WorldWideScience

Sample records for reservoir operations combined

  1. Increasing Crop Yields in Water Stressed Countries by Combining Operations of Freshwater Reservoir and Wastewater Reclamation Plant

    Science.gov (United States)

    Bhushan, R.; Ng, T. L.

    2015-12-01

    Freshwater resources around the world are increasing in scarcity due to population growth, industrialization and climate change. This is a serious concern for water stressed countries, including those in Asia and North Africa where future food production is expected to be negatively affected by this. To address this problem, we investigate the potential of combining freshwater reservoir and wastewater reclamation operations. Reservoir water is the cheaper source of irrigation, but is often limited and climate sensitive. Treated wastewater is a more reliable alternative for irrigation, but often requires extensive further treatment which can be expensive. We propose combining the operations of a reservoir and a wastewater reclamation plant (WWRP) to augment the supply from the reservoir with reclaimed water for increasing crop yields in water stressed regions. The joint system of reservoir and WWRP is modeled as a multi-objective optimization problem with the double objective of maximizing the crop yield and minimizing total cost, subject to constraints on reservoir storage, spill and release, and capacity of the WWRP. We use the crop growth model Aquacrop, supported by The Food and Agriculture Organization of the United Nations (FAO), to model crop growth in response to water use. Aquacrop considers the effects of water deficit on crop growth stages, and from there estimates crop yield. We generate results comparing total crop yield under irrigation with water from just the reservoir (which is limited and often interrupted), and yield with water from the joint system (which has the potential of higher supply and greater reliability). We will present results for locations in India and Africa to evaluate the potential of the joint operations for improving food security in those areas for different budgets.

  2. Reservoir Operating Rule Optimization for California's Sacramento Valley

    Directory of Open Access Journals (Sweden)

    Timothy Nelson

    2016-03-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss1art6Reservoir operating rules for water resource systems are typically developed by combining intuition, professional discussion, and simulation modeling. This paper describes a joint optimization–simulation approach to develop preliminary economically-based operating rules for major reservoirs in California’s Sacramento Valley, based on optimized results from CALVIN, a hydro-economic optimization model. We infer strategic operating rules from the optimization model results, including storage allocation rules to balance storage among multiple reservoirs, and reservoir release rules to determine monthly release for individual reservoirs. Results show the potential utility of considering previous year type on water availability and various system and sub-system storage conditions, in addition to normal consideration of local reservoir storage, season, and current inflows. We create a simple simulation to further refine and test the derived operating rules. Optimization model results show particular insights for balancing the allocation of water storage among Shasta, Trinity, and Oroville reservoirs over drawdown and refill seasons, as well as some insights for release rules at major reservoirs in the Sacramento Valley. We also discuss the applicability and limitations of developing reservoir operation rules from optimization model results.

  3. Modelling of Reservoir Operations using Fuzzy Logic and ANNs

    Science.gov (United States)

    Van De Giesen, N.; Coerver, B.; Rutten, M.

    2015-12-01

    Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, , was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.

  4. Ecological operation for Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    Wen-xian Guo

    2011-06-01

    Full Text Available The traditional operation of the Three Gorges Reservoir has mainly focused on water for flood control, power generation, navigation, water supply, and recreation, and given less attention to the negative impacts of reservoir operation on the river ecosystem. In order to reduce the negative influence of reservoir operation, ecological operation of the reservoir should be studied with a focus on maintaining a healthy river ecosystem. This study considered ecological operation targets, including maintaining the river environmental flow and protecting the spawning and reproduction of the Chinese sturgeon and four major Chinese carps. Using flow data from 1900 to 2006 at the Yichang gauging station as the control station data for the Yangtze River, the minimal and optimal river environmental flows were analyzed, and eco-hydrological targets for the Chinese sturgeon and four major Chinese carps in the Yangtze River were calculated. This paper proposes a reservoir ecological operation model, which comprehensively considers flood control, power generation, navigation, and the ecological environment. Three typical periods, wet, normal, and dry years, were selected, and the particle swarm optimization algorithm was used to analyze the model. The results show that ecological operation modes have different effects on the economic benefit of the hydropower station, and the reservoir ecological operation model can simulate the flood pulse for the requirements of spawning of the Chinese sturgeon and four major Chinese carps. According to the results, by adopting a suitable re-operation scheme, the hydropower benefit of the reservoir will not decrease dramatically while the ecological demand is met. The results provide a reference for designing reasonable operation schemes for the Three Gorges Reservoir.

  5. Optimal reservoir operation policies using novel nested algorithms

    Science.gov (United States)

    Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri

    2015-04-01

    Historically, the two most widely practiced methods for optimal reservoir operation have been dynamic programming (DP) and stochastic dynamic programming (SDP). These two methods suffer from the so called "dual curse" which prevents them to be used in reasonably complex water systems. The first one is the "curse of dimensionality" that denotes an exponential growth of the computational complexity with the state - decision space dimension. The second one is the "curse of modelling" that requires an explicit model of each component of the water system to anticipate the effect of each system's transition. We address the problem of optimal reservoir operation concerning multiple objectives that are related to 1) reservoir releases to satisfy several downstream users competing for water with dynamically varying demands, 2) deviations from the target minimum and maximum reservoir water levels and 3) hydropower production that is a combination of the reservoir water level and the reservoir releases. Addressing such a problem with classical methods (DP and SDP) requires a reasonably high level of discretization of the reservoir storage volume, which in combination with the required releases discretization for meeting the demands of downstream users leads to computationally expensive formulations and causes the curse of dimensionality. We present a novel approach, named "nested" that is implemented in DP, SDP and reinforcement learning (RL) and correspondingly three new algorithms are developed named nested DP (nDP), nested SDP (nSDP) and nested RL (nRL). The nested algorithms are composed from two algorithms: 1) DP, SDP or RL and 2) nested optimization algorithm. Depending on the way we formulate the objective function related to deficits in the allocation problem in the nested optimization, two methods are implemented: 1) Simplex for linear allocation problems, and 2) quadratic Knapsack method in the case of nonlinear problems. The novel idea is to include the nested

  6. Simulation and optimisation modelling approach for operation of the Hoa Binh Reservoir, Vietnam

    DEFF Research Database (Denmark)

    Ngo, Long le; Madsen, Henrik; Rosbjerg, Dan

    2007-01-01

    Hoa Binh, the largest reservoir in Vietnam, plays an important role in flood control for the Red River delta and hydropower generation. Due to its multi-purpose character, conflicts and disputes in operating the reservoir have been ongoing since its construction, particularly in the flood season....... This paper proposes to optimise the control strategies for the Hoa Binh reservoir operation by applying a combination of simulation and optimisation models. The control strategies are set up in the MIKE 11 simulation model to guide the releases of the reservoir system according to the current storage level......, the hydro-meteorological conditions, and the time of the year. A heuristic global optimisation tool, the shuffled complex evolution (SCE) algorithm, is adopted for optimising the reservoir operation. The optimisation puts focus on the trade-off between flood control and hydropower generation for the Hoa...

  7. Operational trade-offs in reservoir control

    Science.gov (United States)

    Georgakakos, Aris P.

    1993-11-01

    Reservoir operation decisions require constant reevaluation in the face of conflicting objectives, varying hydrologic conditions, and frequent operational policy changes. Optimality is a relative concept very much dependent on the circumstances under which a decision is made. More than anything else, reservoir management authorities need the means to assess the impacts of various operational options. It is their responsibility to define what is desirable after a thorough evaluation of the existing circumstances. This article presents a model designed to generate operational trade-offs common among reservoir systems. The model avoids an all-encompassing problem formulation and distinguishes three operational modes (levels) corresponding to normal, drought, and flood operations. Each level addresses only relevant system elements and uses a static and a dynamic control module to optimize turbine performance within each planning period and temporally. The model is used for planning the operation of the Savannah River System.

  8. Comparison of static and dynamic resilience for a multipurpose reservoir operation

    Science.gov (United States)

    Simonovic, Slobodan P.; Arunkumar, R.

    2016-11-01

    Reliability, resilience, and vulnerability are the traditional risk measures used to assess the performance of a reservoir system. Among these measures, resilience is used to assess the ability of a reservoir system to recover from a failure event. However, the time-independent static resilience does not consider the system characteristics, interaction of various individual components and does not provide much insight into reservoir performance from the beginning of the failure event until the full performance recovery. Knowledge of dynamic reservoir behavior under the disturbance offers opportunities for proactive and/or reactive adaptive response that can be selected to maximize reservoir resilience. A novel measure is required to provide insight into the dynamics of reservoir performance based on the reservoir system characteristics and its adaptive capacity. The reservoir system characteristics include, among others, reservoir storage curve, reservoir inflow, reservoir outflow capacity, and reservoir operating rules. The reservoir adaptive capacity can be expressed using various impacts of reservoir performance under the disturbance (like reservoir release for meeting a particular demand, socioeconomic consequences of reservoir performance, or resulting environmental state of the river upstream and downstream from the reservoir). Another way of expressing reservoir adaptive capacity to a disturbing event may include aggregated measures like reservoir robustness, redundancy, resourcefulness, and rapidity. A novel measure that combines reservoir performance and its adaptive capacity is proposed in this paper and named "dynamic resilience." The paper also proposes a generic simulation methodology for quantifying reservoir resilience as a function of time. The proposed resilience measure is applied to a single multipurpose reservoir operation and tested for a set of failure scenarios. The dynamic behavior of reservoir resilience is captured using the system

  9. Decision Support System for Reservoir Management and Operation in Africa

    Science.gov (United States)

    Navar, D. A.

    2016-12-01

    Africa is currently experiencing a surge in dam construction for flood control, water supply and hydropower production, but ineffective reservoir management has caused problems in the region, such as water shortages, flooding and loss of potential hydropower generation. Our research aims to remedy ineffective reservoir management by developing a novel Decision Support System(DSS) to equip water managers with a technical planning tool based on the state of the art in hydrological sciences. The DSS incorporates a climate forecast model, a hydraulic model of the watershed, and an optimization model to effectively plan for the operation of a system of cascade large-scale reservoirs for hydropower production, while treating water supply and flood control as constraints. Our team will use the newly constructed hydropower plants in the Omo Gibe basin of Ethiopia as the test case. Using the basic HIDROTERM software developed in Brazil, the General Algebraic Modeling System (GAMS) utilizes a combination of linear programing (LP) and non-linear programming (NLP) in conjunction with real time hydrologic and energy demand data to optimize the monthly and daily operations of the reservoir system. We compare the DSS model results with the current reservoir operating policy used by the water managers of that region. We also hope the DSS will eliminate the current dangers associated with the mismanagement of large scale water resources projects in Africa.

  10. Reservoir operation using El Niño forecasts-case study of Daule Peripa and Baba, Ecuador

    DEFF Research Database (Denmark)

    Gelati, Emiliano; Madsen, Henrik; Rosbjerg, Dan

    2014-01-01

    Reservoir operation is studied for the Daule Peripa and Baba system in Ecuador, where El Niño events cause anomalously heavy precipitation. Reservoir inflow is modelled by a Markov-switching model using El Niño-Southern Oscillation (ENSO) indices as input. Inflow is forecast using 9-month lead time...... Reservoir. Optimized operation is compared to historical management of Daule Peripa. Hypothetical management scenarios are used as the benchmark for the planned system, for which no operation policy is known. Upper bounds for operational performance are found via dynamic programming by assuming perfect...... knowledge of future inflow. The results highlight the advantages of combining inflow forecasts and storage targets in reservoir operation. © 2014 © 2014 IAHS Press....

  11. Fuzzy rule-based model for hydropower reservoirs operation

    Energy Technology Data Exchange (ETDEWEB)

    Moeini, R.; Afshar, A.; Afshar, M.H. [School of Civil Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2011-02-15

    Real-time hydropower reservoir operation is a continuous decision-making process of determining the water level of a reservoir or the volume of water released from it. The hydropower operation is usually based on operating policies and rules defined and decided upon in strategic planning. This paper presents a fuzzy rule-based model for the operation of hydropower reservoirs. The proposed fuzzy rule-based model presents a set of suitable operating rules for release from the reservoir based on ideal or target storage levels. The model operates on an 'if-then' principle, in which the 'if' is a vector of fuzzy premises and the 'then' is a vector of fuzzy consequences. In this paper, reservoir storage, inflow, and period are used as premises and the release as the consequence. The steps involved in the development of the model include, construction of membership functions for the inflow, storage and the release, formulation of fuzzy rules, implication, aggregation and defuzzification. The required knowledge bases for the formulation of the fuzzy rules is obtained form a stochastic dynamic programming (SDP) model with a steady state policy. The proposed model is applied to the hydropower operation of ''Dez'' reservoir in Iran and the results are presented and compared with those of the SDP model. The results indicate the ability of the method to solve hydropower reservoir operation problems. (author)

  12. Optimal Operation of Hydropower Reservoirs under Climate Change: The Case of Tekeze Reservoir, Eastern Nile

    Directory of Open Access Journals (Sweden)

    Fikru Fentaw Abera

    2018-03-01

    Full Text Available Optimal operation of reservoirs is very essential for water resource planning and management, but it is very challenging and complicated when dealing with climate change impacts. The objective of this paper was to assess existing and future hydropower operation at the Tekeze reservoir in the face of climate change. In this study, a calibrated and validated Soil and Water Assessment Tool (SWAT was used to model runoff inflow into the Tekeze hydropower reservoir under present and future climate scenarios. Inflow to the reservoir was simulated using hydro-climatic data from an ensemble of downscaled climate data based on the Coordinated Regional climate Downscaling Experiment over African domain (CORDEX-Africa with Coupled Intercomparison Project Phase 5 (CMIP5 simulations under Representative Concentration Pathway (RCP4.5 and RCP8.5 climate scenarios. Observed and projected inflows to Tekeze hydropower reservoir were used as input to the US Army Corps of Engineer’s Reservoir Evaluation System Perspective Reservoir Model (HEC-ResPRM, a reservoir operation model, to optimize hydropower reservoir release, storage and pool level. Results indicated that climate change has a clear impact on reservoir inflow and showed increase in annual and monthly inflow into the reservoir except in dry months from May to June under RCP4.5 and RCP8.5 climate scenarios. HEC-ResPRM optimal operation results showed an increase in Tekeze reservoir power storage potential up to 25% and 30% under RCP4.5 and RCP8.5 climate scenarios, respectively. This implies that Tekeze hydropower production will be affected by climate change. This analysis can be used by water resources planners and mangers to develop reservoir operation techniques considering climate change impact to increase power production.

  13. Reservoir shorelines : a methodology for evaluating operational impacts

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, M.; Braund-Read, J.; Musgrave, B. [BC Hydro, Burnaby, BC (Canada)

    2009-07-01

    BC Hydro has been operating hydroelectric facilities for over a century in British Columbia. The integrity and stability of the shorelines and slopes bordering hydroelectric reservoirs is affected by changing water levels in the reservoir, natural processes of flooding, wind and wave action and modification of groundwater levels. Establishing setbacks landward of the shoreline are needed in order to protect useable shoreline property that may be at risk of flooding, erosion or instability due to reservoir operations. Many of the reservoirs in British Columbia are situated in steep, glaciated valleys with diverse geological, geomorphological and climatic conditions and a variety of eroding shorelines. As such, geotechnical studies are needed to determine the operational impacts on reservoir shorelines. Since the 1960s BC Hydro has been developing a methodology for evaluating reservoir impacts and determining the land around the reservoir perimeter that should remain as a right of way for operations while safeguarding waterfront development. The methodology was modified in the 1990s to include geomorphological and geological processes. However, uncertainties in the methodology still exist due to limited understanding of key issues such as rates of erosion and shoreline regression, immaturity of present day reservoir shorelines and impacts of climate change. 11 refs., 1 tab., 7 figs.

  14. Total output operation chart optimization of cascade reservoirs and its application

    International Nuclear Information System (INIS)

    Jiang, Zhiqiang; Ji, Changming; Sun, Ping; Wang, Liping; Zhang, Yanke

    2014-01-01

    Highlights: • We propose a new double nested model for cascade reservoirs operation optimization. • We use two methods to extract the output distribution ratio. • The adopted two methods perform better than the widely used methods at present. • Stepwise regression method performs better than mean value method on the whole. - Abstract: With the rapid development of cascade hydropower stations in recent decades, the cascade system composed of multiple reservoirs needs unified operation and management. However, the output distribution problem has not yet been solved reasonably when the total output of cascade system obtained, which makes the full utilization of hydropower resources in cascade reservoirs very difficult. Discriminant criterion method is a traditional and common method to solve the output distribution problem at present, but some shortcomings cannot be ignored in the practical application. In response to the above concern, this paper proposes a new total output operation chart optimization model and a new optimal output distribution model, the two models constitute to a double nested model with the goal of maximizing power generation. This paper takes the cascade reservoirs of Li Xianjiang River in China as an instance to obtain the optimal total output operation chart by the proposed double nested model and the 43 years historical runoff data, progressive searching method and progressive optimality algorithm are used in solving the model. In order to take the obtained total output operation chart into practical operation, mean value method and stepwise regression method are adopted to extract the output distribution ratios on the basis of the optimal simulation intermediate data. By comparing with discriminant criterion method and conventional method, the combined utilization of total output operation chart and output distribution ratios presents better performance in terms of power generation and assurance rate, which proves it is an effective

  15. Multiobjective Optimization Modeling Approach for Multipurpose Single Reservoir Operation

    Directory of Open Access Journals (Sweden)

    Iosvany Recio Villa

    2018-04-01

    Full Text Available The water resources planning and management discipline recognizes the importance of a reservoir’s carryover storage. However, mathematical models for reservoir operation that include carryover storage are scarce. This paper presents a novel multiobjective optimization modeling framework that uses the constraint-ε method and genetic algorithms as optimization techniques for the operation of multipurpose simple reservoirs, including carryover storage. The carryover storage was conceived by modifying Kritsky and Menkel’s method for reservoir design at the operational stage. The main objective function minimizes the cost of the total annual water shortage for irrigation areas connected to a reservoir, while the secondary one maximizes its energy production. The model includes operational constraints for the reservoir, Kritsky and Menkel’s method, irrigation areas, and the hydropower plant. The study is applied to Carlos Manuel de Céspedes reservoir, establishing a 12-month planning horizon and an annual reliability of 75%. The results highly demonstrate the applicability of the model, obtaining monthly releases from the reservoir that include the carryover storage, degree of reservoir inflow regulation, water shortages in irrigation areas, and the energy generated by the hydroelectric plant. The main product is an operational graph that includes zones as well as rule and guide curves, which are used as triggers for long-term reservoir operation.

  16. Sudden water pollution accidents and reservoir emergency operations: impact analysis at Danjiangkou Reservoir.

    Science.gov (United States)

    Zheng, Hezhen; Lei, Xiaohui; Shang, Yizi; Duan, Yang; Kong, Lingzhong; Jiang, Yunzhong; Wang, Hao

    2018-03-01

    Danjiangkou Reservoir is the source reservoir of the Middle Route of the South-to-North Water Diversion Project (MRP). Any sudden water pollution accident in the reservoir would threaten the water supply of the MRP. We established a 3-D hydrodynamic and water quality model for the Danjiangkou Reservoir, and proposed scientific suggestions on the prevention and emergency management for sudden water pollution accidents based on simulated results. Simulations were performed on 20 hypothetical pollutant discharge locations and 3 assumed amounts, in order to model the effect of pollutant spreading under different reservoir operation types. The results showed that both the location and mass of pollution affected water quality; however, different reservoir operation types had little effect. Five joint regulation scenarios, which altered the hydrodynamic processes of water conveyance for the Danjiangkou and Taocha dams, were considered for controlling pollution dispersion. The results showed that the spread of a pollutant could be effectively controlled through the joint regulation of the two dams and that the collaborative operation of the Danjiangkou and Taocha dams is critical for ensuring the security of water quality along the MRP.

  17. Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations

    Science.gov (United States)

    Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.

    2011-12-01

    HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of

  18. Advancing reservoir operation description in physically based hydrological models

    Science.gov (United States)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  19. A real-time control framework for urban water reservoirs operation

    Science.gov (United States)

    Galelli, S.; Goedbloed, A.; Schwanenberg, D.

    2012-04-01

    Drinking water demand in urban areas is growing parallel to the worldwide urban population, and it is acquiring an increasing part of the total water consumption. Since the delivery of sufficient water volumes in urban areas represents a difficult logistic and economical problem, different metropolitan areas are evaluating the opportunity of constructing relatively small reservoirs within urban areas. Singapore, for example, is developing the so-called 'Four National Taps Strategies', which detects the maximization of water yields from local, urban catchments as one of the most important water sources. However, the peculiar location of these reservoirs can provide a certain advantage from the logistical point of view, but it can pose serious difficulties in their daily management. Urban catchments are indeed characterized by large impervious areas: this results in a change of the hydrological cycle, with decreased infiltration and groundwater recharge, and increased patterns of surface and river discharges, with higher peak flows, volumes and concentration time. Moreover, the high concentrations of nutrients and sediments characterizing urban discharges can cause further water quality problems. In this critical hydrological context, the effective operation of urban water reservoirs must rely on real-time control techniques, which can exploit hydro-meteorological information available in real-time from hydrological and nowcasting models. This work proposes a novel framework for the real-time control of combined water quality and quantity objectives in urban reservoirs. The core of this framework is a non-linear Model Predictive Control (MPC) scheme, which employs the current state of the system, the future discharges furnished by a predictive model and a further model describing the internal dynamics of the controlled sub-system to determine an optimal control sequence over a finite prediction horizon. The main advantage of this scheme stands in its reduced

  20. Real-time reservoir operation considering non-stationary inflow prediction

    Science.gov (United States)

    Zhao, J.; Xu, W.; Cai, X.; Wang, Z.

    2011-12-01

    Stationarity of inflow has been a basic assumption for reservoir operation rule design, which is now facing challenges due to climate change and human interferences. This paper proposes a modeling framework to incorporate non-stationary inflow prediction for optimizing the hedging operation rule of large reservoirs with multiple-year flow regulation capacity. A multi-stage optimization model is formulated and a solution algorithm based on the optimality conditions is developed to incorporate non-stationary annual inflow prediction through a rolling, dynamic framework that updates the prediction from period to period and adopt the updated prediction in reservoir operation decision. The prediction model is ARIMA(4,1,0), in which parameter 4 stands for the order of autoregressive, 1 represents a linear trend, and 0 is the order of moving average. The modeling framework and solution algorithm is applied to the Miyun reservoir in China, determining a yearly operating schedule during the period from 1996 to 2009, during which there was a significant declining trend of reservoir inflow. Different operation policy scenarios are modeled, including standard operation policy (SOP, matching the current demand as much as possible), hedging rule (i.e., leaving a certain amount of water for future to avoid large risk of water deficit) with forecast from ARIMA (HR-1), hedging (HR) with perfect forecast (HR-2 ). Compared to the results of these scenarios to that of the actual reservoir operation (AO), the utility of the reservoir operation under HR-1 is 3.0% lower than HR-2, but 3.7% higher than the AO and 14.4% higher than SOP. Note that the utility under AO is 10.3% higher than that under SOP, which shows that a certain level of hedging under some inflow prediction or forecast was used in the real-world operation. Moreover, the impacts of discount rate and forecast uncertainty level on the operation will be discussed.

  1. Design and development of bio-inspired framework for reservoir operation optimization

    Science.gov (United States)

    Asvini, M. Sakthi; Amudha, T.

    2017-12-01

    Frameworks for optimal reservoir operation play an important role in the management of water resources and delivery of economic benefits. Effective utilization and conservation of water from reservoirs helps to manage water deficit periods. The main challenge in reservoir optimization is to design operating rules that can be used to inform real-time decisions on reservoir release. We develop a bio-inspired framework for the optimization of reservoir release to satisfy the diverse needs of various stakeholders. In this work, single-objective optimization and multiobjective optimization problems are formulated using an algorithm known as "strawberry optimization" and tested with actual reservoir data. Results indicate that well planned reservoir operations lead to efficient deployment of the reservoir water with the help of optimal release patterns.

  2. Effect of Streamflow Forecast Uncertainty on Real-Time Reservoir Operation

    Science.gov (United States)

    Zhao, T.; Cai, X.; Yang, D.

    2010-12-01

    Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (DPSF), and ensemble streamflow forecast (ESF), which represent forecast uncertainty in the form of deterministic forecast error, deterministic forecast error-based uncertainty distribution, and ensemble forecast errors, respectively. Compared to previous studies that treat these forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. In hydrology, there are various indices reflecting the magnitude of streamflow forecast uncertainty; meanwhile, few models illustrate the forecast uncertainty evolution process. This research introduces Martingale Model of Forecast Evolution (MMFE) from supply chain management and justifies its assumptions for quantifying the evolution of uncertainty in streamflow forecast as time progresses. Based on MMFE, this research simulates the evolution of forecast uncertainty in DSF, DPSF, and ESF, and applies the reservoir operation models (dynamic programming, DP; stochastic dynamic programming, SDP; and standard operation policy, SOP) to assess the effect of different forms of forecast uncertainty on real-time reservoir operation. Through a hypothetical single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases. Meanwhile, these effects also depend on the type of forecast product being used. In general, the utility of reservoir operation with ESF is nearly as high as the utility obtained with a perfect forecast; the utilities of DSF and DPSF are similar to each other but not as efficient as ESF. Moreover

  3. A dimension reduction method for flood compensation operation of multi-reservoir system

    Science.gov (United States)

    Jia, B.; Wu, S.; Fan, Z.

    2017-12-01

    Multiple reservoirs cooperation compensation operations coping with uncontrolled flood play vital role in real-time flood mitigation. This paper come up with a reservoir flood compensation operation index (ResFCOI), which formed by elements of flood control storage, flood inflow volume, flood transmission time and cooperation operations period, then establish a flood cooperation compensation operations model of multi-reservoir system, according to the ResFCOI to determine a computational order of each reservoir, and lastly the differential evolution algorithm is implemented for computing single reservoir flood compensation optimization in turn, so that a dimension reduction method is formed to reduce computational complexity. Shiguan River Basin with two large reservoirs and an extensive uncontrolled flood area, is used as a case study, results show that (a) reservoirs' flood discharges and the uncontrolled flood are superimposed at Jiangjiaji Station, while the formed flood peak flow is as small as possible; (b) cooperation compensation operations slightly increase in usage of flood storage capacity in reservoirs, when comparing to rule-based operations; (c) it takes 50 seconds in average when computing a cooperation compensation operations scheme. The dimension reduction method to guide flood compensation operations of multi-reservoir system, can make each reservoir adjust its flood discharge strategy dynamically according to the uncontrolled flood magnitude and pattern, so as to mitigate the downstream flood disaster.

  4. Determining effective forecast horizons for multi-purpose reservoirs with short- and long-term operating objectives

    Science.gov (United States)

    Luchner, Jakob; Anghileri, Daniela; Castelletti, Andrea

    2017-04-01

    selection technique. The technique determines the most informative combination in a multi-variate regression model to the optimal reservoir releases based on perfect information at a fixed objective trade-off. The improved reservoir operation is evaluated against optimal reservoir operation conditioned upon perfect information on future disturbances and basic reservoir operation using only the day of the year and the reservoir level. Different objective trade-offs are selected for analyzing resulting differences in improved reservoir operation and selected forecast variables and horizons. For comparison, the effective streamflow forecast horizon determined by the ISA framework is benchmarked against the performances obtained with a deterministic model predictive control (MPC) optimization scheme. Both the ISA framework and the MPC optimization scheme are applied to the real-world case study of Lake Como, Italy, using perfect streamflow forecast information. The principal operation targets for Lake Como are flood control and downstream water supply which makes its operation a suitable case study. Results provide critical feedback to reservoir operators on the use of long-term streamflow forecasts and to the hydro-meteorological forecasting community with respect to the forecast horizon needed from reliable streamflow forecasts.

  5. Cascade reservoir flood control operation based on risk grading and warning in the Upper Yellow River

    Science.gov (United States)

    Xuejiao, M.; Chang, J.; Wang, Y.

    2017-12-01

    Flood risk reduction with non-engineering measures has become the main idea for flood management. It is more effective for flood risk management to take various non-engineering measures. In this paper, a flood control operation model for cascade reservoirs in the Upper Yellow River was proposed to lower the flood risk of the water system with multi-reservoir by combining the reservoir flood control operation (RFCO) and flood early warning together. Specifically, a discharge control chart was employed to build the joint RFCO simulation model for cascade reservoirs in the Upper Yellow River. And entropy-weighted fuzzy comprehensive evaluation method was adopted to establish a multi-factorial risk assessment model for flood warning grade. Furthermore, after determining the implementing mode of countermeasures with future inflow, an intelligent optimization algorithm was used to solve the optimization model for applicable water release scheme. In addition, another model without any countermeasure was set to be a comparative experiment. The results show that the model developed in this paper can further decrease the flood risk of water system with cascade reservoirs. It provides a new approach to flood risk management by coupling flood control operation and flood early warning of cascade reservoirs.

  6. Restoring Natural Streamflow Variability by Modifying Multi-purpose Reservoir Operation

    Science.gov (United States)

    Shiau, J.

    2010-12-01

    Multi-purpose reservoirs typically provide benefits of water supply, hydroelectric power, and flood mitigation. Hydroelectric power generations generally do not consume water. However, temporal distribution of downstream flows is highly changed due to hydro-peaking effects. Associated with offstream diversion of water supplies for municipal, industrial, and agricultural requirements, natural streamflow characteristics of magnitude, duration, frequency, timing, and rate of change is significantly altered by multi-purpose reservoir operation. Natural flow regime has long been recognized a master factor for ecosystem health and biodiversity. Restoration of altered flow regime caused by multi-purpose reservoir operation is the main objective of this study. This study presents an optimization framework that modifying reservoir operation to seeking balance between human and environmental needs. The methodology presented in this study is applied to the Feitsui Reservoir, located in northern Taiwan, with main purpose of providing stable water-supply and auxiliary purpose of electricity generation and flood-peak attenuation. Reservoir releases are dominated by two decision variables, i.e., duration of water releases for each day and percentage of daily required releases within the duration. The current releasing policy of the Feitsui Reservoir releases water for water-supply and hydropower purposes during 8:00 am to 16:00 pm each day and no environmental flows releases. Although greater power generation is obtained by 100% releases distributed within 8-hour period, severe temporal alteration of streamflow is observed downstream of the reservoir. Modifying reservoir operation by relaxing these two variables and reserve certain ratio of streamflow as environmental flow to maintain downstream natural variability. The optimal reservoir releasing policy is searched by the multi-criterion decision making technique for considering reservoir performance in terms of shortage ratio

  7. Optimization of Multipurpose Reservoir Operation with Application Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Elahe Fallah Mehdipour

    2012-12-01

    Full Text Available Optimal operation of multipurpose reservoirs is one of the complex and sometimes nonlinear problems in the field of multi-objective optimization. Evolutionary algorithms are optimization tools that search decision space using simulation of natural biological evolution and present a set of points as the optimum solutions of problem. In this research, application of multi-objective particle swarm optimization (MOPSO in optimal operation of Bazoft reservoir with different objectives, including generating hydropower energy, supplying downstream demands (drinking, industry and agriculture, recreation and flood control have been considered. In this regard, solution sets of the MOPSO algorithm in bi-combination of objectives and compromise programming (CP using different weighting and power coefficients have been first compared that the MOPSO algorithm in all combinations of objectives is more capable than the CP to find solution with appropriate distribution and these solutions have dominated the CP solutions. Then, ending points of solution set from the MOPSO algorithm and nonlinear programming (NLP results have been compared. Results showed that the MOPSO algorithm with 0.3 percent difference from the NLP results has more capability to present optimum solutions in the ending points of solution set.

  8. Measurement of Lake Roosevelt biota in relation to reservoir operations. 1991 Annual report

    International Nuclear Information System (INIS)

    Griffith, J.R.; McDowell, A.C.; Scholz, A.T.

    1991-01-01

    The purpose of this study was to collect biological data from Lake Roosevelt to be used in the design of a computer model that would predict biological responses to reservoir operations as part of the System Operation Review program. Major components of the Lake Roosevelt model included: quantification of impacts to phytoplankton, zooplanktons, benthic invertebrates, and fish caused by reservoir drawdowns and low water retention times; quantification of number, distribution, and use of fish food organisms in the reservoir by season; determination of seasonal growth of fish species as related to reservoir operations, prey abundance and utilization; and quantification of entrainment levels of zooplankton and fish as related to reservoir operations and water retention times. This report summarized the data collected on Lake Roosevelt for 1991 and includes limnological, zooplankton, benthic macroinvertebrate, fishery, and reservoir operation data. Discussions cover reservoir operation affect upon zooplankton, benthic macroinvertebrates, and fish. Reservoir operations brought reservoir elevations to a low of 1,221.7 in April, the result of power operations and a flood control shift from Dworshak Dam, in Idaho, to Grand Coulee Dam. Water retention times were correspondingly low reaching a minimum of 14.7 days on April 27th

  9. Measurement of Lake Roosevelt Biota in Relation to Reservoir Operations; 1991 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Janelle R.; McDowell, Amy C.; Scholz, Allan T.

    1995-08-01

    The purpose of this study was to collect biological data from Lake Roosevelt to be used in the design of a computer model that would predict biological responses to reservoir operations as part of the System Operation Review program. Major components of the Lake Roosevelt model included: quantification of impacts to phytoplankton, zooplanktons, benthic invertebrates, and fish caused by reservoir drawdowns and low water retention times; quantification of number, distribution, and use of fish food organisms in the reservoir by season; determination of seasonal growth of fish species as related to reservoir operations, prey abundance and utilization; and quantification of entrainment levels of zooplankton and fish as related to reservoir operations and water retention times. This report summarized the data collected on Lake Roosevelt for 1991 and includes limnological, zooplankton, benthic macroinvertebrate, fishery, and reservoir operation data. Discussions cover reservoir operation affect upon zooplankton, benthic macroinvertebrates, and fish. Reservoir operations brought reservoir elevations to a low of 1,221.7 in April, the result of power operations and a flood control shift from Dworshak Dam, in Idaho, to Grand Coulee Dam. Water retention times were correspondingly low reaching a minimum of 14.7 days on April 27th.

  10. APPLICATION OF INTEGRATED RESERVOIR MANAGEMENT AND RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jack Bergeron; Tom Blasingame; Louis Doublet; Mohan Kelkar; George Freeman; Jeff Callard; David Moore; David Davies; Richard Vessell; Brian Pregger; Bill Dixon; Bryce Bezant

    2000-03-01

    Reservoir performance and characterization are vital parameters during the development phase of a project. Infill drilling of wells on a uniform spacing, without regard to characterization does not optimize development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, especially carbonate reservoirs. These reservoirs are typically characterized by: (1) large, discontinuous pay intervals; (2) vertical and lateral changes in reservoir properties; (3) low reservoir energy; (4) high residual oil saturation; and (5) low recovery efficiency. The operational problems they encounter in these types of reservoirs include: (1) poor or inadequate completions and stimulations; (2) early water breakthrough; (3) poor reservoir sweep efficiency in contacting oil throughout the reservoir as well as in the nearby well regions; (4) channeling of injected fluids due to preferential fracturing caused by excessive injection rates; and (5) limited data availability and poor data quality. Infill drilling operations only need target areas of the reservoir which will be economically successful. If the most productive areas of a reservoir can be accurately identified by combining the results of geological, petrophysical, reservoir performance, and pressure transient analyses, then this ''integrated'' approach can be used to optimize reservoir performance during secondary and tertiary recovery operations without resorting to ''blanket'' infill drilling methods. New and emerging technologies such as geostatistical modeling, rock typing, and rigorous decline type curve analysis can be used to quantify reservoir quality and the degree of interwell communication. These results can then be used to develop a 3-D simulation model for prediction of infill locations. The application of reservoir surveillance techniques to identify additional reservoir ''pay'' zones

  11. Reservoir Operation Rules for Controlling Algal Blooms in a Tributary to the Impoundment of Three Gorges Dam

    Directory of Open Access Journals (Sweden)

    Jijian Lian

    2014-10-01

    Full Text Available Since the first impoundment of Three Gorges Dam in 2003, algal blooms occur frequently in the near-dam tributaries. It is widely recognized that the impoundment-induced change in hydrodynamic condition with the lower current velocity will make the eutrophication problem even more severe when an excessive amount of nutrients is already loaded into a reservoir and/or its tributaries. Operation tests carried out by Three Gorges Corporation in 2010 point to some feasible reservoir operation schemes that may have positive impacts on reducing the algal bloom level. In our study, an attempt is made to obtain, through a numerical hydrodynamic and water quality modeling and analysis, the reservoir operation rules that would reduce the level of algal blooms in the Xiangxi River (XXR, a near-dam tributary. Water movements and algal blooms in XXR are simulated and analyzed under different scenarios of one-day water discharge fluctuation or two-week water level variation. The model results demonstrate that the reservoir operations can further increase the water exchange between the mainstream of the Three Gorges Reservoir (TGR and the XXR tributary and thus move a larger amount of algae into the deep water where it will die. Analysis of the model results indicate that the water discharge fluctuation constituted of a lower valley-load flow and a larger flow difference for the short-term operation (within a day, the rise in water level for the medium-term operation (e.g., over weeks, and the combination of the above two for the long-term operation (e.g., over months can be the feasible reservoir operation rules in the non-flood season for TGR.

  12. Measurement of Lake Roosevelt biota in relation to reservoir operations. Appendices 1991

    International Nuclear Information System (INIS)

    Griffith, J.R.; McDowell, A.C.; Scholz, A.T.

    1991-01-01

    This report consists of appendices A-F containing the biological data which were collected from Lake Roosevelt, Washington. The data are to be used in the design of a computer model that would predict biological responses of reservoir operations as part of the System Operation Review program. Major components of the model included: Quantification of impacts to phytoplankton, zooplanktons, benthic invertebrates, and fish caused by reservoir drawdowns and low water retention times; quantification of number, distribution, and use of fish food organisms in the reservoir by season; determination of seasonal growth of fish species as related to reservoir operations, prey abundance and utilization; and quantification of entrainment levels of zooplankton and fish as related to reservoir operations and water retention times

  13. Designing adaptive operating rules for a large multi-purpose reservoir

    Science.gov (United States)

    Geressu, Robel; Rougé, Charles; Harou, Julien

    2017-04-01

    Reservoirs whose live storage capacity is large compared with annual inflow have "memory", i.e., their storage levels contain information about past inflows and reservoir operations. Such "long-memory" reservoirs can be found in basins in dry regions such as the Nile River Basin in Africa, the Colorado River Basin in the US, or river basins in Western and Central Asia. There the effects of a dry year have the potential to impact reservoir levels and downstream releases for several subsequent years, prompting tensions in transboundary basins. Yet, current reservoir operation rules in those reservoirs do not reflect this by integrating past climate history and release decisions among the factors that influence operating decisions. This work proposes and demonstrates an adaptive reservoir operating rule that explicitly accounts for the recent history of release decisions, and not only current storage level and near-term inflow forecasts. This implies adding long-term (e.g., multiyear) objectives to the existing short-term (e.g., annual) ones. We apply these operating rules to the Grand Ethiopian Renaissance Dam, a large reservoir under construction on the Blue Nile River. Energy generation has to be balanced with the imperative of releasing enough water in low flow years (e.g., the minimum 1, 2 or 3 year cumulative flow) to avoid tensions with downstream countries, Sudan and Egypt. Maximizing the minimum multi-year releases could be of interest for the Nile problem to minimize the impact on performance of the large High Aswan Dam in Egypt. Objectives include maximizing the average and minimum annual energy generation and maximizing the minimum annual, two year and three year cumulative releases. The system model is tested using 30 stochastically generated streamflow series. One can then derive adaptive release rules depending on the value of one- and two-year total releases with respect to thresholds. Then, there are 3 sets of release rules for the reservoir depending

  14. Studying Operation Rules of Cascade Reservoirs Based on Multi-Dimensional Dynamics Programming

    Directory of Open Access Journals (Sweden)

    Zhiqiang Jiang

    2017-12-01

    Full Text Available Although many optimization models and methods are applied to the optimization of reservoir operation at present, the optimal operation decision that is made through these models and methods is just a retrospective review. Due to the limitation of hydrological prediction accuracy, it is practical and feasible to obtain the suboptimal or satisfactory solution by the established operation rules in the actual reservoir operation, especially for the mid- and long-term operation. In order to obtain the optimized sample data with global optimality; and make the extracted operation rules more reasonable and reliable, this paper presents the multi-dimensional dynamic programming model of the optimal joint operation of cascade reservoirs and provides the corresponding recursive equation and the specific solving steps. Taking Li Xianjiang cascade reservoirs as a case study, seven uncertain problems in the whole operation period of the cascade reservoirs are summarized after a detailed analysis to the obtained optimal sample data, and two sub-models are put forward to solve these uncertain problems. Finally, by dividing the whole operation period into four characteristic sections, this paper extracts the operation rules of each reservoir for each section respectively. When compared the simulation results of the extracted operation rules with the conventional joint operation method; the result indicates that the power generation of the obtained rules has a certain degree of improvement both in inspection years and typical years (i.e., wet year; normal year and dry year. So, the rationality and effectiveness of the extracted operation rules are verified by the comparative analysis.

  15. Inflow forecasting using Artificial Neural Networks for reservoir operation

    Directory of Open Access Journals (Sweden)

    C. Chiamsathit

    2016-05-01

    Full Text Available In this study, multi-layer perceptron (MLP artificial neural networks have been applied to forecast one-month-ahead inflow for the Ubonratana reservoir, Thailand. To assess how well the forecast inflows have performed in the operation of the reservoir, simulations were carried out guided by the systems rule curves. As basis of comparison, four inflow situations were considered: (1 inflow known and assumed to be the historic (Type A; (2 inflow known and assumed to be the forecast (Type F; (3 inflow known and assumed to be the historic mean for month (Type M; and (4 inflow is unknown with release decision only conditioned on the starting reservoir storage (Type N. Reservoir performance was summarised in terms of reliability, resilience, vulnerability and sustainability. It was found that Type F inflow situation produced the best performance while Type N was the worst performing. This clearly demonstrates the importance of good inflow information for effective reservoir operation.

  16. Trade-off analysis of discharge-desiltation-turbidity and ANN analysis on sedimentation of a combined reservoir-reach system under multi-phase and multi-layer conjunctive releasing operation

    Science.gov (United States)

    Huang, Chien-Lin; Hsu, Nien-Sheng; Wei, Chih-Chiang; Yao, Chun-Hao

    2017-10-01

    Multi-objective reservoir operation considering the trade-off of discharge-desiltation-turbidity during typhoons and sediment concentration (SC) simulation modeling are the vital components for sustainable reservoir management. The purposes of this study were (1) to analyze the multi-layer release trade-offs between reservoir desiltation and intake turbidity of downstream purification plants and thus propose a superior conjunctive operation strategy and (2) to develop ANFIS-based (adaptive network-based fuzzy inference system) and RTRLNN-based (real-time recurrent learning neural networks) substitute SC simulation models. To this end, this study proposed a methodology to develop (1) a series of multi-phase and multi-layer sediment-flood conjunctive release modes and (2) a specialized SC numerical model for a combined reservoir-reach system. The conjunctive release modes involve (1) an optimization model where the decision variables are multi-phase reduction/scaling ratios and the timings to generate a superior total release hydrograph for flood control (Phase I: phase prior to flood arrival, Phase II/III: phase prior to/subsequent to peak flow) and (2) a combination method with physical limitations regarding separation of the singular hydrograph into multi-layer release hydrographs for sediment control. This study employed the featured signals obtained from statistical quartiles/sediment duration curve in mesh segmentation, and an iterative optimization model with a sediment unit response matrix and corresponding geophysical-based acceleration factors, for efficient parameter calibration. This research applied the developed methodology to the Shihmen Reservoir basin in Taiwan. The trade-off analytical results using Typhoons Sinlaku and Jangmi as case examples revealed that owing to gravity current and re-suspension effects, Phase I + II can de-silt safely without violating the intake's turbidity limitation before reservoir discharge reaches 2238 m3/s; however

  17. Estimation of Bank Erosion Due To Reservoir Operation in Cascade (Case Study: Citarum Cascade Reservoir

    Directory of Open Access Journals (Sweden)

    Sri Legowo

    2009-11-01

    Full Text Available Sedimentation is such a crucial issue to be noted once the accumulated sediment begins to fill the reservoir dead storage, this will then influence the long-term reservoir operation. The sediment accumulated requires a serious attention for it may influence the storage capacity and other reservoir management of activities. The continuous inflow of sediment to the reservoir will decrease the capacity of reservoir storage, the reservoir value in use, and the useful age of reservoir. Because of that, the rate of the sediment needs to be delayed as possible. In this research, the delay of the sediment rate is considered based on the rate of flow of landslide of the reservoir slope. The rate of flow of the sliding slope can be minimized by way of each reservoir autonomous efforts. This effort can be performed through; the regulation of fluctuating rate of reservoir surface current that does not cause suddenly drawdown and upraising as well. The research model is compiled using the searching technique of Non Linear Programming (NLP.The rate of bank erosion for the reservoir variates from 0.0009 to 0.0048 MCM/year, which is no sigrificant value to threaten the life time of reservoir.Mean while the rate of watershed sediment has a significant value, i.e: 3,02 MCM/year for Saguling that causes to fullfill the storage capacity in 40 next years (from years 2008.

  18. Optimizing Reservoir Operation to Adapt to the Climate Change

    Science.gov (United States)

    Madadgar, S.; Jung, I.; Moradkhani, H.

    2010-12-01

    Climate change and upcoming variation in flood timing necessitates the adaptation of current rule curves developed for operation of water reservoirs as to reduce the potential damage from either flood or draught events. This study attempts to optimize the current rule curves of Cougar Dam on McKenzie River in Oregon addressing some possible climate conditions in 21th century. The objective is to minimize the failure of operation to meet either designated demands or flood limit at a downstream checkpoint. A simulation/optimization model including the standard operation policy and a global optimization method, tunes the current rule curve upon 8 GCMs and 2 greenhouse gases emission scenarios. The Precipitation Runoff Modeling System (PRMS) is used as the hydrology model to project the streamflow for the period of 2000-2100 using downscaled precipitation and temperature forcing from 8 GCMs and two emission scenarios. An ensemble of rule curves, each associated with an individual scenario, is obtained by optimizing the reservoir operation. The simulation of reservoir operation, for all the scenarios and the expected value of the ensemble, is conducted and performance assessment using statistical indices including reliability, resilience, vulnerability and sustainability is made.

  19. Reservoirs operation and water resources utilization coordination in Hongshuihe basin

    Science.gov (United States)

    Li, Chonghao; Chi, Kaige; Pang, Bo; Tang, Hongbin

    2018-06-01

    In the recent decade, the demand for water resources has been increasing with the economic development. The reservoirs of cascade hydropower stations in Hongshuihe basin, which are constructed with a main purpose of power generation, are facing more integrated water resources utilization problem. The conflict between power generation of cascade reservoirs and flood control, shipping, environmental protection and water supply has become increasingly prominent. This paper introduces the general situation and integrated water demand of cascade reservoirs in Hongshuihe basin, and it analyses the impact of various types of integrated water demand on power generation and supply. It establishes mathematic models, constrained by various types of integrated water demand, to guide the operation and water resources utilization management of cascade reservoirs in Hongshuihe basin. Integrated water coordination mechanism of Hongshuihe basin is also introduced. It provides a technical and management guide and demonstration for cascade reservoirs operation and integrated water management at home and abroad.

  20. Reservoir operation schemes for water pollution accidents in Yangtze River

    Directory of Open Access Journals (Sweden)

    Xiao-kang Xin

    2012-03-01

    Full Text Available After the Three Gorges Reservoir starts running, it can not only take into consideration the interest of departments such as flood control, power generation, water supply, and shipping, but also reduce or eliminate the adverse effects of pollutants by discharge regulation. The evolution of pollutant plumes under different operation schemes of the Three Gorges Reservoir and three kinds of pollutant discharge types were calculated with the MIKE 21 AD software. The feasibility and effectiveness of the reservoir emergency operation when pollution accidents occur were investigated. The results indicate that the emergency operation produces significant effects on the instantaneous discharge type with lesser effects on the constant discharge type, the impact time is shortened, and the concentration of pollutant is reduced. Meanwhile, the results show that the larger the discharge is and the shorter the operation duration is, the more favorable the result is.

  1. Intelligent control for modeling of real-time reservoir operation, part II: artificial neural network with operating rule curves

    Science.gov (United States)

    Chang, Ya-Ting; Chang, Li-Chiu; Chang, Fi-John

    2005-04-01

    To bridge the gap between academic research and actual operation, we propose an intelligent control system for reservoir operation. The methodology includes two major processes, the knowledge acquired and implemented, and the inference system. In this study, a genetic algorithm (GA) and a fuzzy rule base (FRB) are used to extract knowledge based on the historical inflow data with a design objective function and on the operating rule curves respectively. The adaptive network-based fuzzy inference system (ANFIS) is then used to implement the knowledge, to create the fuzzy inference system, and then to estimate the optimal reservoir operation. To investigate its applicability and practicability, the Shihmen reservoir, Taiwan, is used as a case study. For the purpose of comparison, a simulation of the currently used M-5 operating rule curve is also performed. The results demonstrate that (1) the GA is an efficient way to search the optimal input-output patterns, (2) the FRB can extract the knowledge from the operating rule curves, and (3) the ANFIS models built on different types of knowledge can produce much better performance than the traditional M-5 curves in real-time reservoir operation. Moreover, we show that the model can be more intelligent for reservoir operation if more information (or knowledge) is involved.

  2. Evaluation of reservoir operation strategies for irrigation in the Macul Basin, Ecuador

    Directory of Open Access Journals (Sweden)

    Vicente Tinoco

    2016-03-01

    Full Text Available Study focus: An irrigation project is planned in the study basin for developing the agriculture as the main income in the region. The proposed water system comprises three large reservoirs damming the rivers Macul and Maculillo. The river basin planning and operation were investigated by modelling alternative reservoir operation strategies aiming at a sustainable balance between irrigation and river ecology by integrated reservoir/river management. New hydrological insights for the region: After simulation of long-term meteorological series in a model of the integrated water system, covering several historical extreme events, results indicate that the planned irrigation volumes are higher than the available water for a sustainable irrigation strategy. Two lines of action are suggested for reaching the target irrigation demands: design of a deficit irrigation system, and modifications to the reservoir's spillway height. Keywords: Reservoir operation, Conceptual model, Irrigation

  3. A Study of the Optimal Planning Model for Reservoir Sustainable Management- A Case Study of Shihmen Reservoir

    Science.gov (United States)

    Chen, Y. Y.; Ho, C. C.; Chang, L. C.

    2017-12-01

    The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.

  4. GestAqua.AdaPT - Mediterranean river basin modeling and reservoir operation strategies for climate change adaptation

    Science.gov (United States)

    Alexandre Diogo, Paulo; Nunes, João Pedro; Marco, Machado; Aal, Carlo; Carmona Rodrigues, António; Beça, Pedro; Casanova Lino, Rafael; Rocha, João; Carvalho Santos, Cláudia

    2016-04-01

    Climate change (CC) scenarios for the Mediterranean region include an increase in the frequency and intensity of extreme weather events such as drought periods. higher average temperatures and evapotranspiration, combined with the decrease of annual precipitation may strongly affect the sustainability of water resources. In face of these risks, improving water management actions? by anticipating necessary operational measures is required to insure water quantity and quality according to the needs of the populations and irrigation in agriculture. This is clearly the case of the Alentejo region, southern Portugal, where present climatic conditions already pose significant challenges to water resources stakeholders, mainly from the agricultural and the urban supply sectors. With this in mind, the GestAqua.AdaPT project is underway during 2015 and 2016, aiming at analyzing CC impacts until 2100 and develop operational procedures to ensure water needs are adequately satisfied in the Monte Novo and Vigia reservoirs, which supply water for the city of Évora and nearby irrigation systems. Specific project objectives include: a) defining management and operational adaptation strategies aiming to ensure resource sustainability, both quantitatively and qualitatively; b) evaluate future potential costs and available alternatives to the regional water transfer infrastructure linked with the large Alqueva reservoir implemented in 2011; c) defining CC adaptation strategies to reduce irrigation water needs and d) identification of CC adaptation strategies which can be suitable also to other similar water supply systems. The methodology is centered on the implementation of a cascade of modeling tools, allowing the integrated simulation of the multiple variables under analysis. The project is based on CC scenarios resulting from the CORDEX project for 10 combinations of Global and regional climate models (GCMs and RCMs). The study follows by using two of these combinations

  5. Reservoir release patterns for hydropower operations at the Aspinall Unit on the Gunnison River, Colorado

    International Nuclear Information System (INIS)

    Yin, S.C.L.; Sedlacek, J.

    1995-05-01

    This report presents the development of reservoir release patterns for the Aspinall Unit, which includes Blue Mesa, Morrow Point, and Crystal Reservoirs on the Gunnison River in Colorado. Release patterns were assessed for two hydropower operational scenarios--seasonally adjusted steady flows and seasonally adjusted high fluctuating flows--and three representative hydrologic years--moderate (1987), dry (1989), and wet (1983). The release patterns for the operational scenarios were developed with the aid of monthly, daily, and hourly reservoir operational models, which simulate the linked operation of the three Aspinall Unit reservoirs. Also presented are reservoir fluctuations and downstream water surface elevations corresponding to the reservoir release patterns. Both of the hydropower operational scenarios evaluated are based on the ecological research flows proposed by the US Fish and Wildlife Service for the Aspinall Unit. The first operational scenario allows only seasonally adjusted steady flows (no hourly fluctuations at any dam within one day), whereas the second scenario permits high fluctuating flows from Blue Mesa and Morrow Point Reservoirs during certain times of the year. Crystal Reservoir would release a steady flow within each day under both operational scenarios

  6. Simulation-optimization model of reservoir operation based on target storage curves

    Directory of Open Access Journals (Sweden)

    Hong-bin Fang

    2014-10-01

    Full Text Available This paper proposes a new storage allocation rule based on target storage curves. Joint operating rules are also proposed to solve the operation problems of a multi-reservoir system with joint demands and water transfer-supply projects. The joint operating rules include a water diversion rule to determine the amount of diverted water in a period, a hedging rule based on an aggregated reservoir to determine the total release from the system, and a storage allocation rule to specify the release from each reservoir. A simulation-optimization model was established to optimize the key points of the water diversion curves, the hedging rule curves, and the target storage curves using the improved particle swarm optimization (IPSO algorithm. The multi-reservoir water supply system located in Liaoning Province, China, including a water transfer-supply project, was employed as a case study to verify the effectiveness of the proposed join operating rules and target storage curves. The results indicate that the proposed operating rules are suitable for the complex system. The storage allocation rule based on target storage curves shows an improved performance with regard to system storage distribution.

  7. Optimising reservoir operation

    DEFF Research Database (Denmark)

    Ngo, Long le

    Anvendelse af optimeringsteknik til drift af reservoirer er blevet et væsentligt element i vandressource-planlægning og -forvaltning. Traditionelt har reservoirer været styret af heuristiske procedurer for udtag af vand, suppleret i en vis udstrækning af subjektive beslutninger. Udnyttelse af...... reservoirer involverer en lang række interessenter med meget forskellige formål (f.eks. kunstig vanding, vandkraft, vandforsyning mv.), og optimeringsteknik kan langt bedre lede frem til afbalancerede løsninger af de ofte modstridende interesser. Afhandlingen foreslår en række tiltag, hvormed traditionelle...

  8. Daily reservoir inflow forecasting combining QPF into ANNs model

    Science.gov (United States)

    Zhang, Jun; Cheng, Chun-Tian; Liao, Sheng-Li; Wu, Xin-Yu; Shen, Jian-Jian

    2009-01-01

    Daily reservoir inflow predictions with lead-times of several days are essential to the operational planning and scheduling of hydroelectric power system. The demand for quantitative precipitation forecasting (QPF) is increasing in hydropower operation with the dramatic advances in the numerical weather prediction (NWP) models. This paper presents a simple and an effective algorithm for daily reservoir inflow predictions which solicits the observed precipitation, forecasted precipitation from QPF as predictors and discharges in following 1 to 6 days as predicted targets for multilayer perceptron artificial neural networks (MLP-ANNs) modeling. An improved error back-propagation algorithm with self-adaptive learning rate and self-adaptive momentum coefficient is used to make the supervised training procedure more efficient in both time saving and search optimization. Several commonly used error measures are employed to evaluate the performance of the proposed model and the results, compared with that of ARIMA model, show that the proposed model is capable of obtaining satisfactory forecasting not only in goodness of fit but also in generalization. Furthermore, the presented algorithm is integrated into a practical software system which has been severed for daily inflow predictions with lead-times varying from 1 to 6 days of more than twenty reservoirs operated by the Fujian Province Grid Company, China.

  9. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    Science.gov (United States)

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  10. Integrating desalination to reservoir operation to increase redundancy for more secure water supply

    Science.gov (United States)

    Bhushan, Rashi; Ng, Tze Ling

    2016-08-01

    We investigate the potential of integrating desalination to existing reservoir systems to mitigate supply uncertainty. Desalinated seawater and wastewater are relatively reliable but expensive. Water from natural resources like reservoirs is generally cheaper but climate sensitive. We propose combining the operation of a reservoir and seawater and wastewater desalination plants for an overall system that is less vulnerable to scarcity and uncertainty, while constraining total cost. The joint system is modeled as a multiobjective optimization problem with the double objectives of minimizing risk and vulnerability, subject to a minimum limit on resilience. The joint model is applied to two cases, one based on the climate and demands of a location in India and the other of a location in California. The results for the Indian case indicate that it is possible for the joint system to reduce risk and vulnerability to zero given a budget increase of 20-120% under current climate conditions and 30-150% under projected future conditions. For the Californian case, this would require budget increases of 20-80% and 30-140% under current and future conditions, respectively. Further, our analysis shows a two-way interaction between the reservoir and desalination plants where the optimal operation of the former is just as much affected by the latter as the latter by the former. This highlights the importance of an integrated management approach. This study contributes to a greater quantitative understanding of desalination as a redundancy measure for adapting water supply infrastructures for a future of greater scarcity and uncertainty.

  11. Quantifying the robustness of optimal reservoir operation for the Xinanjiang-Fuchunjiang Reservoir Cascade

    NARCIS (Netherlands)

    Vonk, E.; Xu, YuePing; Booij, Martijn J.; Augustijn, Dionysius C.M.

    2016-01-01

    In this research we investigate the robustness of the common implicit stochastic optimization (ISO) method for dam reoperation. As a case study, we focus on the Xinanjiang-Fuchunjiang reservoir cascade in eastern China, for which adapted operating rules were proposed as a means to reduce the impact

  12. Monte Carlo reservoir analysis combining seismic reflection data and informed priors

    DEFF Research Database (Denmark)

    Zunino, Andrea; Mosegaard, Klaus; Lange, Katrine

    2015-01-01

    Determination of a petroleum reservoir structure and rock bulk properties relies extensively on inference from reflection seismology. However, classic deterministic methods to invert seismic data for reservoir properties suffer from some limitations, among which are the difficulty of handling...... with the goal to directly infer the rock facies and porosity of a target reservoir zone. We thus combined a rock-physics model with seismic data in a single inversion algorithm. For large data sets, theMcMC method may become computationally impractical, so we relied on multiple-point-based a priori information...... to quantify geologically plausible models. We tested this methodology on a synthetic reservoir model. The solution of the inverse problem was then represented by a collection of facies and porosity reservoir models, which were samples of the posterior distribution. The final product included probability maps...

  13. Forecast Informed Reservoir Operations: Bringing Science and Decision-Makers Together to Explore Use of Hydrometeorological Forecasts to Support Future Reservoir Operations

    Science.gov (United States)

    Ralph, F. M.; Jasperse, J.

    2017-12-01

    Forecast Informed Reservoir Operations (FIRO) is a proposed strategy that is exploring inorporation of improved hydrometeorological forecasts of land-falling atmospheric rivers on the U.S. West Coast into reservoir operations. The first testbed for this strategy is Lake Mendocino, which is located in the East Fork of the 1485 mi2 Russian River Watershed in northern California. This project is guided by the Lake Mendocino FIRO Steering Committee (SC). The SC is an ad hoc committee that consists of water managers and scientists from several federal, state, and local agencies, and universities who have teamed to evaluate whether current or improved technology and scientific understanding can be utilized to improve water supply reliability, enhance flood mitigation and support recovery of listed salmon for the Russian River of northern California. In 2015, the SC created a detailed work plan, which included a Preliminary Viability Assessment, which has now been completed. The SC developed a vision that operational efficiency would be improved by using forecasts to inform decisions about releasing or storing water. FIRO would use available reservoir storage in an efficient manner by (1) better forecasting inflow (or lack of inflow) with enhanced technology, and (2) adapting operation in real time to meet the need for storage, rather than making storage available just in case it is needed. The envisioned FIRO strategy has the potential to simultaneously improve water supply reliability, flood protection, and ecosystem outcomes through a more efficient use of existing infrastructure while requiring minimal capital improvements in the physical structure of the dam. This presentation will provide an overview of the creation of the FIRO SC and how it operates, and describes the lessons learned through this partnership. Results in the FIRO Preliminary Viability Assessment will be summarized and next steps described.

  14. The role of predictive uncertainty in the operational management of reservoirs

    Directory of Open Access Journals (Sweden)

    E. Todini

    2014-09-01

    Full Text Available The present work deals with the operational management of multi-purpose reservoirs, whose optimisation-based rules are derived, in the planning phase, via deterministic (linear and nonlinear programming, dynamic programming, etc. or via stochastic (generally stochastic dynamic programming approaches. In operation, the resulting deterministic or stochastic optimised operating rules are then triggered based on inflow predictions. In order to fully benefit from predictions, one must avoid using them as direct inputs to the reservoirs, but rather assess the "predictive knowledge" in terms of a predictive probability density to be operationally used in the decision making process for the estimation of expected benefits and/or expected losses. Using a theoretical and extremely simplified case, it will be shown why directly using model forecasts instead of the full predictive density leads to less robust reservoir management decisions. Moreover, the effectiveness and the tangible benefits for using the entire predictive probability density instead of the model predicted values will be demonstrated on the basis of the Lake Como management system, operational since 1997, as well as on the basis of a case study on the lake of Aswan.

  15. Determination of the Cascade Reservoir Operation for Optimal Firm-Energy Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Azmeri

    2013-08-01

    Full Text Available Indonesia today face a new paradigm in water management where aim to apply integrated water resources management has become unavoidable task in purpose of achieving greater level of effectiveness and efficiency. On of most interesting case study is the case of Citarum river, one of the most potential river for water supply in West Java, Indonesia. Alongside the river, Saguling, Cirata and Djuanda Reservoirs had been constructed in series/cascade. Saguling and Cirata reservoirs are particularly operated for hydroelectric power and Djuanda is multipurpose reservoir mainly operated for irrigation and contribute domestic water supply for Jakarta (capital city of Indonesia. Basically all reservoirs are relying on same resources, therefore this condition has considered addressing management and operational problem. Therefore, an approach toward new management and operation system are urgently required in order to achieve the effective and efficient output and to avoid conflicts of water used. This study aims to obtain energy production from Citarum Cascade Reservoir System using Genetic Algorithms optimization with the objective function to maximize firm-energy. Firm-energy is the minimum energy requirements must be available in a certain time period. Then, the result obtained by using the energy produced by GA is compared to the conventional searching technique of Non-Linier Programming (NLP. The GA derived operating curves reveal the higher energy and firm-energy than NLP model

  16. Monthly Optimal Reservoirs Operation for Multicrop Deficit Irrigation under Fuzzy Stochastic Uncertainties

    Directory of Open Access Journals (Sweden)

    Liudong Zhang

    2014-01-01

    Full Text Available An uncertain monthly reservoirs operation and multicrop deficit irrigation model was proposed under conjunctive use of underground and surface water for water resources optimization management. The objective is to maximize the total crop yield of the entire irrigation districts. Meanwhile, ecological water remained for the downstream demand. Because of the shortage of water resources, the monthly crop water production function was adopted for multiperiod deficit irrigation management. The model reflects the characteristics of water resources repetitive transformation in typical inland rivers irrigation system. The model was used as an example for water resources optimization management in Shiyang River Basin, China. Uncertainties in reservoir management shown as fuzzy probability were treated through chance-constraint parameter for decision makers. Necessity of dominance (ND was used to analyse the advantages of the method. The optimization results including reservoirs real-time operation policy, deficit irrigation management, and the available water resource allocation could be used to provide decision support for local irrigation management. Besides, the strategies obtained could help with the risk analysis of reservoirs operation stochastically.

  17. A prediction of Power Duration Curve from the Optimal Operation of the Multi Reservoirs System

    Directory of Open Access Journals (Sweden)

    Abdul Wahab Younis

    2013-04-01

    Full Text Available  This study aims of predication Power Duration Curves(PDC resulting from the optimal operation of the multi reservoirs system which comprises the reservoirs of Bakhma dam,Dokan dam and Makhool dam for the division of years over 30 years.Discrete Differential Dynamic Programming(DDDP has been employed to find the optimal operation of the said reservoirs.    PDC representing the relationship between the generated hydroelectric power and percentage of operation time equaled or exceeded . The importance of these curves lies in knowing the volume of electric power available for that percentage of operation time. The results have shown that the sum of yearly hydroelectric power for average Release and for the single operation was 5410,1604,2929(Mwfor the reservoirs of Bakhma, Dokan, Makhool dams, which resulted from the application of independent DDDP technology. Also, the hydroelectric power whose generation can be guranteed for 90% of the time is 344.91,107.7,188.15 (Mw for the single operation and 309.1,134.08,140.7 (Mw for the operation as a one system for the reservoirs of Bakhma, Dokan, and Makhool dams respectively.

  18. Nested algorithms for optimal reservoir operation and their embedding in a decision support platform

    NARCIS (Netherlands)

    Delipetrev, B.

    2016-01-01

    Reservoir operation is a multi-objective optimization problem traditionally solved with dynamic programming (DP) and stochastic dynamic programming (SDP) algorithms. The thesis presents novel algorithms for optimal reservoir operation named nested DP (nDP), nested SDP (nSDP), nested reinforcement

  19. Design and modeling of reservoir operation strategies for sediment management

    NARCIS (Netherlands)

    Sloff, C.J.; Omer, A.Y.A.; Heynert, K.V.; Mohamed, Y.A.

    2015-01-01

    Appropriate operation strategies that allow for sediment flushing and sluicing (sediment routing) can reduce rapid storage losses of (hydropower and water-supply) reservoirs. In this study we have shown, using field observations and computational models, that the efficiency of these operations

  20. Guiding rational reservoir flood operation using penalty-type genetic algorithm

    Science.gov (United States)

    Chang, Li-Chiu

    2008-06-01

    SummaryReal-time flood control of a multi-purpose reservoir should consider decreasing the flood peak stage downstream and storing floodwaters for future usage during typhoon seasons. This study proposes a reservoir flood control optimization model with linguistic description of requirements and existing regulations for rational operating decisions. The approach involves formulating reservoir flood operation as an optimization problem and using the genetic algorithm (GA) as a search engine. The optimizing formulation is expressed not only by mathematical forms of objective function and constraints, but also by no analytic expression in terms of parameters. GA is used to search a global optimum of a mixture of mathematical and nonmathematical formulations. Due to the great number of constraints and flood control requirements, it is difficult to reach a solution without violating constraints. To tackle this bottleneck, the proper penalty strategy for each parameter is proposed to guide the GA searching process. The proposed approach is applied to the Shihmen reservoir in North Taiwan for finding the rational release and desired storage as a case study. The hourly historical data sets of 29 typhoon events that have hit the area in last thirty years are investigated bye the proposed method. To demonstrate the effectiveness of the proposed approach, the simplex method was performed. The results demonstrated that a penalty-type genetic algorithm could effectively provide rational hydrographs to reduce flood damage during the flood operation and to increase final storage for future usages.

  1. Measurement of Lake Roosevelt biota in relation to reservoir operations. Final report 1993

    International Nuclear Information System (INIS)

    Voeller, A.C.

    1993-01-01

    The purpose of this study was to collect biological data from Lake Roosevelt to be used in the design of a computer model that will predict biological responses to reservoir operations as part of the System Operation Review Program. This study worked in conjunction with Lake Roosevelt Monitoring Project which investigated the effectiveness of two kokanee salmon hatcheries. This report summarized the data collected from Lake Roosevelt from 1993 and includes limnological, reservoir operation, zooplankton, benthic macroinvertebrate, experimental trawling, and net-pen rainbow trout tagging data. Major components of the Lake Roosevelt model include quantification of impacts to zooplankton, benthic macroinvertebrates, and fish caused by reservoir drawdowns and low water retention times

  2. Quantification of Libby Reservoir Water Levels Needed to Maintain or Enhance Reservoir Fisheries, 1988-1996 Methods and Data Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Dalbey, Steven Ray

    1998-03-01

    The Libby Reservoir study is part of the Northwest Power Planning Council's resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. This report summarizes the data collected from Libby Reservoir during 1988 through 1996.

  3. Optimization of conventional rule curves coupled with hedging rules for reservoir operation

    DEFF Research Database (Denmark)

    Taghian, Mehrdad; Rosbjerg, Dan; Haghighi, Ali

    2014-01-01

    As a common approach to reservoir operating policies, water levels at the end of each time interval should be kept at or above the rule curve. In this study, the policy is captured using rationing of the target yield to reduce the intensity of severe water shortages. For this purpose, a hybrid...... to achieve the optimal water allocation and the target storage levels for reservoirs. As a case study, a multipurpose, multireservoir system in southern Iran is selected. The results show that the model has good performance in extracting the optimum policy for reservoir operation under both normal...... model is developed to optimize simultaneously both the conventional rule curve and the hedging rule. In the compound model, a simple genetic algorithm is coupled with a simulation program, including an inner linear programming algorithm. In this way, operational policies are imposed by priority concepts...

  4. Optimizing Water Use and Hydropower Production in Operational Reservoir System Scheduling with RiverWare

    Science.gov (United States)

    Magee, T. M.; Zagona, E. A.

    2017-12-01

    Practical operational optimization of multipurpose reservoir systems is challenging for several reasons. Each purpose has its own constraints which may conflict with those of other purposes. While hydropower generation typically provides the bulk of the revenue, it is also among the lowest priority purposes. Each river system has important details that are specific to the location such as hydrology, reservoir storage capacity, physical limitations, bottlenecks, and the continuing evolution of operational policy. In addition, reservoir operations models include discrete, nonlinear, and nonconvex physical processes and if-then operating policies. Typically, the forecast horizon for scheduling needs to be extended far into the future to avoid near term (e.g., a few hours or a day) scheduling decisions that result in undesirable future states; this makes the computational effort much larger than may be expected. Put together, these challenges lead to large and customized mathematical optimization problems which must be solved efficiently to be of practical use. In addition, the solution process must be robust in an operational setting. We discuss a unique modeling approach in RiverWare that meets these challenges in an operational setting. The approach combines a Preemptive Linear Goal Programming optimization model to handle prioritized policies complimented by preprocessing and postprocessing with Rulebased Simulation to improve the solution with regard to nonlinearities, discrete issues, and if-then logic. An interactive policy language with a graphical user interface allows modelers to customize both the optimization and simulation based on the unique aspects of the policy for their system while the routine physical aspect of operations are modeled automatically. The modeler is aided by a set of compiled predefined functions and functions shared by other modelers. We illustrate the success of the approach with examples from daily use at the Tennessee Valley

  5. River Stream-Flow and Zayanderoud Reservoir Operation Modeling Using the Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Saeed Jamali

    2007-12-01

    Full Text Available The Zayanderoud basin is located in the central plateau of Iran. As a result of population increase and agricultural and industrial developments, water demand on this basin has increased extensively. Given the importance of reservoir operation in water resource and management studies, the performance of fuzzy inference system (FIS for Zayanderoud reservoir operation is investigated in this paper. The model of operation consists of two parts. In the first part, the seasonal river stream-flow is forecasted using the fuzzy rule-based system. The southern oscillated index, rain, snow, and discharge are inputs of the model and the seasonal river stream-flow its output. In the second part, the operation model is constructed. The amount of releases is first optimized by a nonlinear optimization model and then the rule curves are extracted using the fuzzy inference system. This model operates on an "if-then" principle, where the "if" is a vector of fuzzy permits and "then" is the fuzzy result. The reservoir storage capacity, inflow, demand, and year condition factor are used as permits. Monthly release is taken as the consequence. The Zayanderoud basin is investigated as a case study. Different performance indices such as reliability, resiliency, and vulnerability are calculated. According to results, FIS works more effectively than the traditional reservoir operation methods such as standard operation policy (SOP or linear regression.

  6. Duck Valley Reservoirs Fish Stocking and Operation and Maintenance, 2005-2006 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sellman, Jake; Dykstra, Tim [Shoshone-Paiute Tribes

    2009-05-11

    The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance (DV Fisheries) project is an ongoing resident fish program designed to enhance both subsistence fishing, educational opportunities for Tribal members of the Shoshone-Paiute Tribes, and recreational fishing facilities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View, Lake Billy Shaw, and Sheep Creek Reservoirs, the program also intends to afford and maintain healthy aquatic conditions for fish growth and survival, to provide superior facilities with wilderness qualities to attract non-Tribal angler use, and to offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period are divided into operations and maintenance plus monitoring and evaluation. Operation and maintenance of the three reservoirs include fences, roads, dams and all reservoir structures, feeder canals, water troughs and stock ponds, educational signs, vehicles and equipment, and outhouses. Monitoring and evaluation activities included creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, control of encroaching exotic vegetation, and community outreach and education. The three reservoirs are monitored in terms of water quality and fishery success. Sheep Creek Reservoir was the least productive as a result of high turbidity levels and constraining water quality parameters. Lake Billy Shaw trout were in poorer condition than in previous years potentially as a result of water quality or other factors. Mountain View Reservoir trout exhibit the best health of the three reservoirs and was the only reservoir to receive constant flows of water.

  7. Completion of potential conflicts of interest through optimization of Rukoh reservoir operation in Pidie District, Aceh Province, Indonesia

    Science.gov (United States)

    Azmeri, Hadihardaja, Iwan K.; Shaskia, Nina; Admaja, Kamal Surya

    2017-11-01

    Rukoh Reservoir's construction was planned to be built in Krueng Rukoh Watershed with supplet ion from Krueng Tiro River. Rukoh Reservoir operating system as a multipurpose reservoir raised potential conflict of interest between raw water and irrigation water. In this study, the operating system of Rukoh Reservoirs was designed to supply raw water in Titeu Sub-District and replenish water shortage in Baro Irrigation Area which is not able to be served by the Keumala Weir. Reservoir operating system should be planned optimally so that utilization of water in accordance with service area demands. Reservoir operation method was analyzed by using optimization technique with nonlinear programming. Optimization of reservoir operation is intended to minimize potential conflicts of interest in the operation. Suppletion discharge from Krueng Tiro River amounted to 46.62%, which was calculated based on ratio of Baro and Tiro irrigation area. However, during dry seasons, water demands could not be fully met, so there was a shortage of water. By considering the rules to minimize potential conflicts of interest between raw water and irrigation water, it would require suppletion from Krueng Tiro amounted to 52.30%. The increment of suppletion volume could minimize conflicts of interest. It produced l00% reservoir reliability for raw water and irrigation demands. Rukoh reservoir could serve raw water demands of Titeu Sub-District and irrigation demands of Baro irrigation area which is covering an area of 6,047 hectars. Reservoir operation guidelines can specify reservoir water release to balance the demands and the target storage.

  8. Complex relationship between seasonal streamflow forecast skill and value in reservoir operations

    Directory of Open Access Journals (Sweden)

    S. W. D. Turner

    2017-09-01

    Full Text Available Considerable research effort has recently been directed at improving and operationalising ensemble seasonal streamflow forecasts. Whilst this creates new opportunities for improving the performance of water resources systems, there may also be associated risks. Here, we explore these potential risks by examining the sensitivity of forecast value (improvement in system performance brought about by adopting forecasts to changes in the forecast skill for a range of hypothetical reservoir designs with contrasting operating objectives. Forecast-informed operations are simulated using rolling horizon, adaptive control and then benchmarked against optimised control rules to assess performance improvements. Results show that there exists a strong relationship between forecast skill and value for systems operated to maintain a target water level. But this relationship breaks down when the reservoir is operated to satisfy a target demand for water; good forecast accuracy does not necessarily translate into performance improvement. We show that the primary cause of this behaviour is the buffering role played by storage in water supply reservoirs, which renders the forecast superfluous for long periods of the operation. System performance depends primarily on forecast accuracy when critical decisions are made – namely during severe drought. As it is not possible to know in advance if a forecast will perform well at such moments, we advocate measuring the consistency of forecast performance, through bootstrap resampling, to indicate potential usefulness in storage operations. Our results highlight the need for sensitivity assessment in value-of-forecast studies involving reservoirs with supply objectives.

  9. Efficient operation of a multi-purpose reservoir in Chile: Tradeoffs between irrigation and hydropower production

    Science.gov (United States)

    Gonzalez Cabrera, J. M., Sr.; Olivares, M. A.

    2015-12-01

    This study proposes a method to develop efficient operational policies for a reservoir the southern Chile. The main water uses in this system are hydropower and irrigation, with conflicting seasonal demands. The conflict between these two uses is currently managed through a so-called "irrigation agreement" which defines a series of operational conditions on the reservoir by restricting volumes used for power production depending on reservoir storage level. Other than that, the reservoir operation is driven by cost-minimization over the power grid. Recent evidence shows an increasing degree of conflict in this basin, which suggests that the static approach of irrigation agreements, might no longer be appropriate. Moreover, this agreement could be revised in light of decreased water availability. This problem poses a challenge related to the spatial scope of analysis. Thus, irrigation benefits are driven by decisions made within the basin, whereas hydropower benefits depend on the operation of the entire power grid. Exploring the tradeoffs between these two water uses involves modeling both scales. The proposed methodology integrates information from both a grid-wide power operations model and a basin-wide agro-economic model into a decision model for optimal reservoir operation. The first model, a hydrothermal coordination tool, schedules power production by each plant in the grid, and allows capturing technical and economic aspects to the operation of hydropower reservoirs. The agro-economic model incorporates economic features of irrigation in the basin, and allows obtaining irrigation water demand functions. Finally, the results of both models are integrated into a single model for optimal reservoir operation considering the tradeoffs between the two uses. The result of the joint operation of water resources, show a flexible coordination of uses, revealing the opportunity cost of irrigation, which it gives the possibility of negotiating transfers of water to

  10. Incorporating teleconnection information into reservoir operating policies using Stochastic Dynamic Programming and a Hidden Markov Model

    Science.gov (United States)

    Turner, Sean; Galelli, Stefano; Wilcox, Karen

    2015-04-01

    Water reservoir systems are often affected by recurring large-scale ocean-atmospheric anomalies, known as teleconnections, that cause prolonged periods of climatological drought. Accurate forecasts of these events -- at lead times in the order of weeks and months -- may enable reservoir operators to take more effective release decisions to improve the performance of their systems. In practice this might mean a more reliable water supply system, a more profitable hydropower plant or a more sustainable environmental release policy. To this end, climate indices, which represent the oscillation of the ocean-atmospheric system, might be gainfully employed within reservoir operating models that adapt the reservoir operation as a function of the climate condition. This study develops a Stochastic Dynamic Programming (SDP) approach that can incorporate climate indices using a Hidden Markov Model. The model simulates the climatic regime as a hidden state following a Markov chain, with the state transitions driven by variation in climatic indices, such as the Southern Oscillation Index. Time series analysis of recorded streamflow data reveals the parameters of separate autoregressive models that describe the inflow to the reservoir under three representative climate states ("normal", "wet", "dry"). These models then define inflow transition probabilities for use in a classic SDP approach. The key advantage of the Hidden Markov Model is that it allows conditioning the operating policy not only on the reservoir storage and the antecedent inflow, but also on the climate condition, thus potentially allowing adaptability to a broader range of climate conditions. In practice, the reservoir operator would effect a water release tailored to a specific climate state based on available teleconnection data and forecasts. The approach is demonstrated on the operation of a realistic, stylised water reservoir with carry-over capacity in South-East Australia. Here teleconnections relating

  11. The Application of GA, SMPSO and HGAPSO in Optimal Reservoirs Operation

    Directory of Open Access Journals (Sweden)

    Alireza Moghaddam

    2017-02-01

    Full Text Available Introduction: The reservoir operation is a multi-objective optimization problem with large-scale which consider reliability and the needs of hydrology, energy, agriculture and the environment. There were not the any algorithms with this ability which consider all the above-mentioned demands until now. Almost the existing algorithms usually solve a simple form of the problem for their limitations. In the recent decay the application of meta-heuristic algorithms were introduced into the water resources problem to overcome on some complexity, such as non-linear, non-convex and description of these problems which limited the mathematical optimization methods. In this paper presented a Simple Modified Particle Swarm Optimization Algorithm (SMPSO with applying a new factor in Particle Swarm Optimization (PSO algorithm. Then a new suggested hybrid method which called HGAPSO developed based on combining with Genetic algorithm (GA. In the end, the performance of GA, MPSO and HGAPSO algorithms on the reservoir operation problem is investigated with considering water supplying as objective function in a period of 60 months according to inflow data. Materials and Methods: The GA is one of the newer programming methods which use of the theory of evolution and survival in biology and genetics principles. GA has been developed as an effective method in optimization problems which doesn’t have the limitation of classical methods. The SMPSO algorithm is the member of swarm intelligence methods that a solution is a population of birds which know as a particle. In this collection, the birds have the individual artificial intelligence and develop the social behavior and their coordinate movement toward a specific destination. The goal of this process is the communication between individual intelligence with social interaction. The new modify factor in SMPSO makes to improve the speed of convergence in optimal answer. The HGAPSO is a suggested combination of GA

  12. Genetic Algorithm (GA Method for Optimization of Multi-Reservoir Systems Operation

    Directory of Open Access Journals (Sweden)

    Shervin Momtahen

    2006-01-01

    Full Text Available A Genetic Algorithm (GA method for optimization of multi-reservoir systems operation is proposed in this paper. In this method, the parameters of operating policies are optimized using system simulation results. Hence, any operating problem with any sort of objective function, constraints and structure of operating policy can be optimized by GA. The method is applied to a 3-reservoir system and is compared with two traditional methods of Stochastic Dynamic Programming and Dynamic Programming and Regression. The results show that GA is superior both in objective function value and in computational speed. The proposed method is further improved using a mutation power updating rule and a varying period simulation method. The later is a novel procedure proposed in this paper that is believed to help in solving computational time problem in large systems. These revisions are evaluated and proved to be very useful in converging to better solutions in much less time. The final GA method is eventually evaluated as a very efficient procedure that is able to solve problems of large multi-reservoir system which is usually impossible by traditional methods. In fact, the real performance of the GA method starts where others fail to function.

  13. AI techniques for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands

    Science.gov (United States)

    Tsai, Wen-Ping; Chang, Fi-John; Chang, Li-Chiu; Herricks, Edwin E.

    2015-11-01

    Flow regime is the key driver of the riverine ecology. This study proposes a novel hybrid methodology based on artificial intelligence (AI) techniques for quantifying riverine ecosystems requirements and delivering suitable flow regimes that sustain river and floodplain ecology through optimizing reservoir operation. This approach addresses issues to better fit riverine ecosystem requirements with existing human demands. We first explored and characterized the relationship between flow regimes and fish communities through a hybrid artificial neural network (ANN). Then the non-dominated sorting genetic algorithm II (NSGA-II) was established for river flow management over the Shihmen Reservoir in northern Taiwan. The ecosystem requirement took the form of maximizing fish diversity, which could be estimated by the hybrid ANN. The human requirement was to provide a higher satisfaction degree of water supply. The results demonstrated that the proposed methodology could offer a number of diversified alternative strategies for reservoir operation and improve reservoir operational strategies producing downstream flows that could meet both human and ecosystem needs. Applications that make this methodology attractive to water resources managers benefit from the wide spread of Pareto-front (optimal) solutions allowing decision makers to easily determine the best compromise through the trade-off between reservoir operational strategies for human and ecosystem needs.

  14. Technology strategy for integrated operations and real time reservoir management; Technology Target Areas; TTA5 - Integrated operations and RTRM

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    In Norway Integrated Operations (IO) is a concept which in the first phase (G1) has been used to describe how to integrate processes and people onshore and offshore using ICT solutions and facilities that improve onshore's ability to support offshore operationally. The second generation (G2) Integrated Operations aims to help operators utilize vendors' core competencies and services more efficiently. Utilizing digital services and vendor products, operators will be able to update reservoir models, drilling targets and well trajectories as wells are drilled, manage well completions remotely, optimize production from reservoir to export lines, and implement condition-based maintenance concepts. The total impact on production, recovery rates, costs and safety will be profound. When the international petroleum business moves to the Arctic region the setting is very different from what is the case on the Norwegian Continental Shelf (NCS) and new challenges will arise. The Norwegian Ministry of Environment has recently issued an Integrated Management Plan for the Barents Sea where one focus is on 'Monitoring of the Marine Environment in the North'. The Government aims to establish a new and more coordinated system for monitoring the marine ecosystems in the north. A representative group consisting of the major Operators, the Service Industry, Academia and the Authorities have developed the enclosed strategy for the OG21 Integrated Operations and Real Time Reservoir Management (IO and RTRM) Technology Target Area (TTA). Major technology and work process research and development gaps have been identified in several areas: Bandwidth down-hole to surface; Sensor development including Nano-technology; Cross discipline use of Visualisation, Simulation and model development particularly in Drilling and Reservoir management areas; Software development in terms of data handling, model updating and calculation speed; Enabling reliable and robust communications particularly for

  15. Technology strategy for integrated operations and real time reservoir management; Technology Target Areas; TTA5 - Integrated operations and RTRM

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    In Norway Integrated Operations (IO) is a concept which in the first phase (G1) has been used to describe how to integrate processes and people onshore and offshore using ICT solutions and facilities that improve onshore's ability to support offshore operationally. The second generation (G2) Integrated Operations aims to help operators utilize vendors' core competencies and services more efficiently. Utilizing digital services and vendor products, operators will be able to update reservoir models, drilling targets and well trajectories as wells are drilled, manage well completions remotely, optimize production from reservoir to export lines, and implement condition-based maintenance concepts. The total impact on production, recovery rates, costs and safety will be profound. When the international petroleum business moves to the Arctic region the setting is very different from what is the case on the Norwegian Continental Shelf (NCS) and new challenges will arise. The Norwegian Ministry of Environment has recently issued an Integrated Management Plan for the Barents Sea where one focus is on 'Monitoring of the Marine Environment in the North'. The Government aims to establish a new and more coordinated system for monitoring the marine ecosystems in the north. A representative group consisting of the major Operators, the Service Industry, Academia and the Authorities have developed the enclosed strategy for the OG21 Integrated Operations and Real Time Reservoir Management (IO and RTRM) Technology Target Area (TTA). Major technology and work process research and development gaps have been identified in several areas: Bandwidth down-hole to surface; Sensor development including Nano-technology; Cross discipline use of Visualisation, Simulation and model development particularly in Drilling and Reservoir management areas; Software development in terms of data handling, model updating and calculation speed; Enabling reliable and robust communications

  16. Assessing the operation rules of a reservoir system based on a detailed modelling-chain

    Science.gov (United States)

    Bruwier, M.; Erpicum, S.; Pirotton, M.; Archambeau, P.; Dewals, B.

    2014-09-01

    According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two muti-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking, to control floods, to produce hydropower and to reduce low-flow condition. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.

  17. Assessing the operation rules of a reservoir system based on a detailed modelling chain

    Science.gov (United States)

    Bruwier, M.; Erpicum, S.; Pirotton, M.; Archambeau, P.; Dewals, B. J.

    2015-03-01

    According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two multi-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking water, to control floods, to produce hydropower and to reduce low-flow conditions. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.

  18. Efficient Operation of a Multi-purpose Reservoir in Chile: Integration of Economic Water Value for Irrigation and Hydropower

    Science.gov (United States)

    Olivares, M. A.; Gonzalez Cabrera, J. M., Sr.; Moreno, R.

    2016-12-01

    Operation of hydropower reservoirs in Chile is prescribed by an Independent Power System Operator. This study proposes a methodology that integrates power grid operations planning with basin-scale multi-use reservoir operations planning. The aim is to efficiently manage a multi-purpose reservoir, in which hydroelectric generation is competing with other water uses, most notably irrigation. Hydropower and irrigation are competing water uses due to a seasonality mismatch. Currently, the operation of multi-purpose reservoirs with substantial power capacity is prescribed as the result of a grid-wide cost-minimization model which takes irrigation requirements as constraints. We propose advancing in the economic co-optimization of reservoir water use for irrigation and hydropower at the basin level, by explicitly introducing the economic value of water for irrigation represented by a demand function for irrigation water. The proposed methodology uses the solution of a long-term grid-wide operations planning model, a stochastic dual dynamic program (SDDP), to obtain the marginal benefit function for water use in hydropower. This marginal benefit corresponds to the energy price in the power grid as a function of the water availability in the reservoir and the hydrologic scenarios. This function allows capture technical and economic aspects to the operation of hydropower reservoir in the power grid and is generated with the dual variable of the power-balance constraint, the optimal reservoir operation and the hydrologic scenarios used in SDDP. The economic value of water for irrigation and hydropower are then integrated into a basin scale stochastic dynamic program, from which stored water value functions are derived. These value functions are then used to re-optimize reservoir operations under several inflow scenarios.

  19. Assessing reservoir operations risk under climate change

    Science.gov (United States)

    Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T.

    2009-01-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios. Copyright 2009 by the American Geophysical Union.

  20. Derivation of Optimal Operating Rules for Large-scale Reservoir Systems Considering Multiple Trade-off

    Science.gov (United States)

    Zhang, J.; Lei, X.; Liu, P.; Wang, H.; Li, Z.

    2017-12-01

    Flood control operation of multi-reservoir systems such as parallel reservoirs and hybrid reservoirs often suffer from complex interactions and trade-off among tributaries and the mainstream. The optimization of such systems is computationally intensive due to nonlinear storage curves, numerous constraints and complex hydraulic connections. This paper aims to derive the optimal flood control operating rules based on the trade-off among tributaries and the mainstream using a new algorithm known as weighted non-dominated sorting genetic algorithm II (WNSGA II). WNSGA II could locate the Pareto frontier in non-dominated region efficiently due to the directed searching by weighted crowding distance, and the results are compared with those of conventional operating rules (COR) and single objective genetic algorithm (GA). Xijiang river basin in China is selected as a case study, with eight reservoirs and five flood control sections within four tributaries and the mainstream. Furthermore, the effects of inflow uncertainty have been assessed. Results indicate that: (1) WNSGA II could locate the non-dominated solutions faster and provide better Pareto frontier than the traditional non-dominated sorting genetic algorithm II (NSGA II) due to the weighted crowding distance; (2) WNSGA II outperforms COR and GA on flood control in the whole basin; (3) The multi-objective operating rules from WNSGA II deal with the inflow uncertainties better than COR. Therefore, the WNSGA II can be used to derive stable operating rules for large-scale reservoir systems effectively and efficiently.

  1. Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: a case study of the Xinfengjiang reservoir in southern China

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2013-01-01

    The ever-increasing demand for water due to growth of population and socioeconomic development in the past several decades has posed a worldwide threat to water supply security and to the environmental health of rivers. This study aims to derive reservoir operating rules through establishing a multi-objective optimization model for the Xinfengjiang (XFJ) reservoir in the East River Basin in southern China to minimize water supply deficit and maximize hydropower generation. Additionally, to enhance the estimation of irrigation water demand from the downstream agricultural area of the XFJ reservoir, a conventional method for calculating crop water demand is improved using hydrological model simulation results. Although the optimal reservoir operating rules are derived for the XFJ reservoir with three priority scenarios (water supply only, hydropower generation only, and equal priority), the river environmental health is set as the basic demand no matter which scenario is adopted. The results show that the new rules derived under the three scenarios can improve the reservoir operation for both water supply and hydropower generation when comparing to the historical performance. Moreover, these alternative reservoir operating policies provide the flexibility for the reservoir authority to choose the most appropriate one. Although changing the current operating rules may influence its hydropower-oriented functions, the new rules can be significant to cope with the increasingly prominent water shortage and degradation in the aquatic environment. Overall, our results and methods (improved estimation of irrigation water demand and formulation of the reservoir optimization model) can be useful for local watershed managers and valuable for other researchers worldwide.

  2. Remedial investigation/feasibility study report for lower Watts Bar Reservoir Operable Unit

    International Nuclear Information System (INIS)

    1994-08-01

    This document is the combined Remedial Investigation and Feasibility Study Report for the Lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch River. This area has received hazardous substances released over a period of 50 years from the U.S. Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received containments, including LWBR, must be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. Water-soluble contaminants released to ORR surface waters are rapidly diluted upon entering the Clinch River and then quickly transported downstream to the Tennessee River where further dilution occurs. Almost the entire quantity of these diluted contaminants rapidly flows through LWBR. In contrast, particle-associated contaminants tend to accumulate in the lower Clinch River and in LWBR in areas of sediment deposition. Those particle-associated contaminants that were released in peak quantities during the early years of ORR operations (e.g., mercury and 137 Cs) are buried under as much as 80 cm of cleaner sediment in LWBR. Certain contaminants, most notably polychlorinated biphenyls (PCBs), have accumulated in LWBR biota. The contamination of aquatic biota with PCBs is best documented for certain fish species and extends to reservoirs upstream of the ORR, indicating a contamination problem that is regional in scope and not specific to the ORR

  3. A numerical investigation of combined heat storage and extraction in deep geothermal reservoirs

    DEFF Research Database (Denmark)

    Major, Márton; Poulsen, Søren Erbs; Balling, Niels

    2018-01-01

    Heat storage capabilities of deep sedimentary geothermal reservoirs are evaluated through numerical model simulations. We combine storage with heat extraction in a doublet well system when storage phases are restricted to summer months. The effects of stored volume and annual repetition on energy...... recovery are investigated. Recovery factors are evaluated for several different model setups and we find that storing 90 °C water at 2500 m depth is capable of reproducing, on average 67% of the stored energy. In addition, ambient reservoir temperature of 75 °C is slightly elevated leading to increased...... efficiency. Additional simulations concerning pressure build-up in the reservoir are carried out to show that safety levels may not be reached. Reservoir characteristics are inspired by Danish geothermal conditions, but results are assumed to have more general validity. Thus, deep sedimentary reservoirs...

  4. Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    Directory of Open Access Journals (Sweden)

    H. Lauri

    2012-12-01

    Full Text Available The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekong within next 20–30 yr. We downscaled the output of five general circulation models (GCMs that were found to perform well in the Mekong region. For the simulation of reservoir operation, we used an optimisation approach to estimate the operation of multiple reservoirs, including both existing and planned hydropower reservoirs. For the hydrological assessment, we used a distributed hydrological model, VMod, with a grid resolution of 5 km × 5 km. In terms of climate change's impact on hydrology, we found a high variation in the discharge results depending on which of the GCMs is used as input. The simulated change in discharge at Kratie (Cambodia between the baseline (1982–1992 and projected time period (2032–2042 ranges from −11% to +15% for the wet season and −10% to +13% for the dry season. Our analysis also shows that the changes in discharge due to planned reservoir operations are clearly larger than those simulated due to climate change: 25–160% higher dry season flows and 5–24% lower flood peaks in Kratie. The projected cumulative impacts follow rather closely the reservoir operation impacts, with an envelope around them induced by the different GCMs. Our results thus indicate that within the coming 20–30 yr, the operation of planned hydropower reservoirs is likely to have a larger impact on the Mekong hydrograph than the impacts of climate change, particularly during the dry season. On the other hand, climate change will

  5. Derivation of optimal joint operating rules for multi-purpose multi-reservoir water-supply system

    Science.gov (United States)

    Tan, Qiao-feng; Wang, Xu; Wang, Hao; Wang, Chao; Lei, Xiao-hui; Xiong, Yi-song; Zhang, Wei

    2017-08-01

    The derivation of joint operating policy is a challenging task for a multi-purpose multi-reservoir system. This study proposed an aggregation-decomposition model to guide the joint operation of multi-purpose multi-reservoir system, including: (1) an aggregated model based on the improved hedging rule to ensure the long-term water-supply operating benefit; (2) a decomposed model to allocate the limited release to individual reservoirs for the purpose of maximizing the total profit of the facing period; and (3) a double-layer simulation-based optimization model to obtain the optimal time-varying hedging rules using the non-dominated sorting genetic algorithm II, whose objectives were to minimize maximum water deficit and maximize water supply reliability. The water-supply system of Li River in Guangxi Province, China, was selected for the case study. The results show that the operating policy proposed in this study is better than conventional operating rules and aggregated standard operating policy for both water supply and hydropower generation due to the use of hedging mechanism and effective coordination among multiple objectives.

  6. Remedial investigation/feasibility study report for Lower Watts Bar Reservoir Operable Unit

    International Nuclear Information System (INIS)

    1995-03-01

    This document is the combined Remedial Investigation and Feasibility Study Report for the lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch river. This area has received hazardous substances released over a period of 50 years from the US Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received contaminants, including LWBR, must be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. There is little data regarding the quantities of most contaminants potentially released from the ORR to the Clinch River, particularly for the early years of ORR operations. Estimates of the quantities released during this period are available for most radionuclides and some inorganic contaminants, indicating that releases 30 to 50 years ago were much higher than today. Since the early 1970s, the release of potential contaminants has been monitored for compliance with environmental law and reported in the annual environmental monitoring reports for the ORR

  7. Remedial investigation/feasibility study report for Lower Watts Bar Reservoir Operable Unit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This document is the combined Remedial Investigation and Feasibility Study Report for the lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch river. This area has received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received contaminants, including LWBR, must be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. There is little data regarding the quantities of most contaminants potentially released from the ORR to the Clinch River, particularly for the early years of ORR operations. Estimates of the quantities released during this period are available for most radionuclides and some inorganic contaminants, indicating that releases 30 to 50 years ago were much higher than today. Since the early 1970s, the release of potential contaminants has been monitored for compliance with environmental law and reported in the annual environmental monitoring reports for the ORR.

  8. Hybrid Multi-Objective Optimization of Folsom Reservoir Operation to Maximize Storage in Whole Watershed

    Science.gov (United States)

    Goharian, E.; Gailey, R.; Maples, S.; Azizipour, M.; Sandoval Solis, S.; Fogg, G. E.

    2017-12-01

    The drought incidents and growing water scarcity in California have a profound effect on human, agricultural, and environmental water needs. California experienced multi-year droughts, which have caused groundwater overdraft and dropping groundwater levels, and dwindling of major reservoirs. These concerns call for a stringent evaluation of future water resources sustainability and security in the state. To answer to this call, Sustainable Groundwater Management Act (SGMA) was passed in 2014 to promise a sustainable groundwater management in California by 2042. SGMA refers to managed aquifer recharge (MAR) as a key management option, especially in areas with high variation in water availability intra- and inter-annually, to secure the refill of underground water storage and return of groundwater quality to a desirable condition. The hybrid optimization of an integrated water resources system provides an opportunity to adapt surface reservoir operations for enhancement in groundwater recharge. Here, to re-operate Folsom Reservoir, objectives are maximizing the storage in the whole American-Cosumnes watershed and maximizing hydropower generation from Folsom Reservoir. While a linear programing (LP) module tends to maximize the total groundwater recharge by distributing and spreading water over suitable lands in basin, a genetic based algorithm, Non-dominated Sorting Genetic Algorithm II (NSGA-II), layer above it controls releases from the reservoir to secure the hydropower generation, carry-over storage in reservoir, available water for replenishment, and downstream water requirements. The preliminary results show additional releases from the reservoir for groundwater recharge during high flow seasons. Moreover, tradeoffs between the objectives describe that new operation performs satisfactorily to increase the storage in the basin, with nonsignificant effects on other objectives.

  9. On the effects of adaptive reservoir operating rules in hydrological physically-based models

    Science.gov (United States)

    Giudici, Federico; Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo

    2017-04-01

    Recent years have seen a significant increase of the human influence on the natural systems both at the global and local scale. Accurately modeling the human component and its interaction with the natural environment is key to characterize the real system dynamics and anticipate future potential changes to the hydrological regimes. Modern distributed, physically-based hydrological models are able to describe hydrological processes with high level of detail and high spatiotemporal resolution. Yet, they lack in sophistication for the behavior component and human decisions are usually described by very simplistic rules, which might underperform in reproducing the catchment dynamics. In the case of water reservoir operators, these simplistic rules usually consist of target-level rule curves, which represent the average historical level trajectory. Whilst these rules can reasonably reproduce the average seasonal water volume shifts due to the reservoirs' operation, they cannot properly represent peculiar conditions, which influence the actual reservoirs' operation, e.g., variations in energy price or water demand, dry or wet meteorological conditions. Moreover, target-level rule curves are not suitable to explore the water system response to climate and socio economic changing contexts, because they assume a business-as-usual operation. In this work, we quantitatively assess how the inclusion of adaptive reservoirs' operating rules into physically-based hydrological models contribute to the proper representation of the hydrological regime at the catchment scale. In particular, we contrast target-level rule curves and detailed optimization-based behavioral models. We, first, perform the comparison on past observational records, showing that target-level rule curves underperform in representing the hydrological regime over multiple time scales (e.g., weekly, seasonal, inter-annual). Then, we compare how future hydrological changes are affected by the two modeling

  10. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neural reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers, geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  11. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neutral reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  12. U.S. Army Corps of Engineers (USACE) Owned and Operated Reservoirs

    Data.gov (United States)

    Department of Homeland Security — This dataset shows maximum conservation pool or is a reasonable representation of the boundaries for reservoirs and lakes owned and operated by USACE. Data is from...

  13. Quantum heat engine operating between thermal and spin reservoirs

    Science.gov (United States)

    Wright, Jackson S. S. T.; Gould, Tim; Carvalho, André R. R.; Bedkihal, Salil; Vaccaro, Joan A.

    2018-05-01

    Landauer's erasure principle is a cornerstone of thermodynamics and information theory [R. Landauer, IBM J. Res. Dev. 5, 183 (1961), 10.1147/rd.53.0183]. According to this principle, erasing information incurs a minimum energy cost. Recently, Vaccaro and Barnett [J. A. Vaccaro and S. M. Barnett, Proc. R. Soc. A 467, 1770 (2011), 10.1098/rspa.2010.0577] explored information erasure in the context of multiple conserved quantities and showed that the erasure cost can be solely in terms of spin angular momentum. As Landauer's erasure principle plays a fundamental role in heat engines, their result considerably widens the possible configurations that heat engines can have. Motivated by this, we propose here an optical heat engine that operates under a single thermal reservoir and a spin angular momentum reservoir coupled to a three-level system with two energy degenerate ground states. The proposed heat engine operates without producing waste heat and goes beyond the traditional Carnot engine where the working fluid is subjected to two thermal baths at different temperatures.

  14. Combined reservoir simulation and seismic technology, a new approach for modeling CHOPS

    Energy Technology Data Exchange (ETDEWEB)

    Aghabarati, H.; Lines, L.; Settari, A. [Calgary Univ., AB (Canada); Dumitrescu, C. [Sensor Geophysical Ltd., Calgary, AB (Canada)

    2008-10-15

    One of the primary recovery schemes for developing heavy oil reservoirs in Canada is cold heavy oil production with sand (CHOPS). With the introduction of progressive cavity pumps, CHOPS can be applied in unconsolidated or weakly consolidated formations. In order to better understand reservoir properties and recovery mechanism, this paper discussed the use of a combined reservoir simulation and seismic technology that were applied for a heavy oil reservoir situated in Saskatchewan, Canada. Using a seismic survey acquired in 1989, the study used geostatistical methods to estimate the initial reservoir porosity. Sand production was then modeled using an erosional velocity approach and the model was run based on oil production. The paper also compared the results of true porosity derived from simulation against the porosity estimated from a second seismic survey acquired in 2001. Last, the extent and the shape of the enhanced permeability region was modelled in order to estimate porosity distribution. It was concluded that the performance of the CHOPS wells depended greatly on the rate of creation of the high permeability zone around the wells. 9 refs., 2 tabs., 18 figs., 1 appendix.

  15. Duck Valley Reservoirs Fish Stocking and Operation and Maintenance, 2006-2007 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sellman, Jake; Dykstra, Tim [Shoshone-Paiute Tribes

    2009-05-11

    The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance (DV Fisheries) project is an ongoing resident fish program that serves to partially mitigate the loss of anadromous fish that resulted from downstream construction of the hydropower system. The project's goals are to enhance subsistence fishing and educational opportunities for Tribal members of the Shoshone-Paiute Tribes and provide resident fishing opportunities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View, Lake Billy Shaw, and Sheep Creek Reservoirs, the program is also designed to maintain healthy aquatic conditions for fish growth and survival, to provide superior facilities with wilderness qualities to attract non-Tribal angler use, and to offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period are divided into operations and maintenance plus monitoring and evaluation. Operation and maintenance of the three reservoirs include fences, roads, dams and all reservoir structures, feeder canals, water troughs and stock ponds, educational signs, vehicles and equipment, and outhouses. Monitoring and evaluation activities included creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, control of encroaching exotic vegetation, and community outreach and education. The three reservoirs are monitored in terms of water quality and fishery success. Sheep Creek Reservoir was very unproductive this year as a fishery. Fish morphometric and water quality data indicate that the turbidity is severely impacting trout survival. Lake Billy Shaw was very productive as a fishery and received good ratings from anglers. Mountain View was also productive and anglers reported a high number of quality sized fish. Water quality

  16. The Improvement of Particle Swarm Optimization: a Case Study of Optimal Operation in Goupitan Reservoir

    Science.gov (United States)

    Li, Haichen; Qin, Tao; Wang, Weiping; Lei, Xiaohui; Wu, Wenhui

    2018-02-01

    Due to the weakness in holding diversity and reaching global optimum, the standard particle swarm optimization has not performed well in reservoir optimal operation. To solve this problem, this paper introduces downhill simplex method to work together with the standard particle swarm optimization. The application of this approach in Goupitan reservoir optimal operation proves that the improved method had better accuracy and higher reliability with small investment.

  17. Reservoir adaptive operating rules based on both of historical streamflow and future projections

    Science.gov (United States)

    Zhang, Wei; Liu, Pan; Wang, Hao; Chen, Jie; Lei, Xiaohui; Feng, Maoyuan

    2017-10-01

    Climate change is affecting hydrological variables and consequently is impacting water resources management. Historical strategies are no longer applicable under climate change. Therefore, adaptive management, especially adaptive operating rules for reservoirs, has been developed to mitigate the possible adverse effects of climate change. However, to date, adaptive operating rules are generally based on future projections involving uncertainties under climate change, yet ignoring historical information. To address this, we propose an approach for deriving adaptive operating rules considering both historical information and future projections, namely historical and future operating rules (HAFOR). A robustness index was developed by comparing benefits from HAFOR with benefits from conventional operating rules (COR). For both historical and future streamflow series, maximizations of both average benefits and the robustness index were employed as objectives, and four trade-offs were implemented to solve the multi-objective problem. Based on the integrated objective, the simulation-based optimization method was used to optimize the parameters of HAFOR. Using the Dongwushi Reservoir in China as a case study, HAFOR was demonstrated to be an effective and robust method for developing adaptive operating rules under the uncertain changing environment. Compared with historical or projected future operating rules (HOR or FPOR), HAFOR can reduce the uncertainty and increase the robustness for future projections, especially regarding results of reservoir releases and volumes. HAFOR, therefore, facilitates adaptive management in the context that climate change is difficult to predict accurately.

  18. Extraction of Static and Dynamic Reservoir Operation Rules by Genetic Programming

    Directory of Open Access Journals (Sweden)

    Habib Akbari Alashti

    2014-11-01

    Full Text Available Considering the necessity of desirable operation of limited water resources and assuming the significant role of dams in controlling and consuming the surface waters, highlights the advantageous of suitable operation rules for optimal and sustainable operation of dams. This study investigates the hydroelectric supply of a one-reservoir system of Karoon3 using nonlinear programming (NLP, genetic algorithm (GA, genetic programming (GP and fixed length gen GP (FLGGP in real-time operation of dam considering two approaches of static and dynamic operation rules. In static operation rule, only one rule curve is extracted for all months in a year whereas in dynamic operation rule, monthly rule curves (12 rules are extracted for each month of a year. In addition, nonlinear decision rule (NLDR curves are considered, and the total deficiency function as the target (objective function have been used for evaluating the performance of each method and approach. Results show appropriate efficiency of GP and FLGGP methods in extracting operation rules in both approaches. Superiority of these methods to operation methods yielded by GA and NLP is 5%. Moreover, according to the results, it can be remarked that, FLGGP method is an alternative for GP method, whereas the GP method cannot be used due to its limitations. Comparison of two approaches of static and dynamic operation rules demonstrated the superiority of dynamic operation rule to static operation rule (about 10% and therefore this method has more capabilities in real-time operation of the reservoirs systems.

  19. Optimal operating rules definition in complex water resource systems combining fuzzy logic, expert criteria and stochastic programming

    Science.gov (United States)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2016-04-01

    This contribution presents a methodology for defining optimal seasonal operating rules in multireservoir systems coupling expert criteria and stochastic optimization. Both sources of information are combined using fuzzy logic. The structure of the operating rules is defined based on expert criteria, via a joint expert-technician framework consisting in a series of meetings, workshops and surveys carried out between reservoir managers and modelers. As a result, the decision-making process used by managers can be assessed and expressed using fuzzy logic: fuzzy rule-based systems are employed to represent the operating rules and fuzzy regression procedures are used for forecasting future inflows. Once done that, a stochastic optimization algorithm can be used to define optimal decisions and transform them into fuzzy rules. Finally, the optimal fuzzy rules and the inflow prediction scheme are combined into a Decision Support System for making seasonal forecasts and simulate the effect of different alternatives in response to the initial system state and the foreseen inflows. The approach presented has been applied to the Jucar River Basin (Spain). Reservoir managers explained how the system is operated, taking into account the reservoirs' states at the beginning of the irrigation season and the inflows previewed during that season. According to the information given by them, the Jucar River Basin operating policies were expressed via two fuzzy rule-based (FRB) systems that estimate the amount of water to be allocated to the users and how the reservoir storages should be balanced to guarantee those deliveries. A stochastic optimization model using Stochastic Dual Dynamic Programming (SDDP) was developed to define optimal decisions, which are transformed into optimal operating rules embedding them into the two FRBs previously created. As a benchmark, historical records are used to develop alternative operating rules. A fuzzy linear regression procedure was employed to

  20. Reservoir operations under climate change: Storage capacity options to mitigate risk

    Science.gov (United States)

    Ehsani, Nima; Vörösmarty, Charles J.; Fekete, Balázs M.; Stakhiv, Eugene Z.

    2017-12-01

    Observed changes in precipitation patterns, rising surface temperature, increases in frequency and intensity of floods and droughts, widespread melting of ice, and reduced snow cover are some of the documented hydrologic changes associated with global climate change. Climate change is therefore expected to affect the water supply-demand balance in the Northeast United States and challenge existing water management strategies. The hydrological implications of future climate will affect the design capacity and operating characteristics of dams. The vulnerability of water resources systems to floods and droughts will increase, and the trade-offs between reservoir releases to maintain flood control storage, drought resilience, ecological flow, human water demand, and energy production should be reconsidered. We used a Neural Networks based General Reservoir Operation Scheme to estimate the implications of climate change for dams on a regional scale. This dynamic daily reservoir module automatically adapts to changes in climate and re-adjusts the operation of dams based on water storage level, timing, and magnitude of incoming flows. Our findings suggest that the importance of dams in providing water security in the region will increase. We create an indicator of the Effective Degree of Regulation (EDR) by dams on water resources and show that it is expected to increase, particularly during drier months of year, simply as a consequence of projected climate change. The results also indicate that increasing the size and number of dams, in addition to modifying their operations, may become necessary to offset the vulnerabilities of water resources systems to future climate uncertainties. This is the case even without considering the likely increase in future water demand, especially in the most densely populated regions of the Northeast.

  1. Applicability of adapted reservoir operation for water stress mitigation under dry year conditions

    NARCIS (Netherlands)

    Olsson, O.; Ikramova, M.; Bauer, M.; Froebrich, J.

    2010-01-01

    This paper introduces the conjunctive use of a deterministic water quality model and water balance criteria for supporting the assessment of simulation and to evaluate the effectiveness of proposed operation strategies. By this, the applicability of enhanced reservoir operation strategies addressing

  2. Nonlinear Filtering Effects of Reservoirs on Flood Frequency Curves at the Regional Scale: RESERVOIRS FILTER FLOOD FREQUENCY CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Li, Hong-Yi; Leung, Lai-Yung; Yigzaw, Wondmagegn Y.; Zhao, Jianshi; Lu, Hui; Deng, Zhiqun; Demissie, Yonas; Bloschl, Gunter

    2017-10-01

    Anthropogenic activities, e.g., reservoir operation, may alter the characteristics of Flood Frequency Curve (FFC) and challenge the basic assumption of stationarity used in flood frequency analysis. This paper presents a combined data-modeling analysis of the nonlinear filtering effects of reservoirs on the FFCs over the contiguous United States. A dimensionless Reservoir Impact Index (RII), defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume, is used to quantify reservoir regulation effects. Analyses are performed for 388 river stations with an average record length of 50 years. The first two moments of the FFC, mean annual maximum flood (MAF) and coefficient of variations (CV), are calculated for the pre- and post-dam periods and compared to elucidate the reservoir regulation effects as a function of RII. It is found that MAF generally decreases with increasing RII but stabilizes when RII exceeds a threshold value, and CV increases with RII until a threshold value beyond which CV decreases with RII. The processes underlying the nonlinear threshold behavior of MAF and CV are investigated using three reservoir models with different levels of complexity. All models capture the non-linear relationships of MAF and CV with RII, suggesting that the basic flood control function of reservoirs is key to the non-linear relationships. The relative roles of reservoir storage capacity, operation objectives, available storage prior to a flood event, and reservoir inflow pattern are systematically investigated. Our findings may help improve flood-risk assessment and mitigation in regulated river systems at the regional scale.

  3. Effect of flow forecasting quality on benefits of reservoir operation - a case study for the Geheyan reservoir (China)

    NARCIS (Netherlands)

    Dong, Xiaohua; Dohmen-Janssen, Catarine M.; Booij, Martijn J.; Hulscher, Suzanne J.M.H.

    2006-01-01

    This paper presents a methodology to determine the effect of flow forecasting quality on the benefits of reservoir operation. The benefits are calculated in terms of the electricity generated, and the quality of the flow forecasting is defined in terms of lead time and accuracy of the forecasts. In

  4. On the effect of operation of the hydropower plant on the water quality of Rapel reservoir, central Chile

    Science.gov (United States)

    Rossel, V.; De La Fuente, A.

    2013-12-01

    Eutrophication of lakes and reservoirs is a common problem in systems with high incoming loads of nutrients. The consequent algae bloom related to the eutrophication alters the water quality and generates an incompatibility with the tourist and recreational activities. This study is focused on Rapel reservoir: an old, dentritic and monomictic reservoir, located in central Chile (34°S, 71.6°W), that has experienced numerous algae bloom events in the past years produced by high loads of nutrients, sediments and metals. This reservoir was originally constructed in 1968 for hydropower generation without environmental restrictions on its operation. Rapel is part of Chile's Central Interconnected System (SIC), and is controlled by an independent system operator (ISO) that decides the optimal allocation of water by minimizing the SIC's operation cost. As a result of this framework, Rapel reservoir operates based on a hydropeaking scheme, thus producing energy few hours a day while zero outflows are observed the remaining hours, impacting on Rapel river located downstream the reservoir. However, previous research showed that this hydropeaking has important effects on the hydrodynamic of the reservoir as well. Particularly, it enhances vertical mixing nears the dam, and reduces horizontal dispersion. Furthermore, hydropeaking defines the outflows water temperature, and the temperature profile near the dam. As a consequence of this role of hydropeaking on the hydrodynamics and mixing of Rapel reservoir, it is expected to be a link between hydropeaking and water quality. The aim of the study is to evaluate the impact of the operation of hydropower plant on the water quality of Rapel reservoir, for which the reservoir system is modeled using the three dimensional hydrodynamic and water quality model ELCOM-CAEDYM. Field data to validate the results and to define boundary and initial conditions are available for the austral summer period of 2009-2010. Different scenarios of

  5. A two-stage method of quantitative flood risk analysis for reservoir real-time operation using ensemble-based hydrologic forecasts

    Science.gov (United States)

    Liu, P.

    2013-12-01

    Quantitative analysis of the risk for reservoir real-time operation is a hard task owing to the difficulty of accurate description of inflow uncertainties. The ensemble-based hydrologic forecasts directly depict the inflows not only the marginal distributions but also their persistence via scenarios. This motivates us to analyze the reservoir real-time operating risk with ensemble-based hydrologic forecasts as inputs. A method is developed by using the forecast horizon point to divide the future time into two stages, the forecast lead-time and the unpredicted time. The risk within the forecast lead-time is computed based on counting the failure number of forecast scenarios, and the risk in the unpredicted time is estimated using reservoir routing with the design floods and the reservoir water levels of forecast horizon point. As a result, a two-stage risk analysis method is set up to quantify the entire flood risks by defining the ratio of the number of scenarios that excessive the critical value to the total number of scenarios. The China's Three Gorges Reservoir (TGR) is selected as a case study, where the parameter and precipitation uncertainties are implemented to produce ensemble-based hydrologic forecasts. The Bayesian inference, Markov Chain Monte Carlo, is used to account for the parameter uncertainty. Two reservoir operation schemes, the real operated and scenario optimization, are evaluated for the flood risks and hydropower profits analysis. With the 2010 flood, it is found that the improvement of the hydrologic forecast accuracy is unnecessary to decrease the reservoir real-time operation risk, and most risks are from the forecast lead-time. It is therefore valuable to decrease the avarice of ensemble-based hydrologic forecasts with less bias for a reservoir operational purpose.

  6. Effects of bubbling operations on a thermally stratified reservoir: implications for water quality amelioration.

    Science.gov (United States)

    Fernandez, R L; Bonansea, M; Cosavella, A; Monarde, F; Ferreyra, M; Bresciano, J

    2012-01-01

    Artificial thermal mixing of the water column is a common method of addressing water quality problems with the most popular method of destratification being the bubble curtain. The air or oxygen distribution along submerged multiport diffusers is based on similar basic principles as those of outfall disposal systems. Moreover, the disposal of sequestered greenhouse gases into the ocean, as recently proposed by several researchers to mitigate the global warming problem, requires analogous design criteria. In this paper, the influence of a bubble-plume is evaluated using full-scale temperature and water quality data collected in San Roque Reservoir, Argentina. A composite system consisting of seven separated diffusers connected to four 500 kPa compressors was installed at this reservoir by the end of 2008. The original purpose of this air bubble system was to reduce the stratification, so that the water body may completely mix under natural phenomena and remain well oxygenated throughout the year. By using a combination of the field measurements and modelling, this work demonstrates that thermal mixing by means of compressed air may improve water quality; however, if improperly sized or operated, such mixing can also cause deterioration. Any disruption in aeration during the destratification process, for example, may result in a reduction of oxygen levels due to the higher hypolimnetic temperatures. Further, the use of artificial destratification appears to have insignificant influence on reducing evaporation rates in relatively shallow impoundments such as San Roque reservoir.

  7. Stochastic reservoir operation under drought with fuzzy objectives

    International Nuclear Information System (INIS)

    Parent, E.; Duckstein, L.

    1993-01-01

    Biojective reservoir operation under drought conditions is investigated using stochastic dynamic programming. As both objectives (irrigation water supply, water quality) can only be defined imprecisely, a fuzzy set approach is used to encode the decision maker (DM)'s preferences. The nature driven components are modeled by means of classical stage-state system analysis. The state is three dimensional (inflow memory, drought irrigation index, reservoir level); the decision vector elements are release and irrigation allocation. Stochasticity stems from the random nature of inflows and irrigation demands. The transition function includes a lag one inflow Markov model and mass balance equations. The human driven component is designed as a confluence of fuzzy objectives and constraints after Bellman and Zadeh. Fuzzy numbers are assessed to represent the DM's objectives by two different techniques, the direct one and indirect pairwise comparison. The real case study of the Neste river system in southwestern France is used to illustrate the approach; the result are compared to a classical sequential decision theoretical model derived earlier from the viewpoints of ease of modeling, computational efforts, plausibility and robustness of results

  8. Surface and Subsurface Geodesy Combined with Active Borehole Experimentation for the Advanced Characterization of EGS Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Elsworth, Derek [Pennsylvania State Univ., University Park, PA (United States); Im, Kyungjae [Pennsylvania State Univ., University Park, PA (United States); Guglielmi, Yves [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mattioli, Glen [Univ. of Texas, Arlington, TX (United States). UNAVCO

    2016-11-14

    We explore the utility of combining active downhole experimentation with borehole and surface geodesy to determine both the characteristics and evolving state of EGS reservoirs during stimulation through production. The study is divided into two parts. We demonstrate the feasibility of determining in situ reservoir characteristics of reservoir size, strain and fracture permeability and their dependence on feedbacks of stress and temperature using surface and borehole geodetic measurements (Part I). We then define the opportunity to apply the unique hydraulic pulse protocol (HPP) borehole tool to evaluate reservoir state. This can be accomplished by monitoring and co-inverting measured reservoir characteristics (from the HPP tool) with surface geodetic measurements of deformation, tilt and strain with continuous measurements of borehole-wall strain (via optical fiber and fiber Bragg gratings) and measured flow rates (Part II).

  9. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    Science.gov (United States)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  10. Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy

    Science.gov (United States)

    Magee, T. M.; Clement, M. A.; Zagona, E. A.

    2012-12-01

    Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level

  11. Adapting Reservoir Operations to Reduce the Multi-Sectoral Impacts of Flood Intensification in the Lower Susquehanna

    Science.gov (United States)

    Zatarain-Salazar, J.; Reed, P. M.; Quinn, J.

    2017-12-01

    This study characterizes how changes in reservoir operations can be used to better balance growing flood intensities and the conflicting multi-sectorial demands in the Lower Susequehanna River Basin (LSRB), USA. Tensions in the LSRB are increasing with urban population pressures, evolving energy demands, and growing flood-based infrastructure vulnerabilities. This study explores how re-operation of the Conowingo Reservoir, located in the LSRB, can improve the balance between competing demands for hydropower production, urban water supply to Chester, PA and Baltimore, MD, cooling water supply for the Peach Bottom Atomic Power Plant, recreation, federal environmental flow requirements and improved mitigation of growing flood hazards. The LSRB is also one of the most flood prone basins in the US, impacted by hurricanes and rain-on-snow induced flood events causing on average $100 million in economic losses and infrastructure damages to downstream settlements every year. The purpose of this study is to evaluate the consequences of mathematical formulation choices, uncertainty characterization and the value of information when defining the Conowingo reservoir's multi-purpose operations. This work seeks to strike a balance between the complexity and the efficacy of rival framings for the problem formulations used to discover effective operating policies. More broadly, the problem of intensifying urban floods in reservoir systems with complex multi-sectoral demands is broadly relevant to developed river basins globally.

  12. Reflection Phenomena in Underground Pumped Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    Elena Pummer

    2018-04-01

    Full Text Available Energy storage through hydropower leads to free surface water waves in the connected reservoirs. The reason for this is the movement of water between reservoirs at different elevations, which is necessary for electrical energy storage. Currently, the expansion of renewable energies requires the development of fast and flexible energy storage systems, of which classical pumped storage plants are the only technically proven and cost-effective technology and are the most used. Instead of classical pumped storage plants, where reservoirs are located on the surface, underground pumped storage plants with subsurface reservoirs could be an alternative. They are independent of topography and have a low surface area requirement. This can be a great advantage for energy storage expansion in case of environmental issues, residents’ concerns and an unusable terrain surface. However, the reservoirs of underground pumped storage plants differ in design from classical ones for stability and space reasons. The hydraulic design is essential to ensure their satisfactory hydraulic performance. The paper presents a hybrid model study, which is defined here as a combination of physical and numerical modelling to use the advantages and to compensate for the disadvantages of the respective methods. It shows the analysis of waves in ventilated underground reservoir systems with a great length to height ratio, considering new operational aspects from energy supply systems with a great percentage of renewable energies. The multifaceted and narrow design of the reservoirs leads to complex free surface flows; for example, undular and breaking bores arise. The results show excessive wave heights through wave reflections, caused by the impermeable reservoir boundaries. Hence, their knowledge is essential for a successful operational and constructive design of the reservoirs.

  13. Combined geophysical, geochemical and geological investigations of geothermal reservoir characteristics in Lower Saxony, Germany

    Science.gov (United States)

    Hahne, B.; Thomas, R.

    2012-04-01

    The North German basin provides a significant geothermal potential, although temperature gradients are moderate. However, deep drilling up to several thousand meters is required to reach temperatures high enough for efficient generation of geothermal heat and electric power. In these depths we have not much information yet about relevant physical properties like porosity or permeability of the rock formations. Therefore the costs of developing a geothermal reservoir and the risk of missing the optimum drilling location are high. The collaborative research association "Geothermal Energy and High Performance Drilling" (gebo) unites several universities and research institutes in Lower Saxony, Germany. It aims at a significant increase of economic efficiency by introducing innovative technology and high tech materials resisting temperatures up to 200 °C in the drilling process. Furthermore, a better understanding of the geothermal reservoir is essential. gebo is structured into four main fields: Drilling Technology, Materials, Technical Systems and Geosystem. Here, we show the combined work of the Geosystem group, which focuses on the exploration of geological fault zones as a potential geothermal reservoir as well as on modeling the stress field, heat transport, coupled thermo-hydro-mechanical processes, geochemical interactions and prediction of the long-term behavior of the reservoir. First results include combined seismic and geoelectric images of the Leinetalgraben fault system, a comparison of seismic images from P- and S-wave measurements, mechanical properties of North German rocks from field and laboratory measurements as well as from drill cores, seismological characterization of stimulated reservoirs, a thermodynamic "gebo" database for modeling hydrogeochemical processes in North German formation waters with high salinity and at high temperatures, stress models for specific sites in northern Germany, and modeling results of permeability and heat transport

  14. An Alternative Approach to the Operation of Multinational Reservoir Systems: Application to the Amistad & Falcon System (Lower Rio Grande/Rí-o Bravo)

    Science.gov (United States)

    Serrat-Capdevila, A.; Valdes, J. B.

    2005-12-01

    An optimization approach for the operation of international multi-reservoir systems is presented. The approach uses Stochastic Dynamic Programming (SDP) algorithms, both steady-state and real-time, to develop two models. In the first model, the reservoirs and flows of the system are aggregated to yield an equivalent reservoir, and the obtained operating policies are disaggregated using a non-linear optimization procedure for each reservoir and for each nation water balance. In the second model a multi-reservoir approach is applied, disaggregating the releases for each country water share in each reservoir. The non-linear disaggregation algorithm uses SDP-derived operating policies as boundary conditions for a local time-step optimization. Finally, the performance of the different approaches and methods is compared. These models are applied to the Amistad-Falcon International Reservoir System as part of a binational dynamic modeling effort to develop a decision support system tool for a better management of the water resources in the Lower Rio Grande Basin, currently enduring a severe drought.

  15. Exploring viral reservoir: The combining approach of cell sorting and droplet digital PCR.

    Science.gov (United States)

    Gibellini, Lara; Pecorini, Simone; De Biasi, Sara; Pinti, Marcello; Bianchini, Elena; De Gaetano, Anna; Digaetano, Margherita; Pullano, Rosalberta; Lo Tartaro, Domenico; Iannone, Anna; Mussini, Cristina; Cossarizza, Andrea; Nasi, Milena

    2018-02-01

    Combined antiretroviral therapy (cART) blocks different steps of HIV replication and maintains plasma viral RNA at undetectable levels. The virus can remain in long-living cells and create a reservoir where HIV can restart replicating after cART discontinuation. A persistent viral production triggers and maintains a persistent immune activation, which is a well-known feature of chronic HIV infection, and contributes either to precocious aging, or to the increased incidence of morbidity and mortality of HIV positive patients. The new frontier of the treatment of HIV infection is nowadays eradication of the virus from all host cells and tissues. For this reason, it is crucial to have a clear and precise idea of where the virus hides, and which are the cells that keep it silent. Important efforts have been made to improve the detection of viral reservoirs, and new techniques are now giving the opportunity to characterize viral reservoirs. Among these techniques, a strategic approach based upon cell sorting and droplet digital PCR (ddPCR) is opening new horizons and opportunities of research. This review provides an overview of the methods that combine cell sorting and ddPCR for the quantification of HIV DNA in different cell types, and for the detection of its maintenance. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Electrokinetic Flow in Microchannels with Finite Reservoir Size Effects

    International Nuclear Information System (INIS)

    Yan, D; Yang, C; Nguyen, N-T; Huang, X

    2006-01-01

    In electrokinetically-driven microfluidic applications, reservoirs are indispensable and have finite sizes. During operation processes, as the liquid level difference in reservoirs keeps changing as time elapses, the flow characteristics in a microchannel exhibit a combination of the electroosmotic flow and the time-dependent induced backpressure-driven flow. In this work, an assessment of the finite reservoir size effect on electroosmotic flows is presented theoretically and experimentally. A model is developed to describe the timedependent electrokinetic flow with finite reservoir size effects. The theoretical analysis shows that under certain conditions the finite reservoir size effect is significant. The important parameters that describe the effect of finite reservoir size on the flow characteristics are discussed. A new concept denoted as 'effective pumping period' is introduced to characterize the reservoir size effect. The proposed model clearly identifies the mechanisms of the finitereservoir size effects and is further confirmed by using micro-PIV technique. The results of this study can be used for facilitating the design of microfluidic devices

  17. Evaluation of an Empirical Reservoir Shape Function to Define Sediment Distributions in Small Reservoirs

    Directory of Open Access Journals (Sweden)

    Bogusław Michalec

    2015-08-01

    Full Text Available Understanding and defining the spatial distribution of sediment deposited in reservoirs is essential not only at the design stage but also during the operation. The majority of research concerns the distribution of sediment deposition in medium and large water reservoirs. Most empirical methods do not provide satisfactory results when applied to the determination of sediment deposition in small reservoirs. Small reservoir’s volumes do not exceed 5 × 106 m3 and their capacity-inflow ratio is less than 10%. Long-term silting measurements of three small reservoirs were used to evaluate the method described by Rahmanian and Banihashemi for predicting sediment distributions in small reservoirs. Rahmanian and Banihashemi stated that their model of distribution of sediment deposition in water reservoir works well for a long duration operation. In the presented study, the silting rate was used in order to determine the long duration operation. Silting rate is a quotient of volume of the sediment deposited in the reservoir and its original volume. It was stated that when the silting rate had reached 50%, the sediment deposition in the reservoir may be described by an empirical reservoir depth shape function (RDSF.

  18. Uncertainty Assessment: Reservoir Inflow Forecasting with Ensemble Precipitation Forecasts and HEC-HMS

    Directory of Open Access Journals (Sweden)

    Sheng-Chi Yang

    2014-01-01

    Full Text Available During an extreme event, having accurate inflow forecasting with enough lead time helps reservoir operators decrease the impact of floods downstream. Furthermore, being able to efficiently operate reservoirs could help maximize flood protection while saving water for drier times of the year. This study combines ensemble quantitative precipitation forecasts and a hydrological model to provide a 3-day reservoir inflow in the Shihmen Reservoir, Taiwan. A total of six historical typhoons were used for model calibration, validation, and application. An understanding of cascaded uncertainties from the numerical weather model through the hydrological model is necessary for a better use for forecasting. This study thus conducted an assessment of forecast uncertainty on magnitude and timing of peak and cumulative inflows. It found that using the ensemble-mean had less uncertainty than randomly selecting individual member. The inflow forecasts with shorter length of cumulative time had a higher uncertainty. The results showed that using the ensemble precipitation forecasts with the hydrological model would have the advantage of extra lead time and serve as a valuable reference for operating reservoirs.

  19. One-dimensional simulation of stratification and dissolved oxygen in McCook Reservoir, Illinois

    Science.gov (United States)

    Robertson, Dale M.

    2000-01-01

    As part of the Chicagoland Underflow Plan/Tunnel and Reservoir Plan, the U.S. Army Corps of Engineers, Chicago District, plans to build McCook Reservoir.a flood-control reservoir to store combined stormwater and raw sewage (combined sewage). To prevent the combined sewage in the reservoir from becoming anoxic and producing hydrogen sulfide gas, a coarse-bubble aeration system will be designed and installed on the basis of results from CUP 0-D, a zero-dimensional model, and MAC3D, a three-dimensional model. Two inherent assumptions in the application of MAC3D are that density stratification in the simulated water body is minimal or not present and that surface heat transfers are unimportant and, therefore, may be neglected. To test these assumptions, the previously tested, one-dimensional Dynamic Lake Model (DLM) was used to simulate changes in temperature and dissolved oxygen in the reservoir after a 1-in-100-year event. Results from model simulations indicate that the assumptions made in MAC3D application are valid as long as the aeration system, with an air-flow rate of 1.2 cubic meters per second or more, is operated while the combined sewage is stored in the reservoir. Results also indicate that the high biochemical oxygen demand of the combined sewage will quickly consume the dissolved oxygen stored in the reservoir and the dissolved oxygen transferred through the surface of the reservoir; therefore, oxygen must be supplied by either the rising bubbles of the aeration system (a process not incorporated in DLM) or some other technique to prevent anoxia.

  20. Development of Future Rule Curves for Multipurpose Reservoir Operation Using Conditional Genetic and Tabu Search Algorithms

    Directory of Open Access Journals (Sweden)

    Anongrit Kangrang

    2018-01-01

    Full Text Available Optimal rule curves are necessary guidelines in the reservoir operation that have been used to assess performance of any reservoir to satisfy water supply, irrigation, industrial, hydropower, and environmental conservation requirements. This study applied the conditional genetic algorithm (CGA and the conditional tabu search algorithm (CTSA technique to connect with the reservoir simulation model in order to search optimal reservoir rule curves. The Ubolrat Reservoir located in the northeast region of Thailand was an illustrative application including historic monthly inflow, future inflow generated by the SWAT hydrological model using 50-year future climate data from the PRECIS regional climate model in case of B2 emission scenario by IPCC SRES, water demand, hydrologic data, and physical reservoir data. The future and synthetic inflow data of reservoirs were used to simulate reservoir system for evaluating water situation. The situations of water shortage and excess water were shown in terms of frequency magnitude and duration. The results have shown that the optimal rule curves from CGA and CTSA connected with the simulation model can mitigate drought and flood situations than the existing rule curves. The optimal future rule curves were more suitable for future situations than the other rule curves.

  1. Operation of Dokan Reservoir under Stochastic Conditions as Regards the Inflows and the Energy Demands

    Science.gov (United States)

    Rashed, G. I.

    2018-02-01

    This paper presented a way of obtaining certain operating rules on time steps for the management of a large reservoir operation with a peak hydropower plant associated to it. The rules were allowed to have the form of non-linear regression equations which link a decision variable (here the water volume in the reservoir at the end of the time step) by several parameters influencing it. This paper considered the Dokan hydroelectric development KR-Iraq, which operation data are available for. It was showing that both the monthly average inflows and the monthly power demands are random variables. A model of deterministic dynamic programming intending the minimization of the total amount of the squares differences between the demanded energy and the generated energy is run with a multitude of annual scenarios of inflows and monthly required energies. The operating rules achieved allow the efficient and safe management of the operation and it is quietly and accurately known the forecast of the inflow and of the energy demand on the next time step.

  2. Dokan Hydropower Reservoir Operation under Stochastic Conditions as Regards the Inflows and the Energy Demands

    Science.gov (United States)

    Izat Rashed, Ghamgeen

    2018-03-01

    This paper presented a way of obtaining certain operating rules on time steps for the management of a large reservoir operation with a peak hydropower plant associated to it. The rules were allowed to have the form of non-linear regression equations which link a decision variable (here the water volume in the reservoir at the end of the time step) by several parameters influencing it. This paper considered the Dokan hydroelectric development KR-Iraq, which operation data are available for. It was showing that both the monthly average inflows and the monthly power demands are random variables. A model of deterministic dynamic programming intending the minimization of the total amount of the squares differences between the demanded energy and the generated energy is run with a multitude of annual scenarios of inflows and monthly required energies. The operating rules achieved allow the efficient and safe management of the operation and it is quietly and accurately known the forecast of the inflow and of the energy demand on the next time step.

  3. An Analytical Method for Deriving Reservoir Operation Curves to Maximize Social Benefits from Multiple Uses of Water in the Willamette River Basin

    Science.gov (United States)

    Moore, K. M.; Jaeger, W. K.; Jones, J. A.

    2013-12-01

    A central characteristic of large river basins in the western US is the spatial and temporal disjunction between the supply of and demand for water. Water sources are typically concentrated in forested mountain regions distant from municipal and agricultural water users, while precipitation is super-abundant in winter and deficient in summer. To cope with these disparities, systems of reservoirs have been constructed throughout the West. These reservoir systems are managed to serve two main competing purposes: to control flooding during winter and spring, and to store spring runoff and deliver it to populated, agricultural valleys during the summer. The reservoirs also provide additional benefits, including recreation, hydropower and instream flows for stream ecology. Since the storage capacity of the reservoirs cannot be used for both flood control and storage at the same time, these uses are traded-off during spring, as the most important, or dominant use of the reservoir, shifts from buffering floods to storing water for summer use. This tradeoff is expressed in the operations rule curve, which specifies the maximum level to which a reservoir can be filled throughout the year, apart from real-time flood operations. These rule curves were often established at the time a reservoir was built. However, climate change and human impacts may be altering the timing and amplitude of flood events and water scarcity is expected to intensify with anticipated changes in climate, land cover and population. These changes imply that reservoir management using current rule curves may not match future societal values for the diverse uses of water from reservoirs. Despite a broad literature on mathematical optimization for reservoir operation, these methods are not often used because they 1) simplify the hydrologic system, raising doubts about the real-world applicability of the solutions, 2) exhibit perfect foresight and assume stationarity, whereas reservoir operators face

  4. Applications of the SWOT Mission to Reservoirs in the Mekong River Basin

    Science.gov (United States)

    Bonnema, M.; Hossain, F.

    2017-12-01

    The forthcoming Surface Water and Ocean Topography (SWOT) mission has the potential to significantly improve our ability to observe artificial reservoirs globally from a remote sensing perspective. By providing simultaneous estimates of reservoir water surface extent and elevation with near global coverage, reservoir storage changes can be estimated. Knowing how reservoir storage changes over time is critical for understanding reservoir impacts on river systems. In data limited regions, remote sensing is often the only viable method of retrieving such information about reservoir operations. When SWOT launches in 2021, it will join an array of satellite sensors with long histories of reservoir observation and monitoring capabilities. There are many potential synergies in the complimentary use of future SWOT observations with observations from current satellite sensors. The work presented here explores the potential benefits of utilizing SWOT observations over 20 reservoirs in the Mekong River Basin. The SWOT hydrologic simulator, developed by NASA Jet Propulsion Laboratory, is used to generate realistic SWOT observations, which are then inserted into a previously established remote sensing modeling framework of the 20 Mekong Basin reservoirs. This framework currently combines data from Landsat missions, Jason radar altimeters, and the Shuttle Radar and Topography Mission (SRTM), to provide monthly estimates of reservoir storage change. The incorporation of SWOT derived reservoir surface area and elevation into the model is explored in an effort to improve both accuracy and temporal resolution of observed reservoir operations.

  5. Improved prediction of reservoir behavior through integration of quantitative geological and petrophysical data

    Energy Technology Data Exchange (ETDEWEB)

    Auman, J. B.; Davies, D. K.; Vessell, R. K.

    1997-08-01

    Methodology that promises improved reservoir characterization and prediction of permeability, production and injection behavior during primary and enhanced recovery operations was demonstrated. The method is based on identifying intervals of unique pore geometry by a combination of image analysis techniques and traditional petrophysical measurements to calculate rock type and estimate permeability and saturation. Results from a complex carbonate and sandstone reservoir were presented as illustrative examples of the versatility and high level of accuracy of this method in predicting reservoir quality. 16 refs., 5 tabs., 14 figs.

  6. MAXIMIZING HYDROPOWER PRODUCTION FROM RESERVOIRS:THE CASE STUDY OF MARKABA

    International Nuclear Information System (INIS)

    Jaafar, H.

    2014-01-01

    Hydropower is a form of renewable energy that is clean and cheap. Under uncertain climatic conditions, maximization of hydropower production becomes a challenging task.Stochastic Dynamic programming (SDP) is a promising optimization algorithm that is usedfor complex non-linear reservoir operational policies and strategies.In this research, a combined simulation-SDPoptimization model isdeveloped andverified for maximizing large-scale hydropower production in a monthly time step. The model isdeveloped to generate optimal operational policies for the Qarawn reservoir in Lebanon and test these policies in real time conditions. The model isused to derive operational regimes for the Qarawn reservoirunder varying flows using transitional probability matrices. Simulating the derived rules and the generated operational policies proved effective in maximizingthe hydropower production from the Markaba power plant. The model could be successfully applied to other hydropower dams in the region. (author)

  7. Mode Combinations and International Operations

    DEFF Research Database (Denmark)

    Benito, Gabriel R. G.; Petersen, Bent; Welch, Lawrence S.

    2011-01-01

    reveals that companies tend to combine modes of operation; thereby producing unique foreign operation mode “packages” for given activities and/or countries, and that the packages are liable to be modified over time – providing a potentially important optional path for international expansion. Our data...... key markets (China, UK and USA) as the basis for an exploration of the extent to which, and how and why, companies combine clearly different foreign operation modes. We examine their use of foreign operation mode combinations within given value activities as well as within given countries. The study...

  8. a Stochastic Approach to Multiobjective Optimization of Large-Scale Water Reservoir Networks

    Science.gov (United States)

    Bottacin-Busolin, A.; Worman, A. L.

    2013-12-01

    A main challenge for the planning and management of water resources is the development of multiobjective strategies for operation of large-scale water reservoir networks. The optimal sequence of water releases from multiple reservoirs depends on the stochastic variability of correlated hydrologic inflows and on various processes that affect water demand and energy prices. Although several methods have been suggested, large-scale optimization problems arising in water resources management are still plagued by the high dimensional state space and by the stochastic nature of the hydrologic inflows. In this work, the optimization of reservoir operation is approached using approximate dynamic programming (ADP) with policy iteration and function approximators. The method is based on an off-line learning process in which operating policies are evaluated for a number of stochastic inflow scenarios, and the resulting value functions are used to design new, improved policies until convergence is attained. A case study is presented of a multi-reservoir system in the Dalälven River, Sweden, which includes 13 interconnected reservoirs and 36 power stations. Depending on the late spring and summer peak discharges, the lowlands adjacent to Dalälven can often be flooded during the summer period, and the presence of stagnating floodwater during the hottest months of the year is the cause of a large proliferation of mosquitos, which is a major problem for the people living in the surroundings. Chemical pesticides are currently being used as a preventive countermeasure, which do not provide an effective solution to the problem and have adverse environmental impacts. In this study, ADP was used to analyze the feasibility of alternative operating policies for reducing the flood risk at a reasonable economic cost for the hydropower companies. To this end, mid-term operating policies were derived by combining flood risk reduction with hydropower production objectives. The performance

  9. Model Development to Establish Integrated Operational Rule Curves for Hungry Horse and Libby Reservoirs - Montana, 1996 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Marotz, Brian; Althen, Craig; Gustafson, Daniel

    1996-01-01

    Hungry Horse and Libby dams have profoundly affected the aquatic ecosystems in two major tributaries of the Columbia River by altering habitat and water quality, and by imposing barriers to fish migration. In 1980, the U.S. Congress passed the Pacific Northwest Electric Power Planning and Conservation Act, designed in part to balance hydropower development with other natural resources in the Columbia System. The Act formed the Northwest Power Planning Council (Council) who developed a program to protect, mitigate and enhance fish and wildlife on the Columbia River and its tributaries. Pursuant to the Council`s Fish and Wildlife Program for the Columbia River System (1987), we constructed computer models to simulate the trophic dynamics of the reservoir biota as related to dam operation. Results were used to develop strategies to minimize impacts and enhance the reservoir and riverine fisheries, following program measures 903(a)(1-4) and 903(b)(1-5). Two FORTRAN simulation models were developed for Hungry Horse and Libby reservoirs located in northwestern Montana. The models were designed to generate accurate, short-term predictions specific to two reservoirs and are not directly applicable to other waters. The modeling strategy, however, is portable to other reservoir systems where sufficient data are available. Reservoir operation guidelines were developed to balance fisheries concerns in the headwaters with anadromous species recovery actions in the lower Columbia (Biological Rule Curves). These BRCs were then integrated with power production and flood control to reduce the economic impact of basin-wide fisheries recovery actions. These Integrated Rule Curves (IRCs) were developed simultaneously in the Columbia Basin System Operation Review (SOR), the Council`s phase IV amendment process and recovery actions associated with endangered Columbia Basin fish species.

  10. Assessing ecosystem effects of reservoir operations using food web-energy transfer and water quality models

    Science.gov (United States)

    Saito, L.; Johnson, B.M.; Bartholow, J.; Hanna, R.B.

    2001-01-01

    We investigated the effects on the reservoir food web of a new temperature control device (TCD) on the dam at Shasta Lake, California. We followed a linked modeling approach that used a specialized reservoir water quality model to forecast operation-induced changes in phytoplankton production. A food web–energy transfer model was also applied to propagate predicted changes in phytoplankton up through the food web to the predators and sport fishes of interest. The food web–energy transfer model employed a 10% trophic transfer efficiency through a food web that was mapped using carbon and nitrogen stable isotope analysis. Stable isotope analysis provided an efficient and comprehensive means of estimating the structure of the reservoir's food web with minimal sampling and background data. We used an optimization procedure to estimate the diet proportions of all food web components simultaneously from their isotopic signatures. Some consumers were estimated to be much more sensitive than others to perturbations to phytoplankton supply. The linked modeling approach demonstrated that interdisciplinary efforts enhance the value of information obtained from studies of managed ecosystems. The approach exploited the strengths of engineering and ecological modeling methods to address concerns that neither of the models could have addressed alone: (a) the water quality model could not have addressed quantitatively the possible impacts to fish, and (b) the food web model could not have examined how phytoplankton availability might change due to reservoir operations.

  11. The use of contained nuclear explosions to create underground reservoirs, and experience of operating these for gas condensate storage

    International Nuclear Information System (INIS)

    Kedrovskij, O.L.; Myasnikov, K.V.; Leonov, E.A.; Romadin, N.M.; Dorodnov, V.F.; Nikiforov, G.A.

    1975-01-01

    Investigations on the creation of underground reservoirs by means of nuclear explosions have been going on in the Soviet Union for many years. In this paper the authors consider three main kinds of sites or formations that can be used for constructing reservoirs by this method, namely, low-permeable rocks, worked-out mines and rock salt formations. Formulae are given for predicting the mechanical effect of an explosion in rocks, taking their strength characteristics into account. Engineering procedures are described for sealing and restoring the emplacement holes, so that they can be used for operating the underground reservoir. Experience with the contruction and operation of a 50 000 m 3 gas-condensate reservoir in a rock salt formation is described. In the appendix to the paper a method is presented for calculating the stability of spherical cavities created by nuclear explosions in rock salt, allowing for the development of elasto-plastic deformations and creep

  12. Mode Combinations and International Operations

    DEFF Research Database (Denmark)

    Benito, Gabriel R. G.; Petersen, Bent; Welch, Lawrence S.

    2011-01-01

    reveals that companies tend to combine modes of operation; thereby producing unique foreign operation mode “packages” for given activities and/or countries, and that the packages are liable to be modified over time—providing a potentially important optional path for international expansion. The data show...... markets (China, UK and USA) is used as the basis for an exploration of the extent to which, and how and why, companies combine clearly different foreign operation modes. We examine their use of foreign operation mode combinations within given value activities as well as within given countries. The study...

  13. Environmental hedging: A theory and method for reconciling reservoir operations for downstream ecology and water supply

    Science.gov (United States)

    Adams, L. E.; Lund, J. R.; Moyle, P. B.; Quiñones, R. M.; Herman, J. D.; O'Rear, T. A.

    2017-09-01

    Building reservoir release schedules to manage engineered river systems can involve costly trade-offs between storing and releasing water. As a result, the design of release schedules requires metrics that quantify the benefit and damages created by releases to the downstream ecosystem. Such metrics should support making operational decisions under uncertain hydrologic conditions, including drought and flood seasons. This study addresses this need and develops a reservoir operation rule structure and method to maximize downstream environmental benefit while meeting human water demands. The result is a general approach for hedging downstream environmental objectives. A multistage stochastic mixed-integer nonlinear program with Markov Chains, identifies optimal "environmental hedging," releases to maximize environmental benefits subject to probabilistic seasonal hydrologic conditions, current, past, and future environmental demand, human water supply needs, infrastructure limitations, population dynamics, drought storage protection, and the river's carrying capacity. Environmental hedging "hedges bets" for drought by reducing releases for fish, sometimes intentionally killing some fish early to reduce the likelihood of large fish kills and storage crises later. This approach is applied to Folsom reservoir in California to support survival of fall-run Chinook salmon in the lower American River for a range of carryover and initial storage cases. Benefit is measured in terms of fish survival; maintaining self-sustaining native fish populations is a significant indicator of ecosystem function. Environmental hedging meets human demand and outperforms other operating rules, including the current Folsom operating strategy, based on metrics of fish extirpation and water supply reliability.

  14. Using a Bayesian Probabilistic Forecasting Model to Analyze the Uncertainty in Real-Time Dynamic Control of the Flood Limiting Water Level for Reservoir Operation

    DEFF Research Database (Denmark)

    Liu, Dedi; Li, Xiang; Guo, Shenglian

    2015-01-01

    Dynamic control of the flood limiting water level (FLWL) is a valuable and effective way to maximize the benefits from reservoir operation without exceeding the design risk. In order to analyze the impacts of input uncertainty, a Bayesian forecasting system (BFS) is adopted. Applying quantile water...... inflow values and their uncertainties obtained from the BFS, the reservoir operation results from different schemes can be analyzed in terms of benefits, dam safety, and downstream impacts during the flood season. When the reservoir FLWL dynamic control operation is implemented, there are two fundamental......, also deterministic water inflow was tested. The proposed model in the paper emphasizes the importance of analyzing the uncertainties of the water inflow forecasting system for real-time dynamic control of the FLWL for reservoir operation. For the case study, the selected quantile inflow from...

  15. Modeling of reservoir operation in UNH global hydrological model

    Science.gov (United States)

    Shiklomanov, Alexander; Prusevich, Alexander; Frolking, Steve; Glidden, Stanley; Lammers, Richard; Wisser, Dominik

    2015-04-01

    Climate is changing and river flow is an integrated characteristic reflecting numerous environmental processes and their changes aggregated over large areas. Anthropogenic impacts on the river flow, however, can significantly exceed the changes associated with climate variability. Besides of irrigation, reservoirs and dams are one of major anthropogenic factor affecting streamflow. They distort hydrological regime of many rivers by trapping of freshwater runoff, modifying timing of river discharge and increasing the evaporation rate. Thus, reservoirs is an integral part of the global hydrological system and their impacts on rivers have to be taken into account for better quantification and understanding of hydrological changes. We developed a new technique, which was incorporated into WBM-TrANS model (Water Balance Model-Transport from Anthropogenic and Natural Systems) to simulate river routing through large reservoirs and natural lakes based on information available from freely accessible databases such as GRanD (the Global Reservoir and Dam database) or NID (National Inventory of Dams for US). Different formulations were applied for unregulated spillway dams and lakes, and for 4 types of regulated reservoirs, which were subdivided based on main purpose including generic (multipurpose), hydropower generation, irrigation and water supply, and flood control. We also incorporated rules for reservoir fill up and draining at the times of construction and decommission based on available data. The model were tested for many reservoirs of different size and types located in various climatic conditions using several gridded meteorological data sets as model input and observed daily and monthly discharge data from GRDC (Global Runoff Data Center), USGS Water Data (US Geological Survey), and UNH archives. The best results with Nash-Sutcliffe model efficiency coefficient in the range of 0.5-0.9 were obtained for temperate zone of Northern Hemisphere where most of large

  16. Impact of the operation of cascade reservoirs in upper Yangtze River on hydrological variability of the mainstream

    Science.gov (United States)

    Changjiang, Xu; Dongdong, Zhang

    2018-06-01

    As the impacts by climate changes and human activities are intensified, variability may occur in river's annual runoff as well as flood and low water characteristics. In order to understand the characteristics of variability in hydrological series, diagnosis and identification must be conducted specific to the variability of hydrological series, i.e., whether there was variability and where the variability began to occur. In this paper, the mainstream of Yangtze River was taken as the object of study. A model was established to simulate the impounding and operation of upstream cascade reservoirs so as to obtain the runoff of downstream hydrological control stations after the regulation by upstream reservoirs in different level years. The Range of Variability Approach was utilized to analyze the impact of the operation of upstream reservoirs on the variability of downstream. The results indicated that the overall hydrologic alterations of Yichang hydrological station in 2010 level year, 2015 level year and the forward level year were 68.4, 72.5 and 74.3 % respectively, belonging to high alteration in all three level years. The runoff series of mainstream hydrological stations presented variability in different degrees, where the runoff series of the four hydrological stations including Xiangjiaba, Gaochang and Wulong belonged to high alteration in the three level years; and the runoff series of Beibei hydrological station in 2010 level year belonged to medium alteration, and high alteration in 2015 level year and the forward level year. The study on the impact of the operation of cascade reservoirs in Upper Yangtze River on hydrological variability of the mainstream had important practical significance on the sustainable utilization of water resources, disaster prevention and mitigation, safe and efficient operation and management of water conservancy projects and stable development of the economic society.

  17. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1983-1987 Methods and Data Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Ian

    1989-12-01

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin. The authorized purpose of the dam is to provide power, flood control, and navigation and other benefits. Research began in May 1983 to determine how operations of Libby dam impact the reservoir fishery and to suggest ways to lessen these impacts. This study is unique in that it was designed to accomplish its goal through detailed information gathering on every trophic level in the reservoir system and integration of this information into a quantitative computer model. The specific study objectives are to: quantify available reservoir habitat, determine abundance, growth and distribution of fish within the reservoir and potential recruitment of salmonids from Libby Reservoir tributaries within the United States, determine abundance and availability of food organisms for fish in the reservoir, quantify fish use of available food items, develop relationships between reservoir drawdown and reservoir habitat for fish and fish food organisms, and estimate impacts of reservoir operation on the reservoir fishery. 115 refs., 22 figs., 51 tabs.

  18. Effects of the uncertainty of energy price and water availability forecasts on the operation of Alpine hydropower reservoir systems

    Science.gov (United States)

    Anghileri, D.; Castelletti, A.; Burlando, P.

    2016-12-01

    European energy markets have experienced dramatic changes in the last years because of the massive introduction of Variable Renewable Sources (VRSs), such as wind and solar power sources, in the generation portfolios in many countries. VRSs i) are intermittent, i.e., their production is highly variable and only partially predictable, ii) are characterized by no correlation between production and demand, iii) have negligible costs of production, and iv) have been largely subsidized. These features result in lower energy prices, but, at the same time, in increased price volatility, and in network stability issues, which pose a threat to traditional power sources because of smaller incomes and higher maintenance costs associated to a more flexible operation of power systems. Storage hydropower systems play an important role in compensating production peaks, both in term of excess and shortage of energy. Traditionally, most of the research effort in hydropower reservoir operation has focused on modeling and forecasting reservoir inflow as well as designing reservoir operation accordingly. Nowadays, price variability may be the largest source of uncertainty in the context of hydropower systems, especially when considering medium-to-large reservoirs, whose storage can easily buffer small inflow fluctuations. In this work, we compare the effects of uncertain inflow and energy price forecasts on hydropower production and profitability. By adding noise to historic inflow and price trajectories, we build a set of synthetic forecasts corresponding to different levels of predictability and assess their impact on reservoir operating policies and performances. The study is conducted on different hydropower systems, including storage systems and pumped-storage systems, with different characteristics, e.g., different inflow-capacity ratios. The analysis focuses on Alpine hydropower systems where the hydrological regime ranges from purely ice and snow-melt dominated to mixed snow

  19. A combination of streamtube and geostatical simulation methodologies for the study of large oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, A.; Emanuel, A.S.; Bernath, J.A. [Chevron Petroleum Technology Company, LaHabra, CA (United States)

    1997-08-01

    The application of streamtube models for reservoir simulation has an extensive history in the oil industry. Although these models are strictly applicable only to fields under voidage balance, they have proved to be useful in a large number of fields provided that there is no solution gas evolution and production. These models combine the benefit of very fast computational time with the practical ability to model a large reservoir over the course of its history. These models do not, however, directly incorporate the detailed geological information that recent experience has taught is important. This paper presents a technique for mapping the saturation information contained in a history matched streamtube model onto a detailed geostatistically derived finite difference grid. With this technique, the saturation information in a streamtube model, data that is actually statistical in nature, can be identified with actual physical locations in a field and a picture of the remaining oil saturation can be determined. Alternatively, the streamtube model can be used to simulate the early development history of a field and the saturation data then used to initialize detailed late time finite difference models. The proposed method is presented through an example application to the Ninian reservoir. This reservoir, located in the North Sea (UK), is a heterogeneous sandstone characterized by a line drive waterflood, with about 160 wells, and a 16 year history. The reservoir was satisfactorily history matched and mapped for remaining oil saturation. A comparison to 3-D seismic survey and recently drilled wells have provided preliminary verification.

  20. Geophysical monitoring in a hydrocarbon reservoir

    Science.gov (United States)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  1. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  2. Cesium reservoir and interconnective components

    International Nuclear Information System (INIS)

    1994-03-01

    The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW range. A thermionic converter must be supplied with cesium vapor for two reasons. Cesium atoms adsorbed on the surface of the emitter cause a reduction of the emitter work function to permit high current densities without excessive heating of the emitter. The second purpose of the cesium vapor is to provide space-charge neutralization in the emitter-collector gap so that the high current densities may flow across the gap unattenuated. The function of the cesium reservoir is to provide a source of cesium atoms, and to provide a reserve in the event that cesium is lost from the plasma by any mechanism. This can be done with a liquid cesium metal reservoir in which case it is heated to the desired temperature with auxiliary heaters. In a TFE, however, it is desirable to have the reservoir passively heated by the nuclear fuel. In this case, the reservoir must operate at a temperature intermediate between the emitter and the collector, ruling out the use of liquid reservoirs. Integral reservoirs contained within the TFE will produce cesium vapor pressures in the desired range at typical electrode temperatures. The reservoir material that appears to be the best able to meet requirements is graphite. Cesium intercalates easily into graphite, and the cesium pressure is insensitive to loading for a given intercalation stage. The goals of the cesium reservoir test program were to verify the performance of Cs-graphite reservoirs in the temperature-pressure range of interest to TFE operation, and to test the operation of these reservoirs after exposure to a fast neutron fluence corresponding to seven year mission lifetime. In addition, other materials were evaluated for possible use in the integral reservoir

  3. Natural and human drivers of salinity in reservoirs and their implications in water supply operation through a Decision Support System

    Science.gov (United States)

    Contreras, Eva; Gómez-Beas, Raquel; Linares-Sáez, Antonio

    2016-04-01

    Salt can be a problem when is originally in aquifers or when it dissolves in groundwater and comes to the ground surface or flows into streams. The problem increases in lakes hydraulically connected with aquifers affecting water quality. This issue is even more alarming when water resources are used for urban and irrigation supply and water quantity and quality restrict that water demand. This work shows a data based and physical modeling approach in the Guadalhorce reservoir, located in southern Spain. This water body receives salt contribution from mainly groundwater flow, getting salinity values in the reservoir from 3500 to 5500 μScm-1. Moreover, Guadalhorce reservoir is part of a complex system of reservoirs fed from the Guadalhorce River that supplies all urban, irrigation, tourism, energy and ecology water uses, which makes that implementation and validation of methods and tools for smart water management is required. Meteorological, hydrological and water quality data from several monitoring networks and data sources, with both historical and real time data during a 40-years period, were used to analyze the impact salinity. On the other hand, variables that mainly depend on the dam operation, such as reservoir water level and water outflow, were also analyzed to understand how they affect to salinity in depth and time. Finally surface and groundwater inflows to the reservoir were evaluated through a physically based hydrological model to forecast when the major contributions take place. Reservoir water level and surface and groundwater inflows were found to be the main drivers of salinity in the reservoir. When reservoir water level is high, daily water inflow around 0.4 hm3 causes changes in salinity (both drop and rise) up to 500 μScm-1, but no significant changes are found when water level falls 2-3 m. However the gradual water outflows due to dam operation and consequent decrease in reservoir water levels makes that, after dry periods, salinity

  4. Performance of thermal solvent process in Athabasca reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Das, Swapan [Marathon Oil (Canada)

    2011-07-01

    In the petroleum industry, due to depletion of conventional resources and high demand operators are looking into heavy oil and bitumen production. Different recovery methods exist, some of them based on heating the reservoir and others on the use of solvent. Thermal solvent process is a combination of both: a small amount of heat is used to maintain a solvent vapor phase in the reservoir. This process has advantages, solvent is mostly recycled which increases bitumen recovery efficiency and reduces the need for fresh solvent, but it also poses challenges, such as maintaining a vapor chamber and the fact that solvent solubility might be affected by heating. The aim of this paper is to discuss these issues. Simulations and field tests were conducted on bitumen in the the Athabasca region. This paper presented a thermal solvent process and its application's results in Athabasca reservoir.

  5. [Effects of cascading hydropower dams operation on the structure and distribution pattern of benthic macroinvertebrate assemblages in Manwan Reservoir, Southwest China].

    Science.gov (United States)

    Li, Jin Peng; Dong, Shi Kui; Peng, Ming Chun; Wu, Xuan; Zhou, Fang; Yu, Yin

    2017-12-01

    Benthic macroinvertebrate assemblages are one of the biological groups in aquatic ecosystem most sensitive to the habitat change and degradation, and can be a biological indicator for the aquatic ecosystem change and succession in cascading hydropower dam reservoir. The middle and lower reaches of the Lancang River are key spot for international biodiversity conservation and ecological studies on the effects of cascading hydropower dam exploitation. In this study, the reservoir of Manwan hydropower dam, the first dam in Lancang-Mekong river main stream, was selected as the study site. The benthic macroinvertebrate assemblages were sampled in 2011 and 2016 respectively. Meanwhile, the survey data before impounding (natural river, 1996) and early stage of single dam (1997) were collected to conduct the overall analysis for structure, distribution pattern and evolution of benthic macroinvertebrate assemblages. The results showed that the dominant biological group was gradually changed from the Oligochaeta and Insecta to the Mollusca. Along the longitudinal gradient, the density and biomass of the benthic macroinvertebrate assemblages were remarkably increased in reservoir, especially in the lacustrine zone. As for the functional feeding group, the predator and gatherer-collector changed into filter-collector predominantly in lacustrine zone. With the cascading dams operation, the biotic index indicated that the water quality of reservoir in 2016 was better than in 2011. The evolution of benthic macroinvertebrate assemblages in the Manwan Reservoir was related to the operation of Xiaowan dam in the upper reach, the hydrological regime and siltation in the reservoir, and would continue with dynamic changes with the operation of the cascading hydropower dam.

  6. Succession of phytoplankton assemblages in response to large-scale reservoir operation: a case study in a tributary of the Three Gorges Reservoir, China.

    Science.gov (United States)

    Xiao, Yan; Li, Zhe; Guo, Jinsong; Fang, Fang; Smith, Val H

    2016-03-01

    The Three Gorges Dam (TGD) has greatly altered ecological and environmental conditions within the reservoir region, but it is not known how these changes affect phytoplankton structure and dynamics. Here, a bimonthly monitoring program was implemented from 2007 to 2009 to study the impact of damming on phytoplankton assemblages in the backwater area of the Pengxi River (PBA). By application of the phytoplankton functional group (C strategists, competitive species; S strategists, stress-tolerant species; R strategists, rapid propagation species), seasonal changes in phytoplankton relative to environmental variations were evaluated using ordination analysis. Seasonal patterns of phytoplankton dynamics were detected during this study, with CS/S strategists causing algal blooms from mid-spring to early summer, CS/CR strategists often observed during flood season, and CS strategists dominant during mid-autumn. CR/R groups dominated during winter and caused algal blooms in February. Our results indicated that phytoplankton assemblages were directly related to reservoir operation effects. Generally, the TGD had a low water level during flood season, resulting in a relatively short hydraulic retention time and intensive variability, which supported the cooccurrence of CS and CR species. During the winter drought season, water storage in the TGD increased the water level and the hydraulic retention time in the PBA, enabling R/CR strategists to overcome the sedimentation effect and to out-compete S/CS species in winter. As expected, these diversity patterns were significantly correlated with the hydraulic retention time and nutrient limitation pattern in the PBA. This study provides strategic insight for evaluating the impacts of reservoir operations on phytoplankton adaptation.

  7. Remotely Sensed Based Lake/Reservoir Routing in Congo River Basin

    Science.gov (United States)

    Raoufi, R.; Beighley, E.; Lee, H.

    2017-12-01

    Lake and reservoir dynamics can influence local to regional water cycles but are often not well represented in hydrologic models. One challenge that limits their inclusion in models is the need for detailed storage-discharge behavior that can be further complicated in reservoirs where specific operation rules are employed. Here, the Hillslope River Routing (HRR) model is combined with a remotely sensed based Reservoir Routing (RR) method and applied to the Congo River Basin. Given that topographic data are often continuous over the entire terrestrial surface (i.e., does not differentiate between land and open water), the HRR-RR model integrates topographic derived river networks and catchment boundaries (e.g., HydroSHEDs) with water boundary extents (e.g., Global Lakes and Wetlands Database) to develop the computational framework. The catchments bordering lakes and reservoirs are partitioned into water and land portions, where representative flowpath characteristics are determined and vertical water balance and lateral routings is performed separately on each partition based on applicable process models (e.g., open water evaporation vs. evapotranspiration). To enable reservoir routing, remotely sensed water surface elevations and extents are combined to determine the storage change time series. Based on the available time series, representative storage change patterns are determined. Lake/reservoir routing is performed by combining inflows from the HRR-RR model and the representative storage change patterns to determine outflows. In this study, a suite of storage change patterns derived from remotely sensed measurements are determined representative patterns for wet, dry and average conditions. The HRR-RR model dynamically selects and uses the optimal storage change pattern for the routing process based on these hydrologic conditions. The HRR-RR model results are presented to highlight the importance of lake attenuation/routing in the Congo Basin.

  8. The Control of Microcystis spp. Bloom by Combining Indigenous Denitrifying Bacteria From Sutami Reservoir with Fimbristylis globulosa and Vetiveria zizanoides

    Directory of Open Access Journals (Sweden)

    Bayu Agung Prahardika

    2013-04-01

    Full Text Available The purpose of this research is to know the ability of polyculture macrophyte (Fimbristylis globulosa and Vetiveria zizanoides and the combination of both with consortium of indigenous denitrifying bacteria from Sutami reservoir that was added by Microcystis spp. or not to reduce the concentration of nitrate, dissolved phosphate and the carrying capacity of Microcystis spp. The experiment was done in a medium filled up with Sutami reservoir water enriched with 16 ppm of nitrate and 0.4 ppm of phosphate. The denitrifying bacteria used in this research were DR-14, DU-27-1, DU-30-1, DU-30-2, TA-8 and DU-27-4 isolated from Sutami reservoir. The treatments were incubated within 15 days. Microcystis spp. abundance was calculated every day, but the measurement of the concentration of nitrate and dissolved phosphate was done every six days. The results showed that both treatment and the combination of both macrophytes with a consortium of denitrifying indigenous bacteria were added or not either Microcystis able to reduce nitrate at 99% and 93-99% orthophosphoric. The combination of macrophytes with denitrifying indigenous bacterial consortium from Sutami reservoir was able to inhibit the carrying capacity of Microcystis spp. highest up to 47.87%. They could also significantly reduce the abundance of Microcystis from 107 cells/mL in earlier days of the treatment into 0.35x104 cells/mL after fifteen days of incubation.

  9. Assessment of Short Term Flood Operation Strategies Using Numerical Weather Prediction Data in YUVACΙK DAM Reservoir, Turkey

    Science.gov (United States)

    Uysal, G.; Yavuz, O.; Sensoy, A.; Sorman, A.; Akgun, T.; Gezgin, T.

    2011-12-01

    Yuvacik Dam Reservoir Basin, located in the Marmara region of Turkey with 248 km2 drainage area, has steep topography, mild and rainy climate thus induces high flood potential with fast flow response, especially to early spring and fall precipitation events. Moreover, the basin provides considerable snowmelt contribution to the streamflow during melt season since the elevation ranges between 80 - 1548 m. The long term strategies are based on supplying annual demand of 142 hm3 water despite a relatively small reservoir capacity of 51 hm3. This situation makes short term release decisions as the challenging task regarding the constrained downstream safe channel capacity especially in times of floods. Providing the demand of 1.5 million populated city of Kocaeli is the highest priority issue in terms of reservoir management but risk optimization is also required due to flood regulation. Although, the spillway capacity is 1560 m3/s, the maximum amount of water to be released is set as 100 m3/s by the regional water authority taking into consideration the downstream channel capacity which passes through industrial region of the city. The reservoir is a controlled one and it is possible to hold back the 15 hm3 additional water by keeping the gates closed. Flood regulation is set to achieve the maximum possible flood attenuation by using the full flood-control zone capacity in the reservoir before making releases in excess of the downstream safe-channel capacity. However, the operators still need to exceed flood regulation zones to take precautions for drought summer periods in order to supply water without any shortage that increases the risk in times of flood. Regarding to this circumstances, a hydrological model integrated reservoir modeling system, is applied to account for the physical behavior of the system. Hence, this reservoir modeling is carried out to analyze both previous decisions and also the future scenarios as a decision support tool for operators. In the

  10. In the Way of Peacemaker Guide Curve between Water Supply and Flood Control for Short Term Reservoir Operation

    Science.gov (United States)

    Uysal, G.; Sensoy, A.; Yavuz, O.; Sorman, A. A.; Gezgin, T.

    2012-04-01

    Effective management of a controlled reservoir system where it involves multiple and sometimes conflicting objectives is a complex problem especially in real time operations. Yuvacık Dam Reservoir, located in the Marmara region of Turkey, is built to supply annual demand of 142 hm3 water for Kocaeli city requires such a complex management strategy since it has relatively small (51 hm3) effective capacity. On the other hand, the drainage basin is fed by both rainfall and snowmelt since the elevation ranges between 80 - 1548 m. Excessive water must be stored behind the radial gates between February and May in terms of sustainability especially for summer and autumn periods. Moreover, the downstream channel physical conditions constraint the spillway releases up to 100 m3/s although the spillway is large enough to handle major floods. Thus, this situation makes short term release decisions the challenging task. Long term water supply curves, based on historical inflows and annual water demand, are in conflict with flood regulation (control) levels, based on flood attenuation and routing curves, for this reservoir. A guide curve, that is generated using both water supply and flood control of downstream channel, generally corresponds to upper elevation of conservation pool for simulation of a reservoir. However, sometimes current operation necessitates exceeding this target elevation. Since guide curves can be developed as a function of external variables, the water potential of a basin can be an indicator to explain current conditions and decide on the further strategies. Besides, releases with respect to guide curve are managed and restricted by user-defined rules. Although the managers operate the reservoir due to several variable conditions and predictions, still the simulation model using variable guide curve is an urgent need to test alternatives quickly. To that end, using HEC-ResSim, the several variable guide curves are defined to meet the requirements by

  11. Impact of upstream river inputs and reservoir operation on phosphorus fractions in water-particulate phases in the Three Gorges Reservoir.

    Science.gov (United States)

    Han, Chaonan; Zheng, Binghui; Qin, Yanwen; Ma, Yingqun; Yang, Chenchen; Liu, Zhichao; Cao, Wei; Chi, Minghui

    2018-01-01

    The impoundment of the Three Gorges Reservoir (TGR) has changed water-sand transport regime, with inevitable effects on phosphorus transport behavior in the TGR. In this study, we measured phosphorus fractions in water and suspended particles transported from upstream rivers of the TGR (the Yangtze River, the Jialing River and the Wu River) to reservoir inner region over the full operation schedule of the TGR. The aim was to determine how phosphorus fractions in water and particulate phases varied in response to natural hydrological processes and reservoir operations. The results showed that total phosphorus concentration (TP) in water in the TGR inner region was 0.17±0.05mg/L, which was lower than that in the Yangtze River (0.21±0.04mg/L) and the Wu River (0.23±0.03mg/L), but higher than that in the Jialing River (0.12±0.07mg/L). In the TGR inner region, there was no clear trend of total dissolved phosphorus (TDP), but total particulate phosphorus (TPP) showed a decreasing trend from tail area to head area because of particle deposition along the TGR mainstream. In addition, the concentrations of TPP in water and particulate phosphorus in a unit mass of suspended particles (PP) in the TGR inner region were higher in October 2014 and January 2015 (the impounding period and high water level period) than that in July 2015 (the low water level period). The temporal variations of PP and TPP concentrations in the TGR may be linked to the change of particle size distribution of suspended particles in the TGR. The particle size tended to be finer due to large-size particle deposition under stable hydrodynamic conditions in the process of TGR impoundment, resulting in high adsorption capacities of phosphorus in suspended particles. The results implied that phosphorus temporal variations in the TGR could exert different impacts on water quality in the TGR tributaries. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Evaluating the Implications of Climate Phenomenon Indices in Supporting Reservoir Operation Using the Artificial Neural Network and Decision-Tree Methods: A Case Study on Trinity Lake in Northern California

    Science.gov (United States)

    Yang, T.; Akbari Asanjan, A.; Gao, X.; Sorooshian, S.

    2016-12-01

    Reservoirs are fundamental human-built infrastructures that collect, store, and deliver fresh surface water in a timely manner for all kinds of purposes, including residential and industrial water supply, flood control, hydropower, and irrigation, etc. Efficient reservoir operation requires that policy makers and operators understand how reservoir inflows, available storage, and discharges are changing under different climatic conditions. Over the last decade, the uses of Artificial Intelligence and Data Mining (AI & DM) techniques in assisting reservoir management and seasonal forecasts have been increasing. Therefore, in this study, two distinct AI & DM methods, Artificial Neural Network (ANN) and Random Forest (RF), are employed and compared with respect to their capabilities of predicting monthly reservoir inflow, managing storage, and scheduling reservoir releases. A case study on Trinity Lake in northern California is conducted using long-term (over 50 years) reservoir operation records and 17 known climate phenomenon indices, i.e. PDO and ENSO, etc., as predictors. Results show that (1) both ANN and RF are capable of providing reasonable monthly reservoir storage, inflow, and outflow prediction with satisfactory statistics, and (2) climate phenomenon indices are useful in assisting monthly or seasonal forecasts of reservoir inflow and outflow. It is also found that reservoir storage has a consistent high autocorrelation effect, while inflow and outflow are more likely to be influenced by climate conditions. Using a Gini diversity index, RF method identifies that the reservoir discharges are associated with Southern Oscillation Index (SOI) and reservoir inflows are influenced by multiple climate phenomenon indices during different seasons. Furthermore, results also show that, during the winter season, reservoir discharges are controlled by the storage level for flood-control purposes, while, during the summer season, the flood-control operation is not as

  13. Fortescue reservoir development and reservoir studies

    Energy Technology Data Exchange (ETDEWEB)

    Henzell, S.T.; Hicks, G.J.; Horden, M.J.; Irrgang, H.R.; Janssen, E.J.; Kable, C.W.; Mitchell, R.A.H.; Morrell, N.W.; Palmer, I.D.; Seage, N.W.

    1985-03-01

    The Fortescue field in the Gippsland Basin, offshore southeastern Australia is being developed from two platforms (Fortescue A and Cobia A) by Esso Australia Ltd. (operator) and BHP Petroleum. The Fortescue reservoir is a stratigraphic trap at the top of the Latrobe Group of sediments. It overlies the western flank of the Halibut and Cobia fields and is separated from them by a non-net sequence of shales and coals which form a hydraulic barrier between the two systems. Development drilling into the Fortescue reservoir commenced in April 1983 with production coming onstream in May 1983. Fortescue, with booked reserves of 44 stock tank gigalitres (280 million stock tank barrels) of 43/sup 0/ API oil, is the seventh major oil reservoir to be developed in the offshore Gippsland Basin by Esso/BHP. In mid-1984, after drilling a total of 20 exploration and development wells, and after approximately one year of production, a detailed three-dimensional, two-phase reservoir simulation study was performed to examine the recovery efficiency, drainage patterns, pressure performance and production rate potential of the reservoir. The model was validated by history matching an extensive suite of Repeat Formation Test (RFT) pressure data. The results confirmed the reserves basis, and demonstrated that the ultimate oil recovery from the reservoir is not sensitive to production rate. This result is consistent with studies on other high quality Latrobe Group reservoirs in the Gippsland Basin which contain undersaturated crudes and receive very strong water drive from the Basin-wide aquifer system. With the development of the simulation model during the development phase, it has been possible to more accurately define the optimal well pattern for the remainder of the development.

  14. Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion

    DEFF Research Database (Denmark)

    Zunino, Andrea; Lange, Katrine; Melnikova, Yulia

    2014-01-01

    We present a study on the inversion of seismic reflection data generated from a synthetic reservoir model. Our aim is to invert directly for rock facies and porosity of the target reservoir zone. We solve this inverse problem using a Markov chain Monte Carlo (McMC) method to handle the nonlinear...

  15. Putting integrated reservoir characterization into practice - in house training

    Energy Technology Data Exchange (ETDEWEB)

    Wright, F.M. Jr.; Best, D.A.; Clarke, R.T. [Mobile Exploration and Producing Technical Center, Dallas, TX (United States)

    1997-08-01

    The need for even more efficient reservoir characterization and management has forced a change in the way Mobil Oil provides technical support to its production operations. We`ve learned that to be successful, a good understanding of the reservoir is essential. This includes an understanding of the technical and business significance of reservoir heterogeneities at different stages of field development. A multi-disciplinary understanding of the business of integrated reservoir characterization is essential and to facilitate this understanding, Mobil has developed a highly successful {open_quotes}Reservoir Characterization Field Seminar{close_quotes}. Through specific team based case studies that incorporate outcrop examples and data the program provides participants the opportunity to explore historic and alternative approaches to reservoir description, characterization and management. We explore appropriate levels and timing of data gathering, technology applications, risk assessment and management practices at different stages of field development. The case studies presented throughout the course are a unique element of the program which combine real life and hypothetical problem sets that explore how different technical disciplines interact, the approaches to a problem solving they use, the assumptions and uncertainties contained in their contributions and the impact those conclusions may have on other disciplines involved in the overall reservoir management process. The team building aspect of the course was an added bonus.

  16. Integrating a Typhoon Event Database with an Optimal Flood Operation Model on the Real-Time Flood Control of the Tseng-Wen Reservoir

    Science.gov (United States)

    Chen, Y. W.; Chang, L. C.

    2012-04-01

    Typhoons which normally bring a great amount of precipitation are the primary natural hazard in Taiwan during flooding season. Because the plentiful rainfall quantities brought by typhoons are normally stored for the usage of the next draught period, the determination of release strategies for flood operation of reservoirs which is required to simultaneously consider not only the impact of reservoir safety and the flooding damage in plain area but also for the water resource stored in the reservoir after typhoon becomes important. This study proposes a two-steps study process. First, this study develop an optimal flood operation model (OFOM) for the planning of flood control and also applies the OFOM on Tseng-wun reservoir and the downstream plain related to the reservoir. Second, integrating a typhoon event database with the OFOM mentioned above makes the proposed planning model have ability to deal with a real-time flood control problem and names as real-time flood operation model (RTFOM). Three conditions are considered in the proposed models, OFOM and RTFOM, include the safety of the reservoir itself, the reservoir storage after typhoons and the impact of flooding in the plain area. Besides, the flood operation guideline announced by government is also considered in the proposed models. The these conditions and the guideline can be formed as an optimization problem which is solved by the genetic algorithm (GA) in this study. Furthermore, a distributed runoff model, kinematic-wave geomorphic instantaneous unit hydrograph (KW-GIUH), and a river flow simulation model, HEC-RAS, are used to simulate the river water level of Tseng-wun basin in the plain area and the simulated level is shown as an index of the impact of flooding. Because the simulated levels are required to re-calculate iteratively in the optimization model, applying a recursive artificial neural network (recursive ANN) instead of the HEC-RAS model can significantly reduce the computational burden of

  17. Simulation of California's Major Reservoirs Outflow Using Data Mining Technique

    Science.gov (United States)

    Yang, T.; Gao, X.; Sorooshian, S.

    2014-12-01

    The reservoir's outflow is controlled by reservoir operators, which is different from the upstream inflow. The outflow is more important than the reservoir's inflow for the downstream water users. In order to simulate the complicated reservoir operation and extract the outflow decision making patterns for California's 12 major reservoirs, we build a data-driven, computer-based ("artificial intelligent") reservoir decision making tool, using decision regression and classification tree approach. This is a well-developed statistical and graphical modeling methodology in the field of data mining. A shuffled cross validation approach is also employed to extract the outflow decision making patterns and rules based on the selected decision variables (inflow amount, precipitation, timing, water type year etc.). To show the accuracy of the model, a verification study is carried out comparing the model-generated outflow decisions ("artificial intelligent" decisions) with that made by reservoir operators (human decisions). The simulation results show that the machine-generated outflow decisions are very similar to the real reservoir operators' decisions. This conclusion is based on statistical evaluations using the Nash-Sutcliffe test. The proposed model is able to detect the most influential variables and their weights when the reservoir operators make an outflow decision. While the proposed approach was firstly applied and tested on California's 12 major reservoirs, the method is universally adaptable to other reservoir systems.

  18. Mrica Reservoir Sedimentation: Current Situation and Future Necessary Management

    Directory of Open Access Journals (Sweden)

    Puji Utomo

    2017-09-01

    Full Text Available Mrica Reservoir is one of many reservoirs located in Central Java that experienced a considerably high sedimentation during the last ten years. This condition has caused a rapid decrease in reservoir capacity. Various countermeasures have been introduced to reduce the rate of the reservoir sedimentation through catchment management and reservoir operation by means of flushing and/or dredging. However, the sedimentation remains intensive so that the fulfillment of water demand for electrical power generation was seriously affected. This paper presents the results of evaluation on the dynamics of the purpose of this research is to evaluate the sediment balance of the Mrica Reservoir based on two different scenarios, i.e. the existing condition and another certain type of reservoir management. The study on sediment balance was carried out by estimating the sediment inflow applying sheet erosion method in combination with the analysis of sediment rating curve. The measurement of the deposited sediment rate in the reservoir was conducted through the periodic echo sounding, whereas identification of the number of sediment that has been released from the reservoir was carried out through the observation on both flushing and dredging activities. The results show that during the last decade, the rate of the sediment inflow was approximately 5.869 MCM/year, whereas the released sediment from the reservoir was 4.097 MCM/year. In order to maintain the reservoir capacity, therefore, at least 1.772 MCM/year should be released from the reservoir by means of either flushing or dredging. Sedimentation management may prolong the reservoir’s service life to exceed the design life. Without sediment management, the lifetime of the reservoir would have finished by 2016, whereas with the proper management the lifetime may be extended to 2025.

  19. A New Method for Fracturing Wells Reservoir Evaluation in Fractured Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2014-01-01

    Full Text Available Natural fracture is a geological phenomenon widely distributed in tight formation, and fractured gas reservoir stimulation effect mainly depends on the communication of natural fractures. Therefore it is necessary to carry out the evaluation of this reservoir and to find out the optimal natural fractures development wells. By analyzing the interactions and nonlinear relationships of the parameters, it establishes three-level index system of reservoir evaluation and proposes a new method for gas well reservoir evaluation model in fractured gas reservoir on the basis of fuzzy logic theory and multilevel gray correlation. For this method, the Gaussian membership functions to quantify the degree of every factor in the decision-making system and the multilevel gray relation to determine the weight of each parameter on stimulation effect. Finally through fuzzy arithmetic operator between multilevel weights and fuzzy evaluation matrix, score, rank, the reservoir quality, and predicted production will be gotten. Result of this new method shows that the evaluation of the production coincidence rate reaches 80%, which provides a new way for fractured gas reservoir evaluation.

  20. An environmental data base for all Hydro-Quebec reservoirs

    International Nuclear Information System (INIS)

    Demers, C.

    1988-01-01

    Hydro-Quebec has created two management positions specifically for reservoirs, namely Reservoir Ecology Advisor and Reservoir Management Advisor. To assist management decisions, a means was required of bringing together all existing environmental information for each reservoir operated by Hydro-Quebec, including storage reservoirs, auxiliary reservoirs and forebays. A relational database using Reflex software was developed on a network of Macintosh computers. The database contains five blocks of information: general information, and physical, physiochemical, biologic and socioeconomic characteristics for each reservoir. Data will be collected on over 100 sites, and the tool will form the basis for developing a medium-range study program on reservoir ecology. The program must take into account the physical, biological and socioeconomic aspects of the environment, as well as the concerns of management personnel operating the reservoirs, the local population, reservoir users, and various government departments. 2 figs

  1. Operational Precipitation prediction in Support of Real-Time Flash Flood Prediction and Reservoir Management

    Science.gov (United States)

    Georgakakos, K. P.

    2006-05-01

    The presentation will outline the implementation and performance evaluation of a number of national and international projects pertaining to operational precipitation estimation and prediction in the context of hydrologic warning systems and reservoir management support. In all cases, uncertainty measures of the estimates and predictions are an integral part of the precipitation models. Outstanding research issues whose resolution is likely to lead to improvements in the operational environment are presented. The presentation draws from the experience of the Hydrologic Research Center (http://www.hrc-lab.org) prototype implementation projects at the Panama Canal, Central America, Northern California, and South-Central US. References: Carpenter, T.M, and K.P. Georgakakos, "Discretization Scale Dependencies of the Ensemble Flow Range versus Catchment Area Relationship in Distributed Hydrologic Modeling," Journal of Hydrology, 2006, in press. Carpenter, T.M., and K.P. Georgakakos, "Impacts of Parametric and Radar Rainfall Uncertainty on the Ensemble Streamflow Simulations of a Distributed Hydrologic Model," Journal of Hydrology, 298, 202-221, 2004. Georgakakos, K.P., Graham, N.E., Carpenter, T.M., Georgakakos, A.P., and H. Yao, "Integrating Climate- Hydrology Forecasts and Multi-Objective Reservoir Management in Northern California," EOS, 86(12), 122,127, 2005. Georgakakos, K.P., and J.A. Sperfslage, "Operational Rainfall and Flow Forecasting for the Panama Canal Watershed," in The Rio Chagres: A Multidisciplinary Profile of a Tropical Watershed, R.S. Harmon, ed., Kluwer Academic Publishers, The Netherlands, Chapter 16, 323-334, 2005. Georgakakos, K. P., "Analytical results for operational flash flood guidance," Journal of Hydrology, doi:10.1016/j.jhydrol.2005.05.009, 2005.

  2. Application of integrated reservoir management and reservoir characterization to optimize infill drilling, Class II

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Jack; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill; Bezant, Bryce

    2000-03-16

    The major purpose of this project was to demonstrate the use of cost effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability carbonate reservoirs such as the North Robertson (Clearfork) Unit.

  3. Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification

    KAUST Repository

    Katterbauer, Klemens

    2015-04-01

    Reservoir simulations and history matching are critical for fine-tuning reservoir production strategies, improving understanding of the subsurface formation, and forecasting remaining reserves. Production data have long been incorporated for adjusting reservoir parameters. However, the sparse spatial sampling of this data set has posed a significant challenge for efficiently reducing uncertainty of reservoir parameters. Seismic, electromagnetic, gravity and InSAR techniques have found widespread applications in enhancing exploration for oil and gas and monitoring reservoirs. These data have however been interpreted and analyzed mostly separately, rarely exploiting the synergy effects that could result from combining them. We present a multi-data ensemble Kalman filter-based history matching framework for the simultaneous incorporation of various reservoir data such as seismic, electromagnetics, gravimetry and InSAR for best possible characterization of the reservoir formation. We apply an ensemble-based sensitivity method to evaluate the impact of each observation on the estimated reservoir parameters. Numerical experiments for different test cases demonstrate considerable matching enhancements when integrating all data sets in the history matching process. Results from the sensitivity analysis further suggest that electromagnetic data exhibit the strongest impact on the matching enhancements due to their strong differentiation between water fronts and hydrocarbons in the test cases.

  4. Microbial Enhanced Oil Recovery - Advanced Reservoir Simulation

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie

    the water phase. The biofilm formation implies that the concentration of bacteria near the inlet increases. In combination with surfactant production, the biofilm results in a higher surfactant concentration in the initial part of the reservoir. The oil that is initially bypassed in connection...... simulator. In the streamline simulator, the effect of gravity is introduced using an operator splitting technique. The gravity effect stabilizes oil displacement causing markedly improvement of the oil recovery, when the oil density becomes relatively low. The general characteristics found for MEOR in one......-dimensional simulations are also demonstrated both in two and three dimensions. Overall, this MEOR process conducted in a heterogeneous reservoir also produces more oil compared to waterflooding, when the simulations are run in multiple dimensions. The work presented in this thesis has resulted in two publications so far....

  5. The further environmental development of Polyphyto Hydroelectric Project reservoir in Kozani prefecture and its contribution to the life quality improvement

    Science.gov (United States)

    Saounatsou, Chara; Georgi, Julia

    2014-08-01

    The Polyphyto Hydroelectric Project was constructed in 1974 and it has been operating since on the Aliakmonas River, Kozani prefecture, by the Greek Public Power Corporation. The construction of the Ilarion Hydroelectric Project, upstream from the Polyphyto Reservoir, has been recently completed and will start operating in the near future. Apart from hydroelectric power production, the Polyphyto reservoir provides flood control to the areas below the Polyphyto dam. It is also used to manage water provision to the city of Thessaloniki and adjacent agricultural plain, providing at the same time cooling water to the Thermo Electric Projects in Ptolemaida. The Polyphyto reservoir has potential for further development as an economic fulcrum to the region in which is located. The Kozani and Servia-Velvendos Municipalities have proceeded to the construction of several touristic, nautical - athletic and fishing projects. In order to promote such developments, while preserving the artificial wetland, flora and fauna of the Polyphyto Reservoir, it is important to reduce the fluctuation of the reservoir elevation which according to its technical characteristics is 21m. The aim of this paper is to propose the combined operation of the two Hydroelectric Project reservoirs to satisfy all the present Polyphyto Hydroelectric Project functions and to reduce the annual fluctuation of the Polyphyto Reservoir. The HEC-5, Version 8 / 1998 computer model was used in our calculations, as developed by the Hydrologic Engineering Center (HEC) of the US Army Corps of Engineers for reservoir operation simulation. Five possible operation scenarios are tested in this paper to show that the present fluctuation of the Polyphyto Reservoir can be reduced, with some limitations, except during dry weather periods.

  6. Application of an expert system to optimize reservoir performance

    International Nuclear Information System (INIS)

    Gharbi, Ridha

    2005-01-01

    The main challenge of oil displacement by an injected fluid, such as in Enhanced Oil Recovery (EOR) processes, is to reduce the cost and improve reservoir performance. An optimization methodology, combined with an economic model, is implemented into an expert system to optimize the net present value of full field development with an EOR process. The approach is automated and combines an economic package and existing numerical reservoir simulators to optimize the design of a selected EOR process using sensitivity analysis. The EOR expert system includes three stages of consultations: (1) select an appropriate EOR process on the basis of the reservoir characteristics, (2) prepare appropriate input data sets to design the selected EOR process using existing numerical simulators, and (3) apply the discounted-cash-flow methods to the optimization of the selected EOR process to find out under what conditions at current oil prices this EOR process might be profitable. The project profitability measures were used as the decision-making variables in an iterative approach to optimize the design of the EOR process. The economic analysis is based on the estimated recovery, residual oil in-place, oil price, and operating costs. Two case studies are presented for two reservoirs that have already been produced to their economic limits and are potential candidates for surfactant/polymer flooding, and carbon-dioxide flooding, respectively, or otherwise subject to abandonment. The effect of several design parameters on the project profitability of these EOR processes was investigated

  7. An effective streamflow process model for optimal reservoir operation using stochastic dual dynamic programming

    OpenAIRE

    Raso , L.; Malaterre , P.O.; Bader , J.C.

    2017-01-01

    International audience; This article presents an innovative streamflow process model for use in reservoir operational rule design in stochastic dual dynamic programming (SDDP). Model features, which can be applied independently, are (1) a multiplicative process model for the forward phase and its linearized version for the backward phase; and (2) a nonuniform time-step length that is inversely proportional to seasonal variability. The advantages are (1) guaranteeing positive streamflow values...

  8. Simulation of water-energy fluxes through small-scale reservoir systems under limited data availability

    Science.gov (United States)

    Papoulakos, Konstantinos; Pollakis, Giorgos; Moustakis, Yiannis; Markopoulos, Apostolis; Iliopoulou, Theano; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2017-04-01

    Small islands are regarded as promising areas for developing hybrid water-energy systems that combine multiple sources of renewable energy with pumped-storage facilities. Essential element of such systems is the water storage component (reservoir), which implements both flow and energy regulations. Apparently, the representation of the overall water-energy management problem requires the simulation of the operation of the reservoir system, which in turn requires a faithful estimation of water inflows and demands of water and energy. Yet, in small-scale reservoir systems, this task in far from straightforward, since both the availability and accuracy of associated information is generally very poor. For, in contrast to large-scale reservoir systems, for which it is quite easy to find systematic and reliable hydrological data, in the case of small systems such data may be minor or even totally missing. The stochastic approach is the unique means to account for input data uncertainties within the combined water-energy management problem. Using as example the Livadi reservoir, which is the pumped storage component of the small Aegean island of Astypalaia, Greece, we provide a simulation framework, comprising: (a) a stochastic model for generating synthetic rainfall and temperature time series; (b) a stochastic rainfall-runoff model, whose parameters cannot be inferred through calibration and, thus, they are represented as correlated random variables; (c) a stochastic model for estimating water supply and irrigation demands, based on simulated temperature and soil moisture, and (d) a daily operation model of the reservoir system, providing stochastic forecasts of water and energy outflows. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students

  9. Analog readout for optical reservoir computers

    OpenAIRE

    Smerieri, Anteo; Duport, François; Paquot, Yvan; Schrauwen, Benjamin; Haelterman, Marc; Massar, Serge

    2012-01-01

    Reservoir computing is a new, powerful and flexible machine learning technique that is easily implemented in hardware. Recently, by using a time-multiplexed architecture, hardware reservoir computers have reached performance comparable to digital implementations. Operating speeds allowing for real time information operation have been reached using optoelectronic systems. At present the main performance bottleneck is the readout layer which uses slow, digital postprocessing. We have designed a...

  10. System Dynamics Modeling of Multipurpose Reservoir Operation

    Directory of Open Access Journals (Sweden)

    Ebrahim Momeni

    2006-03-01

    Full Text Available System dynamics, a feedback – based object – oriented simulation approach, not only represents complex dynamic systemic systems in a realistic way but also allows the involvement of end users in model development to increase their confidence in modeling process. The increased speed of model development, the possibility of group model development, the effective communication of model results, and the trust developed in the model due to user participation are the main strengths of this approach. The ease of model modification in response to changes in the system and the ability to perform sensitivity analysis make this approach more attractive compared with systems analysis techniques for modeling water management systems. In this study, a system dynamics model was developed for the Zayandehrud basin in central Iran. This model contains river basin, dam reservoir, plains, irrigation systems, and groundwater. Current operation rule is conjunctive use of ground and surface water. Allocation factor for each irrigation system is computed based on the feedback from groundwater storage in its zone. Deficit water is extracted from groundwater.The results show that applying better rules can not only satisfy all demands such as Gawkhuni swamp environmental demand, but it can also  prevent groundwater level drawdown in future.

  11. Using combinations of methods for evaluating capacity of fissured reservoirs of the upper Cretaceous Malgobek- Voznesensk oil deposit in Ch. I. ASSR

    Energy Technology Data Exchange (ETDEWEB)

    Vasilev, V.M.

    1968-01-01

    Ch.I.ASSR stands for the Chechen-Ingush Autonomous Soviet Socialist Republic (North Caucasus). The deposit is associated with practically impervious limestones (less than 1 md) with intergranular porosity; oil is found along fractures of various length and degree of openness. Amount of fluids contained in this type of reservoirs was evaluated by the following methods: (1) core analyses; (2) geophysical surveying of wells; (3) hydrodynamic techniques of well investigations; and (4) according to parts of the deposits where oil was already recovered. Statistical interpretation of combined data indicated that reservoir properties gradually become poorer with increasing depth and in the direction from the crest of the fold towards its flanks and periclinal ends. Application of some formulas used in this work is explained. It is concluded that by using combinations of methods it is possible to evaluate the absolute and effective values of secondary reservoir capacity and to establish approximately geological and retrievable oil reserves.

  12. Diffuser Operations at Spring Hollow Reservoir

    OpenAIRE

    Gantzer, Paul Anthony

    2002-01-01

    Stratification is a natural occurrence in deep lakes and reservoirs. This phenomenon results in two distinct layers, the warmer, less dense epilimnion on top and the colder, denser, hypolimnion on the bottom. The epilimnion remains saturated with dissolved oxygen (DO) from mass transfer with the atmosphere, while the hypolimnion continues to undergo oxygen-depleting processes. During seasons of high oxygen demand the hypolimnion often becomes anoxic and results in the release of compounds,...

  13. Reservoir water level forecasting using group method of data handling

    Science.gov (United States)

    Zaji, Amir Hossein; Bonakdari, Hossein; Gharabaghi, Bahram

    2018-06-01

    Accurately forecasted reservoir water level is among the most vital data for efficient reservoir structure design and management. In this study, the group method of data handling is combined with the minimum description length method to develop a very practical and functional model for predicting reservoir water levels. The models' performance is evaluated using two groups of input combinations based on recent days and recent weeks. Four different input combinations are considered in total. The data collected from Chahnimeh#1 Reservoir in eastern Iran are used for model training and validation. To assess the models' applicability in practical situations, the models are made to predict a non-observed dataset for the nearby Chahnimeh#4 Reservoir. According to the results, input combinations (L, L -1) and (L, L -1, L -12) for recent days with root-mean-squared error (RMSE) of 0.3478 and 0.3767, respectively, outperform input combinations (L, L -7) and (L, L -7, L -14) for recent weeks with RMSE of 0.3866 and 0.4378, respectively, with the dataset from https://www.typingclub.com/st. Accordingly, (L, L -1) is selected as the best input combination for making 7-day ahead predictions of reservoir water levels.

  14. Integration of rock typing methods for carbonate reservoir characterization

    International Nuclear Information System (INIS)

    Aliakbardoust, E; Rahimpour-Bonab, H

    2013-01-01

    Reservoir rock typing is the most important part of all reservoir modelling. For integrated reservoir rock typing, static and dynamic properties need to be combined, but sometimes these two are incompatible. The failure is due to the misunderstanding of the crucial parameters that control the dynamic behaviour of the reservoir rock and thus selecting inappropriate methods for defining static rock types. In this study, rock types were defined by combining the SCAL data with the rock properties, particularly rock fabric and pore types. First, air-displacing-water capillary pressure curues were classified because they are representative of fluid saturation and behaviour under capillary forces. Next the most important rock properties which control the fluid flow and saturation behaviour (rock fabric and pore types) were combined with defined classes. Corresponding petrophysical properties were also attributed to reservoir rock types and eventually, defined rock types were compared with relative permeability curves. This study focused on representing the importance of the pore system, specifically pore types in fluid saturation and entrapment in the reservoir rock. The most common tests in static rock typing, such as electrofacies analysis and porosity–permeability correlation, were carried out and the results indicate that these are not appropriate approaches for reservoir rock typing in carbonate reservoirs with a complicated pore system. (paper)

  15. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum

  16. Optimization of European call options considering physical delivery network and reservoir operation rules

    Science.gov (United States)

    Cheng, Wei-Chen; Hsu, Nien-Sheng; Cheng, Wen-Ming; Yeh, William W.-G.

    2011-10-01

    This paper develops alternative strategies for European call options for water purchase under hydrological uncertainties that can be used by water resources managers for decision making. Each alternative strategy maximizes its own objective over a selected sequence of future hydrology that is characterized by exceedance probability. Water trade provides flexibility and enhances water distribution system reliability. However, water trade between two parties in a regional water distribution system involves many issues, such as delivery network, reservoir operation rules, storage space, demand, water availability, uncertainty, and any existing contracts. An option is a security giving the right to buy or sell an asset; in our case, the asset is water. We extend a flow path-based water distribution model to include reservoir operation rules. The model simultaneously considers both the physical distribution network as well as the relationships between water sellers and buyers. We first test the model extension. Then we apply the proposed optimization model for European call options to the Tainan water distribution system in southern Taiwan. The formulation lends itself to a mixed integer linear programming model. We use the weighing method to formulate a composite function for a multiobjective problem. The proposed methodology provides water resources managers with an overall picture of water trade strategies and the consequence of each strategy. The results from the case study indicate that the strategy associated with a streamflow exceedence probability of 50% or smaller should be adopted as the reference strategy for the Tainan water distribution system.

  17. Naturally fractured reservoirs-yet an unsolved mystery

    International Nuclear Information System (INIS)

    Zahoor, M.K.

    2013-01-01

    Some of the world's most profitable reservoirs are assumed to be naturally fractured reservoirs (NFR). Effective evaluation, prediction and planning of these reservoirs require an early recognition of the role of natural fractures and then a comprehensive study of factors which affect the flowing performance through these fractures is necessary. As NFRs are the combination of matrix and fractures mediums so their analysis varies from non-fractured reservoirs. Matrix acts as a storage medium while mostly fluid flow takes place from fracture network. Many authors adopted different approaches to understand the flow behavior in such reservoirs. In this paper a broad review about the previous work done in naturally fractured reservoirs area is outlined and a different idea is initiated for the NFR simulation studies. The role of capillary pressure in natural fractures is always been a key factor for accurate recovery estimations. Also recovery through these reservoirs is dependent upon grid block shape while doing NFR simulation. Some authors studied above mentioned factors in combination with other rock properties to understand the flow behavior in such reservoirs but less emphasis was given for checking the effects on recovery estimations by the variations of only fracture capillary pressures and grid block shapes. So there is need to analyze the behavior of NFR for the mentioned conditions. (author)

  18. Many-Objective Reservoir Policy Identification and Refinement to Reduce Institutional Myopia in Water Management

    Science.gov (United States)

    Giuliani, M.; Herman, J. D.; Castelletti, A.; Reed, P. M.

    2013-12-01

    Institutional inertia strongly limits our ability to adapt water reservoir operations to better manage growing water demands as well as their associated uncertainties in a changing climate. Although it has long been recognized that these systems are generally framed in heterogeneous socio-economic contexts involving a myriad of conflicting, non-commensurable operating objectives, our broader understanding of the multiobjective consequences of current operating rules as well as their vulnerability to hydroclimatic uncertainties is severely limited. This study proposes a decision analytic framework to overcome policy inertia and myopia in complex river basin management contexts. The framework combines reservoir policy identification and many-objective optimization under uncertainty to characterize current operations and discover key tradeoffs between alternative policies for balancing evolving demands and system uncertainties. The approach is demonstrated on the Conowingo Dam, located within the Lower Susquehanna River, USA. The Lower Susquehanna River is an interstate water body that has been subject to intensive water management efforts due to the system's competing demands from urban water supply, atomic power plant cooling, hydropower production, and federally regulated environmental flows. Initially our proposed framework uses available streamflow observations to implicitly identify the Conowingo Dam's current but unknown operating policy. This baseline policy is identified by fitting radial basis functions to existing system dynamics. Our assumption in the baseline policy is that the dam operator is represented as a rational agent seeking to maximize primary operational objectives (i.e., guaranteeing the public water supply and maximizing the hydropower revenue). The quality of the identified baseline policy is evaluated by its ability to replicate historical release dynamics. Once identified, the historical baseline policy then provides a means of representing

  19. Optimal Operation of a Network of Multi-purpose Reservoir : A Review

    NARCIS (Netherlands)

    Nay Myo Lin, N.M.; Rutten, M.M.

    2016-01-01

    Due to the effects of climate change and population growth, reservoirs play a more and more important role in water resources management. The management of a multi-reservoir system is complex due to the curse of dimensionalities, nonlinearities and conflicts between different objectives. The

  20. Pressure and fluid saturation prediction in a multicomponent reservoir, using combined seismic and electromagnetic imaging

    International Nuclear Information System (INIS)

    Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

    2002-01-01

    This paper presents a method for combining seismic and electromagnetic measurements to predict changes in water saturation, pressure, and CO 2 gas/oil ratio in a reservoir undergoing CO 2 flood. Crosswell seismic and electromagnetic data sets taken before and during CO 2 flooding of an oil reservoir are inverted to produce crosswell images of the change in compressional velocity, shear velocity, and electrical conductivity during a CO 2 injection pilot study. A rock properties model is developed using measured log porosity, fluid saturations, pressure, temperature, bulk density, sonic velocity, and electrical conductivity. The parameters of the rock properties model are found by an L1-norm simplex minimization of predicted and observed differences in compressional velocity and density. A separate minimization, using Archie's law, provides parameters for modeling the relations between water saturation, porosity, and the electrical conductivity. The rock-properties model is used to generate relationships between changes in geophysical parameters and changes in reservoir parameters. Electrical conductivity changes are directly mapped to changes in water saturation; estimated changes in water saturation are used along with the observed changes in shear wave velocity to predict changes in reservoir pressure. The estimation of the spatial extent and amount of CO 2 relies on first removing the effects of the water saturation and pressure changes from the observed compressional velocity changes, producing a residual compressional velocity change. This velocity change is then interpreted in terms of increases in the CO 2 /oil ratio. Resulting images of the CO 2 /oil ratio show CO 2 -rich zones that are well correlated to the location of injection perforations, with the size of these zones also correlating to the amount of injected CO 2 . The images produced by this process are better correlated to the location and amount of injected CO 2 than are any of the individual

  1. Physical Model-Based Investigation of Reservoir Sedimentation Processes

    Directory of Open Access Journals (Sweden)

    Cheng-Chia Huang

    2018-03-01

    Full Text Available Sedimentation is a serious problem in the operations of reservoirs. In Taiwan, the situation became worse after the Chi-Chi Earthquake recorded on 21 September 1999. The sediment trap efficiency in several regional reservoirs has been sharply increased, adversely affecting the operations on water supplies. According to the field record, the average annual sediment deposition observed in several regional reservoirs in Taiwan has been increased. For instance, the typhoon event recorded in 2008 at the Wushe Reservoir, Taiwan, produced a 3 m sediment deposit upstream of the dam. The remaining storage capacity in the Wushe Reservoir was reduced to 35.9% or a volume of 53.79 million m3 for flood water detention in 2010. It is urgent that research should be conducted to understand the sediment movement in the Wushe Reservoir. In this study, a scale physical model was built to reproduce the flood flow through the reservoir, investigate the long-term depositional pattern, and evaluate sediment trap efficiency. This allows us to estimate the residual life of the reservoir by proposing a modification of Brune’s method. It can be presented to predict the lifespan of Taiwan reservoirs due to higher applicability in both the physical model and the observed data.

  2. Studies Regarding the Safety in Operation of Ezer Reservoir

    Directory of Open Access Journals (Sweden)

    Balan Isabela

    2014-05-01

    Full Text Available The dam of the non-permanent reservoir Ezer, located on Jijia river is an earth dam with a maximum height of 6.18 m, which provides a global retention to the canopy of 10.330 million cubic meters. The dam founded on weak, muddy soils suffered in the years 1989 and 1992 downstream slope failures of the fillings. It was found that hydrostatic levels were high in the piezometric wells and that consolidation of the foundation soil was reduced. This paper presents a brief history of the dam and aspects regarding the behaviour monitoring of Ezer non-permanent reservoir during the years 2000-2012.

  3. Research needs for strandplain/barrier island reservoirs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.L.; Fowler, M.L.; Salamy, S.P.; Sarathi, P.S.; Young, M.A.

    1994-12-01

    This report identifies reservoir characterization and reservoir management research needs and IOR process and related research needs for the fourth geologic class, strandplain/barrier island reservoirs. The 330 Class 4 reservoirs in the DOE Tertiary OH Recovery Information System (TORIS) database contain about 30.8 billion barrels of oil or about 9% of the total original oil-in-place (OOIP) in all United States reservoirs. The current projection of Class 4 ultimate recovery with current operations is only 38% of the OOIP, leaving 19 billion barrels as the target for future IOR projects. Using the TORIS database and its predictive and economic models, the recovery potential which could result from future application of IOR technologies to Class 4 reservoirs was estimated to be between 1.0 and 4.3 billion barrels, depending on oil price and the level of technology advancement. The analysis indicated that this potential could be realized through (1) infill drilling alone and in combination with polymer flooding and profile modification, (2) chemical flooding (surfactant), and (3) thermal processes. Most of this future potential is in Texas, Oklahoma, California, and the Rocky Mountain region. Approximately two-thirds of the potentially recoverable resource is at risk of abandonment by the year 2000, which emphasizes the urgent need for the development and demonstration of cost-effective recovery technologies.

  4. Large reservoirs: Chapter 17

    Science.gov (United States)

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    expressed effects, such as turbidity and water quality, zooplankton density and size composition, or fish growth rates and assemblage composition, are the upshot of large-scale factors operating outside reservoirs and not under the direct control of reservoir managers. Realistically, abiotic and biotic conditions in reservoirs are shaped by factors working inside and outside reservoirs, with the relative importance of external factors differing among reservoirs. With this perspective, large reservoirs are viewed from a habitat standpoint within the framework of a conceptual model in which individual reservoir characteristics are influenced by both local- and landscape-scale factors (Figure 17.1). In the sections that follow, how each element of this hierarchical model influences habitat and fish assemblages in reservoirs is considered. Important in-reservoir habitat issues and reservoirs as part of larger systems, where reservoir management requires looking for real solutions outside individual reservoirs are described.

  5. Effects of Coordinated Operation of Weirs and Reservoirs on the Water Quality of the Geum River

    Directory of Open Access Journals (Sweden)

    Jung Min Ahn

    2017-06-01

    Full Text Available Multifunctional weirs can be used to maintain water supply during dry seasons and to improve downstream water quality during drought conditions through discharge based on retained flux. Sixteen multifunctional weirs were recently constructed in four river systems as part of the Four Rivers Restoration Project. In this study, three multifunctional weirs in the Geum River Basin were investigated to analyze the environmental effects of multifunctional weir operation on downstream flow. To determine seasonal vulnerability to drought, the basin was evaluated using the Palmer Drought Severity Index (PDSI. Furthermore, the downstream flow regime and the effect on water quality improvement of a coordinated dam–multifunctional weir operation controlled by: (a a rainfall–runoff model; (b a reservoir optimization model; and (c a water quality model, were examined. A runoff estimate at each major location in the Geum River Basin was performed using the water quality model, and examined variation in downstream water quality depending on the operational scenario of each irrigation facility such as dams and weirs. Although the water quality was improved by the coordinated operation of the dams and weirs, when the discharged water quality is poor, the downstream water quality is not improved. Therefore, it is necessary to first improve the discharged water quality on the lower Geum River. Improvement of the water quality of main stream in the Geum River is important, but water quality from tributaries should also be improved. By applying the estimated runoff data to the reservoir optimization model, these scenarios will be utilized as basic parameters for assessing the optimal operation of the river.

  6. Monitoring algal blooms in drinking water reservoirs using the Landsat-8 Operational Land Imager

    Science.gov (United States)

    Keith, Darryl; Rover, Jennifer; Green, Jason; Zalewsky, Brian; Charpentier, Mike; Hursby, Glen; Bishop, Joseph

    2018-01-01

    In this study, we demonstrated that the Landsat-8 Operational Land Imager (OLI) sensor is a powerful tool that can provide periodic and system-wide information on the condition of drinking water reservoirs. The OLI is a multispectral radiometer (30 m spatial resolution) that allows ecosystem observations at spatial and temporal scales that allow the environmental community and water managers another means to monitor changes in water quality not feasible with field-based monitoring. Using the provisional Land Surface Reflectance product and field-collected chlorophyll-a (chl-a) concentrations from drinking water monitoring programs in North Carolina and Rhode Island, we compared five established approaches for estimating chl-aconcentrations using spectral data. We found that using the three band reflectance approach with a combination of OLI spectral bands 1, 3, and 5 produced the most promising results for accurately estimating chl-a concentrations in lakes (R2 value of 0.66; root mean square error value of 8.9 µg l−1). Using this model, we forecast the spatial and temporal variability of chl-a for Jordan Lake, a recreational and drinking water source in piedmont North Carolina and several small ponds that supply drinking water in southeastern Rhode Island.

  7. Modeling and Controlling Flow Transient in Pipeline Systems: Applied for Reservoir and Pump Systems Combined with Simple Surge Tank

    Directory of Open Access Journals (Sweden)

    Itissam ABUIZIAH

    2014-03-01

    Full Text Available When transient conditions (water hammer exist, the life expectancy of the system can be adversely impacted, resulting in pump and valve failures and catastrophic pipe rupture. Hence, transient control has become an essential requirement for ensuring safe operation of water pipeline systems. To protect the pipeline systems from transient effects, an accurate analysis and suitable protection devices should be used. This paper presents the problem of modeling and simulation of transient phenomena in hydraulic systems based on the characteristics method. Also, it provides the influence of using the protection devices to control the adverse effects due to excessive and low pressure occuring in the transient. We applied this model for two main pipeline systems: Valve and pump combined with a simple surge tank connected to reservoir. The results obtained by using this model indicate that the model is an efficient tool for water hammer analysis. Moreover, using a simple surge tank reduces the unfavorable effects of transients by reducing pressure fluctuations.

  8. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservior Fisheries, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, Bradley B.

    1985-06-01

    We are evaluating the potential impacts of Libby Reservoir operation on the fishery in Libby Reservoir. The sampling program has been tested and modified to provide data for developing an understanding of how reservoir operation impacts the reservoir fishery. Temperature appears to be an important variable influenced by reservoir operation which regulates fish and fish food production and distribution. 39 refs., 21 figs., 19 tabs.

  9. MeProRisk - a Joint Venture for Minimizing Risk in Geothermal Reservoir Development

    Science.gov (United States)

    Clauser, C.; Marquart, G.

    2009-12-01

    Exploration and development of geothermal reservoirs for the generation of electric energy involves high engineering and economic risks due to the need for 3-D geophysical surface surveys and deep boreholes. The MeProRisk project provides a strategy guideline for reducing these risks by combining cross-disciplinary information from different specialists: Scientists from three German universities and two private companies contribute with new methods in seismic modeling and interpretation, numerical reservoir simulation, estimation of petrophysical parameters, and 3-D visualization. The approach chosen in MeProRisk consists in considering prospecting and developing of geothermal reservoirs as an iterative process. A first conceptual model for fluid flow and heat transport simulation can be developed based on limited available initial information on geology and rock properties. In the next step, additional data is incorporated which is based on (a) new seismic interpretation methods designed for delineating fracture systems, (b) statistical studies on large numbers of rock samples for estimating reliable rock parameters, (c) in situ estimates of the hydraulic conductivity tensor. This results in a continuous refinement of the reservoir model where inverse modelling of fluid flow and heat transport allows infering the uncertainty and resolution of the model at each iteration step. This finally yields a calibrated reservoir model which may be used to direct further exploration by optimizing additional borehole locations, estimate the uncertainty of key operational and economic parameters, and optimize the long-term operation of a geothermal resrvoir.

  10. Building Adjustable Pre-storm Reservoir Flood-control Release Rules

    Science.gov (United States)

    Yang, Shun-Nien; Chang, Li-Chiu; Chang, Fi-John; Hsieh, Cheng-Daw

    2017-04-01

    Typhoons hit Taiwan several times every year, which could cause serious flood disasters. Because mountainous terrains and steep landforms can rapidly accelerate the speed of flood flow during typhoon events, rivers cannot be a stable source of water supply. Reservoirs become the most effective floodwater storage facilities for alleviating flood damages in Taiwan. The pre-storm flood-control release can significantly increase reservoir storage capacity available to store floodwaters for reducing downstream flood damage, while the uncertainties of total forecasted rainfalls are very high in different stages of an oncoming typhoon, which may cause the risk of water shortage in the future. This study proposes adjustable pre-storm reservoir flood-control release rules in three designed operating stages with various hydrological conditions in the Feitsui Reservoir, a pivot reservoir for water supply to Taipei metropolitan in Taiwan, not only to reduce the risk of reservoir flood control and downstream flooding but also to consider water supply. The three operating stages before an oncoming typhoon are defined upon the timings when: (1) typhoon news is issued (3-7days before typhoon hit); (2) the sea warning is issued (2-4 days before typhoon hit); and (3) the land warning is issued (1-2 days before typhoon hit). We simulate 95 historical typhoon events with 3000 initial water levels and build some pre-storm flood-control release rules to adjust the amount of pre-release based on the total forecasted rainfalls at different operating stages. A great number of simulations (68.4 millions) are conducted to extract their major consequences and then build the adjustable pre-storm reservoir flood-control release rules. Accordingly, given a total forecasted rainfall and a water level, reservoir decision makers can easily identify the corresponding rule to tell the amount of pre-release in any stage. The results show that the proposed adjustable pre-release rules can effectively

  11. Mitigation for the Construction and Operation of Libby Dam, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Greg; Marotz, Brian L.; Dunnigan, James (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2002-09-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power Planning Council's resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness.

  12. Environmental and Water Quality Operational Studies. General Guidelines for Monitoring Contaminants in Reservoirs

    Science.gov (United States)

    1986-02-01

    espacially trte for the topics of sampling and analytical methods, statistical considerations, and the design of general water quality monitoring networks. For...and to the establishment and habitat differentiation of biological populations within reservoirs. Reservoir operatirn, esp- cially the timing...8217 % - - % properties of bottom sediments, as well as specific habitat associations of biological populations of reservoirs. Thus, such heterogeneities

  13. Simulation of Reservoir Sediment Flushing of the Three Gorges Reservoir Using an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Xueying Li

    2016-05-01

    Full Text Available Reservoir sedimentation and its effect on the environment are the most serious world-wide problems in water resources development and utilization today. As one of the largest water conservancy projects, the Three Gorges Reservoir (TGR has been controversial since its demonstration period, and sedimentation is the major concern. Due to the complex physical mechanisms of water and sediment transport, this study adopts the Error Back Propagation Training Artificial Neural Network (BP-ANN to analyze the relationship between the sediment flushing efficiency of the TGR and its influencing factors. The factors are determined by the analysis on 1D unsteady flow and sediment mathematical model, mainly including reservoir inflow, incoming sediment concentration, reservoir water level, and reservoir release. Considering the distinguishing features of reservoir sediment delivery in different seasons, the monthly average data from 2003, when the TGR was put into operation, to 2011 are used to train, validate, and test the BP-ANN model. The results indicate that, although the sample space is quite limited, the whole sediment delivery process can be schematized by the established BP-ANN model, which can be used to help sediment flushing and thus decrease the reservoir sedimentation.

  14. Response of currents and water quality to changes in dam operations in Hoover Reservoir, Columbus, Ohio, August 24–28, 2015

    Science.gov (United States)

    Vonins, Branden L.; Jackson, P. Ryan

    2017-05-25

    Hoover Reservoir, an important drinking water supply for the City of Columbus, Ohio, has been the source of a series of taste and odor problems in treated drinking water during the past few years. These taste and odor problems were caused by the compounds geosmin and 2-methylisoborneol, which are thought to have been related to cyanobacteria blooms. In an effort to reduce the phosphorus available for cyanobacteria blooms at fall turnover, the City of Columbus began experimenting with the dam’s selective withdrawal system to remove excess phosphorus in the hypolimnion, which is released from bottom sediments during summer anoxic conditions.The U.S. Geological Survey completed two synoptic survey campaigns to assess distributions of water quality and water velocity in the lower part of Hoover Reservoir to provide information on the changes to reservoir dynamics caused by changing dam operations. One campaign (campaign 1) was done while water was being withdrawn from the reservoir through the dam’s middle gate and the other (campaign 2) while water was being withdrawn through the dam’s lower gate. Velocities were measured using an acoustic Doppler current profiler, and water-quality parameters were measured using an autonomous underwater vehicle equipped with water-quality sensors. Along with the water-quality and water-velocity data, meteorological, inflow and outflow discharges, and independent water-quality data were compiled to monitor changes in other parameters that affect reservoir behavior. Monthly nutrient data, collected by the City of Columbus, were also analyzed for trends in concentration during periods of expected stratification.Based on the results of the two campaigns, when compared to withdrawing water through the middle gate, withdrawing water through the lower gate seemed to increase shear-driven mixing across the thermocline, which resulted in an increase in the depth of the epilimnion throughout the lower part of Hoover Reservoir. The

  15. The FAST-T approach for operational, real time, short term hydrological forecasting: Results from the Betania Hydropower Reservoir case study

    Science.gov (United States)

    Domínguez, Efraín; Angarita, Hector; Rosmann, Thomas; Mendez, Zulma; Angulo, Gustavo

    2013-04-01

    A viable quantitative hydrological forecasting service is a combination of technological elements, personnel and knowledge, working together to establish a stable operational cycle of forecasts emission, dissemination and assimilation; hence, the process for establishing such system usually requires significant resources and time to reach an adequate development and integration in order to produce forecasts with acceptable levels of performance. Here are presented the results of this process for the recently implemented Operational Forecast Service for the Betania's Hydropower Reservoir - or SPHEB, located at the Upper-Magdalena River Basin (Colombia). The current scope of the SPHEB includes forecasting of water levels and discharge for the three main streams affluent to the reservoir, for lead times between +1 to +57 hours, and +1 to +10 days. The core of the SPHEB is the Flexible, Adaptive, Simple and Transient Time forecasting approach, namely FAST-T. This comprises of a set of data structures, mathematical kernel, distributed computing and network infrastructure designed to provide seamless real-time operational forecast and automatic model adjustment in case of failures in data transmission or assimilation. Among FAST-T main features are: an autonomous evaluation and detection of the most relevant information for the later configuration of forecasting models; an adaptively linearized mathematical kernel, the optimal adaptive linear combination or OALC, which provides a computationally simple and efficient algorithm for real-time applications; and finally, a meta-model catalog, containing prioritized forecast models at given stream conditions. The SPHEB is at present feed by the fraction of hydrological monitoring network installed at the basin that has telemetric capabilities via NOAA-GOES satellites (8 stages, approximately 47%) with data availability of about a 90% at one hour intervals. However, there is a dense network of 'conventional' hydro

  16. Analysis of selected reservoirs functioning in the Wielkopolska region

    Directory of Open Access Journals (Sweden)

    Mariusz Sojka

    2017-12-01

    Full Text Available The paper presents the problems related to the functioning of reservoirs in the Wielkopolska province and suggests their possible solutions. The reservoirs chosen as examples include typical dam constructions with a single water body (Jeziorsko, Rydzyna, two water body objects with separated preliminary part (Stare Miasto, Kowalskie, Radzyny and lateral constructions (Pakosław, Jutrosin. The reservoirs were built in period from 1970 to 2014. They differ in construction, functions and water management rules. Analysis of the main problems related to the reservoir functioning is aimed at finding ways of improving the construction of new reservoirs that would satisfy increasingly stringent environmental and legal restrictions and the methods of water management in the reservoirs. On the basis of a questionnaire filled in by the reservoir operators, the main problem is water quality. Especially the huge inflow of biogenic compounds causes blooms of algae and overgrowth with riparian vegetation. Some difficulties are also related to management of the reservoirs of multi-purpose operation. It is difficult to take into account the requirements of environmental flow maintenance, flood protection, water supply for agriculture and water use for tourism and recreation and hydropower generation, etc.

  17. Ensemble Flow Forecasts for Risk Based Reservoir Operations of Lake Mendocino in Mendocino County, California: A Framework for Objectively Leveraging Weather and Climate Forecasts in a Decision Support Environment

    Science.gov (United States)

    Delaney, C.; Hartman, R. K.; Mendoza, J.; Whitin, B.

    2017-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation and flow forecasts to inform the flood operations of reservoirs. The Ensemble Forecast Operations (EFO) alternative is a probabilistic approach of FIRO that incorporates ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, release decisions are made to manage forecasted risk of reaching critical operational thresholds. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to evaluate the viability of the EFO alternative to improve water supply reliability but not increase downstream flood risk. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The EFO alternative was simulated using a 26-year (1985-2010) ESP hindcast generated by the CNRFC. The ESP hindcast was developed using Global Ensemble Forecast System version 10 precipitation reforecasts processed with the Hydrologic Ensemble Forecast System to generate daily reforecasts of 61 flow ensemble members for a 15-day forecast horizon. Model simulation results demonstrate that the EFO alternative may improve water supply reliability for Lake Mendocino yet not increase flood risk for downstream areas. The developed operations framework can directly leverage improved skill in the second week of the forecast and is extendable into the S2S time domain given the demonstration of improved skill through a reliable reforecast of adequate historical duration and consistent with operationally available numerical weather predictions.

  18. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    Energy Technology Data Exchange (ETDEWEB)

    Tom Beebe

    2003-05-05

    The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the seventh annual reporting period (8/3/00-8/2/01) covered by this report, work continued on interpretation of the interwell seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted and the acquired data processed and interpretation started. Only limited well work and facility construction were conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and six wells had experienced gas (CO{sub 2}) breakthrough.

  19. Spatio-temporal variations of carbon dioxide and its gross emission regulated by artificial operation in a typical hydropower reservoir in China.

    Science.gov (United States)

    Li, Zhe; Zhang, Zengyu; Xiao, Yan; Guo, Jinsong; Wu, Shengjun; Liu, Jing

    2014-05-01

    Supersaturation and excess emission of greenhouse gases in freshwater reservoirs have received a great deal of attention in recent years. Although impoundment of reservoirs has been shown to contribute to the net emission of greenhouse gases, reservoir age, geographical distribution, submerged soil type and artificial regulation also have a great impact on their emissions. To examine how large scale reservoir operation impact the water column CO2 and its air-water interface flux, a field study was conducted in 2010 to evaluate potential ecological processes that regulate the partial pressure of CO2 (pCO2) in the water column in the Pengxi River backwater area (PBA), a typical tributary in the Three Gorges Reservoir, China. Measurements of total alkalinity (TA), pH and water temperature were applied to compute the pCO2. And this approach was also validated by calculation of pCO2 from the dissolved inorganic carbon data of samples. Partial least squares (PLS) regression was used to determine how the dynamics of the water pCO2 were related to the available variables. The estimated pCO2 in our sample ranged from 26 to 4,087 μatm in the surface water. During low water operation from July to early September, there was an obvious pCO2 stratification, and pCO2 in the surface was almost unsaturated. This phenomenon was also observed in the spring bloom during discharge period. Conversely, there was no significant pCO2 stratification and the entire water column was supersaturated during high water operation from November to the following February. Significant correlation was observed between the magnitude of pCO2, DO and chlorophyll a, suggesting that phytoplankton dynamics regulate pCO2 in the PBA. The average areal rate of CO2 emissions from the Pengxi River ranged from 18.06 to 48.09 mmol m(-2) day(-1), with an estimated gross CO2 emission from the water surface of 14-37 t day(-1) in this area in 2010. Photosynthesis and respiration rates by phytoplankton might be the

  20. Review and Evaluation of Reservoir Management Strategies for Harmful Algal Blooms

    Science.gov (United States)

    2017-07-28

    Abstract The purpose of this report is to review and evaluate available infor- mation regarding reservoir operation strategies for management of...12 3 Operations Management Examples ............................................................................ 16...report is to review and evaluate available information regarding reservoir operation strategies for management of harmful algal ERDC/EL TR-17-11 2

  1. First report of the successful operation of a side stream supersaturation hypolimnetic oxygenation system in a eutrophic, shallow reservoir.

    Science.gov (United States)

    Gerling, Alexandra B; Browne, Richard G; Gantzer, Paul A; Mobley, Mark H; Little, John C; Carey, Cayelan C

    2014-12-15

    Controlling hypolimnetic hypoxia is a key goal of water quality management. Hypoxic conditions can trigger the release of reduced metals and nutrients from lake sediments, resulting in taste and odor problems as well as nuisance algal blooms. In deep lakes and reservoirs, hypolimnetic oxygenation has emerged as a viable solution for combating hypoxia. In shallow lakes, however, it is difficult to add oxygen into the hypolimnion efficiently, and a poorly designed hypolimnetic oxygenation system could potentially result in higher turbidity, weakened thermal stratification, and warming of the sediments. As a result, little is known about the viability of hypolimnetic oxygenation in shallow bodies of water. Here, we present the results from recent successful tests of side stream supersaturation (SSS), a type of hypolimnetic oxygenation system, in a shallow reservoir and compare it to previous side stream deployments. We investigated the sensitivity of Falling Creek Reservoir, a shallow (Zmax = 9.3 m) drinking water reservoir located in Vinton, Virginia, USA, to SSS operation. We found that the SSS system increased hypolimnetic dissolved oxygen concentrations at a rate of ∼1 mg/L/week without weakening stratification or warming the sediments. Moreover, the SSS system suppressed the release of reduced iron and manganese, and likely phosphorus, from the sediments. In summary, SSS systems hold great promise for controlling hypolimnetic oxygen conditions in shallow lakes and reservoirs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    International Nuclear Information System (INIS)

    Green, Don W.; McCune, A.D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite, G. Paul

    1999-01-01

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) Identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2

  3. Development of a Reservoir System Operation Model for Water Sustainability in the Yaqui River Basin

    Science.gov (United States)

    Mounir, A.; Che, D.; Robles-Morua, A.; Kauneckis, D.

    2017-12-01

    The arid state of Sonora, Mexico underwent the Sonora SI project to provide additional water supply to the capital of Hermosillo. The main component of the project involves an interbasin transfer from the Yaqui River Basin (YRB) to the Sonora River Basin via the Independencia aqueduct. This project has generated conflicts over water among different social sectors in the YRB. To improve the management of the Yaqui reservoir system, we developed a daily watershed model. This model allowed us to predict the amount of water available in different regions of the basin. We integrated this simulation to an optimization model which calculates the best water allocation according to water rights established in Mexico's National Water Law. We compared different precipitation forcing scenarios: (1) a network of ground observations from Mexican water agencies during the historical period of 1980-2013, (2) gridded fields from the North America Land Data Assimilation System (NLDAS) at 12 km resolution, and (3) we will be studying a future forecast scenario. The simulation results were compared to historical observations at the three reservoirs existing in the YRB to generate confidence in the simulation tools. Our results are presented in the form of flow duration, reliability and exceedance frequency curves that are commonly used in the water management agencies. Through this effort, we anticipate building confidence among regional stakeholders in utilizing hydrological models in the development of reservoir operation policies.

  4. Field application. Selective stimulation of reservoirs or perforated intervals with use of coiled tubing equipped with real-time data communication system in combination with straddle packer assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Oberascher, R.; Breimer, G. [GDF SUEZ E and P Deutschland GmbH, Lingen (Germany); Jonge, R.M. de [Baker Hughes (Netherlands)

    2013-08-01

    In two German gas wells a decline in production and wellhead pressures had been observed. Production logging data obtained by PLT surveys were evaluated, which showed that certain intervals within the reservoir section did not contribute, or showed a restricted contribution to the overall gas production. The restricted contribution was suspected to be caused by near-wellbore damage. To restore or enhance the production of the perforated intervals an acid treatment was considered in these wells in order to remove skin damage. To restore or enhance the production of the wells, an acid treatment of the perforated intervals was designed. For obtaining the required selective placement of the acid across the zones of interest, the use of coiled tubing (CT) in combination with a resettable straddle packer assembly was selected. The accuracy of the setting depth of the straddle packer was a critical issue for the execution of the well intervention operations. In order to obtain the required depth accuracy, the CT string was equipped with an intelligent CT communication system, which transfers real-time downhole data to surface. For the first time, a reservoir stimulation project was executed by combining CT equipped with a real-time data communication system (TeleCoil) and the Inflatable Straddle Acidizing Packer (ISAP) assembly. Inside the CT an encapsulated monoconductor cable was installed to transmit real-time data from the CT Bottom Hole Assembly (BHA) to surface. The BHA consists of a Casing Collar Locator (CCL) and downhole pressure and temperature gauges. Due to the protective jacket of the monoconductor cable, there are no restrictions in the use of different fluids in combination with the system. Information provided by the CCL monitoring tool ensures accurate depth correlations, whereas differential pressure measurements from the down-hole pressure gauges provide positive information about the setting and sealing conditions of the straddle packer assembly. The

  5. Implications of the sedimentation phenomenon in the design of hydropower reservoirs

    International Nuclear Information System (INIS)

    Scvortov, Felix; Armencea, Gheorghe

    1992-01-01

    The influence of sedimentation phenomena on the operational parameters of the hydropower reservoirs built on several Romanian rivers was assessed. A cascade of eight reservoirs on the Olt river, with initial volumes of 20-50 M m 3 , lost about 30% of the conservation capacity and about 3-7% of head as well. Smaller reservoirs, with volumes of 2-10 M m 3 , lost 60-85% of their capacity. Dredging operations had to be done, thus, increasing the initial costs by 20%. The acquired experience revealed that the evolution in time of the reservoir capacity over the operation period should be as accurately as possible taken into account in the designing stage. The operation conditions and designing criterions for small and medium hydropower reservoir have to be reassessed also from the environmental and efficiency points of view. The content of the paper is the following: 1. Sedimentation knowledge and planning concepts for inland rivers; 2. Implications of the sedimentation phenomenon; 3. Forecast of the sedimentation phenomenon; 4. Retrospective and perspective; 5. Conclusions. (authors)

  6. Optimization In Searching Daily Rule Curve At Mosul Regulating Reservoir, North Iraq Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Thair M. Al-Taiee

    2013-05-01

    Full Text Available To obtain optimal operating rules for storage reservoirs, large numbers of simulation and optimization models have been developed over the past several decades, which vary significantly in their mechanisms and applications. Rule curves are guidelines for long term reservoir operation. An efficient technique is required to find the optimal rule curves that can mitigate water shortage in long term operation. The investigation of developed Genetic Algorithm (GA technique, which is an optimization approach base on the mechanics of natural selection, derived from the theory of natural evolution, was carried out to through the application to predict the daily rule curve of  Mosul regulating reservoir in Iraq.  Record daily inflows, outflow, water level in the reservoir for 19 year (1986-1990 and (1994-2007 were used in the developed model for assessing the optimal reservoir operation. The objective function is set to minimize the annual sum of squared deviation from the desired downstream release and desired storage volume in the reservoir. The decision variables are releases, storage volume, water level and outlet (demand from the reservoir. The results of the GA model gave a good agreement during the comparison with the actual rule curve and the designed rating curve of the reservoir. The simulated result shows that GA-derived policies are promising and competitive and can be effectively used for daily reservoir operation in addition to the rational monthly operation and predicting also rating curve of reservoirs.

  7. Assessing the combined effect of dams and climate warming on streamflow in California's Sierra Nevada for regional-scale adaptation

    Science.gov (United States)

    Rheinheimer, D. E.; Viers, J. H.

    2012-12-01

    Dams and their operations harm river ecosystems, in part by altering the natural flow regimes that those ecosystems depend on. In the multi-reservoir water management systems of California's Sierra Nevada, greater emphasis is being placed on re-operating existing reservoir systems to recover downstream ecosystems. However, climate change is changing inflow patterns, affecting both ecosystems and traditional water system benefits across the region. As new reservoir operation schemes will be needed to manage for natural resources management objectives at the regional scale, characterizing historical and future environmental impacts of current operations across the region can aid in prioritizing planning efforts. We used a coarse-scale water resources simulation model developed for the western Sierra Nevada to explore the independent and combined effects of dams and climate warming on the flow regime directly below reservoirs, the focal point for instream flow requirements in operations licenses. We quantified changes to mean annual flow, annual low flow duration, annual runoff centroid timing, and weekly rate of decrease under binary combinations of management (unregulated/regulated) and climate (historical/future) conditions. We demonstrate that although rivers in the Sierra Nevada are currently managed in ways that are harmful to instream ecosystems, and that streamflow effects of operations are typically much worse than climate change effects, there are signals that reservoirs can potentially be used to help adapt to some of climate changes harmful effects with little additional effort in some cases. This study is the first step toward a better understanding of the environmental costs from and opportunities afforded by the current stock of reservoirs in a large hydroregion under changing social and environmental conditions.

  8. Reservoir Greenhouse Gas Emissions at Russian HPP

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V. [St. Petersburg State Polytechnic University (Russian Federation); Savvichev, A. S. [Russian Academy of Sciences, S. N. Vinogradskii Institute of Microbiology (Russian Federation); Zinchenko, A. V. [A. I. Voeikov Main Geophysical Observatory (Russian Federation)

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  9. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  10. Effects of water-supply reservoirs on streamflow in Massachusetts

    Science.gov (United States)

    Levin, Sara B.

    2016-10-06

    State and local water-resource managers need modeling tools to help them manage and protect water-supply resources for both human consumption and ecological needs. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a decision-support tool to estimate the effects of reservoirs on natural streamflow. The Massachusetts Reservoir Simulation Tool is a model that simulates the daily water balance of a reservoir. The reservoir simulation tool provides estimates of daily outflows from reservoirs and compares the frequency, duration, and magnitude of the volume of outflows from reservoirs with estimates of the unaltered streamflow that would occur if no dam were present. This tool will help environmental managers understand the complex interactions and tradeoffs between water withdrawals, reservoir operational practices, and reservoir outflows needed for aquatic habitats.A sensitivity analysis of the daily water balance equation was performed to identify physical and operational features of reservoirs that could have the greatest effect on reservoir outflows. For the purpose of this report, uncontrolled releases of water (spills or spillage) over the reservoir spillway were considered to be a proxy for reservoir outflows directly below the dam. The ratio of average withdrawals to the average inflows had the largest effect on spillage patterns, with the highest withdrawals leading to the lowest spillage. The size of the surface area relative to the drainage area of the reservoir also had an effect on spillage; reservoirs with large surface areas have high evaporation rates during the summer, which can contribute to frequent and long periods without spillage, even in the absence of water withdrawals. Other reservoir characteristics, such as variability of inflows, groundwater interactions, and seasonal demand patterns, had low to moderate effects on the frequency, duration, and magnitude of spillage. The

  11. Reservoir floodplains support distinct fish assemblages

    Science.gov (United States)

    Miranda, Leandro E.; Wigen, S. L.; Dagel, Jonah D.

    2014-01-01

    Reservoirs constructed on floodplain rivers are unique because the upper reaches of the impoundment may include extensive floodplain environments. Moreover, reservoirs that experience large periodic water level fluctuations as part of their operational objectives seasonally inundate and dewater floodplains in their upper reaches, partly mimicking natural inundations of river floodplains. In four flood control reservoirs in Mississippi, USA, we explored the dynamics of connectivity between reservoirs and adjacent floodplains and the characteristics of fish assemblages that develop in reservoir floodplains relative to those that develop in reservoir bays. Although fish species richness in floodplains and bays were similar, species composition differed. Floodplains emphasized fish species largely associated with backwater shallow environments, often resistant to harsh environmental conditions. Conversely, dominant species in bays represented mainly generalists that benefit from the continuous connectivity between the bay and the main reservoir. Floodplains in the study reservoirs provided desirable vegetated habitats at lower water level elevations, earlier in the year, and more frequently than in bays. Inundating dense vegetation in bays requires raising reservoir water levels above the levels required to reach floodplains. Therefore, aside from promoting distinct fish assemblages within reservoirs and helping promote diversity in regulated rivers, reservoir floodplains are valued because they can provide suitable vegetated habitats for fish species at elevations below the normal pool, precluding the need to annually flood upland vegetation that would inevitably be impaired by regular flooding. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  12. Design Techniques and Reservoir Simulation

    Directory of Open Access Journals (Sweden)

    Ahad Fereidooni

    2012-11-01

    Full Text Available Enhanced oil recovery using nitrogen injection is a commonly applied method for pressure maintenance in conventional reservoirs. Numerical simulations can be practiced for the prediction of a reservoir performance in the course of injection process; however, a detailed simulation might take up enormous computer processing time. In such cases, a simple statistical model may be a good approach to the preliminary prediction of the process without any application of numerical simulation. In the current work, seven rock/fluid reservoir properties are considered as screening parameters and those parameters having the most considerable effect on the process are determined using the combination of experimental design techniques and reservoir simulations. Therefore, the statistical significance of the main effects and interactions of screening parameters are analyzed utilizing statistical inference approaches. Finally, the influential parameters are employed to create a simple statistical model which allows the preliminary prediction of nitrogen injection in terms of a recovery factor without resorting to numerical simulations.

  13. Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information

    Science.gov (United States)

    Yang, Tiantian; Asanjan, Ata Akbari; Welles, Edwin; Gao, Xiaogang; Sorooshian, Soroosh; Liu, Xiaomang

    2017-04-01

    Reservoirs are fundamental human-built infrastructures that collect, store, and deliver fresh surface water in a timely manner for many purposes. Efficient reservoir operation requires policy makers and operators to understand how reservoir inflows are changing under different hydrological and climatic conditions to enable forecast-informed operations. Over the last decade, the uses of Artificial Intelligence and Data Mining [AI & DM] techniques in assisting reservoir streamflow subseasonal to seasonal forecasts have been increasing. In this study, Random Forest [RF), Artificial Neural Network (ANN), and Support Vector Regression (SVR) are employed and compared with respect to their capabilities for predicting 1 month-ahead reservoir inflows for two headwater reservoirs in USA and China. Both current and lagged hydrological information and 17 known climate phenomenon indices, i.e., PDO and ENSO, etc., are selected as predictors for simulating reservoir inflows. Results show (1) three methods are capable of providing monthly reservoir inflows with satisfactory statistics; (2) the results obtained by Random Forest have the best statistical performances compared with the other two methods; (3) another advantage of Random Forest algorithm is its capability of interpreting raw model inputs; (4) climate phenomenon indices are useful in assisting monthly or seasonal forecasts of reservoir inflow; and (5) different climate conditions are autocorrelated with up to several months, and the climatic information and their lags are cross correlated with local hydrological conditions in our case studies.

  14. Development and operation of Northern Natural's aquifer gas storage reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, E V

    1969-01-01

    There are no depleted (or nondepleted) oil and gas fields in Northern Natural Gas Co.'s market area. Consequently, when the search was started for a possible underground field, the company had to resort to the possibility of locating a water-filled, porous-rock formation (aquifer) in a geological structure which would form a suitable trap for gas storage. Geological research and exploratory drilling was carried on in S. Minnesota, E. Nebraska, and W.-central Iowa. An area located about 40 miles northwest of Des Moines, Iowa, near Redfield, appeared to have the most desirable characteristics for development of a gas-storage field. Drilling of deep developmental wells was started in late 1953 on a double- plunging anticline. The geological structure is similar to that of many oil and gas fields, but the porous formations contained only fresh water. To date, 2 major reservoirs and a minor reservoir have been developed in this structure. As much as 120 billion cu ft has been stored in the 3 reservoirs which supplied 43 billion cu ft gas withdrawals this past season from a total of 85 wells. A second aquifer gas-storage field is under development in N.-central Iowa about 15 miles northeast of Ft. Dodge.

  15. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  16. An intelligent agent for optimal river-reservoir system management

    Science.gov (United States)

    Rieker, Jeffrey D.; Labadie, John W.

    2012-09-01

    A generalized software package is presented for developing an intelligent agent for stochastic optimization of complex river-reservoir system management and operations. Reinforcement learning is an approach to artificial intelligence for developing a decision-making agent that learns the best operational policies without the need for explicit probabilistic models of hydrologic system behavior. The agent learns these strategies experientially in a Markov decision process through observational interaction with the environment and simulation of the river-reservoir system using well-calibrated models. The graphical user interface for the reinforcement learning process controller includes numerous learning method options and dynamic displays for visualizing the adaptive behavior of the agent. As a case study, the generalized reinforcement learning software is applied to developing an intelligent agent for optimal management of water stored in the Truckee river-reservoir system of California and Nevada for the purpose of streamflow augmentation for water quality enhancement. The intelligent agent successfully learns long-term reservoir operational policies that specifically focus on mitigating water temperature extremes during persistent drought periods that jeopardize the survival of threatened and endangered fish species.

  17. Spatially pooled depth-dependent reservoir storage, elevation, and water-quality data for selected reservoirs in Texas, January 1965-January 2010

    Science.gov (United States)

    Burley, Thomas E.; Asquith, William H.; Brooks, Donald L.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with Texas Tech University, constructed a dataset of selected reservoir storage (daily and instantaneous values), reservoir elevation (daily and instantaneous values), and water-quality data from 59 reservoirs throughout Texas. The period of record for the data is as large as January 1965-January 2010. Data were acquired from existing databases, spreadsheets, delimited text files, and hard-copy reports. The goal was to obtain as much data as possible; therefore, no data acquisition restrictions specifying a particular time window were used. Primary data sources include the USGS National Water Information System, the Texas Commission on Environmental Quality Surface Water-Quality Management Information System, and the Texas Water Development Board monthly Texas Water Condition Reports. Additional water-quality data for six reservoirs were obtained from USGS Texas Annual Water Data Reports. Data were combined from the multiple sources to create as complete a set of properties and constituents as the disparate databases allowed. By devising a unique per-reservoir short name to represent all sites on a reservoir regardless of their source, all sampling sites at a reservoir were spatially pooled by reservoir and temporally combined by date. Reservoir selection was based on various criteria including the availability of water-quality properties and constituents that might affect the trophic status of the reservoir and could also be important for understanding possible effects of climate change in the future. Other considerations in the selection of reservoirs included the general reservoir-specific period of record, the availability of concurrent reservoir storage or elevation data to match with water-quality data, and the availability of sample depth measurements. Additional separate selection criteria included historic information pertaining to blooms of golden algae. Physical properties and constituents were water

  18. Operational resilience of reservoirs to climate change, agricultural demand, and tourism: A case study from Sardinia.

    Science.gov (United States)

    Mereu, Simone; Sušnik, Janez; Trabucco, Antonio; Daccache, Andre; Vamvakeridou-Lyroudia, Lydia; Renoldi, Stefano; Virdis, Andrea; Savić, Dragan; Assimacopoulos, Dionysis

    2016-02-01

    Many (semi-) arid locations globally, and particularly islands, rely heavily on reservoirs for water supply. Some reservoirs are particularly vulnerable to climate and development changes (e.g. population change, tourist growth, hydropower demands). Irregularities and uncertainties in the fluvial regime associated with climate change and the continuous increase in water demand by different sectors will add new challenges to the management and to the resilience of these reservoirs. The resilience of vulnerable reservoirs must be studied in detail to prepare for and mitigate potential impacts of these changes. In this paper, a reservoir balance model is developed and presented for the Pedra e' Othoni reservoir in Sardinia, Italy, to assess resilience to climate and development changes. The model was first calibrated and validated, then forced with extensive ensemble climate data for representative concentration pathways (RCPs) 4.5 and 8.5, agricultural data, and with four socio-economic development scenarios. Future projections show a reduction in annual reservoir inflow and an increase in demand, mainly in the agricultural sector. Under no scenario is reservoir resilience significantly affected, the reservoir always achieves refill. However, this occurs at the partial expenses of hydropower production with implications for the production of renewable energy. There is also the possibility of conflict between the agricultural sector and hydropower sector for diminishing water supply. Pedra e' Othoni reservoir shows good resilience to future change mostly because of the disproportionately large basin feeding it. However this is not the case of other Sardinian reservoirs and hence a detailed resilience assessment of all reservoirs is needed, where development plans should carefully account for the trade-offs and potential conflicts among sectors. For Sardinia, the option of physical connection between reservoirs is available, as are alternative water supply measures

  19. Review of the hydraulic behavior of Iguacu River in the region of Uniao da Vitoria and its impacts on operation of the Foz do Areia and Segredo reservoirs; Revisao do comportamento hidraulico do Rio Iguacu na regiao de Uniao da Vitoria e seu impacto na operacao hidraulica dos reservatorios de Foz do Areia e Segredo

    Energy Technology Data Exchange (ETDEWEB)

    Castanharo, Giancarlo; Buba, Homero [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil)]. E-mails: giancarlo.castanharo@copel.com; homero@copel.com

    2008-04-15

    The Foz do Areia reservoir, under certain combinations of events, may influence flood levels in the cities of Uniao da Vitoria and Porto Uniao, located upstream. To avoid this phenomenon constitutes the main purpose of the hydraulic operation of the Foz do Areia and Segredo reservoirs, after dams safety. To satisfy these objectives, first have to correctly quantify these effects by means of studying the hydraulic behavior of the river reach between the cities and the Foz do Areia reservoir. A description of the recent version of these studies is shown, which demanded significant efforts in modeling and obtaining topographical and hydrological data. A more critical scenery has resulted as compared to former studies, emphasizing the importance of the methods and parameters for the hydraulic operation proposed in this paper. (author)

  20. Influence of filling-drawdown cycles of the Vajont reservoir on Mt. Toc slope stability

    Science.gov (United States)

    Paronuzzi, Paolo; Rigo, Elia; Bolla, Alberto

    2013-06-01

    In the present work, the 1963 Vajont landslide has been back-analyzed in detail to examine the influence of reservoir operations (filling and drawdown) on Mt. Toc slope stability. The combined seepage-slope stability analyses carried out show that the main destabilizing factor that favored the 1963 Vajont landslide was the reservoir-induced water table that formed as a consequence of rapid seepage inflow within the submerged toe of the slope — decrease in the factor of safety (FOS) up to 12% compared to the initial slope stability condition, i.e., in the absence of the Vajont reservoir. Rainfall would only have been a decisive factor if the initial stability condition of the Mt. Toc slope had already been very close to failure (decrease in FOS caused by heavy or prolonged rainfall is about 3-4%, for the worst case scenario analyzed). The permeability of the shear zone material occurring at the base of the prehistoric Vajont rockslide has been evaluated at 5 × 10- 4 m/s, and back-calculated values of the friction angles Φ range from 17.5° to 27.5°. When considering mountain reservoirs, slope failures can occur during both filling and drawdown phases. In the Vajont case, owing to the highly permeable materials of the shear zone, slope stability decreased during filling and increased during drawdown. Another displacement-dependent phenomenon of a mechanical nature - progressive failure of the NE landslide constraint - has to be considered to understand the slope collapse that occurred during the last drawdown (26 September-9 October 1963). The results of the combined seepage-slope stability models indicate that permeability of bank-forming material and filling-drawdown rates of reservoirs can strongly influence slope stability. Slow lowering of the reservoir level is a necessary measure to reduce the occurrence of very dangerous transient negative peaks of FOS.

  1. SIMULATION AND OPTIMIZATION OF THE HYDRAULIC FRACTURING OPERATION IN A HEAVY OIL RESERVOIR IN SOUTHERN IRAN

    Directory of Open Access Journals (Sweden)

    REZA MASOOMI

    2017-01-01

    Full Text Available Extraction of oil from some Iranian reservoirs due to high viscosity of their oil or reducing the formation permeability due to asphaltene precipitation or other problems is not satisfactory. Hydraulic fracturing method increases production in the viscous oil reservoirs that the production rate is low. So this is very important for some Iranian reservoirs that contain these characteristics. In this study, hydraulic fracturing method has been compositionally simulated in a heavy oil reservoir in southern Iran. In this study, the parameters of the fracture half length, the propagation direction of the cracks and the depth of fracturing have been considered in this oil reservoir. The aim of this study is to find the best scenario which has the highest recovery factor in this oil reservoir. For this purpose the parameters of the length, propagation direction and depth of fracturing have been optimized in this reservoir. Through this study the cumulative oil production has been evaluated with the compositional simulation for the next 10 years in this reservoir. Also at the end of this paper, increasing the final production of this oil reservoir caused by optimized hydraulic fracturing has been evaluated.

  2. Evaluation of sediment management strategies on reservoir storage depletion rate: a case study

    NARCIS (Netherlands)

    Ali, M.; Sterk, G.

    2010-01-01

    Sedimentation aspects have a major role during the design of new reservoir projects because life of the reservoir mainly depends upon sediment handling during reservoir operation. Therefore, proper sediment management strategies should be adopted to enhance the life span of reservoirs. Basha

  3. Multilevel techniques for Reservoir Simulation

    DEFF Research Database (Denmark)

    Christensen, Max la Cour

    The subject of this thesis is the development, application and study of novel multilevel methods for the acceleration and improvement of reservoir simulation techniques. The motivation for addressing this topic is a need for more accurate predictions of porous media flow and the ability to carry...... Full Approximation Scheme) • Variational (Galerkin) upscaling • Linear solvers and preconditioners First, a nonlinear multigrid scheme in the form of the Full Approximation Scheme (FAS) is implemented and studied for a 3D three-phase compressible rock/fluids immiscible reservoir simulator...... is extended to include a hybrid strategy, where FAS is combined with Newton’s method to construct a multilevel nonlinear preconditioner. This method demonstrates high efficiency and robustness. Second, an improved IMPES formulated reservoir simulator is implemented using a novel variational upscaling approach...

  4. Multi-criteria objective based climate change impact assessment for multi-purpose multi-reservoir systems

    Science.gov (United States)

    Müller, Ruben; Schütze, Niels

    2014-05-01

    Water resources systems with reservoirs are expected to be sensitive to climate change. Assessment studies that analyze the impact of climate change on the performance of reservoirs can be divided in two groups: (1) Studies that simulate the operation under projected inflows with the current set of operational rules. Due to non adapted operational rules the future performance of these reservoirs can be underestimated and the impact overestimated. (2) Studies that optimize the operational rules for best adaption of the system to the projected conditions before the assessment of the impact. The latter allows for estimating more realistically future performance and adaption strategies based on new operation rules are available if required. Multi-purpose reservoirs serve various, often conflicting functions. If all functions cannot be served simultaneously at a maximum level, an effective compromise between multiple objectives of the reservoir operation has to be provided. Yet under climate change the historically preferenced compromise may no longer be the most suitable compromise in the future. Therefore a multi-objective based climate change impact assessment approach for multi-purpose multi-reservoir systems is proposed in the study. Projected inflows are provided in a first step using a physically based rainfall-runoff model. In a second step, a time series model is applied to generate long-term inflow time series. Finally, the long-term inflow series are used as driving variables for a simulation-based multi-objective optimization of the reservoir system in order to derive optimal operation rules. As a result, the adapted Pareto-optimal set of diverse best compromise solutions can be presented to the decision maker in order to assist him in assessing climate change adaption measures with respect to the future performance of the multi-purpose reservoir system. The approach is tested on a multi-purpose multi-reservoir system in a mountainous catchment in Germany. A

  5. Effects of Formation Damage on Productivity of Underground Gas Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    C.I.C. Anyadiegwu

    2013-12-01

    Full Text Available Analysis of the effects of formation damage on the productivity of gas storage reservoirs was performed with depleted oil reservoir (OB-02, located onshore, Niger Delta, Nigeria. Information on the reservoir and the fluids from OB-02 were collected and used to evaluate the deliverabilities of the gas storage reservoir over a 10-year period of operation. The results obtained were used to plot graphs of deliverability against permeability and skin respectively. The graphs revealed that as the permeability decreased, the skin increased, and hence a decrease in deliverability of gas from the reservoir during gas withdrawal. Over the ten years of operating the reservoir for gas storage, the deliverability and permeability which were initially 2.7 MMscf/d and 50 mD, with a skin of 0.2, changed to new values of 0.88 MMscf/d and 24 mD with the skin as 4.1 at the tenth year.

  6. Will building new reservoirs always help increase the water supply reliability? - insight from a modeling-based global study

    Science.gov (United States)

    Zhuang, Y.; Tian, F.; Yigzaw, W.; Hejazi, M. I.; Li, H. Y.; Turner, S. W. D.; Vernon, C. R.

    2017-12-01

    More and more reservoirs are being build or planned in order to help meet the increasing water demand all over the world. However, is building new reservoirs always helpful to water supply? To address this question, the river routing module of Global Change Assessment Model (GCAM) has been extended with a simple yet physical-based reservoir scheme accounting for irrigation, flood control and hydropower operations at each individual reservoir. The new GCAM river routing model has been applied over the global domain with the runoff inputs from the Variable Infiltration Capacity Model. The simulated streamflow is validated at 150 global river basins where the observed streamflow data are available. The model performance has been significantly improved at 77 basins and worsened at 35 basins. To facilitate the analysis of additional reservoir storage impacts at the basin level, a lumped version of GCAM reservoir model has been developed, representing a single lumped reservoir at each river basin which has the regulation capacity of all reservoir combined. A Sequent Peak Analysis is used to estimate how much additional reservoir storage is required to satisfy the current water demand. For basins with water deficit, the water supply reliability can be improved with additional storage. However, there is a threshold storage value at each basin beyond which the reliability stops increasing, suggesting that building new reservoirs will not help better relieve the water stress. Findings in the research can be helpful to the future planning and management of new reservoirs.

  7. Geological rock property and production problems of the underground gas storage reservoir of Ketzin

    Energy Technology Data Exchange (ETDEWEB)

    Lange, W

    1966-01-01

    The purpose of the program of operation for an industrial injection of gas is briefly reviewed. It is emphasized that the works constitute the final stage of exploration. The decisive economic and extractive aspects are given. Final remarks deal with the methods of floor consolidation and tightness control. In the interest of the perspective exploration of the reservoir it is concluded and must be realized as an operating principle that the main problem, after determining the probable reservoir structure, consists in determining step-by-step (by combined theoretical, technical and economic parameters) the surface equipment needed from the geological and rock property factors, which were determined by suitable methods (hydro-exploration, gas injection). The technique and time-table of the geological exploration, and the design and construction of the installations will depend on the solution of the main problem. At the beginning, partial capacities will be sufficient for the surface installation. (12 refs.)

  8. Correlation Analysis of Rainstorm Runoff and Density Current in a Canyon-Shaped Source Water Reservoir: Implications for Reservoir Optimal Operation

    Directory of Open Access Journals (Sweden)

    Yang Li

    2018-04-01

    Full Text Available Extreme weather has recently become frequent. Heavy rainfall forms storm runoff, which is usually very turbid and contains a high concentration of organic matter, therefore affecting water quality when it enters reservoirs. The large canyon-shaped Heihe Reservoir is the most important raw water source for the city of Xi’an. During the flood season, storm runoff flows into the reservoir as a density current. We determined the relationship among inflow peak discharge (Q, suspended sediment concentration, inflow water temperature, and undercurrent water density. The relationships between (Q and inflow suspended sediment concentration (CS0 could be described by the equation CS0 = 0.3899 × e0.0025Q, that between CS0 and suspended sediment concentration at the entrance of the main reservoir area S1 (CS1 was determined using CS1 = 0.0346 × e0.2335CS0, and air temperature (Ta and inflow water temperature (Tw based on the meteorological data were related as follows: Tw = 0.7718 × Ta + 1.0979. Then, we calculated the density of the undercurrent layer. Compared to the vertical water density distribution at S1 before rainfall, the undercurrent elevation was determined based on the principle of equivalent density inflow. Based on our results, we proposed schemes for optimizing water intake selection and flood discharge during the flood season.

  9. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.

    1995-02-01

    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  10. Mitigation for the Construction and Operation of Libby Dam, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2005-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana Fish, Wildlife & Parks (MFWP) uses a combination of techniques to collect physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered and threatened species, and the assessment of restoration or management activities designed to restore native fishes and their habitats.

  11. Mitigation for the Construction and Operation of Libby Dam, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2004-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana FWP uses a combination of diverse techniques to collect a variety of physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered, threatened species, and the assessment of restoration or management activities intended to restore native fishes and their habitats.

  12. Reservoir model for the Alameda Central waterflood

    Energy Technology Data Exchange (ETDEWEB)

    Randall, T E

    1968-01-01

    The basic approach used in developing the model to characterize the Alameda Central Unit Waterflood assumes continuity of the reservoir mechanics with time. The past performance was analyzed to describe the reservoir and future performance was assumed to follow the established patterns. To develop a mathematical picture of the Alameda Central Unit reservoir, a two-dimensional single-phase steady-state model was used in conjunction with material balance calculations, real-time conversion methods and oil-water interface advance calculations. The model was developed to optimize water injection allocation, determine the configuration of the frontal advance and evaluate the success of the waterflood. The model also provides a basis for continuing review and revision of the basic concepts of reservoir operation. The results of the reservoir study have confirmed the apparent lack of permeability orientation in the pool and indicate that the waterflood is progressing better than originally anticipated.

  13. Assessing Performance of Multipurpose Reservoir System Using Two-Point Linear Hedging Rule

    Science.gov (United States)

    Sasireka, K.; Neelakantan, T. R.

    2017-07-01

    Reservoir operation is the one of the important filed of water resource management. Innovative techniques in water resource management are focussed at optimizing the available water and in decreasing the environmental impact of water utilization on the natural environment. In the operation of multi reservoir system, efficient regulation of the release to satisfy the demand for various purpose like domestic, irrigation and hydropower can lead to increase the benefit from the reservoir as well as significantly reduces the damage due to floods. Hedging rule is one of the emerging techniques in reservoir operation, which reduce the severity of drought by accepting number of smaller shortages. The key objective of this paper is to maximize the minimum power production and improve the reliability of water supply for municipal and irrigation purpose by using hedging rule. In this paper, Type II two-point linear hedging rule is attempted to improve the operation of Bargi reservoir in the Narmada basin in India. The results obtained from simulation of hedging rule is compared with results from Standard Operating Policy, the result shows that the application of hedging rule significantly improved the reliability of water supply and reliability of irrigation release and firm power production.

  14. Deriving Area-storage Curves of Global Reservoirs

    Science.gov (United States)

    Mu, M.; Tang, Q.

    2017-12-01

    Basic information including capacity, dam height, and largest water area on global reservoirs and dams is well documented in databases such as GRanD (Global Reservoirs and Dams), ICOLD (International Commission on Large Dams). However, though playing a critical role in estimating reservoir storage variations from remote sensing or hydrological models, area-storage (or elevation-storage) curves of reservoirs are not publicly shared. In this paper, we combine Landsat surface water extent, 1 arc-minute global relief model (ETOPO1) and GRanD database to derive area-storage curves of global reservoirs whose area is larger than 1 km2 (6,000 more reservoirs are included). First, the coverage polygon of each reservoir in GRanD is extended to where water was detected by Landsat during 1985-2015. Second, elevation of each pixel in the reservoir is extracted from resampled 30-meter ETOPO1, and then relative depth and frequency of each depth value is calculated. Third, cumulative storage is calculated with increasing water area by every one percent of reservoir coverage area and then the uncalibrated area-storage curve is obtained. Finally, the area-storage curve is linearly calibrated by the ratio of calculated capacity over reported capacity in GRanD. The derived curves are compared with in-situ reservoir data collected in Great Plains Region in US, and the results show that in-situ records are well captured by the derived curves even in relative small reservoirs (several square kilometers). The new derived area-storage curves have the potential to be employed in global monitoring or modelling of reservoirs storage and area variations.

  15. Water in chalk reservoirs: 'friend or foe?'

    International Nuclear Information System (INIS)

    Hjuler, Morten Leth

    2004-01-01

    Most of the petroleum fields in the Norwegian sector of the North Sea are sandstone reservoirs; the oil and gas are trapped in different species of sandstone. But the Ekofisk Field is a chalk reservoir, which really challenges the operator companies. When oil is produced from chalk reservoirs, water usually gets in and the reservoir subsides. The subsidence may be expensive for the oil companies or be used to advantage by increasing the recovery rate. Since 60 per cent of the world's petroleum reserves are located in carbonate reservoirs, it is important to understand what happens as oil and gas are pumped out. Comprehensive studies at the Department of Petroleum Technology and Applied Geophysics at Stavanger University College in Norway show that the mechanical properties of chalk are considerably altered when the pores in the rock become saturated with oil/gas or water under different stress conditions. The processes are extremely complex. The article also maintains that the effects of injecting carbon dioxide from gas power plants into petroleum reservoirs should be carefully studied before this is done extensively

  16. Cloud computing and Reservoir project

    International Nuclear Information System (INIS)

    Beco, S.; Maraschini, A.; Pacini, F.; Biran, O.

    2009-01-01

    The support for complex services delivery is becoming a key point in current internet technology. Current trends in internet applications are characterized by on demand delivery of ever growing amounts of content. The future internet of services will have to deliver content intensive applications to users with quality of service and security guarantees. This paper describes the Reservoir project and the challenge of a reliable and effective delivery of services as utilities in a commercial scenario. It starts by analyzing the needs of a future infrastructure provider and introducing the key concept of a service oriented architecture that combines virtualisation-aware grid with grid-aware virtualisation, while being driven by business service management. This article will then focus on the benefits and the innovations derived from the Reservoir approach. Eventually, a high level view of Reservoir general architecture is illustrated.

  17. Depleted Hydrocarbon Reservoirs Present a Safe and Practical Burial Solution for Graphite Waste

    International Nuclear Information System (INIS)

    Rahmani, L.

    2016-01-01

    A solution for graphite waste is proposed that combines reliance on thick impermeable host rock that is needed to confine the long-life radioactivity content of most irradiated graphite with low capitalistic and operational unit volume costs that are required to render this bulky waste form manageable. The solution, uniquely applicable to irradiated graphite due to its low dose rates, moderate mechanical strength and light density, consists in three steps: first, graphite is fine-crushed under water; second, it is made in an aqueous suspension; third, the suspension is injected into a deep, disused hydrocarbon reservoir. Each of these steps only involves well mastered techniques. Regulatory changes that may allow this solution to be added to the gamut of available waste routes, geochemical issues, availability of depleted reservoirs and cost projections are presented. (author)

  18. Favorable fragmentation: river reservoirs can impede downstream expansion of riparian weeds.

    Science.gov (United States)

    Rood, Stewart B; Braatne, Jeffrey H; Goater, Lori A

    2010-09-01

    River valleys represent biologically rich corridors characterized by natural disturbances that create moist and barren sites suitable for colonization by native riparian plants, and also by weeds. Dams and reservoirs interrupt the longitudinal corridors and we hypothesized that this could restrict downstream weed expansion. To consider this "reservoir impediment" hypothesis we assessed the occurrences and abundances of weeds along a 315-km river valley corridor that commenced with an unimpounded reach of the Snake River and extended through Brownlee, Oxbow, and Hells Canyon reservoirs and dams, and downstream along the Snake River. Sampling along 206 belt transects with 3610 quadrats revealed 16 noxious and four invasive weed species. Ten weeds were upland plants, with Canada thistle (Cirsium arvense) restricted to the upstream reaches, where field morning glory (Convolvulus arvensis) was also more common. In contrast, St. John's wort (Hypericum perforatum) was more abundant below the dams, and medusahead wildrye (Taeniatherum caput-medusae) occurred primarily along the reservoirs. All seven riparian species were abundant in the upstream zones but sparse or absent below the dams. This pattern was observed for the facultative riparian species, poison hemlock (Conium maculatum) and perennial pepperweed (Lepidium latifolium), the obligate riparian, yellow nut sedge (Cyperus esculentus), the invasive perennial, reed canary grass (Phalaris arundinacea), and three invasive riparian trees, Russian olive (Elaeagnus angustifolia), false indigo (Amorpha fruticosa), and tamarisk (Tamarix spp.). The hydrophyte purple loosestrife (Lythrum salicaria) was also restricted to the upstream zone. These longitudinal patterns indicate that the reservoirs have impeded the downstream expansion of riparian weeds, and this may especially result from the repetitive draw-down and refilling of Brownlee Reservoir that imposes a lethal combination of drought and flood stress. The dams and

  19. Lower Palaeozoic reservoirs of North Africa

    Energy Technology Data Exchange (ETDEWEB)

    Crossley, R.; McDougall, N. [Robertson Research International Ltd., Llandudno, Conwy (United Kingdom)

    1998-12-31

    This paper provides an overview of features considered significant in the exploration and development of Lower Palaeozoic reservoirs of North Africa. Information is derived from a review of literature on the Lower Palaeozoic successions of North Africa, combined with outcrop observations from the Anti Atlas mountains of Morocco. The focus of the exploration-oriented part of the review is on identification of potential traps other than two-way structural dip closure. Stratigraphic elements described include depositional models of reservoir facies, tectonic unconformities and possible eustatic unconformities. Cases of established or potential trapping by post-depositional faulting by diagenesis and by hydrodynamic flow are examined. Development-related topics highlighted include the impact on reservoir matrix quality of burial diagenesis and of palaeo-weathering at the Hercynian unconformity. Other issues discussed which additionally affect producibility from the reservoir matrix include tectonic fracturing, palaeotopography and unloading fracturing at the Hercynian unconformity, and induced fracturing within the present stress regimes. (author)

  20. A reservoir morphology database for the conterminous United States

    Science.gov (United States)

    Rodgers, Kirk D.

    2017-09-13

    The U.S. Geological Survey, in cooperation with the Reservoir Fisheries Habitat Partnership, combined multiple national databases to create one comprehensive national reservoir database and to calculate new morphological metrics for 3,828 reservoirs. These new metrics include, but are not limited to, shoreline development index, index of basin permanence, development of volume, and other descriptive metrics based on established morphometric formulas. The new database also contains modeled chemical and physical metrics. Because of the nature of the existing databases used to compile the Reservoir Morphology Database and the inherent missing data, some metrics were not populated. One comprehensive database will assist water-resource managers in their understanding of local reservoir morphology and water chemistry characteristics throughout the continental United States.

  1. Reservoir Performance Under Future Climate For Basins With Different Hydrologic Sensitivities

    Science.gov (United States)

    Mateus, M. C.; Tullos, D. D.

    2013-12-01

    In addition to long-standing uncertainties related to variable inflows and market price of power, reservoir operators face a number of new uncertainties related to hydrologic nonstationarity, changing environmental regulations, and rapidly growing water and energy demands. This study investigates the impact, sensitivity, and uncertainty of changing hydrology on hydrosystem performance across different hydrogeologic settings. We evaluate the performance of reservoirs in the Santiam River basin, including a case study in the North Santiam Basin, with high permeability and extensive groundwater storage, and the South Santiam Basin, with low permeability, little groundwater storage and rapid runoff response. The modeling objective is to address the following study questions: (1) for the two hydrologic regimes, how does the flood management, water supply, and environmental performance of current reservoir operations change under future 2.5, 50 and 97.5 percentile streamflow projections; and (2) how much change in inflow is required to initiate a failure to meet downstream minimum or maximum flows in the future. We couple global climate model results with a rainfall-runoff model and a formal Bayesian uncertainty analysis to simulate future inflow hydrographs as inputs to a reservoir operations model. To evaluate reservoir performance under a changing climate, we calculate reservoir refill reliability, changes in flood frequency, and reservoir time and volumetric reliability of meeting minimum spring and summer flow target. Reservoir performance under future hydrology appears to vary with hydrogeology. We find higher sensitivity to floods for the North Santiam Basin and higher sensitivity to minimum flow targets for the South Santiam Basin. Higher uncertainty is related with basins with a more complex hydrologeology. Results from model simulations contribute to understanding of the reliability and vulnerability of reservoirs to a changing climate.

  2. EQUILGAS: Program to estimate temperatures and in situ two-phase conditions in geothermal reservoirs using three combined FT-HSH gas equilibria models

    Science.gov (United States)

    Barragán, Rosa María; Núñez, José; Arellano, Víctor Manuel; Nieva, David

    2016-03-01

    Exploration and exploitation of geothermal resources require the estimation of important physical characteristics of reservoirs including temperatures, pressures and in situ two-phase conditions, in order to evaluate possible uses and/or investigate changes due to exploitation. As at relatively high temperatures (>150 °C) reservoir fluids usually attain chemical equilibrium in contact with hot rocks, different models based on the chemistry of fluids have been developed that allow deep conditions to be estimated. Currently either in water-dominated or steam-dominated reservoirs the chemistry of steam has been useful for working out reservoir conditions. In this context, three methods based on the Fischer-Tropsch (FT) and combined H2S-H2 (HSH) mineral-gas reactions have been developed for estimating temperatures and the quality of the in situ two-phase mixture prevailing in the reservoir. For these methods the mineral buffers considered to be controlling H2S-H2 composition of fluids are as follows. The pyrite-magnetite buffer (FT-HSH1); the pyrite-hematite buffer (FT-HSH2) and the pyrite-pyrrhotite buffer (FT-HSH3). Currently from such models the estimations of both, temperature and steam fraction in the two-phase fluid are obtained graphically by using a blank diagram with a background theoretical solution as reference. Thus large errors are involved since the isotherms are highly nonlinear functions while reservoir steam fractions are taken from a logarithmic scale. In order to facilitate the use of the three FT-HSH methods and minimize visual interpolation errors, the EQUILGAS program that numerically solves the equations of the FT-HSH methods was developed. In this work the FT-HSH methods and the EQUILGAS program are described. Illustrative examples for Mexican fields are also given in order to help the users in deciding which method could be more suitable for every specific data set.

  3. FEASIBILITY STUDY OF SEDIMENT FLUSHING FROM MOSUL RESERVOIR, IRAQ

    Directory of Open Access Journals (Sweden)

    Thair Mahmood Al-Taiee

    2015-02-01

    Full Text Available The Feasibility of sediment flushing  from Mosul reservoir located northern iraq was conducted. Many up to date world criteria and indices for checking the efficiency of sediment flushing from reservoir which have been got through analyzing large amount of  data from many flushed reservoirs  in the world which were depended tested and applied in the present case study (Mosul Reservoir. These criteria and indices depend mainly on the hydrological , hydraulic and  topographical properties of the reservoirs in-addition to the operation plan of the reservoirs. They gave a good indication for checking the efficiency of the sediment flushing  process in the reservoirs. It was concluded that approximately the main criteria for the successful flushing sediment was  verified  in  Mosul  reservoir  such as  Sediment Balance Ratio   (SBR and the Long Term Capacity Ratio (LTCR,the shape factor  of reservoir (W/L and the hydraulic condition such as the percentage of (Qf/Qin and (Vf/Vin. This gave an indication that the processes of flushing sediment in Mosul reservoir is probably feasible and may be applied  in the future to maintain the water storage in the reservoir.

  4. Limno-reservoirs as a new landscape, environmental and touristic resource: Pareja Limno-reservoir as a case of study (Guadalajara, Spain)

    Science.gov (United States)

    Díaz-Carrión, I.; Sastre-Merlín, A.; Martínez-Pérez, S.; Molina-Navarro, E.; Bienes-Allas, R.

    2012-04-01

    A limno-reservoir is a hydrologic infrastructure with the main goal of generating a body of water with a constant level in the riverine zone of a reservoir, building a dam that makes de limno-reservoir independent from the main body of water. This dam can be built in the main river supplying the reservoir or any tributary as well flowing into it. Despite its novel conception and design, around a dozen are already operative in some Spanish reservoirs. This infrastructure allows the new water body to be independent of the main reservoir management, so the water level stability is its main distinctive characteristic. It leads to the development of environmental, sports and cultural initiatives; which may be included in a touristic exploitation in a wide sense. An opinion poll was designed in 2009 to be carried out the Pareja Limno-reservoir (Entrepeñas reservoir area, Tajo River Basin, central Spain). The results showed that for both, Pareja inhabitants and occasional visitors, the limno-reservoir has become an important touristic resource, mainly demanded during summer season. The performance of leisure activities (especially swimming) are being the main brand of this novel hydraulic and environmental infrastructure, playing a role as corrective and/or compensatory action which is needed to apply in order to mitigate the environmental impacts of the large hydraulic constructions.

  5. Optimal and centralized reservoir management for drought and flood protection via Stochastic Dual Dynamic Programming on the Upper Seine-Aube River system

    Science.gov (United States)

    Chiavico, Mattia; Raso, Luciano; Dorchies, David; Malaterre, Pierre-Olivier

    2015-04-01

    Seine river region is an extremely important logistic and economic junction for France and Europe. The hydraulic protection of most part of the region relies on four controlled reservoirs, managed by EPTB Seine-Grands Lacs. Presently, reservoirs operation is not centrally coordinated, and release rules are based on empirical filling curves. In this study, we analyze how a centralized release policy can face flood and drought risks, optimizing water system efficiency. The optimal and centralized decisional problem is solved by Stochastic Dual Dynamic Programming (SDDP) method, minimizing an operational indicator for each planning objective. SDDP allows us to include into the system: 1) the hydrological discharge, specifically a stochastic semi-distributed auto-regressive model, 2) the hydraulic transfer model, represented by a linear lag and route model, and 3) reservoirs and diversions. The novelty of this study lies on the combination of reservoir and hydraulic models in SDDP for flood and drought protection problems. The study case covers the Seine basin until the confluence with Aube River: this system includes two reservoirs, the city of Troyes, and the Nuclear power plant of Nogent-Sur-Seine. The conflict between the interests of flood protection, drought protection, water use and ecology leads to analyze the environmental system in a Multi-Objective perspective.

  6. The role of rainfall variability in reservoir storage management at ...

    African Journals Online (AJOL)

    Reservoir operation and management is usually patterned after the background of long standing water resources management experience. Reservoir management for optimum power production at any hydropower station requires constant assessment of the quantity of available water. The hydrographic responses of flow ...

  7. Air–water CO2 and CH4 fluxes along a river–reservoir continuum: Case study in the Pengxi River, a tributary of the Yangtze River in the Three Gorges Reservoir, China

    Science.gov (United States)

    Water surface greenhouse gas (GHG) emissions in freshwater reservoirs are closely related to limnological processes in the water column. Affected by both reservoir operation and seasonal changes, variations in the hydro-morphological conditions in the river–reservoir continuum will create distinctiv...

  8. Exploring synergistic benefits of Water-Food-Energy Nexus through multi-objective reservoir optimization schemes.

    Science.gov (United States)

    Uen, Tinn-Shuan; Chang, Fi-John; Zhou, Yanlai; Tsai, Wen-Ping

    2018-08-15

    This study proposed a holistic three-fold scheme that synergistically optimizes the benefits of the Water-Food-Energy (WFE) Nexus by integrating the short/long-term joint operation of a multi-objective reservoir with irrigation ponds in response to urbanization. The three-fold scheme was implemented step by step: (1) optimizing short-term (daily scale) reservoir operation for maximizing hydropower output and final reservoir storage during typhoon seasons; (2) simulating long-term (ten-day scale) water shortage rates in consideration of the availability of irrigation ponds for both agricultural and public sectors during non-typhoon seasons; and (3) promoting the synergistic benefits of the WFE Nexus in a year-round perspective by integrating the short-term optimization and long-term simulation of reservoir operations. The pivotal Shihmen Reservoir and 745 irrigation ponds located in Taoyuan City of Taiwan together with the surrounding urban areas formed the study case. The results indicated that the optimal short-term reservoir operation obtained from the non-dominated sorting genetic algorithm II (NSGA-II) could largely increase hydropower output but just slightly affected water supply. The simulation results of the reservoir coupled with irrigation ponds indicated that such joint operation could significantly reduce agricultural and public water shortage rates by 22.2% and 23.7% in average, respectively, as compared to those of reservoir operation excluding irrigation ponds. The results of year-round short/long-term joint operation showed that water shortage rates could be reduced by 10% at most, the food production rate could be increased by up to 47%, and the hydropower benefit could increase up to 9.33 million USD per year, respectively, in a wet year. Consequently, the proposed methodology could be a viable approach to promoting the synergistic benefits of the WFE Nexus, and the results provided unique insights for stakeholders and policymakers to pursue

  9. SWOT data assimilation for operational reservoir management on the upper Niger River Basin

    Science.gov (United States)

    Munier, S.; Polebistki, A.; Brown, C.; Belaud, G.; Lettenmaier, D. P.

    2015-01-01

    The future Surface Water and Ocean Topography (SWOT) satellite mission will provide two-dimensional maps of water elevation for rivers with width greater than 100 m globally. We describe a modeling framework and an automatic control algorithm that prescribe optimal releases from the Selingue dam in the Upper Niger River Basin, with the objective of understanding how SWOT data might be used to the benefit of operational water management. The modeling framework was used in a twin experiment to simulate the "true" system state and an ensemble of corrupted model states. Virtual SWOT observations of reservoir and river levels were assimilated into the model with a repeat cycle of 21 days. The updated state was used to initialize a Model Predictive Control (MPC) algorithm that computed the optimal reservoir release that meets a minimum flow requirement 300 km downstream of the dam. The data assimilation results indicate that the model updates had a positive effect on estimates of both water level and discharge. The "persistence," which describes the duration of the assimilation effect, was clearly improved (greater than 21 days) by integrating a smoother into the assimilation procedure. We compared performances of the MPC with SWOT data assimilation to an open-loop MPC simulation. Results show that the data assimilation resulted in substantial improvements in the performances of the Selingue dam management with a greater ability to meet environmental requirements (the number of days the target is missed falls to zero) and a minimum volume of water released from the dam.

  10. The Variance-covariance Method using IOWGA Operator for Tourism Forecast Combination

    Directory of Open Access Journals (Sweden)

    Liangping Wu

    2014-08-01

    Full Text Available Three combination methods commonly used in tourism forecasting are the simple average method, the variance-covariance method and the discounted MSFE method. These methods assign the different weights that can not change at each time point to each individual forecasting model. In this study, we introduce the IOWGA operator combination method which can overcome the defect of previous three combination methods into tourism forecasting. Moreover, we further investigate the performance of the four combination methods through the theoretical evaluation and the forecasting evaluation. The results of the theoretical evaluation show that the IOWGA operator combination method obtains extremely well performance and outperforms the other forecast combination methods. Furthermore, the IOWGA operator combination method can be of well forecast performance and performs almost the same to the variance-covariance combination method for the forecasting evaluation. The IOWGA operator combination method mainly reflects the maximization of improving forecasting accuracy and the variance-covariance combination method mainly reflects the decrease of the forecast error. For future research, it may be worthwhile introducing and examining other new combination methods that may improve forecasting accuracy or employing other techniques to control the time for updating the weights in combined forecasts.

  11. Reservoir Identification: Parameter Characterization or Feature Classification

    Science.gov (United States)

    Cao, J.

    2017-12-01

    The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601

  12. 49 CFR 393.50 - Reservoirs required.

    Science.gov (United States)

    2010-10-01

    ... using air or vacuum braking must have either reserve capacity, or a reservoir, that would enable the... have a condensate drain valve that can be manually operated. Automatic condensate drain valves may be...

  13. SAGD development strategy for concurrent production of two vertically stacked clastic reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q.; Nugent, D.; Meyer, K. [Osum Oil Sands Corp (Canada)

    2011-07-01

    The Taiga project was proposed by Osum oil sands corporation for the development of oil sand production in the Cold Lake area. The project is comprised of two reservoirs, one in the Lower Grand Rapids formation and the other in the Clearwater formation. Given the different characteristics of the two reservoirs, oil recovery would require individual drainage systems with their respective designs, operating strategies, and drilling operations. Having to build two steam assisted gravity drainage (SAGD) systems would increase the risks and costs of the project. The current study proposes a model for SAGD operations that would produce from both formations simultaneously while addressing the different properties of the two reservoirs. A geo-mechanical model was used to predict the efficiency of the production process and estimate the temperature and pressure distribution in the reservoir during the drainage. Analysis shows that the model for simultaneous SAGD operations would reduce the drilling risks, improve the efficiency of the steam, increase the oil production, and reduce the costs of the project.

  14. Analysis of Sedimentation in Wonogiri Reservoir

    Directory of Open Access Journals (Sweden)

    Tri Joko Inti Budi Santosa

    2016-01-01

    Full Text Available The Wonogiri reservoir which has 730 million cubic meters of total storage, 90 square kilometers of water area, and 1260 square kilometers of catchment area, is located in the Wonogiri Regency, Central Java Province. It was first established in 1981 and began its operation in 1982 with the expectation that it would last for about 100 years. Today (2002 the reservoir has got a serious problem of sedimentation. The sedimentation is so large that it would decrease the capacity storage of the reservoir and would shorten the length of operation. Therefore, it is necessary to predict the sediment that comes into the reservoir. This research would be based on the total sediment calculation of the sedimentation, through some methods, such as echo sounding measured data, land erosion (USLE, the calculation of the sediment in rivers. This research calculates the sediment capacities based on the water flow data and the sediment rating curves in rivers of Keduang, Tirtomoyo, Temon, upstream reach of Bengawan Solo, Alang, and Wuryantoro. The suspended load was calculated based on the sediment rating curves, whereas the bed load was computed as the percentage of the suspended load. The sum of both calculation results would be the total sediment. The calculation result showed that the total sediment which has come into the reservoir is 6.68 million cubic meters per year. As a comparison, the writer noted that the former researcher using echo sounding method done by the Faculty of Geography of the Universitas Gadjah Mada in 1985, it found that the total sediment capacity which came into the reservoir was 6.60 million cubic meters per year or 5.40 mm per year of sheet erosion. The other research using echo sounding method done by JICA in 2000 found that the total sediment which had come into the reservoir was 4.50 million cubic meters per year or 3.50 mm per year of sheet erosion. By knowing the results of calculation of the total sediment, we can learn that

  15. Real-time optimisation of the Hoa Binh reservoir, Vietnam

    DEFF Research Database (Denmark)

    Richaud, Bertrand; Madsen, Henrik; Rosbjerg, Dan

    2011-01-01

    -time optimisation. First, the simulation-optimisation framework is applied for optimising reservoir operating rules. Secondly, real-time and forecast information is used for on-line optimisation that focuses on short-term goals, such as flood control or hydropower generation, without compromising the deviation...... in the downstream part of the Red River, and at the same time to increase hydropower generation and to save water for the dry season. The real-time optimisation procedure further improves the efficiency of the reservoir operation and enhances the flexibility for the decision-making. Finally, the quality......Multi-purpose reservoirs often have to be managed according to conflicting objectives, which requires efficient tools for trading-off the objectives. This paper proposes a multi-objective simulation-optimisation approach that couples off-line rule curve optimisation with on-line real...

  16. The multipurpose water use of hydropower reservoir: the SHARE concept

    International Nuclear Information System (INIS)

    Branche, E.

    2017-01-01

    Multipurpose hydropower reservoirs are designed and/or operated to provide services beyond electricity generation, such as water supply, flood and drought management, irrigation, navigation, fisheries, environmental services and recreational activities, etc. While these objectives (renewable and power services, water quantity management, ecosystem services, economic growth and local livelihoods) can conflict at times, they are also often complementary. Although there are no universal solutions, there are principles that can be shared and adapted to local contexts. Indeed the development and/or operation of such multipurpose hydropower reservoirs to reach sustainable water management should rely on the following principles: shared vision, shared resource, shared responsibilities, shared rights and risks, shared costs and benefits. These principles and acknowledgement of joint sharing among all the stakeholders are essential to successful development and management of multipurpose hydropower reservoirs, and should frame all phases from early stage to operation. The SHARE concept also gives guidance. Based on 12 worldwide case studies of multipurpose hydropower reservoirs, the SHARE concept was developed and proposed as a solution to address this issue. A special focus will be presented on the Durance-Verdon Rivers in France. (author)

  17. Bathymetry of Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie Reservoirs, New York, 2013–15

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2018-02-01

    Drinking water for New York City is supplied from several large reservoirs, including a system of reservoirs west of the Hudson River. To provide updated reservoir capacity tables and bathymetry maps of the City’s six West of Hudson reservoirs, bathymetric surveys were conducted by the U.S. Geological Survey from 2013 to 2015. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system along planned transects at predetermined intervals for each reservoir. A separate quality assurance dataset of echo sounder points was collected along transects at oblique angles to the main transects for accuracy assessment. Field-survey data were combined with water surface elevations in a geographic information system to create three-dimensional surfaces in the form of triangulated irregular networks (TINs) representing the elevations of the reservoir geomorphology. The TINs were linearly enforced to better represent geomorphic features within the reservoirs. The linearly enforced TINs were then used to create raster surfaces and 2-foot-interval contour maps of the reservoirs. Elevation-area-capacity tables were calculated at 0.01-foot intervals. The results of the surveys show that the total capacity of the West of Hudson reservoirs has decreased by 11.5 billion gallons (Ggal), or 2.3 percent, since construction, and the useable capacity (the volume above the minimum operating level required to deliver full flow for drinking water supply) has decreased by 7.9 Ggal (1.7 percent). The available capacity (the volume between the spillway elevation and the lowest intake or sill elevation used for drinking water supply) decreased by 9.6 Ggal (2.0 percent), and dead storage (the volume below the lowest intake or sill elevation) decreased by 1.9 Ggal (11.6 percent).

  18. Reservoir souring: it is all about risk mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Kuijvenhoven, Cor [Shell (Canada)

    2011-07-01

    The presence of H2S in produced fluid can be due to various sources, among which are heat/rock interaction and leaks from other reservoirs. This paper discusses the reasons, risk assessment and tools for mitigating reservoir souring. Uncontrolled microorganism activity can cause a sweet reservoir (without H2S) to become sour (production of H2S). The development of bacteria is one of the main causes of reservoir souring in unconventional gas fields. It is difficult to predict souring in seawater due to produced water re-injection (PWRI). Risk assessment and modeling techniques for reservoir souring are discussed. Some of the factors controlling H2S production include injection location, presence of scavenging minerals and biogenic souring. Mitigation methods such as biocide treatment of injection water, sulphate removal from seawater, microbial monitoring techniques such as the molecular microbiology method (MMM), and enumeration by serial dilution are explained. In summary, it can be concluded that reservoir souring is a long-term problem and should be assessed at the beginning of operations.

  19. Exploration and reservoir characterization; Technology Target Areas; TTA2 - Exploration and reservoir characterisation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    In future, research within exploration and reservoir characterization will play an even more important role for Norway since resources are decreasing and new challenges like deep sea, harsh environment and last but not least environmental issues have to be considered. There are two major fields which have to be addressed within exploration and reservoir characterization: First, replacement of reserves by new discoveries and ultimate field recoveries in mature basins at the Norwegian Continental shelf, e.g. at the Halten Terrace has to be addressed. A wealth of data exists in the more mature areas. Interdisciplinary integration is a key feature of reservoir characterization, where available data and specialist knowledge need to be combined into a consistent reservoir description. A systematic approach for handling both uncertainties in data sources and uncertainties in basic models is needed. Fast simulation techniques are necessary to generate models spanning the event space, covering both underground based and model-based uncertainties. Second, exploration in frontier areas like the Barents Sea region and the deeper Voering Basin has to be addressed. The scarcity of wells in these frontier areas leads to uncertainties in the geological understanding. Basin- and depositional modelling are essential for predicting where source rocks and reservoir rocks are deposited, and if, when and which hydrocarbons are generated and trapped. Predictive models and improved process understanding is therefore crucial to meet these issues. Especially the challenges related to the salt deposits e.g. sub-salt/sub-basalt reservoir definitions in the Nordkapp Basin demands up-front research and technology developments. TTA2 stresses the need to focus on the development of new talents. We also see a strong need to push cooperation as far as possible in the present competitive environment. Projects that may require a substantial financial commitment have been identified. The following

  20. Oil Reservoir Production Optimization using Optimal Control

    DEFF Research Database (Denmark)

    Völcker, Carsten; Jørgensen, John Bagterp; Stenby, Erling Halfdan

    2011-01-01

    Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using the adjo...... reservoir using water ooding and smart well technology. Compared to the uncontrolled case, the optimal operation increases the Net Present Value of the oil field by 10%.......Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using...

  1. The Alphabet Soup of HIV Reservoir Markers.

    Science.gov (United States)

    Sharaf, Radwa R; Li, Jonathan Z

    2017-04-01

    Despite the success of antiretroviral therapy in suppressing HIV, life-long therapy is required to avoid HIV reactivation from long-lived viral reservoirs. Currently, there is intense interest in searching for therapeutic interventions that can purge the viral reservoir to achieve complete remission in HIV patients off antiretroviral therapy. The evaluation of such interventions relies on our ability to accurately and precisely measure the true size of the viral reservoir. In this review, we assess the most commonly used HIV reservoir assays, as a clear understanding of the strengths and weaknesses of each is vital for the accurate interpretation of results and for the development of improved assays. The quantification of intracellular or plasma HIV RNA or DNA levels remains the most commonly used tests for the characterization of the viral reservoir. While cost-effective and high-throughput, these assays are not able to differentiate between replication-competent or defective fractions or quantify the number of infected cells. Viral outgrowth assays provide a lower bound for the fraction of cells that can produce infectious virus, but these assays are laborious, expensive and substantially underestimate the potential reservoir of replication-competent provirus. Newer assays are now available that seek to overcome some of these problems, including full-length proviral sequencing, inducible HIV RNA assays, ultrasensitive p24 assays and murine adoptive transfer techniques. The development and evaluation of strategies for HIV remission rely upon our ability to accurately and precisely quantify the size of the remaining viral reservoir. At this time, all current HIV reservoir assays have drawbacks such that combinations of assays are generally needed to gain a more comprehensive view of the viral reservoir. The development of novel, rapid, high-throughput assays that can sensitively quantify the levels of the replication-competent HIV reservoir is still needed.

  2. Review on applications of artificial intelligence methods for dam and reservoir-hydro-environment models.

    Science.gov (United States)

    Allawi, Mohammed Falah; Jaafar, Othman; Mohamad Hamzah, Firdaus; Abdullah, Sharifah Mastura Syed; El-Shafie, Ahmed

    2018-05-01

    Efficacious operation for dam and reservoir system could guarantee not only a defenselessness policy against natural hazard but also identify rule to meet the water demand. Successful operation of dam and reservoir systems to ensure optimal use of water resources could be unattainable without accurate and reliable simulation models. According to the highly stochastic nature of hydrologic parameters, developing accurate predictive model that efficiently mimic such a complex pattern is an increasing domain of research. During the last two decades, artificial intelligence (AI) techniques have been significantly utilized for attaining a robust modeling to handle different stochastic hydrological parameters. AI techniques have also shown considerable progress in finding optimal rules for reservoir operation. This review research explores the history of developing AI in reservoir inflow forecasting and prediction of evaporation from a reservoir as the major components of the reservoir simulation. In addition, critical assessment of the advantages and disadvantages of integrated AI simulation methods with optimization methods has been reported. Future research on the potential of utilizing new innovative methods based AI techniques for reservoir simulation and optimization models have also been discussed. Finally, proposal for the new mathematical procedure to accomplish the realistic evaluation of the whole optimization model performance (reliability, resilience, and vulnerability indices) has been recommended.

  3. Heavy oil reservoirs recoverable by thermal technology. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kujawa, P.

    1981-02-01

    This volume contains reservoir, production, and project data for target reservoirs thermally recoverable by steam drive which are equal to or greater than 2500 feet deep and contain heavy oil in the 8 to 25/sup 0/ API gravity range. Data were collected from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  4. Seepage characteristics of the second tertiary combined model

    Directory of Open Access Journals (Sweden)

    Huan ZHAO

    2015-08-01

    Full Text Available The second tertiary combined model experiment zone has been developed in Block B, Field L. The percolation feature of the second tertiary combined develop model shows great importance to rational and efficient development of the reservoir. In order to clearly illuminate its percolation feature, the typical reservoir numerical model is built by Eclipse, which is a reservoir numerical simulation software. The percolation features of original and added perforation interval under the second tertiary combined model are studied, and the variation features of general water-cut, recovery percentage, wellbore pressure, reservoir pressure and water saturation on condition of higher injection rate under the second tertiary combined model are analyzed. The research indicates that the second tertiary combined enhances the recovery of remaining oil on top of thick reservoir by developing and enhancing original perforation interval under water drive, then improves development results by polymer flooding, and gains higher recovery rate by synthetic action of water driver and polymer flooding.

  5. Uncertainties in reservoir performance forecasts; Estimativa de incertezas na previsao de desempenho de reservatorios

    Energy Technology Data Exchange (ETDEWEB)

    Loschiavo, Roberto

    1999-07-01

    Project economic evaluation as well as facilities design for oil exploration is, in general based on production forecast. Since production forecast depends on several parameters that are not completely known, one should take a probabilistic approach for reservoir modeling and numerical flow simulation. In this work, we propose a procedure to estimate probabilistic production forecast profiles based on the decision tree technique. The most influencing parameters of a reservoir model are identified identified and combined to generate a number of realizations of the reservoirs. The combination of each branch of the decision tree defines the probability associated to each reservoir model. A computer program was developed to automatically generate the reservoir models, submit them to the numerical simulator, and process the results. Parallel computing was used to improve the performance of the procedure. (author)

  6. Designing multi-reservoir system designs via efficient water-energy-food nexus trade-offs - Selecting new hydropower dams for the Blue Nile and Nepal's Koshi Basin

    Science.gov (United States)

    Harou, J. J.; Hurford, A.; Geressu, R. T.

    2015-12-01

    Many of the world's multi-reservoir water resource systems are being considered for further development of hydropower and irrigation aiming to meet economic, political and ecological goals. Complex river basins serve many needs so how should the different proposed groupings of reservoirs and their operations be evaluated? How should uncertainty about future supply and demand conditions be factored in? What reservoir designs can meet multiple goals and perform robustly in a context of global change? We propose an optimized multi-criteria screening approach to identify best performing designs, i.e., the selection, size and operating rules of new reservoirs within multi-reservoir systems in a context of deeply uncertain change. Reservoir release operating rules and storage sizes are optimized concurrently for each separate infrastructure design under consideration across many scenarios representing plausible future conditions. Outputs reveal system trade-offs using multi-dimensional scatter plots where each point represents an approximately Pareto-optimal design. The method is applied to proposed Blue Nile River reservoirs in Ethiopia, where trade-offs between capital costs, total and firm energy output, aggregate storage and downstream irrigation and energy provision for the best performing designs are evaluated. The impact of filling period for large reservoirs is considered in a context of hydrological uncertainty. The approach is also applied to the Koshi basin in Nepal where combinations of hydropower storage and run-of-river dams are being considered for investment. We show searching for investment portfolios that meet multiple objectives provides stakeholders with a rich view on the trade-offs inherent in the nexus and how different investment bundles perform differently under plausible futures. Both case-studies show how the proposed approach helps explore and understand the implications of investing in new dams in a global change context.

  7. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, Roy; Clarke, Don; Walker, Scott

    1999-11-09

    The objectives of this quarterly report was to summarize the work conducted under each task during the reporting period April - June 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  8. Behaviour of a series of reservoirs separated by drowned gates

    Science.gov (United States)

    Kolechkina, Alla; van Nooijen, Ronald

    2017-04-01

    Modern control systems tend to be based on computers and therefore to operate by sending commands to structures at given intervals (discrete time control system). Moreover, for almost all water management control systems there are practical lower limits on the time interval between structure adjustments and even between measurements. The water resource systems that are being controlled are physical systems whose state changes continuously. If we combine a continuously changing system and a discrete time controller we get a hybrid system. We use material from recent control theory literature to examine the behaviour of a series of reservoirs separated by drowned gates where the gates are under computer control.

  9. Liquid–liquid equilibria for reservoir fluids+monoethylene glycol and reservoir fluids+monoethylene glycol+water: Experimental measurements and modeling using the CPA EoS

    DEFF Research Database (Denmark)

    Frost, Michael; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2013-01-01

    for critical temperature, pressure and acentric factor.This work presents new phase equilibrium data for binary MEG/reservoir fluid and ternary MEG/water/reservoir fluid systems, where two reservoir fluids from Statoil operated fields are used. The solubility data are reported over a range of temperatures......The complex phase equilibrium between reservoir fluids and associating compounds like water and glycols has become more and more important as the increasing global energy demand pushes the oil industry to use advanced methods to increase oil recovery, such as increasing the use of various chemicals...... to ensure a constant and safe production. The CPA equation of state has been successfully applied in the past to well defined systems and gas condensates, containing associating compounds. It has also been extended to reservoir fluids in presence of water and polar chemicals using modified correlations...

  10. Detecting the leakage source of a reservoir using isotopes.

    Science.gov (United States)

    Yi, Peng; Yang, Jing; Wang, Yongdong; Mugwanezal, Vincent de Paul; Chen, Li; Aldahan, Ala

    2018-07-01

    A good monitoring method is vital for understanding the sources of a water reservoir leakage and planning for effective restoring. Here we present a combination of several tracers ( 222 Rn, oxygen and hydrogen isotopes, anions and temperature) for identification of water leakage sources in the Pushihe pumped storage power station which is in the Liaoning province, China. The results show an average 222 Rn activity of 6843 Bq/m 3 in the leakage water, 3034 Bq/m 3 in the reservoir water, and 41,759 Bq/m 3 in the groundwater. Considering that 222 Rn activity in surface water is typically less than 5000 Bq/m 3 , the low level average 222 Rn activity in the leakage water suggests the reservoir water as the main source of water. Results of the oxygen and hydrogen isotopes show comparable ranges and values in the reservoir and the leakage water samples. However, important contribution of the groundwater (up to 36%) was present in some samples from the bottom and upper parts of the underground powerhouse, while the leakage water from some other parts indicate the reservoir water as the dominant source. The isotopic finding suggests that the reservoir water is the main source of the leakage water which is confirmed by the analysis of anions (nitrate, sulfate, and chloride) in the water samples. The combination of these tracer methods for studying dam water leakage improves the accuracy of identifying the source of leaks and provide a scientific reference for engineering solutions to ensure the dam safety. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. An alternative approach to assessing feasibility of flushing sediment from reservoirs

    Directory of Open Access Journals (Sweden)

    Elfimov Valeriy Ivanovich

    2014-07-01

    Full Text Available Effective parameters on feasibility of sediment flushing through reservoirs include hydrological, hydraulic, and topographic properties of the reservoirs. In this study, the performances of the Decision tree forest (DTF and Group method of data handling (GMDH for assessing feasibility of flushing sediment from reservoirs, were investigated. In this way, Decision tree Forest, that combines multiple Decision tree, used to evaluate the relative importance of factors affecting flushing sediment. At the second step, GMDH deployed to predict the feasibility of flushing sediment from reservoirs. Results indicate that these models, as an efficient novel approach with an acceptable range of error, can be used successfully for assessing feasibility of flushing sediment from reservoirs.

  12. [Research progress on phosphorus budgets and regulations in reservoirs].

    Science.gov (United States)

    Shen, Xiao; Li, Xu; Zhang, Wang-shou

    2014-12-01

    Phosphorus is an important limiting factor of water eutrophication. A clear understanding of its budget and regulated method is fundamental for reservoir ecological health. In order to pro- mote systematic research further and improve phosphorus regulation system, the budget balance of reservoir phosphorus and its influencing factors were concluded, as well as conventional regulation and control measures. In general, the main phosphorus sources of reservoirs include upstream input, overland runoff, industrial and domestic wastewater, aquaculture, atmospheric deposition and sediment release. Upstream input is the largest phosphorus source among them. The principal output path of phosphorus is the flood discharge, the emission load of which is mainly influenced by drainage patterns. In addition, biological harvest also can export a fraction of phosphorus. There are some factors affecting the reservoir phosphorus balance, including reservoirs' function, hydrological conditions, physical and chemical properties of water, etc. Therefore, the phosphorus budgets of different reservoirs vary greatly, according to different seasons and regions. In order to reduce the phosphorus loading in reservoirs, some methods are carried out, including constructed wetlands, prefix reservoir, sediment dredging, biomanipulation, etc. Different methods need to be chosen and combined according to different reservoirs' characteristics and water quality management goals. Thus, in the future research, it is reasonable to highlight reservoir ecological characteristics and proceed to a complete and systematic analysis of the inherent complexity of phosphorus budget and its impact factors for the reservoirs' management. Besides, the interaction between phosphorus budget and other nutrients in reservoirs also needs to be conducted. It is fundamental to reduce the reservoirs' phosphorus loading to establish a scientific and improved management system based on those researches.

  13. Optimizing withdrawal from drinking water reservoirs to reduce downstream temperature pollution and reservoir hypoxia.

    Science.gov (United States)

    Weber, M; Rinke, K; Hipsey, M R; Boehrer, B

    2017-07-15

    Sustainable management of drinking water reservoirs requires balancing the demands of water supply whilst minimizing environmental impact. This study numerically simulates the effect of an improved withdrawal scheme designed to alleviate the temperature pollution downstream of a reservoir. The aim was to identify an optimal withdrawal strategy such that water of a desirable discharge temperature can be supplied downstream without leading to unacceptably low oxygen concentrations within the reservoir. First, we calibrated a one-dimensional numerical model for hydrodynamics and oxygen dynamics (GLM-AED2), verifying that the model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, the model was extended to include an adaptive withdrawal functionality, allowing for a prescribed withdrawal temperature to be found, with the potential constraint of hypolimnetic oxygen concentration. Scenario simulations on epi-/metalimnetic withdrawal demonstrate that the model is able to autonomously determine the best withdrawal height depending on the thermal structure and the hypolimnetic oxygen concentration thereby optimizing the ability to supply a desirable discharge temperature to the downstream river during summer. This new withdrawal strategy also increased the hypolimnetic raw water volume to be used for drinking water supply, but reduced the dissolved oxygen concentrations in the deep and cold water layers (hypolimnion). Implications of the results for reservoir management are discussed and the numerical model is provided for operators as a simple and efficient tool for optimizing the withdrawal strategy within different reservoir contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Characterization of biocenoses in the storage reservoirs of liquid radioactive wastes of Mayak PA. Initial descriptive report

    International Nuclear Information System (INIS)

    Pryakhin, E.A.; Mokrov, Yu.G.; Tryapitsina, G.A.; Ivanov, I.A.; Osipov, D.I.; Atamanyuk, N.I.; Deryabina, L.V.; Shaposhnikova, I.A.; Shishkina, E.A.; Obvintseva, N.A.; Egoreichenkov, E.A.; Styazhkina, E.V.; Osipova, O.F.; Mogilnikova, N.I.; Andreev, S.S.; Tarasov, O.V.; Geras'kin, S.A.; Trapeznikov, A.V.; Akleyev, A.V.

    2016-01-01

    As a result of operation of the Mayak Production Association (Mayak PA), Chelyabinsk Oblast, Russia, an enterprise for production and separation of weapon-grade plutonium in the Soviet Union, ecosystems of a number of water bodies have been radioactively contaminated. The article presents information about the current state of ecosystems of 6 special industrial storage reservoirs of liquid radioactive waste from Mayak PA: reservoirs R-3, R-4, R-9, R-10, R-11 and R-17. At present the excess of the radionuclide content in the water of the studied reservoirs and comparison reservoirs (Shershnyovskoye and Beloyarskoye reservoirs) is 9 orders of magnitude for 90 Sr and 137 Cs, and 6 orders of magnitude for alpha-emitting radionuclides. According to the level of radioactive contamination, the reservoirs of the Mayak PA could be arranged in the ascending order as follows: R-11, R-10, R-4, R-3, R-17 and R-9. In 2007–2012 research of the status of the biocenoses of these reservoirs in terms of phytoplankton, zooplankton, bacterioplankton, zoobenthos, aquatic plants, ichthyofauna, avifauna parameters was performed. The conducted studies revealed decrease in species diversity in reservoirs with the highest levels of radioactive and chemical contamination. This article is an initial descriptive report on the status of the biocenoses of radioactively contaminated reservoirs of the Mayak PA, and is the first article in a series of publications devoted to the studies of the reaction of biocenoses of the fresh-water reservoirs of the Mayak PA to a combination of natural and man-made factors, including chronic radiation exposure. - Highlights: • The current state of storage reservoirs of liquid radioactive waste of the Mayak Production Association is presented. • Radionuclides contents in water and sediments of the reservoirs of Mayak PA are presented. • The status of the major ecological groups of hydrobionts of the given reservoirs is described.

  15. Reservoir characteristics and control factors of Carboniferous volcanic gas reservoirs in the Dixi area of Junggar Basin, China

    Directory of Open Access Journals (Sweden)

    Ji'an Shi

    2017-02-01

    Full Text Available Field outcrop observation, drilling core description, thin-section analysis, SEM analysis, and geochemistry, indicate that Dixi area of Carboniferous volcanic rock gas reservoir belongs to the volcanic rock oil reservoir of the authigenic gas reservoir. The source rocks make contact with volcanic rock reservoir directly or by fault, and having the characteristics of near source accumulation. The volcanic rock reservoir rocks mainly consist of acidic rhyolite and dacite, intermediate andesite, basic basalt and volcanic breccia: (1 Acidic rhyolite and dacite reservoirs are developed in the middle-lower part of the structure, have suffered strong denudation effect, and the secondary pores have formed in the weathering and tectonic burial stages, but primary pores are not developed within the early diagenesis stage. Average porosity is only at 8%, and the maximum porosity is at 13.5%, with oil and gas accumulation showing poor performance. (2 Intermediate andesite and basic basalt reservoirs are mainly distributed near the crater, which resembles the size of and suggests a volcanic eruption. Primary pores are formed in the early diagenetic stage, secondary pores developed in weathering and erosion transformation stage, and secondary fractures formed in the tectonic burial stage. The average porosity is at 9.2%, and the maximum porosity is at 21.9%: it is of the high-quality reservoir types in Dixi area. (3 The volcanic breccia reservoir has the same diagenetic features with sedimentary rocks, but also has the same mineral composition with volcanic rock; rigid components can keep the primary porosity without being affected by compaction during the burial process. At the same time, the brittleness of volcanic breccia reservoir makes it easily fracture under the stress; internal fracture was developmental. Volcanic breccia developed in the structural high part and suffered a long-term leaching effect. The original pore-fracture combination also made

  16. Water coning in porous media reservoirs for compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; McCann, R.A.

    1981-06-01

    The general purpose of this work is to define the hydrodynamic and thermodynamic response of a CAES porous media reservoir subjected to simulated air mass cycling. This research will assist in providing design guidelines for the efficient and stable operation of the air storage reservoir. This report presents the analysis and results for the two-phase (air-water), two-dimensional, numerical modeling of CAES porous media reservoirs. The effects of capillary pressure and relative permeability were included. The fluids were considered to be immisicible; there was no phase change; and the system was isothermal. The specific purpose of this analysis was to evaluate the reservoir parameters that were believed to be important to water coning. This phenomenon may occur in reservoirs in which water underlies the air storage zone. It involves the possible intrusion of water into the wellbore or near-wellbore region. The water movement is in response to pressure gradients created during a reservoir discharge cycle. Potential adverse effects due to this water movement are associated with the pressure response of the reservoir and the geochemical stability of the near-wellbore region. The results obtained for the simulated operation of a CAES reservoir suggest that water coning should not be a severe problem, due to the slow response of the water to the pressure gradients and the relatively short duration in which those gradients exist. However, water coning will depend on site-specific conditions, particularly the fluid distributions following bubble development, and, therefore, a water coning analysis should be included as part of site evaluation.

  17. Advantageous Reservoir Characterization Technology in Extra Low Permeability Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Yutian Luo

    2017-01-01

    Full Text Available This paper took extra low permeability reservoirs in Dagang Liujianfang Oilfield as an example and analyzed different types of microscopic pore structures by SEM, casting thin sections fluorescence microscope, and so on. With adoption of rate-controlled mercury penetration, NMR, and some other advanced techniques, based on evaluation parameters, namely, throat radius, volume percentage of mobile fluid, start-up pressure gradient, and clay content, the classification and assessment method of extra low permeability reservoirs was improved and the parameter boundaries of the advantageous reservoirs were established. The physical properties of reservoirs with different depth are different. Clay mineral variation range is 7.0%, and throat radius variation range is 1.81 μm, and start pressure gradient range is 0.23 MPa/m, and movable fluid percentage change range is 17.4%. The class IV reservoirs account for 9.56%, class II reservoirs account for 12.16%, and class III reservoirs account for 78.29%. According to the comparison of different development methods, class II reservoir is most suitable for waterflooding development, and class IV reservoir is most suitable for gas injection development. Taking into account the gas injection in the upper section of the reservoir, the next section of water injection development will achieve the best results.

  18. A Hydro-Economic Model for Water Level Fluctuations: Combining Limnology with Economics for Sustainable Development of Hydropower

    Science.gov (United States)

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands. PMID:25526619

  19. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower.

    Science.gov (United States)

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands.

  20. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower.

    Directory of Open Access Journals (Sweden)

    Philipp Emanuel Hirsch

    Full Text Available Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity. Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands.

  1. Analysis of the influence of input data uncertainties on determining the reliability of reservoir storage capacity

    Directory of Open Access Journals (Sweden)

    Marton Daniel

    2015-12-01

    Full Text Available The paper contains a sensitivity analysis of the influence of uncertainties in input hydrological, morphological and operating data required for a proposal for active reservoir conservation storage capacity and its achieved values. By introducing uncertainties into the considered inputs of the water management analysis of a reservoir, the subsequent analysed reservoir storage capacity is also affected with uncertainties. The values of water outflows from the reservoir and the hydrological reliabilities are affected with uncertainties as well. A simulation model of reservoir behaviour has been compiled with this kind of calculation as stated below. The model allows evaluation of the solution results, taking uncertainties into consideration, in contributing to a reduction in the occurrence of failure or lack of water during reservoir operation in low-water and dry periods.

  2. CO2 geosequestration at the laboratory scale: Combined geophysical and hydromechanical assessment of weakly-cemented shallow Sleipner-like reservoirs

    Science.gov (United States)

    Falcon-Suarez, I.; North, L. J.; Best, A. I.

    2017-12-01

    To date, the most promising mitigation strategy for reducing global carbon emissions is Carbon Capture and Storage (CCS). The storage technology (i.e., CO2 geosequestration, CGS) consists of injecting CO2 into deep geological formations, specifically selected for such massive-scale storage. To guarantee the mechanical stability of the reservoir during and after injection, it is crucial to improve existing monitoring techniques for controlling CGS activities. We developed a comprehensive experimental program to investigate the integrity of the Sleipner CO2 storage site in the North Sea - the first commercial CCS project in history where 1 Mtn/y of CO2 has been injected since 1996. We assessed hydro-mechanical effects and the related geophysical signatures of three synthetic sandstones and samples from the Utsira Sand formation (main reservoir at Sleipner), at realistic pressure-temperature (PT) conditions and fluid compositions. Our experimental approach consists of brine-CO2 flow-through tests simulating variable inflation/depletion scenarios, performed in the CGS-rig (Fig. 1; Falcon-Suarez et al., 2017) at the National Oceanography Centre (NOC) in Southampton. The rig is designed for simultaneous monitoring of ultrasonic P- and S-wave velocities and attenuations, electrical resistivity, axial and radial strains, pore pressure and flow, during the co-injection of up to two fluids under controlled PT conditions. Our results show velocity-resistivity and seismic-geomechanical relations of practical importance for the distinction between pore pressure and pore fluid distribution during CGS activities. By combining geophysical and thermo-hydro-mechano-chemical coupled information, we can provide laboratory datasets that complement in situ seismic, geomechanical and electrical survey information, useful for the CO2 plume monitoring in Sleipner site and other shallow weakly-cemented sand CCS reservoirs. Falcon-Suarez, I., Marín-Moreno, H., Browning, F., Lichtschlag, A

  3. Effect of reservoir zones and hedging factor dynamism on reservoir adaptive capacity for climate change impacts

    Science.gov (United States)

    Adeloye, Adebayo J.; Soundharajan, Bankaru-Swamy

    2018-06-01

    When based on the zones of available water in storage, hedging has traditionally used a single hedged zone and a constant rationing ratio for constraining supply during droughts. Given the usual seasonality of reservoir inflows, it is also possible that hedging could feature multiple hedged zones and temporally varying rationing ratios but very few studies addressing this have been reported especially in relation to adaptation to projected climate change. This study developed and tested Genetic Algorithms (GA) optimised zone-based operating policies of various configurations using data for the Pong reservoir, Himachal Pradesh, India. The results show that hedging does lessen vulnerability, which dropped from ≥ 60 % without hedging to below 25 % with the single stage hedging. More complex hedging policies, e.g. two stage and/or temporally varying rationing ratios only produced marginal improvements in performance. All this shows that water hedging policies do not have to be overly complex to effectively offset reservoir vulnerability caused by water shortage resulting from e.g. projected climate change.

  4. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    Energy Technology Data Exchange (ETDEWEB)

    P. K. Pande

    1998-10-29

    Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

  5. The Potential of a Surfactant/Polymer Flood in a Middle Eastern Reservoir

    Directory of Open Access Journals (Sweden)

    Meshal Algharaib

    2012-01-01

    Full Text Available An integrated full-field reservoir simulation study has been performed to determine the reservoir management and production strategies in a mature sandstone reservoir. The reservoir is a candidate for an enhanced oil recovery process or otherwise subject to abandonment. Based on its charateristics, the reservoir was found to be most suited for a surfactant/polymer (SP flood. The study started with a large data gathering and the building of a full-field three-dimensional geological model. Subsequently, a full field simulation model was built and used to history match the water flood. The history match of the water flood emphasizes the areas with remaining high oil saturations, establishes the initial condition of the reservoir for an SP flood, and generates a forecast of reserves for continued water flood operations. A sector model was constructed from the full field model and then used to study different design parameters to maximize the project profitability from the SP flood. An economic model, based on the estimated recovery, residual oil in-place, oil price, and operating costs, has been implemented in order to optimize the project profitability. The study resulted in the selection of surfactant and polymer concentrations and slug size that yielded the best economic returns when applied in this reservoir. The study shows that, in today’s oil prices, surfactant/polymer flood when applied in this reservoir has increased the ultimate oil recovery and provide a significant financial returns.

  6. Forecast on Water Locking Damage of Low Permeable Reservoir with Quantum Neural Network

    Science.gov (United States)

    Zhao, Jingyuan; Sun, Yuxue; Feng, Fuping; Zhao, Fulei; Sui, Dianjie; Xu, Jianjun

    2018-01-01

    It is of great importance in oil-gas reservoir protection to timely and correctly forecast the water locking damage, the greatest damage for low permeable reservoir. An analysis is conducted on the production mechanism and various influence factors of water locking damage, based on which a quantum neuron is constructed based on the information processing manner of a biological neuron and the principle of quantum neural algorithm, besides, the quantum neural network model forecasting the water locking of the reservoir is established and related software is also made to forecast the water locking damage of the gas reservoir. This method has overcome the defects of grey correlation analysis that requires evaluation matrix analysis and complicated operation. According to the practice in Longxi Area of Daqing Oilfield, this method is characterized by fast operation, few system parameters and high accuracy rate (the general incidence rate may reach 90%), which can provide reliable support for the protection technique of low permeable reservoir.

  7. Screening reservoir systems by considering the efficient trade-offs—informing infrastructure investment decisions on the Blue Nile

    Science.gov (United States)

    Geressu, Robel T.; Harou, Julien J.

    2015-12-01

    Multi-reservoir system planners should consider how new dams impact downstream reservoirs and the potential contribution of each component to coordinated management. We propose an optimized multi-criteria screening approach to identify best performing designs, i.e., the selection, size and operating rules of new reservoirs within multi-reservoir systems. Reservoir release operating rules and storage sizes are optimized concurrently for each separate infrastructure design under consideration. Outputs reveal system trade-offs using multi-dimensional scatter plots where each point represents an approximately Pareto-optimal design. The method is applied to proposed Blue Nile River reservoirs in Ethiopia, where trade-offs between total and firm energy output, aggregate storage and downstream irrigation and energy provision for the best performing designs are evaluated. This proof-of concept study shows that recommended Blue Nile system designs would depend on whether monthly firm energy or annual energy is prioritized. 39 TWh/yr of energy potential is available from the proposed Blue Nile reservoirs. The results show that depending on the amount of energy deemed sufficient, the current maximum capacities of the planned reservoirs could be larger than they need to be. The method can also be used to inform which of the proposed reservoir type and their storage sizes would allow for the highest downstream benefits to Sudan in different objectives of upstream operating objectives (i.e., operated to maximize either average annual energy or firm energy). The proposed approach identifies the most promising system designs, reveals how they imply different trade-offs between metrics of system performance, and helps system planners asses the sensitivity of overall performance to the design parameters of component reservoirs.

  8. Aging Reservoirs in a Changing Climate: Examining Storage Loss of Large Reservoirs and Variability of Sedimentation Rate in a Dominant Cropland Region

    Science.gov (United States)

    Rahmani, V.; Kastens, J.; deNoyelles, F.; Huggins, D.; Martinko, E.

    2015-12-01

    Dam construction has multiple environmental and hydrological consequences including impacts on upstream and downstream ecosystems, water chemistry, and streamflow. Behind the dam the reservoir can trap sediment from the stream and fill over time. With increasing population and drinking and irrigation water demands, particularly in the areas that have highly variable weather and extended drought periods such as the United States Great Plains, reservoir sedimentation escalates water management concerns. Under nearly all projected climate change scenarios we expect that reservoir water storage and management will come under intense scrutiny because of the extensive use of interstate river compacts in the Great Plains. In the state of Kansas, located in the Great Plains, bathymetric surveys have been completed during the last decade for many major lakes by the Kansas Biological Survey, Kansas Water Office, and the U.S. Army Corps of Engineers. In this paper, we studied the spatial and temporal changes of reservoir characteristics including sedimentation yield, depletion rate, and storage capacity loss for 24 federally-operated reservoirs in Kansas. These reservoirs have an average age of about 50 years and collectively have lost approximately 15% of their original capacity, with the highest annual observed single-reservoir depletion rate of 0.84% and sedimentation yield of 1,685 m3 km-2 yr-1.

  9. Estimation of Oil Production Rates in Reservoirs Exposed to Focused Vibrational Energy

    KAUST Repository

    Jeong, Chanseok

    2014-01-01

    Elastic wave-based enhanced oil recovery (EOR) is being investigated as a possible EOR method, since strong wave motions within an oil reservoir - induced by earthquakes or artificially generated vibrations - have been reported to improve the production rate of remaining oil from existing oil fields. To date, there are few theoretical studies on estimating how much bypassed oil within an oil reservoir could be mobilized by such vibrational stimulation. To fill this gap, this paper presents a numerical method to estimate the extent to which the bypassed oil is mobilized from low to high permeability reservoir areas, within a heterogeneous reservoir, via wave-induced cross-flow oscillation at the interface between the two reservoir permeability areas. This work uses the finite element method to numerically obtain the pore fluid wave motion within a one-dimensional fluid-saturated porous permeable elastic solid medium embedded in a non-permeable elastic semi-infinite solid. To estimate the net volume of mobilized oil from the low to the high permeability area, a fluid flow hysteresis hypothesis is adopted to describe the behavior at the interface between the two areas. Accordingly, the fluid that is moving from the low to the high permeability areas is assumed to transport a larger volume of oil than the fluid moving in the opposite direction. The numerical experiments were conducted by using a prototype heterogeneous oil reservoir model, subjected to ground surface dynamic loading operating at low frequencies (1 to 50 Hz). The numerical results show that a sizeable amount of oil could be mobilized via the elastic wave stimulation. It is observed that certain wave frequencies are more effective than others in mobilizing the remaining oil. We remark that these amplification frequencies depend on the formation’s elastic properties. This numerical work shows that the wave-based mobilization of the bypassed oil in a heterogeneous oil reservoir is feasible, especially

  10. Management Optimization of Saguling Reservoir with Bellman Dynamic Programming and “Du Couloir” Iterative Method

    Directory of Open Access Journals (Sweden)

    Mariana Marselina

    2016-08-01

    Full Text Available The increasingly growth of population and industry sector have lead to an enhanced demand for electrical energy. One of the electricity providers in the area of Java-Madura Bali (Jamali is Saguling Reservoir. Saguling Reservoir is one of the three reservoirs that stem the flow of Citarum River in advance of to Jatiluhur and Cirata Reservoir. The average electricity production of Saguling Reservoir was 2,334,318.138 MWh/year in the period of 1986-2014. The water intake of Saguling Reservoir is the upstream Citarum Watershed with an area of 2340.88 km2 which also serves as the irrigation, inland fisheries, recreation, and other activities. An effort to improve the function of Saguling Reservoir in producing electrical energy is by optimizing the reservoir management. The optimization of Saguling Reservoir management in this study refers to Government Regulation No. 37/2010 on Dam/Reservoir Article 44 which states that the system of reservoir management consisting of the operation system in dry years, normal years, and wet years. In this research, the determination of the trajectory guideline in Saguling operation was divided in dry, normal and wet years. Trajectory guideline was conducted based on the electricity price of turbine inflow that various in every month. The determination of the trajectory guideline in various electricity price was done by using Program Dynamic Bellman (PD Bellman and “Du Couloir” iterative method which the objective to optimize the gain from electricity production. and “Du Couloir” iterative method was development of PD Bellman that can calculate the value of gain with a smaller discretization until 0,1 juta m3 effectively where PD Bellman just calculate until 10 million m3.  Smaller discretization can give maximum benefit from electricity production and the trajectory guideline will be closer to trajectory actual so optimization of Saguling operation will be achieved.

  11. Ecological Aspects of Condition of Ground Deposits in Shershnevsky Reservoir

    Science.gov (United States)

    Arkanova, I. A.; Denisov, S. E.; Knutarev, D. Yu

    2017-11-01

    The article considers the aspects of the condition of ground deposits influencing the operating conditions of the water intake facilities in the Shershnevsky reservoir being the only source of the utility and drinking water supply in Chelyabinsk. The object of the research is a section near the Sosnovskie intake stations of the Shershnevsky reservoir. Based on the hydrometric surveys of the studied section and using the Kriging method and the Surfer suite, we calculated the volume of ground deposits. As a result of the analyses, the authors have proved that ground deposits in the studied section have a technology-related nature which is connected with the annual growth of the volume of ground deposits which is inadmissible in the operating conditions of the pump stations of water intake facilities whereas ground deposits will fully block the intake windows of pump stations. In case the bed area of the Shershnevsky reservoir is not timely treated, the ground deposits here will complicate the operation of the pump stations which will result in a technological problem of the treatment facilities operation up to a transfer of the pump station premises to other territories less exposed to the deposits. The treatment of the Shershnevsky reservoir from the ground deposits accumulated in the course of time will help to considerably increase its actual capacity, which will allow one to increase water circulation paths and to improve the water quality indices. In its turn, the water quality improvement will decrease the supply of suspended solids into the water intake facilities and cut the reagent costs in the course of the treatment water works operation.

  12. Quantification of Hungry Horse Reservoir Water Levels Needed to Maintain or Enhance Reservoir Fisheries; Methods and Data, 1983-1987 Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Bruce; Michael, Gary; Wachsmuth, John (Montana Department of Fish, Wildlife and Parks, Kalispell, MT)

    1988-06-01

    The Hungry Horse Reservoir study is part of the Northwest Power Planning Council's resident fish and wildlife plan. The plan is responsible for mitigating damages to the fish and wildlife resources caused by hydroelectric development in the Columbia River Basin. The major goal of our study is to quantify seasonal water levels needed to maintain or enhance the reservoir fishery. This study began in May, 1983, and the initial phase will be completed July, 1988. This report summarizes limnological, fish abundance, fish distribution and fish food habits data collected from 1983 to 1988. The effect of reservoir operation upon fish habitat, fish food organisms and fish growth is discussed. 71 refs., 36 figs., 46 tabs.

  13. Reservoir characterization of the Upper Jurassic geothermal target formations (Molasse Basin, Germany): role of thermofacies as exploration tool

    Science.gov (United States)

    Homuth, S.; Götz, A. E.; Sass, I.

    2015-06-01

    The Upper Jurassic carbonates of the southern German Molasse Basin are the target of numerous geothermal combined heat and power production projects since the year 2000. A production-orientated reservoir characterization is therefore of high economic interest. Outcrop analogue studies enable reservoir property prediction by determination and correlation of lithofacies-related thermo- and petrophysical parameters. A thermofacies classification of the carbonate formations serves to identify heterogeneities and production zones. The hydraulic conductivity is mainly controlled by tectonic structures and karstification, whilst the type and grade of karstification is facies related. The rock permeability has only a minor effect on the reservoir's sustainability. Physical parameters determined on oven-dried samples have to be corrected, applying reservoir transfer models to water-saturated reservoir conditions. To validate these calculated parameters, a Thermo-Triaxial-Cell simulating the temperature and pressure conditions of the reservoir is used and calorimetric and thermal conductivity measurements under elevated temperature conditions are performed. Additionally, core and cutting material from a 1600 m deep research drilling and a 4850 m (total vertical depth, measured depth: 6020 m) deep well is used to validate the reservoir property predictions. Under reservoir conditions a decrease in permeability of 2-3 magnitudes is observed due to the thermal expansion of the rock matrix. For tight carbonates the matrix permeability is temperature-controlled; the thermophysical matrix parameters are density-controlled. Density increases typically with depth and especially with higher dolomite content. Therefore, thermal conductivity increases; however the dominant factor temperature also decreases the thermal conductivity. Specific heat capacity typically increases with increasing depth and temperature. The lithofacies-related characterization and prediction of reservoir

  14. Characterization of Fractured Reservoirs Using a Combination of Downhole Pressure and Self-Potential Transient Data

    OpenAIRE

    Yuji Nishi; Tsuneo Ishido

    2012-01-01

    In order to appraise the utility of self-potential (SP) measurements to characterize fractured reservoirs, we carried out continuous SP monitoring using multi Ag-AgCl electrodes installed within two open holes at the Kamaishi Mine, Japan. The observed ratio of SP change to pressure change associated with fluid flow showed different behaviors between intact host rock and fractured rock regions. Characteristic behavior peculiar to fractured reservoirs, which is predicted from numerical simulati...

  15. Impact of Risk Aversion on the Operation of Hydroelectric Reservoirs in the Presence of Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Nenad Jovanović

    2018-05-01

    Full Text Available The increasing share of renewable energy sources, such as wind and solar generation, has a direct impact on the planning and operation of power systems. In addition, the consideration of risk criteria within the decision support tools used by market participants (generation companies, energy services companies, and arbitrageurs is becoming a common activity given the increasing level of uncertainties faced by them. As a consequence, the behavior of market participants is affected by their level of risk aversion, and the application of equilibrium-based models is a common technique used in order to simulate their behavior. This paper presents a multi-stage market equilibrium model of risk-averse agents in order to analyze up to what extent the operation of hydro reservoirs can be affected by the risk-averse profile of market participants in a context of renewable energy source penetration and fuel price volatility.

  16. Flood risk management for large reservoirs

    International Nuclear Information System (INIS)

    Poupart, M.

    2006-01-01

    Floods are a major risk for dams: uncontrolled reservoir water level may cause dam overtopping, and then its failure, particularly for fill dams. Poor control of spillway discharges must be taken into consideration too, as it can increase the flood consequences downstream. In both cases, consequences on the public or on properties may be significant. Spillway design to withstand extreme floods is one response to these risks, but must be complemented by strict operating rules: hydrological forecasting, surveillance and periodic equipment controls, operating guides and the training of operators are mandatory too, in order to guarantee safe operations. (author)

  17. Duck Valley Reservoirs Fish Stocking and O&M, Annual Progress Report 2007-2008.

    Energy Technology Data Exchange (ETDEWEB)

    Sellman, Jake; Perugini, Carol [Department of Fish, Wildlife, and Parks, Shoshone-Paiute Tribes

    2009-02-20

    The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance Project (DV Fisheries) is an ongoing resident fish program that serves to partially mitigate the loss of anadromous fish that resulted from downstream construction of the federal hydropower system. The project's goals are to enhance subsistence fishing and educational opportunities for Tribal members of the Shoshone-Paiute Tribes and provide fishing opportunities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View (MVR), Lake Billy Shaw (LBS), and Sheep Creek Reservoirs (SCR), the program is also designed to: maintain healthy aquatic conditions for fish growth and survival, provide superior facilities with wilderness qualities to attract non-Tribal angler use, and offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period fall into three categories: operations and maintenance, monitoring and evaluation, and public outreach. Operation and maintenance of the three reservoirs include maintaining fences, roads, dams and all reservoir structures, feeder canals, water troughs, stock ponds, educational signs, vehicles, equipment, and restroom facilities. Monitoring and evaluation activities include creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, and control of encroaching exotic vegetation. Public outreach activities include providing environmental education to school children, providing fishing reports to local newspapers and vendors, updating the website, hosting community environmental events, and fielding numerous phone calls from anglers. The reservoir monitoring program focuses on water quality and fishery success. Sheep Creek Reservoir and Lake Billy Shaw had less than productive trout growth due to water

  18. Spillways Scheduling for Flood Control of Three Gorges Reservoir Using Mixed Integer Linear Programming Model

    Directory of Open Access Journals (Sweden)

    Maoyuan Feng

    2014-01-01

    Full Text Available This study proposes a mixed integer linear programming (MILP model to optimize the spillways scheduling for reservoir flood control. Unlike the conventional reservoir operation model, the proposed MILP model specifies the spillways status (including the number of spillways to be open and the degree of the spillway opened instead of reservoir release, since the release is actually controlled by using the spillway. The piecewise linear approximation is used to formulate the relationship between the reservoir storage and water release for a spillway, which should be open/closed with a status depicted by a binary variable. The control order and symmetry rules of spillways are described and incorporated into the constraints for meeting the practical demand. Thus, a MILP model is set up to minimize the maximum reservoir storage. The General Algebraic Modeling System (GAMS and IBM ILOG CPLEX Optimization Studio (CPLEX software are used to find the optimal solution for the proposed MILP model. The China’s Three Gorges Reservoir, whose spillways are of five types with the total number of 80, is selected as the case study. It is shown that the proposed model decreases the flood risk compared with the conventional operation and makes the operation more practical by specifying the spillways status directly.

  19. Mercury content in fish from newly impounded reservoirs

    International Nuclear Information System (INIS)

    Frick, K.

    1992-12-01

    During the seventies elevated mercury content in fish was observed in newly created reservoirs although background levels were normal. The initial rise of reservoir mercury levels is probably caused by the dramatically increased amount of organic matter originating from flooded top-soil and vegetation. Mercury is introduced in the food-chain by methylating bacteria that utilize the surplus of organic matter. This microbial methylation is probably also favoured by reductions in oxygen content and pH that accompanies the decomposition of organic material. It is difficult to make reliable estimates of the duration and maximum levels of the elevated mercury levels since the end result is affected by several biological and chemical processes in combination. Variations may occur on the basis of the type and amount of flooded organic and inorganic material, water chemistry, specific combination of fish and residence time of reservoir water. All available preventive and ameliorating measures are untried in reservoir water bodies, at least in large scale experiments. Vegetation and top-soil stripping could be efficient but also very costly. Liming is a possible method in cases of ongoing or expected acidification. Addition of selenium is a potentially powerful way of lowering the mercury content in fish and this method is well suited to neutral water bodies. Large reductions in fish mercury content have been documented, but since selenium also has been shown to have strong negative effects on biota this method is not yet recommended. (57 refs.)

  20. Optimization of Multipurpose Reservoir Systems Using Power Market Models

    DEFF Research Database (Denmark)

    Pereira-Cardenal, S. J.; Mo, B.; Riegels, N.

    2015-01-01

    optimal operation rules that maximize current and expected future benefits as a function of reservoir level, week of the year, and inflow state. The method was tested on the Iberian Peninsula and performed better than traditional approaches that use exogenous prices: resulting operation rules were more...

  1. Investigation on the effect of the reservoir variables and operational parameters on SAGD performance

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi Kiasari, H.; Naderifar, A. [AmirKabir University of Technology, Tehran (Iran, Islamic Republic of). Petroleum Engineering Dept.; Sedaee Sola, B. [University of Tehran (Iran, Islamic Republic of). Faculty of Engineering. Inst. of Petroleum Engineering], e-mail: sedaeesola@yahoo.com

    2010-04-15

    Steam injection is the most important thermal enhanced oil recovery method. One typical procedure is Steam- Assisted Gravity Drainage (SAGD), which is a promising recovery process to produce heavy oil and bitumen. The method ensures a stable displacement of steam at economical rates by using gravity as the driving force and a pair of horizontal wells for injection/production. There are numerous studies done on SAGD in conventional reservoirs, but the majority of them focus on the investigation of the process in microscopic scale. In this study, we investigate the SAGD process with a preheating period, using steam circulation in well pair on a field scale. The synthetic homogenous model was constructed by CMG and simulated using the STARS module. The effects of operational parameters, such as preheating period, vertical well spacing, well pair length, steam quality and production pressure, and reservoir variables, such as rock porosity and permeability, vertical-to-horizontal permeability ratio, thermal conductivity of the formation and rock heat capacity, on the SAGD performance were investigated. The results show that the preheating period affects mainly the initial stages of production. Due to preheating, the well pair communication with the higher vertical distances is also established; therefore, there was no considerable difference between oil productions in various well spacing cases. As steam quality increases, the oil production in later production times also increases. At shorter well pair, more steam can be injected per unit length of well, but, on the other hand, the production well recovers less heated oil area; therefore the well pair length should be optimized in all cases. By decreasing the production well bottom-hole pressure, more heated oil in near well region is produced; therefore, the injected steam raises more in the depleted area. The results of the simulations show that very low permeability leads to a fully unsuccessful SAGD process. In the

  2. Nuclear register applications and pressure tests to foresee reservoirs exploitation with water drive

    International Nuclear Information System (INIS)

    Osorio F, X.; Redosado G, V.

    1994-01-01

    This paper illustrates how the pulsed neutron log and well test analysis aid proper reservoir management in strong water reservoirs. These techniques have been applied to Cetico reservoir which belongs to Corrientes Field which is located in the Peruvian Jungle. Corrientes is the most important field operated by PETROPERU S.A. As a result of the analysis we current know the present areal water saturation distribution and also have improve the reservoir characterization al of which is being used for increasing the oil production and reserves. (author). 4 refs, 7 figs, 3 tabs

  3. Optimisation of decision making under uncertainty throughout field lifetime: A fractured reservoir example

    Science.gov (United States)

    Arnold, Dan; Demyanov, Vasily; Christie, Mike; Bakay, Alexander; Gopa, Konstantin

    2016-10-01

    Assessing the change in uncertainty in reservoir production forecasts over field lifetime is rarely undertaken because of the complexity of joining together the individual workflows. This becomes particularly important in complex fields such as naturally fractured reservoirs. The impact of this problem has been identified in previous and many solutions have been proposed but never implemented on complex reservoir problems due to the computational cost of quantifying uncertainty and optimising the reservoir development, specifically knowing how many and what kind of simulations to run. This paper demonstrates a workflow that propagates uncertainty throughout field lifetime, and into the decision making process by a combination of a metric-based approach, multi-objective optimisation and Bayesian estimation of uncertainty. The workflow propagates uncertainty estimates from appraisal into initial development optimisation, then updates uncertainty through history matching and finally propagates it into late-life optimisation. The combination of techniques applied, namely the metric approach and multi-objective optimisation, help evaluate development options under uncertainty. This was achieved with a significantly reduced number of flow simulations, such that the combined workflow is computationally feasible to run for a real-field problem. This workflow is applied to two synthetic naturally fractured reservoir (NFR) case studies in appraisal, field development, history matching and mid-life EOR stages. The first is a simple sector model, while the second is a more complex full field example based on a real life analogue. This study infers geological uncertainty from an ensemble of models that are based on the carbonate Brazilian outcrop which are propagated through the field lifetime, before and after the start of production, with the inclusion of production data significantly collapsing the spread of P10-P90 in reservoir forecasts. The workflow links uncertainty

  4. Adjusting inkjet printhead parameters to deposit drugs into micro-sized reservoirs

    Directory of Open Access Journals (Sweden)

    Mau Robert

    2016-09-01

    Full Text Available Drug delivery systems (DDS ensure that therapeutically effective drug concentrations are delivered locally to the target site. For that reason, it is common to coat implants with a degradable polymer which contains drugs. However, the use of polymers as a drug carrier has been associated with adverse side effects. For that reason, several technologies have been developed to design polymer-free DDS. In literature it has been shown that micro-sized reservoirs can be applied as drug reservoirs. Inkjet techniques are capable of depositing drugs into these reservoirs. In this study, two different geometries of micro-sized reservoirs have been laden with a drug (ASA using a drop-on-demand inkjet printhead. Correlations between the characteristics of the drug solution, the operating parameters of the printhead and the geometric parameters of the reservoir are shown. It is indicated that wettability of the surface play a key role for drug deposition into micro-sized reservoirs.

  5. The Adaptive-Clustering and Error-Correction Method for Forecasting Cyanobacteria Blooms in Lakes and Reservoirs

    Directory of Open Access Journals (Sweden)

    Xiao-zhe Bai

    2017-01-01

    Full Text Available Globally, cyanobacteria blooms frequently occur, and effective prediction of cyanobacteria blooms in lakes and reservoirs could constitute an essential proactive strategy for water-resource protection. However, cyanobacteria blooms are very complicated because of the internal stochastic nature of the system evolution and the external uncertainty of the observation data. In this study, an adaptive-clustering algorithm is introduced to obtain some typical operating intervals. In addition, the number of nearest neighbors used for modeling was optimized by particle swarm optimization. Finally, a fuzzy linear regression method based on error-correction was used to revise the model dynamically near the operating point. We found that the combined method can characterize the evolutionary track of cyanobacteria blooms in lakes and reservoirs. The model constructed in this paper is compared to other cyanobacteria-bloom forecasting methods (e.g., phase space reconstruction and traditional-clustering linear regression, and, then, the average relative error and average absolute error are used to compare the accuracies of these models. The results suggest that the proposed model is superior. As such, the newly developed approach achieves more precise predictions, which can be used to prevent the further deterioration of the water environment.

  6. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  7. Bathymetry and capacity of Shawnee Reservoir, Oklahoma, 2016

    Science.gov (United States)

    Ashworth, Chad E.; Smith, S. Jerrod; Smith, Kevin A.

    2017-02-13

    Shawnee Reservoir (locally known as Shawnee Twin Lakes) is a man-made reservoir on South Deer Creek with a drainage area of 32.7 square miles in Pottawatomie County, Oklahoma. The reservoir consists of two lakes connected by an equilibrium channel. The southern lake (Shawnee City Lake Number 1) was impounded in 1935, and the northern lake (Shawnee City Lake Number 2) was impounded in 1960. Shawnee Reservoir serves as a municipal water supply, and water is transferred about 9 miles by gravity to a water treatment plant in Shawnee, Oklahoma. Secondary uses of the reservoir are for recreation, fish and wildlife habitat, and flood control. Shawnee Reservoir has a normal-pool elevation of 1,069.0 feet (ft) above North American Vertical Datum of 1988 (NAVD 88). The auxiliary spillway, which defines the flood-pool elevation, is at an elevation of 1,075.0 ft.The U.S. Geological Survey (USGS), in cooperation with the City of Shawnee, has operated a real-time stage (water-surface elevation) gage (USGS station 07241600) at Shawnee Reservoir since 2006. For the period of record ending in 2016, this gage recorded a maximum stage of 1,078.1 ft on May 24, 2015, and a minimum stage of 1,059.1 ft on April 10–11, 2007. This gage did not report reservoir storage prior to this report (2016) because a sufficiently detailed and thoroughly documented bathymetric (reservoir-bottom elevation) survey and corresponding stage-storage relation had not been published. A 2011 bathymetric survey with contours delineated at 5-foot intervals was published in Oklahoma Water Resources Board (2016), but that publication did not include a stage-storage relation table. The USGS, in cooperation with the City of Shawnee, performed a bathymetric survey of Shawnee Reservoir in 2016 and released the bathymetric-survey data in 2017. The purposes of the bathymetric survey were to (1) develop a detailed bathymetric map of the reservoir and (2) determine the relations between stage and reservoir storage

  8. Scale Model Simulation of Enhanced Geothermal Reservoir Creation

    Science.gov (United States)

    Gutierrez, M.; Frash, L.; Hampton, J.

    2012-12-01

    Geothermal energy technology has successfully provided a means of generating stable base load electricity for many years. However, implementation has been spatially limited to limited availability of high quality traditional hydro-thermal resources possessing the combination of a shallow high heat flow anomaly and an aquifer with sufficient permeability and continuous fluid recharge. Enhanced Geothermal Systems (EGS) has been proposed as a potential solution to enable additional energy production from the non-conventional hydro-thermal resources. Hydraulic fracturing is considered the primary means of creating functional EGS reservoirs at sites where the permeability of the rock is too limited to allow cost effective heat recovery. EGS reservoir creation requires improved fracturing methodology, rheologically controllable fracturing fluids, and temperature hardened proppants. Although large fracture volumes (several cubic km) have been created in the field, circulating fluid through these full volumes and maintaining fracture volumes have proven difficult. Stimulation technology and methodology as used in the oil and gas industry for sedimentary formations are well developed; however, they have not sufficiently been demonstrated for EGS reservoir creation. Insufficient data and measurements under geothermal conditions make it difficult to directly translate experience from the oil and gas industries to EGS applications. To demonstrate the feasibility of EGS reservoir creation and subsequent geothermal energy production, and to improve the understanding of hydraulic and propping in EGS reservoirs, a heated true-triaxial load cell with a high pressure fluid injection system was developed to simulate an EGS system from stimulation to production. This apparatus is capable of loading a 30x30x30 cubic cm rock sample with independent principal stresses up to 13 MPa while simultaneously providing heating up to 180 degree C. Multiple orientated boreholes of 5 to 10 mm

  9. Management of complex multi-reservoir water distribution systems using advanced control theoretic tools and techniques

    CERN Document Server

    Chmielowski, Wojciech Z

    2013-01-01

    This study discusses issues of optimal water management in a complex distribution system. The main elements of the water-management system under consideration are retention reservoirs, among which water transfers are possible, and a network of connections between these reservoirs and water treatment plants (WTPs). System operation optimisation involves determining the proper water transport routes and their flow volumes from the retention reservoirs to the WTPs, and the volumes of possible transfers among the reservoirs, taking into account transport-related delays for inflows, outflows and water transfers in the system. Total system operation costs defined by an assumed quality coefficient should be minimal. An analytical solution of the optimisation task so formulated has been obtained as a result of using Pontriagin’s maximum principle with reference to the quality coefficient assumed. Stable start and end conditions in reservoir state trajectories have been assumed. The researchers have taken into accou...

  10. Automatic Combination of Operators in a Genetic Algorithm to Solve the Traveling Salesman Problem.

    Directory of Open Access Journals (Sweden)

    Carlos Contreras-Bolton

    Full Text Available Genetic algorithms are powerful search methods inspired by Darwinian evolution. To date, they have been applied to the solution of many optimization problems because of the easy use of their properties and their robustness in finding good solutions to difficult problems. The good operation of genetic algorithms is due in part to its two main variation operators, namely, crossover and mutation operators. Typically, in the literature, we find the use of a single crossover and mutation operator. However, there are studies that have shown that using multi-operators produces synergy and that the operators are mutually complementary. Using multi-operators is not a simple task because which operators to use and how to combine them must be determined, which in itself is an optimization problem. In this paper, it is proposed that the task of exploring the different combinations of the crossover and mutation operators can be carried out by evolutionary computing. The crossover and mutation operators used are those typically used for solving the traveling salesman problem. The process of searching for good combinations was effective, yielding appropriate and synergic combinations of the crossover and mutation operators. The numerical results show that the use of the combination of operators obtained by evolutionary computing is better than the use of a single operator and the use of multi-operators combined in the standard way. The results were also better than those of the last operators reported in the literature.

  11. The Iġnik Sikumi Field Experiment, Alaska North Slope: Design, operations, and implications for CO2−CH4 exchange in gas hydrate reservoirs

    Science.gov (United States)

    Boswell, Ray; Schoderbek, David; Collett, Timothy S.; Ohtsuki, Satoshi; White, Mark; Anderson, Brian J.

    2017-01-01

    The Iġnik Sikumi Gas Hydrate Exchange Field Experiment was conducted by ConocoPhillips in partnership with the U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and the U.S. Geological Survey within the Prudhoe Bay Unit on the Alaska North Slope during 2011 and 2012. The primary goals of the program were to (1) determine the feasibility of gas injection into hydrate-bearing sand reservoirs and (2) observe reservoir response upon subsequent flowback in order to assess the potential for CO2 exchange for CH4 in naturally occurring gas hydrate reservoirs. Initial modeling determined that no feasible means of injection of pure CO2 was likely, given the presence of free water in the reservoir. Laboratory and numerical modeling studies indicated that the injection of a mixture of CO2 and N2 offered the best potential for gas injection and exchange. The test featured the following primary operational phases: (1) injection of a gaseous phase mixture of CO2, N2, and chemical tracers; (2) flowback conducted at downhole pressures above the stability threshold for native CH4 hydrate; and (3) an extended (30-days) flowback at pressures near, and then below, the stability threshold of native CH4 hydrate. The test findings indicate that the formation of a range of mixed-gas hydrates resulted in a net exchange of CO2 for CH4 in the reservoir, although the complexity of the subsurface environment renders the nature, extent, and efficiency of the exchange reaction uncertain. The next steps in the evaluation of exchange technology should feature multiple well applications; however, such field test programs will require extensive preparatory experimental and numerical modeling studies and will likely be a secondary priority to further field testing of production through depressurization. Additional insights gained from the field program include the following: (1) gas hydrate destabilization is self-limiting, dispelling any notion of the potential for

  12. Relative influence of deposition and diagenesis on carbonate reservoir layering

    Energy Technology Data Exchange (ETDEWEB)

    Poli, Emmanuelle [Total E and P, Courbevoie (France); Javaux, Catherine [Total E and P, Pointe Noire (Congo)

    2008-07-01

    The architecture heterogeneities and petrophysical properties of carbonate reservoirs result from a combination of platform morphology, related depositional environments, relative sea level changes and diagenetic events. The reservoir layering built for static and dynamic modelling purposes should reflect the key heterogeneities (depositional or diagenetic) which govern the fluid flow patterns. The layering needs to be adapted to the goal of the modelling, ranging from full field computations of hydrocarbon volumes, to sector-based fine-scale simulations to test the recovery improvement. This paper illustrates various reservoir layering types, including schemes dominated by depositional architecture, and those more driven by the diagenetic overprint. The examples include carbonate platform reservoirs from different stratigraphic settings (Tertiary, Cretaceous, Jurassic and Permian) and different regions (Europe, Africa and Middle East areas). This review shows how significant stratigraphic surfaces (such as sequence boundaries or maximum flooding) with their associated facies shifts, can be often considered as key markers to constrain the reservoir layering. Conversely, how diagenesis (dolomitization and karst development), resulting in units with particular poroperm characteristics, may significantly overprint the primary reservoir architecture by generating flow units which cross-cut depositional sequences. To demonstrate how diagenetic processes can create reservoir bodies with geometries that cross-cut the depositional fabric, different types of dolomitization and karst development are illustrated. (author)

  13. Marine controlled source electromagnetic (mCSEM) detects hydrocarbon reservoirs in the Santos Basin - Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Buonora, Marco Polo Pereira; Rodrigues, Luiz Felipe [PETROBRAS, Rio de Janeiro, RJ (Brazil); Zerilli, Andrea; Labruzzo, Tiziano [WesternGeco, Houston, TX (United States)

    2008-07-01

    In recent years marine Controlled Source Electromagnetic (mCSEM) has driven the attention of an increasing number of operators due to its sensitivity to map resistive structures, such as hydrocarbon reservoirs beneath the ocean floor and successful case histories have been reported. The Santos basin mCSEM survey was performed as part of a technical co-operation project between PETROBRAS and Schlumberger to assess the integration of selected deep reading electromagnetic technologies into the full cycle of oil field exploration and development. The survey design was based on an in-depth sensitivity study, built on known reservoirs parameters, such as thickness, lateral extent, overburden and resistivities derived from seismic and well data. In this context, the mCSEM data were acquired to calibrate the technology over the area's known reservoirs, quantify the resistivity anomalies associated with those reservoirs, with the expectation that new prospective locations could be found. We show that the mCSEM response of the known reservoirs yields signatures that can be clearly imaged and accurately quantified and there are evident correlations between the mCSEM anomalies and the reservoirs. (author)

  14. Understanding the True Stimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf

    2017-06-06

    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically-induced fractures that connect the wellbore to a larger fracture surface area within the reservoir rock volume. Thus, accurate estimation of the stimulated reservoir volume (SRV) becomes critical for the reservoir performance simulation and production analysis. Micro-seismic events (MS) have been commonly used as a proxy to map out the SRV geometry, which could be erroneous because not all MS events are related to hydraulic fracture propagation. The case studies discussed here utilized a fully 3-D simulation approach to estimate the SRV. The simulation approach presented in this paper takes into account the real-time changes in the reservoir\\'s geomechanics as a function of fluid pressures. It is consisted of four separate coupled modules: geomechanics, hydrodynamics, a geomechanical joint model for interfacial resolution, and an adaptive re-meshing. Reservoir stress condition, rock mechanical properties, and injected fluid pressure dictate how fracture elements could open or slide. Critical stress intensity factor was used as a fracture criterion governing the generation of new fractures or propagation of existing fractures and their directions. Our simulations were run on a Cray XC-40 HPC system. The studies outcomes proved the approach of using MS data as a proxy for SRV to be significantly flawed. Many of the observed stimulated natural fractures are stress related and very few that are closer to the injection field are connected. The situation is worsened in a highly laminated shale reservoir as the hydraulic fracture propagation is significantly hampered. High contrast in the in-situ stresses related strike-slip developed thereby shortens the extent of SRV. However, far field nature fractures that were not connected to

  15. Probing magma reservoirs to improve volcano forecasts

    Science.gov (United States)

    Lowenstern, Jacob B.; Sisson, Thomas W.; Hurwitz, Shaul

    2017-01-01

    When it comes to forecasting eruptions, volcano observatories rely mostly on real-time signals from earthquakes, ground deformation, and gas discharge, combined with probabilistic assessments based on past behavior [Sparks and Cashman, 2017]. There is comparatively less reliance on geophysical and petrological understanding of subsurface magma reservoirs.

  16. Exergoeconomic performance optimization of an endoreversible intercooled regenerative Brayton combined heat and power plant coupled to variable-temperature heat reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo; Chen, Lingen; Sun, Fengrui [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2012-07-01

    An endoreversible intercooled regenerative Brayton combined heat and power (CHP) plant model coupled to variable-temperature heat reservoirs is established. The exergoeconomic performance of the CHP plant is investigated using finite time thermodynamics. The analytical formulae about dimensionless profit rate and exergy efficiency of the CHP plant with the heat resistance losses in the hot-, cold- and consumer-side heat exchangers, the intercooler and the regenerator are deduced. By taking the maximum profit rate as the objective, the heat conductance allocation among the five heat exchangers and the choice of intercooling pressure ratio are optimized by numerical examples, the characteristic of the optimal dimensionless profit rate versus corresponding exergy efficiency is investigated. When the optimization is performed further with respect to the total pressure ratio, a double-maximum profit rate is obtained. The effects of the design parameters on the double-maximum dimensionless profit rate and corresponding exergy efficiency, optimal total pressure ratio and optimal intercooling pressure ratio are analyzed in detail, and it is found that there exist an optimal consumer-side temperature and an optimal thermal capacitance rate matching between the working fluid and the heat reservoir, respectively, corresponding to a thrice-maximum dimensionless profit rate.

  17. On the evaluation of steam assisted gravity drainage in naturally fractured oil reservoirs

    Directory of Open Access Journals (Sweden)

    Seyed Morteza Tohidi Hosseini

    2017-06-01

    Full Text Available Steam Assisted Gravity Drainage (SAGD as a successful enhanced oil recovery (EOR process has been applied to extract heavy and extra heavy oils. Huge amount of global heavy oil resources exists in carbonate reservoirs which are mostly naturally fractured reservoirs. Unlike clastic reservoirs, few studies were carried out to determine the performance of SAGD in carbonate reservoirs. Even though SAGD is a highly promising technique, several uncertainties and unanswered questions still exist and they should be clarified for expansion of SAGD methods to world wide applications especially in naturally fractured reservoirs. In this communication, the effects of some operational and reservoir parameters on SAGD processes were investigated in a naturally fractured reservoir with oil wet rock using CMG-STARS thermal simulator. The purpose of this study was to investigate the role of fracture properties including fracture orientation, fracture spacing and fracture permeability on the SAGD performance in naturally fractured reservoirs. Moreover, one operational parameter was also studied; one new well configuration, staggered well pair was evaluated. Results indicated that fracture orientation influences steam expansion and oil production from the horizontal well pairs. It was also found that horizontal fractures have unfavorable effects on oil production, while vertical fractures increase the production rate for the horizontal well. Moreover, an increase in fracture spacing results in more oil production, because in higher fracture spacing model, steam will have more time to diffuse into matrices and heat up the entire reservoir. Furthermore, an increase in fracture permeability results in process enhancement and ultimate recovery improvement. Besides, diagonal change in the location of injection wells (staggered model increases the recovery efficiency in long-term production plan.

  18. Optimization of cascade hydropower system operation by genetic algorithm to maximize clean energy output

    Directory of Open Access Journals (Sweden)

    Aida Tayebiyan

    2016-06-01

    Full Text Available Background: Several reservoir systems have been constructed for hydropower generation around the world. Hydropower offers an economical source of electricity with reduce carbon emissions. Therefore, it is such a clean and renewable source of energy. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue. Yet, reservoir systems are inefficiently operated and manage according to policies determined at the construction time. It is worth noting that with little enhancement in operation of reservoir system, there could be an increase in efficiency of the scheme for many consumers. Methods: This research develops simulation-optimization models that reflect discrete hedging policy (DHP to manage and operate hydropower reservoir system and analyse it in both single and multireservoir system. Accordingly, three operational models (2 single reservoir systems and 1 multi-reservoir system were constructed and optimized by genetic algorithm (GA. Maximizing the total power generation in horizontal time is chosen as an objective function in order to improve the functional efficiency in hydropower production with consideration to operational and physical limitations. The constructed models, which is a cascade hydropower reservoirs system have been tested and evaluated in the Cameron Highland and Batang Padang in Malaysia. Results: According to the given results, usage of DHP for hydropower reservoir system operation could increase the power generation output to nearly 13% in the studied reservoir system compared to present operating policy (TNB operation. This substantial increase in power production will enhance economic development. Moreover, the given results of single and multi-reservoir systems affirmed that hedging policy could manage the single system much better than operation of the multi-reservoir system. Conclusion: It can be summarized that DHP is an efficient and feasible policy, which could be used

  19. Impact of Sedimentation hazard at Jor Reservoir, Batang Padang Hydroelectric Scheme in Malaysia

    Science.gov (United States)

    Luis, Jansen; Mohd Sidek, Lariyah; Jajarmizadeh, Milad

    2016-03-01

    Sedimentation in reservoir can be treated as a hazard because it affects the overall safety of the dam. It is a growing concern for reservoir operators throughout the world as it impacts the operability of the hydropower plant and its function as flood control. The objective of the study is to carry out reservoir bathymetric survey to determine the storage volume available at Jor reservoir. The paper intends to discuss the results of two successive surveys carried out in year 2007 and 2010 and comparison with historical data in1968 owing to analyse of sedimentation trend. The result showed that the total storage loss is approximately 43% with an estimated deposited sediment volume of 1.4 million m3 in year 2010. The sedimentation rate is estimated at 3.3% for the years surveyed which is greater than the world average of 0.93%. The findings from the survey are used to develop a revised elevation-storage curve which could be used by the operator and engineers to carry out future power generation planning and flood study predictions. The findings are also expected to be used to determine the optimum method for sediment management and hydro-mechanical protection.

  20. Effect of reservoir heterogeneity on air injection performance in a light oil reservoir

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available Air injection is a good option to development light oil reservoir. As well-known that, reservoir heterogeneity has great effect for various EOR processes. This also applies to air injection. However, oil recovery mechanisms and physical processes for air injection in heterogeneous reservoir with dip angle are still not well understood. The reported setting of reservoir heterogeneous for physical model or simulation model of air injection only simply uses different-layer permeability of porous media. In practice, reservoir heterogeneity follows the principle of geostatistics. How much of contrast in permeability actually challenges the air injection in light oil reservoir? This should be investigated by using layered porous medial settings of the classical Dykstra-Parsons style. Unfortunately, there has been no work addressing this issue for air injection in light oil reservoir. In this paper, Reservoir heterogeneity is quantified based on the use of different reservoir permeability distribution according to classical Dykstra-Parsons coefficients method. The aim of this work is to investigate the effect of reservoir heterogeneity on physical process and production performance of air injection in light oil reservoir through numerical reservoir simulation approach. The basic model is calibrated based on previous study. Total eleven pseudo compounders are included in this model and ten complexity of reactions are proposed to achieve the reaction scheme. Results show that oil recovery factor is decreased with the increasing of reservoir heterogeneity both for air and N2 injection from updip location, which is against the working behavior of air injection from updip location. Reservoir heterogeneity sometimes can act as positive effect to improve sweep efficiency as well as enhance production performance for air injection. High O2 content air injection can benefit oil recovery factor, also lead to early O2 breakthrough in heterogeneous reservoir. Well

  1. Application of multi-agent simulation to evaluate the influence of reservoir operation strategies on the distribution of water availability in the semi-arid Jaguaribe basin, Brazil

    NARCIS (Netherlands)

    van Oel, P.R.; Krol, Martinus S.; Hoekstra, Arjen Ysbert

    2012-01-01

    Studying the processes responsible for the distribution of water resources in a river basin over space and time is of great importance for spatial planning. In this study a multi-agent simulation approach is applied for exploring the influence of alternative reservoir operation strategies on water

  2. Experiments with Interaction between the National Water Model and the Reservoir System Simulation Model: A Case Study of Russian River Basin

    Science.gov (United States)

    Kim, J.; Johnson, L.; Cifelli, R.; Chandra, C. V.; Gochis, D.; McCreight, J. L.; Yates, D. N.; Read, L.; Flowers, T.; Cosgrove, B.

    2017-12-01

    NOAA National Water Center (NWC) in partnership with the National Centers for Environmental Prediction (NCEP), the National Center for Atmospheric Research (NCAR) and other academic partners have produced operational hydrologic predictions for the nation using a new National Water Model (NWM) that is based on the community WRF-Hydro modeling system since the summer of 2016 (Gochis et al., 2015). The NWM produces a variety of hydrologic analysis and prediction products, including gridded fields of soil moisture, snowpack, shallow groundwater levels, inundated area depths, evapotranspiration as well as estimates of river flow and velocity for approximately 2.7 million river reaches. Also included in the NWM are representations for more than 1,200 reservoirs which are linked into the national channel network defined by the USGS NHDPlusv2.0 hydrography dataset. Despite the unprecedented spatial and temporal coverage of the NWM, many known deficiencies exist, including the representation of lakes and reservoirs. This study addresses the implementation of a reservoir assimilation scheme through coupling of a reservoir simulation model to represent the influence of managed flows. We examine the use of the reservoir operations to dynamically update lake/reservoir storage volume states, characterize flow characteristics of river reaches flowing into and out of lakes and reservoirs, and incorporate enhanced reservoir operating rules for the reservoir model options within the NWM. Model experiments focus on a pilot reservoir domain-Lake Mendocino, CA, and its contributing watershed, the East Fork Russian River. This reservoir is modeled using United States Army Corps of Engineers (USACE) HEC-ResSim developed for application to examine forecast informed reservoir operations (FIRO) in the Russian River basin.

  3. Operational Constraints on Hydropeaking and its Effects on the Hydrologic and Thermal Regime of a River in Central Chile

    Science.gov (United States)

    Olivares, M. A.; Guzman, C.; Rossel, V.; De La Fuente, A.

    2013-12-01

    Hydropower accounts for about 44% of installed capacity in Chile's Central Interconnected System, which serves most of the Chilean population. Hydropower reservoir projects can affect ecosystems by changing the hydrologic regime and water quality. Given its volumen regulation capacity, low operation costs and fast response to demand fluctuations, reservoir hydropower plants commonly operate on a load-following or hydropeaking scheme. This short-term operational pattern produces alterations in the hydrologic regime downstream the reservoir. In the case of thermally stratified reservoirs, peaking operations can affect the thermal structure of the reservoir, as well as the thermal regime downstream. In this study, we assessed the subdaily hydrologic and thermal alteration donwstream of Rapel reservoir in Central Chile for alternative operational scenarios, including a base case and several scenarios involving minimum instream flow (Qmin) and maximum hourly ramping rates (ΔQmax). Scenarios were simulated for the stratification season of summer 2009-2012 in a grid-wide short-term economic dispatch model which prescribes hourly power production by every power plant on a weekly horizon. Power time series are then translated into time series of turbined flows at each hydropower plants. Indicators of subdaily hydrologic alteration (SDHA) were computed for every scenario. Additionally, turbined flows were used as input data for a three-dimensional hydrodynamic model (CWR-ELCOM) of the reservoir which simulated the vertical temperature profile in the reservoir and the outflow temperature. For the time series of outflow temperatures we computed several indicators of subdaily thermal alteration (SDTA). Operational constraints reduce the values of both SDHA and SDTA indicators with respect to the base case. When constraints are applied separately, the indicators of SDHA decrease as each type of constraint (Qmin or ΔQmax) becomes more stringent. However, ramping rate

  4. Developing Novel Reservoir Rule Curves Using Seasonal Inflow Projections

    Science.gov (United States)

    Tseng, Hsin-yi; Tung, Ching-pin

    2015-04-01

    Due to significant seasonal rainfall variations, reservoirs and their flexible operational rules are indispensable to Taiwan. Furthermore, with the intensifying impacts of climate change on extreme climate, the frequency of droughts in Taiwan has been increasing in recent years. Drought is a creeping phenomenon, the slow onset character of drought makes it difficult to detect at an early stage, and causes delays on making the best decision of allocating water. For these reasons, novel reservoir rule curves using projected seasonal streamflow are proposed in this study, which can potentially reduce the adverse effects of drought. This study dedicated establishing new rule curves which consider both current available storage and anticipated monthly inflows with leading time of two months to reduce the risk of water shortage. The monthly inflows are projected based on the seasonal climate forecasts from Central Weather Bureau (CWB), which a weather generation model is used to produce daily weather data for the hydrological component of the GWLF. To incorporate future monthly inflow projections into rule curves, this study designs a decision flow index which is a linear combination of current available storage and inflow projections with leading time of 2 months. By optimizing linear relationship coefficients of decision flow index, the shape of rule curves and the percent of water supply in each zone, the best rule curves to decrease water shortage risk and impacts can be developed. The Shimen Reservoir in the northern Taiwan is used as a case study to demonstrate the proposed method. Existing rule curves (M5 curves) of Shimen Reservoir are compared with two cases of new rule curves, including hindcast simulations and historic seasonal forecasts. The results show new rule curves can decrease the total water shortage ratio, and in addition, it can also allocate shortage amount to preceding months to avoid extreme shortage events. Even though some uncertainties in

  5. A strategy for low cost development of incremental oil in legacy reservoirs

    Science.gov (United States)

    Attanasi, E.D.

    2016-01-01

    The precipitous decline in oil prices during 2015 has forced operators to search for ways to develop low-cost and low-risk oil reserves. This study examines strategies to low cost development of legacy reservoirs, particularly those which have already implemented a carbon dioxide enhanced oil recovery (CO2 EOR) program. Initially the study examines the occurrence and nature of the distribution of the oil resources that are targets for miscible and near-miscible CO2 EOR programs. The analysis then examines determinants of technical recovery through the analysis of representative clastic and carbonate reservoirs. The economic analysis focusses on delineating the dominant components of investment and operational costs. The concluding sections describe options to maximize the value of assets that the operator of such a legacy reservoir may have that include incremental expansion within the same producing zone and to producing zones that are laterally or stratigraphically near main producing zones. The analysis identified the CO2 recycle plant as the dominant investment cost item and purchased CO2 and liquids management as a dominant operational cost items. Strategies to utilize recycle plants for processing CO2 from multiple producing zones and multiple reservoir units can significantly reduce costs. Industrial sources for CO2 should be investigated as a possibly less costly way of meeting EOR requirements. Implementation of tapered water alternating gas injection schemes can partially mitigate increases in fluid lifting costs.

  6. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  7. Improved recovery from Gulf of Mexico reservoirs. Quarterly status report, January 1--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.

    1996-04-30

    On February 18, 1992, Louisiana State University with two technical subcontractors, BDM, Inc. and ICF, Inc., began a research program to estimate the potential oil and gas reserve additions that could result from the application of advanced secondary and enhanced oil recovery technologies and the exploitation of undeveloped and attic oil zones in the Gulf of Mexico oil fields that are related to piercement salt domes. This project is a one year continuation of this research and will continue work in reservoir description, extraction processes, and technology transfer. Detailed data will be collected for two previously studies reservoirs: a South Marsh Island reservoir operated by Taylor Energy and one additional Gulf of Mexico reservoir operated by Mobil. Additional reservoirs identified during the project will also be studied if possible. Data collected will include reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. The new data will be used to refine reservoir and geologic characterization of these reservoirs. Further laboratory investigation will provide additional simulation input data in the form of PVT properties, relative permeabilities, capillary pressure, and water compatibility. Geological investigations will be conducted to refine the models of mud-rich submarine fan architectures used by seismic analysts and reservoir engineers. Research on advanced reservoir simulation will also be conducted. This report describes a review of fine-grained submarine fans and turbidite systems.

  8. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4" t" hfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia); Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Rock Fluid Imaging Lab., Bandung (Indonesia)

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  9. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    International Nuclear Information System (INIS)

    thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" data-affiliation=" (Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" >Nurhandoko, Bagus Endar B.; Susilowati

    2015-01-01

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia

  10. Performance of a system of reservoirs on futuristic front

    Science.gov (United States)

    Saha, Satabdi; Roy, Debasri; Mazumdar, Asis

    2017-10-01

    Application of simulation model HEC-5 to analyze the performance of the DVC Reservoir System (a multipurpose system with a network of five reservoirs and one barrage) on the river Damodar in Eastern India in meeting projected future demand as well as controlling flood for synthetically generated future scenario is addressed here with a view to develop an appropriate strategy for its operation. Thomas-Fiering model (based on Markov autoregressive model) has been adopted for generation of synthetic scenario (monthly streamflow series) and subsequently downscaling of modeled monthly streamflow to daily values was carried out. The performance of the system (analysed on seasonal basis) in terms of `Performance Indices' (viz., both quantity based reliability and time based reliability, mean daily deficit, average failure period, resilience and maximum vulnerability indices) for the projected scenario with enhanced demand turned out to be poor compared to that for historical scenario. However, judicious adoption of resource enhancement (marginal reallocation of reservoir storage capacity) and demand management strategy (curtailment of projected high water requirements and trading off between demands) was found to be a viable option for improvement of the performance of the reservoir system appreciably [improvement being (1-51 %), (2-35 %), (16-96 %), (25-50 %), (8-36 %) and (12-30 %) for the indices viz., quantity based reliability, time based reliability, mean daily deficit, average failure period, resilience and maximum vulnerability, respectively] compared to that with normal storage and projected demand. Again, 100 % reliability for flood control for current as well as future synthetically generated scenarios was noted. The results from the study would assist concerned authority in successful operation of reservoirs in the context of growing demand and dwindling resource.

  11. Assessment of The trophic state and Chlorophyll-a concentrations using Landsat OLI in Karaoun reservoir, Lebanon

    Directory of Open Access Journals (Sweden)

    Ali Fadel

    2016-12-01

    Full Text Available Fadel, A., Faour G. and Slim K. 2016. Assessment of the trophic state and chlorophyll-a concentrations using Landsat OLI in Karaoun reservoir, Lebanon. Lebanese Science Journal, 17(2: 130-145. Harmful algal blooms have become a worldwide environmental problem. A regular and cost-effective monitoring of these blooms is highly needed by lakes managers. Satellite remote sensing imagery like Landsat Operational Land Imager (OLI can be used to assess and monitor chlorophyll-a in water bodies over large areas in a cost-effective way. In this study, the accuracy of Landsat OLI to estimate chlorophyll-a was examined. Four field campaigns and cloud free images of Landsat OLI with 30 m resolution (01 May 2013, 21 August 2013, 10 July 2015, and 11 August 2015 were used in this study to determine the accuracy of Landsat OLI in estimating chlorophyll-a in a 12 km2 freshwater body, Karaoun reservoir. After atmospheric correction of these images, reflectance of single and multiple band combinations were compared to field chlorophyll-a data. Results of field campaigns showed that the trophic state of Karaoun reservoir is still eutrophic to hypereutrophic with high nutrient concentration and low phytoplankton biodiversity, dominated by cyanobacteria species, Microcystis aeruginosa and Aphanizomenon ovalisporum. On single band level, the in situ chlorophyll-a measurement correlated best with band 5 (0.85 - 0.88 µm, with R=0.75 and R2=0.57. Highest correlation (R=0.84 and R2=0.72 was obtained using band combination, B2:B4 band ratio multiplied by B5. Results indicated that Landsat OLI can be used effectively to determine chlorophyll-a concentration in lakes and reservoirs. We recommend the application of Landsat OLI as a satisfactory and cost effective method for monitoring chlorophyll-a in other lakes through-out the world

  12. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a

  13. Bacterial pathogens in a reactor cooling reservoir

    International Nuclear Information System (INIS)

    Kasweck, K.L.; Fliermans, C.B.

    1978-01-01

    The results of the sampling in both Par Pond and Clark Hill Reservoir are given. The frequency of isolation is a qualitative parameter which indicates how often the specified bacterium was isolated from each habitat. Initial scoping experiments demonstrated that a wider variety of pathogenic bacteria occur in Par Pond than in Clark Hill Reservoir. Such findings are interesting because Par Pond does not receive any human wastes directly, yet bacteria generally associated with human wastes are more frequently isolated from Par Pond. Previous studies have demonstrated that certain non-spore-forming enteric bacteria do not survive the intense heat associated with the cooling water when the reactor is operating. However, even when the reactor is not operating, cooling water, consisting of 10% makeup water from Savannah River, continues to flow into Par Pond. This flow provides a source of bacteria which inoculate Par Pond. Once the reactor is again operating, these same bacteria appear to be able to survive and grow within the Par Pond system. Thus, Par Pond and the associated lakes and canals of the Par Pond system provide a pool of pathogens that normally would not survive in natural waters

  14. Value of information in closed-loop reservoir managment

    NARCIS (Netherlands)

    Barros, E.G.D.; Van den Hof, P.M.J.; Jansen, J.D.

    This paper proposes a new methodology to perform value of information (VOI) analysis within a closed-loop reservoir management (CLRM) framework. The workflow combines tools such as robust optimization and history matching in an environment of uncertainty characterization. The approach is illustrated

  15. Low-Loss Photonic Reservoir Computing with Multimode Photonic Integrated Circuits.

    Science.gov (United States)

    Katumba, Andrew; Heyvaert, Jelle; Schneider, Bendix; Uvin, Sarah; Dambre, Joni; Bienstman, Peter

    2018-02-08

    We present a numerical study of a passive integrated photonics reservoir computing platform based on multimodal Y-junctions. We propose a novel design of this junction where the level of adiabaticity is carefully tailored to capture the radiation loss in higher-order modes, while at the same time providing additional mode mixing that increases the richness of the reservoir dynamics. With this design, we report an overall average combination efficiency of 61% compared to the standard 50% for the single-mode case. We demonstrate that with this design, much more power is able to reach the distant nodes of the reservoir, leading to increased scaling prospects. We use the example of a header recognition task to confirm that such a reservoir can be used for bit-level processing tasks. The design itself is CMOS-compatible and can be fabricated through the known standard fabrication procedures.

  16. Gas condensate reservoir performance : part 1 : fluid characterization

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, F.B.; Bennion, D.B. [Hycal Energy Research Laboratories Ltd., Calgary, AB (Canada); Andersen, G. [ChevronTexaco, Calgary, AB (Canada)

    2006-07-01

    Phase behaviour in gas condensate reservoirs is sensitive to changes in pressure and temperature, which can lead to significant errors in fluid characterization. The challenging task of characterizing in situ fluids in gas condensate reservoirs was discussed with reference to the errors that occur as a result of the complex coupling between phase behavior and geology. This paper presented techniques for reservoir sampling and characterization and proposed methods for minimizing errors. Errors are often made in the classification of dew point systems because engineering criteria does not accurately represent the phase behavior of the reservoir. For example, the fluid of a certain condensate yield may be categorized as a wet gas rather than a retrograde condensate fluid. It was noted that the liquid yield does not dictate whether the fluid is condensate or wet gas, but rather where the reservoir temperature is situated in the pressure temperature phase loop. In order to proceed with a viable field development plan and optimization, the reservoir fluid must be understood. Given that gas productivity decreases with liquid drop out in the near wellbore region, capillary pressure plays a significant role in retrograde reservoirs. It was noted that well understood parameters will lead to a better assessment of the amount of hydrocarbon in place, the rate at which the resource can be produced and optimization strategies as the reservoir matures. It was concluded that multi-rate sampling is the best method to use in sampling fluids since the liquid yield changes as a function of rate. Although bottom-hole sampling in gas condensate reservoirs may be problematic, it should always be performed to address any concerns for liquid-solid separation. Produced fluids typically reveal a specific signature that informs the operator of in situ properties. This paper presented examples that pertain to wet versus retrograde condensate behavior and the presence of an oil zone. The

  17. Towards an Improved Represenation of Reservoirs and Water Management in a Land Surface-Hydrology Model

    Science.gov (United States)

    Yassin, F.; Anis, M. R.; Razavi, S.; Wheater, H. S.

    2017-12-01

    Water management through reservoirs, diversions, and irrigation have significantly changed river flow regimes and basin-wide energy and water balance cycles. Failure to represent these effects limits the performance of land surface-hydrology models not only for streamflow prediction but also for the estimation of soil moisture, evapotranspiration, and feedbacks to the atmosphere. Despite recent research to improve the representation of water management in land surface models, there remains a need to develop improved modeling approaches that work in complex and highly regulated basins such as the 406,000 km2 Saskatchewan River Basin (SaskRB). A particular challenge for regional and global application is a lack of local information on reservoir operational management. To this end, we implemented a reservoir operation, water abstraction, and irrigation algorithm in the MESH land surface-hydrology model and tested it over the SaskRB. MESH is Environment Canada's Land Surface-hydrology modeling system that couples Canadian Land Surface Scheme (CLASS) with hydrological routing model. The implemented reservoir algorithm uses an inflow-outflow relationship that accounts for the physical characteristics of reservoirs (e.g., storage-area-elevation relationships) and includes simplified operational characteristics based on local information (e.g., monthly target volume and release under limited, normal, and flood storage zone). The irrigation algorithm uses the difference between actual and potential evapotranspiration to estimate irrigation water demand. This irrigation demand is supplied from the neighboring reservoirs/diversion in the river system. We calibrated the model enabled with the new reservoir and irrigation modules in a multi-objective optimization setting. Results showed that the reservoir and irrigation modules significantly improved the MESH model performance in generating streamflow and evapotranspiration across the SaskRB and that this our approach provides

  18. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    Science.gov (United States)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  19. Optimizing Environmental Flow Operation Rules based on Explicit IHA Constraints

    Science.gov (United States)

    Dongnan, L.; Wan, W.; Zhao, J.

    2017-12-01

    Multi-objective operation of reservoirs are increasingly asked to consider the environmental flow to support ecosystem health. Indicators of Hydrologic Alteration (IHA) is widely used to describe environmental flow regimes, but few studies have explicitly formulated it into optimization models and thus is difficult to direct reservoir release. In an attempt to incorporate the benefit of environmental flow into economic achievement, a two-objective reservoir optimization model is developed and all 33 hydrologic parameters of IHA are explicitly formulated into constraints. The benefit of economic is defined by Hydropower Production (HP) while the benefit of environmental flow is transformed into Eco-Index (EI) that combined 5 of the 33 IHA parameters chosen by principal component analysis method. Five scenarios (A to E) with different constraints are tested and solved by nonlinear programming. The case study of Jing Hong reservoir, located in the upstream of Mekong basin, China, shows: 1. A Pareto frontier is formed by maximizing on only HP objective in scenario A and on only EI objective in scenario B. 2. Scenario D using IHA parameters as constraints obtains the optimal benefits of both economic and ecological. 3. A sensitive weight coefficient is found in scenario E, but the trade-offs between HP and EI objectives are not within the Pareto frontier. 4. When the fraction of reservoir utilizable capacity reaches 0.8, both HP and EI capture acceptable values. At last, to make this modelmore conveniently applied to everyday practice, a simplified operation rule curve is extracted.

  20. Imaging CO2 reservoirs using muons borehole detectors

    Science.gov (United States)

    Bonneville, A.; Bonal, N.; Lintereur, A.; Mellors, R. J.; Paulsson, B. N. P.; Rowe, C. A.; Varner, G. S.; Kouzes, R.; Flygare, J.; Mostafanezhad, I.; Yamaoka, J. A. K.; Guardincerri, E.; Chapline, G.

    2016-12-01

    Monitoring of the post-injection fate of CO2 in subsurface reservoirs is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We present a method of 4D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Although muon flux rapidly decreases with depth, preliminary analyses indicate that the muon technique is sufficiently sensitive to effectively map density variations caused by fluid displacement at depths consistent with proposed CO2reservoirs. The intensity of the muon flux is, to first order, inversely proportional to the density times the path length, with resolution increasing with measurement time. The primary technical challenge preventing deployment of this technology in subsurface locations is the lack of miniaturized muon-tracking detectors both capable of fitting in standard boreholes and that will be able to resist the harsh underground conditions (temperature, pressure, corrosion) for long periods of time. Such a detector with these capabilities has been developed through a collaboration supported by the U.S. Department of Energy. A prototype has been tested in underground laboratories during 2016. In particular, we will present results from a series of tests performed in a tunnel comparing efficiencies, and angular and position resolution to measurements collected at the same locations by large instruments developed by Los Alamos and Sandia National Laboratories. We will also present the results of simulations of muon detection for various CO2 reservoir situations and muon detector configurations. Finally, to improve imaging of 3D subsurface structures, a combination of seismic data, gravity data, and muons can be used. Because seismic waves, gravity anomalies, and muons are all sensitive to density, the combination of two or three of these measurements promises to be a powerful way to improve spatial

  1. Multi-Objective Optimization of the Hedging Model for reservoir Operation Using Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    sadegh sadeghitabas

    2015-12-01

    Full Text Available Multi-objective problems rarely ever provide a single optimal solution, rather they yield an optimal set of outputs (Pareto fronts. Solving these problems was previously accomplished by using some simplifier methods such as the weighting coefficient method used for converting a multi-objective problem to a single objective function. However, such robust tools as multi-objective meta-heuristic algorithms have been recently developed for solving these problems. The hedging model is one of the classic problems for reservoir operation that is generally employed for mitigating drought impacts in water resources management. According to this method, although it is possible to supply the total planned demands, only portions of the demands are met to save water by allowing small deficits in the current conditions in order to avoid or reduce severe deficits in future. The approach heavily depends on economic and social considerations. In the present study, the meta-heuristic algorithms of NSGA-II, MOPSO, SPEA-II, and AMALGAM are used toward the multi-objective optimization of the hedging model. For this purpose, the rationing factors involved in Taleghan dam operation are optimized over a 35-year statistical period of inflow. There are two objective functions: a minimizing the modified shortage index, and b maximizing the reliability index (i.e., two opposite objectives. The results show that the above algorithms are applicable to a wide range of optimal solutions. Among the algorithms, AMALGAM is found to produce a better Pareto front for the values of the objective function, indicating its more satisfactory performance.

  2. Understanding the Role of Reservoir Size on Probable Maximum Precipitation

    Science.gov (United States)

    Woldemichael, A. T.; Hossain, F.

    2011-12-01

    This study addresses the question 'Does surface area of an artificial reservoir matter in the estimation of probable maximum precipitation (PMP) for an impounded basin?' The motivation of the study was based on the notion that the stationarity assumption that is implicit in the PMP for dam design can be undermined in the post-dam era due to an enhancement of extreme precipitation patterns by an artificial reservoir. In addition, the study lays the foundation for use of regional atmospheric models as one way to perform life cycle assessment for planned or existing dams to formulate best management practices. The American River Watershed (ARW) with the Folsom dam at the confluence of the American River was selected as the study region and the Dec-Jan 1996-97 storm event was selected for the study period. The numerical atmospheric model used for the study was the Regional Atmospheric Modeling System (RAMS). First, the numerical modeling system, RAMS, was calibrated and validated with selected station and spatially interpolated precipitation data. Best combinations of parameterization schemes in RAMS were accordingly selected. Second, to mimic the standard method of PMP estimation by moisture maximization technique, relative humidity terms in the model were raised to 100% from ground up to the 500mb level. The obtained model-based maximum 72-hr precipitation values were named extreme precipitation (EP) as a distinction from the PMPs obtained by the standard methods. Third, six hypothetical reservoir size scenarios ranging from no-dam (all-dry) to the reservoir submerging half of basin were established to test the influence of reservoir size variation on EP. For the case of the ARW, our study clearly demonstrated that the assumption of stationarity that is implicit the traditional estimation of PMP can be rendered invalid to a large part due to the very presence of the artificial reservoir. Cloud tracking procedures performed on the basin also give indication of the

  3. Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma, Budget Period I, Class Revisit

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, Mohan

    2002-04-02

    This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. A geological history that explains the presence of mobile water and oil in the reservoir was proposed. The combination of matrix and fractures in the reservoir explains the reservoir?s flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.

  4. Study of pressure maintenance in the lower Gassi Touil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Ribuot, M.

    1969-11-01

    The Gassi Touil reservoir in the Sahara is a faulted anticline; the reservoir rock consists of a series of shales and sandstones. It has a primary gas cap in equilibrium with the oil. The oil-gas interface is at 1,642 m; the oil-water interface at 1,970 m. Initial pressure was substantially above hydrostatic. The reservoir contains about 97 million tons STO. A 3-phase, 3-dimensional computer model was used to study the recovery by primary depletion, and by pressure maintenance by gas or water injection. Water injection yields the maximum recovery, but its full efficiency is limited by the fact that only one row of wells can be drilled to the annulus where the wells penetrate only the oil zone. This operation must be supplemented with gas injection into the expanding gas cap in order to efficiently maintain in the reservoir pressure.

  5. Terahertz-dependent identification of simulated hole shapes in oil-gas reservoirs

    Science.gov (United States)

    Bao, Ri-Ma; Zhan, Hong-Lei; Miao, Xin-Yang; Zhao, Kun; Feng, Cheng-Jing; Dong, Chen; Li, Yi-Zhang; Xiao, Li-Zhi

    2016-10-01

    Detecting holes in oil-gas reservoirs is vital to the evaluation of reservoir potential. The main objective of this study is to demonstrate the feasibility of identifying general micro-hole shapes, including triangular, circular, and square shapes, in oil-gas reservoirs by adopting terahertz time-domain spectroscopy (THz-TDS). We evaluate the THz absorption responses of punched silicon (Si) wafers having micro-holes with sizes of 20 μm-500 μm. Principal component analysis (PCA) is used to establish a model between THz absorbance and hole shapes. The positions of samples in three-dimensional spaces for three principal components are used to determine the differences among diverse hole shapes and the homogeneity of similar shapes. In addition, a new Si wafer with the unknown hole shapes, including triangular, circular, and square, can be qualitatively identified by combining THz-TDS and PCA. Therefore, the combination of THz-TDS with mathematical statistical methods can serve as an effective approach to the rapid identification of micro-hole shapes in oil-gas reservoirs. Project supported by the National Natural Science Foundation of China (Grant No. 61405259), the National Basic Research Program of China (Grant No. 2014CB744302), and the Specially Founded Program on National Key Scientific Instruments and Equipment Development, China (Grant No. 2012YQ140005).

  6. Intelligent monitoring system for real-time geologic CO2 storage, optimization and reservoir managemen

    Science.gov (United States)

    Dou, S.; Commer, M.; Ajo Franklin, J. B.; Freifeld, B. M.; Robertson, M.; Wood, T.; McDonald, S.

    2017-12-01

    Archer Daniels Midland Company's (ADM) world-scale agricultural processing and biofuels production complex located in Decatur, Illinois, is host to two industrial-scale carbon capture and storage projects. The first operation within the Illinois Basin-Decatur Project (IBDP) is a large-scale pilot that injected 1,000,000 metric tons of CO2 over a three year period (2011-2014) in order to validate the Illinois Basin's capacity to permanently store CO2. Injection for the second operation, the Illinois Industrial Carbon Capture and Storage Project (ICCS), started in April 2017, with the purpose of demonstrating the integration of carbon capture and storage (CCS) technology at an ethanol plant. The capacity to store over 1,000,000 metric tons of CO2 per year is anticipated. The latter project is accompanied by the development of an intelligent monitoring system (IMS) that will, among other tasks, perform hydrogeophysical joint analysis of pressure, temperature and seismic reflection data. Using a preliminary radial model assumption, we carry out synthetic joint inversion studies of these data combinations. We validate the history-matching process to be applied to field data once CO2-breakthrough at observation wells occurs. This process will aid the estimation of permeability and porosity for a reservoir model that best matches monitoring observations. The reservoir model will further be used for forecasting studies in order to evaluate different leakage scenarios and develop appropriate early-warning mechanisms. Both the inversion and forecasting studies aim at building an IMS that will use the seismic and pressure-temperature data feeds for providing continuous model calibration and reservoir status updates.

  7. Reservoir Souring - Latest developments for application and mitigation

    DEFF Research Database (Denmark)

    Johnson, Richard J; Folwell, Benjamin D; Wirekoh, Alexander

    2017-01-01

    Sulphate-reducing prokaryotes (SRP) have been identified in oil field fluids since the 1920s. SRP reduce sulphate to sulphide, a toxic and corrosive species that impacts on operational safety, metallurgy and both capital and operational cost. Differences in water cut, temperature, pressure...... and fluid chemistry can impact on the observed H2S concentration, meaning that an increase in H2S concentration does not always correlate with activity of SRP. However it wasn't until the 1990s that SRP activity was accepted as the leading cause of reservoir souring (i.e. an increase in H2S concentrations...... to reservoir souring. This has led to some recent advances in microbial control and detection, however, despite this, many of the methods used routinely for microbial control and detection are over a century old. We therefore look towards emerging and novel mitigation technologies that may be used...

  8. Resolution of reservoir scale electrical anisotropy from marine CSEM data

    Energy Technology Data Exchange (ETDEWEB)

    Brown, V.; Hoversten, G.M.; Key, K.; Chen, J.

    2011-10-01

    A combination of 1D and 3D forward and inverse solutions is used to quantify the sensitivity and resolution of conventional controlled source electromagnetic (CSEM) data collected using a horizontal electric dipole source to transverse electrical anisotropy located in a deep-water exploration reservoir target. Since strongly anisotropic shale layers have a vertical resistivity that can be comparable to many reservoirs, we examine how CSEM can discriminate confounding shale layers through their characteristically lower horizontal resistivity. Forward modeling demonstrates that the sensitivity to reservoir level anisotropy is very low compared to the sensitivity to isotropic reservoirs, especially when the reservoir is deeper than about 2 km below the seabed. However, for 1D models where the number of inversion parameters can be fixed to be only a few layers, both vertical and horizontal resistivity of the reservoir can be well resolved using a stochastic inversion. We find that the resolution of horizontal resistivity increases as the horizontal resistivity decreases. We show that this effect is explained by the presence of strong horizontal current density in anisotropic layers with low horizontal resistivity. Conversely, when the reservoir has a vertical to horizontal resistivity ratio of about 10 or less, the current density is vertically polarized and hence has little sensitivity to the horizontal resistivity. Resistivity anisotropy estimates from 3D inversion for 3D targets suggest that resolution of reservoir level anisotropy for 3D targets will require good a priori knowledge of the background sediment conductivity and structural boundaries.

  9. Trophic State Evolution and Nutrient Trapping Capacity in a Transboundary Subtropical Reservoir: A 25-Year Study.

    Science.gov (United States)

    Cunha, Davi Gasparini Fernandes; Benassi, Simone Frederigi; de Falco, Patrícia Bortoletto; Calijuri, Maria do Carmo

    2016-03-01

    Artificial reservoirs have been used for drinking water supply, other human activities, flood control and pollution abatement worldwide, providing overall benefits to downstream water quality. Most reservoirs in Brazil were built during the 1970s, but their long-term patterns of trophic status, water chemistry, and nutrient removal are still not very well characterized. We aimed to evaluate water quality time series (1985-2010) data from the riverine and lacustrine zones of the transboundary Itaipu Reservoir (Brazil/Paraguay). We examined total phosphorus and nitrogen, chlorophyll a concentrations, water transparency, and phytoplankton density to look for spatial and temporal trends and correlations with trophic state evolution and nutrient retention. There was significant temporal and spatial water quality variation (P water quality and structure of the reservoir were mainly affected by one internal force (hydrodynamics) and one external force (upstream cascading reservoirs). Nutrient and chlorophyll a concentrations tended to be lower in the lacustrine zone and decreased over the 25-year timeframe. Reservoir operational features seemed to be limiting primary production and phytoplankton development, which exhibited a maximum density of 6050  org/mL. The relatively small nutrient concentrations in the riverine zone were probably related to the effect of the cascade reservoirs upstream of Itaipu and led to relatively low removal percentages. Our study suggested that water quality problems may be more pronounced immediately after the filling phase of the artificial reservoirs, associated with the initial decomposition of drowned vegetation at the very beginning of reservoir operation.

  10. Three-Dimensional Effects of Artificial Mixing in a Shallow Drinking-Water Reservoir

    Science.gov (United States)

    Chen, Shengyang; Little, John C.; Carey, Cayelan C.; McClure, Ryan P.; Lofton, Mary E.; Lei, Chengwang

    2018-01-01

    Studies that examine the effects of artificial mixing for water-quality mitigation in lakes and reservoirs often view a water column with a one-dimensional (1-D) perspective (e.g., homogenized epilimnetic and hypolimnetic layers). Artificial mixing in natural water bodies, however, is inherently three dimensional (3-D). Using a 3-D approach experimentally and numerically, the present study visualizes thermal structure and analyzes constituent transport under the influence of artificial mixing in a shallow drinking-water reservoir. The purpose is to improve the understanding of artificial mixing, which may help to better design and operate mixing systems. In this reservoir, a side-stream supersaturation (SSS) hypolimnetic oxygenation system and an epilimnetic bubble-plume mixing (EM) system were concurrently deployed in the deep region. The present study found that, while the mixing induced by the SSS system does not have a distinct 3-D effect on the thermal structure, epilimnetic mixing by the EM system causes 3-D heterogeneity. In the experiments, epilimnetic mixing deepened the lower metalimnetic boundary near the diffuser by about 1 m, with 55% reduction of the deepening rate at 120 m upstream of the diffuser. In a tracer study using a 3-D hydrodynamic model, the operational flow rate of the EM system is found to be an important short-term driver of constituent transport in the reservoir, whereas the duration of the EM system operation is the dominant long-term driver. The results suggest that artificial mixing substantially alters both 3-D thermal structure and constituent transport, and thus needs to be taken into account for reservoir management.

  11. Analysis of change of retention capacity of a small water reservoir

    Science.gov (United States)

    Výleta, R.; Danáčová, M.; Valent, P.

    2017-10-01

    This study is focused on the analysis of the changes of retention capacity of a small water reservoir induced by intensive erosion and sedimentation processes. The water reservoir is situated near the village of Vrbovce in the Western part of Slovakia, and the analysis is carried out for a period 2008-2017. The data used to build a digital elevation model (DEM) of the reservoir’s bed came from a terrain measurement, utilizing an acoustic Doppler current profiler (ADCP) to measure the water depth in the reservoir. The DEM was used to quantify the soil loss from agricultural land situated within the basin of the reservoir. The ability of the water reservoir to transform a design flood with a return period of 100 years is evaluated for both design (2008) and current conditions (2017). The results show that the small water reservoir is a subject to siltation, with sediments comprised of fine soil particles transported from nearby agricultural land. The ability of the water reservoir to transform a 100-year flood has not changed significantly. The reduction of the reservoir’s retention capacity should be systematically and regularly monitored in order to adjust its operational manual and improve its efficiency.

  12. Log-based identification of sweet spots for effective fracs in shale reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Hashmy, K.; Barnett, C.; Jonkers, J. [Weatherford (United States); Abueita, S. [Anadarko Petroleum (United States)

    2011-07-01

    Shale reservoir exploitation requires horizontal hydro-fracturing, often in a multi-stage configuration. Fracture stages are usually evenly spaced along the horizontal well, regardless of reservoir characteristics, even though wireline logs or logging-while-drilling (LWD) methods could be used to determine sweet spots for more cost-effective fracturing locations. This paper aims to show how failure to take into consideration a reservoir's geological properties can lead to less effective exploitation, and then goes on to describe logging techniques, LWD and wireline logs combined, and their usefulness in effectively placing fracturing stages on a reservoir's sweet spots. By studying logs from different LWD and wireline log techniques, such as gamma ray, resistivity, X-ray fluorescence or shockwave sonic measurements for different existing wells, the study shows how sweet spots, where kerogen concentration is higher, with higher porosity, can be determined. These logging techniques, requiring low investments, offer a variety of methods for identifying sweet spots in shale reservoirs, and fracturing only these spots will avoid unnecessary expenditure on frac stages in zones with poor reservoir characteristics.

  13. Research on Cascade Reservoirs’ Short-Term Optimal Operation under the Effect of Reverse Regulation

    Directory of Open Access Journals (Sweden)

    Changming Ji

    2018-06-01

    Full Text Available Currently research on joint operation of a large reservoir and its re-regulating reservoir focuses on either water quantity regulation or water head regulation. The accuracy of relevant models is in need of improvement if the influence of factors such as water flow hysteresis and the aftereffect of tail water level variation are taken into consideration. In this paper, given the actual production of Pankou-Xiaoxuan cascade hydropower stations that combines two operation modes (‘electricity to water’ and ‘water to electricity’, a coupling model of their short-term optimal operation is developed, which considers Xiaoxuan reservoir’s regulating effect on Pankou reservoir’s outflow volume and water head. Factors such as water flow hysteresis and the aftereffect of tail water level variation are also considered to enhance the model’s accuracy. The Backward Propagation (BP neural network is employed for precise calculation of the downstream reservoir’s inflow and the upstream reservoir’s tail water level. Besides, we put forth Accompanying Progressive Optimality Algorithm (APOA to solve the coupling model with aftereffect. An example is given to verify the scientificity of the proposed model and the advantages of APOA. Through analysis of the model calculation results, the optimal operation rules of the cascade reservoirs are obtained in terms of water quantity regulation and water head regulation, which can provide scientific reference for cascade reservoirs’ optimal operation.

  14. Effect of heat loss in a geothermal reservoir

    NARCIS (Netherlands)

    Ganguly, Sayantan; Tan, Lippong; Date, Abhijit; Mohan Kumar, Mandalagiri Subbarayappa

    This paper reports a three-dimensional (3D) numerical study to determine the effect of heat loss on the transient heat transport and temperature distribution in a geothermal reservoir. The operation of a geothermal power plant, which is essentially an injection-production process, involves

  15. A Study on the Operation Strategy for Combined Accident including TLOFW accident

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kang, Gook Young; Yoon, Ho Joon

    2014-01-01

    It is difficult for operators to recognize the necessity of a feed-and-bleed (F-B) operation when the loss of coolant accident and failure of secondary side occur. An F-B operation directly cools down the reactor coolant system (RCS) using the primary cooling system when residual heat removal by the secondary cooling system is not available. The plant is not always necessary the F-B operation when the secondary side is failed. It is not necessary to initiate an F-B operation in the case of a medium or large break because these cases correspond to low RCS pressure sequences when the secondary side is failed. If the break size is too small to sufficiently decrease the RCS pressure, the F-B operation is necessary. Therefore, in the case of a combined accident including a secondary cooling system failure, the provision of clear information will play a critical role in the operators' decision to initiate an F-B operation. This study focuses on the how we establish the operation strategy for combined accident including the failure of secondary side in consideration of plant and operating conditions. Previous studies have usually focused on accidents involving a TLOFW accident. The plant conditions to make the operators confused seriously are usually the combined accident because the ORP only focuses on a single accident and FRP is less familiar with operators. The relationship between CET and PCT under various plant conditions is important to decide the limitation of initiating the F-B operation to prevent core damage

  16. Operating multireservoir hydropower systems for downstream water quality

    International Nuclear Information System (INIS)

    Hayes, D.F.

    1990-01-01

    Hydropower reservoir operations often impact tailwater quality and water quality in the stream or river below the impoundment for many miles. Determining optimal operating strategies for a system of hydropower reservoirs involves solving a highly dimensional nonlinear, nonconvex optimization problem. This research adds the additional complexities of downstream water quality considerations within the optimization formulation to determine operating strategies for a system of hydropower reservoirs operating in series (tandem) or parallel. The formulation was used to determine operating strategies for six reservoirs of the upper Cumberland river basin in Tennessee and Kentucky. Significant dissolved oxygen (DO) violations occur just upstream of Nashville, Tennessee below Old Hickory dam during the months of August and September. Daily reservoir releases were determined for the period of June through September which would produce the maximum hydropower revenue while meeting downstream water quality objectives. Optimal releases for three operational strategies were compared to historical operations for the years 1985, 1986, and 1988. These strategies included: spilling as necessary to meet water quality criteria, near normal operation (minimal spills), and drawdown of reservoirs as necessary to meet criteria without spills. Optimization results showed an 8% to 15% hydropower loss may be necessary to meet water quality criteria through spills and a 2% to 9% improvement in DO below Old Hickory may be possible without significant spills. Results also showed that substantial increases in initial headwater elevations would be necessary to meet daily DO criteria and avoid spills. The optimal control theory algorithm used to solve the problem proved to be an efficient and robust solver of this large optimization problem

  17. Comparison of Strategies for Climate Change Adaptation of Water Supply and Flood Control Reservoirs

    Science.gov (United States)

    Ng, T. L.; Yang, P.; Bhushan, R.

    2016-12-01

    With climate change, streamflows are expected to become more fluctuating, with more frequent and intense floods and droughts. This complicates reservoir operation, which is highly sensitive to inflow variability. We make a comparative evaluation of three strategies for adapting reservoirs to climate-induced shifts in streamflow patterns. Specifically, we examine the effectiveness of (i) expanding the capacities of reservoirs by way of new off-stream reservoirs, (ii) introducing wastewater reclamation to augment supplies, and (iii) improving real-time streamflow forecasts for more optimal decision-making. The first two are hard strategies involving major infrastructure modifications, while the third a soft strategy entailing adjusting the system operation. A comprehensive side-by-side comparison of the three strategies is as yet lacking in the literature despite the many past studies investigating the strategies individually. To this end, we developed an adaptive forward-looking linear program that solves to yield the optimal decisions for the current time as a function of an ensemble forecast of future streamflows. Solving the model repeatedly on a rolling basis with regular updating of the streamflow forecast simulates the system behavior over the entire operating horizon. Results are generated for two hypothetical water supply and flood control reservoirs of differing inflows and demands. Preliminary findings suggest that of the three strategies, improving streamflow forecasts to be most effective in mitigating the effects of climate change. We also found that, in average terms, both additional reservoir capacity and wastewater reclamation have potential to reduce water shortage and downstream flooding. However, in the worst case, the potential of the former to reduce water shortage is limited, and similarly so the potential of the latter to reduce downstream flooding.

  18. How well will the Surface Water and Ocean Topography (SWOT) mission observe global reservoirs?

    Science.gov (United States)

    Solander, Kurt C.; Reager, John T.; Famiglietti, James S.

    2016-03-01

    Accurate observations of global reservoir storage are critical to understand the availability of managed water resources. By enabling estimates of surface water area and height for reservoir sizes exceeding 250 m2 at a maximum repeat orbit of up to 21 days, the NASA Surface Water and Ocean Topography (SWOT) satellite mission (anticipated launch date 2020) is expected to greatly improve upon existing reservoir monitoring capabilities. It is thus essential that spatial and temporal measurement uncertainty for water bodies is known a priori to maximize the utility of SWOT observations as the data are acquired. In this study, we evaluate SWOT reservoir observations using a three-pronged approach that assesses temporal aliasing, errors due to specific reservoir spatial properties, and SWOT performance over actual reservoirs using a combination of in situ and simulated reservoir observations from the SWOTsim instrument simulator. Results indicate temporal errors to be less than 5% for the smallest reservoir sizes (100 km2). Surface area and height errors were found to be minimal (area SWOT, this study will be have important implications for future applications of SWOT reservoir measurements in global monitoring systems and models.

  19. Operation experience with the CYCLONE-OCTOPUS combination

    International Nuclear Information System (INIS)

    Bol, J.-L.; Chevalier, A.; Jongen, Y.; Lacroix, M.; Mathy, F.; Ryckewaert, G.

    1987-01-01

    Over the last year (till September 1986) the CYCLONE-OCTOPUS combination has been operated almost 85 % of the total possible time for nuclear physics, isotope production, radiobiology and neutrontherapy and technological applications. A new ECR-source for multicharged heavy ions using a Sm-Co permanent magnet octupole (OCTOPUS) was constructed at the C.R.C. in Louvain-la- Neuve during 1985. The source was put into full operation with the cyclotron by the end of October 1985. A minor problem of short term instability of the beam intensity was solved by changing the main stage microwave feed from radial to axial. During restart after this modification, a hole was melted, by accident due to a human error, in the octupole envelope, causing a water leak. Except from this, the new source operated continuously and reliably up to now. The performance level, which is comparable now to that of ECREVIS, is still preliminary and should be improved by future development. (author)

  20. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  1. Reservoir Engineering Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.; Schwarz, W.J.

    1977-12-14

    The Reservoir Engineering Management Program being conducted at Lawrence Berkeley Laboratory includes two major tasks: 1) the continuation of support to geothermal reservoir engineering related work, started under the NSF-RANN program and transferred to ERDA at the time of its formation; 2) the development and subsequent implementation of a broad plan for support of research in topics related to the exploitation of geothermal reservoirs. This plan is now known as the GREMP plan. Both the NSF-RANN legacies and GREMP are in direct support of the DOE/DGE mission in general and the goals of the Resource and Technology/Resource Exploitation and Assessment Branch in particular. These goals are to determine the magnitude and distribution of geothermal resources and reduce risk in their exploitation through improved understanding of generically different reservoir types. These goals are to be accomplished by: 1) the creation of a large data base about geothermal reservoirs, 2) improved tools and methods for gathering data on geothermal reservoirs, and 3) modeling of reservoirs and utilization options. The NSF legacies are more research and training oriented, and the GREMP is geared primarily to the practical development of the geothermal reservoirs. 2 tabs., 3 figs.

  2. [Effect of the Runoff-sediment Control of the Xiaolangdi Reservoir on DOC Transport].

    Science.gov (United States)

    Zhang, Yong-ling; Wang, Ming-shi; Dong, Yu-long

    2015-04-01

    The sampling was carried out in Sanmenxia hydrological station, Xiaolangdi hydrological station and Huayuankou hydrological station from November 2011 to October 2012. The impact of the runoff-sediment control of the Xiaolangdi reservoir on DOC transport,was analyzed. The results were as follows. DOC contents in Sanmenxia station, Xiaolangdi station and Huayuankou station were 1.97-2.71 mg-L(-1), 1.87-2.76 mg x L(-1) and 2.07-2.93 mg x L(-1), respectively, during the normal operation period of Xiaolangdi Reservoir and Sanmenxia reservoir, and the DOC content in the three reservoirs had obvious seasonal change. DOC contents in the three stations were 2.14-3.32 mg x L(-1), 2.21-2.84 mg x L(-1) and 2.11-2.84 mg x L(-1), respectively, during the runoff-sediment control, and the DOC content in the sediment-releasing period of reservoir was higher than that in the water-releasing period of reservoir. DOC content had no significant correlation with TSS and flow either during the normal operation or during the water-sediment regulation of the reservoir. But the DOC content had significant correlation with water temperature during the normal operation of the reservoir. DOC flux in Sanmenxia station was similar to that in Xiaolangdi station from November to March. DOC flux in Sanmenxia station was obviously less than that in Xiaolangdi station from April to July. And the DOC flux in Sanmenxia station was much higher than that in Xiaolangdi station from August to October. The result showed that DOC was retained from August to October by Xiaolangdi reservoir and discharged from Xiaolangdi reservoir from April to July. The yearly DOC fluxes were 8.6 x 10(10), 9.0 x 10(10) and 9.7 x 10(10) g respectively in Sanmenxia station, Xiaolangdi station and Huayuankou station. The DOC flux of Sanmenxia station was the highest in September, which accounted for 22.0% of the yearly DOC flux, and the DOC flux of Xiaolangdi station was the highest in June, which accounted for 17.6% of the

  3. Stochastic nonlinear time series forecasting using time-delay reservoir computers: performance and universality.

    Science.gov (United States)

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2014-07-01

    Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional covariances associated to multivariate discrete-time nonlinear stochastic processes of VEC-GARCH type as well as in the prediction of factual daily market realized volatilities computed with intraday quotes, using as training input daily log-return series of moderate size. We tackle some problems associated to the lack of task-universality for individually operating reservoirs and propose a solution based on the use of parallel arrays of time-delay reservoirs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effect of pore structure on the seepage characteristics of tight sandstone reservoirs: A case study of Upper Jurassic Penglaizhen Fm reservoirs in the western Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Liqiang Sima

    2017-01-01

    Full Text Available Tight sandstone reservoirs are characterized by complex pore structures and strong heterogeneity, and their seepage characteristics are much different from those of conventional sandstone reservoirs. In this paper, the tight sandstone reservoirs of Upper Jurassic Penglaizhen Fm in western Sichuan Basin were analyzed in terms of their pore structures by using the data about physical property, mercury injection and nuclear magnetic resonance (NMR tests. Then, the seepage characteristics and the gas–water two-phase migration mechanisms and distribution of tight sandstone reservoirs with different types of pore structures in the process of hydrocarbon accumulation and development were simulated by combining the relative permeability experiment with the visual microscopic displacement model. It is shown that crotch-like viscous fingering occurs in the process of gas front advancing in reservoirs with different pore structures. The better the pore structure is, the lower the irreducible water saturation is; the higher the gas-phase relative permeability of irreducible water is, the more easily the gas reservoir can be developed. At the late stage of development, the residual gas is sealed in reservoirs in the forms of bypass, cutoff and dead end. In various reservoirs, the interference between gas and water is stronger, so gas and water tends to be produced simultaneously. The sealed gas may reduce the production rate of gas wells significantly, and the existence of water phase may reduce the gas permeability greatly; consequently, the water-bearing low-permeability tight sandstone gas reservoirs reveal serious water production, highly-difficult development and low-recovery percentage at the late stage, which have adverse impacts on the effective production and development of gas wells.

  5. Recovery by imbibition from the lower Tamaulipas reservoir section A, Tamaulipas-Constituciones field

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, O D; Teyssier S, J

    1967-08-01

    The Tamaulipas-Constituciones Field is situated about 27 km from the city and port of Tampico, Mex., and is a part of the N. district, of the N. Development Zone of Petroleos Mexicanos. This article describes a method designed to calculate the recovery of oil by means of the application of a secondary recovery process based on the phenomenon of imbibition. The flow in the reservoir follows a system of fractures which are interconnected both in series, parallel, and randomly distributed. A more adequate method of development was determined than that which was enforced when the area wells started their initial production. Applying this method, 2 programs were developed; the first for an operation pressure of 125 kg per sq cm and the second for an operation pressure of 100 kg per cm. The production history is graphically represented. The characteristics of the reservoir are described, including the rock properties and the reservoir fluids. Complete information is furnished on the entire operation by means of tabular data. (15 refs.)

  6. Production performance laws of vertical wells by volume fracturing in CBM reservoirs

    Directory of Open Access Journals (Sweden)

    Liehui Zhang

    2017-05-01

    Full Text Available Volume fracturing technology has been widely applied in the development of coalbed methane (CBM reservoirs. As for the stimulated reservoir volume (SRV created by volume fracturing, the seepage laws of fluids are described more accurately and rationally in the rectangular composite model than in the traditional radial composite model. However, the rectangular composite model considering SRV cannot be solved using the analytical or semi-analytical function method, and its solution from the linear flow model has larger errors. In view of this, SRV areas of CBM reservoirs were described by means of dual-medium model in this paper. The complex CBM migration mechanisms were investigated comprehensively, including adsorption, desorption, diffusion and seepage. A well testing model for rectangular composite fracturing wells in CBM reservoirs based on unsteady-state diffusion was built and solved using the boundary element method combined with Laplace transformation, Stehfest numerical inversion and computer programming technology. Thus, production performance laws of CBM reservoirs were clarified. The flow regimes of typical well testing curves were divided and the effects on change laws of production performance from the boundary size of gas reservoirs, permeability of volume fractured areas, adsorption gas content, reservoir permeability and SRV size were analyzed. Eventually, CBM reservoirs after the volume fracturing stimulation were described more accurately and rationally. This study provides a theoretical basis for a better understanding of the CBM migration laws and an approach to evaluating and developing CBM reservoirs efficiently and rationally.

  7. A Tool for Assessing Future Capacity Loss Due to Sedimentation in the United States' Reservoirs

    Science.gov (United States)

    Pinson, A. O.; Baker, B.; White, K. D.

    2017-12-01

    Federal reservoirs are critical components of the United States' water supply, flood risk management, hydropower and navigation infrastructure. These reservoirs included capacity for storage loss due to the deposition of sediment by inflowing streams in their original design. However, the actual rate of capacity loss experienced is controlled in part by climate, topography, soils, and land use/land cover, and may vary from the design. To assess the current and future vulnerability of its reservoirs to sedimentation. USACE has developed an online planning tool to identify USACE reservoirs where sedimentation is currently a problem (e.g., sedimentation rate exceeds design sedimentation rate, or zone losses disproportionately affect authorized purposes), and reservoirs where rates are expected to increase significantly in the future. The goal is to be able to prioritize operation and maintenance actions to minimize the effects of reservoir capacity loss on authorized purposes and help maximize reservoir use life.

  8. Assessing water reservoirs management and development in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    A. Castelletti

    2012-01-01

    Full Text Available In many developing countries water is a key renewable resource to complement carbon-emitting energy production and support food security in the face of demand pressure from fast-growing industrial production and urbanization. To cope with undergoing changes, water resources development and management have to be reconsidered by enlarging their scope across sectors and adopting effective tools to analyze current and projected infrastructure potential and operation strategies. In this paper we use multi-objective deterministic and stochastic optimization to assess the current reservoir operation and planned capacity expansion in the Red River Basin (Northern Vietnam, and to evaluate the potential improvement by the adoption of a more sophisticated information system. To reach this goal we analyze the historical operation of the major controllable infrastructure in the basin, the HoaBinh reservoir on the Da River, explore re-operation options corresponding to different tradeoffs among the three main objectives (hydropower production, flood control and water supply, using multi-objective optimization techniques, namely Multi-Objective Genetic Algorithm. Finally, we assess the structural system potential and the need for capacity expansion by application of Deterministic Dynamic Programming. Results show that the current operation can only be relatively improved by advanced optimization techniques, while investment should be put into enlarging the system storage capacity and exploiting additional information to inform the operation.

  9. Universal approximators for multi-objective direct policy search in water reservoir management problems: a comparative analysis

    Science.gov (United States)

    Giuliani, Matteo; Mason, Emanuele; Castelletti, Andrea; Pianosi, Francesca

    2014-05-01

    The optimal operation of water resources systems is a wide and challenging problem due to non-linearities in the model and the objectives, high dimensional state-control space, and strong uncertainties in the hydroclimatic regimes. The application of classical optimization techniques (e.g., SDP, Q-learning, gradient descent-based algorithms) is strongly limited by the dimensionality of the system and by the presence of multiple, conflicting objectives. This study presents a novel approach which combines Direct Policy Search (DPS) and Multi-Objective Evolutionary Algorithms (MOEAs) to solve high-dimensional state and control space problems involving multiple objectives. DPS, also known as parameterization-simulation-optimization in the water resources literature, is a simulation-based approach where the reservoir operating policy is first parameterized within a given family of functions and, then, the parameters optimized with respect to the objectives of the management problem. The selection of a suitable class of functions to which the operating policy belong to is a key step, as it might restrict the search for the optimal policy to a subspace of the decision space that does not include the optimal solution. In the water reservoir literature, a number of classes have been proposed. However, many of these rules are based largely on empirical or experimental successes and they were designed mostly via simulation and for single-purpose reservoirs. In a multi-objective context similar rules can not easily inferred from the experience and the use of universal function approximators is generally preferred. In this work, we comparatively analyze two among the most common universal approximators: artificial neural networks (ANN) and radial basis functions (RBF) under different problem settings to estimate their scalability and flexibility in dealing with more and more complex problems. The multi-purpose HoaBinh water reservoir in Vietnam, accounting for hydropower

  10. Reservoirs and petroleum systems of the Gulf Coast

    Science.gov (United States)

    Pitman, Janet K.

    2010-01-01

    This GIS product was designed to provide a quick look at the ages and products (oil or gas) of major reservoir intervals with respect to the different petroleum systems that have been identified in the Gulf Coast Region. The three major petroleum source-rock systems are the Tertiary (Paleocene-Eocene) Wilcox Formation, Cretaceous (Turonian) Eagle Ford Formation, and Jurassic (Oxfordian) Smackover Formation. The ages of the reservoir units extend from Jurassic to Pleistocene. By combining various GIS layers, the user can gain insights into the maximum extent of each petroleum system and the pathways for petroleum migration from the source rocks to traps. Interpretations based on these data should improve development of exploration models for this petroleum-rich province.

  11. Production forecasting and economic evaluation of horizontal wells completed in natural fractured reservoirs

    International Nuclear Information System (INIS)

    Evans, R. D.

    1996-01-01

    A technique for optimizing recovery of hydrocarbons from naturally fractured reservoirs using horizontal well technology was proposed. The technique combines inflow performance analysis, production forecasting and economic considerations, and is based on material balance analysis and linear approximations of reservoir fluid properties as functions of reservoir pressure. An economic evaluation model accounting for the time value of cash flow, interest and inflation rates, is part of the package. Examples of using the technique have been demonstrated. The method is also applied to a gas well producing from a horizontal wellbore intersecting discrete natural fractures. 11 refs., 2 tabs,. 10 figs

  12. Negotiating designs of multi-purpose reservoir systems in international basins

    Science.gov (United States)

    Geressu, Robel; Harou, Julien

    2016-04-01

    Given increasing agricultural and energy demands, coordinated management of multi-reservoir systems could help increase production without further stressing available water resources. However, regional or international disputes about water-use rights pose a challenge to efficient expansion and management of many large reservoir systems. Even when projects are likely to benefit all stakeholders, agreeing on the design, operation, financing, and benefit sharing can be challenging. This is due to the difficulty of considering multiple stakeholder interests in the design of projects and understanding the benefit trade-offs that designs imply. Incommensurate performance metrics, incomplete knowledge on system requirements, lack of objectivity in managing conflict and difficulty to communicate complex issue exacerbate the problem. This work proposes a multi-step hybrid multi-objective optimization and multi-criteria ranking approach for supporting negotiation in water resource systems. The approach uses many-objective optimization to generate alternative efficient designs and reveal the trade-offs between conflicting objectives. This enables informed elicitation of criteria weights for further multi-criteria ranking of alternatives. An ideal design would be ranked as best by all stakeholders. Resource-sharing mechanisms such as power-trade and/or cost sharing may help competing stakeholders arrive at designs acceptable to all. Many-objective optimization helps suggests efficient designs (reservoir site, its storage size and operating rule) and coordination levels considering the perspectives of multiple stakeholders simultaneously. We apply the proposed approach to a proof-of-concept study of the expansion of the Blue Nile transboundary reservoir system.

  13. Adaptive Regulation of the Northern California Reservoir System for Water, Energy, and Environmental Management

    Science.gov (United States)

    Georgakakos, A. P.; Kistenmacher, M.; Yao, H.; Georgakakos, K. P.

    2014-12-01

    The 2014 National Climate Assessment of the US Global Change Research Program emphasizes that water resources managers and planners in most US regions will have to cope with new risks, vulnerabilities, and opportunities, and recommends the development of adaptive capacity to effectively respond to the new water resources planning and management challenges. In the face of these challenges, adaptive reservoir regulation is becoming all the more ncessary. Water resources management in Northern California relies on the coordinated operation of several multi-objective reservoirs on the Trinity, Sacramento, American, Feather, and San Joaquin Rivers. To be effective, reservoir regulation must be able to (a) account for forecast uncertainty; (b) assess changing tradeoffs among water uses and regions; and (c) adjust management policies as conditions change; and (d) evaluate the socio-economic and environmental benefits and risks of forecasts and policies for each region and for the system as a whole. The Integrated Forecast and Reservoir Management (INFORM) prototype demonstration project operated in Northern California through the collaboration of several forecast and management agencies has shown that decision support systems (DSS) with these attributes add value to stakeholder decision processes compared to current, less flexible management practices. Key features of the INFORM DSS include: (a) dynamically downscaled operational forecasts and climate projections that maintain the spatio-temporal coherence of the downscaled land surface forcing fields within synoptic scales; (b) use of ensemble forecast methodologies for reservoir inflows; (c) assessment of relevant tradeoffs among water uses on regional and local scales; (d) development and evaluation of dynamic reservoir policies with explicit consideration of hydro-climatic forecast uncertainties; and (e) focus on stakeholder information needs.This article discusses the INFORM integrated design concept, underlying

  14. Reservoir characterization based on tracer response and rank analysis of production and injection rates

    Energy Technology Data Exchange (ETDEWEB)

    Refunjol, B.T. [Lagoven, S.A., Pdvsa (Venezuela); Lake, L.W. [Univ. of Texas, Austin, TX (United States)

    1997-08-01

    Quantification of the spatial distribution of properties is important for many reservoir-engineering applications. But, before applying any reservoir-characterization technique, the type of problem to be tackled and the information available should be analyzed. This is important because difficulties arise in reservoirs where production records are the only information for analysis. This paper presents the results of a practical technique to determine preferential flow trends in a reservoir. The technique is a combination of reservoir geology, tracer data, and Spearman rank correlation coefficient analysis. The Spearman analysis, in particular, will prove to be important because it appears to be insightful and uses injection/production data that are prevalent in circumstances where other data are nonexistent. The technique is applied to the North Buck Draw field, Campbell County, Wyoming. This work provides guidelines to assess information about reservoir continuity in interwell regions from widely available measurements of production and injection rates at existing wells. The information gained from the application of this technique can contribute to both the daily reservoir management and the future design, control, and interpretation of subsequent projects in the reservoir, without the need for additional data.

  15. Risk Analysis of Reservoir Flood Routing Calculation Based on Inflow Forecast Uncertainty

    Directory of Open Access Journals (Sweden)

    Binquan Li

    2016-10-01

    Full Text Available Possible risks in reservoir flood control and regulation cannot be objectively assessed by deterministic flood forecasts, resulting in the probability of reservoir failure. We demonstrated a risk analysis of reservoir flood routing calculation accounting for inflow forecast uncertainty in a sub-basin of Huaihe River, China. The Xinanjiang model was used to provide deterministic flood forecasts, and was combined with the Hydrologic Uncertainty Processor (HUP to quantify reservoir inflow uncertainty in the probability density function (PDF form. Furthermore, the PDFs of reservoir water level (RWL and the risk rate of RWL exceeding a defined safety control level could be obtained. Results suggested that the median forecast (50th percentiles of HUP showed better agreement with observed inflows than the Xinanjiang model did in terms of the performance measures of flood process, peak, and volume. In addition, most observations (77.2% were bracketed by the uncertainty band of 90% confidence interval, with some small exceptions of high flows. Results proved that this framework of risk analysis could provide not only the deterministic forecasts of inflow and RWL, but also the fundamental uncertainty information (e.g., 90% confidence band for the reservoir flood routing calculation.

  16. Reservoir Changes Derived from Seismic Observations at The Geysers Geothermal Field, CA, USA

    Science.gov (United States)

    Gritto, R.; Jarpre, S.

    2012-04-01

    Induced seismicity associated with the exploitation of geothermal fields is used as a tool to characterize and delineate changes associated with injection and production of fluids from the reservoir. At the same time public concern of felt seismicity has led to objections against the operation of geothermal reservoirs in close proximity to population centers. Production at the EGS sites in Basel (Switzerland) was stopped after renewed seismicity caused concern and objection from the public in the city. Operations in other geothermal reservoirs had to be scaled back or interrupted due to an unexpected increase in seismicity (Soultz-sous-forêt, France, Berlín, El Salvador). As a consequence of these concerns and in order to optimize the use of induced seismicity for reservoir engineering purposes, it becomes imperative to understand the relationship between seismic events and stress changes in the reservoir. We will address seismicity trends at The Geysers Geothermal Reservoir, CA USA, to understand the role of historical seismicity associated with past injection of water and/or production of steam. Our analysis makes use of a comprehensive database of earthquakes and associated phase arrivals from 2004 to 2011. A high-precision sub-set of the earthquake data was selected to analyze temporal changes in seismic velocities and Vp/Vs-ratio throughout the whole reservoir. We find relatively low Vp/Vs values in 2004 suggestive of a vapor dominated reservoir. With passing time, however, the observed temporal increase in Vp/Vs, coupled with a decrease in P- and S-wave velocities suggests the presence of fluid-filled fractured rock. Considering the start of a continuous water injection project in 2004, it can be concluded that the fluid saturation of the reservoir has successfully recovered. Preliminary results of 3-D velocity inversions of seismic data appear to corroborate earlier findings that the lowest Vp/Vs estimates are observed in the center of the reservoir

  17. Drought propagation in the Paraná Basin, Brazil: from rainfall deficits to impacts on reservoir storage

    Science.gov (United States)

    Melo, D. D.; Wendland, E.

    2017-12-01

    The sensibility and resilience of hydrologic systems to climate changes are crucial for estimating potential impacts of droughts, responsible for major economic and human losses globally. Understanding how droughts propagate is a key element to develop a predictive understanding for future management and mitigation strategies. In this context, this study investigated the drought propagation in the Paraná Basin (PB), Southeast Brazil, a major hydroelectricity producing region with 32 % (60 million people) of the country's population. Reservoir storage (RESS), river discharge (Q) and rainfall (P) data were used to assess the linkages between meteorological and hydrological droughts, characterized by the Standard Precipitation Index (SPI) and Streamflow Drought Index (SDI), respectively. The data are from 37 sub-basins within the PB, consisting of contributing areas of 37 reservoirs (250 km3 of stored water) within the PB for the period between 1995 and 2015. The response time (RT) of the hydrologic system to droughts, given as the time lag between P, Q and RESS, was quantified using a non-parametric statistical method that combines cumulative sums and Bootstrap resampling technique. Based on our results, the RTs of the hydrologic system of the PB varies from 0 to 6 months, depending on a number of aspects: lithology, topography, dam operation, etc. Linkages between SPI and SDI indicated that the anthropogenic control (dam operation) plays an important role in buffering drought impacts to downstream sub-basins: SDI decreased from upstream to downstream despite similar SPI values over the whole area. Comparisons between sub-basins, with variable drainage sizes (5,000 - 50,000 km2), confirmed the benefice of upstream reservoirs in reducing hydrological droughts. For example, the RT for a 4,800 km2 basin was 6 months between P and Q and 9 months between Q and RESS, under anthropogenic control. Conversely, the RT to precipitation for a reservoir subjected to natural

  18. Applying a reservoir functional-zone paradigm to littoral bluegills: differences in length and catch frequency?

    Directory of Open Access Journals (Sweden)

    Nathan Ruhl

    2014-08-01

    Full Text Available Reservoirs exhibit gradients in conditions and resources along the transition from lotic to lentic habitat that may be important to bluegill ecology. The lotic–lentic gradient can be partitioned into three functional zones: the riverine, transitional, and lacustrine zones. We measured catch frequency and length of bluegills (Lepomis macrochirus captured along the periphery of these areas (i.e., in the littoral zone of each functional zone for four small reservoirs in Southeastern Ohio during the summer months of three years. Catch frequency differed between zones for two reservoirs, but these differences were not observed in other years. There was no relationship between reservoir zone and either standard length or catch frequency when the data for all reservoirs were pooled, but we did observe a bimodal length distribution in all reservoirs. A combination of ecological factors including inter and intraspecific competition, predation intensity, management practices, limnology, and assemblage complexity may be mitigating bluegill distribution and abundance in reservoirs. Therefore, a functional zone (categorical approach to understanding bluegill ecology in reservoirs may not be appropriate.

  19. Mutual Solubility of MEG, Water and Reservoir Fluid: Experimental Measurements and Modeling using the CPA Equation of State

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2011-01-01

    This work presents new experimental phase equilibrium data of binary MEG-reservoir fluid and ternary MEG-water-reservoir fluid systems at temperatures 275-326 K and at atmospheric pressure. The reservoir fluid consists of a natural gas condensate from a Statoil operated gas field in the North Sea...... compounds. It has also been extended to reservoir fluids in presence of water and polar chemicals using a Pedersen like characterization method with modified correlations for critical temperature, pressure and acentric factor. In this work CPA is applied to the prediction of mutual solubility of reservoir...

  20. Can re-regulation reservoirs and batteries cost-effectively mitigate sub-daily hydropeaking?

    Science.gov (United States)

    Haas, J.; Nowak, W.; Anindito, Y.; Olivares, M. A.

    2017-12-01

    To compensate for mismatches between generation and load, hydropower plants frequently operate in strong hydropeaking schemes, which is harmful to the downstream ecosystem. Furthermore, new power market structures and variable renewable systems may exacerbate this behavior. Ecological constraints (minimum flows, maximum ramps) are frequently used to mitigate hydropeaking, but these stand in direct tradeoff with the operational flexibility required for integrating renewable technologies. Fortunately, there are also physical methods (i.e. re-regulation reservoirs and batteries) but to date, there are no studies about their cost-effectiveness for hydropeaking mitigation. This study aims to fill that gap. For this, we formulate an hourly mixed-integer linear optimization model to plan the weekly operation of a hydro-thermal-renewable power system from southern Chile. The opportunity cost of water (needed for this weekly scheduling) is obtained from a mid-term programming solved with dynamic programming. We compare the current (unconstrained) hydropower operation with an ecologically constrained operation. The resulting cost increase is then contrasted with the annual payments necessary for the physical hydropeaking mitigation options. For highly constrained operations, both re-regulation reservoirs and batteries show to be economically attractive for hydropeaking mitigation. For intermediate constrained scenarios, re-regulation reservoirs are still economic, whereas batteries can be a viable solution only if they become cheaper in future. Given current cost projections, their break-even point (for hydropeaking mitigation) is expected within the next ten years. Finally, less stringent hydropeaking constraints do not justify physical mitigation measures, as the necessary flexibility can be provided by other power plants of the system.

  1. Modeling reservoir geomechanics using discrete element method : Application to reservoir monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Alassi, Haitham Tayseer

    2008-09-15

    Understanding reservoir geomechanical behavior is becoming more and more important for the petroleum industry. Reservoir compaction, which may result in surface subsidence and fault reactivation, occurs during reservoir depletion. Stress changes and possible fracture development inside and outside a depleting reservoir can be monitored using time-lapse (so-called '4D') seismic and/or passive seismic, and this can give valuable information about the conditions of a given reservoir during production. In this study we will focus on using the (particle-based) Discrete Element Method (DEM) to model reservoir geomechanical behavior during depletion and fluid injection. We show in this study that DEM can be used in modeling reservoir geomechanical behavior by comparing results obtained from DEM to those obtained from analytical solutions. The match of the displacement field between DEM and the analytical solution is good, however there is mismatch of the stress field which is related to the way stress is measured in DEM. A good match is however obtained by measuring the stress field carefully. We also use DEM to model reservoir geomechanical behavior beyond the elasticity limit where fractures can develop and faults can reactivate. A general technique has been developed to relate DEM parameters to rock properties. This is necessary in order to use correct reservoir geomechanical properties during modeling. For any type of particle packing there is a limitation that the maximum ratio between P- and S-wave velocity Vp/Vs that can be modeled is 3 . The static behavior for a loose packing is different from the dynamic behavior. Empirical relations are needed for the static behavior based on numerical test observations. The dynamic behavior for both dense and loose packing can be given by analytical relations. Cosserat continuum theory is needed to derive relations for Vp and Vs. It is shown that by constraining the particle rotation, the S-wave velocity can be

  2. A global water supply reservoir yield model with uncertainty analysis

    International Nuclear Information System (INIS)

    Kuria, Faith W; Vogel, Richard M

    2014-01-01

    Understanding the reliability and uncertainty associated with water supply yields derived from surface water reservoirs is central for planning purposes. Using a global dataset of monthly river discharge, we introduce a generalized model for estimating the mean and variance of water supply yield, Y, expected from a reservoir for a prespecified reliability, R, and storage capacity, S assuming a flow record of length n. The generalized storage–reliability–yield (SRY) relationships reported here have numerous water resource applications ranging from preliminary water supply investigations, to economic and climate change impact assessments. An example indicates how our generalized SRY relationship can be combined with a hydroclimatic model to determine the impact of climate change on surface reservoir water supply yields. We also document that the variability of estimates of water supply yield are invariant to characteristics of the reservoir system, including its storage capacity and reliability. Standardized metrics of the variability of water supply yields are shown to depend only on the sample size of the inflows and the statistical characteristics of the inflow series. (paper)

  3. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and

  4. Technical difficulties of logging while drilling in carbonate reservoirs and the countermeasures: A case study from the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Shudong Zhang

    2015-12-01

    Full Text Available In the Sichuan Basin, carbonate reservoirs are characterized by deep burial depth and strong heterogeneity, so it is difficult to conduct structure steering, pore space reservoir tracking and trajectory control in the process of geosteering logging while drilling. In this paper, a series of corresponding techniques for structure, reservoir and formation tracking were proposed after analysis was conducted on multiple series of carbonate strata in terms of their geologic and logging response characteristics. And investigation was performed on the adaptabilities of the following logging technologies to geosteering while drilling, including gamma ray imaging while drilling, resistivity imaging while drilling, density imaging while drilling, gamma ray logging while drilling, resistivity logging while drilling, neutron logging while drilling and density logging while drilling. After while drilling information was thoroughly analyzed, the logging suites for four common types of complicated reservoirs (thin layered reservoirs, thick massive reservoirs, denuded karst reservoirs and shale gas reservoirs were optimized, and five logging combinations suitable for different formations and reservoirs were proposed, including gamma ray logging + porosity + resistivity imaging, gamma ray logging + resistivity imaging, gamma ray logging + porosity + resistivity logging, gamma ray imaging + resistivity logging, and gamma ray logging. Field application indicates that it is of great reference and application value to use this method for the first time to summarize logging while drilling combinations for different types of carbonate reservoirs.

  5. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  6. Fiscal 1997 report on the verification survey of geothermal exploration technology. 5-1. Development of the reservoir variation survey method (technology of prediction of reservoir variation); 1997 nendo chinetsu tansa gijutsu nado kensho chosa. Choryuso hendo tansaho kaihatsu (choryuso hendo yosoku gijutsu) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the reservoir evaluation at an initial developmental stage and stabilization/maintenance of power after the start of operation, the fiscal 1997 result was described of the study of technology of prediction of reservoir variation. Using the conventional post processor, feasibilities were computed of reservoir models and behavior after the development, and gravity/self potential/resistivity variation. Variation in the seismic wave speed structure was large in travel time change distribution. The measuring accuracy of 1m sec is required to get enough detection resolving power. A conceptual design of the post processor development was conducted to study a system operated on Windows. Based on the reservoir numerical simulation technology, by taking in variation parameters such as gravity and self potentials as new model constraint conditions, the reservoir modeling technology which increased in accuracy by history matching was trially developed. Using the conventional reservoir model in the Oguni area, predictably computed were reservoir behaviors during 50 years which simulated a 20 MW development. Effectiveness of the post processor were able to be shown though influenced by characteristics such as permeability and resistivity. 74 refs., 95 refs., 12 tabs.

  7. Assessment of the Trophic State and Chlorophyll-A Concentrations using Landsat OLI in Karaoun Reservoir Lebanon

    International Nuclear Information System (INIS)

    Fadel, A.; Faour, GH.; Slim, K.

    2016-01-01

    Harmful algal blooms have become a worldwide environmental problem. A regular and cost -effective monitoring of these blooms is highly needed by lakes managers. Satellite remote sensing imagery like Landsat Operational Land Imager (OLI) can be used to assess and monitor chlorophyll-a in water bodies over large areas in a cost-effective way. In this study, the accuracy of Landsat OLI to estimate chlorophyll-a was examined. Four field campaigns and cloud free images of Landsat OLI with 30 m resolution (01 May 2013, 21 August 2013, 10 July 2015, and 11 August 2015) were used in this study to determine the accuracy of Landsat OLI in estimating chlorophyll-a in a 12 km2 fresh water body, Karaoun reservoir. After atmospheric correction of these images, reflectance of single and multiple band combinations were compared to field chlorophyll-a data. Results of field campaigns showed that the trophic state of Karaoun reservoir is still eutrophic to hypereutrophic withhigh nutrient concentration andlow phytoplankton biodiversity, dominatedby cyanobacteria species, Microcystis aeruginosa and Aphanizomenon ovalisporum. On single band level, the n situ chlorophyll-a measurement correlated best with band 5 (0.85 -0.88 μm), with R=0.75 and R2=0.57.Highest correlation (R=0.84 and R2=0.72) was obtained using band combination, B2:B4 band ratio multiplied by B5. Results indicated that Landsat OLI can be used effectively to determine chlorophyll-a concentration in lakes and reservoirs. We recommend the application of Landsat OLI as a satisfactory and cost effective method for monitoring chlorophyll-a in other lakes through-out the world. (author)

  8. Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Horne, Roland N.; Li, Kewen; Alaskar, Mohammed; Ames, Morgan; Co, Carla; Juliusson, Egill; Magnusdottir, Lilja

    2012-06-30

    This report highlights the work that was done to characterize fractured geothermal reservoirs using production data. That includes methods that were developed to infer characteristic functions from production data and models that were designed to optimize reinjection scheduling into geothermal reservoirs, based on these characteristic functions. The characterization method provides a robust way of interpreting tracer and flow rate data from fractured reservoirs. The flow-rate data are used to infer the interwell connectivity, which describes how injected fluids are divided between producers in the reservoir. The tracer data are used to find the tracer kernel for each injector-producer connection. The tracer kernel describes the volume and dispersive properties of the interwell flow path. A combination of parametric and nonparametric regression methods were developed to estimate the tracer kernels for situations where data is collected at variable flow-rate or variable injected concentration conditions. The characteristic functions can be used to calibrate thermal transport models, which can in turn be used to predict the productivity of geothermal systems. This predictive model can be used to optimize injection scheduling in a geothermal reservoir, as is illustrated in this report.

  9. SILTATION IN RESERVOIRS

    African Journals Online (AJOL)

    Keywords: reservoir model, siltation, sediment, catchment, sediment transport. 1. Introduction. Sediment ... rendered water storage structures useless in less than 25 years. ... reservoir, thus reducing the space available for water storage and ...

  10. A Novel Method for Performance Analysis of Compartmentalized Reservoirs

    Directory of Open Access Journals (Sweden)

    Shahamat Mohammad Sadeq

    2016-05-01

    Full Text Available This paper presents a simple analytical model for performance analysis of compartmentalized reservoirs producing under Constant Terminal Rate (CTR and Constant Terminal Pressure (CTP. The model is based on the well-known material balance and boundary dominated flow equations and is written in terms of capacitance and resistance of a production and a support compartment. These capacitance and resistance terms account for a combination of reservoir parameters which enable the developed model to be used for characterizing such systems. In addition to considering the properties contrast between the two reservoir compartments, the model takes into account existence of transmissibility barriers with the use of resistance terms. The model is used to analyze production performance of unconventional reservoirs, where the multistage fracturing of horizontal wells effectively creates a Stimulated Reservoir Volume (SRV with an enhanced permeability surrounded by a non-stimulated region. It can also be used for analysis of compartmentalized conventional reservoirs. The analytical solutions provide type curves through which the controlling reservoirs parameters of a compartmentalized system can be estimated. The contribution of the supporting compartment is modeled based on a boundary dominated flow assumption. The transient behaviour of the support compartment is captured by application of “distance of investigation” concept. The model shows that depletion of the production and support compartments exhibit two unit slopes on a log-log plot of pressure versus time for CTR. For CTP, however, the depletions display two exponential declines. The depletion signatures are separated by transition periods, which depend on the contribution of the support compartment (i.e. transient or boundary dominated flow. The developed equations can be implemented easily in a spreadsheet application, and are corroborated with the use of a numerical simulation. The study

  11. Organic and weed control in water supply reservoirs of power plants

    International Nuclear Information System (INIS)

    Eswaran, M.S.

    2000-01-01

    Aquatic weeds and algal control in water supply reservoirs used for multipurpose use need specific attention, since they pose a lot of problem for the operating plants by affecting (a) the water quality of boiler and feed waters, (b) the performance of DM plants by reducing the efficiency of Anion beds, (c) the performance of Activated Carbon Filters (ACF) and (d) fouling induced corrosion problems in cooling water systems (Heat Exchangers and Piping materials) causing plant outages leading to production losses. The photosynthetic activity of planktonic plants which are growing abundantly in the open reservoir, sustained by the relatively high inorganic phosphate levels shoots up the pH of the reservoir water to very high levels. High pH, Total Dissolved Solids (TDS) and depleted plants can increase corrosion problems affecting plant performance. This paper focuses on the type of weeds prominent in the water supply reservoir at Kalpakkam and the associated problems in the Nuclear Power Plants (NPPs). (author)

  12. Behaviour of gas production from type 3 hydrate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Pooladi-Darvish, M. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering]|[Fekete Associates Inc., Calgary, AB (Canada); Zatsepina, O. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Hong, H. [Fekete Associates Inc., Calgary, AB (Canada)

    2008-07-01

    The possible role of gas hydrates as a potential energy resource was discussed with particular reference to methods for estimating the rate of gas production from hydrate reservoirs under different operating conditions. This paper presented several numerical simulations studies of gas production from type 3 hydrate reservoirs in 1-D and 2-D geometries. Type 3 reservoirs include gas production from hydrate-reservoirs that lie totally within the hydrate stability zone and are sandwiched by impermeable layers on top and bottom. The purpose of this study was to better understand hydrate decomposition by depressurization. The study questioned whether 1-D modeling of type 3 hydrate reservoirs is a reasonable approximation. It also determined whether gas rate increases or decreases with time. The important reservoir characteristics for determining the rate of gas production were identified. Last, the study determined how competition between fluid and heat flow affects hydrate decomposition. This paper also described the relation and interaction between the heat and fluid flow mechanisms in depressurization of type 3 hydrate reservoirs. All results of 1-D and 2-D numerical simulation and analyses were generated using the STARS simulator. It was shown that the rate of gas production depends on the initial pressure/temperature conditions and permeability of the hydrate bearing formation. A high peak rate may be achieved under favourable conditions, but this peak rate is obtained after an initial period where the rate of gas production increases with time. The heat transfer in the direction perpendicular to the direction of fluid flow is significant, requiring 2D modeling. The hydraulic diffusivity is low because of the low permeability of hydrate-bearing formations. This could result in competition between heat and fluid flow, thereby influencing the behaviour of decomposition. 6 refs., 3 tabs., 12 figs.

  13. Isotopic insights into microbial sulfur cycling in oil reservoirs

    Directory of Open Access Journals (Sweden)

    Christopher G Hubbard

    2014-09-01

    Full Text Available Microbial sulfate reduction in oil reservoirs (biosouring is often associated with secondary oil production where seawater containing high sulfate concentrations (~28 mM is injected into a reservoir to maintain pressure and displace oil. The sulfide generated from biosouring can cause corrosion of infrastructure, health exposure risks, and higher production costs. Isotope monitoring is a promising approach for understanding microbial sulfur cycling in reservoirs, enabling early detection of biosouring, and understanding the impact of souring. Microbial sulfate reduction is known to result in large shifts in the sulfur and oxygen isotope compositions of the residual sulfate, which can be distinguished from other processes that may be occurring in oil reservoirs, such as precipitation of sulfate and sulfide minerals. Key to the success of this method is using the appropriate isotopic fractionation factors for the conditions and processes being monitored. For a set of batch incubation experiments using a mixed microbial culture with crude oil as the electron donor, we measured a sulfur fractionation factor for sulfate reduction of -30‰. We have incorporated this result into a simplified 1D reservoir reactive transport model to highlight how isotopes can help discriminate between biotic and abiotic processes affecting sulfate and sulfide concentrations. Modeling results suggest that monitoring sulfate isotopes can provide an early indication of souring for reservoirs with reactive iron minerals that can remove the produced sulfide, especially when sulfate reduction occurs in the mixing zone between formation waters containing elevated concentrations of volatile fatty acids and injection water containing elevated sulfate. In addition, we examine the role of reservoir thermal, geochemical, hydrological, operational and microbiological conditions in determining microbial souring dynamics and hence the anticipated isotopic signatures.

  14. Application of the Ommaya Reservoir in Managing Ventricular Hemorrhage.

    Science.gov (United States)

    Yang, Xi-Tao; Feng, Dong-Fu; Zhao, Liang; Sun, Zhao-Liang; Zhao, Gang

    2016-05-01

    Intraventricular hemorrhage (IVH) is associated with high morbidity and mortality. This study evaluated the safety and efficacy of the combined treatment of an Ommaya reservoir and conventional external ventricular drainage (EVD) using urokinase in the management of IVH. We performed a prospective controlled study. Sixty eligible patients with IVH received conventional EVD alone (group A) or combined EVD and Ommaya reservoir (group B) between January 2010 and January 2015. Clinical, cerebrospinal fluid, and radiographic data were used to assess clot clearance, clinical outcomes, and complications between the groups. There were no significant differences in gender, age, blood pressure, Glasgow Coma Scale, Graeb score, intracerebral hemorrhage volume on admission, and IVH volume before surgery between groups A and B (P > 0.05). The number of injections of urokinase (20,000 IU/dose) were significantly different in group B compared with group A (P 0.05). The hydrocephalus incidence and mortality revealed significant differences between the 2 groups (P safe and effective in patients with IVH. It increased clot clearance, shortened conventional catheter-based EVD duration, prolonged total drainage time, reduced the hydrocephalus incidence and mortality, and contributed to good clinical outcomes. The Ommaya reservoir provides a safe way to increase the injection times of urokinase, which accelerated clot resolution and did not increase the risk for ventriculitis infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Improving reservoir history matching of EM heated heavy oil reservoirs via cross-well seismic tomography

    KAUST Repository

    Katterbauer, Klemens

    2014-01-01

    Enhanced recovery methods have become significant in the industry\\'s drive to increase recovery rates from oil and gas reservoirs. For heavy oil reservoirs, the immobility of the oil at reservoir temperatures, caused by its high viscosity, limits the recovery rates and strains the economic viability of these fields. While thermal recovery methods, such as steam injection or THAI, have extensively been applied in the field, their success has so far been limited due to prohibitive heat losses and the difficulty in controlling the combustion process. Electromagnetic (EM) heating via high-frequency EM radiation has attracted attention due to its wide applicability in different environments, its efficiency, and the improved controllability of the heating process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase recovery rates. Limited research has been undertaken so far to capture the nonlinear reservoir dynamics and significantly varying flow rates for thermally heated heavy oil reservoir that may notably change production rates and render conventional history matching frameworks more challenging. We present a new history matching framework for EM heated heavy oil reservoirs incorporating cross-well seismic imaging. Interfacing an EM heating solver to a reservoir simulator via Andrade’s equation, we couple the system to an ensemble Kalman filter based history matching framework incorporating a cross-well seismic survey module. With increasing power levels and heating applied to the heavy oil reservoirs, reservoir dynamics change considerably and may lead to widely differing production forecasts and increased uncertainty. We have shown that the incorporation of seismic observations into the EnKF framework can significantly enhance reservoir simulations, decrease forecasting

  16. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    Science.gov (United States)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage

  17. Nagylengyel: an interesting reservoir. [Yugoslovia

    Energy Technology Data Exchange (ETDEWEB)

    Dedinszky, J

    1971-04-01

    The Nagylengyel oil field, discovered in 1951, has oil-producing formations mostly in the Upper-Triassic dolomites, in the Norian-Ractian transition formations, in the Upper-Cretaceous limestones and shales, and in the Miocene. The formation of the reservoir space occurred in many stages. A porous, cavernous fractured reservoir is developed in the Norian principal dolomite. A cavernous fractured reservoir exists in the Cretaceous limestone and in the Cretaceous shale and porous fractured reservoir is developed in the Miocene. The derivation of the model of the reservoir, and the conservative evaluation of the volume of the reservoir made it possible to use secondary recovery.

  18. Reduction of light oil usage as power fluid for jet pumping in deep heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.; Li, H.; Yang, D. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Regina Univ., SK (Canada); Zhang, Q. [China Univ. of Petroleum, Dongying, Shandong (China); He, J. [China National Petroleum Corp., Haidan District, Beijing (China). PetroChina Tarim Oilfield Co.

    2008-10-15

    In deep heavy oil reservoirs, reservoir fluid can flow more easily in the formation as well as around the bottomhole. However, during its path along the production string, viscosity of the reservoir fluid increases dramatically due to heat loss and release of the dissolved gas, resulting in significant pressure drop along the wellbore. Artificial lifting methods need to be adopted to pump the reservoir fluids to the surface. This paper discussed the development of a new technique for reducing the amount of light oil used for jet pumping in deep heavy oil wells. Two approaches were discussed. Approach A uses the light oil as a power fluid first to obtain produced fluid with lower viscosity, and then the produced fluid is reinjected into the well as a power fluid. The process continues until the viscosity of the produced fluid is too high to be utilized. Approach B combines a portion of the produced fluid with the light oil at a reasonable ratio and then the produced fluid-light oil mixture is used as the power fluid for deep heavy oil well production. The viscosity of the blended power fluid continue to increase and eventually reach equilibrium. The paper presented the detailed processes of both approaches in order to indicate how to apply them in field applications. Theoretic models were also developed and presented to determine the key parameters in the field operations. A field case was also presented and a comparison and analysis between the two approaches were discussed. It was concluded from the field applications that, with a certain amount of light oil, the amount of reservoir fluid produced by using the new technique could be 3 times higher than that of the conventional jet pumping method. 17 refs., 3 tabs., 6 figs.

  19. A Time Domain Update Method for Reservoir History Matching of Electromagnetic Data

    KAUST Repository

    Katterbauer, Klemens

    2014-03-25

    The oil & gas industry has been the backbone of the world\\'s economy in the last century and will continue to be in the decades to come. With increasing demand and conventional reservoirs depleting, new oil industry projects have become more complex and expensive, operating in areas that were previously considered impossible and uneconomical. Therefore, good reservoir management is key for the economical success of complex projects requiring the incorporation of reliable uncertainty estimates for reliable production forecasts and optimizing reservoir exploitation. Reservoir history matching has played here a key role incorporating production, seismic, electromagnetic and logging data for forecasting the development of reservoirs and its depletion. With the advances in the last decade, electromagnetic techniques, such as crosswell electromagnetic tomography, have enabled engineers to more precisely map the reservoirs and understand their evolution. Incorporating the large amount of data efficiently and reducing uncertainty in the forecasts has been one of the key challenges for reservoir management. Computing the conductivity distribution for the field for adjusting parameters in the forecasting process via solving the inverse problem has been a challenge, due to the strong ill-posedness of the inversion problem and the extensive manual calibration required, making it impossible to be included into an efficient reservoir history matching forecasting algorithm. In the presented research, we have developed a novel Finite Difference Time Domain (FDTD) based method for incorporating electromagnetic data directly into the reservoir simulator. Based on an extended Archie relationship, EM simulations are performed for both forecasted and Porosity-Saturation retrieved conductivity parameters being incorporated directly into an update step for the reservoir parameters. This novel direct update method has significant advantages such as that it overcomes the expensive and ill

  20. Conjunctively optimizing flash flood control and water quality in urban water reservoirs by model predictive control and dynamic emulation

    Science.gov (United States)

    Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea

    2014-05-01

    Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.

  1. Quantification of Interbasin Transfers into the Addicks Reservoir during Hurricane Harvey

    Science.gov (United States)

    Sebastian, A.; Juan, A.; Gori, A.; Maulsby, F.; Bedient, P. B.

    2017-12-01

    Between August 25 and 30, Hurricane Harvey dropped unprecedented rainfall over southeast Texas causing widespread flooding in the City of Houston. Water levels in the Addicks and Barker reservoirs, built in the 1940s to protect downtown Houston, exceeded previous records by approximately 2 meters. Concerns regarding structural integrity of the dams and damage to neighbourhoods in within the reservoir pool resulted in controlled releases into Buffalo Bayou, flooding an estimated 4,000 additional structures downstream of the dams. In 2016, during the Tax Day it became apparent that overflows from Cypress Creek in northern Harris County substantially contribute to water levels in Addicks. Prior to this event, little was known about the hydrodynamics of this overflow area or about the additional stress placed on Addicks and Barker reservoirs due to the volume of overflow. However, this information is critical for determining flood risk in Addicks Watershed, and ultimately Buffalo Bayou. In this study, we utilize the recently developed HEC-RAS 2D model the interbasin transfer that occurs between Cypress Creek Watershed and Addicks Reservoir to quantify the volume and rate at which water from Cypress enters the reservoir during extreme events. Ultimately, the results of this study will help inform the official hydrologic models used by HCFCD to determine reservoir operation during future storm events and better inform residents living in or above the reservoir pool about their potential flood risk.

  2. Integrated operation and management system for a 700MW combined cycle power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shiroumaru, I. (Yanai Power Plant Construction Office, Chugoku Electric Power Co., Inc., 1575-5 Yanai-Miyamoto-Shiohama, Yanai-shi, Yamaguchi-ken (JP)); Iwamiya, T. (Omika Works, Hitachi, Ltd., 5-2-1 Omika-cho, Hitachi-shi, Ibaraki-ken (JP)); Fukai, M. (Hitachi Works, Hitachi, Ltd., 3-1-1 Saiwai-cho, Hitachi-shi, Ibaraki-ken (JP))

    1992-03-01

    Yanai Power Plant of the Chugoku Electric Power Co., Inc. (Yamaguchi Pref., Japan) is in the process of constructing a 1400MW state-of-the-art combined cycle power plant. The first phase, a 350MW power plant, started operation on a commercial basis in November, 1990. This power plant has achieved high efficiency and high operability, major features of a combined cycle power plant. The integrated operation and management system of the power plant takes care of operation, maintenance, control of general business, etc., and was built using the latest computer and digital control and communication technologies. This paper reports that it is expected that this system will enhance efficient operation and management for the power plant.

  3. Mercury deposition and methylmercury formation in Narraguinnep Reservoir, southwestern Colorado, USA

    Science.gov (United States)

    Gray, John E.; Hines, Mark E.; Goldstein, Harland L.; Reynolds, Richard L.

    2014-01-01

    Narraguinnep Reservoir in southwestern Colorado is one of several water bodies in Colorado with a mercury (Hg) advisory as Hg in fish tissue exceed the 0.3 μg/g guideline to protect human health recommended by the State of Colorado. Concentrations of Hg and methyl-Hg were measured in reservoir bottom sediment and pore water extracted from this sediment. Rates of Hg methylation and methyl-Hg demethylation were also measured in reservoir bottom sediment. The objective of this study was to evaluate potential sources of Hg in the region and evaluate the potential of reservoir sediment to generate methyl-Hg, a human neurotoxin and the dominant form of Hg in fish. Concentrations of Hg (ranged from 1.1 to 5.8 ng/L, n = 15) and methyl-Hg (ranged from 0.05 to 0.14 ng/L, n = 15) in pore water generally were highest at the sediment/water interface, and overall, Hg correlated with methyl-Hg in pore water (R2 = 0.60, p = 0007, n = 15). Net Hg methylation flux in the top 3 cm of reservoir bottom sediment varied from 0.08 to 0.56 ng/m2/day (mean = 0.28 ng/m2/day, n = 5), which corresponded to an overall methyl-Hg production for the entire reservoir of 0.53 g/year. No significant point sources of Hg contamination are known to this reservoir or its supply waters, although several coal-fired power plants in the region emit Hg-bearing particulates. Narraguinnep Reservoir is located about 80 km downwind from two of the largest power plants, which together emit about 950 kg-Hg/year. Magnetic minerals separated from reservoir sediment contained spherical magnetite-bearing particles characteristic of coal-fired electric power plant fly ash. The presence of fly-ash magnetite in post-1970 sediment from Narraguinnep Reservoir indicates that the likely source of Hg to the catchment basin for this reservoir has been from airborne emissions from power plants, most of which began operation in the late-1960s and early 1970s in this region.

  4. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    Science.gov (United States)

    Reagan, Matthew T; Moridis, George J; Keen, Noel D; Johnson, Jeffrey N

    2015-01-01

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes. Key Points: Short-term leakage fractured reservoirs requires high-permeability pathways Production strategy affects the likelihood and magnitude of gas release Gas release is likely short-term, without additional driving forces PMID

  5. The Effect of Model Grid Resolution on the Distributed Hydrologic Simulations for Forecasting Stream Flows and Reservoir Storage

    Science.gov (United States)

    Turnbull, S. J.

    2017-12-01

    Within the US Army Corps of Engineers (USACE), reservoirs are typically operated according to a rule curve that specifies target water levels based on the time of year. The rule curve is intended to maximize flood protection by specifying releases of water before the dominant rainfall period for a region. While some operating allowances are permissible, generally the rule curve elevations must be maintained. While this operational approach provides for the required flood control purpose, it may not result in optimal reservoir operations for multi-use impoundments. In the Russian River Valley of California a multi-agency research effort called Forecast-Informed Reservoir Operations (FIRO) is assessing the application of forecast weather and streamflow predictions to potentially enhance the operation of reservoirs in the watershed. The focus of the study has been on Lake Mendocino, a USACE project important for flood control, water supply, power generation and ecological flows. As part of this effort the Engineer Research and Development Center is assessing the ability of utilizing the physics based, distributed watershed model Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to simulate stream flows, reservoir stages, and discharges while being driven by weather forecast products. A key question in this application is the effect of watershed model resolution on forecasted stream flows. To help resolve this question, GSSHA models of multiple grid resolutions, 30, 50, and 270m, were developed for the upper Russian River, which includes Lake Mendocino. The models were derived from common inputs: DEM, soils, land use, stream network, reservoir characteristics, and specified inflows and discharges. All the models were calibrated in both event and continuous simulation mode using measured precipitation gages and then driven with the West-WRF atmospheric model in prediction mode to assess the ability of the model to function in short term, less than one week

  6. Combined chemical and toxicological long-term monitoring for AhR agonists with SPMD-based virtual organisms in drinking water Danjiangkou Reservoir, China.

    Science.gov (United States)

    Wang, Jingxian; Song, Guoqiang; Li, Aimin; Henkelmann, Bernhard; Pfister, Gerd; Tong, Anthony Z; Schramm, Karl-Werner

    2014-08-01

    SPMD-based virtual organisms (VOs) were employed for time-integrating, long-term sampling combined biological and chemical analyses for exposure assessment of hydrophobic organic pollutants (HOPs) in a drinking water reservoir, China. The SPMDs were deployed at four and five sites in the Danjiangkou (DJK) reservoir over two periods of 26 and 31 d to sequester the hydrophobic contaminants in water. The chosen bioassay response for the extracts of the SPMDs, the induction of 7-ethoxyresorufin-o-deethylase (EROD) was assayed using a rat hepatoma cell line (H4IIE). The known aryl hydrocarbon receptor (AhR) agonists PAHs and PCBs were analyzed by HRGC/HRMS instrument. The cause-effect relationship between the observed AhR activities and chemical concentrations of detected AhR agonists was examined. The results show that the extracts from the SPMD samples could induce AhR activity significantly, whereas the chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalent (TEQcal) was not correlated with the bioassay-derived TCDD equivalent (TEQbio). The known AhR agonists could only account for 2-10% of the observed AhR responses among which the contribution of PCBs could almost be neglected. Unidentified AhR-active compounds represented a greater proportion of the TCDD equivalent (TCDD-EQ) in SPMD samples from DJK. Based on the first assessment, the VO followed by the combination of chemical and biological analyses emerges as a resource efficient water monitoring device in ecotoxicological assessment for toxicologically relevant compounds which are readily available for uptake by resident aquatic biota in drinking water resources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The normal mouse urinary bladder reservoir function evaluated by repeated cystometries. Early and late changes after irradiation alone and irradiation combined with cis-diamine-dichloroplatinium (II) and cyclophosphamide

    International Nuclear Information System (INIS)

    Lundbeck, F.

    1994-01-01

    The main aim of the present thesis was 1) to develop and investigate the feasibility of an in vivo assay in mice using repeated cystometries in a long term study, 2) to demonstrate changes in the bladder reservoir function after radiation alone or combined with cyclophosphamide (CTX) or cis-diamine-dichloroplatinium (II) (cis-DDP), and 3) to investigate the radiation sensitivity of the bladder for changes in dose per fraction, and also to investigate whether there is an association between early and late radiation-induced change in bladder reservoir function. From the results presented the following can be concluded: Bladder fillings in anesthetized mice can be performed repeatedly in long term studies. The procedure is easy to perform and well tolerated by the animals. The level of radiation dose determines the degree of early response and the time of onset of the late response. Combinations with CTX or cis-DDP increase the early radiation response, and the late response is expressed at an earlier time compared with radiation alone. The mouse urinary bladder appears to be one of the least sensitive late responding tissues to changes in dose per fraction. 93 refs., 7 figs., 1 tab

  8. Status of Burbot (Lota lota) in Arrow Lakes Reservoir

    International Nuclear Information System (INIS)

    Arndt, S.; Baxter, J.

    2006-03-01

    Burbot populations at a water reservoir were assessed in order to examine the operational impacts of a hydro-electric dam in British Columbia. The study assessed the distribution, relative abundance, size, and age structure of the Burbot population. Spawning locations were evaluated, and an underwater camera was used to make population estimates. The distribution of burbot was determined using data derived from set line sampling catches conducted in 1995. The surveys indicated that the burbot were widely distributed throughout the reservoir. The burbots were larger than burbots seen in other lakes, and the age structure showed evidence of dominant and weak cohorts. Average growth rates were higher than most other populations in the province. Fish monitored in a radio-tagging experiment were located in various spawning areas in the vicinity of the reservoir. It was concluded that no aggregations of spawning burbot were observed in the narrows where an underwater video camera was installed. 31 refs., 5 tabs., 12 figs

  9. [Number of bacteria and features of their activity in hypersaline reservoirs of the Crimea].

    Science.gov (United States)

    Dobrynin, E G

    1979-01-01

    The incidence of bacteria, their biomass production, and heterotrophic assimilation of CO2 by bacterioplankton were studied in the Crimean hypersaline water reservoirs from May to October of 1974. The total incidence of bacteria in the natural brine of these reservoirs varied from 20 to 70 x 10(6) cells per 1 ml. Such a high bacterial number may be caused by the combined action of water evaporation which increased the concentration of bacterial cells and active growth of microflora. Low values of bacterial production and heterotrophic CO2 assimilation should be attributed to weak activity of microflora in the reservoirs.

  10. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

    2000-05-24

    The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  11. Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.

    Science.gov (United States)

    Gantzer, Paul A; Bryant, Lee D; Little, John C

    2009-04-01

    Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR.

  12. Method of approximate electric modeling of oil reservoir operation with formation of a gas cap during mixed exploitation regime

    Energy Technology Data Exchange (ETDEWEB)

    Bragin, V A; Lyadkin, V Ya

    1969-01-01

    A potentiometric model is used to simulate the behavior of a reservoir in which pressure was dropped rapidly and solution gas migrated to the top of the structure forming a gas cap. Behavior of the system was represented by a differential equation, which was solved by an electrointegrator. The potentiometric model was found to closely represent past history of the reservoir, and to predict its future behavior. When this method is used in reservoirs where large pressure drops occur, repeated determination should be made at various time intervals, so that changes in relative permeability are taken into account.

  13. A remote sensing method for estimating regional reservoir area and evaporative loss

    Science.gov (United States)

    Zhang, Hua; Gorelick, Steven M.; Zimba, Paul V.; Zhang, Xiaodong

    2017-12-01

    Evaporation from the water surface of a reservoir can significantly affect its function of ensuring the availability and temporal stability of water supply. Current estimations of reservoir evaporative loss are dependent on water area derived from a reservoir storage-area curve. Such curves are unavailable if the reservoir is located in a data-sparse region or questionable if long-term sedimentation has changed the original elevation-area relationship. We propose a remote sensing framework to estimate reservoir evaporative loss at the regional scale. This framework uses a multispectral water index to extract reservoir area from Landsat imagery and estimate monthly evaporation volume based on pan-derived evaporative rates. The optimal index threshold is determined based on local observations and extended to unobserved locations and periods. Built on the cloud computing capacity of the Google Earth Engine, this framework can efficiently analyze satellite images at large spatiotemporal scales, where such analysis is infeasible with a single computer. Our study involves 200 major reservoirs in Texas, captured in 17,811 Landsat images over a 32-year period. The results show that these reservoirs contribute to an annual evaporative loss of 8.0 billion cubic meters, equivalent to 20% of their total active storage or 53% of total annual water use in Texas. At five coastal basins, reservoir evaporative losses exceed the minimum freshwater inflows required to sustain ecosystem health and fishery productivity of the receiving estuaries. Reservoir evaporative loss can be significant enough to counterbalance the positive effects of impounding water and to offset the contribution of water conservation and reuse practices. Our results also reveal the spatially variable performance of the multispectral water index and indicate the limitation of using scene-level cloud cover to screen satellite images. This study demonstrates the advantage of combining satellite remote sensing and

  14. Study of the impact of the uncertainties in petroleum reservoir behavior; Estudo do impacto de incertezas no desempenho de reservatorios de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Loschiavo, Roberto [PETROBRAS S.A., SE/AL (Brazil). Exploracao e Producao]. E-mail: rloschiavo@ep-seal.petrobras.com.br; Schiozer, Denis J. [Universidade Estadual de Campinas, SP (Brazil). Centro de Estudo do Petroleo (CEPETRO)]. E-mail: denis@cepetro.unicamp.br; Steagall, Daniel Escobar [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica]. E-mail: steagall@dep.fem.unicamp.br

    2000-07-01

    Economic evaluation of a project as well as facilities design for oil exploitation is, in general, based on production forecasts. Since production forecast depends on several parameters that are not completely known, one should take a probabilistic approach for reservoir modeling and numerical flow simulation. With this research we propose a procedure to estimate probabilistic production forecasts profiles based on the decision tree technique. The most influencing parameters of a reservoir model are identified and combined to generate a number of realizations of the reservoirs. The combination of each branch of the decision tree defines the probability associated to each reservoir model. A computer program was developed to automatically generate the reservoir models, submit them to the numerical simulator, and process the results. Parallel computing was used to improve the performance of the procedure. (author)

  15. Hydrology and Mosquito Population Dynamics around a Hydropower Reservoir in Africa

    Science.gov (United States)

    Endo, N.; Eltahir, E. A.

    2013-12-01

    Malaria is associated with dams because their reservoirs provide mosquitoes, the vector of malaria, with permanent breeding sites. The risk of contracting malaria is likely to be enhanced following the increasing trend of hydropower dam construction to satisfy the expanding energy needs in developing countries. A close examination of its adverse health impacts is critical in the design, construction, and operation phases. We will present results of extensive field studies in 2012 and 2013 around the Koka Reservoir, Ethiopia. The results uncover the importance of reservoir management especially after the rainy seasons. Furthermore, we show the capability of a newly modified hydrology, entomology and malaria transmission simulator, HYDREMATS (Bomblies et al, 2008), and its potential as a tool for evaluating environmental management strategies to control malaria. HYDREMATS was developed to represent how the hydrology in nearby villages is impacted by the reservoir system, and the role of different types of vector ecologies associated with different Anopheles mosquito species. The hydrology component of HYDREMATS simulates three different mosquito breeding habitats: rain-fed pools, groundwater pools, and shoreline water. The entomology component simulates the life cycles of An. funestus and An. arabiensis, the two main vectors around the reservoir. The model was calibrated over the 2012-2013 period. The impact of reservoir water level management on the mosquito population is explored based on numerical model simulations and field experiments.

  16. Economic Effects of Reservoir Re-operation Policy in the Rio Grande/Bravo for Sustainable Human and Environmental Water Management

    Science.gov (United States)

    Ortiz Partida, J. P.; Sandoval Solis, S.; Lane, B.

    2015-12-01

    A central challenge of integrated water management is the design and implementation of policies to allocate water to both humans and the environment in a sustainable manner. This study uses the results from a reach-scale water-planning model to quantify and compare the economic benefits of two water management policies: (1) a business as usual (Baseline) policy and (2) a proposed reservoir re-operation policy to provide environmental flows (EFs). Results show that the EF policy would increase water supply profit, slightly decrease recreational activities profit, and reduce costs from flood damage and environmental restoration compared to the Baseline policy. In addition to supporting ecological objectives, the proposed EF policy would increase the economic benefits of water management objectives.

  17. Variability in perceived satisfaction of reservoir management objectives

    Science.gov (United States)

    Owen, W.J.; Gates, T.K.; Flug, M.

    1997-01-01

    Fuzzy set theory provides a useful model to address imprecision in interpreting linguistically described objectives for reservoir management. Fuzzy membership functions can be used to represent degrees of objective satisfaction for different values of management variables. However, lack of background information, differing experiences and qualifications, and complex interactions of influencing factors can contribute to significant variability among membership functions derived from surveys of multiple experts. In the present study, probabilistic membership functions are used to model variability in experts' perceptions of satisfaction of objectives for hydropower generation, fish habitat, kayaking, rafting, and scenery preservation on the Green River through operations of Flaming Gorge Dam. Degree of variability in experts' perceptions differed among objectives but resulted in substantial uncertainty in estimation of optimal reservoir releases.

  18. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    Energy Technology Data Exchange (ETDEWEB)

    Mohan Kelkar

    2002-03-31

    The West Carney Field in Lincoln County, Oklahoma is one of few newly discovered oil fields in Oklahoma. Although profitable, the field exhibits several unusual characteristics. These include decreasing water-oil ratios, decreasing gas-oil ratios, decreasing bottomhole pressures during shut-ins in some wells, and transient behavior for water production in many wells. This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. We propose a geological history that explains the presence of mobile water and oil in the reservoir. The combination of matrix and fractures in the reservoir explains the reservoir's flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.

  19. Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems

    International Nuclear Information System (INIS)

    Hwang, Tae Heon; Kim, Jin Bum; Yang, Da Som; Ryu, WonHyoung; Park, Yong-il

    2013-01-01

    Microfluidic drug delivery systems consisting of a drug reservoir and microfluidic channels have shown the possibility of simple and robust modulation of drug release rate. However, the difficulty of loading a small quantity of drug into drug reservoirs at a micro-scale limited further development of such systems. Electrohydrodynamic (EHD) printing was employed to fill micro-reservoirs with controlled amount of drugs in the range of a few hundreds of picograms to tens of micrograms with spatial resolution of as small as 20 µm. Unlike most EHD systems, this system was configured in combination with an inverted microscope that allows in situ targeting of drug loading at micrometer scale accuracy. Methylene blue and rhodamine B were used as model drugs in distilled water, isopropanol and a polymer solution of a biodegradable polymer and dimethyl sulfoxide (DMSO). Also tetracycline-HCl/DI water was used as actual drug ink. The optimal parameters of EHD printing to load an extremely small quantity of drug into microscale drug reservoirs were investigated by changing pumping rates, the strength of an electric field and drug concentration. This targeted EHD technique was used to load drugs into the microreservoirs of PDMS microfluidic drug delivery devices and their drug release performance was demonstrated in vitro. (paper)

  20. Reservoir architecture patterns of sandy gravel braided distributary channel

    Directory of Open Access Journals (Sweden)

    Senlin Yin

    2016-06-01

    Full Text Available The purpose of this study was to discuss shape, scale and superimposed types of sandy gravel bodies in sandy-gravel braided distributary channel. Lithofacies analysis, hierarchy bounding surface analysis and subsurface dense well pattern combining with outcrops method were used to examine reservoir architecture patterns of sandy gravel braided distributary channel based on cores, well logging, and outcrops data, and the reservoir architecture patterns of sandy gravel braided distributary channels in different grades have been established. The study shows: (1 The main reservoir architecture elements for sandy gravel braided channel delta are distributary channel and overbank sand, while reservoir flow barrier elements are interchannel and lacustrine mudstone. (2 The compound sand bodies in the sandy gravel braided delta distributary channel take on three shapes: sheet-like distributary channel sand body, interweave strip distributary channel sand body, single strip distributary channel sand body. (3 Identification marks of single distributary channel include: elevation of sand body top, lateral overlaying, “thick-thin-thick” feature of sand bodies, interchannel mudstone and overbank sand between distributary channels and the differences in well log curve shape of sand bodies. (4 Nine lithofacies types were distinguished in distributary channel unit interior, different channel units have different lithofacies association sequence.

  1. Development of a management tool for reservoirs in Mediterranean environments based on uncertainty analysis

    Science.gov (United States)

    Gómez-Beas, R.; Moñino, A.; Polo, M. J.

    2012-05-01

    In compliance with the development of the Water Framework Directive, there is a need for an integrated management of water resources, which involves the elaboration of reservoir management models. These models should include the operational and technical aspects which allow us to forecast an optimal management in the short term, besides the factors that may affect the volume of water stored in the medium and long term. The climate fluctuations of the water cycle that affect the reservoir watershed should be considered, as well as the social and economic aspects of the area. This paper shows the development of a management model for Rules reservoir (southern Spain), through which the water supply is regulated based on set criteria, in a sustainable way with existing commitments downstream, with the supply capacity being well established depending on demand, and the probability of failure when the operating requirements are not fulfilled. The results obtained allowed us: to find out the reservoir response at different time scales, to introduce an uncertainty analysis and to demonstrate the potential of the methodology proposed here as a tool for decision making.

  2. Cengklik Reservoir Performance and Its Role for Drought Mitigation

    Directory of Open Access Journals (Sweden)

    Yovi Hardiyanto

    2015-05-01

    Full Text Available Water availability problem is encountered by Cengklik Reservoir due to drought disaster in the current year. It causes irrigation water crisis over 850 hectares crop field which of 350 hectares were not cultivated. The risk that must be faced by farmers is decrease in potential productivity, losses about more than 2.5 billion. Therefore, it needs technical solution to reduce this drought disaster risk. To obtain an alternative solution against water availability problem for drought disaster mitigation, this research used optimization of reservoir standard operating simulation. It applies field area of rice or Palawija at the second and/or the third cultivation season as decision variable, maximum productivity value as objective function, irrigation water demand as parameter depending on specified alternative crop pattern and schedule, and several constraints comprising 100% of reservoir reliability, all field is irrigated at the first and second season in which maximum non-irrigated crop field at the third cultivation season are 300 hectares. The tool used to conduct optimization was Microsoft Excel software. The result showed that crop pattern considered as an alternative solution against water availability problem in Cengklik reservoir is paddy-paddy-maize at the early of November II cultivated over 433 hectares and 1524 hectares. Risk reduction reached 9.33% in term of reservoir reliability, 23.61% in term of irrigated area, and 27.29% in term of vulnerability towards water availability crisis.

  3. Reservoirs as hotspots of fluvial carbon cycling in peatland catchments.

    Science.gov (United States)

    Stimson, A G; Allott, T E H; Boult, S; Evans, M G

    2017-02-15

    Inland water bodies are recognised as dynamic sites of carbon processing, and lakes and reservoirs draining peatland soils are particularly important, due to the potential for high carbon inputs combined with long water residence times. A carbon budget is presented here for a water supply reservoir (catchment area~9km 2 ) draining an area of heavily eroded upland peat in the South Pennines, UK. It encompasses a two year dataset and quantifies reservoir dissolved organic carbon (DOC), particulate organic carbon (POC) and aqueous carbon dioxide (CO 2 (aq)) inputs and outputs. The budget shows the reservoir to be a hotspot of fluvial carbon cycling, as with high levels of POC influx it acts as a net sink of fluvial carbon and has the potential for significant gaseous carbon export. The reservoir alternates between acting as a producer and consumer of DOC (a pattern linked to rainfall and temperature) which provides evidence for transformations between different carbon species. In particular, the budget data accompanied by 14 C (radiocarbon) analyses provide evidence that POC-DOC transformations are a key process, occurring at rates which could represent at least ~10% of the fluvial carbon sink. To enable informed catchment management further research is needed to produce carbon cycle models more applicable to these environments, and on the implications of high POC levels for DOC composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Watney, W.L.

    1994-12-01

    Reservoirs in the Lansing-Kansas City limestone result from complex interactions among paleotopography (deposition, concurrent structural deformation), sea level, and diagenesis. Analysis of reservoirs and surface and near-surface analogs has led to developing a {open_quotes}strandline grainstone model{close_quotes} in which relative sea-level stabilized during regressions, resulting in accumulation of multiple grainstone buildups along depositional strike. Resulting stratigraphy in these carbonate units are generally predictable correlating to inferred topographic elevation along the shelf. This model is a valuable predictive tool for (1) locating favorable reservoirs for exploration, and (2) anticipating internal properties of the reservoir for field development. Reservoirs in the Lansing-Kansas City limestones are developed in both oolitic and bioclastic grainstones, however, re-analysis of oomoldic reservoirs provides the greatest opportunity for developing bypassed oil. A new technique, the {open_quotes}Super{close_quotes} Pickett crossplot (formation resistivity vs. porosity) and its use in an integrated petrophysical characterization, has been developed to evaluate extractable oil remaining in these reservoirs. The manual method in combination with 3-D visualization and modeling can help to target production limiting heterogeneities in these complex reservoirs and moreover compute critical parameters for the field such as bulk volume water. Application of this technique indicates that from 6-9 million barrels of Lansing-Kansas City oil remain behind pipe in the Victory-Northeast Lemon Fields. Petroleum geologists are challenged to quantify inferred processes to aid in developing rationale geologically consistent models of sedimentation so that acceptable levels of prediction can be obtained.

  5. Historical deposition and fluxes of mercury in Narraguinnep Reservoir, southwestern Colorado, USA

    International Nuclear Information System (INIS)

    Gray, John E.; Fey, David L.; Holmes, Charles W.; Lasorsa, Brenda K.

    2005-01-01

    Narraguinnep Reservoir has been identified as containing fish with elevated Hg concentrations and has been posted with an advisory recommending against consumption of fish. There are presently no point sources of significant Hg contamination to this reservoir or its supply waters. To evaluate potential historical Hg sources and deposition of Hg to Narraguinnep Reservoir, the authors measured Hg concentrations in sediment cores collected from this reservoir. The cores were dated by the 137 Cs method and these dates were further refined by relating water supply basin hydrological records with core sedimentology. Rates of historical Hg flux were calculated (ng/cm 2 /a) based on the Hg concentrations in the cores, sediment bulk densities, and sedimentation rates. The flux of Hg found in Narraguinnep Reservoir increased by approximately a factor of 2 after about 1970. The 3 most likely sources of Hg to Narraguinnep Reservoir are surrounding bedrocks, upstream inactive Au-Ag mines, and several coal-fired electric power plants in the Four Corners region. Patterns of Hg flux do not support dominant Hg derivation from surrounding bedrocks or upstream mining sources. There are 14 coal-fired power plants within 320 km of Narraguinnep Reservoir that produce over 80 x 10 6 MWH of power and about 1640 kg-Hg/a are released through stack emissions, contributing significant Hg to the surrounding environment. Two of the largest power plants, located within 80 km of the reservoir, emit about 950 kg-Hg/a. Spatial and temporal patterns of Hg fluxes for sediment cores collected from Narraguinnep Reservoir suggest that the most likely source of Hg to this reservoir is from atmospheric emissions from the coal-fired electric power plants, the largest of which began operation in this region in the late-1960s and early 1970s

  6. Geothermal Reservoir Well Stimulation Program: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

  7. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, S.P.; Flanders, W.A.; Guzman, J.I.; Zirczy, H.

    1999-06-08

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through geologically based field development. This year the project focused on reservoir characterization of the East Ford unit, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey Sandstone). The field, discovered in 1960, is operated by Orla Petco, Inc., as the East Ford unit; it contained an estimated 19.8 million barrels (MMbbl) of original oil in place. Petrophysical characterization of the East Ford unit was accomplished by integrating core and log data and quantifying petrophysical properties from wireline logs. Most methods of petrophysical analysis that had been developed during an earlier study of the Ford Geraldine unit were successfully transferred to the East Ford unit. The approach that was used to interpret water saturation from resistivity logs, however, had to be modified because in some East Ford wells the log-calculated water saturation was too high and inconsistent with observations made during the actual production. Log-porosity to core-porosity transforms and core-porosity to core-permeability transforms were derived from the East Ford reservoir. The petrophysical data were used to map porosity, permeability, net pay, water saturation, mobil-oil saturation, and other reservoir properties.

  8. Sulfate-Reducing Prokaryotes from North Sea Oil reservoirs; organisms, distribution and origin

    Energy Technology Data Exchange (ETDEWEB)

    Beeder, Janiche

    1997-12-31

    During oil production in the North Sea, anaerobic seawater is pumped in which stimulates the growth of sulphate-reducing prokaryotes that produce hydrogen sulphide. This sulphide causes major health hazards, economical and operational problems. As told in this thesis, several strains of sulphate reducers have been isolated from North Sea oil field waters. Antibodies have been produced against these strains and used to investigate the distribution of sulphate reducers in a North Sea oil reservoir. The result showed a high diversity among sulphate reducers, with different strains belonging to different parts of the reservoir. Some of these strains have been further characterized. The physiological and phylogenetic characterization showed that strain 7324 was an archaean. Strain A8444 was a bacterium, representing a new species of a new genus. A benzoate degrading sulphate reducing bacterium was isolated from injection water, and later the same strain was detected in produced water. This is the first field observations indicating that sulphate reducers are able to penetrate an oil reservoir. It was found that the oil reservoir contains a diverse population of thermophilic sulphate reducers able to grow on carbon sources in the oil reservoir, and to live and grow in this extreme environment of high temperature and pressure. The mesophilic sulphate reducers are established in the injection water system and in the reservoir near the injection well during oil production. The thermophilic sulphate reducers are able to grow in the reservoir prior to, as well as during production. It appears that the oil reservoir is a natural habitat for thermophilic sulphate reducers and that they have been present in the reservoir long before production started. 322 refs., 9 figs., 11 tabs.

  9. Sulfate-Reducing Prokaryotes from North Sea Oil reservoirs; organisms, distribution and origin

    Energy Technology Data Exchange (ETDEWEB)

    Beeder, Janiche

    1996-12-31

    During oil production in the North Sea, anaerobic seawater is pumped in which stimulates the growth of sulphate-reducing prokaryotes that produce hydrogen sulphide. This sulphide causes major health hazards, economical and operational problems. As told in this thesis, several strains of sulphate reducers have been isolated from North Sea oil field waters. Antibodies have been produced against these strains and used to investigate the distribution of sulphate reducers in a North Sea oil reservoir. The result showed a high diversity among sulphate reducers, with different strains belonging to different parts of the reservoir. Some of these strains have been further characterized. The physiological and phylogenetic characterization showed that strain 7324 was an archaean. Strain A8444 was a bacterium, representing a new species of a new genus. A benzoate degrading sulphate reducing bacterium was isolated from injection water, and later the same strain was detected in produced water. This is the first field observations indicating that sulphate reducers are able to penetrate an oil reservoir. It was found that the oil reservoir contains a diverse population of thermophilic sulphate reducers able to grow on carbon sources in the oil reservoir, and to live and grow in this extreme environment of high temperature and pressure. The mesophilic sulphate reducers are established in the injection water system and in the reservoir near the injection well during oil production. The thermophilic sulphate reducers are able to grow in the reservoir prior to, as well as during production. It appears that the oil reservoir is a natural habitat for thermophilic sulphate reducers and that they have been present in the reservoir long before production started. 322 refs., 9 figs., 11 tabs.

  10. Multiple shooting applied to robust reservoir control optimization including output constraints on coherent risk measures

    DEFF Research Database (Denmark)

    Codas, Andrés; Hanssen, Kristian G.; Foss, Bjarne

    2017-01-01

    The production life of oil reservoirs starts under significant uncertainty regarding the actual economical return of the recovery process due to the lack of oil field data. Consequently, investors and operators make management decisions based on a limited and uncertain description of the reservoir....... In this work, we propose a new formulation for robust optimization of reservoir well controls. It is inspired by the multiple shooting (MS) method which permits a broad range of parallelization opportunities and output constraint handling. This formulation exploits coherent risk measures, a concept...

  11. Cold reservoir integrated into a brine circuit of energy roofing, coupled to a heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, M.

    1983-12-01

    Model studies are presented in which the economic effects of a cold reservoir integrated in a heat pump system were established. Cold reservoirs have the following advantages: 1. The absolute annual savings increase with the storage volume. Storage volumes of 1 to 10 m/sup 3/ are economical, depending on the mode of operation. 2. If the storage volume is sufficiently large, the heat pump (operated in a bivalent, parallel system) can supply a considerable amount of the required even below the design temperature. 3. With a sufficiently large storage volume, the heat pump may be operated in more or less monovalent mode even if the heat pump has not been designed for a minimum ambient temperature.

  12. Libby Mitigation Program, 2007 Annual Progress Report: Mitigation for the Construction and Operation of Libby Dam.

    Energy Technology Data Exchange (ETDEWEB)

    Dunnigan, James; DeShazer, J.; Garrow, L.

    2009-05-26

    and fish habitat in basin streams and lakes. 'Mitigation for the Construction and Operation of Libby Dam' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan.

  13. Rule Optimization monthly reservoir operation Salvajina

    International Nuclear Information System (INIS)

    Sandoval Garcia, Maria Clemencia; Santacruz Salazar, Santiago; Ramirez Callejas, Carlos A

    2007-01-01

    In the present study a model was designed for the optimization of the rule for monthly operation of the Salvajina dam (Colombia) based in the technology) of dynamic programming. The model maximizes the benefits for electric power generation, ensuring at the same time flood regulation in winter and pollution relief during the summer. For the optimization of the rule of operation, it was necessary to define the levels and volumes of reserve and holding required for the control of flood zones in the Cauca river and to provide an effluent minimal flow and assure a daily flow at the Juanchito station (located 141 km downstream from the dam) of the Cauca river, 90 % of the time during the most critical summer periods.

  14. Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification

    KAUST Repository

    Katterbauer, Klemens; Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim

    2015-01-01

    Reservoir simulations and history matching are critical for fine-tuning reservoir production strategies, improving understanding of the subsurface formation, and forecasting remaining reserves. Production data have long been incorporated

  15. Geological and production characteristics of strandplain/barrier island reservoirs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.L.; Fowler, M.; Jackson, S.; Madden, M.P.; Reeves, T.K.; Salamy, S.P.; Young, M.A.

    1994-12-01

    The Department of Energy`s (DOE`s) primary mission in the oil research program is to maximize the economically and environmentally sound recovery of oil from domestic reservoirs and to preserve access to this resource. The Oil Recovery Field Demonstration Program supports DOE`s mission through cost-shared demonstrations of improved Oil Recovery (IOR) processes and reservoir characterization methods. In the past 3 years, the DOE has issued Program Opportunity Notices (PONs) seeking cost-shared proposals for the three highest priority, geologically defined reservoir classes. The classes have been prioritized based on resource size and risk of abandonment. This document defines the geologic, reservoir, and production characteristics of the fourth reservoir class, strandplain/barrier islands. Knowledge of the geological factors and processes that control formation and preservation of reservoir deposits, external and internal reservoir heterogeneities, reservoir characterization methodology, and IOR process application can be used to increase production of the remaining oil-in-place (IOR) in Class 4 reservoirs. Knowledge of heterogeneities that inhibit or block fluid flow is particularly critical. Using the TORIS database of 330 of the largest strandplain/barrier island reservoirs and its predictive and economic models, the recovery potential which could result from future application of IOR technologies to Class 4 reservoirs was estimated to be between 1.0 and 4.3 billion barrels, depending on oil price and the level of technology advancement. The analysis indicated that this potential could be realized through (1) infill drilling alone and in combination with polymer flooding and profile modification, (2) chemical flooding (sufactant), and (3) thermal processes. Most of this future potential is in Texas, Oklahoma, and the Rocky Mountain region. Approximately two-thirds of the potentially recoverable resource is at risk of abandonment by the year 2000.

  16. Special considerations for electric submersible pump applications in underpressured reservoirs

    International Nuclear Information System (INIS)

    Powers, M.L.

    1991-01-01

    This paper investigates the effect of electric submersible pump performance tolerances and minor speed variations on the producing rate of wells completed in underpressured reservoirs, and presents ESP design considerations which are unique for this class of wells. These wells require considerable head to initiate flow and have relatively flat well-load curves. Pumps that operate near their maximum recommended rate have steep performance curves. it is shown that this minimizes the effect of an underperforming pump on producing rate. Equations are developed for calculating the effects of pump performance and speed. Application requires evaluating the slopes of the pump performance curve and well-load curve at design rate. Utility of these equations is demonstrated by practical examples. It is also demonstrated that flow-stall can easily occur in underpressured reservoir applications when pumps designed to operate near their minimum recommended rate are installed

  17. Probabilistic construction of inflow scenarios at a reservoir; Construction probabiliste de scenarios d'apports a un reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Seidou, O.; Robert, B.; Marche, C.; Rousselle, J. [Ecole Polytechnique de Montreal, Departement des Genies Civil, Geologique et des Mines, Montreal, PQ (Canada); Lefebvre, M. [Ecole Polytechnique de Montreal, Departement de Mathematiques et de Genie Industriel, Montreal, PQ (Canada)

    2004-02-01

    Development of risk indicators to aid in decisions affecting the operation of hydric systems is described. The significant part of the risk affecting hydric systems is the uncertainty surrounding future inflows. A method to construct inflow scenarios starting from an arbitrary date 'y' of the year is developed using a Markovian process which also has been used to model short-term uncertainty in stream flow. The text is divided in five parts: (1) methodology, (2) terminology, (3) theory, (4) application, and (5) results. The scenarios are built to reproduce the statistical behaviour of the river or reservoir and have the shape of an event tree whose structure is defined by the user before application of the method. Application of the method is illustrated by two examples, one involving the Harricana River, the other the Cabonga Reservoir, both situated in the province of Quebec. 11 refs., 4 tabs., 4 figs.

  18. All-optical reservoir computing.

    Science.gov (United States)

    Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-09-24

    Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  19. Sedimentological and Geomorphological Effects of Reservoir Flushing: The Cachi Reservoir, Costa Rica, 1996

    DEFF Research Database (Denmark)

    Brandt, Anders; Swenning, Joar

    1999-01-01

    Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs......Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs...

  20. Development of probabilistic operating rules for Hluhluwe Dam, South Africa

    Science.gov (United States)

    Ndiritu, J.; Odiyo, J.; Makungo, R.; Mwaka, B.; Mthethwa, N.; Ntuli, C.; Andanje, A.

    2017-08-01

    Hluhluwe Dam, with a 30 million m3 reservoir that supplies water for irrigation and Hluhluwe municipality in Kwa-Zulu Natal Province, South Africa, was consistently experiencing low storage levels over several non-drought years since 2001. The dam was operated by rules of thumb and there were no records of water releases for irrigation - the main user of the dam. This paper describes an assessment of the historic behaviour of the reservoir since its completion in 1964 and the development of operating rules that accounted for: i) the multiple and different levels of reliability at which municipal and irrigation demands need to be supplied, and ii) inter-annual and inter-decadal variability of climate and inflows into the dam. The assessment of the behaviour of the reservoir was done by simulation assuming trigonometric rule curves that were optimized to maximize both yield and storage state using the SCE-UA method. The resulting reservoir behaviour matched the observed historic trajectory reasonably well and indicated that the dam has mainly been operated at a demand of 10 million m3/year until 2000 when the demand suddenly rose to 25 million m3/year. Operating rules were developed from a statistical analysis of the base yields from 500 simulations of the reservoir each using 5 year-long stochastically generated sequences of inflows, rainfall and evaporation. After the implementation of the operating rules in 2009, the storage state of the dam improved and matched those of other reservoirs in the region that had established operating rules.

  1. Phenotypic plasticity in fish life-history traits in two neotropical reservoirs: Petit-Saut Reservoir in French Guiana and Brokopondo Reservoir in Suriname

    Directory of Open Access Journals (Sweden)

    Bernard de Mérona

    Full Text Available Fish species are known for their large phenotypic plasticity in life-history traits in relation to environmental characteristics. Plasticity allows species to increase their fitness in a given environment. Here we examined the life-history response of fish species after an abrupt change in their environment caused by the damming of rivers. Two reservoirs of different age, both situated on the Guiana Shield, were investigated: the young Petit-Saut Reservoir in French Guiana (14 years and the much older Brokopondo Reservoir in Suriname (44 years. Six life-history traits in 14 fish species were studied and compared to their value in the Sinnamary River prior to the completion of Petit-Saut Reservoir. The traits analyzed were maximum length, absolute and relative length at first maturation, proportion of mature oocytes in ripe gonad, batch fecundity and mean size of mature oocytes. The results revealed a general increase of reproductive effort. All species showed a decrease in maximum length. Compared to the values observed before the dam constructions, eight species had larger oocytes and three species showed an increased batch fecundity. These observed changes suggest a trend towards a pioneer strategy. The changes observed in Petit-Saut Reservoir also seemed to apply to the 30 years older Brokopondo Reservoir suggesting that these reservoirs remain in a state of immaturity for a long time.

  2. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...... dispersion equation in modeling the transport and the deposition of reservoir fines. It successfully predicts the unsymmetrical concentration profiles and the hyperexponential deposition in experiments....

  3. Data assimilation method for fractured reservoirs using mimetic finite differences and ensemble Kalman filter

    KAUST Repository

    Ping, Jing

    2017-05-19

    Optimal management of subsurface processes requires the characterization of the uncertainty in reservoir description and reservoir performance prediction. For fractured reservoirs, the location and orientation of fractures are crucial for predicting production characteristics. With the help of accurate and comprehensive knowledge of fracture distributions, early water/CO 2 breakthrough can be prevented and sweep efficiency can be improved. However, since the rock property fields are highly non-Gaussian in this case, it is a challenge to estimate fracture distributions by conventional history matching approaches. In this work, a method that combines vector-based level-set parameterization technique and ensemble Kalman filter (EnKF) for estimating fracture distributions is presented. Performing the necessary forward modeling is particularly challenging. In addition to the large number of forward models needed, each model is used for sampling of randomly located fractures. Conventional mesh generation for such systems would be time consuming if possible at all. For these reasons, we rely on a novel polyhedral mesh method using the mimetic finite difference (MFD) method. A discrete fracture model is adopted that maintains the full geometry of the fracture network. By using a cut-cell paradigm, a computational mesh for the matrix can be generated quickly and reliably. In this research, we apply this workflow on 2D two-phase fractured reservoirs. The combination of MFD approach, level-set parameterization, and EnKF provides an effective solution to address the challenges in the history matching problem of highly non-Gaussian fractured reservoirs.

  4. Development of a Cerebrospinal Fluid Lateral Reservoir Model in Rhesus Monkeys (Macaca mulatta)

    OpenAIRE

    Lester McCully, Cynthia M; Bacher, John; MacAllister, Rhonda P; Steffen-Smith, Emilie A; Saleem, Kadharbatcha; Thomas, Marvin L; Cruz, Rafael; Warren, Katherine E

    2015-01-01

    Rapid, serial, and humane collection of cerebrospinal fluid (CSF) in nonhuman primates (NHP) is an essential element of numerous research studies and is currently accomplished via two different models. The CSF reservoir model (FR) combines a catheter in the 4th ventricle with a flexible silastic reservoir to permit circulating CSF flow. The CSF lateral port model (LP) consists of a lateral ventricular catheter and an IV port that provides static access to CSF and volume restrictions on sample...

  5. Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

    2011-07-01

    The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel

  6. Sediment management for reservoir

    International Nuclear Information System (INIS)

    Rahman, A.

    2005-01-01

    All natural lakes and reservoirs whether on rivers, tributaries or off channel storages are doomed to be sited up. Pakistan has two major reservoirs of Tarbela and Managla and shallow lake created by Chashma Barrage. Tarbela and Mangla Lakes are losing their capacities ever since first impounding, Tarbela since 1974 and Mangla since 1967. Tarbela Reservoir receives average annual flow of about 62 MAF and sediment deposits of 0.11 MAF whereas Mangla gets about 23 MAF of average annual flows and is losing its storage at the rate of average 34,000 MAF annually. The loss of storage is a great concern and studies for Tarbela were carried out by TAMS and Wallingford to sustain its capacity whereas no study has been done for Mangla as yet except as part of study for Raised Mangla, which is only desk work. Delta of Tarbala reservoir has advanced to about 6.59 miles (Pivot Point) from power intakes. In case of liquefaction of delta by tremor as low as 0.12g peak ground acceleration the power tunnels I, 2 and 3 will be blocked. Minimum Pool of reservoir is being raised so as to check the advance of delta. Mangla delta will follow the trend of Tarbela. Tarbela has vast amount of data as reservoir is surveyed every year, whereas Mangla Reservoir survey was done at five-year interval, which has now been proposed .to be reduced to three-year interval. In addition suspended sediment sampling of inflow streams is being done by Surface Water Hydrology Project of WAPDA as also some bed load sampling. The problem of Chasma Reservoir has also been highlighted, as it is being indiscriminately being filled up and drawdown several times a year without regard to its reaction to this treatment. The Sediment Management of these reservoirs is essential and the paper discusses pros and cons of various alternatives. (author)

  7. Performance assessment of deterministic and probabilistic weather predictions for the short-term optimization of a tropical hydropower reservoir

    Science.gov (United States)

    Mainardi Fan, Fernando; Schwanenberg, Dirk; Alvarado, Rodolfo; Assis dos Reis, Alberto; Naumann, Steffi; Collischonn, Walter

    2016-04-01

    Hydropower is the most important electricity source in Brazil. During recent years, it accounted for 60% to 70% of the total electric power supply. Marginal costs of hydropower are lower than for thermal power plants, therefore, there is a strong economic motivation to maximize its share. On the other hand, hydropower depends on the availability of water, which has a natural variability. Its extremes lead to the risks of power production deficits during droughts and safety issues in the reservoir and downstream river reaches during flood events. One building block of the proper management of hydropower assets is the short-term forecast of reservoir inflows as input for an online, event-based optimization of its release strategy. While deterministic forecasts and optimization schemes are the established techniques for the short-term reservoir management, the use of probabilistic ensemble forecasts and stochastic optimization techniques receives growing attention and a number of researches have shown its benefit. The present work shows one of the first hindcasting and closed-loop control experiments for a multi-purpose hydropower reservoir in a tropical region in Brazil. The case study is the hydropower project (HPP) Três Marias, located in southeast Brazil. The HPP reservoir is operated with two main objectives: (i) hydroelectricity generation and (ii) flood control at Pirapora City located 120 km downstream of the dam. In the experiments, precipitation forecasts based on observed data, deterministic and probabilistic forecasts with 50 ensemble members of the ECMWF are used as forcing of the MGB-IPH hydrological model to generate streamflow forecasts over a period of 2 years. The online optimization depends on a deterministic and multi-stage stochastic version of a model predictive control scheme. Results for the perfect forecasts show the potential benefit of the online optimization and indicate a desired forecast lead time of 30 days. In comparison, the use of

  8. Advances in photonic reservoir computing

    Science.gov (United States)

    Van der Sande, Guy; Brunner, Daniel; Soriano, Miguel C.

    2017-05-01

    We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir's complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  9. Reservoir longitudinal gradient promotes ordered losses on diversity and density of Ephemeroptera community

    Directory of Open Access Journals (Sweden)

    S. M. Melo

    2018-02-01

    Full Text Available Abstract Reservoir operations alter, eliminate or restrain the natural hydrologic cycles. Biotic community has become subject to these non-cyclic events, responding by reducing the species diversity. Ephemeroptera species present distinct responses to environmental deterioration such that poses this assemblage between the most useful groups in biomonitoring programs. We hypothesized an alteration in beta diversity at the longitudinal species gradient, which will be influenced mainly by species losses between zones. Changes in temporal beta diversity is also expected, but the main drivers of such alterations will be the species turnover between the sampling period. Ephemeroptera community was monitored in nine sampling points from Itaipu Reservoir, where were installed three sets of substrates composed by a float and 2 wooden substrates. We took biological samples in triplicates monthly, from June-01 to August-02. Our initial hypothesis was partially supported and with significant variations only for spatial approach, between the Reservoir zones. The generated ordering from Non-Metric Dimensional Scale – NMDS - corroborated with spatial analyzes, with the formation of two groups along the gradient zonation of the reservoir. The temporal ordination showed no clear pattern. As expected, the contribution to beta diversity was different for our two approaches, such that the loss of species was more important along the spatial gradient and despite of no significant result, the species replacement was more important among months. The spatial results lead us to infer that differences in limnological characteristics between zones are important for determining differences in Ephemeroptera composition and can reflect the dependency degree of the species in relation to the lentic and sometimes-lotic conditions, mainly in the riverine zone of reservoirs. On the other hand, the absence of a temporal pattern can be result of chaotic variations in the

  10. Artificial intelligent techniques for optimizing water allocation in a reservoir watershed

    Science.gov (United States)

    Chang, Fi-John; Chang, Li-Chiu; Wang, Yu-Chung

    2014-05-01

    This study proposes a systematical water allocation scheme that integrates system analysis with artificial intelligence techniques for reservoir operation in consideration of the great uncertainty upon hydrometeorology for mitigating droughts impacts on public and irrigation sectors. The AI techniques mainly include a genetic algorithm and adaptive-network based fuzzy inference system (ANFIS). We first derive evaluation diagrams through systematic interactive evaluations on long-term hydrological data to provide a clear simulation perspective of all possible drought conditions tagged with their corresponding water shortages; then search the optimal reservoir operating histogram using genetic algorithm (GA) based on given demands and hydrological conditions that can be recognized as the optimal base of input-output training patterns for modelling; and finally build a suitable water allocation scheme through constructing an adaptive neuro-fuzzy inference system (ANFIS) model with a learning of the mechanism between designed inputs (water discount rates and hydrological conditions) and outputs (two scenarios: simulated and optimized water deficiency levels). The effectiveness of the proposed approach is tested on the operation of the Shihmen Reservoir in northern Taiwan for the first paddy crop in the study area to assess the water allocation mechanism during drought periods. We demonstrate that the proposed water allocation scheme significantly and substantially avails water managers of reliably determining a suitable discount rate on water supply for both irrigation and public sectors, and thus can reduce the drought risk and the compensation amount induced by making restrictions on agricultural use water.

  11. Characteristics of volcanic reservoirs and distribution rules of effective reservoirs in the Changling fault depression, Songliao Basin

    Directory of Open Access Journals (Sweden)

    Pujun Wang

    2015-11-01

    Full Text Available In the Songliao Basin, volcanic oil and gas reservoirs are important exploration domains. Based on drilling, logging, and 3D seismic (1495 km2 data, 546 sets of measured physical properties and gas testing productivity of 66 wells in the Changling fault depression, Songliao Basin, eruptive cycles and sub-lithofacies were distinguished after lithologic correction of the 19,384 m volcanic well intervals, so that a quantitative analysis was conducted on the relation between the eruptive cycles, lithologies and lithofacies and the distribution of effective reservoirs. After the relationship was established between lithologies, lithofacies & cycles and reservoir physical properties & oil and gas bearing situations, an analysis was conducted on the characteristics of volcanic reservoirs and the distribution rules of effective reservoirs. It is indicated that 10 eruptive cycles of 3 sections are totally developed in this area, and the effective reservoirs are mainly distributed at the top cycles of eruptive sequences, with those of the 1st and 3rd Members of Yingcheng Formation presenting the best reservoir properties. In this area, there are mainly 11 types of volcanic rocks, among which rhyolite, rhyolitic tuff, rhyolitic tuffo lava and rhyolitic volcanic breccia are the dominant lithologies of effective reservoirs. In the target area are mainly developed 4 volcanic lithofacies (11 sub-lithofacies, among which upper sub-lithofacies of effusive facies and thermal clastic sub-lithofacies of explosion lithofacies are predominant in effective reservoirs. There is an obvious corresponding relationship between the physical properties of volcanic reservoirs and the development degree of effective reservoirs. The distribution of effective reservoirs is controlled by reservoir physical properties, and the formation of effective reservoirs is influenced more by porosity than by permeability. It is concluded that deep volcanic gas exploration presents a good

  12. Understanding satellite-based monthly-to-seasonal reservoir outflow estimation as a function of hydrologic controls

    Science.gov (United States)

    Bonnema, Matthew; Sikder, Safat; Miao, Yabin; Chen, Xiaodong; Hossain, Faisal; Ara Pervin, Ismat; Mahbubur Rahman, S. M.; Lee, Hyongki

    2016-05-01

    Growing population and increased demand for water is causing an increase in dam and reservoir construction in developing nations. When rivers cross international boundaries, the downstream stakeholders often have little knowledge of upstream reservoir operation practices. Satellite remote sensing in the form of radar altimetry and multisensor precipitation products can be used as a practical way to provide downstream stakeholders with the fundamentally elusive upstream information on reservoir outflow needed to make important and proactive water management decisions. This study uses a mass balance approach of three hydrologic controls to estimate reservoir outflow from satellite data at monthly and annual time scales: precipitation-induced inflow, evaporation, and reservoir storage change. Furthermore, this study explores the importance of each of these hydrologic controls to the accuracy of outflow estimation. The hydrologic controls found to be unimportant could potentially be neglected from similar future studies. Two reservoirs were examined in contrasting regions of the world, the Hungry Horse Reservoir in a mountainous region in northwest U.S. and the Kaptai Reservoir in a low-lying, forested region of Bangladesh. It was found that this mass balance method estimated the annual outflow of both reservoirs with reasonable skill. The estimation of monthly outflow from both reservoirs was however less accurate. The Kaptai basin exhibited a shift in basin behavior resulting in variable accuracy across the 9 year study period. Monthly outflow estimation from Hungry Horse Reservoir was compounded by snow accumulation and melt processes, reflected by relatively low accuracy in summer and fall, when snow processes control runoff. Furthermore, it was found that the important hydrologic controls for reservoir outflow estimation at the monthly time scale differs between the two reservoirs, with precipitation-induced inflow being the most important control for the Kaptai

  13. Optimizing Fracture Treatments in a Mississippian "Chat" Reservoir, South-Central Kansas

    Energy Technology Data Exchange (ETDEWEB)

    K. David Newell; Saibal Bhattacharya; Alan Byrnes; W. Lynn Watney; Willard Guy

    2005-10-01

    This project is a collaboration of Woolsey Petroleum Corporation (a small independent operator) and the Kansas Geological Survey. The project will investigate geologic and engineering factors critical for designing hydraulic fracture treatments in Mississippian ''chat'' reservoirs. Mississippian reservoirs, including the chat, account for 159 million m3 (1 billion barrels) of the cumulative oil produced in Kansas. Mississippian reservoirs presently represent {approx}40% of the state's 5.6*106m3 (35 million barrels) annual production. Although geographically widespread, the ''chat'' is a heterogeneous reservoir composed of chert, cherty dolomite, and argillaceous limestone. Fractured chert with micro-moldic porosity is the best reservoir in this 18- to 30-m-thick (60- to 100-ft) unit. The chat will be cored in an infill well in the Medicine Lodge North field (417,638 m3 [2,626,858 bbls] oil; 217,811,000 m3 [7,692,010 mcf] gas cumulative production; discovered 1954). The core and modern wireline logs will provide geological and petrophysical data for designing a fracture treatment. Optimum hydraulic fracturing design is poorly defined in the chat, with poor correlation of treatment size to production increase. To establish new geologic and petrophysical guidelines for these treatments, data from core petrophysics, wireline logs, and oil-field maps will be input to a fracture-treatment simulation program. Parameters will be established for optimal size of the treatment and geologic characteristics of the predicted fracturing. The fracturing will be performed and subsequent wellsite tests will ascertain the results for comparison to predictions. A reservoir simulation program will then predict the rate and volumetric increase in production. Comparison of the predicted increase in production with that of reality, and the hypothetical fracturing behavior of the reservoir with that of its actual behavior, will serve as tests of

  14. Towards an optimal integrated reservoir system management for the Awash River Basin, Ethiopia

    Science.gov (United States)

    Müller, Ruben; Gebretsadik, Henok Y.; Schütze, Niels

    2016-05-01

    Recently, the Kessem-Tendaho project is completed to bring about socioeconomic development and growth in the Awash River Basin, Ethiopia. To support reservoir Koka, two new reservoirs where built together with extensive infrastructure for new irrigation projects. For best possible socioeconomic benefits under conflicting management goals, like energy production at three hydropower stations and basin wide water supply at various sites, an integrated reservoir system management is required. To satisfy the multi-purpose nature of the reservoir system, multi-objective parameterization-simulation-optimization model is applied. Different Pareto-optimal trade-off solutions between water supply and hydro-power generation are provided for two scenarios (i) recent conditions and (ii) future planned increases for Tendaho and Upper Awash Irrigation projects. Reservoir performance is further assessed under (i) rule curves with a high degree of freedom - this allows for best performance, but may result in rules curves to variable for real word operation and (ii) smooth rule curves, obtained by artificial neuronal networks. The results show no performance penalty for smooth rule curves under future conditions but a notable penalty under recent conditions.

  15. Optimal Reoperation of Multi-Reservoirs for Integrated Watershed Management with Multiple Benefits

    Directory of Open Access Journals (Sweden)

    Xinyi Xu

    2014-04-01

    Full Text Available Constructing reservoirs can make more efficient use of water resources for human society. However, the negative impacts of these projects on the environment are often ignored. Optimal reoperation of reservoirs, which considers not only in socio-economic values but also environmental benefits, is increasingly important. A model of optimal reoperation of multi-reservoirs for integrated watershed management with multiple benefits was proposed to alleviate the conflict between water use and environmental deterioration. The social, economic, water quality and ecological benefits were respectively taken into account as the scheduling objectives and quantified according to economic models. River minimum ecological flows and reservoir water levels based on flood control were taken as key constraint conditions. Feasible search discrete differential dynamic programming (FS-DDDP was used to run the model. The proposed model was used in the upstream of the Nanpan River, to quantitatively evaluate the difference between optimal reoperation and routine operation. The results indicated that the reoperation could significantly increase the water quality benefit and have a minor effect on the benefits of power generation and irrigation under different hydrological years. The model can be readily adapted to other multi-reservoir systems for water resources management.

  16. Latent HIV reservoirs exhibit inherent resistance to elimination by CD8+ T cells.

    Science.gov (United States)

    Huang, Szu-Han; Ren, Yanqin; Thomas, Allison S; Chan, Dora; Mueller, Stefanie; Ward, Adam R; Patel, Shabnum; Bollard, Catherine M; Cruz, Conrad Russell; Karandish, Sara; Truong, Ronald; Macedo, Amanda B; Bosque, Alberto; Kovacs, Colin; Benko, Erika; Piechocka-Trocha, Alicja; Wong, Hing; Jeng, Emily; Nixon, Douglas F; Ho, Ya-Chi; Siliciano, Robert F; Walker, Bruce D; Jones, R Brad

    2018-02-01

    The presence of persistent, latent HIV reservoirs in CD4+ T cells obstructs current efforts to cure infection. The so-called kick-and-kill paradigm proposes to purge these reservoirs by combining latency-reversing agents with immune effectors such as cytotoxic T lymphocytes. Support for this approach is largely based on success in latency models, which do not fully reflect the makeup of latent reservoirs in individuals on long-term antiretroviral therapy (ART). Recent studies have shown that CD8+ T cells have the potential to recognize defective proviruses, which comprise the vast majority of all infected cells, and that the proviral landscape can be shaped over time due to in vivo clonal expansion of infected CD4+ T cells. Here, we have shown that treating CD4+ T cells from ART-treated individuals with combinations of potent latency-reversing agents and autologous CD8+ T cells consistently reduced cell-associated HIV DNA, but failed to deplete replication-competent virus. These CD8+ T cells recognized and potently eliminated CD4+ T cells that were newly infected with autologous reservoir virus, ruling out a role for both immune escape and CD8+ T cell dysfunction. Thus, our results suggest that cells harboring replication-competent HIV possess an inherent resistance to CD8+ T cells that may need to be addressed to cure infection.

  17. The Researches on Reasonable Well Spacing of Gas Wells in Deep and low Permeability Gas Reservoirs

    Science.gov (United States)

    Bei, Yu Bei; Hui, Li; Lin, Li Dong

    2018-06-01

    This Gs64 gas reservoir is a condensate gas reservoir which is relatively integrated with low porosity and low permeability found in Dagang Oilfield in recent years. The condensate content is as high as 610g/m3. At present, there are few reports about the well spacing of similar gas reservoirs at home and abroad. Therefore, determining the reasonable well spacing of the gas reservoir is important for ensuring the optimal development effect and economic benefit of the gas field development. This paper discusses the reasonable well spacing of the deep and low permeability gas reservoir from the aspects of percolation mechanics, gas reservoir engineering and numerical simulation. considering there exist the start-up pressure gradient in percolation process of low permeability gas reservoir, this paper combined with productivity equation under starting pressure gradient, established the formula of gas well spacing with the formation pressure and start-up pressure gradient. The calculation formula of starting pressure gradient and well spacing of gas wells. Adopting various methods to calculate values of gas reservoir spacing are close to well testing' radius, so the calculation method is reliable, which is very important for the determination of reasonable well spacing in low permeability gas reservoirs.

  18. Development of a cerebrospinal fluid lateral reservoir model in rhesus monkeys (Macaca mulatta).

    Science.gov (United States)

    Lester McCully, Cynthia M; Bacher, John; MacAllister, Rhonda P; Steffen-Smith, Emilie A; Saleem, Kadharbatcha; Thomas, Marvin L; Cruz, Rafael; Warren, Katherine E

    2015-02-01

    Rapid, serial, and humane collection of cerebrospinal fluid (CSF) in nonhuman primates (NHP) is an essential element of numerous research studies and is currently accomplished via two different models. The CSF reservoir model (FR) combines a catheter in the 4th ventricle with a flexible silastic reservoir to permit circulating CSF flow. The CSF lateral port model (LP) consists of a lateral ventricular catheter and an IV port that provides static access to CSF and volume restrictions on sample collection. The FR model is associated with an intensive, prolonged recovery and frequent postsurgical hydrocephalus and nonpatency, whereas the LP model is associated with an easier recovery. To maximize the advantages of both systems, we developed the CSF lateral reservoir model (LR), which combines the beneficial features of the 2 previous models but avoids their limitations by using a reservoir for circulating CSF flow combined with catheter placement in the lateral ventricle. Nine adult male rhesus monkeys were utilized in this study. Pre-surgical MRI was performed to determine the coordinates of the lateral ventricle and location of choroid plexus (CP). The coordinates were determined to avoid the CP and major blood vessels. The predetermined coordinates were 100% accurate, according to MRI validation. The LR system functioned successfully in 67% of cases for 221 d, and 44% remain functional at 426 to 510 d postoperatively. Compared with established models, our LR model markedly reduced postoperative complications and recovery time. Development of the LR model was successful in rhesus macaques and is a useful alternative to the FR and LP methods of CSF collection from nonhuman primates.

  19. Sediment pollution characteristics and in situ control in a deep drinking water reservoir.

    Science.gov (United States)

    Zhou, Zizhen; Huang, Tinglin; Li, Yang; Ma, Weixing; Zhou, Shilei; Long, Shenghai

    2017-02-01

    Sediment pollution characteristics, in situ sediment release potential, and in situ inhibition of sediment release were investigated in a drinking water reservoir. Results showed that organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) in sediments increased from the reservoir mouth to the main reservoir. Fraction analysis indicated that nitrogen in ion exchangeable form and NaOH-extractable P (Fe/Al-P) accounted for 43% and 26% of TN and TP in sediments of the main reservoir. The Risk Assessment Code for metal elements showed that Fe and Mn posed high to very high risk. The results of the in situ reactor experiment in the main reservoir showed the same trends as those observed in the natural state of the reservoir in 2011 and 2012; the maximum concentrations of total OC, TN, TP, Fe, and Mn reached 4.42mg/L, 3.33mg/L, 0.22mg/L, 2.56mg/L, and 0.61mg/L, respectively. An in situ sediment release inhibition technology, the water-lifting aerator, was utilized in the reservoir. The results of operating the water-lifting aerator indicated that sediment release was successfully inhibited and that OC, TN, TP, Fe, and Mn in surface sediment could be reduced by 13.25%, 15.23%, 14.10%, 5.32%, and 3.94%, respectively. Copyright © 2016. Published by Elsevier B.V.

  20. Use of modified nanoparticles in oil and gas reservoir management

    NARCIS (Netherlands)

    Turkenburg, D.H.; Chin, P.T.K.; Fischer, H.R.

    2012-01-01

    We describe a water dispersed nano sensor cocktail based on InP/ZnS quantum dots (QDs) and atomic silver clusters with a bright and visible luminescence combined with optimized sensor functionalities for the water flooding process. The QDs and Ag nano sensors were tested in simulated reservoir

  1. Acoustic dew point and bubble point detector for gas condensates and reservoir fluids

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, A.; Hu, Y.; Thomas, F. B.; Bennion, D. B.; Jamaluddin, A. K. M. [Hycal Energy Research Labs. Ltd., Calgary, AB (Canada)

    1997-08-01

    Detailed knowledge of bubblepoint and dewpoint pressures at reservoir temperature are crucial for natural gas processing, transportation, metering and utilization. This paper introduces a new acoustic dewpoint and bubblepoint detector that can be applied to a broad range of phase transitions, including very lean gas systems and opaque heavy oils. The system uses two acoustic transducers, one to stimulate and the other to detect normal mode vibrations of reservoir fluids in a small cylindrical resonator. The acoustic spectra are recorded at close intervals throughout the phase envelope, along with temperature, pressure and volume measurements, and the data is processed to obtain the specific condition of phase transition. Results of two systems, a binary mixture and live reservoir fluid, are presented. The detector system is claimed to be capable of operation in an isothermal mode with variable volume, and in a constant volume mode with variable temperatures. Interpretation of results is free of operator subjectivity; they show excellent agreement with results obtained by visual methods and equations of state calculations. 4 refs., 2 tabs., 4 figs.

  2. Gas geochemistry for the Los Azufres (Michoacán geothermal reservoir, México

    Directory of Open Access Journals (Sweden)

    N. Segovia

    2005-06-01

    Full Text Available Gas data of the Los Azufres geothermal field were analyzed using a method based on equilibrium of the Fischer- Tropsch (FT reaction: CH4 + 2H2O = 4H2 +CO2 and on the combined pyrite-hematite-magnetite (HSH2 reactions: 5/4 H2 +3/2 FeS2 +3/4 Fe2O3 + 7/4 H2O = 3 H2S +Fe3O4 in order to estimate reservoir temperature and excess steam. The solution of equilibrium equations produces a grid (FT-HSH2. This method is suitable for reservoirs with relatively high H2S but low H2 and NH3 concentrations in the fluid as is the case of the Los Azufres well discharges. Reservoir temperature and reservoir excess steam values were estimated for initial and present conditions in representative wells of the field to study the evolution of fluids, because of exploitation and waste fluids reinjection. This method was very useful in estimating reservoir temperatures in vapor wells, while in two-phase wells it was found that as the well produces a smaller fraction of water, the reservoir temperature estimation agrees qualitatively with results from cationic or silica geothermometers. For liquid-dominated wells the reservoir temperature estimations agree with temperatures obtained from the well simulator WELFLO. This indicates that FT-HSH2 results provide the temperature of the fluid entering the well where the last equilibrium occurs. Results show a decrease in reservoir temperatures in the southern zone of the field where intensive reinjection takes place. With exploitation, it was also noted that the deep liquid phase in the reservoir is changing to two-phase increasing the reservoir steam fraction and the non-condensable gases in well discharges.

  3. 33 CFR 208.19 - Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Marshall Ford Dam and Reservoir... Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex. The Secretary of the Interior, through his agent, the Lower Colorado River Authority (LCRA) shall operate the Marshall Ford Dam...

  4. Estimated cumulative sediment trapping in future hydropower reservoirs in Africa

    Science.gov (United States)

    Lucía, Ana; Berlekamp, Jürgen; Zarfl, Christiane

    2017-04-01

    Despite a rapid economic development in Sub-Saharan Africa, almost 70% of the human population in this area remain disconnected from electricity access (International Energy Agency 2011). Mitigating climate change and a search for renewable, "climate neutral" electricity resources are additional reasons why Africa will be one key centre for future hydropower dam building, with only 8% of the technically feasible hydropower potential actually exploited. About 300 major hydropower dams with a total capacity of 140 GW are currently under construction (11.4%) or planned (88.6%) (Zarfl et al. 2015). Despite the benefits of hydropower dams, fragmentation of the rivers changes the natural flow, temperature and sediment regime. This has consequences for a high number of people that directly depend on the primary sector linked to rivers and floodplains. But sediment trapping in the reservoir also affects dam operation and decreases its life span. Thus, the objective of this work is to quantify the dimension of sediment trapping by future hydropower dams in African river basins. Soil erosion is described with the universal soil loss equation (Wischmeier & Smith 1978) and combined with the connectivity index (Cavalli et al. 2013) to estimate the amount of eroded soil that reaches the fluvial network and finally ends up in the existing (Lehner et al. 2011) and future reservoirs (Zarfl et al. 2015) per year. Different scenarios assuming parameter values from the literature are developed to include model uncertainty. Estimations for existing dams will be compared with literature data to evaluate the applied estimation method and scenario assumptions. Based on estimations for the reservoir volume of the future dams we calculated the potential time-laps of the future reservoirs due to soil erosion and depending on their planned location. This approach could support sustainable decision making for the location of future hydropower dams. References Cavalli, M., Trevisani, S., Comiti

  5. Pennsylvanian carbonate buildups, Paradox basin: Increasing reserves in heterogeneous, shallow-shelf reservoirs

    Science.gov (United States)

    Montgomery, S.L.; Chidsey, T.C.; Eby, D.E.; Lorenz, D.M.; Culham, W.E.

    1999-01-01

    Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer precipitous declines. An important new study focused on the detailed characterization of five separate reservoirs has resulted in significant information relevant to their future redevelopment. Completed assessment of Anasazi field suggests that phylloid algal mounds, the major productive buildup type in this area, consist of ten separate lithotypes and can be described in terms of a two-level reservoir system with an underlying high-permeability mound-core interval overlain by a lower permeability but volumetrically larger supramound (mound capping) interval. Reservoir simulations and related performance predictions indicate that CO2 flooding of these reservoirs should have considerable success in recovering remaining oil reserves.Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer

  6. Microchips and controlled-release drug reservoirs.

    Science.gov (United States)

    Staples, Mark

    2010-01-01

    This review summarizes and updates the development of implantable microchip-containing devices that control dosing from drug reservoirs integrated with the devices. As the expense and risk of new drug development continues to increase, technologies that make the best use of existing therapeutics may add significant value. Trends of future medical care that may require advanced drug delivery systems include individualized therapy and the capability to automate drug delivery. Implantable drug delivery devices that promise to address these anticipated needs have been constructed in a variety of ways using micro- and nanoelectromechanical systems (MEMS or NEMS)-based technology. These devices expand treatment options for addressing unmet medical needs related to dosing. Within the last few years, advances in several technologies (MEMS or NEMS fabrication, materials science, polymer chemistry, and data management) have converged to enable the construction of miniaturized implantable devices for controlled delivery of therapeutic agents from one or more reservoirs. Suboptimal performance of conventional dosing methods in terms of safety, efficacy, pain, or convenience can be improved with advanced delivery devices. Microchip-based implantable drug delivery devices allow localized delivery by direct placement of the device at the treatment site, delivery on demand (emergency administration, pulsatile, or adjustable continuous dosing), programmable dosing cycles, automated delivery of multiple drugs, and dosing in response to physiological and diagnostic feedback. In addition, innovative drug-medical device combinations may protect labile active ingredients within hermetically sealed reservoirs. Copyright (c) 2010 John Wiley & Sons, Inc.

  7. Experimental demonstration of reservoir computing on a silicon photonics chip

    Science.gov (United States)

    Vandoorne, Kristof; Mechet, Pauline; van Vaerenbergh, Thomas; Fiers, Martin; Morthier, Geert; Verstraeten, David; Schrauwen, Benjamin; Dambre, Joni; Bienstman, Peter

    2014-03-01

    In today’s age, companies employ machine learning to extract information from large quantities of data. One of those techniques, reservoir computing (RC), is a decade old and has achieved state-of-the-art performance for processing sequential data. Dedicated hardware realizations of RC could enable speed gains and power savings. Here we propose the first integrated passive silicon photonics reservoir. We demonstrate experimentally and through simulations that, thanks to the RC paradigm, this generic chip can be used to perform arbitrary Boolean logic operations with memory as well as 5-bit header recognition up to 12.5 Gbit s-1, without power consumption in the reservoir. It can also perform isolated spoken digit recognition. Our realization exploits optical phase for computing. It is scalable to larger networks and much higher bitrates, up to speeds >100 Gbit s-1. These results pave the way for the application of integrated photonic RC for a wide range of applications.

  8. Future reservoir management under climate change for the Mississippi River

    International Nuclear Information System (INIS)

    Asnaashari, Ahmad; Gharabaghi, Bahram; McBean, Edward A.; Kunjikutty, Sobhalatha; Lehman, Paul; Wade, Winston

    2010-01-01

    This paper is part of an ongoing research project designed to evaluate the effect of climate change on reservoir operation policies in the Mississippi Valley Conservation Authority. The study used the results from a first paper, including projected daily temperature and precipitation, for future streamflow calculation. This paper presented the development, calibration and validation of a rainfall-runoff NAM model for the Mississippi River watershed. The calibrated Mike11/NAM model was fed with predicted climatic data to generate long term future streamflow in the basin. Forecast flows were run in a Mike 11/HD model to estimate the corresponding lake levels. The storages and flows at Shabomeka Lake, Mazinaw Lake and Marble Lake were simulated. The results showed that climate change is likely to have implications for reservoir operations in the Mississippi River watershed, which will include changed water level regimes due to modifications in the projected future streamflow hydrograph to meet desired lake levels.

  9. Quantification of oil recovery efficiency, CO 2 storage potential, and fluid-rock interactions by CWI in heterogeneous sandstone oil reservoirs

    DEFF Research Database (Denmark)

    Seyyedi, Mojtaba; Sohrabi, Mehran; Sisson, Adam

    2017-01-01

    Significant interest exists in improving recovery from oil reservoirs while addressing concerns about increasing CO2 concentrations in the atmosphere. The combination of Enhanced Oil Recovery (EOR) and safe geologic storage of CO2 in oil reservoirs is appealing and can be achieved by carbonated (CO...... for oil recovery and CO2 storage potential on heterogeneous cores. Since not all the oil reservoirs are homogenous, understanding the potential of CWI as an integrated EOR and CO2 storage scenario in heterogeneous oil reservoirs is essential....

  10. Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms

    NARCIS (Netherlands)

    Cao, Ming; Lu, Ming; Zhang, Jian-Ping

    2004-01-01

    This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation

  11. Multipurpose units: combining of technological operations of a soil cultivating and seeding

    Directory of Open Access Journals (Sweden)

    D. A. Petukhov

    2015-01-01

    Full Text Available The modern domestic market of technique for grain crops seeding differs variety of machines brands and types. The intensive type technologies combining technological operations of a soil cultivating and grain crops seeding in one pass are more widely used. The authors have established that one-operational units in new machine park have to be replaced multipurpose, universal and combined machines. Such approach will reduce number of machines in grain production from 20-30 to 5-6 name titles. Possibilities of multipurpose sowing units for simultaneous fertilizers application, soil cultivating and weeds destruction were analyzed. It was specified that nowadays there are several technologies types with two, four or six operations overlapping. Operational performance, technological and economical efficiency of the best multipurpose and also efficiency of technological operations overlapping at grain crops cultivating in the conditions of their real operation and at a trial establishment in the Kuban research institute of information and technical and economic studies of agro-industrial complex engineering and technical services were studied. Tit was defined that use of multipurpose sowing units and also studied efficiency of decreases operational costs by 48-71 percent, fuel consumption - by 41-76 percent and reduces labor input by 72-80 percent. Thus grain crops seeding is possible in optimal agrotime because of 4-6 technological operations overlapping in one pass.

  12. analysis of pressure variation of fluid in bounded circular reservoirs

    African Journals Online (AJOL)

    user

    analysis of the analysed finite element, imposing the boundary conditions and finally, getting the results that ... in reservoir engineering applications [2–7]. ... THEORY. The law of conservation of mass, Darcy's law and the equation of state has been combined to obtain the ..... fields in laser-two-layer solids weak interactions.

  13. An Effective Reservoir Parameter for Seismic Characterization of Organic Shale Reservoir

    Science.gov (United States)

    Zhao, Luanxiao; Qin, Xuan; Zhang, Jinqiang; Liu, Xiwu; Han, De-hua; Geng, Jianhua; Xiong, Yineng

    2017-12-01

    Sweet spots identification for unconventional shale reservoirs involves detection of organic-rich zones with abundant porosity. However, commonly used elastic attributes, such as P- and S-impedances, often show poor correlations with porosity and organic matter content separately and thus make the seismic characterization of sweet spots challenging. Based on an extensive analysis of worldwide laboratory database of core measurements, we find that P- and S-impedances exhibit much improved linear correlations with the sum of volume fraction of organic matter and porosity than the single parameter of organic matter volume fraction or porosity. Importantly, from the geological perspective, porosity in conjunction with organic matter content is also directly indicative of the total hydrocarbon content of shale resources plays. Consequently, we propose an effective reservoir parameter (ERP), the sum of volume fraction of organic matter and porosity, to bridge the gap between hydrocarbon accumulation and seismic measurements in organic shale reservoirs. ERP acts as the first-order factor in controlling the elastic properties as well as characterizing the hydrocarbon storage capacity of organic shale reservoirs. We also use rock physics modeling to demonstrate why there exists an improved linear correlation between elastic impedances and ERP. A case study in a shale gas reservoir illustrates that seismic-derived ERP can be effectively used to characterize the total gas content in place, which is also confirmed by the production well.

  14. Integrated Approach to Drilling Project in Unconventional Reservoir Using Reservoir Simulation

    Science.gov (United States)

    Stopa, Jerzy; Wiśniowski, Rafał; Wojnarowski, Paweł; Janiga, Damian; Skrzypaszek, Krzysztof

    2018-03-01

    Accumulation and flow mechanisms in unconventional reservoir are different compared to conventional. This requires a special approach of field management with drilling and stimulation treatments as major factor for further production. Integrated approach of unconventional reservoir production optimization assumes coupling drilling project with full scale reservoir simulation for determine best well placement, well length, fracturing treatment design and mid-length distance between wells. Full scale reservoir simulation model emulate a part of polish shale - gas field. The aim of this paper is to establish influence of technical factor for gas production from shale gas field. Due to low reservoir permeability, stimulation treatment should be direct towards maximizing the hydraulic contact. On the basis of production scenarios, 15 stages hydraulic fracturing allows boost gas production over 1.5 times compared to 8 stages. Due to the possible interference of the wells, it is necessary to determine the distance between the horizontal parts of the wells trajectories. In order to determine the distance between the wells allowing to maximize recovery factor of resources in the stimulated zone, a numerical algorithm based on a dynamic model was developed and implemented. Numerical testing and comparative study show that the most favourable arrangement assumes a minimum allowable distance between the wells. This is related to the volume ratio of the drainage zone to the total volume of the stimulated zone.

  15. Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems

    Science.gov (United States)

    Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.

    2017-12-01

    Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given

  16. Optimum operation of restoration techniques for eutrophic water bodies

    Science.gov (United States)

    Hagen, N. M.; Kleeberg, H.-B.

    1994-05-01

    Operating rules have been applied in water resources management for a long time in order to control and supply a required quantity (volume) of water. The operating rules have to guarantee the optimum management of the reservoir(s). The quality of the stored water has been satisfactory for the desired utilization up to the sixties. Due to the deterioration of reservoir water quality through human impacts, however, increased attention had to be paid since. Eutrophication of stagnant waters is still an unsolved problem. Through means of various restoration techniques, i.e., dilution/flushing or hypolimnetic withdrawal, the quality of the stored water can be improved. Continuous operation or appropriate time or depth variant operating rules are required to achieve this goal. The paper presents such rules for long-term operation. They have been established for the first time and can he represented in two or three-dimensional graphs depending on the number of included components (e.g., actual water storage and quality). The ‘quality operating rules’ take into account the dynamics of the processes in aquatic ecosystems. Simplifications with regard to application and acceptance (e.g., clarity) are developed and tested. The general validity and efficiency of the operating rules have been proved in a case study (a multi-purpose reservoir) and a fictitious lake.

  17. An ensemble-based method for constrained reservoir life-cycle optimization

    NARCIS (Netherlands)

    Leeuwenburgh, O.; Egberts, P.J.P.; Chitu, A.G.

    2015-01-01

    We consider the problem of finding optimal long-term (life-cycle) recovery strategies for hydrocarbon reservoirs by use of simulation models. In such problems the presence of operating constraints, such as for example a maximum rate limit for a group of wells, may strongly influence the range of

  18. Reservoir system optimisation using a penalty approach and a multi ...

    African Journals Online (AJOL)

    ... IV obtained several high-performance solutions of varied sizes and supply capabilities. This analysis revealed specific limitations of supply reliability and the expected storage states of one of the reservoirs. The analysis also obtained the ranges within which the optimal monthly operating rules for the system are expected.

  19. A rationale for reservoir management economics

    International Nuclear Information System (INIS)

    Hickman, T.S.

    1995-01-01

    Significant economic benefits can be derived from the application f reservoir management. The key elements in economical reservoir management are the efficient use of available resources and optimization of reservoir exploitation through a multidisciplined approach. This paper describes various aspects of and approaches to reservoir management and provides case histories that support the findings

  20. Diagnostic Assessment of the Difficulty Using Direct Policy Search in Many-Objective Reservoir Control

    Science.gov (United States)

    Zatarain-Salazar, J.; Reed, P. M.; Herman, J. D.; Giuliani, M.; Castelletti, A.

    2014-12-01

    Globally reservoir operations provide fundamental services to water supply, energy generation, recreation, and ecosystems. The pressures of expanding populations, climate change, and increased energy demands are motivating a significant investment in re-operationalizing existing reservoirs or defining operations for new reservoirs. Recent work has highlighted the potential benefits of exploiting recent advances in many-objective optimization and direct policy search (DPS) to aid in addressing these systems' multi-sector demand tradeoffs. This study contributes to a comprehensive diagnostic assessment of multi-objective evolutionary optimization algorithms (MOEAs) efficiency, effectiveness, reliability, and controllability when supporting DPS for the Conowingo dam in the Lower Susquehanna River Basin. The Lower Susquehanna River is an interstate water body that has been subject to intensive water management efforts due to the system's competing demands from urban water supply, atomic power plant cooling, hydropower production, and federally regulated environmental flows. Seven benchmark and state-of-the-art MOEAs are tested on deterministic and stochastic instances of the Susquehanna test case. In the deterministic formulation, the operating objectives are evaluated over the historical realization of the hydroclimatic variables (i.e., inflows and evaporation rates). In the stochastic formulation, the same objectives are instead evaluated over an ensemble of stochastic inflows and evaporation rates realizations. The algorithms are evaluated in their ability to support DPS in discovering reservoir operations that compose the tradeoffs for six multi-sector performance objectives with thirty-two decision variables. Our diagnostic results highlight that many-objective DPS is very challenging for modern MOEAs and that epsilon dominance is critical for attaining high levels of performance. Epsilon dominance algorithms epsilon-MOEA, epsilon-NSGAII and the auto adaptive Borg

  1. Lithofacies and associated reservoir properties co-simulations constraint by seismic data; Cosimulations de lithofacies et de proprietes reservoirs associees contraintes par les donnees sismiques

    Energy Technology Data Exchange (ETDEWEB)

    Fichtl, P.

    1998-01-19

    Integration of data different sources and nature leads to more accurate reservoir models, useful for controlling fluid and assessing final uncertainties. In this frame, this thesis presents a new technique for co-simulating in 3D two high resolution properties - one categorical, one continuous - conditionally to well information and under the constraint of seismic data. This technique could be applied to simulate lithofacies and related reservoir properties like acoustic impedances or porosities. The proposed algorithm combines a non-parametric approach for the categorical variable and a parametric approach for the continuous variable through a sequential co-simulation. The co-simulation process is divided in two steps: in the first step, the lithofacies is co-simulated with the seismic information by a sequential indicator co-simulation with co-kriging and, in the second step, the reservoir property of interest is simulated from the previously co-simulated lithofacies using sequential Gaussian (co- )simulation or P-field simulation. A validation study on a synthetic but realistic model shows that this technique provides alternative models of lithofacies and associated high resolution acoustic impedances consistent with the seismic data. The seismic information constraining the co-simulations contributes to reduce the uncertainties for the lithofacies distribution at the reservoir level. In some case, a Markov co-regionalization model can be used for simplifying the inference and modelling of the cross-covariances; finally, the co-simulation algorithm was applied to a 3D real case study with objective the joint numerical modelling of lithofacies and porosity in a fluvial channel reservoir. (author) 88 refs.

  2. Combined compressed air storage-low BTU coal gasification power plant

    Science.gov (United States)

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  3. Interdisciplinary study of reservoir compartments and heterogeneity. Final report, October 1, 1993--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, C.

    1998-01-01

    A case study approach using Terry Sandstone production from the Hambert-Aristocrat Field, Weld County, Colorado was used to document the process of integration. One specific project goal is to demonstrate how a multidisciplinary approach can be used to detect reservoir compartmentalization and improve reserve estimates. The final project goal is to derive a general strategy for integration for independent operators. Teamwork is the norm for the petroleum industry where teams of geologists, geophysicists, and petroleum engineers work together to improve profits through a better understanding of reservoir size, compartmentalization, and orientation as well as reservoir flow characteristics. In this manner, integration of data narrows the uncertainty in reserve estimates and enhances reservoir management decisions. The process of integration has proven to be iterative. Integration has helped identify reservoir compartmentalization and reduce the uncertainty in the reserve estimates. This research report documents specific examples of integration and the economic benefits of integration.

  4. Characterization of Fractured Reservoirs Using a Combination of Downhole Pressure and Self-Potential Transient Data

    Directory of Open Access Journals (Sweden)

    Yuji Nishi

    2012-01-01

    Full Text Available In order to appraise the utility of self-potential (SP measurements to characterize fractured reservoirs, we carried out continuous SP monitoring using multi Ag-AgCl electrodes installed within two open holes at the Kamaishi Mine, Japan. The observed ratio of SP change to pressure change associated with fluid flow showed different behaviors between intact host rock and fractured rock regions. Characteristic behavior peculiar to fractured reservoirs, which is predicted from numerical simulations of electrokinetic phenomena in MINC (multiple interacting continua double-porosity media, was observed near the fractures. Semilog plots of the ratio of SP change to pressure change observed in one of the two wells show obvious transition from intermediate time increasing to late time stable trends, which indicate that the time required for pressure equilibration between the fracture and matrix regions is about 800 seconds. Fracture spacing was estimated to be a few meters assuming several micro-darcies (10-18 m2 of the matrix region permeability, which is consistent with geological and hydrological observations.

  5. Investigating leaks in dams and reservoirs

    International Nuclear Information System (INIS)

    2003-01-01

    Millions of people throughout the world depend on dams and reservoirs for electricity, water and flood protection. Dams require significant investment to build and maintain, and yet their usefulness and integrity are constantly threatened by leakage and sedimentation. Isotope hydrology techniques, combined with conventional analytical methods, are a cost-effective tool to reduce such threats. The International Atomic Energy Agency is promoting their use to protect these investments and improve management, particularly by supporting specialized teams of scientists and engineers to investigate dam leakage in African countries on request. (IAEA)

  6. Dynamics of host-reservoir transmission of Ebola with spillover potential to humans

    Directory of Open Access Journals (Sweden)

    Berge Tsanou

    2018-04-01

    Full Text Available Ebola virus disease (EVD is a zoonotic borne disease (i.e. disease that is spread from animals to people. Therefore human beings can be infected through direct contact with an infected animal (fruit-eating bat or great ape. It has been demonstrated that fruit-eating bats of pteropodidae family are potential reservoir of EVD. Moreover, it has been biologically shown that fruit-eating bats do not die due to EVD and bear the Ebola viruses lifelong. We develop in this paper, a mathematical model to assess the impact of the reservoir on the dynamics of EVD. Our model couples a bat-to-bat model with a human-to-human model and the indirect environmental contamination through a spillover process (i.e. process by which a zoonotic pathogen moves (regardless of transmission mode from an animal host (or environmental reservoir to a human host from bats to humans. The sub-models and the coupled models exhibit each a threshold behavior with the corresponding basic reproduction numbers being the bifurcation parameters. Existence of equilibria, their global stability are established by combining monotone operator theory, Lyapunov-LaSalle techniques and graph theory. Control strategies are assessed by using the target reproduction numbers. The efforts required to control EVD are assessed as well through S-control. The spillover event is shown to be highly detrimental to EVD by allowing the disease to switch from bats to humans even though the disease was not initially endemic in the human population. Precisely, we show that the spillover phenomenon contributes to speed up the disease outbreak. This suggests that the manipulation and consumption of fruit-bats play an important role in sustaining EVD in a given environment.

  7. Relating business intelligence and enterprise architecture - A method for combining operational data with architectural metadata

    NARCIS (Netherlands)

    Veneberg, R.K.M.; Iacob, Maria Eugenia; van Sinderen, Marten J.; Bodenstaff, L.

    Combining enterprise architecture and operational data is complex (especially when considering the actual ‘matching’ of data with enterprise architecture elements), and little has been written on how to do this. In this paper we aim to fill this gap, and propose a method to combine operational data

  8. Development of a Geomorphology-Based Framework for Cultural Resources Management, Dworshak Reservoir, Idaho

    National Research Council Canada - National Science Library

    Corcoran, Maureen

    2001-01-01

    The U.S. Army Engineer Research and Development Center developed a technical framework for identifying, evaluating, and mitigating impacts to cultural resource sites affected by reservoir operation in the Columbia River System...

  9. PREDICTION OF RESERVOIR FLOW RATE OF DEZ DAM BY THE PROBABILITY MATRIX METHOD

    Directory of Open Access Journals (Sweden)

    Mohammad Hashem Kanani

    2012-12-01

    Full Text Available The data collected from the operation of existing storage reservoirs, could offer valuable information for the better allocation and management of fresh water rates for future use to mitigation droughts effect. In this paper the long-term Dez reservoir (IRAN water rate prediction is presented using probability matrix method. Data is analyzed to find the probability matrix of water rates in Dez reservoir based on the previous history of annual water entrance during the past and present years(40 years. The algorithm developed covers both, the overflow and non-overflow conditions in the reservoir. Result of this study shows that in non-overflow conditions the most exigency case is equal to 75%. This means that, if the reservoir is empty (the stored water is less than 100 MCM this year, it would be also empty by 75% next year. The stored water in the reservoir would be less than 300 MCM by 85% next year if the reservoir is empty this year. This percentage decreases to 70% next year if the water of reservoir is less than 300 MCM this year. The percentage also decreases to 5% next year if the reservoir is full this year. In overflow conditions the most exigency case is equal to 75% again. The reservoir volume would be less than 150 MCM by 90% next year, if it is empty this year. This percentage decreases to 70% if its water volume is less than 300 MCM and 55% if the water volume is less than 500 MCM this year. Result shows that too, if the probability matrix of water rates to a reservoir is multiplied by itself repeatedly; it converges to a constant probability matrix, which could be used to predict the long-term water rate of the reservoir. In other words, the probability matrix of series of water rates is changed to a steady probability matrix in the course of time, which could reflect the hydrological behavior of the watershed and could be easily used for the long-term prediction of water storage in the down stream reservoirs.

  10. Balancing exploration, uncertainty and computational demands in many objective reservoir optimization

    Science.gov (United States)

    Zatarain Salazar, Jazmin; Reed, Patrick M.; Quinn, Julianne D.; Giuliani, Matteo; Castelletti, Andrea

    2017-11-01

    Reservoir operations are central to our ability to manage river basin systems serving conflicting multi-sectoral demands under increasingly uncertain futures. These challenges motivate the need for new solution strategies capable of effectively and efficiently discovering the multi-sectoral tradeoffs that are inherent to alternative reservoir operation policies. Evolutionary many-objective direct policy search (EMODPS) is gaining importance in this context due to its capability of addressing multiple objectives and its flexibility in incorporating multiple sources of uncertainties. This simulation-optimization framework has high potential for addressing the complexities of water resources management, and it can benefit from current advances in parallel computing and meta-heuristics. This study contributes a diagnostic assessment of state-of-the-art parallel strategies for the auto-adaptive Borg Multi Objective Evolutionary Algorithm (MOEA) to support EMODPS. Our analysis focuses on the Lower Susquehanna River Basin (LSRB) system where multiple sectoral demands from hydropower production, urban water supply, recreation and environmental flows need to be balanced. Using EMODPS with different parallel configurations of the Borg MOEA, we optimize operating policies over different size ensembles of synthetic streamflows and evaporation rates. As we increase the ensemble size, we increase the statistical fidelity of our objective function evaluations at the cost of higher computational demands. This study demonstrates how to overcome the mathematical and computational barriers associated with capturing uncertainties in stochastic multiobjective reservoir control optimization, where parallel algorithmic search serves to reduce the wall-clock time in discovering high quality representations of key operational tradeoffs. Our results show that emerging self-adaptive parallelization schemes exploiting cooperative search populations are crucial. Such strategies provide a

  11. New approaches to screening infrastructure investments in multi-reservoir systems- Evaluating proposed dams in Ethiopia and Kenya

    Science.gov (United States)

    Harou, J. J.; Geressu, R. T.; Hurford, A. P.

    2014-12-01

    Two approaches have been used traditionally to screen infrastructure investments in multi-reservoir systems: scenario analysis of a few simulated designs and deterministic optimization, sometimes using hydro-economic models or screening optimization models. Simulation models realistically represent proposed water systems and can easily include multiple performance metrics; however each prospective system operating rules need to be formulated and simulated for each proposed design (time consuming. Optimization models have been used to overcome this burden. Screening optimization models use integer or non-linear programming and can be challenging to apply to large and/or multi-objective systems. Hydro-economic models that use deterministic (implicit stochastic) optimization must be modified to examine each different plan and they cannot always reproduce realistic or politically acceptable system operations. In this presentation we demonstrate the application of a new screening approach to multi-reservoir systems where operating rules and new assets (dams) are simultaneously optimized in a multi-criteria context. Results are not least cost investment plans that satisfy reliability or other engineering constraints, but rather Pareto-optimal sets of asset portfolios that work well under historical and/or future scenarios. This is achieved by using stakeholder-built simulation models linked to multi-criteria search algorithms (e.g. many objective evolutionary algorithms, MOEA). Typical output is demonstrated through two case-studies on the Tana and Blue Nile rivers where operating rules and reservoir assets are efficiently screened together considering stakeholder-defined metrics. The focus on the Tana system is how reservoir operating rules and new irrigation schemes should be co-managed to limit ecological damages. On the Nile system, we identify Blue Nile river reservoir capacities that least negatively impact downstream Nile nations. Limitations and new directions of

  12. Towards an optimal integrated reservoir system management for the Awash River Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    R. Müller

    2016-05-01

    Full Text Available Recently, the Kessem–Tendaho project is completed to bring about socioeconomic development and growth in the Awash River Basin, Ethiopia. To support reservoir Koka, two new reservoirs where built together with extensive infrastructure for new irrigation projects. For best possible socioeconomic benefits under conflicting management goals, like energy production at three hydropower stations and basin wide water supply at various sites, an integrated reservoir system management is required. To satisfy the multi-purpose nature of the reservoir system, multi-objective parameterization-simulation-optimization model is applied. Different Pareto-optimal trade-off solutions between water supply and hydro-power generation are provided for two scenarios (i recent conditions and (ii future planned increases for Tendaho and Upper Awash Irrigation projects. Reservoir performance is further assessed under (i rule curves with a high degree of freedom – this allows for best performance, but may result in rules curves to variable for real word operation and (ii smooth rule curves, obtained by artificial neuronal networks. The results show no performance penalty for smooth rule curves under future conditions but a notable penalty under recent conditions.

  13. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

    1999-04-28

    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  14. Optimization of the Infrastructure of Reinforced Concrete Reservoirs by a Particle Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Kia Saeed

    2015-03-01

    Full Text Available Optimization techniques may be effective in finding the best modeling and shapes for reinforced concrete reservoirs (RCR to improve their durability and mechanical behavior, particularly for avoiding or reducing the bending moments in these structures. RCRs are one of the major structures applied for reserving fluids to be used in drinking water networks. Usually, these structures have fixed shapes which are designed and calculated based on input discharges, the conditions of the structure's topology, and geotechnical locations with various combinations of static and dynamic loads. In this research, the elements of reservoir walls are first typed according to the performance analyzed; then the range of the membrane based on the thickness and the minimum and maximum cross sections of the bar used are determined in each element. This is done by considering the variable constraints, which are estimated by the maximum stress capacity. In the next phase, based on the reservoir analysis and using the algorithm of the PARIS connector, the related information is combined with the code for the PSO algorithm, i.e., an algorithm for a swarming search, to determine the optimum thickness of the cross sections for the reservoir membrane’s elements and the optimum cross section of the bar used. Based on very complex mathematical linear models for the correct embedding and angles related to achain of peripheral strengthening membranes, which optimize the vibration of the structure, a mutual relation is selected between the modeling software and the code for a particle swarm optimization algorithm. Finally, the comparative weight of the concrete reservoir optimized by the peripheral strengthening membrane is analyzed using common methods. This analysis shows a 19% decrease in the bar’s weight, a 20% decrease in the concrete’s weight, and a minimum 13% saving in construction costs according to the items of a checklist for a concrete reservoir at 10,000 m3.

  15. Creation of operation algorithms for combined operation of anti-lock braking system (ABS) and electric machine included in the combined power plant

    Science.gov (United States)

    Bakhmutov, S. V.; Ivanov, V. G.; Karpukhin, K. E.; Umnitsyn, A. A.

    2018-02-01

    The paper considers the Anti-lock Braking System (ABS) operation algorithm, which enables the implementation of hybrid braking, i.e. the braking process combining friction brake mechanisms and e-machine (electric machine), which operates in the energy recovery mode. The provided materials focus only on the rectilinear motion of the vehicle. That the ABS task consists in the maintenance of the target wheel slip ratio, which depends on the tyre-road adhesion coefficient. The tyre-road adhesion coefficient was defined based on the vehicle deceleration. In the course of calculated studies, the following operation algorithm of hybrid braking was determined. At adhesion coefficient ≤0.1, driving axle braking occurs only due to the e-machine operating in the energy recovery mode. In other cases, depending on adhesion coefficient, the e-machine provides the brake torque, which changes from 35 to 100% of the maximum available brake torque. Virtual tests showed that values of the wheel slip ratio are close to the required ones. Thus, this algorithm makes it possible to implement hybrid braking by means of the two sources creating the brake torque.

  16. Reservoir architecture and tough gas reservoir potential of fluvial crevasse-splay deposits

    NARCIS (Netherlands)

    Van Toorenenburg, K.A.; Donselaar, M.E.; Weltje, G.J.

    2015-01-01

    Unconventional tough gas reservoirs in low-net-to-gross fluvial stratigraphic intervals may constitute a secondary source of fossil energy to prolong the gas supply in the future. To date, however, production from these thin-bedded, fine-grained reservoirs has been hampered by the economic risks

  17. Simulation and OR (operations research) in combination for practical optimization

    NARCIS (Netherlands)

    van Dijk, N.; van der Sluis, E.; Haijema, R.; Al-Ibrahim, A.; van der Wal, J.; Kuhl, M.E.; Steiger, N.M.; Armstrong, F.B.; Joines, J.A.

    2005-01-01

    Should we pool capacities or not? This is a question that one can regularly be confronted with in operations and service management. It is a question that necessarily requires a combination of queueing (as OR discipline) and simulation (as evaluative tool) and further steps for optimization. It will

  18. Development of gas and gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    In the study of gas reservoir development, the first year topics are restricted on reservoir characterization. There are two types of reservoir characterization. One is the reservoir formation characterization and the other is the reservoir fluid characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. The results of conditional simulation has higher confidence level than the unconditional simulation because conditional simulation considers the sample location as well as distance correlation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. From the liquid volume fraction with pressure drop, the phase behavior of reservoir fluid can be estimated. The calculation results of fluid recombination, constant composition expansion, and constant volume depletion are matched very well with the experimental data. In swelling test of the reservoir fluid with lean gas, the accuracy of dew point pressure forecast depends on the component characterization. (author). 28 figs., 10 tabs.

  19. Advances in photonic reservoir computing

    Directory of Open Access Journals (Sweden)

    Van der Sande Guy

    2017-05-01

    Full Text Available We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir’s complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  20. [Application of in situ cryogenic Raman spectroscopy to analysis of fluid inclusions in reservoirs].

    Science.gov (United States)

    Chen, Yong; Lin, Cheng-yan; Yu, Wen-quan; Zheng, Jie; Wang, Ai-guo

    2010-01-01

    Identification of salts is a principal problem for analysis of fluid inclusions in reservoirs. The fluid inclusions from deep natural gas reservoirs in Minfeng sub-sag were analyzed by in situ cryogenic Raman spectroscopy. The type of fluid inclusions was identified by Raman spectroscopy at room temperature. The Raman spectra show that the inclusions contain methane-bearing brine aqueous liquids. The fluid inclusions were analyzed at -180 degrees C by in situ cryogenic Raman spectroscopy. The spectra show that inclusions contain three salts, namely NaCl2, CaCl2 and MgCl2. Sodium chloride is most salt component, coexisting with small calcium chloride and little magnesium chloride. The origin of fluids in inclusions was explained by analysis of the process of sedimentation and diagenesis. The mechanism of diagenesis in reservoirs was also given in this paper. The results of this study indicate that in situ cryogenic Raman spectroscopy is an available method to get the composition of fluid inclusions in reservoirs. Based on the analysis of fluid inclusions in reservoirs by in situ cryogenic Raman spectroscopy with combination of the history of sedimentation and diagenesis, the authors can give important evidence for the type and mechanism of diagenesis in reservoirs.