constraints of habitats and foraging behaviors. However, the intensity of bat calls has been largely neglected although intensity is a key factor determining echolocation range and interactions with other bats and prey. Differences in detection range, in turn, are thought to constitute a mechanism promoting resource partitioning among bats, which might be particularly important for the species-rich bat assemblages in the tropics. Here we present data on emitted intensities for 11 species from 5 families of insectivorous bats from Panamá hunting in open or background cluttered space or over water. We recorded all bats in their natural habitat in the field using a multi-microphone array coupled with photographic methods to assess the bats' position in space to estimate emitted call intensities. All species emitted intense search signals. Output intensity was reduced when closing in on background by 4-7 dB per halving of distance. Source levels of open space and edge space foragers (Emballonuridae, Mormoopidae, Molossidae, and Vespertilionidae ranged between 122-134 dB SPL. The two Noctilionidae species hunting over water emitted the loudest signals recorded so far for any bat with average source levels of ca. 137 dB SPL and maximum levels above 140 dB SPL. In spite of this ten-fold variation in emitted intensity, estimates indicated, surprisingly, that detection distances for prey varied far less; bats emitting the highest intensities also emitted the highest frequencies, which are severely attenuated in air. Thus, our results suggest that bats within a local assemblage compensate for frequency dependent attenuation by adjusting the emitted intensity to achieve comparable detection distances for prey across species. We conclude that for bats

  19. Weather and Prey Predict Mammals' Visitation to Water.

    Directory of Open Access Journals (Sweden)

    Grant Harris

    Full Text Available Throughout many arid lands of Africa, Australia and the United States, wildlife agencies provide water year-round for increasing game populations and enhancing biodiversity, despite concerns that water provisioning may favor species more dependent on water, increase predation, and reduce biodiversity. In part, understanding the effects of water provisioning requires identifying why and when animals visit water. Employing this information, by matching water provisioning with use by target species, could assist wildlife management objectives while mitigating unintended consequences of year-round watering regimes. Therefore, we examined if weather variables (maximum temperature, relative humidity [RH], vapor pressure deficit [VPD], long and short-term precipitation and predator-prey relationships (i.e., prey presence predicted water visitation by 9 mammals. We modeled visitation as recorded by trail cameras at Sevilleta National Wildlife Refuge, New Mexico, USA (June 2009 to September 2014 using generalized linear modeling. For 3 native ungulates, elk (Cervus Canadensis, mule deer (Odocoileus hemionus, and pronghorn (Antilocapra americana, less long-term precipitation and higher maximum temperatures increased visitation, including RH for mule deer. Less long-term precipitation and higher VPD increased oryx (Oryx gazella and desert cottontail rabbits (Sylvilagus audubonii visitation. Long-term precipitation, with RH or VPD, predicted visitation for black-tailed jackrabbits (Lepus californicus. Standardized model coefficients demonstrated that the amount of long-term precipitation influenced herbivore visitation most. Weather (especially maximum temperature and prey (cottontails and jackrabbits predicted bobcat (Lynx rufus visitation. Mule deer visitation had the largest influence on coyote (Canis latrans visitation. Puma (Puma concolor visitation was solely predicted by prey visitation (elk, mule deer, oryx. Most ungulate visitation peaked during

  20. Weather and Prey Predict Mammals’ Visitation to Water

    Science.gov (United States)

    Harris, Grant; Sanderson, James G.; Erz, Jon; Lehnen, Sarah E.; Butler, Matthew J.

    2015-01-01

    Throughout many arid lands of Africa, Australia and the United States, wildlife agencies provide water year-round for increasing game populations and enhancing biodiversity, despite concerns that water provisioning may favor species more dependent on water, increase predation, and reduce biodiversity. In part, understanding the effects of water provisioning requires identifying why and when animals visit water. Employing this information, by matching water provisioning with use by target species, could assist wildlife management objectives while mitigating unintended consequences of year-round watering regimes. Therefore, we examined if weather variables (maximum temperature, relative humidity [RH], vapor pressure deficit [VPD], long and short-term precipitation) and predator-prey relationships (i.e., prey presence) predicted water visitation by 9 mammals. We modeled visitation as recorded by trail cameras at Sevilleta National Wildlife Refuge, New Mexico, USA (June 2009 to September 2014) using generalized linear modeling. For 3 native ungulates, elk (Cervus Canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana), less long-term precipitation and higher maximum temperatures increased visitation, including RH for mule deer. Less long-term precipitation and higher VPD increased oryx (Oryx gazella) and desert cottontail rabbits (Sylvilagus audubonii) visitation. Long-term precipitation, with RH or VPD, predicted visitation for black-tailed jackrabbits (Lepus californicus). Standardized model coefficients demonstrated that the amount of long-term precipitation influenced herbivore visitation most. Weather (especially maximum temperature) and prey (cottontails and jackrabbits) predicted bobcat (Lynx rufus) visitation. Mule deer visitation had the largest influence on coyote (Canis latrans) visitation. Puma (Puma concolor) visitation was solely predicted by prey visitation (elk, mule deer, oryx). Most ungulate visitation peaked during May and

  1. Bottom trawl assessment of Lake Ontario prey fishes

    Science.gov (United States)

    Weidel, Brian C.; Connerton, Michael J.; Holden, Jeremy

    2018-01-01

    Managing Lake Ontario fisheries in an ecosystem-context requires prey fish community and population data. Since 1978, multiple annual bottom trawl surveys have quantified prey fish dynamics to inform management relative to published Fish Community Objectives. In 2017, two whole-lake surveys collected 341 bottom trawls (spring: 204, fall: 137), at depths from 8-225m, and captured 751,350 fish from 29 species. Alewife were 90% of the total fish catch while Deepwater Sculpin, Round Goby, and Rainbow Smelt comprised the majority of the remaining total catch (3.8, 3.1, and 1.1% respectively). The adult Alewife abundance index for US waters increased in 2017 relative to 2016, however the index for Canadian waters declined. Adult Alewife condition, assessed by the predicted weight of a 165 mm fish (6.5 inches), declined in 2017 from record high values observed in spring 2016. Spring 2017 Alewife condition was slightly less than the 10-year average, but the fall value was well below the 10-year average, likely due to increased Age-1 Alewife abundance. The Age-1 Alewife abundance index was the highest observed in 40 years, and 8-times higher than the previous year. The Age-1 index estimates Alewife reproductive success the preceding year. The warm summer and winter of 2016 likely contributed to the large year class. In contrast the relatively cool 2017 spring and cold winter may result in a lower than average 2017 year class. Abundance indices for Rainbow Smelt, Cisco, and Emerald Shiner either declined or remained at low levels in 2017. Pelagic prey fish diversity continues to be low since a single species, Alewife, dominates the catch. Deepwater Sculpin were the most abundant benthic prey fish in 2017 because Round Goby abundance declined sharply from 2016. Slimy Sculpin density continued to decline and the 2017 biomass index for US waters was the lowest ever observed. Prior to Round Goby proliferation, juvenile Slimy Sculpin comprised ~10% of the Slimy Sculpin catch, but

  2. Cloud computing and Reservoir project

    International Nuclear Information System (INIS)

    Beco, S.; Maraschini, A.; Pacini, F.; Biran, O.

    2009-01-01

    The support for complex services delivery is becoming a key point in current internet technology. Current trends in internet applications are characterized by on demand delivery of ever growing amounts of content. The future internet of services will have to deliver content intensive applications to users with quality of service and security guarantees. This paper describes the Reservoir project and the challenge of a reliable and effective delivery of services as utilities in a commercial scenario. It starts by analyzing the needs of a future infrastructure provider and introducing the key concept of a service oriented architecture that combines virtualisation-aware grid with grid-aware virtualisation, while being driven by business service management. This article will then focus on the benefits and the innovations derived from the Reservoir approach. Eventually, a high level view of Reservoir general architecture is illustrated.

  3. Multilevel techniques for Reservoir Simulation

    DEFF Research Database (Denmark)

    Christensen, Max la Cour

    The subject of this thesis is the development, application and study of novel multilevel methods for the acceleration and improvement of reservoir simulation techniques. The motivation for addressing this topic is a need for more accurate predictions of porous media flow and the ability to carry...... Full Approximation Scheme) • Variational (Galerkin) upscaling • Linear solvers and preconditioners First, a nonlinear multigrid scheme in the form of the Full Approximation Scheme (FAS) is implemented and studied for a 3D three-phase compressible rock/fluids immiscible reservoir simulator...... is extended to include a hybrid strategy, where FAS is combined with Newton’s method to construct a multilevel nonlinear preconditioner. This method demonstrates high efficiency and robustness. Second, an improved IMPES formulated reservoir simulator is implemented using a novel variational upscaling approach...

  4. Reservoir effects in radiocarbon dating

    International Nuclear Information System (INIS)

    Head, M.J.

    1997-01-01

    Full text: The radiocarbon dating technique depends essentially on the assumption that atmospheric carbon dioxide containing the cosmogenic radioisotope 14 C enters into a state of equilibrium with all living material (plants and animals) as part of the terrestrial carbon cycle. Terrestrial reservoir effects occur when the atmospheric 14 C signal is diluted by local effects where systems depleted in 14 C mix with systems that are in equilibrium with the atmosphere. Naturally, this can occur with plant material growing close to an active volcano adding very old CO 2 to the atmosphere (the original 14 C has completely decayed). It can also occur in highly industrialised areas where fossil fuel derived CO 2 dilutes the atmospheric signal. A terrestrial reservoir effect can occur in the case of fresh water shells living in rivers or lakes where there is an input of ground water from springs or a raising of the water table. Soluble bicarbonate derived from the dissolution of very old limestone produces a 14 C dilution effect. Land snail shells and stream carbonate depositions (tufas and travertines) can be affected by a similar mechanism. Alternatively, in specific cases, these reservoir effects may not occur. This means that general interpretations assuming quantitative values for these terrestrial effects are not possible. Each microenvironment associated with samples being analysed needs to be evaluated independently. Similarly, the marine environment produces reservoir effects. With respect to marine shells and corals, the water depth at which carbonate growth occurs can significantly affect quantitative 14 C dilution, especially in areas where very old water is uplifted, mixing with top layers of water that undergo significant exchange with atmospheric CO 2 . Hence, generalisations with respect to the marine reservoir effect also pose problems. These can be exacerbated by the mixing of sea water with either terrestrial water in estuaries, or ground water where

  5. Always chew your food: freshwater stingrays use mastication to process tough insect prey.

    Science.gov (United States)

    Kolmann, Matthew A; Welch, Kenneth C; Summers, Adam P; Lovejoy, Nathan R

    2016-09-14

    Chewing, characterized by shearing jaw motions and high-crowned molar teeth, is considered an evolutionary innovation that spurred dietary diversification and evolutionary radiation of mammals. Complex prey-processing behaviours have been thought to be lacking in fishes and other vertebrates, despite the fact that many of these animals feed on tough prey, like insects or even grasses. We investigated prey capture and processing in the insect-feeding freshwater stingray Potamotrygon motoro using high-speed videography. We find that Potamotrygon motoro uses asymmetrical motion of the jaws, effectively chewing, to dismantle insect prey. However, CT scanning suggests that this species has simple teeth. These findings suggest that in contrast to mammalian chewing, asymmetrical jaw action is sufficient for mastication in other vertebrates. We also determined that prey capture in these rays occurs through rapid uplift of the pectoral fins, sucking prey beneath the ray's body, thereby dissociating the jaws from a prey capture role. We suggest that the decoupling of prey capture and processing facilitated the evolution of a highly kinetic feeding apparatus in batoid fishes, giving these animals an ability to consume a wide variety of prey, including molluscs, fishes, aquatic insect larvae and crustaceans. We propose Potamotrygon as a model system for understanding evolutionary convergence of prey processing and chewing in vertebrates. © 2016 The Author(s).

  6. What you need is what you eat? Prey selection by the bat Myotis daubentonii.

    Science.gov (United States)

    Vesterinen, Eero J; Ruokolainen, Lasse; Wahlberg, Niklas; Peña, Carlos; Roslin, Tomas; Laine, Veronika N; Vasko, Ville; Sääksjärvi, Ilari E; Norrdahl, Kai; Lilley, Thomas M

    2016-04-01

    Optimal foraging theory predicts that predators are selective when faced with abundant prey, but become less picky when prey gets sparse. Insectivorous bats in temperate regions are faced with the challenge of building up fat reserves vital for hibernation during a period of decreasing arthropod abundances. According to optimal foraging theory, prehibernating bats should adopt a less selective feeding behavior--yet empirical studies have revealed many apparently generalized species to be composed of specialist individuals. Targeting the diet of the bat Myotis daubentonii, we used a combination of molecular techniques to test for seasonal changes in prey selectivity and individual-level variation in prey preferences. DNA metabarcoding was used to characterize both the prey contents of bat droppings and the insect community available as prey. To test for dietary differences among M. daubentonii individuals, we used ten microsatellite loci to assign droppings to individual bats. The comparison between consumed and available prey revealed a preference for certain prey items regardless of availability. Nonbiting midges (Chironomidae) remained the most highly consumed prey at all times, despite a significant increase in the availability of black flies (Simuliidae) towards the end of the season. The bats sampled showed no evidence of individual specialization in dietary preferences. Overall, our approach offers little support for optimal foraging theory. Thus, it shows how novel combinations of genetic markers can be used to test general theory, targeting patterns at both the level of prey communities and individual predators. © 2016 John Wiley & Sons Ltd.

  7. Benefits of Group Foraging Depend on Prey Type in a Small Marine Predator, the Little Penguin.

    Science.gov (United States)

    Sutton, Grace J; Hoskins, Andrew J; Arnould, John P Y

    2015-01-01

    Group foraging provides predators with advantages in over-powering prey larger than themselves or in aggregating small prey for efficient exploitation. For group-living predatory species, cooperative hunting strategies provide inclusive fitness benefits. However, for colonial-breeding predators, the benefit pay-offs of group foraging are less clear due to the potential for intra-specific competition. We used animal-borne cameras to determine the prey types, hunting strategies, and success of little penguins (Eudyptula minor), a small, colonial breeding air-breathing marine predator that has recently been shown to display extensive at-sea foraging associations with conspecifics. Regardless of prey type, little penguins had a higher probability of associating with conspecifics when hunting prey that were aggregated than when prey were solitary. In addition, success was greater when individuals hunted schooling rather than solitary prey. Surprisingly, however, success on schooling prey was similar or greater when individuals hunted on their own than when with conspecifics. These findings suggest individuals may be trading-off the energetic gains of solitary hunting for an increased probability of detecting prey within a spatially and temporally variable prey field by associating with conspecifics.

  8. Prey selection by Bengal Tiger Panthera tigris tigris (Mammalia: Carnivora: Felidae of Chitwan National Park, Nepal

    Directory of Open Access Journals (Sweden)

    Saneer Lamichhane

    2015-11-01

    Full Text Available Prey selection by tiger in Chitwan National Park, Nepal was studied from 77 tiger scats that contained the remains of principal prey species.  The scats were collected from January to March 2010.  Government reports on herbivore population in Chitwan provided the base data on density of principal prey species.  In order to understand prey selectivity, the observed proportion of prey species in the scats were compared with the expected proportion derived from density estimates.  The observed scat frequency of Sambar, Hog Deer and Wild Boar was found to be greater than the estimated frequency, and the reverse was true for Chital and Muntjac.  The average weight of the principal prey species killed was 84 kg. According to our results, Chital and Sambar constituted the bulk (82.07%, and Hog Deer, Wild Boar, and Muntjac constituted 17.93% of the tiger diet.  Sambar contributed the largest bulk (43.75% of prey composition, but Chital constituted the relatively most killed (50.36% prey species.  The present study makes a contribution to an understanding of the status of prey composition in tiger scat in Chitwan during the year 2010.  The study also highlights that both large and medium sized prey are important for the conservation of tiger in Chitwan National Park. 

  9. A specialized araneophagic predator's short-term nutrient utilization depends on the macronutrient content of prey rather than on prey taxonomic affiliation

    DEFF Research Database (Denmark)

    Toft, Søren; Li, Daiqin; Mayntz, David

    2010-01-01

    rate of high-protein flies than of high-lipid flies and spiders but, after 5 days of feeding, there is no significant difference in growth between treatments, and the diets lead to significant changes in the macronutrient composition of P. quei as a result of variable extraction and utilization...... of the prey. The short-term utilization of spider prey is similar to that of high-lipid flies and both differ in several respects from the utilization of high-protein flies. Thus, the short-term nutrient utilization is better explained by prey macronutrient content than by whether the prey is a spider or not....... The results suggest that spider prey may have a more optimal macronutrient composition for P. quei and that P. quei does not depend on spider-specific substances....

  10. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia

    Energy Technology Data Exchange (ETDEWEB)

    Millett, J., E-mail: j.millett@lboro.ac.uk [Centre for Hydrological and Ecosystem Science, Department of Geography, Loughborough University, Loughborough LE11 3TU (United Kingdom); Foot, G.W. [Centre for Hydrological and Ecosystem Science, Department of Geography, Loughborough University, Loughborough LE11 3TU (United Kingdom); Svensson, B.M. [Department of Plant Ecology and Evolution, Uppsala University, Norbyvägen 18 D, SE-752 36 Uppsala (Sweden)

    2015-04-15

    Nitrogen (N) deposition has important negative impacts on natural and semi-natural ecosystems, impacting on biotic interactions across trophic levels. Low-nutrient systems are particularly sensitive to changes in N inputs and are therefore more vulnerable to N deposition. Carnivorous plants are often part of these ecosystems partly because of the additional nutrients obtained from prey. We studied the impact of N deposition on the nutrition of the carnivorous plant Drosera rotundifolia growing on 16 ombrotrophic bogs across Europe. We measured tissue N, phosphorus (P) and potassium (K) concentrations and prey and root N uptake using a natural abundance stable isotope approach. Our aim was to test the impact of N deposition on D. rotundifolia prey and root N uptake, and nutrient stoichiometry. D. rotundifolia root N uptake was strongly affected by N deposition, possibly resulting in reduced N limitation. The contribution of prey N to the N contained in D. rotundifolia ranged from 20 to 60%. N deposition reduced the maximum amount of N derived from prey, but this varied below this maximum. D. rotundifolia tissue N concentrations were a product of both root N availability and prey N uptake. Increased prey N uptake was correlated with increased tissue P concentrations indicating uptake of P from prey. N deposition therefore reduced the strength of a carnivorous plant–prey interaction, resulting in a reduction in nutrient transfer between trophic levels. We suggest that N deposition has a negative impact on D. rotundifolia and that responses to N deposition might be strongly site specific. - Highlights: • We measured nutrition of the carnivorous plant Drosera rotundifolia across Europe. • We measured tissue nutrient concentrations and prey and root N uptake at 16 sites. • Tissue N concentrations were a product of root N availability and prey N uptake. • N deposition reduced the maximum amount of N derived from prey. • N deposition reduced the strength of a

  11. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia

    International Nuclear Information System (INIS)

    Millett, J.; Foot, G.W.; Svensson, B.M.

    2015-01-01

    Nitrogen (N) deposition has important negative impacts on natural and semi-natural ecosystems, impacting on biotic interactions across trophic levels. Low-nutrient systems are particularly sensitive to changes in N inputs and are therefore more vulnerable to N deposition. Carnivorous plants are often part of these ecosystems partly because of the additional nutrients obtained from prey. We studied the impact of N deposition on the nutrition of the carnivorous plant Drosera rotundifolia growing on 16 ombrotrophic bogs across Europe. We measured tissue N, phosphorus (P) and potassium (K) concentrations and prey and root N uptake using a natural abundance stable isotope approach. Our aim was to test the impact of N deposition on D. rotundifolia prey and root N uptake, and nutrient stoichiometry. D. rotundifolia root N uptake was strongly affected by N deposition, possibly resulting in reduced N limitation. The contribution of prey N to the N contained in D. rotundifolia ranged from 20 to 60%. N deposition reduced the maximum amount of N derived from prey, but this varied below this maximum. D. rotundifolia tissue N concentrations were a product of both root N availability and prey N uptake. Increased prey N uptake was correlated with increased tissue P concentrations indicating uptake of P from prey. N deposition therefore reduced the strength of a carnivorous plant–prey interaction, resulting in a reduction in nutrient transfer between trophic levels. We suggest that N deposition has a negative impact on D. rotundifolia and that responses to N deposition might be strongly site specific. - Highlights: • We measured nutrition of the carnivorous plant Drosera rotundifolia across Europe. • We measured tissue nutrient concentrations and prey and root N uptake at 16 sites. • Tissue N concentrations were a product of root N availability and prey N uptake. • N deposition reduced the maximum amount of N derived from prey. • N deposition reduced the strength of a

  12. Seasonal foraging ecology of non-migratory cougars in a system with migrating prey.

    Directory of Open Access Journals (Sweden)

    L Mark Elbroch

    Full Text Available We tested for seasonal differences in cougar (Puma concolor foraging behaviors in the Southern Yellowstone Ecosystem, a multi-prey system in which ungulate prey migrate, and cougars do not. We recorded 411 winter prey and 239 summer prey killed by 28 female and 10 male cougars, and an additional 37 prey items by unmarked cougars. Deer composed 42.4% of summer cougar diets but only 7.2% of winter diets. Males and females, however, selected different proportions of different prey; male cougars selected more elk (Cervus elaphus and moose (Alces alces than females, while females killed greater proportions of bighorn sheep (Ovis canadensis, pronghorn (Antilocapra americana, mule deer (Odocoileus hemionus and small prey than males. Kill rates did not vary by season or between males and females. In winter, cougars were more likely to kill prey on the landscape as: 1 elevation decreased, 2 distance to edge habitat decreased, 3 distance to large bodies of water decreased, and 4 steepness increased, whereas in summer, cougars were more likely to kill in areas as: 1 elevation decreased, 2 distance to edge habitat decreased, and 3 distance from large bodies of water increased. Our work highlighted that seasonal prey selection exhibited by stationary carnivores in systems with migratory prey is not only driven by changing prey vulnerability, but also by changing prey abundances. Elk and deer migrations may also be sustaining stationary cougar populations and creating apparent competition scenarios that result in higher predation rates on migratory bighorn sheep in winter and pronghorn in summer. Nevertheless, cougar predation on rare ungulates also appeared to be influenced by individual prey selection.

  13. Do predators influence the distribution of age-0 kokanee in a Colorado Reservoir?

    Science.gov (United States)

    Hardiman, J.M.; Johnson, B.M.; Martinez, P.J.

    2004-01-01

    Seasonal changes in reservoir conditions such as productivity, light, and temperature create spatiotemporal variation in habitat that may segregate or aggregate predators and prey, producing implications for the distribution, growth, and survival of fishes. We used hydroacoustics to document the diel vertical distribution of age-0 kokanee Oncorhynchus nerka relative to environmental gradients at Blue Mesa Reservoir, Colorado, during May-August of 2002. Temperature, light, and zooplankton density profiles were examined relative to foraging conditions for kokanee and their primary predator, lake trout Salvelinus namaycush. Age-0 kokanee displayed large diel vertical migrations in May despite the lack of an energetic advantage before reservoir stratification. Age-0 kokanee minimized near-surface foraging at this time, perhaps to avoid predation by visual predators, such as lake trout, in the well-lit surface waters. Strong reservoir stratification in midsummer appeared to provide a thermal refuge from lake trout that the kokanee exploited. By August vertical migrations were shallow and most kokanee remained in the epilimnion throughout the day. Although the energetic implications of the late-summer strategy are unclear, it appears that kokanee were responding to changes in their predator environment. A robust model for kokanee diel vertical migration across a range of systems should include a predator avoidance component.

  14. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    Energy Technology Data Exchange (ETDEWEB)

    P. K. Pande

    1998-10-29

    Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

  15. Sedimentological and Geomorphological Effects of Reservoir Flushing: The Cachi Reservoir, Costa Rica, 1996

    DEFF Research Database (Denmark)

    Brandt, Anders; Swenning, Joar

    1999-01-01

    Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs......Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs...

  16. Management Optimization of Saguling Reservoir with Bellman Dynamic Programming and “Du Couloir” Iterative Method

    Directory of Open Access Journals (Sweden)

    Mariana Marselina

    2016-08-01

    Full Text Available The increasingly growth of population and industry sector have lead to an enhanced demand for electrical energy. One of the electricity providers in the area of Java-Madura Bali (Jamali is Saguling Reservoir. Saguling Reservoir is one of the three reservoirs that stem the flow of Citarum River in advance of to Jatiluhur and Cirata Reservoir. The average electricity production of Saguling Reservoir was 2,334,318.138 MWh/year in the period of 1986-2014. The water intake of Saguling Reservoir is the upstream Citarum Watershed with an area of 2340.88 km2 which also serves as the irrigation, inland fisheries, recreation, and other activities. An effort to improve the function of Saguling Reservoir in producing electrical energy is by optimizing the reservoir management. The optimization of Saguling Reservoir management in this study refers to Government Regulation No. 37/2010 on Dam/Reservoir Article 44 which states that the system of reservoir management consisting of the operation system in dry years, normal years, and wet years. In this research, the determination of the trajectory guideline in Saguling operation was divided in dry, normal and wet years. Trajectory guideline was conducted based on the electricity price of turbine inflow that various in every month. The determination of the trajectory guideline in various electricity price was done by using Program Dynamic Bellman (PD Bellman and “Du Couloir” iterative method which the objective to optimize the gain from electricity production. and “Du Couloir” iterative method was development of PD Bellman that can calculate the value of gain with a smaller discretization until 0,1 juta m3 effectively where PD Bellman just calculate until 10 million m3.  Smaller discretization can give maximum benefit from electricity production and the trajectory guideline will be closer to trajectory actual so optimization of Saguling operation will be achieved.

  17. Geological model of supercritical geothermal reservoir related to subduction system

    Science.gov (United States)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis