Sample records for reservoir models based

  1. Model based management of a reservoir system

    Energy Technology Data Exchange (ETDEWEB)

    Scharaw, B.; Westerhoff, T. [Fraunhofer IITB, Ilmenau (Germany). Anwendungszentrum Systemtechnik; Puta, H.; Wernstedt, J. [Technische Univ. Ilmenau (Germany)


    The main goals of reservoir management systems consist of prevention against flood water damages, the catchment of raw water and keeping all of the quality parameters within their limits besides controlling the water flows. In consideration of these goals a system model of the complete reservoir system Ohra-Schmalwasser-Tambach Dietharz was developed. This model has been used to develop optimized strategies for minimization of raw water production cost, for maximization of electrical energy production and to cover flood situations, as well. Therefore a proper forecast of the inflow to the reservoir from the catchment areas (especially flooding rivers) and the biological processes in the reservoir is important. The forecast model for the inflow to the reservoir is based on the catchment area model of Lorent and Gevers. It uses area precipitation, water supply from the snow cover, evapotranspiration and soil wetness data to calculate the amount of flow in rivers. The other aim of the project is to ensure the raw water quality using quality models, as well. Then a quality driven raw water supply will be possible. (orig.)

  2. Advancing reservoir operation description in physically based hydrological models (United States)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo


    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  3. Model Structure Analysis of Model-based Operation of Petroleum Reservoirs

    NARCIS (Netherlands)

    Van Doren, J.F.M.


    The demand for petroleum is expected to increase in the coming decades, while the production of petroleum from subsurface reservoirs is becoming increasingly complex. To meet the demand petroleum reservoirs should be operated more efficiently. Physics-based petroleum reservoir models that describe

  4. Flow-based dissimilarity measures for reservoir models : a spatial-temporal tensor approach

    NARCIS (Netherlands)

    Insuasty, Edwin; van den Hof, P.M.J.; Weiland, Siep; Jansen, J.D.


    In reservoir engineering, it is attractive to characterize the difference between reservoir models in metrics that relate to the economic performance of the reservoir as well as to the underlying geological structure. In this paper, we develop a dissimilarity measure that is based on reservoir

  5. Physical Model-Based Investigation of Reservoir Sedimentation Processes

    Directory of Open Access Journals (Sweden)

    Cheng-Chia Huang


    Full Text Available Sedimentation is a serious problem in the operations of reservoirs. In Taiwan, the situation became worse after the Chi-Chi Earthquake recorded on 21 September 1999. The sediment trap efficiency in several regional reservoirs has been sharply increased, adversely affecting the operations on water supplies. According to the field record, the average annual sediment deposition observed in several regional reservoirs in Taiwan has been increased. For instance, the typhoon event recorded in 2008 at the Wushe Reservoir, Taiwan, produced a 3 m sediment deposit upstream of the dam. The remaining storage capacity in the Wushe Reservoir was reduced to 35.9% or a volume of 53.79 million m3 for flood water detention in 2010. It is urgent that research should be conducted to understand the sediment movement in the Wushe Reservoir. In this study, a scale physical model was built to reproduce the flood flow through the reservoir, investigate the long-term depositional pattern, and evaluate sediment trap efficiency. This allows us to estimate the residual life of the reservoir by proposing a modification of Brune’s method. It can be presented to predict the lifespan of Taiwan reservoirs due to higher applicability in both the physical model and the observed data.

  6. Selecting an Appropriate Upscaled Reservoir Model Based on Connectivity Analysis

    Directory of Open Access Journals (Sweden)

    Preux Christophe


    Full Text Available Reservoir engineers aim to build reservoir models to investigate fluid flows within hydrocarbon reservoirs. These models consist of three-dimensional grids populated by petrophysical properties. In this paper, we focus on permeability that is known to significantly influence fluid flow. Reservoir models usually encompass a very large number of fine grid blocks to better represent heterogeneities. However, performing fluid flow simulations for such fine models is extensively CPU-time consuming. A common practice consists in converting the fine models into coarse models with less grid blocks: this is the upscaling process. Many upscaling methods have been proposed in the literature that all lead to distinct coarse models. The problem is how to choose the appropriate upscaling method. Various criteria have been established to evaluate the information loss due to upscaling, but none of them investigate connectivity. In this paper, we propose to first perform a connectivity analysis for the fine and candidate coarse models. This makes it possible to identify shortest paths connecting wells. Then, we introduce two indicators to quantify the length and trajectory mismatch between the paths for the fine and the coarse models. The upscaling technique to be recommended is the one that provides the coarse model for which the shortest paths are the closest to the shortest paths determined for the fine model, both in terms of length and trajectory. Last, the potential of this methodology is investigated from two test cases. We show that the two indicators help select suitable upscaling techniques as long as gravity is not a prominent factor that drives fluid flows.

  7. Development and application of 3-D fractal reservoir model based on collage theorem

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.K.; Kim, K.S.; Sung, W.M. [Hanyang Univ., Seoul (Korea, Republic of)


    Reservoir characterization is the essential process to accurately evaluate the reservoir and has been conducted by geostatistical method, SRA algorithm, and etc. The characterized distribution of heterogeneous property by these methods shows randomly distributed phenomena, and does not present anomalous shape of property variation at discontinued space as compared with the observed shape in nature. This study proposed a new algorithm of fractal concept based on collage theorem, which can virtually present not only geometric shape of irregular and anomalous pore structures or coastlines, but also property variation for discontinuously observed data. With a basis of fractal concept, three dimensional fractal reservoir model was developed to more accurately characterize the heterogeneous reservoir. We performed analysis of pre-predictable hypothetically observed permeability data by using the fractal reservoir model. From the results, we can recognize that permeability distributions in the areal view or the cross-sectional view were consistent with the observed data. (author). 8 refs., 1 tab., 6 figs.

  8. Two Monthly Continuous Dynamic Model Based on Nash Bargaining Theory for Conflict Resolution in Reservoir System.

    Directory of Open Access Journals (Sweden)

    Mehran Homayounfar

    Full Text Available So far many optimization models based on Nash Bargaining Theory associated with reservoir operation have been developed. Most of them have aimed to provide practical and efficient solutions for water allocation in order to alleviate conflicts among water users. These models can be discussed from two viewpoints: (i having a discrete nature; and (ii working on an annual basis. Although discrete dynamic game models provide appropriate reservoir operator policies, their discretization of variables increases the run time and causes dimensionality problems. In this study, two monthly based non-discrete optimization models based on the Nash Bargaining Solution are developed for a reservoir system. In the first model, based on constrained state formulation, the first and second moments (mean and variance of the state variable (water level in the reservoir is calculated. Using moment equations as the constraint, the long-term utility of the reservoir manager and water users are optimized. The second model is a dynamic approach structured based on continuous state Markov decision models. The corresponding solution based on the collocation method is structured for a reservoir system. In this model, the reward function is defined based on the Nash Bargaining Solution. Indeed, it is used to yield equilibrium in every proper sub-game, thereby satisfying the Markov perfect equilibrium. Both approaches are applicable for water allocation in arid and semi-arid regions. A case study was carried out at the Zayandeh-Rud river basin located in central Iran to identify the effectiveness of the presented methods. The results are compared with the results of an annual form of dynamic game, a classical stochastic dynamic programming model (e.g. Bayesian Stochastic Dynamic Programming model, BSDP, and a discrete stochastic dynamic game model (PSDNG. By comparing the results of alternative methods, it is shown that both models are capable of tackling conflict issues in

  9. Two Monthly Continuous Dynamic Model Based on Nash Bargaining Theory for Conflict Resolution in Reservoir System. (United States)

    Homayounfar, Mehran; Zomorodian, Mehdi; Martinez, Christopher J; Lai, Sai Hin


    So far many optimization models based on Nash Bargaining Theory associated with reservoir operation have been developed. Most of them have aimed to provide practical and efficient solutions for water allocation in order to alleviate conflicts among water users. These models can be discussed from two viewpoints: (i) having a discrete nature; and (ii) working on an annual basis. Although discrete dynamic game models provide appropriate reservoir operator policies, their discretization of variables increases the run time and causes dimensionality problems. In this study, two monthly based non-discrete optimization models based on the Nash Bargaining Solution are developed for a reservoir system. In the first model, based on constrained state formulation, the first and second moments (mean and variance) of the state variable (water level in the reservoir) is calculated. Using moment equations as the constraint, the long-term utility of the reservoir manager and water users are optimized. The second model is a dynamic approach structured based on continuous state Markov decision models. The corresponding solution based on the collocation method is structured for a reservoir system. In this model, the reward function is defined based on the Nash Bargaining Solution. Indeed, it is used to yield equilibrium in every proper sub-game, thereby satisfying the Markov perfect equilibrium. Both approaches are applicable for water allocation in arid and semi-arid regions. A case study was carried out at the Zayandeh-Rud river basin located in central Iran to identify the effectiveness of the presented methods. The results are compared with the results of an annual form of dynamic game, a classical stochastic dynamic programming model (e.g. Bayesian Stochastic Dynamic Programming model, BSDP), and a discrete stochastic dynamic game model (PSDNG). By comparing the results of alternative methods, it is shown that both models are capable of tackling conflict issues in water allocation

  10. Will building new reservoirs always help increase the water supply reliability? - insight from a modeling-based global study (United States)

    Zhuang, Y.; Tian, F.; Yigzaw, W.; Hejazi, M. I.; Li, H. Y.; Turner, S. W. D.; Vernon, C. R.


    More and more reservoirs are being build or planned in order to help meet the increasing water demand all over the world. However, is building new reservoirs always helpful to water supply? To address this question, the river routing module of Global Change Assessment Model (GCAM) has been extended with a simple yet physical-based reservoir scheme accounting for irrigation, flood control and hydropower operations at each individual reservoir. The new GCAM river routing model has been applied over the global domain with the runoff inputs from the Variable Infiltration Capacity Model. The simulated streamflow is validated at 150 global river basins where the observed streamflow data are available. The model performance has been significantly improved at 77 basins and worsened at 35 basins. To facilitate the analysis of additional reservoir storage impacts at the basin level, a lumped version of GCAM reservoir model has been developed, representing a single lumped reservoir at each river basin which has the regulation capacity of all reservoir combined. A Sequent Peak Analysis is used to estimate how much additional reservoir storage is required to satisfy the current water demand. For basins with water deficit, the water supply reliability can be improved with additional storage. However, there is a threshold storage value at each basin beyond which the reliability stops increasing, suggesting that building new reservoirs will not help better relieve the water stress. Findings in the research can be helpful to the future planning and management of new reservoirs.

  11. Modeling phytoplankton community in reservoirs. A comparison between taxonomic and functional groups-based models. (United States)

    Di Maggio, Jimena; Fernández, Carolina; Parodi, Elisa R; Diaz, M Soledad; Estrada, Vanina


    In this paper we address the formulation of two mechanistic water quality models that differ in the way the phytoplankton community is described. We carry out parameter estimation subject to differential-algebraic constraints and validation for each model and comparison between models performance. The first approach aggregates phytoplankton species based on their phylogenetic characteristics (Taxonomic group model) and the second one, on their morpho-functional properties following Reynolds' classification (Functional group model). The latter approach takes into account tolerance and sensitivity to environmental conditions. The constrained parameter estimation problems are formulated within an equation oriented framework, with a maximum likelihood objective function. The study site is Paso de las Piedras Reservoir (Argentina), which supplies water for consumption for 450,000 population. Numerical results show that phytoplankton morpho-functional groups more closely represent each species growth requirements within the group. Each model performance is quantitatively assessed by three diagnostic measures. Parameter estimation results for seasonal dynamics of the phytoplankton community and main biogeochemical variables for a one-year time horizon are presented and compared for both models, showing the functional group model enhanced performance. Finally, we explore increasing nutrient loading scenarios and predict their effect on phytoplankton dynamics throughout a one-year time horizon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A location-based multiple point statistics method: modelling the reservoir with non-stationary characteristics (United States)

    Yin, Yanshu; Feng, Wenjie


    In this paper, a location-based multiple point statistics method is developed to model a non-stationary reservoir. The proposed method characterizes the relationship between the sedimentary pattern and the deposit location using the relative central position distance function, which alleviates the requirement that the training image and the simulated grids have the same dimension. The weights in every direction of the distance function can be changed to characterize the reservoir heterogeneity in various directions. The local integral replacements of data events, structured random path, distance tolerance and multi-grid strategy are applied to reproduce the sedimentary patterns and obtain a more realistic result. This method is compared with the traditional Snesim method using a synthesized 3-D training image of Poyang Lake and a reservoir model of Shengli Oilfield in China. The results indicate that the new method can reproduce the non-stationary characteristics better than the traditional method and is more suitable for simulation of delta-front deposits. These results show that the new method is a powerful tool for modelling a reservoir with non-stationary characteristics.

  13. System Identification Based Proxy Model of a Reservoir under Water Injection

    Directory of Open Access Journals (Sweden)

    Berihun M. Negash


    Full Text Available Simulation of numerical reservoir models with thousands and millions of grid blocks may consume a significant amount of time and effort, even when high performance processors are used. In cases where the simulation runs are required for sensitivity analysis, dynamic control, and optimization, the act needs to be repeated several times by continuously changing parameters. This makes it even more time-consuming. Currently, proxy models that are based on response surface are being used to lessen the time required for running simulations during sensitivity analysis and optimization. Proxy models are lighter mathematical models that run faster and perform in place of heavier models that require large computations. Nevertheless, to acquire data for modeling and validation and develop the proxy model itself, hundreds of simulation runs are required. In this paper, a system identification based proxy model that requires only a single simulation run and a properly designed excitation signal was proposed and evaluated using a benchmark case study. The results show that, with proper design of excitation signal and proper selection of model structure, system identification based proxy models are found to be practical and efficient alternatives for mimicking the performance of numerical reservoir models. The resulting proxy models have potential applications for dynamic well control and optimization.

  14. On the effects of adaptive reservoir operating rules in hydrological physically-based models (United States)

    Giudici, Federico; Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo


    Recent years have seen a significant increase of the human influence on the natural systems both at the global and local scale. Accurately modeling the human component and its interaction with the natural environment is key to characterize the real system dynamics and anticipate future potential changes to the hydrological regimes. Modern distributed, physically-based hydrological models are able to describe hydrological processes with high level of detail and high spatiotemporal resolution. Yet, they lack in sophistication for the behavior component and human decisions are usually described by very simplistic rules, which might underperform in reproducing the catchment dynamics. In the case of water reservoir operators, these simplistic rules usually consist of target-level rule curves, which represent the average historical level trajectory. Whilst these rules can reasonably reproduce the average seasonal water volume shifts due to the reservoirs' operation, they cannot properly represent peculiar conditions, which influence the actual reservoirs' operation, e.g., variations in energy price or water demand, dry or wet meteorological conditions. Moreover, target-level rule curves are not suitable to explore the water system response to climate and socio economic changing contexts, because they assume a business-as-usual operation. In this work, we quantitatively assess how the inclusion of adaptive reservoirs' operating rules into physically-based hydrological models contribute to the proper representation of the hydrological regime at the catchment scale. In particular, we contrast target-level rule curves and detailed optimization-based behavioral models. We, first, perform the comparison on past observational records, showing that target-level rule curves underperform in representing the hydrological regime over multiple time scales (e.g., weekly, seasonal, inter-annual). Then, we compare how future hydrological changes are affected by the two modeling

  15. Multi-Site Calibration of Linear Reservoir Based Geomorphologic Rainfall-Runoff Models

    Directory of Open Access Journals (Sweden)

    Bahram Saeidifarzad


    Full Text Available Multi-site optimization of two adapted event-based geomorphologic rainfall-runoff models was presented using Non-dominated Sorting Genetic Algorithm (NSGA-II method for the South Fork Eel River watershed, California. The first model was developed based on Unequal Cascade of Reservoirs (UECR and the second model was presented as a modified version of Geomorphological Unit Hydrograph based on Nash’s model (GUHN. Two calibration strategies were considered as semi-lumped and semi-distributed for imposing (or unimposing the geomorphology relations in the models. The results of models were compared with Nash’s model. Obtained results using the observed data of two stations in the multi-site optimization framework showed reasonable efficiency values in both the calibration and the verification steps. The outcomes also showed that semi-distributed calibration of the modified GUHN model slightly outperformed other models in both upstream and downstream stations during calibration. Both calibration strategies for the developed UECR model during the verification phase showed slightly better performance in the downstream station, but in the upstream station, the modified GUHN model in the semi-lumped strategy slightly outperformed the other models. The semi-lumped calibration strategy could lead to logical lag time parameters related to the basin geomorphology and may be more suitable for data-based statistical analyses of the rainfall-runoff process.

  16. Forward modeling of seepage of reservoir dam based on ground penetrating radar

    Directory of Open Access Journals (Sweden)

    Xueli WU


    Full Text Available The risk of the reservoir dam seepage will bring the waste of water resources and the loss of life and property. The ground penetrating radar (GPR is designed as a daily inspection system of dams to improve the existing technology which can't determine the actual situation of the dam seepage tunnel coordinates. The finite difference time domain (FDTD is used to solve the Yee's grids discreatization in two-dimensional space, and its electromagnetic distribution equation is obtained as well. Based on the actual structure of reservoir dam foundation, the ideal model of air layer, concrete layer, clay layer and two water seepage holes is described in detail, and the concrete layer interference model with limestone interference point is established. The system architecture is implemented by using MATLAB, and the forward modeling is performed. The results indicate that ground penetrating radar can be used for deep target detection. Through comparing the detection spectrum of three kinds of frequency electromagnetic wave by changing the center frequency of the GPR electromagnetic wave of 50 MHz, 100 MHz and 200 MHz, it is concluded that the scanning result is more accurate at 100 MHz. At the same time, the simulation results of the interference model show that this method can be used for the detection of complex terrain.

  17. An iterative representer-based scheme for data inversion in reservoir modeling

    International Nuclear Information System (INIS)

    Iglesias, Marco A; Dawson, Clint


    In this paper, we develop a mathematical framework for data inversion in reservoir models. A general formulation is presented for the identification of uncertain parameters in an abstract reservoir model described by a set of nonlinear equations. Given a finite number of measurements of the state and prior knowledge of the uncertain parameters, an iterative representer-based scheme (IRBS) is proposed to find improved parameters. In this approach, the representer method is used to solve a linear data assimilation problem at each iteration of the algorithm. We apply the theory of iterative regularization to establish conditions for which the IRBS will converge to a stable approximation of a solution to the parameter identification problem. These theoretical results are applied to the identification of the second-order coefficient of a forward model described by a parabolic boundary value problem. Numerical results are presented to show the capabilities of the IRBS for the reconstruction of hydraulic conductivity from the steady-state of groundwater flow, as well as the absolute permeability in the single-phase Darcy flow through porous media

  18. A simplified permeability model for coalbed methane reservoirs based on matchstick strain and constant volume theory

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qiang [China University of Mining and Technology, Beijing (China); Harpalani, Satya; Liu, Shimin [Southern Illinois University, Carbondale (United States)


    Significant changes occur in the absolute permeability of coalbed methane (CBM) reservoirs during primary depletion or enhanced recovery/CO{sub 2} sequestration operations. In order to project gas production, several analytical models have been developed to predict changes in coal permeability as a function of stress/porosity and sorption. Although these models are more transparent and less complicated than the coupled numerical models, there are differences between the various analytical models and there are several uncertainties. These are discussed briefly in this paper. A new model is then proposed, which is based on the volumetric balance between the bulk coal, and solid grains and pores, using the constant volume theory. It incorporates primarily the changes in grain and cleat volumes and is, therefore, different from the other models that lay heavy emphasis on the pore volume/cleat compressibility values. Finally, in order to demonstrate the simplicity of the proposed model, a history matching exercise is carried out using field data in order to compare the different models. The modeling results suggest that the agreement between the predicted permeability using the existing models and the one proposed here is very good. The merit of the proposed model is its simplicity, and the fact that all input parameters are easily measurable for any coal type with no uncertainties. (author)

  19. Simulation of Gas Transport in Tight/Shale Gas Reservoirs by a Multicomponent Model Based on PEBI Grid

    Directory of Open Access Journals (Sweden)

    Longjun Zhang


    Full Text Available The ultra-low permeability and nanosize pores of tight/shale gas reservoir would lead to non-Darcy flow including slip flow, transition flow, and free molecular flow, which cannot be described by traditional Darcy’s law. The organic content often adsorbs some gas content, while the adsorbed amount for different gas species is different. Based on these facts, we develop a new compositional model based on unstructured PEBI (perpendicular bisection grid, which is able to characterize non-Darcy flow including slip flow, transition flow, and free molecular flow and the multicomponent adsorption in tight/shale gas reservoirs. With the proposed model, we study the effect of non-Darcy flow, length of the hydraulic fracture, and initial gas composition on gas production. The results show both non-Darcy flow and fracture length have significant influence on gas production. Ignoring non-Darcy flow would underestimate 67% cumulative gas production in lower permeable gas reservoirs. Gas production increases with fracture length. In lower permeable reservoirs, gas production increases almost linearly with the hydraulic fracture length. However, in higher permeable reservoirs, the increment of the former gradually decreases with the increase in the latter. The results also show that the presence of CO2 in the formation would lower down gas production.

  20. Reservoir modelling of heterolithic tidal deposits : Sensitivity analysis of an object-based stochastic model

    NARCIS (Netherlands)

    Geel, C.R.; Donselaar, M.E.


    Object-based stochastic modelling techniques are routinely employed to generate multiple realisations of the spatial distribution of sediment properties in settings where data density is insufficient to construct a unique deterministic facies architecture model. Challenge is to limit the wide range

  1. Modeling infiltration process of regulating reservoir built for flood-control based on site-characterization using GPR (United States)

    Kuroda, S.; Tatsuya, S.; Sudani, G.; Ikeda, S.; Satoshi, T.; Kenichi, W.; Tagashira, H.; Masukawa, S.


    The regulating reservoir built for flood-control in the Shougawa alluvial fan of Toyama prefecture, Japan, was designed to have a high permeable bottom to maintain smooth infiltration of flood water pouring from a river. The infiltration process in the permeable ground was surveyed by sensors, such as piezometers set inside the observation boreholes installed in the reservoir. The observation showed that not only the temperature of the water but also the existence of pore air and heterogeneity in the ground essentially effects on the infiltration behavior beneath the reservoir. To clarify this infiltration process, we conducted 3D-Ground penetrating radar (GPR) survey and time-lapsed cross-borehole radar profiling. 3D-GPR was applicable to detecte less permeable zone with rich clay in sand gravel basement, which control infiltration of reservoir. Time-lapsed cross-borehole radar profiling could estimate infiltration rate in vadose zone. Based on these results we built unsaturated-saturated water flow model considering subsurface heterogeneity and its effect. This model will contribute the management to maintain its permeability and help understanding the effect of reservoir on surrounding water environment. This work was supported by JSPS KAKENHI Grant Numbers 25294117 and 30343768.

  2. Simulation of Gas Transport in Tight/Shale Gas Reservoirs by a Multicomponent Model Based on PEBI Grid


    Zhang, Longjun; Li, Daolun; Wang, Lei; Lu, Detang


    The ultra-low permeability and nanosize pores of tight/shale gas reservoir would lead to non-Darcy flow including slip flow, transition flow, and free molecular flow, which cannot be described by traditional Darcy’s law. The organic content often adsorbs some gas content, while the adsorbed amount for different gas species is different. Based on these facts, we develop a new compositional model based on unstructured PEBI (perpendicular bisection) grid, which is able to characterize non-Darcy ...

  3. Prediction of Reservoir Sediment Quality Based on Erosion Processes in Watershed Using Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    Natalia Junakova


    Full Text Available Soil erosion, as a significant contributor to nonpoint-source pollution, is ranked top of sediment sources, pollutants attached to sediment, and pollutants in the solution in surface water. This paper is focused on the design of mathematical model intended to predict the total content of nitrogen (N, phosphorus (P, and potassium (K in bottom sediments in small water reservoirs depending on water erosion processes, together with its application and validation in small agricultural watershed of the Tisovec River, Slovakia. The designed model takes into account the calculation of total N, P, and K content adsorbed on detached and transported soil particles, which consists of supplementing the soil loss calculation with a determination of the average nutrient content in topsoils. The dissolved forms of these elements are neglected in this model. Validation of the model was carried out by statistical assessment of calculated concentrations and measured concentrations in Kľušov, a small water reservoir (Slovakia, using the t-test and F-test, at a 0.05 significance level. Calculated concentrations of total N, P, and K in reservoir sediments were in the range from 0.188 to 0.236 for total N, from 0.065 to 0.078 for total P, and from 1.94 to 2.47 for total K. Measured nutrient concentrations in composite sediment samples ranged from 0.16 to 0.26% for total N, from 0.049 to 0.113% for total P, and from 1.71 to 2.42% for total K. The statistical assessment indicates the applicability of the model in predicting the reservoir’s sediment quality detached through erosion processes in the catchment.

  4. Fine reservoir structure modeling based upon 3D visualized stratigraphic correlation between horizontal wells: methodology and its application (United States)

    Chenghua, Ou; Chaochun, Li; Siyuan, Huang; Sheng, James J.; Yuan, Xu


    As the platform-based horizontal well production mode has been widely applied in petroleum industry, building a reliable fine reservoir structure model by using horizontal well stratigraphic correlation has become very important. Horizontal wells usually extend between the upper and bottom boundaries of the target formation, with limited penetration points. Using these limited penetration points to conduct well deviation correction means the formation depth information obtained is not accurate, which makes it hard to build a fine structure model. In order to solve this problem, a method of fine reservoir structure modeling, based on 3D visualized stratigraphic correlation among horizontal wells, is proposed. This method can increase the accuracy when estimating the depth of the penetration points, and can also effectively predict the top and bottom interfaces in the horizontal penetrating section. Moreover, this method will greatly increase not only the number of points of depth data available, but also the accuracy of these data, which achieves the goal of building a reliable fine reservoir structure model by using the stratigraphic correlation among horizontal wells. Using this method, four 3D fine structure layer models have been successfully built of a specimen shale gas field with platform-based horizontal well production mode. The shale gas field is located to the east of Sichuan Basin, China; the successful application of the method has proven its feasibility and reliability.

  5. Developing a thermodynamic a conceptual model for the Itumbiara hydroelectric reservoir based on satellite and telemetric data

    Directory of Open Access Journals (Sweden)

    Enner Herenio de Alcântara


    Full Text Available Aquatic systems continually respond to climatic conditions that vary over broad scales of space and time. The response of each water body to external conditions (hydro-meteorological processes is revealed in the first place by the thermal structures present in water body. Most lacustrine chemical, physical and biological processes are affected directly by lake hydrological (e.g. lake depth and thermal changes (e.g. seasonal stratification, and are thus, indirectly affected by climate variation. Understanding lake-climate system interactions is therefore of fundamental importance to evaluate the effects of climate change on limnological processes. Based on this, the objective of this work was to develop a thermodynamic conceptual model for the Itumbiara hydroelectric reservoir (Goiás State, Brazil. The developed methodology was based on the use of satellite imagery of moderate resolution that allow the computation of the water surface temperature from 2003 to 2008 (six years during the daytime and nighttime. The results showed the potential of the use of moderate resolution satellite data to study water surface temperature variability and to explain the main causes of this variability. The use of hydro-meteorological and bulk temperature collected by station and autonomous buoy, respectively, contributed to better understand the physical processes in the mixed depth of the reservoir. Also the results allow the elaboration of conceptual models for the thermodynamics of the Itumbiara reservoir.

  6. An ensemble based nonlinear orthogonal matching pursuit algorithm for sparse history matching of reservoir models

    KAUST Repository

    Fsheikh, Ahmed H.


    A nonlinear orthogonal matching pursuit (NOMP) for sparse calibration of reservoir models is presented. Sparse calibration is a challenging problem as the unknowns are both the non-zero components of the solution and their associated weights. NOMP is a greedy algorithm that discovers at each iteration the most correlated components of the basis functions with the residual. The discovered basis (aka support) is augmented across the nonlinear iterations. Once the basis functions are selected from the dictionary, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on approximate gradient estimation using an iterative stochastic ensemble method (ISEM). ISEM utilizes an ensemble of directional derivatives to efficiently approximate gradients. In the current study, the search space is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm.

  7. Model-Based Control and Optimization of Large Scale Physical Systems - Challenges in Reservoir Engineering

    NARCIS (Netherlands)

    Van den Hof, P.M.J.; Jansen, J.D.; Van Essen, G.M.; Bosgra, O.H.


    Due to urgent needs to increase efficiency in oil recovery from subsurface reservoirs new technology is developed that allows more detailed sensing and actuation of multiphase flow properties in oil reservoirs. One of the examples is the controlled injection of water through injection wells with the

  8. Outcrop-based reservoir modeling of a naturally fractured siliciclastic CO 2 sequestration site, Svalbard, Arctic Norway

    NARCIS (Netherlands)

    Senger, K.; Ogata, K.; Tveranger, J.; Braathen, A.; Olaussen, S.


    We present a geological model of an unconventional siliciclastic reservoir projected for CO2 sequestration near Longyearbyen, Svalbard. The reservoir is characterized by a substantial sub-hydrostatic pressure regime, very low matrix porosity and -permeability values, extensive natural fracturing and

  9. Outcrop-based reservoir modeling of a naturally fractured siliciclastic CO2 sequestration site, Svalbard, Arctic Norway

    NARCIS (Netherlands)

    Senger, K.; Ogata, K.; Tveranger, J.; Braathen, A.; Olaussen, S.


    We present a geological model of an unconventional siliciclastic reservoir projected for CO2 sequestration near Longyearbyen, Svalbard. The reservoir is characterized by a substantial sub-hydrostatic pressure regime, very low matrix porosity and -permeability values, extensive natural fracturing and

  10. Petroleum reservoir data for testing simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, J.M.; Harrison, W.


    This report consists of reservoir pressure and production data for 25 petroleum reservoirs. Included are 5 data sets for single-phase (liquid) reservoirs, 1 data set for a single-phase (liquid) reservoir with pressure maintenance, 13 data sets for two-phase (liquid/gas) reservoirs and 6 for two-phase reservoirs with pressure maintenance. Also given are ancillary data for each reservoir that could be of value in the development and validation of simulation models. A bibliography is included that lists the publications from which the data were obtained.

  11. A reservoir simulation approach for modeling of naturally fractured reservoirs

    Directory of Open Access Journals (Sweden)

    H. Mohammadi


    Full Text Available In this investigation, the Warren and Root model proposed for the simulation of naturally fractured reservoir was improved. A reservoir simulation approach was used to develop a 2D model of a synthetic oil reservoir. Main rock properties of each gridblock were defined for two different types of gridblocks called matrix and fracture gridblocks. These two gridblocks were different in porosity and permeability values which were higher for fracture gridblocks compared to the matrix gridblocks. This model was solved using the implicit finite difference method. Results showed an improvement in the Warren and Root model especially in region 2 of the semilog plot of pressure drop versus time, which indicated a linear transition zone with no inflection point as predicted by other investigators. Effects of fracture spacing, fracture permeability, fracture porosity, matrix permeability and matrix porosity on the behavior of a typical naturally fractured reservoir were also presented.

  12. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)


    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  13. Reservoir Model Information System: REMIS (United States)

    Lee, Sang Yun; Lee, Kwang-Wu; Rhee, Taehyun; Neumann, Ulrich


    We describe a novel data visualization framework named Reservoir Model Information System (REMIS) for the display of complex and multi-dimensional data sets in oil reservoirs. It is aimed at facilitating visual exploration and analysis of data sets as well as user collaboration in an easier way. Our framework consists of two main modules: the data access point module and the data visualization module. For the data access point module, the Phrase-Driven Grammar System (PDGS) is adopted for helping users facilitate the visualization of data. It integrates data source applications and external visualization tools and allows users to formulate data query and visualization descriptions by selecting graphical icons in a menu or on a map with step-by-step visual guidance. For the data visualization module, we implemented our first prototype of an interactive volume viewer named REMVR to classify and to visualize geo-spatial specific data sets. By combining PDGS and REMVR, REMIS assists users better in describing visualizations and exploring data so that they can easily find desired data and explore interesting or meaningful relationships including trends and exceptions in oil reservoir model data.

  14. Deep-water Reservoir Modelling Using a volume-based approach on Full-Offset Seismic Data: Etim Field, Offshore Nigeria

    International Nuclear Information System (INIS)

    Nwaeri, E.; Zimbrick, G.; Proett, B.


    Reservoir characterization of deep-water deposits is a challenging task. Major issues to address include: (1) prediction of sand distribution away from well control, (2) definition of reservoir geometry and size, and (3) spatial placement of sand bodies in the geologic model. In a typical deep-water setting, lithostratigraphic correlation using well logs has been found to be unreliable. Seismic correlation is critical, but complications from mixed-impedance reservoir, and variations in frequency/phase content of available full stack data can arise.We describe a reservoir description workflow that utilizes both volume-and map-based conditioning tools, in the absence of AVO products. A good density of interpreted horizons was used to provide stratigraphic control on the volume interpretation techniques. Map pattern analysis of horizon slices helped focus environment of deposition (EOD) interpretations on key areas of reservoir development.A seismic wedge model helped develop an interpretation strategy and assess seismic data quality. Results showed that seed detection of trough-peak pairs gave a reasonable prediction of reservoir distribution at Etim.Seismic attributes were used to calibrate and predict net sand thickness. The predictions were integrated with EOD maps and well control to provide final net sand maps. Extracted geobodies from the sculpted seismic data were used to place sands in their proper position in the geologic model.The resulting geologic model preserves spatial positioning of the seismically derived reservoir elements and provides better definition of reservoir connectivity. This workflow is appropriate for fields where multi-volume (AVO) seismic data are unavailable and 3-D positioning of reservoir elements is required

  15. High resolution reservoir geological modelling using outcrop information

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others


    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  16. Reservoir-based Online Adaptive Forward Models with Neural Control for Complex Locomotion in a Hexapod Robot

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Dasgupta, Sakyasingha; Goldschmidt, Dennis


    Walking animals show fascinating locomotor abilities and complex behaviors. Biological study has revealed that such complex behaviors is a result of a combination of biomechanics and neural mechanisms. While biomechanics allows for flexibility and a variety of movements, neural mechanisms generate...... for generating basic rhythmic patterns and coordinated movements, 2) reservoir-based adaptive forward models with efference copies for sensory prediction as well as state estimation, and 3) searching and elevation control for adapting the movement of an individual leg to deal with different environmental...... conditions. Simulation results show that this bio-inspired approach allows the walking robot to perform complex locomotor abilities including walking on undulated terrains, crossing a large gap, as well as climbing over a high obstacle and a fleet of stairs....

  17. Reservoir pressure evolution model during exploration drilling

    Directory of Open Access Journals (Sweden)

    Korotaev B. A.


    Full Text Available Based on the analysis of laboratory studies and literature data the method for estimating reservoir pressure in exploratory drilling has been proposed, it allows identify zones of abnormal reservoir pressure in the presence of seismic data on reservoir location depths. This method of assessment is based on developed at the end of the XX century methods using d- and σ-exponentials taking into account the mechanical drilling speed, rotor speed, bit load and its diameter, lithological constant and degree of rocks' compaction, mud density and "regional density". It is known that in exploratory drilling pulsation of pressure at the wellhead is observed. Such pulsation is a consequence of transferring reservoir pressure through clay. In the paper the mechanism for transferring pressure to the bottomhole as well as the behaviour of the clay layer during transmission of excess pressure has been described. A laboratory installation has been built, it has been used for modelling pressure propagation to the bottomhole of the well through a layer of clay. The bulge of the clay layer is established for 215.9 mm bottomhole diameter. Functional correlation of pressure propagation through the layer of clay has been determined and a reaction of the top clay layer has been shown to have bulge with a height of 25 mm. A pressure distribution scheme (balance has been developed, which takes into account the distance from layers with abnormal pressure to the bottomhole. A balance equation for reservoir pressure evaluation has been derived including well depth, distance from bottomhole to the top of the formation with abnormal pressure and density of clay.

  18. An Efficient Upscaling Procedure Based on Stokes-Brinkman Model and Discrete Fracture Network Method for Naturally Fractured Carbonate Karst Reservoirs

    KAUST Repository

    Qin, Guan


    Naturally-fractured carbonate karst reservoirs are characterized by various-sized solution caves that are connected via fracture networks at multiple scales. These complex geologic features can not be fully resolved in reservoir simulations due to the underlying uncertainty in geologic models and the large computational resource requirement. They also bring in multiple flow physics which adds to the modeling difficulties. It is thus necessary to develop a method to accurately represent the effect of caves, fractures and their interconnectivities in coarse-scale simulation models. In this paper, we present a procedure based on our previously proposed Stokes-Brinkman model (SPE 125593) and the discrete fracture network method for accurate and efficient upscaling of naturally fractured carbonate karst reservoirs.

  19. Modelling of Reservoir Operations using Fuzzy Logic and ANNs (United States)

    Van De Giesen, N.; Coerver, B.; Rutten, M.


    Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, , was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.

  20. Modeling of reservoir operation in UNH global hydrological model (United States)

    Shiklomanov, Alexander; Prusevich, Alexander; Frolking, Steve; Glidden, Stanley; Lammers, Richard; Wisser, Dominik


    Climate is changing and river flow is an integrated characteristic reflecting numerous environmental processes and their changes aggregated over large areas. Anthropogenic impacts on the river flow, however, can significantly exceed the changes associated with climate variability. Besides of irrigation, reservoirs and dams are one of major anthropogenic factor affecting streamflow. They distort hydrological regime of many rivers by trapping of freshwater runoff, modifying timing of river discharge and increasing the evaporation rate. Thus, reservoirs is an integral part of the global hydrological system and their impacts on rivers have to be taken into account for better quantification and understanding of hydrological changes. We developed a new technique, which was incorporated into WBM-TrANS model (Water Balance Model-Transport from Anthropogenic and Natural Systems) to simulate river routing through large reservoirs and natural lakes based on information available from freely accessible databases such as GRanD (the Global Reservoir and Dam database) or NID (National Inventory of Dams for US). Different formulations were applied for unregulated spillway dams and lakes, and for 4 types of regulated reservoirs, which were subdivided based on main purpose including generic (multipurpose), hydropower generation, irrigation and water supply, and flood control. We also incorporated rules for reservoir fill up and draining at the times of construction and decommission based on available data. The model were tested for many reservoirs of different size and types located in various climatic conditions using several gridded meteorological data sets as model input and observed daily and monthly discharge data from GRDC (Global Runoff Data Center), USGS Water Data (US Geological Survey), and UNH archives. The best results with Nash-Sutcliffe model efficiency coefficient in the range of 0.5-0.9 were obtained for temperate zone of Northern Hemisphere where most of large

  1. Top-Down, Intelligent Reservoir Model (United States)

    Mohaghegh, Shahab


    Conventional reservoir simulation and modeling is a bottom-up approach. It starts with building a geological model of the reservoir that is populated with the best available petrophysical and geophysical information at the time of development. Engineering fluid flow principles are added and solved numerically so as to arrive at a dynamic reservoir model. The dynamic reservoir model is calibrated using the production history of multiple wells and the history matched model is used to strategize field development in order to improve recovery. Top-Down, Intelligent Reservoir Modeling approaches the reservoir simulation and modeling from an opposite angle by attempting to build a realization of the reservoir starting with the measured well production behavior (history). The production history is augmented by core, log, well test and seismic data in order to increase the accuracy of the Top-Down modeling technique. Although not intended as a substitute for the conventional reservoir simulation of large, complex fields, this novel approach to reservoir modeling can be used as an alternative (at a fraction of the cost) to conventional reservoir simulation and modeling in cases where performing conventional modeling is cost (and man-power) prohibitive. In cases where a conventional model of a reservoir already exists, Top-Down modeling should be considered as a compliment to, rather than a competition for the conventional technique, to provide an independent look at the data coming from the reservoir/wells for optimum development strategy and recovery enhancement. Top-Down, Intelligent Reservoir Modeling starts with well-known reservoir engineering techniques such as Decline Curve Analysis, Type Curve Matching, History Matching using single well numerical reservoir simulation, Volumetric Reserve Estimation and calculation of Recovery Factors for all the wells (individually) in the field. Using statistical techniques multiple Production Indicators (3, 6, and 9 months cum

  2. Sensitivity analysis for the total nitrogen pollution of the Danjiangkou Reservoir based on a 3-D water quality model (United States)

    Chen, Libin; Yang, Zhifeng; Liu, Haifei


    Inter-basin water transfers containing a great deal of nitrogen are great threats to human health, biodiversity, and air and water quality in the recipient area. Danjiangkou Reservoir, the source reservoir for China's South-to-North Water Diversion Middle Route Project, suffers from total nitrogen pollution and threatens the water transfer to a number of metropolises including the capital, Beijing. To locate the main source of nitrogen pollution into the reservoir, especially near the Taocha canal head, where the intake of water transfer begins, we constructed a 3-D water quality model. We then used an inflow sensitivity analysis method to analyze the significance of inflows from each tributary that may contribute to the total nitrogen pollution and affect water quality. The results indicated that the Han River was the most significant river with a sensitivity index of 0.340, followed by the Dan River with a sensitivity index of 0.089, while the Guanshan River and the Lang River were not significant, with the sensitivity indices of 0.002 and 0.001, respectively. This result implies that the concentration and amount of nitrogen inflow outweighs the geographical position of the tributary for sources of total nitrogen pollution to the Taocha canal head of the Danjiangkou Reservoir.

  3. A mathematical model of reservoir sediment quality prediction based on land-use and erosion processes in watershed (United States)

    Junakova, N.; Balintova, M.; Junak, J.


    The aim of this paper is to propose a mathematical model for determining of total nitrogen (N) and phosphorus (P) content in eroded soil particles with emphasis on prediction of bottom sediment quality in reservoirs. The adsorbed nutrient concentrations are calculated using the Universal Soil Loss Equation (USLE) extended by the determination of the average soil nutrient concentration in top soils. The average annual vegetation and management factor is divided into five periods of the cropping cycle. For selected plants, the average plant nutrient uptake divided into five cropping periods is also proposed. The average nutrient concentrations in eroded soil particles in adsorbed form are modified by sediment enrichment ratio to obtain the total nutrient content in transported soil particles. The model was designed for the conditions of north-eastern Slovakia. The study was carried out in the agricultural basin of the small water reservoir Klusov.


    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes


    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  5. Modeling reservoir geomechanics using discrete element method : Application to reservoir monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Alassi, Haitham Tayseer


    Understanding reservoir geomechanical behavior is becoming more and more important for the petroleum industry. Reservoir compaction, which may result in surface subsidence and fault reactivation, occurs during reservoir depletion. Stress changes and possible fracture development inside and outside a depleting reservoir can be monitored using time-lapse (so-called '4D') seismic and/or passive seismic, and this can give valuable information about the conditions of a given reservoir during production. In this study we will focus on using the (particle-based) Discrete Element Method (DEM) to model reservoir geomechanical behavior during depletion and fluid injection. We show in this study that DEM can be used in modeling reservoir geomechanical behavior by comparing results obtained from DEM to those obtained from analytical solutions. The match of the displacement field between DEM and the analytical solution is good, however there is mismatch of the stress field which is related to the way stress is measured in DEM. A good match is however obtained by measuring the stress field carefully. We also use DEM to model reservoir geomechanical behavior beyond the elasticity limit where fractures can develop and faults can reactivate. A general technique has been developed to relate DEM parameters to rock properties. This is necessary in order to use correct reservoir geomechanical properties during modeling. For any type of particle packing there is a limitation that the maximum ratio between P- and S-wave velocity Vp/Vs that can be modeled is 3 . The static behavior for a loose packing is different from the dynamic behavior. Empirical relations are needed for the static behavior based on numerical test observations. The dynamic behavior for both dense and loose packing can be given by analytical relations. Cosserat continuum theory is needed to derive relations for Vp and Vs. It is shown that by constraining the particle rotation, the S-wave velocity can be

  6. Reservoir management under geological uncertainty using fast model update

    NARCIS (Netherlands)

    Hanea, R.; Evensen, G.; Hustoft, L.; Ek, T.; Chitu, A.; Wilschut, F.


    Statoil is implementing "Fast Model Update (FMU)," an integrated and automated workflow for reservoir modeling and characterization. FMU connects all steps and disciplines from seismic depth conversion to prediction and reservoir management taking into account relevant reservoir uncertainty. FMU

  7. Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations. (United States)

    Curtarelli, Marcelo Pedroso; Ogashawara, Igor; de Araújo, Carlos Alberto Sampaio; Lorenzzetti, João Antônio; Leão, Joaquim Antônio Dionísio; Alcântara, Enner; Stech, José Luiz


    We used a three-dimensional model to assess the dynamics of diffusive carbon dioxide flux (F(CO2)) from a hydroelectric reservoir located at Amazon rainforest. Our results showed that for the studied periods (2013 summer/wet and winter/dry seasons) the surface averaged F(CO2) presented similar behaviors, with regular emissions peaks. The mean daily surface averaged F(CO2) showed no significant difference between the seasons (p>0.01), with values around -1338mg Cm-2day-1 (summer/wet) and -1395mg Cm-2day-1 (winter/dry). At diel scale, the F(CO2) was large during the night and morning and low during the afternoon in both seasons. Regarding its spatial distribution, the F(CO2) showed to be more heterogeneous during the summer/wet than during the winter/dry season. The highest F(CO2) were observed at transition zone (-300mg Cm-2h-1) during summer and at littoral zone (-55mg Cm-2h-1) during the winter. The total CO2 emitted by the reservoir along 2013 year was estimated to be 1.1Tg C year-1. By extrapolating our results we found that the total carbon emitted by all Amazonian reservoirs can be around 7Tg C year-1, which is 22% lower than the previous published estimate. This significant difference should not be neglected in the carbon inventories since the carbon emission is a key factor when comparing the environmental impacts of different sources of electricity generation and can influences decision makers in the selection of the more appropriate source of electricity and, in case of hydroelectricity, the geographical position of the reservoirs. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A Statistical Graphical Model of the California Reservoir System (United States)

    Taeb, A.; Reager, J. T.; Turmon, M.; Chandrasekaran, V.


    The recent California drought has highlighted the potential vulnerability of the state's water management infrastructure to multiyear dry intervals. Due to the high complexity of the network, dynamic storage changes in California reservoirs on a state-wide scale have previously been difficult to model using either traditional statistical or physical approaches. Indeed, although there is a significant line of research on exploring models for single (or a small number of) reservoirs, these approaches are not amenable to a system-wide modeling of the California reservoir network due to the spatial and hydrological heterogeneities of the system. In this work, we develop a state-wide statistical graphical model to characterize the dependencies among a collection of 55 major California reservoirs across the state; this model is defined with respect to a graph in which the nodes index reservoirs and the edges specify the relationships or dependencies between reservoirs. We obtain and validate this model in a data-driven manner based on reservoir volumes over the period 2003-2016. A key feature of our framework is a quantification of the effects of external phenomena that influence the entire reservoir network. We further characterize the degree to which physical factors (e.g., state-wide Palmer Drought Severity Index (PDSI), average temperature, snow pack) and economic factors (e.g., consumer price index, number of agricultural workers) explain these external influences. As a consequence of this analysis, we obtain a system-wide health diagnosis of the reservoir network as a function of PDSI.

  9. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, M.L.; Evans, R.D.; Brown, R.L.; Gupta, A.


    This report focuses on integrating geoscience and engineering data to develop a consistent characterization of the naturally fractured reservoirs. During this reporting period, effort was focused on relating seismic data to reservoir properties of naturally fractured reservoirs, scaling well log data to generate interwell descriptors of these reservoirs, enhancing and debugging a naturally fractured reservoir simulator, and developing a horizontal wellbore model for use in the simulator.

  10. Physical modelling of the Akkajaure reservoir

    Directory of Open Access Journals (Sweden)

    J. Sahlberg


    Full Text Available This paper describes the seasonal temperature development in the Akkajaure reservoir, one of the largest Swedish reservoirs. It lies in the headwaters of the river Lulealven in northern Sweden; it is 60 km long and 5 km wide with a maximum depth of 92 m. The maximum allowed variation in surface water level is 30 m. The temperature field in the reservoir is important for many biochemical processes. A one-dimensional lake model of the Akkajaure reservoir is developed from a lake model by Sahlberg (1983 and 1988. The dynamic eddy viscosity is calculated by a two equation turbulence model, a k–ε model and the hypolimnic eddy diffusivity formulation which is a function of the stability frequency (Hondzo et al., 1993. A comparison between calculated and measured temperature profiles showed a maximum discrepancy of 0.5–1.0°C over the period 1999-2002. Except for a few days in summer, the water temperature is vertically homogeneous. Over that period of years, a weak stratification of temperature occurred on only one to two weeks a year on different dates in July and August. This will have biological consequences. Keywords: temperature profile,reservoir, 1-D lake model, stratification, Sweden

  11. Three dimensional heat transport modeling in Vossoroca reservoir (United States)

    Arcie Polli, Bruna; Yoshioka Bernardo, Julio Werner; Hilgert, Stephan; Bleninger, Tobias


    Curitiba - Brazil. It is monomictic and its function is to regulate the flow to Chaminé hydropower plant. Vossoroca is monitored since 2012. Temperature is measured with seven temperature sensors in the deepest region of the reservoir and meteorological data is measured on a station close to the reservoir. The objective of this work is the 3D modeling of heat transport in Vossoroca reservoir with Delft3D. Temperature gradients between surface and bottom of Vossoroca reservoir during summer may reach 10°C, with surface temperatures around 25°C. Vossoroca is mixed during winter, with temperatures around 15°C. Based on these results, the position of the oxycline can be reconstructed. This information may lead to an adapted reservoir management, minimizing the potential effects to the downstream ecosystem, which normally can be strongly affected by the exposure to oxygen depleted water.

  12. Reservoir structural model updating using the Ensemble Kalman Filter

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Alexandra


    In reservoir characterization, a large emphasis is placed on risk management and uncertainty assessment, and the dangers of basing decisions on a single base-case reservoir model are widely recognized. In the last years, statistical methods for assisted history matching have gained popularity for providing integrated models with quantified uncertainty, conditioned on all available data. Structural modeling is the first step in a reservoir modeling work flow and consists in defining the geometrical framework of the reservoir, based on the information from seismic surveys and well data. Large uncertainties are typically associated with the processing and interpretation of seismic data. However, the structural model is often fixed to a single interpretation in history-matching work flows due to the complexity of updating the structural model and related reservoir grid. This thesis present a method that allows to account for the uncertainties in the structural model and continuously update the model and related uncertainties by assimilation of production data using the Ensemble Kalman Filter (EnKF). We consider uncertainties in the depth of the reservoir horizons and in the fault geometry, and assimilate production data, such as oil production rate, gas-oil ratio and water-cut. In the EnKF model-updating work flow, an ensemble of reservoir models, expressing explicitly the model uncertainty, is created. We present a parameterization that allows to generate different realizations of the structural model to account for the uncertainties in faults and horizons and that maintains the consistency throughout the reservoir characterization project, from the structural model to the prediction of production profiles. The uncertainty in the depth of the horizons is parameterized as simulated depth surfaces, the fault position as a displacement vector and the fault throw as a throw-scaling factor. In the EnKF, the model parameters and state variables are updated sequentially in

  13. Implication of remotely sensed data to incorporate land cover effect into a linear reservoir-based rainfall-runoff model (United States)

    Nourani, Vahid; Fard, Ahmad Fakheri; Niazi, Faegheh; Gupta, Hoshin V.; Goodrich, David C.; Kamran, Khalil Valizadeh


    This study investigates the effect of land use on the Geomorphological Cascade of Unequal linear Reservoirs (GCUR) model using the Normalized Difference Vegetation Index (NDVI) derived from remotely sensed data as a measure of land use. The proposed modeling has two important aspects: it considers the effects of both watershed geomorphology and land use/cover, and it requires only one parameter to be estimated through the use of observed rainfall-runoff data. Geographic Information System (GIS) tools are employed to determine the parameters associated with watershed geomorphology, and the Vegetation Index parameter is extracted from historical Landsat images. The modeling is applied via three formulations to a watershed located in Southeastern Arizona, which consists of two gaged sub-watersheds with different land uses. The results show that while all of the formulations generate forecasts of the basin outlet hydrographs with acceptable accuracy, only the two formulations that consider the effects of land cover (using NDVI) provide acceptable results at the outlets of the sub-watersheds.

  14. Zonation of shale reservoir stimulation modes: a conceptual model based on hydraulic fracturing data from the Baltic Basin (Poland). (United States)

    Jarosiński, Marek; Pachytel, Radomir


    Depending on the pressure distribution within Stimulated Reservoir Volume (SRV), a different modes of hydraulic fracturing or tectonic fracture reactivation are active. Hydraulic pressure-driven shortening or expansion of reservoir produces changes in stress field that results in decrease of differential stress either by increasing of horizontal stress minimum (Shmin) or/and by decreasing of horizontal stress maximum (SHmax). For further considerations we assume initial strike-slip stress regime which prevails in the Polish part of the Lower Paleozoic Baltic Basin (BB), as well as in majority of the USA shale basins. The data come from vertical and horizontal shale gas exploration wells drilled from one pad located in the middle of the BB. Structural survey of a long core interval combined with stress analysis based on microfrac tests and fracturing tests allow to reconstruct the initial structural and geomechanical state of reservoir. Further geomechanical evolution of the SRV depends on the hydraulic pressure bubble growth, which is in general unknown. However, the state of pressure can be determined close to the injection borehole and in the front of the SRV migrating in time. In our case, we are able to distinguish four stimulation zones characterized by increasingly diverse stimulation modes and successively closer to the borehole injection zone: (1) shear on preexisting fractures generates microseismic events that produce open fractures propped by their natural asperities being impenetrable for proppant grains; (2) above + initial hydraulic opening of natural fractures that are preferentially oriented to the Shmin, which favors microseismic events triggered by secondary shear on bedding planes and produces open spaces supported by natural fracture asperities and fine-grained proppant; (3) above + failure of primary hydraulic fractures, which increases extensional component of the microseismic events and opens space for coarse-grained proppant; (4) above

  15. Stochastic optimal operation of reservoirs based on copula functions (United States)

    Lei, Xiao-hui; Tan, Qiao-feng; Wang, Xu; Wang, Hao; Wen, Xin; Wang, Chao; Zhang, Jing-wen


    Stochastic dynamic programming (SDP) has been widely used to derive operating policies for reservoirs considering streamflow uncertainties. In SDP, there is a need to calculate the transition probability matrix more accurately and efficiently in order to improve the economic benefit of reservoir operation. In this study, we proposed a stochastic optimization model for hydropower generation reservoirs, in which 1) the transition probability matrix was calculated based on copula functions; and 2) the value function of the last period was calculated by stepwise iteration. Firstly, the marginal distribution of stochastic inflow in each period was built and the joint distributions of adjacent periods were obtained using the three members of the Archimedean copulas, based on which the conditional probability formula was derived. Then, the value in the last period was calculated by a simple recursive equation with the proposed stepwise iteration method and the value function was fitted with a linear regression model. These improvements were incorporated into the classic SDP and applied to the case study in Ertan reservoir, China. The results show that the transition probability matrix can be more easily and accurately obtained by the proposed copula function based method than conventional methods based on the observed or synthetic streamflow series, and the reservoir operation benefit can also be increased.

  16. New Heat Flow Models in Fractured Geothermal Reservoirs - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Reis, John


    This study developed new analytical models for predicting the temperature distribution within a geothermal reservoir following reinjection of water having a temperature different from that of the reservoir. The study consisted of two parts: developing new analytical models for the heat conduction rate into multi-dimensional, parallelepiped matrix blocks and developing new analytical models for the advance of the thermal front through the geothermal reservoir. In the first part of the study, a number of semi-empirical models for the multi-dimensional heat conduction were developed to overcome the limitations to the exact solutions. The exact solution based on a similarity solution to the heat diffusion equation is the best model for the early-time period, but fails when thermal conduction fronts from opposing sides of the matrix block merge. The exact solution based on an infinite series solution was found not to be useful because it required tens of thousands of terms to be include d for accuracy. The best overall model for the entire conduction time was a semi-empirical model based on an exponential conduction rate. In the second part of the study, the early-time period exact solution based on similarity methods and the semi-empirical exponential model were used to develop new analytical models for the location of the thermal front within the reservoir during injection. These equations were based on an energy balance on the water in the fractured network. These convective models allowed for both dual and triple porosity reservoirs, i.e., one or two independent matrix domains. A method for incorporating measured fracture spacing distributions into these convective models was developed. It was found that there were only minor differences in the predicted areal extent of the heated zone between the dual and triple porosity models. Because of its simplicity, the dual porosity model is recommended. These new models can be used for preliminary reservoir studies

  17. A New Method to Identify Reservoirs in Tight Sandstones Based on the New Model of Transverse Relaxation Time and Relative Permeability

    Directory of Open Access Journals (Sweden)

    Yuhang Guo


    Full Text Available Relative permeability and transverse relaxation time are both important physical parameters of rock physics. In this paper, a new transformation model between the transverse relaxation time and the wetting phase’s relative permeability is established. The data shows that the cores in the northwest of China have continuous fractal dimension characteristics, and great differences existed in the different pore size scales. Therefore, a piece-wise method is used to calculate the fractal dimension in our transformation model. The transformation results are found to be quite consistent with the relative permeability curve of the laboratory measurements. Based on this new model, we put forward a new method to identify reservoir in tight sandstone reservoir. We focus on the Well M in the northwestern China. Nuclear magnetic resonance (NMR logging is used to obtain the point-by-point relative permeability curve. In addition, we identify the gas and water layers based on new T2-Kr model and the results showed our new method is feasible. In the case of the price of crude oil being low, this method can save time and reduce the cost.

  18. Artificial neural network modeling of dissolved oxygen in reservoir. (United States)

    Chen, Wei-Bo; Liu, Wen-Cheng


    The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan.

  19. Multiobjective reservoir operating rules based on cascade reservoir input variable selection method (United States)

    Yang, Guang; Guo, Shenglian; Liu, Pan; Li, Liping; Xu, Chongyu


    The input variable selection in multiobjective cascade reservoir operation is an important and difficult task. To address this problem, this study proposes the cascade reservoir input variable selection (CIS) method that searches for the most valuable input variables for decision making in multiple-objectivity cascade reservoir operations. From a case study of Hanjiang cascade reservoirs in China, we derive reservoir operating rules based on the combination of CIS and Gaussian radial basis functions (RBFs) methods and optimize the rules through Pareto-archived dynamically dimensioned search (PA-DDS) with two objectives: to maximize both power generation and water supply. We select the most effective input variables and evaluate their impacts on cascade reservoir operations. From the simulated trajectories of reservoir water level, power generation, and water supply, we analyze the multiobjective operating rules with several input variables. The results demonstrate that the CIS method performs well in the selection of input variables for the cascade reservoir operation, and the RBFs method can fully express the nonlinear operating rules for cascade reservoirs. We conclude that the CIS method is an effective and stable approach to identifying the most valuable information from a large number of candidate input variables. While the reservoir storage state is the most valuable information for the Hanjiang cascade reservoir multiobjective operation, the reservoir inflow is the most effective input variable for the single-objective operation of Danjiangkou.

  20. Numerical Modeling and Investigation of Fluid-Driven Fracture Propagation in Reservoirs Based on a Modified Fluid-Mechanically Coupled Model in Two-Dimensional Particle Flow Code

    Directory of Open Access Journals (Sweden)

    Jian Zhou


    Full Text Available Hydraulic fracturing is a useful tool for enhancing rock mass permeability for shale gas development, enhanced geothermal systems, and geological carbon sequestration by the high-pressure injection of a fracturing fluid into tight reservoir rocks. Although significant advances have been made in hydraulic fracturing theory, experiments, and numerical modeling, when it comes to the complexity of geological conditions knowledge is still limited. Mechanisms of fluid injection-induced fracture initiation and propagation should be better understood to take full advantage of hydraulic fracturing. This paper presents the development and application of discrete particle modeling based on two-dimensional particle flow code (PFC2D. Firstly, it is shown that the modeled value of the breakdown pressure for the hydraulic fracturing process is approximately equal to analytically calculated values under varied in situ stress conditions. Furthermore, a series of simulations for hydraulic fracturing in competent rock was performed to examine the influence of the in situ stress ratio, fluid injection rate, and fluid viscosity on the borehole pressure history, the geometry of hydraulic fractures, and the pore-pressure field, respectively. It was found that the hydraulic fractures in an isotropic medium always propagate parallel to the orientation of the maximum principal stress. When a high fluid injection rate is used, higher breakdown pressure is needed for fracture propagation and complex geometries of fractures can develop. When a low viscosity fluid is used, fluid can more easily penetrate from the borehole into the surrounding rock, which causes a reduction of the effective stress and leads to a lower breakdown pressure. Moreover, the geometry of the fractures is not particularly sensitive to the fluid viscosity in the approximate isotropic model.

  1. Geological model of supercritical geothermal reservoir related to subduction system (United States)

    Tsuchiya, Noriyoshi


    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550

  2. Reservoir Characterization and CO2 Plume Migration Modeling Based on Bottom-hole Pressure Data: An Example from the AEP Mountaineer Geological Storage Project (United States)

    Mishra, Srikanta; Kelley, Mark; Oruganti, YagnaDeepika; Bhattacharya, Indra; Spitznogle, Gary


    We present an integrated approach for formation permeability estimation, front tracking, reservoir model calibration, and plume migration modeling based on injection rate and down-hole pressure data from CO2 geologic sequestration projects. The data are taken from the 20 MW CO2 capture and storage project at American Electric Power's Mountaineer Plant in West Virginia, USA. The Mountaineer CO2 injection system consists of two injection wells - one in the Copper Ridge Dolomite formation and one in the Rose Run sandstone formation, and three deep observation wells that were operational between October 2009 and May 2011. Approximately 27000 MT and 10000 MT were injected into the Copper Ridge dolomite formation and Rose Run sandstone formation, respectively. A wealth of pressure and rate data from injection and observation wells is available covering a series of injection and pressure falloff events. The methodology developed and applied for interpreting and integrating the data during reservoir analysis and modeling from the Rose Run formation is the subject of this paper. For the analysis of transient pressure data at the injection and observation wells, the CO2 storage reservoir is conceptualized as a radial composite system, where the inner (invaded) zone consists of both supercritical CO2 and brine, and the outer (uninvaded) zone consists of undisturbed brine. Using established analytical solutions for analyzing fluid injection problems in the petroleum reservoir engineering literature, we show how the late-time pressure derivative response from both injection and observation wells will be identical - reflecting the permeability-thickness product of the undisturbed brine-filled formation. We also show how the expanding CO2 plume affects the "effective" compressibility that can be estimated by history matching injection-falloff data and how this can be used to develop a relationship between the plume radius and "effective" compressibility. This provides a novel non

  3. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.


    Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.

  4. Nonlinear Model Predictive Control for Oil Reservoirs Management

    DEFF Research Database (Denmark)

    Capolei, Andrea

    . The controller consists of -A model based optimizer for maximizing some predicted financial measure of the reservoir (e.g. the net present value). -A parameter and state estimator. -Use of the moving horizon principle for data assimilation and implementation of the computed control input. The optimizer uses...... Optimization has been suggested to compensate for inherent geological uncertainties in an oil field. In robust optimization of an oil reservoir, the water injection and production borehole pressures are computed such that the predicted net present value of an ensemble of permeability field realizations...... equivalent strategy is not justified for the particular case studied in this paper. The third contribution of this thesis is a mean-variance method for risk mitigation in production optimization of oil reservoirs. We introduce a return-risk bicriterion objective function for the profit-risk tradeoff...

  5. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    S-characterization combinations and 260 reservoir fluids. PC-SAFT with the new general characterization method is shown to give the lowest AAD% and maximum deviation in calculation of saturation pressure, density and STO density, among all the tested characterization methods for PC-SAFT. Application of the new characterization...... be highly rewarding if successfully produced. This PhD project is part of the NextOil (New Extreme Oil and Gas in the Danish North Sea) project which is intended to reduce the uncertainties in HPHT field development. The main focus of this PhD is on accurate description of the reservoir fluid behavior under...... HPHT conditions to minimize the production risks from these types of reservoirs. In particular, the study has thoroughly evaluated several non-cubic Equations of State (EoSs) which are considered promising for HPHT fluid modeling, showing their advantages and short comings based on an extensive...

  6. Spatial Stochastic Point Models for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Syversveen, Anne Randi


    The main part of this thesis discusses stochastic modelling of geology in petroleum reservoirs. A marked point model is defined for objects against a background in a two-dimensional vertical cross section of the reservoir. The model handles conditioning on observations from more than one well for each object and contains interaction between objects, and the objects have the correct length distribution when penetrated by wells. The model is developed in a Bayesian setting. The model and the simulation algorithm are demonstrated by means of an example with simulated data. The thesis also deals with object recognition in image analysis, in a Bayesian framework, and with a special type of spatial Cox processes called log-Gaussian Cox processes. In these processes, the logarithm of the intensity function is a Gaussian process. The class of log-Gaussian Cox processes provides flexible models for clustering. The distribution of such a process is completely characterized by the intensity and the pair correlation function of the Cox process. 170 refs., 37 figs., 5 tabs.

  7. Characterization of the infectious reservoir of malaria with an agent-based model calibrated to age-stratified parasite densities and infectiousness. (United States)

    Gerardin, Jaline; Ouédraogo, André Lin; McCarthy, Kevin A; Eckhoff, Philip A; Wenger, Edward A


    Elimination of malaria can only be achieved through removal of all vectors or complete depletion of the infectious reservoir in humans. Mechanistic models can be built to synthesize diverse observations from the field collected under a variety of conditions and subsequently used to query the infectious reservoir in great detail. The EMOD model of malaria transmission was calibrated to prevalence, incidence, asexual parasite density, gametocyte density, infection duration, and infectiousness data from nine study sites. The infectious reservoir was characterized by age and parasite detectability with diagnostics of varying sensitivity over a range of transmission intensities with and without case management and vector control. Mass screen-and-treat drug campaigns were tested for likelihood of achieving elimination. The composition of the infectious reservoir is similar over a range of transmission intensities, and higher intensity settings are biased towards infections in children. Recent ramp-ups in case management and use of insecticide-treated bed nets (ITNs) reduce the infectious reservoir and shift the composition towards sub-microscopic infections. Mass campaigns with anti-malarial drugs are highly effective at interrupting transmission if deployed shortly after ITN campaigns. Low-density infections comprise a substantial portion of the infectious reservoir. Proper timing of vector control, seasonal variation in transmission intensity and mass drug campaigns allows lingering population immunity to help drive a region towards elimination.

  8. A multi-reservoir based water-hydroenergy management model for identifying the risk horizon of regional resources-energy policy under uncertainties

    International Nuclear Information System (INIS)

    Zeng, X.T.; Zhang, S.J.; Feng, J.; Huang, G.H.; Li, Y.P.; Zhang, P.; Chen, J.P.; Li, K.L.


    Highlights: • A multi-reservoir system can handle water/energy deficit, flood and sediment damage. • A MWH model is developed for planning a water allocation and energy generation issue. • A mixed fuzzy-stochastic risk analysis method (MFSR) can handle uncertainties in MWH. • A hybrid MWH model can plan human-recourse-energy with a robust and effective manner. • Results can support adjusting water-energy policy to satisfy increasing demands. - Abstract: In this study, a multi-reservoir based water-hydroenergy management (MWH) model is developed for planning water allocation and hydroenergy generation (WAHG) under uncertainties. A mixed fuzzy-stochastic risk analysis method (MFSR) is introduced to handle objective and subjective uncertainties in MWH model, which can couple fuzzy credibility programming and risk management within a general two-stage context, with aim to reflect the infeasibility risks between expected targets and random second-stage recourse costs. The developed MWH model (embedded by MFSR method) can be applied to a practical study of WAHG issue in Jing River Basin (China), which encounters conflicts between human activity and resource/energy crisis. The construction of water-energy nexus (WEN) is built to reflect integrity of economic development and resource/energy conservation, as well as confronting natural and artificial damages such as water deficit, electricity insufficient, floodwater, high sedimentation deposition contemporarily. Meanwhile, the obtained results with various credibility levels and target-violated risk levels can support generating a robust plan associated with risk control for identification of the optimized water-allocation and hydroenergy-generation alternatives, as well as flood controls. Moreover, results can be beneficial for policymakers to discern the optimal water/sediment release routes, reservoirs’ storage variations (impacted by sediment deposition), electricity supply schedules and system benefit

  9. Simulation of counter-current imbibition in water-wet fractured reservoirs based on discrete-fracture model

    Directory of Open Access Journals (Sweden)

    Wang Yueying


    Full Text Available Isolated fractures usually exist in fractured media systems, where the capillary pressure in the fracture is lower than that of the matrix, causing the discrepancy in oil recoveries between fractured and non-fractured porous media. Experiments, analytical solutions and conventional simulation methods based on the continuum model approach are incompetent or insufficient in describing media containing isolated fractures. In this paper, the simulation of the counter-current imbibition in fractured media is based on the discrete-fracture model (DFM. The interlocking or arrangement of matrix and fracture system within the model resembles the traditional discrete fracture network model and the hybrid-mixed-finite-element method is employed to solve the associated equations. The Behbahani experimental data validates our simulation solution for consistency. The simulation results of the fractured media show that the isolated-fractures affect the imbibition in the matrix block. Moreover, the isolated fracture parameters such as fracture length and fracture location influence the trend of the recovery curves. Thus, the counter-current imbibition behavior of media with isolated fractures can be predicted using this method based on the discrete-fracture model.

  10. Reservoir Sedimentation Based on Uncertainty Analysis

    Directory of Open Access Journals (Sweden)

    Farhad Imanshoar


    Full Text Available Reservoir sedimentation can result in loss of much needed reservoir storage capacity, reducing the useful life of dams. Thus, sufficient sediment storage capacity should be provided for the reservoir design stage to ensure that sediment accumulation will not impair the functioning of the reservoir during the useful operational-economic life of the project. However, an important issue to consider when estimating reservoir sedimentation and accumulation is the uncertainty involved in reservoir sedimentation. In this paper, the basic factors influencing the density of sediments deposited in reservoirs are discussed, and uncertainties in reservoir sedimentation have been determined using the Delta method. Further, Kenny Reservoir in the White River Basin in northwestern Colorado was selected to determine the density of deposits in the reservoir and the coefficient of variation. The results of this investigation have indicated that by using the Delta method in the case of Kenny Reservoir, the uncertainty regarding accumulated sediment density, expressed by the coefficient of variation for a period of 50 years of reservoir operation, could be reduced to about 10%. Results of the Delta method suggest an applicable approach for dead storage planning via interfacing with uncertainties associated with reservoir sedimentation.

  11. Potosi Reservoir Modeling; History and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Valerie; Leetaru, Hannes


    As a part of a larger project co-funded by the United States Department of Energy (US DOE) to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon as potential targets for carbon sequestration in the Illinois and Michigan Basins, the Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and carbon dioxide (CO₂) plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data from two projects: the US DOE-funded Illinois Basin–Decatur Project being conducted by the Midwest Geological Sequestration Consortium in Macon County, Illinois, as well as data from the Illinois – Industrial Carbon Capture and Sequestration (IL-ICCS) project funded through the American Recovery and Reinvestment Act. In 2010, technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the Verification Well 1 (VW1) and the Injection Well (CCS1), structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for the Potosi Formation. The intention was for two million tonnes per annum (MTPA) of CO₂ to be injected for 20 years into the Potosi Formation. In 2013, updated reservoir models for the Cambrian Potosi Formation were evaluated. The data included formation tops from mud logs, well logs from the CCS1, VW1, and Verification Well 2 (VW2) wells, structural and stratigraphic formation from a larger 3D seismic survey, and field data from several waste water injection wells for Potosi Formation. The objective is to simulate the injection of CO₂ at a rate 3.5 million tons per annum (3.2 million tonnes per annum [MTPA]) for 30 years 106 million tons (96 MT total) into the Potosi Formation. The Potosi geomodeling efforts have evolved

  12. Evaluation of Gaussian approximations for data assimilation in reservoir models

    KAUST Repository

    Iglesias, Marco A.


    The Bayesian framework is the standard approach for data assimilation in reservoir modeling. This framework involves characterizing the posterior distribution of geological parameters in terms of a given prior distribution and data from the reservoir dynamics, together with a forward model connecting the space of geological parameters to the data space. Since the posterior distribution quantifies the uncertainty in the geologic parameters of the reservoir, the characterization of the posterior is fundamental for the optimal management of reservoirs. Unfortunately, due to the large-scale highly nonlinear properties of standard reservoir models, characterizing the posterior is computationally prohibitive. Instead, more affordable ad hoc techniques, based on Gaussian approximations, are often used for characterizing the posterior distribution. Evaluating the performance of those Gaussian approximations is typically conducted by assessing their ability at reproducing the truth within the confidence interval provided by the ad hoc technique under consideration. This has the disadvantage of mixing up the approximation properties of the history matching algorithm employed with the information content of the particular observations used, making it hard to evaluate the effect of the ad hoc approximations alone. In this paper, we avoid this disadvantage by comparing the ad hoc techniques with a fully resolved state-of-the-art probing of the Bayesian posterior distribution. The ad hoc techniques whose performance we assess are based on (1) linearization around the maximum a posteriori estimate, (2) randomized maximum likelihood, and (3) ensemble Kalman filter-type methods. In order to fully resolve the posterior distribution, we implement a state-of-the art Markov chain Monte Carlo (MCMC) method that scales well with respect to the dimension of the parameter space, enabling us to study realistic forward models, in two space dimensions, at a high level of grid refinement. Our

  13. Statistical modeling of geopressured geothermal reservoirs (United States)

    Ansari, Esmail; Hughes, Richard; White, Christopher D.


    Identifying attractive candidate reservoirs for producing geothermal energy requires predictive models. In this work, inspectional analysis and statistical modeling are used to create simple predictive models for a line drive design. Inspectional analysis on the partial differential equations governing this design yields a minimum number of fifteen dimensionless groups required to describe the physics of the system. These dimensionless groups are explained and confirmed using models with similar dimensionless groups but different dimensional parameters. This study models dimensionless production temperature and thermal recovery factor as the responses of a numerical model. These responses are obtained by a Box-Behnken experimental design. An uncertainty plot is used to segment the dimensionless time and develop a model for each segment. The important dimensionless numbers for each segment of the dimensionless time are identified using the Boosting method. These selected numbers are used in the regression models. The developed models are reduced to have a minimum number of predictors and interactions. The reduced final models are then presented and assessed using testing runs. Finally, applications of these models are offered. The presented workflow is generic and can be used to translate the output of a numerical simulator into simple predictive models in other research areas involving numerical simulation.

  14. The Potosi Reservoir Model 2013c, Property Modeling Update

    Energy Technology Data Exchange (ETDEWEB)

    Adushita, Yasmin; Smith, Valerie; Leetaru, Hannes


    property modeling workflows and layering. This model was retained as the base case. In the preceding Task [1], the Potosi reservoir model was updated to take into account the new data from the Verification Well #2 (VW2) which was drilled in 2012. The porosity and permeability modeling was revised to take into account the log data from the new well. Revisions of the 2010 modeling assumptions were also done on relative permeability, capillary pressures, formation water salinity, and the maximum allowable well bottomhole pressure. Dynamic simulations were run using the injection target of 3.5 million tons per annum (3.2 MTPA) for 30 years. This dynamic model was named Potosi Dynamic Model 2013b. In this Task, a new property modeling workflow was applied, where seismic inversion data guided the porosity mapping and geobody extraction. The static reservoir model was fully guided by PorosityCube interpretations and derivations coupled with petrophysical logs from three wells. The two main assumptions are: porosity features in the PorosityCube that correlate with lost circulation zones represent vugular zones, and that these vugular zones are laterally continuous. Extrapolation was done carefully to populate the vugular facies and their corresponding properties outside the seismic footprint up to the boundary of the 30 by 30 mi (48 by 48 km) model. Dynamic simulations were also run using the injection target of 3.5 million tons per annum (3.2 MTPA) for 30 years. This new dynamic model was named Potosi Dynamic Model 2013c. Reservoir simulation with the latest model gives a cumulative injection of 43 million tons (39 MT) in 30 years with a single well, which corresponds to 40% of the injection target. The injection rate is approx. 3.2 MTPA in the first six months as the well is injecting into the surrounding vugs, and declines rapidly to 1.8 million tons per annum (1.6 MTPA) in year 3 once the surrounding vugs are full and the CO2 start to reach the matrix. After, the injection

  15. Modelling sediment export, retention and reservoir sedimentation in drylands with the WASA-SED model

    Directory of Open Access Journals (Sweden)

    E. N. Mueller


    Full Text Available Current soil erosion and reservoir sedimentation modelling at the meso-scale is still faced with intrinsic problems with regard to open scaling questions, data demand, computational efficiency and deficient implementations of retention and re-mobilisation processes for the river and reservoir networks. To overcome some limitations of current modelling approaches, the semi-process-based, spatially semi-distributed modelling framework WASA-SED (Vers. 1 was developed for water and sediment transport in large dryland catchments. The WASA-SED model simulates the runoff and erosion processes at the hillslope scale, the transport and retention processes of suspended and bedload fluxes in the river reaches and the retention and remobilisation processes of sediments in reservoirs. The modelling tool enables the evaluation of management options both for sustainable land-use change scenarios to reduce erosion in the headwater catchments as well as adequate reservoir management options to lessen sedimentation in large reservoirs and reservoir networks. The model concept, its spatial discretisation scheme and the numerical components of the hillslope, river and reservoir processes are described and a model application for the meso-scale dryland catchment Isábena in the Spanish Pre-Pyrenees (445 km2 is presented to demonstrate the capabilities, strengths and limits of the model framework. The example application showed that the model was able to reproduce runoff and sediment transport dynamics of highly erodible headwater badlands, the transient storage of sediments in the dryland river system, the bed elevation changes of the 93 hm3 Barasona reservoir due to sedimentation as well as the life expectancy of the reservoir under different management options.

  16. An Efficient Upscaling Process Based on a Unified Fine-scale Multi-Physics Model for Flow Simulation in Naturally Fracture Carbonate Karst Reservoirs

    KAUST Repository

    Bi, Linfeng


    The main challenges in modeling fluid flow through naturally-fractured carbonate karst reservoirs are how to address various flow physics in complex geological architectures due to the presence of vugs and caves which are connected via fracture networks at multiple scales. In this paper, we present a unified multi-physics model that adapts to the complex flow regime through naturally-fractured carbonate karst reservoirs. This approach generalizes Stokes-Brinkman model (Popov et al. 2007). The fracture networks provide the essential connection between the caves in carbonate karst reservoirs. It is thus very important to resolve the flow in fracture network and the interaction between fractures and caves to better understand the complex flow behavior. The idea is to use Stokes-Brinkman model to represent flow through rock matrix, void caves as well as intermediate flows in very high permeability regions and to use an idea similar to discrete fracture network model to represent flow in fracture network. Consequently, various numerical solution strategies can be efficiently applied to greatly improve the computational efficiency in flow simulations. We have applied this unified multi-physics model as a fine-scale flow solver in scale-up computations. Both local and global scale-up are considered. It is found that global scale-up has much more accurate than local scale-up. Global scale-up requires the solution of global flow problems on fine grid, which generally is computationally expensive. The proposed model has the ability to deal with large number of fractures and caves, which facilitate the application of Stokes-Brinkman model in global scale-up computation. The proposed model flexibly adapts to the different flow physics in naturally-fractured carbonate karst reservoirs in a simple and effective way. It certainly extends modeling and predicting capability in efficient development of this important type of reservoir.

  17. Evaluation of field development plans using 3-D reservoir modelling

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, D.; Lewis, J.J.M. [Heriot-Watt Univ., Edinburgh (United Kingdom); Newbery, J.D.H. [Conoco, UK Ltd., Aberdeen (United Kingdom)] [and others


    Three-dimensional reservoir modelling has become an accepted tool in reservoir description and is used for various purposes, such as reservoir performance prediction or integration and visualisation of data. In this case study, a small Northern North Sea turbiditic reservoir was to be developed with a line drive strategy utilising a series of horizontal producer and injector pairs, oriented north-south. This development plan was to be evaluated and the expected outcome of the wells was to be assessed and risked. Detailed analyses of core, well log and analogue data has led to the development of two geological {open_quotes}end member{close_quotes} scenarios. Both scenarios have been stochastically modelled using the Sequential Indicator Simulation method. The resulting equiprobable realisations have been subjected to detailed statistical well placement optimisation techniques. Based upon bivariate statistical evaluation of more than 1000 numerical well trajectories for each of the two scenarios, it was found that the wells inclinations and lengths had a great impact on the wells success, whereas the azimuth was found to have only a minor impact. After integration of the above results, the actual well paths were redesigned to meet external drilling constraints, resulting in substantial reductions in drilling time and costs.

  18. Modeling of Reservoir Inflow for Hydropower Dams Using Artificial ...

    African Journals Online (AJOL)

    The stream flow at the three hydropower reservoirs in Nigeria were modeled using hydro-meteorological parameters and Artificial Neural Network (ANN). The model revealed positive relationship between the observed and the modeled reservoir inflow with values of correlation coefficient of 0.57, 0.84 and 0.92 for Kainji, ...

  19. Mathematical models of a liquid filtration from reservoirs

    Directory of Open Access Journals (Sweden)

    Anvarbek Meirmanov


    Full Text Available This article studies the filtration from reservoirs into porous media under gravity. We start with the exact mathematical model at the microscopic level, describing the joint motion of a liquid in reservoir and the same liquid and the elastic solid skeleton in the porous medium. Then using a homogenization procedure we derive the chain of macroscopic models from the poroelasticity equations up to the simplest Darcy's law in the porous medium and hydraulics in the reservoir.

  20. Risk Decision Making Model for Reservoir Floodwater resources Utilization (United States)

    Huang, X.


    Floodwater resources utilization(FRU) can alleviate the shortage of water resources, but there are risks. In order to safely and efficiently utilize the floodwater resources, it is necessary to study the risk of reservoir FRU. In this paper, the risk rate of exceeding the design flood water level and the risk rate of exceeding safety discharge are estimated. Based on the principle of the minimum risk and the maximum benefit of FRU, a multi-objective risk decision making model for FRU is constructed. Probability theory and mathematical statistics method is selected to calculate the risk rate; C-D production function method and emergy analysis method is selected to calculate the risk benefit; the risk loss is related to flood inundation area and unit area loss; the multi-objective decision making problem of the model is solved by the constraint method. Taking the Shilianghe reservoir in Jiangsu Province as an example, the optimal equilibrium solution of FRU of the Shilianghe reservoir is found by using the risk decision making model, and the validity and applicability of the model are verified.

  1. Effect of coherence of nonthermal reservoirs on heat transport in a microscopic collision model (United States)

    Li, Lei; Zou, Jian; Li, Hai; Xu, Bao-Ming; Wang, Yuan-Mei; Shao, Bin


    We investigate the heat transport between two nonthermal reservoirs based on a microscopic collision model. We consider a bipartite system consisting of two identical subsystems, and each subsystem interacts with its own local reservoir, which consists of a large collection of initially uncorrelated ancillas. Then a heat transport is formed between two reservoirs by a sequence of pairwise collisions (intersubsystem and subsystem-local reservoir). In this paper we consider two kinds of the reservoir's initial states: the thermal state and the state with coherence whose diagonal elements are the same as that of the thermal state and the off-diagonal elements are nonzero. In this way, we define the effective temperature of the reservoir with coherence according to its diagonal elements. We find that for two reservoirs having coherence the direction of the steady current of heat is different for different phase differences between the two initial states of two reservoirs, especially the heat can transfer from the "cold reservoir" to the "hot reservoir" in the steady regime for particular phase difference. In the limit of the effective temperature difference between the two reservoirs Δ T →0 , for most of the phase differences, the steady heat current increases with the increase of effective temperature until it reaches the high effective temperature limit, while for the thermal state or particular phase difference the steady heat current decreases with the increase of temperature at high temperatures, and in this case the conductance can be obtained.

  2. Fractured reservoir history matching improved based on artificial intelligent

    Directory of Open Access Journals (Sweden)

    Sayyed Hadi Riazi


    Full Text Available In this paper, a new robust approach based on Least Square Support Vector Machine (LSSVM as a proxy model is used for an automatic fractured reservoir history matching. The proxy model is made to model the history match objective function (mismatch values based on the history data of the field. This model is then used to minimize the objective function through Particle Swarm Optimization (PSO and Imperialist Competitive Algorithm (ICA. In automatic history matching, sensitive analysis is often performed on full simulation model. In this work, to get new range of the uncertain parameters (matching parameters in which the objective function has a minimum value, sensitivity analysis is also performed on the proxy model. By applying the modified ranges to the optimization methods, optimization of the objective function will be faster and outputs of the optimization methods (matching parameters are produced in less time and with high precision. This procedure leads to matching of history of the field in which a set of reservoir parameters is used. The final sets of parameters are then applied for the full simulation model to validate the technique. The obtained results show that the present procedure in this work is effective for history matching process due to its robust dependability and fast convergence speed. Due to high speed and need for small data sets, LSSVM is the best tool to build a proxy model. Also the comparison of PSO and ICA shows that PSO is less time-consuming and more effective.

  3. Generation of reservoir models on flexible meshes; Generation de modeles de reservoir sur maillage flexible

    Energy Technology Data Exchange (ETDEWEB)

    Ricard, L.


    The high level geo-statistic description of the subsurface are often far too detailed for use in routine flow simulators. To make flow simulations tractable, the number of grid blocks has to be reduced: an approximation, still relevant with flow description, is necessary. In this work, we place the emphasis on the scaling procedure from the fine scale model to the multi-scale reservoir model. Two main problems appear: Near wells, faults and channels, the volume of flexible cells may be less than fine ones, so we need to solve a down-scaling problem; Far from these regions, the volume of cells are bigger than fine ones so we need to solve an up-scaling problem. In this work, research has been done on each of these three areas: down-scaling, up-scaling and fluid flow simulation. For each of these subjects, a review, some news improvements and comparative study are proposed. The proposed down-scaling method is build to be compatible with existing data integration methods. The comparative study shows that empirical methods are not enough accurate to solve the problem. Concerning the up-scaling step, the proposed approach is based on an existing method: the perturbed boundary conditions. An extension to unstructured mesh is developed for the inter-cell permeability tensor. The comparative study shows that numerical methods are not always as accurate as expected and the empirical model can be sufficient in lot of cases. A new approach to single-phase fluid flow simulation is developed. This approach can handle with full tensorial permeability fields with source or sink terms.(author)

  4. Dynamic modeling of surfactant flooding in low permeable argillaceous reservoirs (United States)

    Kuznetsova, A. N.; Gunkin, A. S.; Rogachev, M. К


    This article reveals the current state and problems of the Russian oil production sector. Physicochemical enhanced oil recovery methods are proposed as a solution. The investigation of surfactant treatment efficiency and their integrated effect on oil and reservoir rock is conducted as well as its applicability analysis for low permeable poly-mineral reservoir. The results of dynamic modeling of oil displacement by the developed surfactant composition in a low permeable reservoir are presented.

  5. Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations (United States)

    Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.


    HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications -, is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of

  6. Surrogate reservoir models for CSI well probabilistic production forecast

    Directory of Open Access Journals (Sweden)

    Saúl Buitrago


    Full Text Available The aim of this work is to present the construction and use of Surrogate Reservoir Models capable of accurately predicting cumulative oil production for every well stimulated with cyclic steam injection at any given time in a heavy oil reservoir in Mexico considering uncertain variables. The central composite experimental design technique was selected to capture the maximum amount of information from the model response with a minimum number of reservoir models simulations. Four input uncertain variables (the dead oil viscosity with temperature, the reservoir pressure, the reservoir permeability and oil sand thickness hydraulically connected to the well were selected as the ones with more impact on the initial hot oil production rate according to an analytical production prediction model. Twenty five runs were designed and performed with the STARS simulator for each well type on the reservoir model. The results show that the use of Surrogate Reservoir Models is a fast viable alternative to perform probabilistic production forecasting of the reservoir.

  7. Modeling a distributed environment for a petroleum reservoir engineering application with software product line

    International Nuclear Information System (INIS)

    Scheidt, Rafael de Faria; Vilain, Patrícia; Dantas, M A R


    Petroleum reservoir engineering is a complex and interesting field that requires large amount of computational facilities to achieve successful results. Usually, software environments for this field are developed without taking care out of possible interactions and extensibilities required by reservoir engineers. In this paper, we present a research work which it is characterized by the design and implementation based on a software product line model for a real distributed reservoir engineering environment. Experimental results indicate successfully the utilization of this approach for the design of distributed software architecture. In addition, all components from the proposal provided greater visibility of the organization and processes for the reservoir engineers

  8. Borehole radar modeling for reservoir monitoring applications

    NARCIS (Netherlands)

    Miorali, M.; Slob, E.C.; Arts, R.J.


    The use of down-hole sensors and remotely controlled valves in wells provide enormous benefits to reservoir management and oil production. We suggest borehole radar measurements as a promising technique capable of monitoring the arrival of undesired fluids in the proximity of production wells. The

  9. 3D Geostatistical Modeling and Uncertainty Analysis in a Carbonate Reservoir, SW Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Kamali


    Full Text Available The aim of geostatistical reservoir characterization is to utilize wide variety of data, in different scales and accuracies, to construct reservoir models which are able to represent geological heterogeneities and also quantifying uncertainties by producing numbers of equiprobable models. Since all geostatistical methods used in estimation of reservoir parameters are inaccurate, modeling of “estimation error” in form of uncertainty analysis is very important. In this paper, the definition of Sequential Gaussian Simulation has been reviewed and construction of stochastic models based on it has been discussed. Subsequently ranking and uncertainty quantification of those stochastically populated equiprobable models and sensitivity study of modeled properties have been presented. Consequently, the application of sensitivity analysis on stochastic models of reservoir horizons, petrophysical properties, and stochastic oil-water contacts, also their effect on reserve, clearly shows any alteration in the reservoir geometry has significant effect on the oil in place. The studied reservoir is located at carbonate sequences of Sarvak Formation, Zagros, Iran; it comprises three layers. The first one which is located beneath the cap rock contains the largest portion of the reserve and other layers just hold little oil. Simulations show that average porosity and water saturation of the reservoir is about 20% and 52%, respectively.

  10. Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion

    DEFF Research Database (Denmark)

    Zunino, Andrea; Lange, Katrine; Melnikova, Yulia


    We present a study on the inversion of seismic reflection data generated from a synthetic reservoir model. Our aim is to invert directly for rock facies and porosity of the target reservoir zone. We solve this inverse problem using a Markov chain Monte Carlo (McMC) method to handle the nonlinear,...... constitute samples of the posterior distribution.......We present a study on the inversion of seismic reflection data generated from a synthetic reservoir model. Our aim is to invert directly for rock facies and porosity of the target reservoir zone. We solve this inverse problem using a Markov chain Monte Carlo (McMC) method to handle the nonlinear......, multi-step forward model (rock physics and seismology) and to provide realistic estimates of uncertainties. To generate realistic models which represent samples of the prior distribution, and to overcome the high computational demand, we reduce the search space utilizing an algorithm drawn from...

  11. Permeability Variation Models for Unsaturated Coalbed Methane Reservoirs

    Directory of Open Access Journals (Sweden)

    Lv Yumin


    Full Text Available A large number of models have been established to describe permeability variation with the depletion of reservoir pressure to date. However, no attempt has been made to draw enough attention to the difference in the effect of various factors on permeability variation in different production stages of unsaturated CoalBed Methane (CBM reservoirs. This paper summarizes the existing and common permeability models, determines the relationship between various effects (effective stress effect, matrix shrinkage effect and Klinkenberg effect and desorption characteristics of the recovery of unsaturated CBM reservoirs, then establishes two improved models to quantificationally describe permeability variation, and finally discusses the effects of various factors (gas saturation, cleat porosity, Poisson’s ratio and shrinkage coefficient on permeability variation. The results show that permeability variation during the recovery of unsaturated CBM reservoirs can be divided into two stages: the first one is that permeability variation is only affected by the effective stress effect, and the second is that permeability variation is affected by the combination of the effective stress effect, matrix shrinkage effect and Klinkenberg effect. In the second stage, matrix shrinkage effect and Klinkenberg effect play much more significant role than the effective stress effect, which leads to an increase in permeability with depletion of reservoir pressure. Sensitivity analysis of parameters in the improved models reveals that those parameters associated with gas saturation, such as gas content, reservoir pressure, Langmuir volume and Langmuir pressure, have a significant impact on permeability variation in the first stage, and the important parameters in the second stage are the gas content, reservoir pressure, Langmuir volume, Langmuir pressure, Poisson’s ratio, Young’s modulus and shrinkage coefficient during the depletion of reservoir pressure. A comparative

  12. Sensitivity Studies on Productivity Performance from 3D Heterogeneous Reservoir Model Based on the L-Pad Gas Hydrate Accumulation in Prudhoe Bay Unit, North Slope Alaska (United States)

    Myshakin, E. M.; Ajayi, T.; Seol, Y.; Boswell, R.


    Three-dimensional reservoir model of the "L-Pad" hydrate deposit located in the Prudhoe Bay region of the Alaska's North Slope was created including four stratigraphic units; silty shale overburden, hydrate-bearing D sand, inter-reservoir silty shale, hydrate-bearing C sand, and silty shale underburden. The model incorporates the actual geological settings, accounts for the presence of faults, reservoir dip, the hydrate-water contact in the C sand. Geostatistical porosity distributions in D and C sands conditioned to log data from 78 wells drilled in the vicinity of the Prudhoe Bay "L-pad" were developed providing vertical and lateral 3D heterogeneity in porosity and porosity-dependent hydrate saturation and intrinsic permeability. Gas production potential was estimated using a conventional vertical wellbore completion and a deviated toe-down wellbore perforated through both sand units to induce hydrate depressurization at a constant bottom-hole pressure. The results have shown the greater performance of the deviated well design over the vertical one. The scenarios involving simultaneous and sequential hydrate dissociation in sand units were explored and the effect of the underlying aquifer in the C sand was estimated. Sensitivity analysis has demonstrated that hydraulic communication with over- and underlying shale units affects production in the beginning of depressurization due to competitive water influx into producing mobile flow and could suppress efficient hydrate decomposition resulting in production lag. Another important factor greatly influencing the productivity performance is the effective permeability of hydrate-bearing sediment controlled by the relative permeability function. The results call for the necessity of thorough fundamental studies to understand multi-phase flow in hydrate-bearing sediments with different hydrate precipitation habits.

  13. Modelling phosphorus retention in lakes and reservoirs

    Czech Academy of Sciences Publication Activity Database

    Hejzlar, Josef; Šámalová, K.; Boers, P.; Kronvang, B.


    Roč. 6, 5-6 (2006), s. 487-494 ISSN 1567-7230 R&D Projects: GA AV ČR IAA3017301; GA AV ČR 1QS600170504 Grant - others:EU(XE) EVK1-CT-2001-00096; MSM(CZ) 6007665801 Institutional research plan: CEZ:AV0Z60170517 Keywords : phosphorus * retention * reservoir Subject RIV: DA - Hydrology ; Limnology

  14. Sampling from stochastic reservoir models constrained by production data

    Energy Technology Data Exchange (ETDEWEB)

    Hegstad, Bjoern Kaare


    When a petroleum reservoir is evaluated, it is important to forecast future production of oil and gas and to assess forecast uncertainty. This is done by defining a stochastic model for the reservoir characteristics, generating realizations from this model and applying a fluid flow simulator to the realizations. The reservoir characteristics define the geometry of the reservoir, initial saturation, petrophysical properties etc. This thesis discusses how to generate realizations constrained by production data, that is to say, the realizations should reproduce the observed production history of the petroleum reservoir within the uncertainty of these data. The topics discussed are: (1) Theoretical framework, (2) History matching, forecasting and forecasting uncertainty, (3) A three-dimensional test case, (4) Modelling transmissibility multipliers by Markov random fields, (5) Up scaling, (6) The link between model parameters, well observations and production history in a simple test case, (7) Sampling the posterior using optimization in a hierarchical model, (8) A comparison of Rejection Sampling and Metropolis-Hastings algorithm, (9) Stochastic simulation and conditioning by annealing in reservoir description, and (10) Uncertainty assessment in history matching and forecasting. 139 refs., 85 figs., 1 tab.

  15. Review on applications of artificial intelligence methods for dam and reservoir-hydro-environment models. (United States)

    Allawi, Mohammed Falah; Jaafar, Othman; Mohamad Hamzah, Firdaus; Abdullah, Sharifah Mastura Syed; El-Shafie, Ahmed


    Efficacious operation for dam and reservoir system could guarantee not only a defenselessness policy against natural hazard but also identify rule to meet the water demand. Successful operation of dam and reservoir systems to ensure optimal use of water resources could be unattainable without accurate and reliable simulation models. According to the highly stochastic nature of hydrologic parameters, developing accurate predictive model that efficiently mimic such a complex pattern is an increasing domain of research. During the last two decades, artificial intelligence (AI) techniques have been significantly utilized for attaining a robust modeling to handle different stochastic hydrological parameters. AI techniques have also shown considerable progress in finding optimal rules for reservoir operation. This review research explores the history of developing AI in reservoir inflow forecasting and prediction of evaporation from a reservoir as the major components of the reservoir simulation. In addition, critical assessment of the advantages and disadvantages of integrated AI simulation methods with optimization methods has been reported. Future research on the potential of utilizing new innovative methods based AI techniques for reservoir simulation and optimization models have also been discussed. Finally, proposal for the new mathematical procedure to accomplish the realistic evaluation of the whole optimization model performance (reliability, resilience, and vulnerability indices) has been recommended.

  16. From eutrophic to mesotrophic: modelling watershed management scenarios to change the trophic status of a reservoir. (United States)

    Mateus, Marcos; Almeida, Carina; Brito, David; Neves, Ramiro


    Management decisions related with water quality in lakes and reservoirs require a combined land-water processes study approach. This study reports on an integrated watershed-reservoir modeling methodology: the Soil and Water Assessment Tool (SWAT) model to estimate the nutrient input loads from the watershed, used afterwards as boundary conditions to the reservoir model, CE-QUAL-W2. The integrated modeling system was applied to the Torrão reservoir and drainage basin. The objective of the study was to quantify the total maximum input load that allows the reservoir to be classified as mesotrophic. Torrão reservoir is located in the Tâmega River, one of the most important tributaries of the Douro River in Portugal. The watershed is characterized by a variety of land uses and urban areas, accounting for a total Waste Water Treatment Plants (WWTP) discharge of ~100,000 p.e. According to the criteria defined by the National Water Institute (based on the WWTP Directive), the Torrão reservoir is classified as eutrophic. Model estimates show that a 10% reduction in nutrient loads will suffice to change the state to mesotrophic, and should target primarily WWTP effluents, but also act on diffuse sources. The method applied in this study should provide a basis for water environmental management decision-making.

  17. Deduction of reservoir operating rules for application in global hydrological models

    Directory of Open Access Journals (Sweden)

    H. M. Coerver


    Full Text Available A big challenge in constructing global hydrological models is the inclusion of anthropogenic impacts on the water cycle, such as caused by dams. Dam operators make decisions based on experience and often uncertain information. In this study information generally available to dam operators, like inflow into the reservoir and storage levels, was used to derive fuzzy rules describing the way a reservoir is operated. Using an artificial neural network capable of mimicking fuzzy logic, called the ANFIS adaptive-network-based fuzzy inference system, fuzzy rules linking inflow and storage with reservoir release were determined for 11 reservoirs in central Asia, the US and Vietnam. By varying the input variables of the neural network, different configurations of fuzzy rules were created and tested. It was found that the release from relatively large reservoirs was significantly dependent on information concerning recent storage levels, while release from smaller reservoirs was more dependent on reservoir inflows. Subsequently, the derived rules were used to simulate reservoir release with an average Nash–Sutcliffe coefficient of 0.81.

  18. Deduction of reservoir operating rules for application in global hydrological models (United States)

    Coerver, Hubertus M.; Rutten, Martine M.; van de Giesen, Nick C.


    A big challenge in constructing global hydrological models is the inclusion of anthropogenic impacts on the water cycle, such as caused by dams. Dam operators make decisions based on experience and often uncertain information. In this study information generally available to dam operators, like inflow into the reservoir and storage levels, was used to derive fuzzy rules describing the way a reservoir is operated. Using an artificial neural network capable of mimicking fuzzy logic, called the ANFIS adaptive-network-based fuzzy inference system, fuzzy rules linking inflow and storage with reservoir release were determined for 11 reservoirs in central Asia, the US and Vietnam. By varying the input variables of the neural network, different configurations of fuzzy rules were created and tested. It was found that the release from relatively large reservoirs was significantly dependent on information concerning recent storage levels, while release from smaller reservoirs was more dependent on reservoir inflows. Subsequently, the derived rules were used to simulate reservoir release with an average Nash-Sutcliffe coefficient of 0.81.

  19. A Study of the Optimal Planning Model for Reservoir Sustainable Management- A Case Study of Shihmen Reservoir (United States)

    Chen, Y. Y.; Ho, C. C.; Chang, L. C.


    The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.

  20. Integration of dynamical data in a geostatistical model of reservoir; Integration des donnees dynamiques dans un modele geostatistique de reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Costa Reis, L.


    We have developed in this thesis a methodology of integrated characterization of heterogeneous reservoirs, from geologic modeling to history matching. This methodology is applied to the reservoir PBR, situated in Campos Basin, offshore Brazil, which has been producing since June 1979. This work is an extension of two other thesis concerning geologic and geostatistical modeling of the reservoir PBR from well data and seismic information. We extended the geostatistical litho-type model to the whole reservoir by using a particular approach of the non-stationary truncated Gaussian simulation method. This approach facilitated the application of the gradual deformation method to history matching. The main stages of the methodology for dynamic data integration in a geostatistical reservoir model are presented. We constructed a reservoir model and the initial difficulties in the history matching led us to modify some choices in the geological, geostatistical and flow models. These difficulties show the importance of dynamic data integration in reservoir modeling. The petrophysical property assignment within the litho-types was done by using well test data. We used an inversion procedure to evaluate the petrophysical parameters of the litho-types. The up-scaling is a necessary stage to reduce the flow simulation time. We compared several up-scaling methods and we show that the passage from the fine geostatistical model to the coarse flow model should be done very carefully. The choice of the fitting parameter depends on the objective of the study. In the case of the reservoir PBR, where water is injected in order to improve the oil recovery, the water rate of the producing wells is directly related to the reservoir heterogeneity. Thus, the water rate was chosen as the fitting parameter. We obtained significant improvements in the history matching of the reservoir PBR. First, by using a method we have proposed, called patchwork. This method allows us to built a coherent

  1. Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion

    DEFF Research Database (Denmark)

    Zunino, Andrea; Lange, Katrine; Melnikova, Yulia


    We present a study on the inversion of seismic reflection data generated from a synthetic reservoir model. Our aim is to invert directly for rock facies and porosity of the target reservoir zone. We solve this inverse problem using a Markov chain Monte Carlo (McMC) method to handle the nonlinear......, multi-step forward model (rock physics and seismology) and to provide realistic estimates of uncertainties. To generate realistic models which represent samples of the prior distribution, and to overcome the high computational demand, we reduce the search space utilizing an algorithm drawn from...... geostatistics. The geostatistical algorithm learns the multiple-point statistics from prototype models, then generates proposal models which are tested by a Metropolis sampler. The solution of the inverse problem is finally represented by a collection of reservoir models in terms of facies and porosity, which...

  2. Numerical modeling of shear stimulation in naturally fractured geothermal reservoirs


    Ucar, Eren


    Shear-dilation-based hydraulic stimulations are conducted to create enhanced geothermal systems (EGS) from low permeable geothermal reservoirs, which are initially not amenable to energy production. Reservoir stimulations are done by injecting low-pressurized fluid into the naturally fractured formations. The injection aims to activate critically stressed fractures by decreasing frictional strength and ultimately cause a shear failure. The shear failure leads to a permanent ...

  3. A new method of well test analysis in naturally fractured reservoirs based on elliptical flow

    Energy Technology Data Exchange (ETDEWEB)

    Igbokoyi, A.O.; Tiab, D. [Oklahoma Univ., Norman, OK (United States)


    Well testing analysis in naturally fractured reservoirs is usually based on the radial flow model. However, this model is only applicable to purely homogeneous system and long time solution and cannot provide complete formation analysis in a reservoir that exhibits anisotropy. This paper presented a new method of estimating permeability anisotropy in naturally fractured reservoirs. Maximum and minimum permeability were obtained in one well test. The paper discussed the mathematical formulation for the study which used Warren and Root's matrix pseudo-steady state model. The paper presented the assumptions for this model which included an isotropic homogeneous or anisotropic homogeneous formation; a slightly compressible fluid with single phase flow in both the matrix and fracture; initial reservoir pressure; two-dimensional flow; and laminar flow which obeys Darcy's law. The paper also discussed the computation of wellbore pressure and interpretation methods for both early linear flow and the long time radial flow regimes. Anisotropy was also outlined as the purpose of the study was to use an elliptical flow model in quantifying the permeability anisotropy of the reservoir. The type curve model was also explained to demonstrate the validity of the method of quantifying the permeability anisotropy with a known problem. Last, the paper explained the direct method with several example. It was concluded that the elliptical flow model is the most appropriate method of analyzing pressure transient data in naturally fractured reservoirs. 22 refs., 5 tabs., 15 figs., 3 appendices.

  4. Risk Analysis of Multipurpose Reservoir Real-time Operation based on Probabilistic Hydrologic Forecasting (United States)

    Liu, P.


    Quantitative analysis of the risk for reservoir real-time operation is a hard task owing to the difficulty of accurate description of inflow uncertainties. The ensemble-based probabilistic hydrologic forecasting, which outputs a lot of inflow scenarios or traces, does well in depicting the inflow not only the marginal distribution but also their corrections. This motivates us to analyze the reservoir operating risk by inputting probabilistic hydrologic forecasting into reservoir real-time operation. The proposed procedure involves: (1) based upon the Bayesian inference, two alternative techniques, the generalized likelihood uncertainty estimation (GLUE) and Markov chain Monte Carlo (MCMC), are implemented for producing probabilistic hydrologic forecasting, respectively, (2) the reservoir risk is defined as the ratio of the number of traces that excessive (or below) the critical value to the total number of traces, and (3) a multipurpose reservoir operation model is build to produce Pareto solutions for trade-offs between risks and profits with the inputted probabilistic hydrologic forecasting. With a case study of the China's Three Gorges Reservoir, it is found that the reservoir real-time operation risks can be estimated and minimized based on the proposed methods, and this is great potential benefit in decision and choosing the most realistic one.

  5. Virtual outcrop models of petroleum reservoir outcrop analogues – a review of the current state-of-the-art


    Pringle, JK; Howell, JA; Hodgetts, D; Westerman, AR; Hodgson, DM


    A subsurface reservoir model is a computer based representation of petrophysical parameters such a porosity, permeability, fluid saturation, etc. Given that direct measurement of these parameters is limited to a few wells it is necessary to extrapolate their distribution. As geology is a first order control on petrophysics, it follows that an understanding of facies and their distribution is central to predicting reservoir quality and architecture. The majority of reservoir modelling systems ...

  6. Towards an Improved Represenation of Reservoirs and Water Management in a Land Surface-Hydrology Model (United States)

    Yassin, F.; Anis, M. R.; Razavi, S.; Wheater, H. S.


    Water management through reservoirs, diversions, and irrigation have significantly changed river flow regimes and basin-wide energy and water balance cycles. Failure to represent these effects limits the performance of land surface-hydrology models not only for streamflow prediction but also for the estimation of soil moisture, evapotranspiration, and feedbacks to the atmosphere. Despite recent research to improve the representation of water management in land surface models, there remains a need to develop improved modeling approaches that work in complex and highly regulated basins such as the 406,000 km2 Saskatchewan River Basin (SaskRB). A particular challenge for regional and global application is a lack of local information on reservoir operational management. To this end, we implemented a reservoir operation, water abstraction, and irrigation algorithm in the MESH land surface-hydrology model and tested it over the SaskRB. MESH is Environment Canada's Land Surface-hydrology modeling system that couples Canadian Land Surface Scheme (CLASS) with hydrological routing model. The implemented reservoir algorithm uses an inflow-outflow relationship that accounts for the physical characteristics of reservoirs (e.g., storage-area-elevation relationships) and includes simplified operational characteristics based on local information (e.g., monthly target volume and release under limited, normal, and flood storage zone). The irrigation algorithm uses the difference between actual and potential evapotranspiration to estimate irrigation water demand. This irrigation demand is supplied from the neighboring reservoirs/diversion in the river system. We calibrated the model enabled with the new reservoir and irrigation modules in a multi-objective optimization setting. Results showed that the reservoir and irrigation modules significantly improved the MESH model performance in generating streamflow and evapotranspiration across the SaskRB and that this our approach provides

  7. Investigating the effects of climatic variables and reservoir on the incidence of hemorrhagic fever with renal syndrome in Huludao City, China: a 17-year data analysis based on structure equation model. (United States)

    Guan, Peng; Huang, Desheng; He, Miao; Shen, Tiefeng; Guo, Junqiao; Zhou, Baosen


    HFRS is a serious public health problem in China and the study on HFRS is important in China for its large population. The present study aimed to explore the impact of climatic variables and reservoir on the incidence of HFRS in Huludao City, an epidemic focus of the disease in northeastern China. Structure Equation Model (SEM), a statistical technique for testing and estimating causal relationships, was conducted based on climatic variables, virus-carrying index among rodents, and incidence of HFRS in the city during the period 1990 to 2006. The linear structural relationships (LISREL) software (Scientific Software International, Lincolnwood, IL) was used to fit SEMs. Temperature, precipitation, relative humidity and virus-carrying index among rodents have shown positive correlations with the monthly incidence of HFRS, while air pressure had a negative correlation with the incidence. The best-fit SEM model fitted well with the data-based correlation matrix, P value was more than 0.56, root mean square error of approximation (RMSEA) equaled to 0, goodness-of-fit index (GFI) was more than 0.99. Climate and reservoirs have affected the incidence of HFRS in Huludao City, located in northeastern China. Climate affects HFRS incidence mainly through the effect on reservoir in the study area. HFRS prevention and control should give more consideration to rodent control and climate variations.

  8. Imaging the complex geometry of a magma reservoir using FEM-based linear inverse modeling of InSAR data: application to Rabaul Caldera, Papua New Guinea (United States)

    Ronchin, Erika; Masterlark, Timothy; Dawson, John; Saunders, Steve; Martì Molist, Joan


    We test an innovative inversion scheme using Green's functions from an array of pressure sources embedded in finite-element method (FEM) models to image, without assuming an a-priori geometry, the composite and complex shape of a volcano deformation source. We invert interferometric synthetic aperture radar (InSAR) data to estimate the pressurization and shape of the magma reservoir of Rabaul caldera, Papua New Guinea. The results image the extended shallow magmatic system responsible for a broad and long-term subsidence of the caldera between 2007 February and 2010 December. Elastic FEM solutions are integrated into the regularized linear inversion of InSAR data of volcano surface displacements in order to obtain a 3-D image of the source of deformation. The Green's function matrix is constructed from a library of forward line-of-sight displacement solutions for a grid of cubic elementary deformation sources. Each source is sequentially generated by removing the corresponding cubic elements from a common meshed domain and simulating the injection of a fluid mass flux into the cavity, which results in a pressurization and volumetric change of the fluid-filled cavity. The use of a single mesh for the generation of all FEM models avoids the computationally expensive process of non-linear inversion and remeshing a variable geometry domain. Without assuming an a-priori source geometry other than the configuration of the 3-D grid that generates the library of Green's functions, the geodetic data dictate the geometry of the magma reservoir as a 3-D distribution of pressure (or flux of magma) within the source array. The inversion of InSAR data of Rabaul caldera shows a distribution of interconnected sources forming an amorphous, shallow magmatic system elongated under two opposite sides of the caldera. The marginal areas at the sides of the imaged magmatic system are the possible feeding reservoirs of the ongoing Tavurvur volcano eruption of andesitic products on the

  9. Modeling surface energy fluxes and thermal dynamics of a seasonally ice-covered hydroelectric reservoir. (United States)

    Wang, Weifeng; Roulet, Nigel T; Strachan, Ian B; Tremblay, Alain


    The thermal dynamics of human created northern reservoirs (e.g., water temperatures and ice cover dynamics) influence carbon processing and air-water gas exchange. Here, we developed a process-based one-dimensional model (Snow, Ice, WAater, and Sediment: SIWAS) to simulate a full year's surface energy fluxes and thermal dynamics for a moderately large (>500km(2)) boreal hydroelectric reservoir in northern Quebec, Canada. There is a lack of climate and weather data for most of the Canadian boreal so we designed SIWAS with a minimum of inputs and with a daily time step. The modeled surface energy fluxes were consistent with six years of observations from eddy covariance measurements taken in the middle of the reservoir. The simulated water temperature profiles agreed well with observations from over 100 sites across the reservoir. The model successfully captured the observed annual trend of ice cover timing, although the model overestimated the length of ice cover period (15days). Sensitivity analysis revealed that air temperature significantly affects the ice cover duration, water and sediment temperatures, but that dissolved organic carbon concentrations have little effect on the heat fluxes, and water and sediment temperatures. We conclude that the SIWAS model is capable of simulating surface energy fluxes and thermal dynamics for boreal reservoirs in regions where high temporal resolution climate data are not available. SIWAS is suitable for integration into biogeochemical models for simulating a reservoir's carbon cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Data Integration for the Generation of High Resolution Reservoir Models

    Energy Technology Data Exchange (ETDEWEB)

    Albert Reynolds; Dean Oliver; Gaoming Li; Yong Zhao; Chaohui Che; Kai Zhang; Yannong Dong; Chinedu Abgalaka; Mei Han


    The goal of this three-year project was to develop a theoretical basis and practical technology for the integration of geologic, production and time-lapse seismic data in a way that makes best use of the information for reservoir description and reservoir performance predictions. The methodology and practical tools for data integration that were developed in this research project have been incorporated into computational algorithms that are feasible for large scale reservoir simulation models. As the integration of production and seismic data require calibrating geological/geostatistical models to these data sets, the main computational tool is an automatic history matching algorithm. The following specific goals were accomplished during this research. (1) We developed algorithms for calibrating the location of the boundaries of geologic facies and the distribution of rock properties so that production and time-lapse seismic data are honored. (2) We developed and implemented specific procedures for conditioning reservoir models to time-lapse seismic data. (3) We developed and implemented algorithms for the characterization of measurement errors which are needed to determine the relative weights of data when conditioning reservoir models to production and time-lapse seismic data by automatic history matching. (4) We developed and implemented algorithms for the adjustment of relative permeability curves during the history matching process. (5) We developed algorithms for production optimization which accounts for geological uncertainty within the context of closed-loop reservoir management. (6) To ensure the research results will lead to practical public tools for independent oil companies, as part of the project we built a graphical user interface for the reservoir simulator and history matching software using Visual Basic.

  11. Static reservoir modeling of the Bahariya reservoirs for the oilfields development in South Umbarka area, Western Desert, Egypt (United States)

    Abdel-Fattah, Mohamed I.; Metwalli, Farouk I.; Mesilhi, El Sayed I.


    3D static reservoir modeling of the Bahariya reservoirs using seismic and wells data can be a relevant part of an overall strategy for the oilfields development in South Umbarka area (Western Desert, Egypt). The seismic data is used to build the 3D grid, including fault sticks for the fault modeling, and horizon interpretations and surfaces for horizon modeling. The 3D grid is the digital representation of the structural geology of Bahariya Formation. When we got a reasonably accurate representation, we fill the 3D grid with facies and petrophysical properties to simulate it, to gain a more precise understanding of the reservoir properties behavior. Sequential Indicator Simulation (SIS) and Sequential Gaussian Simulation (SGS) techniques are the stochastic algorithms used to spatially distribute discrete reservoir properties (facies) and continuous reservoir properties (shale volume, porosity, and water saturation) respectively within the created 3D grid throughout property modeling. The structural model of Bahariya Formation exhibits the trapping mechanism which is a fault assisted anticlinal closure trending NW-SE. This major fault breaks the reservoirs into two major fault blocks (North Block and South Block). Petrophysical models classified Lower Bahariya reservoir as a moderate to good reservoir rather than Upper Bahariya reservoir in terms of facies, with good porosity and permeability, low water saturation, and moderate net to gross. The Original Oil In Place (OOIP) values of modeled Bahariya reservoirs show hydrocarbon accumulation in economic quantity, considering the high structural dips at the central part of South Umbarka area. The powerful of 3D static modeling technique has provided a considerable insight into the future prediction of Bahariya reservoirs performance and production behavior.

  12. A snow and ice melt seasonal prediction modelling system for Alpine reservoirs (United States)

    Förster, Kristian; Oesterle, Felix; Hanzer, Florian; Schöber, Johannes; Huttenlau, Matthias; Strasser, Ulrich


    The timing and the volume of snow and ice melt in Alpine catchments are crucial for management operations of reservoirs and hydropower generation. Moreover, a sustainable reservoir operation through reservoir storage and flow control as part of flood risk management is important for downstream communities. Forecast systems typically provide predictions for a few days in advance. Reservoir operators would benefit if lead times could be extended in order to optimise the reservoir management. Current seasonal prediction products such as the NCEP (National Centers for Environmental Prediction) Climate Forecast System version 2 (CFSv2) enable seasonal forecasts up to nine months in advance, with of course decreasing accuracy as lead-time increases. We present a coupled seasonal prediction modelling system that runs at monthly time steps for a small catchment in the Austrian Alps (Gepatschalm). Meteorological forecasts are obtained from the CFSv2 model. Subsequently, these data are downscaled to the Alpine Water balance And Runoff Estimation model AWARE running at monthly time step. Initial conditions are obtained using the physically based, hydro-climatological snow model AMUNDSEN that predicts hourly fields of snow water equivalent and snowmelt at a regular grid with 50 m spacing. Reservoir inflow is calculated taking into account various runs of the CFSv2 model. These simulations are compared with observed inflow volumes for the melting and accumulation period 2015.

  13. Modeling the hydrological behavior of a karst spring using a nonlinear reservoir-pipe model (United States)

    Chang, Yong; Wu, Jichun; Jiang, Guanghui


    Karst aquifers are commonly simulated based on conceptual models. However, most karst conceptual models hardly consider the function of turbulent conduits. The conduit network acts as the main draining passage of the karst aquifer and may also have a strong influence on the hydrological processes, especially during storm events. A conceptual model with a nonlinear reservoir and a turbulent pipe (representing the conduit system) in series is proposed according to the basic structure of a typical karst aquifer, to simulate the karst spring. The model indicates whether the spring discharge is influenced by the turbulent pipe; this not only depends on the parameters of the nonlinear reservoir and turbulent pipe, but also depends on the volume of spring discharge itself. Even though the spring discharge is strongly influenced by the turbulent pipe during the storm, this influence decreases with the rainfall intensity and volume of spring discharge. In addition, an `evapotranspiration store' is used to consider the moisture loss through evapotranspiration and to calculate the effective rainfall on the proposed model. Then, this simple conceptual model is used to simulate a karst spring (named S31) near Guilin city, China, with satisfactory results, especially with respect to discharge peaks and recession curves of the spring under storm conditions. The proposed model is also compared with the Vensim model of similar complexity, which has been applied to the same spring catchment. The comparison shows the superiority and better performance of the nonlinear reservoir-pipe model.

  14. Open System Models of Isotopic Evolution in Earth's Silicate Reservoirs (United States)

    Kumari, S.; Paul, D.; Stracke, A.


    The present-day elemental and isotopic composition of Earth's terrestrial reservoirs can be used as geochemical constraints to study evolution of the crust-mantle system. A flexible open system evolutionary model of the Earth, comprising continental crust (CC), upper depleted mantle (UM) -source of mid-ocean ridge basalts (MORB), and lower mantle (LM) reservoir with an isolated reservoir-source of ocean island basalts (OIB), and incorporating key radioactive isotope systematics (Rb-Sr, Sm-Nd, and U-Th-Pb), is solved numerically at 1 Ma time step for 4.55 Ga, the age of the Earth. The best possible model-derived solution is the one that produces the present-day concentrations as well as isotopic ratios in terrestrial reservoirs, constrained from published data. Various crustal growth scenarios (continuous versus episodic and early versus late) and its effect on the evolution of isotope systematics in the silicate reservoirs have been evaluated. Modeling results suggest that a whole mantle that is compositionally similar to the present-day MORB source is not consistent with observational constraints. However, a heterogeneous mantle model, in which the present-day UM is 60% of the total mantle mass and a lower non-chondritic mantle, reproduces the estimated isotopic ratios and abundances in Earth's silicate reservoirs. Our results shows that mode of crustal growth strongly affects isotopic evolution of silicate Earth; only an exponential crustal growth pattern satisfactorily explains the chemical and isotopic evolution of the crust-mantle system. One notable feature of successful models is an early depletion of incompatible elements (and a rapid decrease in Th/U ratio, κ, in the UM) by the initial 500 Ma, as a result of early formation of continental crust. Assuming a slightly younger age of the Earth (4.45 Ga), our model better satisfies the Pb-isotope systematics in the respective silicate reservoirs, particularly in the UM, and explains the origin of several OIBs

  15. Ensemble-Based Data Assimilation in Reservoir Characterization: A Review

    Directory of Open Access Journals (Sweden)

    Seungpil Jung


    Full Text Available This paper presents a review of ensemble-based data assimilation for strongly nonlinear problems on the characterization of heterogeneous reservoirs with different production histories. It concentrates on ensemble Kalman filter (EnKF and ensemble smoother (ES as representative frameworks, discusses their pros and cons, and investigates recent progress to overcome their drawbacks. The typical weaknesses of ensemble-based methods are non-Gaussian parameters, improper prior ensembles and finite population size. Three categorized approaches, to mitigate these limitations, are reviewed with recent accomplishments; improvement of Kalman gains, add-on of transformation functions, and independent evaluation of observed data. The data assimilation in heterogeneous reservoirs, applying the improved ensemble methods, is discussed on predicting unknown dynamic data in reservoir characterization.

  16. Optimal Complexity in Reservoir Modeling of an Eolian Sandstone for Carbon Sequestration Simulation (United States)

    Li, S.; Zhang, Y.; Zhang, X.


    Geologic Carbon Sequestration (GCS) is a proposed means to reduce atmospheric concentrations of carbon dioxide (CO2). Given the type, abundance, and accessibility of geologic characterization data, different reservoir modeling techniques can be utilized to build a site model. However, petrophysical properties of a formation can be modeled with simplifying assumptions or with greater detail, the later requiring sophisticated modeling techniques supported by additional data. In GCS where cost of data collection needs to be minimized, will detailed (expensive) reservoir modeling efforts lead to much improved model predictive capability? Is there an optimal level of detail in the reservoir model sufficient for prediction purposes? In Wyoming, GCS into the Nugget Sandstone is proposed. This formation is a deep (>13,000 ft) saline aquifer deposited in eolian environments, exhibiting permeability heterogeneity at multiple scales. Based on a set of characterization data, this study utilizes multiple, increasingly complex reservoir modeling techniques to create a suite of reservoir models including a multiscale, non-stationary heterogeneous model conditioned to a soft depositional model (i.e., training image), a geostatistical (stationary) facies model without conditioning, a geostatistical (stationary) petrophysical model ignoring facies, and finally, a homogeneous model ignoring all aspects of sub-aquifer heterogeneity. All models are built at regional scale with a high-resolution grid (245,133,140 cells) from which a set of local simulation models (448,000 grid cells) are extracted. These are considered alternative conceptual models with which pilot-scale CO2 injection is simulated (50 year duration at 1/10 Mt per year). A computationally efficient sensitivity analysis (SA) is conducted for all models based on a Plackett-Burman Design of Experiment metric. The SA systematically varies key parameters of the models (e.g., variogram structure and principal axes of intrinsic

  17. Fast Multiscale Reservoir Simulations using POD-DEIM Model Reduction

    KAUST Repository

    Ghasemi, Mohammadreza


    In this paper, we present a global-local model reduction for fast multiscale reservoir simulations in highly heterogeneous porous media with applications to optimization and history matching. Our proposed approach identifies a low dimensional structure of the solution space. We introduce an auxiliary variable (the velocity field) in our model reduction that allows achieving a high degree of model reduction. The latter is due to the fact that the velocity field is conservative for any low-order reduced model in our framework. Because a typical global model reduction based on POD is a Galerkin finite element method, and thus it can not guarantee local mass conservation. This can be observed in numerical simulations that use finite volume based approaches. Discrete Empirical Interpolation Method (DEIM) is used to approximate the nonlinear functions of fine-grid functions in Newton iterations. This approach allows achieving the computational cost that is independent of the fine grid dimension. POD snapshots are inexpensively computed using local model reduction techniques based on Generalized Multiscale Finite Element Method (GMsFEM) which provides (1) a hierarchical approximation of snapshot vectors (2) adaptive computations by using coarse grids (3) inexpensive global POD operations in a small dimensional spaces on a coarse grid. By balancing the errors of the global and local reduced-order models, our new methodology can provide an error bound in simulations. Our numerical results, utilizing a two-phase immiscible flow, show a substantial speed-up and we compare our results to the standard POD-DEIM in finite volume setup.

  18. Remotely Sensed Based Lake/Reservoir Routing in Congo River Basin (United States)

    Raoufi, R.; Beighley, E.; Lee, H.


    Lake and reservoir dynamics can influence local to regional water cycles but are often not well represented in hydrologic models. One challenge that limits their inclusion in models is the need for detailed storage-discharge behavior that can be further complicated in reservoirs where specific operation rules are employed. Here, the Hillslope River Routing (HRR) model is combined with a remotely sensed based Reservoir Routing (RR) method and applied to the Congo River Basin. Given that topographic data are often continuous over the entire terrestrial surface (i.e., does not differentiate between land and open water), the HRR-RR model integrates topographic derived river networks and catchment boundaries (e.g., HydroSHEDs) with water boundary extents (e.g., Global Lakes and Wetlands Database) to develop the computational framework. The catchments bordering lakes and reservoirs are partitioned into water and land portions, where representative flowpath characteristics are determined and vertical water balance and lateral routings is performed separately on each partition based on applicable process models (e.g., open water evaporation vs. evapotranspiration). To enable reservoir routing, remotely sensed water surface elevations and extents are combined to determine the storage change time series. Based on the available time series, representative storage change patterns are determined. Lake/reservoir routing is performed by combining inflows from the HRR-RR model and the representative storage change patterns to determine outflows. In this study, a suite of storage change patterns derived from remotely sensed measurements are determined representative patterns for wet, dry and average conditions. The HRR-RR model dynamically selects and uses the optimal storage change pattern for the routing process based on these hydrologic conditions. The HRR-RR model results are presented to highlight the importance of lake attenuation/routing in the Congo Basin.

  19. Understanding the Impact of Reservoir Operations on Temperature Hydrodynamics at Shasta Lake through 2D and 3D Modeling (United States)

    Hallnan, R.; Busby, D.; Saito, L.; Daniels, M.; Danner, E.; Tyler, S.


    Stress on California's salmon fisheries as a result of recent drought highlights a need for effective temperature management in the Sacramento River. Cool temperatures are required for Chinook salmon spawning and rearing. At Shasta Dam in northern California, managers use selective reservoir withdrawals to meet downstream temperature thresholds set for Chinook salmon populations. Shasta Dam is equipped with a temperature control device (TCD) that allows for water withdrawals at different reservoir depths. A two-dimensional CE-QUAL-W2 (W2) model of Shasta Reservoir has been used to understand the impacts of TCD operations on reservoir and discharge dynamics at Shasta. W2 models the entire reservoir based on hydrologic and meteorological inputs, and therefore can be used to simulate various hydroclimatic conditions, reservoir operations, and resulting reservoir conditions. A limitation of the W2 model is that it only captures reservoir conditions in two dimensions (length and depth), which may not represent local hydrodynamic effects of TCD operations that could affect simulation of discharge temperatures. Thus, a three-dimensional (3D) model of the TCD and the immediately adjacent upstream reservoir has been constructed using computational fluid dynamics (CFD) in ANSYS Fluent. This 3D model provides additional insight into the mixing effects of different TCD operations, and resulting reservoir outflow temperatures. The drought conditions of 2015 provide a valuable dataset for assessing the efficacy of modeling the temperature profile of Shasta Reservoir under very low inflow volumes, so the W2 and CFD models are compared for model performance in late 2015. To assist with this assessment, data from a distributed temperature sensing (DTS) deployment at Shasta Lake since August 2015 are used. This presentation describes model results from both W2 as well as the CFD model runs during late 2015, and discuss their efficacy for modeling drought conditions.

  20. Design and modeling of reservoir operation strategies for sediment management

    NARCIS (Netherlands)

    Sloff, C.J.; Omer, A.Y.A.; Heynert, K.V.; Mohamed, Y.A.


    Appropriate operation strategies that allow for sediment flushing and sluicing (sediment routing) can reduce rapid storage losses of (hydropower and water-supply) reservoirs. In this study we have shown, using field observations and computational models, that the efficiency of these operations

  1. Modeling Tools for Drilling, Reservoir Navigation, and Formation Evaluation

    Directory of Open Access Journals (Sweden)

    Sushant Dutta


    Full Text Available The oil and gas industry routinely uses borehole tools for measuring or logging rock and fluid properties of geologic formations to locate hydrocarbons and maximize their production. Pore fluids in formations of interest are usually hydrocarbons or water. Resistivity logging is based on the fact that oil and gas have a substantially higher resistivity than water. The first resistivity log was acquired in 1927, and resistivity logging is still the foremost measurement used for drilling and evaluation. However, the acquisition and interpretation of resistivity logging data has grown in complexity over the years. Resistivity logging tools operate in a wide range of frequencies (from DC to GHz and encounter extremely high (several orders of magnitude conductivity contrast between the metal mandrel of the tool and the geologic formation. Typical challenges include arbitrary angles of tool inclination, full tensor electric and magnetic field measurements, and interpretation of complicated anisotropic formation properties. These challenges combine to form some of the most intractable computational electromagnetic problems in the world. Reliable, fast, and convenient numerical modeling of logging tool responses is critical for tool design, sensor optimization, virtual prototyping, and log data inversion. This spectrum of applications necessitates both depth and breadth of modeling software—from blazing fast one-dimensional (1-D modeling codes to advanced threedimensional (3-D modeling software, and from in-house developed codes to commercial modeling packages. In this paper, with the help of several examples, we demonstrate our approach for using different modeling software to address different drilling and evaluation applications. In one example, fast 1-D modeling provides proactive geosteering information from a deep-reading azimuthal propagation resistivity measurement. In the second example, a 3-D model with multiple vertical resistive fractures

  2. Petroacoustic Modelling of Heterolithic Sandstone Reservoirs: A Novel Approach to Gassmann Modelling Incorporating Sedimentological Constraints and NMR Porosity data (United States)

    Matthews, S.; Lovell, M.; Davies, S. J.; Pritchard, T.; Sirju, C.; Abdelkarim, A.


    Heterolithic or 'shaly' sandstone reservoirs constitute a significant proportion of hydrocarbon resources. Petroacoustic models (a combination of petrophysics and rock physics) enhance the ability to extract reservoir properties from seismic data, providing a connection between seismic and fine-scale rock properties. By incorporating sedimentological observations these models can be better constrained and improved. Petroacoustic modelling is complicated by the unpredictable effects of clay minerals and clay-sized particles on geophysical properties. Such effects are responsible for erroneous results when models developed for "clean" reservoirs - such as Gassmann's equation (Gassmann, 1951) - are applied to heterolithic sandstone reservoirs. Gassmann's equation is arguably the most popular petroacoustic modelling technique in the hydrocarbon industry and is used to model elastic effects of changing reservoir fluid saturations. Successful implementation of Gassmann's equation requires well-constrained drained rock frame properties, which in heterolithic sandstones are heavily influenced by reservoir sedimentology, particularly clay distribution. The prevalent approach to categorising clay distribution is based on the Thomas - Stieber model (Thomas & Stieber, 1975), this approach is inconsistent with current understanding of 'shaly sand' sedimentology and omits properties such as sorting and grain size. The novel approach presented here demonstrates that characterising reservoir sedimentology constitutes an important modelling phase. As well as incorporating sedimentological constraints, this novel approach also aims to improve drained frame moduli estimates through more careful consideration of Gassmann's model assumptions and limitations. A key assumption of Gassmann's equation is a pore space in total communication with movable fluids. This assumption is often violated by conventional applications in heterolithic sandstone reservoirs where effective porosity, which

  3. Modeling of Salinity Effects on Waterflooding of Petroleum Reservoirs

    DEFF Research Database (Denmark)

    Alexeev, Artem

    Smart Water flooding is an enhanced oil recovery (EOR) technique that is based on the injection of chemistry-optimized water with changed ionic composition and salinity into petroleum reservoirs. Extensive research that has been carried out over the past two decades has clearly demonstrated...

  4. Effects of gas types and models on optimized gas fuelling station reservoir's pressure

    Directory of Open Access Journals (Sweden)

    M. Farzaneh-Gord


    Full Text Available There are similar algorithms and infrastructure for storing gas fuels at CNG (Compressed Natural Gas and CHG (Compressed Hydrogen Gas fuelling stations. In these stations, the fuels are usually stored in the cascade storage system to utilize the stations more efficiently. The cascade storage system generally divides into three reservoirs, commonly termed low, medium and high-pressure reservoirs. The pressures within these reservoirs have huge effects on performance of the stations. In the current study, based on the laws of thermodynamics, conservation of mass and real/ideal gas assumptions, a theoretical analysis has been constructed to study the effects of gas types and models on performance of the stations. It is intended to determine the optimized reservoir pressures for these stations. The results reveal that the optimized pressure differs between the gas types. For ideal and real gas models in both stations (CNG and CHG, the optimized non-dimensional low pressure-reservoir pressure is found to be 0.22. The optimized non-dimensional medium-pressure reservoir pressure is the same for the stations, and equal to 0.58.

  5. A stochastic conflict resolution model for water quality management in reservoir river systems (United States)

    Kerachian, Reza; Karamouz, Mohammad


    In this paper, optimal operating rules for water quality management in reservoir-river systems are developed using a methodology combining a water quality simulation model and a stochastic GA-based conflict resolution technique. As different decision-makers and stakeholders are involved in the water quality management in reservoir-river systems, a new stochastic form of the Nash bargaining theory is used to resolve the existing conflict of interests related to water supply to different demands, allocated water quality and waste load allocation in downstream river. The expected value of the Nash product is considered as the objective function of the model which can incorporate the inherent uncertainty of reservoir inflow. A water quality simulation model is also developed to simulate the thermal stratification cycle in the reservoir, the quality of releases from different outlets as well as the temporal and spatial variation of the pollutants in the downstream river. In this study, a Varying Chromosome Length Genetic Algorithm (VLGA), which has computational advantages comparing to other alternative models, is used. VLGA provides a good initial solution for Simple Genetic Algorithms and comparing to Stochastic Dynamic Programming (SDP) reduces the number of state transitions checked in each stage. The proposed model, which is called Stochastic Varying Chromosome Length Genetic Algorithm with water Quality constraints (SVLGAQ), is applied to the Ghomrud Reservoir-River system in the central part of Iran. The results show, the proposed model for reservoir operation and waste load allocation can reduce the salinity of the allocated water demands as well as the salinity build-up in the reservoir.

  6. Incorporating teleconnection information into reservoir operating policies using Stochastic Dynamic Programming and a Hidden Markov Model (United States)

    Turner, Sean; Galelli, Stefano; Wilcox, Karen


    Water reservoir systems are often affected by recurring large-scale ocean-atmospheric anomalies, known as teleconnections, that cause prolonged periods of climatological drought. Accurate forecasts of these events -- at lead times in the order of weeks and months -- may enable reservoir operators to take more effective release decisions to improve the performance of their systems. In practice this might mean a more reliable water supply system, a more profitable hydropower plant or a more sustainable environmental release policy. To this end, climate indices, which represent the oscillation of the ocean-atmospheric system, might be gainfully employed within reservoir operating models that adapt the reservoir operation as a function of the climate condition. This study develops a Stochastic Dynamic Programming (SDP) approach that can incorporate climate indices using a Hidden Markov Model. The model simulates the climatic regime as a hidden state following a Markov chain, with the state transitions driven by variation in climatic indices, such as the Southern Oscillation Index. Time series analysis of recorded streamflow data reveals the parameters of separate autoregressive models that describe the inflow to the reservoir under three representative climate states ("normal", "wet", "dry"). These models then define inflow transition probabilities for use in a classic SDP approach. The key advantage of the Hidden Markov Model is that it allows conditioning the operating policy not only on the reservoir storage and the antecedent inflow, but also on the climate condition, thus potentially allowing adaptability to a broader range of climate conditions. In practice, the reservoir operator would effect a water release tailored to a specific climate state based on available teleconnection data and forecasts. The approach is demonstrated on the operation of a realistic, stylised water reservoir with carry-over capacity in South-East Australia. Here teleconnections relating

  7. Modeling of CO2 migration injected in Weyburn oil reservoir

    International Nuclear Information System (INIS)

    Zhou Wei; Stenhouse, M.J.; Arthur, R.


    Injecting CO 2 into oil and gas field is a way to enhance oil recovery (EOR) as well as mitigate global warming effect by permanently storing the greenhouse gas into underground. This paper details the models and results of simulating the long-term migration of CO 2 injected into the Weyburn field for both Enhanced Oil Recovery operations and CO 2 sequestration. A System Model was established to define the spatial and temporal extents of the analysis. The Base Scenario was developed to identify key processes, features, and events (FEPs) for the expected evolution of the storage system. A compositional reservoir simulator with equations-of-states (EOS) was used as the modeling tool in order to simulate multiphase, multi-component flow and transport coupled with CO 2 mass partitioning into oil, gas, and water phases. We apply a deterministic treatment to CO 2 migration in the geosphere (natural pathways), whereas the variability of abandoned wells (man-made pathways) necessitates a stochastic treatment. The simulation result was then used to carry out consequence analysis to the local environment. (authors)

  8. Local Refinement of the Super Element Model of Oil Reservoir

    Directory of Open Access Journals (Sweden)

    A.B. Mazo


    Full Text Available In this paper, we propose a two-stage method for petroleum reservoir simulation. The method uses two models with different degrees of detailing to describe hydrodynamic processes of different space-time scales. At the first stage, the global dynamics of the energy state of the deposit and reserves is modeled (characteristic scale of such changes is km / year. The two-phase flow equations in the model of global dynamics operate with smooth averaged pressure and saturation fields, and they are solved numerically on a large computational grid of super-elements with a characteristic cell size of 200-500 m. The tensor coefficients of the super-element model are calculated using special procedures of upscaling of absolute and relative phase permeabilities. At the second stage, a local refinement of the super-element model is constructed for calculating small-scale processes (with a scale of m / day, which take place, for example, during various geological and technical measures aimed at increasing the oil recovery of a reservoir. Then we solve the two-phase flow problem in the selected area of the measure exposure on a detailed three-dimensional grid, which resolves the geological structure of the reservoir, and with a time step sufficient for describing fast-flowing processes. The initial and boundary conditions of the local problem are formulated on the basis of the super-element solution. This approach allows us to reduce the computational costs in order to solve the problems of designing and monitoring the oil reservoir. To demonstrate the proposed approach, we give an example of the two-stage modeling of the development of a layered reservoir with a local refinement of the model during the isolation of a water-saturated high-permeability interlayer. We show a good compliance between the locally refined solution of the super-element model in the area of measure exposure and the results of numerical modeling of the whole history of reservoir

  9. An Analysis Model for Water Cone Subsidence in Bottom Water Drive Reservoirs (United States)

    Wang, Jianjun; Xu, Hui; Wu, Shucheng; Yang, Chao; Kong, lingxiao; Zeng, Baoquan; Xu, Haixia; Qu, Tailai


    Water coning in bottom water drive reservoirs, which will result in earlier water breakthrough, rapid increase in water cut and low recovery level, has drawn tremendous attention in petroleum engineering field. As one simple and effective method to inhibit bottom water coning, shut-in coning control is usually preferred in oilfield to control the water cone and furthermore to enhance economic performance. However, most of the water coning researchers just have been done on investigation of the coning behavior as it grows up, the reported studies for water cone subsidence are very scarce. The goal of this work is to present an analytical model for water cone subsidence to analyze the subsidence of water cone when the well shut in. Based on Dupuit critical oil production rate formula, an analytical model is developed to estimate the initial water cone shape at the point of critical drawdown. Then, with the initial water cone shape equation, we propose an analysis model for water cone subsidence in bottom water reservoir reservoirs. Model analysis and several sensitivity studies are conducted. This work presents accurate and fast analytical model to perform the water cone subsidence in bottom water drive reservoirs. To consider the recent interests in development of bottom drive reservoirs, our approach provides a promising technique for better understanding the subsidence of water cone.

  10. A Step Forward to Closing the Loop between Static and Dynamic Reservoir Modeling

    Directory of Open Access Journals (Sweden)

    Cancelliere M.


    Full Text Available The current trend for history matching is to find multiple calibrated models instead of a single set of model parameters that match the historical data. The advantage of several current workflows involving assisted history matching techniques, particularly those based on heuristic optimizers or direct search, is that they lead to a number of calibrated models that partially address the problem of the non-uniqueness of the solutions. The importance of achieving multiple solutions is that calibrated models can be used for a true quantification of the uncertainty affecting the production forecasts, which represent the basis for technical and economic risk analysis. In this paper, the importance of incorporating the geological uncertainties in a reservoir study is demonstrated. A workflow, which includes the analysis of the uncertainty associated with the facies distribution for a fluvial depositional environment in the calibration of the numerical dynamic models and, consequently, in the production forecast, is presented. The first step in the workflow was to generate a set of facies realizations starting from different conceptual models. After facies modeling, the petrophysical properties were assigned to the simulation domains. Then, each facies realization was calibrated separately by varying permeability and porosity fields. Data assimilation techniques were used to calibrate the models in a reasonable span of time. Results showed that even the adoption of a conceptual model for facies distribution clearly representative of the reservoir internal geometry might not guarantee reliable results in terms of production forecast. Furthermore, results also showed that realizations which seem fully acceptable after calibration were not representative of the true reservoir internal configuration and provided wrong production forecasts; conversely, realizations which did not show a good fit of the production data could reliably predict the reservoir

  11. Brittleness index calculation and evaluation for CBM reservoirs based on AVO simultaneous inversion (United States)

    Wu, Haibo; Dong, Shouhua; Huang, Yaping; Wang, Haolong; Chen, Guiwu


    In this paper, a new approach is proposed for coalbed methane (CBM) reservoir brittleness index (BI) calculations. The BI, as a guide for fracture area selection, is calculated by dynamic elastic parameters (dynamic Young's modulus Ed and dynamic Poisson's ratio υd) obtained from an amplitude versus offset (AVO) simultaneous inversion. Among the three different classes of CBM reservoirs distinguished on the basis of brittleness in the theoretical part of this study, class I reservoirs with high BI values are identified as preferential target areas for fracturing. Therefore, we derive the AVO approximation equation expressed by Ed and υd first. This allows the direct inversion of the dynamic elastic parameters through the pre-stack AVO simultaneous inversion, which is based on Bayes' theorem. Thereafter, a test model with Gaussian white noise and a through-well seismic profile inversion is used to demonstrate the high reliability of the inversion parameters. Accordingly, the BI of a CBM reservoir section from the Qinshui Basin is calculated using the proposed method and a class I reservoir section detected through brittleness evaluation. From the outcome of this study, we believe the adoption of this new approach could act as a guide and reference for BI calculations and evaluations of CBM reservoirs.

  12. EOS simulation and GRNN modeling of the constant volume depletion behavior of gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Elsharkawy, A.M.; Foda, S.G. [Kuwait University, Safat (Kuwait). Petroleum Engineering Dept.


    Currently, two approaches are being used to predict the changes in retrograde gas condensate composition and estimate the pressure depletion behavior of gas condensate reservoirs. The first approach uses the equation of states whereas the second uses empirical correlations. Equations of states (EOS) are poor predictive tools for complex hydrocarbon systems. The EOS needs adjustment against phase behavior data of reservoir fluid of known composition. The empirical correlation does not involve numerous numerical computations but their accuracy is limited. This study presents two general regression neural network (GRNN) models. The first model, GRNNM1, is developed to predict dew point pressure and gas compressibility at dew point using initial composition of numerous samples while the second model, GRNNM2, is developed to predict the changes in well stream effluent composition at any stages of pressure depletion. GRNNM2 can also be used to determine the initial reservoir fluid composition using dew point pressure, gas compressibility at dew point, and reservoir temperature. These models are based on analysis of 142 sample of laboratory studies of constant volume depletion (CVD) for gas condensate systems forming a total of 1082 depletion stages. The database represents a wide range of gas condensate systems obtained worldwide. The performance of the GRNN models has been compared to simulation results of the equation of state. The study shows that the proposed general regression neural network models are accurate, valid, and reliable. These models can be used to forecast CVD data needed for many reservoir engineering calculations in case laboratory data is unavailable. The GRNN models save computer time involved in EOS calculations. The study also show that once these models are properly trained they can be used to cut expenses of frequent sampling and laborious experimental CVD tests required for gas condensate reservoirs. 55 refs., 13 figs., 6 tabs.

  13. Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemi, Ahmad [Univ. of Oklahoma, Norman, OK (United States)


    The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiple internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by our

  14. Stable large-scale CO2 storage in defiance of an energy system based on renewable energy - Modelling the impact of varying CO2 injection rates on reservoir behavior (United States)

    Bannach, Andreas; Hauer, Rene; Martin, Streibel; Stienstra, Gerard; Kühn, Michael


    The IPCC Report 2014 strengthens the need for CO2 storage as part of CCS or BECCS to reach ambitious climate goals despite growing energy demand in the future. The further expansion of renewable energy sources is a second major pillar. As it is today in Germany the weather becomes the controlling factor for electricity production by fossil fuelled power plants which lead to significant fluctuations of CO2-emissions which can be traced in injection rates if the CO2 were captured and stored. To analyse the impact of such changing injection rates on a CO2 storage reservoir. two reservoir simulation models are applied: a. An (smaller) reservoir model approved by gas storage activities for decades, to investigate the dynamic effects in the early stage of storage filling (initial aquifer displacement). b. An anticline structure big enough to accommodate a total amount of ≥ 100 Mega tons CO2 to investigate the dynamic effects for the entire operational life time of the storage under particular consideration of very high filling levels (highest aquifer compression). Therefore a reservoir model was generated. The defined yearly injection rate schedule is based on a study performed on behalf of IZ Klima (DNV GL, 2014). According to this study the exclusive consideration of a pool of coal-fired power plants causes the most intensive dynamically changing CO2 emissions and hence accounts for variations of a system which includes industry driven CO2 production. Besides short-term changes (daily & weekly cycles) seasonal influences are also taken into account. Simulation runs cover a variation of injection points (well locations at the top vs. locations at the flank of the structure) and some other largely unknown reservoir parameters as aquifer size and aquifer mobility. Simulation of a 20 year storage operation is followed by a post-operational shut-in phase which covers approximately 500 years to assess possible effects of changing injection rates on the long-term reservoir

  15. Simulation and resistivity modeling of a geothermal reservoir with waters of different salinity

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Wilt, M.; Bodvarsson, G.S.; Goldstein, N.E.


    Apparent resistivities measured by means of repetitive dipole-dipole surveys show significant changes within the Cerro Prieto reservoir. The changes are attributed to production and natural recharge. To better understand the observed geophysical phenomena a simple reservoir simulation study combined with the appropriate DC resistivity calculations to determine the expected magnitude of apparent resistivity change. We consider production from a liquid-dominated reservoir with dimensions and parameters of the Cerro Prieto A reservoir and assume lateral and vertical recharge of colder and less saline waters. Based on rather schematic one- and two-dimensional reservoir simulations, we calculate changes in formation resistivity which we then transform into changes in apparent resistivity that would be observed at the surface. Simulated changes in apparent resistivities over the production zone show increases of 10 to 20% over a 3 year period at the current rate of fluid extraction. Changes of this magnitude are not only within our ability to discern using proper field techniques, but are consistent in magnitude with some of the observed effects. However, the patterns of apparent resistivity changes in the simulated dipole-dipole pseudosection only partially resemble the observed field data. This is explained by the fact that the actual fluid recharge into the A reservoir is more complicated than assumed in our simple, schematic recharge models.

  16. Daily reservoir inflow forecasting combining QPF into ANNs model (United States)

    Zhang, Jun; Cheng, Chun-Tian; Liao, Sheng-Li; Wu, Xin-Yu; Shen, Jian-Jian


    Daily reservoir inflow predictions with lead-times of several days are essential to the operational planning and scheduling of hydroelectric power system. The demand for quantitative precipitation forecasting (QPF) is increasing in hydropower operation with the dramatic advances in the numerical weather prediction (NWP) models. This paper presents a simple and an effective algorithm for daily reservoir inflow predictions which solicits the observed precipitation, forecasted precipitation from QPF as predictors and discharges in following 1 to 6 days as predicted targets for multilayer perceptron artificial neural networks (MLP-ANNs) modeling. An improved error back-propagation algorithm with self-adaptive learning rate and self-adaptive momentum coefficient is used to make the supervised training procedure more efficient in both time saving and search optimization. Several commonly used error measures are employed to evaluate the performance of the proposed model and the results, compared with that of ARIMA model, show that the proposed model is capable of obtaining satisfactory forecasting not only in goodness of fit but also in generalization. Furthermore, the presented algorithm is integrated into a practical software system which has been severed for daily inflow predictions with lead-times varying from 1 to 6 days of more than twenty reservoirs operated by the Fujian Province Grid Company, China.

  17. Continuous updating of a coupled reservoir-seismic model using an ensemble Kalman filter technique

    Energy Technology Data Exchange (ETDEWEB)

    Skjervheim, Jan-Arild


    This work presents the development of a method based on the ensemble Kalman filter (EnKF) for continuous reservoir model updating with respect to the combination of production data, 3D seismic data and time-lapse seismic data. The reservoir-seismic model system consists of a commercial reservoir simulator coupled to existing rock physics and seismic modelling software. The EnKF provides an ideal-setting for real time updating and prediction in reservoir simulation models, and has been applied to synthetic models and real field cases from the North Sea. In the EnKF method, static parameters as the porosity and permeability, and dynamic variables, as fluid saturations and pressure, are updated in the reservoir model at each step data become available. In addition, we have updated a lithology parameter (clay ratio) which is linked to the rock physics model, and the fracture density in a synthetic fractured reservoir. In the EnKF experiments we have assimilated various types of production and seismic data. Gas oil ratio (GOR), water cut (WCT) and bottom-hole pressure (BHP) are used in the data assimilation. Furthermore, inverted seismic data, such as Poisson's ratio and acoustic impedance, and seismic waveform data have been assimilated. In reservoir applications seismic data may introduce a large amount of data in the assimilation schemes, and the computational time becomes expensive. In this project efficient EnKF schemes are used to handle such large datasets, where challenging aspects such as the inversion of a large covariance matrix and potential loss of rank are considered. Time-lapse seismic data may be difficult to assimilate since they are time difference data, i.e. data which are related to the model variable at two or more time instances. Here we have presented a general sequential Bayesian formulation which incorporates time difference data, and we show that the posterior distribution includes both a filter and a smoother solution. Further, we show

  18. Scalable and Robust BDDC Preconditioners for Reservoir and Electromagnetics Modeling

    KAUST Repository

    Zampini, S.


    The purpose of the study is to show the effectiveness of recent algorithmic advances in Balancing Domain Decomposition by Constraints (BDDC) preconditioners for the solution of elliptic PDEs with highly heterogeneous coefficients, and discretized by means of the finite element method. Applications to large linear systems generated by div- and curl- conforming finite elements discretizations commonly arising in the contexts of modelling reservoirs and electromagnetics will be presented.

  19. Modeling and Analysis of Integrated Bathymetric and Geodetic Data for Inventory Surveys of Mining Water Reservoirs (United States)

    Ochałek, Agnieszka; Lipecki, Tomasz; Jaśkowski, Wojciech; Jabłoński, Mateusz


    The significant part of the hydrography is bathymetry, which is the empirical part of it. Bathymetry is the study of underwater depth of waterways and reservoirs, and graphic presentation of measured data in form of bathymetric maps, cross-sections and three-dimensional bottom models. The bathymetric measurements are based on using Global Positioning System and devices for hydrographic measurements - an echo sounder and a side sonar scanner. In this research authors focused on introducing the case of obtaining and processing the bathymetrical data, building numerical bottom models of two post-mining reclaimed water reservoirs: Dwudniaki Lake in Wierzchosławice and flooded quarry in Zabierzów. The report includes also analysing data from still operating mining water reservoirs located in Poland to depict how bathymetry can be used in mining industry. The significant issue is an integration of bathymetrical data and geodetic data from tachymetry, terrestrial laser scanning measurements.

  20. Gradient-based methods for production optimization of oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Suwartadi, Eka


    Production optimization for water flooding in the secondary phase of oil recovery is the main topic in this thesis. The emphasis has been on numerical optimization algorithms, tested on case examples using simple hypothetical oil reservoirs. Gradientbased optimization, which utilizes adjoint-based gradient computation, is used to solve the optimization problems. The first contribution of this thesis is to address output constraint problems. These kinds of constraints are natural in production optimization. Limiting total water production and water cut at producer wells are examples of such constraints. To maintain the feasibility of an optimization solution, a Lagrangian barrier method is proposed to handle the output constraints. This method incorporates the output constraints into the objective function, thus avoiding additional computations for the constraints gradient (Jacobian) which may be detrimental to the efficiency of the adjoint method. The second contribution is the study of the use of second-order adjoint-gradient information for production optimization. In order to speedup convergence rate in the optimization, one usually uses quasi-Newton approaches such as BFGS and SR1 methods. These methods compute an approximation of the inverse of the Hessian matrix given the first-order gradient from the adjoint method. The methods may not give significant speedup if the Hessian is ill-conditioned. We have developed and implemented the Hessian matrix computation using the adjoint method. Due to high computational cost of the Newton method itself, we instead compute the Hessian-timesvector product which is used in a conjugate gradient algorithm. Finally, the last contribution of this thesis is on surrogate optimization for water flooding in the presence of the output constraints. Two kinds of model order reduction techniques are applied to build surrogate models. These are proper orthogonal decomposition (POD) and the discrete empirical interpolation method (DEIM

  1. Applications of resistivity modeling in reservoir development: examples from Balder Field, Norwegian North Sea (United States)

    Paillet, Frederick L.; Haynes, F.M.; Buretz, O.M.


    The massive Paleocene oil sands of the Balder Field are overlain by several thinly bedded Eocene sand-prone packages of variable facies and reservoir quality. Although these sands have been penetrated by numerous exploration and development wells, uncertainty remains as to their extent, distribution, and ultimate effect on reservoir performance. The section is geologically complex (thin beds, injected sands, shale clasts and laminae, and faulting), and also contains a field-wide primary gas cap. With a depletion plan involving both gas and water injection, geologic/reservoir characterization of the Eocene is critical for prudent resource management during depletion. With this goal, resistivity modeling and core-based thin bed reservoir description from the first phase of development drilling have been integrated with seismic attribute mapping. Detailed core description, core permeability and grain size distribution data delineate six facies and help in distinguishing laterally continuous massive and laminated sands from potentially non-connected injection sands and non-reservoir quality siltstones and tuffs. Volumetric assessment of the thin sand resource has been enhanced by I-D forward modeling of induction log response using a commercial resistivity modeling program, R,BAN. After defining beds and facies with core and high resolution log data, the AHF60 array induction curve response was approximated using the 6FF40 response. Because many of the beds were thinner than 6FF40 resolution, the modeling is considered to provide a lower bound on R,. However, for most beds this model-based R, is significantly higher than that provided by one-foot vertical resolution shallow resistivity data, and is thought to be the best available estimate of true formation resistivity. Sensitivities in STOOIP were assessed with multiple R, earth models which can later be tested against production results. In addition, water saturation height functions, developed in vertical wells and

  2. The HYDROMED model and its application to semi-arid Mediterranean catchments with hill reservoirs 3: Reservoir storage capacity and probability of failure model

    Directory of Open Access Journals (Sweden)

    R. Ragab


    Full Text Available This paper addresses the issue of "what reservoir storage capacity is required to maintain a yield with a given probability of failure?". It is an important issue in terms of construction and cost. HYDROMED offers a solution based on the modified Gould probability matrix method. This method has the advantage of sampling all years data without reference to the sequence and is therefore particularly suitable for catchments with patchy data. In the HYDROMED model, the probability of failure is calculated on a monthly basis. The model has been applied to the El-Gouazine catchment in Tunisia using a long rainfall record from Kairouan together with the estimated Hortonian runoff, class A pan evaporation data and estimated abstraction data. Generally, the probability of failure differed from winter to summer. Generally, the probability of failure approaches zero when the reservoir capacity is 500,000 m3. The 25% probability of failure (75% success is achieved with a reservoir capacity of 58,000 m3 in June and 95,000 m3 in January. The probability of failure for a 240,000 m3 capacity reservoir (closer to storage capacity of El-Gouazine 233,000 m3, is approximately 5% in November, December and January, 3% in March, and 1.1% in May and June. Consequently there is no high risk of El-Gouazine being unable to meet its requirements at a capacity of 233,000 m3. Subsequently the benefit, in terms of probability of failure, by increasing the reservoir volume of El-Gouazine to greater than the 250,000 m3 is not high. This is important for the design engineers and the funding organizations. However, the analysis is based on the existing water abstraction policy, absence of siltation rate data and on the assumption that the present climate will prevail during the lifetime of the reservoir. Should these conditions change, a new analysis should be carried out. Keywords: HYDROMED, reservoir, storage capacity, probability of failure, Mediterranean

  3. An environmental data base for all Hydro-Quebec reservoirs

    International Nuclear Information System (INIS)

    Demers, C.


    Hydro-Quebec has created two management positions specifically for reservoirs, namely Reservoir Ecology Advisor and Reservoir Management Advisor. To assist management decisions, a means was required of bringing together all existing environmental information for each reservoir operated by Hydro-Quebec, including storage reservoirs, auxiliary reservoirs and forebays. A relational database using Reflex software was developed on a network of Macintosh computers. The database contains five blocks of information: general information, and physical, physiochemical, biologic and socioeconomic characteristics for each reservoir. Data will be collected on over 100 sites, and the tool will form the basis for developing a medium-range study program on reservoir ecology. The program must take into account the physical, biological and socioeconomic aspects of the environment, as well as the concerns of management personnel operating the reservoirs, the local population, reservoir users, and various government departments. 2 figs

  4. Modelling of Hydropower Reservoir Variables for Energy Generation ...

    African Journals Online (AJOL)

    Efficient management of hydropower reservoir can only be realized when there is sufficient understanding of interactions existing between reservoir variables and energy generation. Reservoir inflow, storage, reservoir elevation, turbine release, net generating had, plant use coefficient, tail race level and evaporation losses ...

  5. Experiments with Interaction between the National Water Model and the Reservoir System Simulation Model: A Case Study of Russian River Basin (United States)

    Kim, J.; Johnson, L.; Cifelli, R.; Chandra, C. V.; Gochis, D.; McCreight, J. L.; Yates, D. N.; Read, L.; Flowers, T.; Cosgrove, B.


    NOAA National Water Center (NWC) in partnership with the National Centers for Environmental Prediction (NCEP), the National Center for Atmospheric Research (NCAR) and other academic partners have produced operational hydrologic predictions for the nation using a new National Water Model (NWM) that is based on the community WRF-Hydro modeling system since the summer of 2016 (Gochis et al., 2015). The NWM produces a variety of hydrologic analysis and prediction products, including gridded fields of soil moisture, snowpack, shallow groundwater levels, inundated area depths, evapotranspiration as well as estimates of river flow and velocity for approximately 2.7 million river reaches. Also included in the NWM are representations for more than 1,200 reservoirs which are linked into the national channel network defined by the USGS NHDPlusv2.0 hydrography dataset. Despite the unprecedented spatial and temporal coverage of the NWM, many known deficiencies exist, including the representation of lakes and reservoirs. This study addresses the implementation of a reservoir assimilation scheme through coupling of a reservoir simulation model to represent the influence of managed flows. We examine the use of the reservoir operations to dynamically update lake/reservoir storage volume states, characterize flow characteristics of river reaches flowing into and out of lakes and reservoirs, and incorporate enhanced reservoir operating rules for the reservoir model options within the NWM. Model experiments focus on a pilot reservoir domain-Lake Mendocino, CA, and its contributing watershed, the East Fork Russian River. This reservoir is modeled using United States Army Corps of Engineers (USACE) HEC-ResSim developed for application to examine forecast informed reservoir operations (FIRO) in the Russian River basin.

  6. Optimal model of radiocarbon residence time in exchange reservoir

    International Nuclear Information System (INIS)

    Dergachev, V.A.


    Radiocarbon content variations in the earth atmosphere were studied using a mathematical model. The so-called exchange reservoir was considered consisting of layers, and the radiocarbon exchange rate at the interfaces between these layers was supposed to be constant. The process of 14 C mixing and exchange in a dynamic system is described by a system of nonhomogeneous 1st order differential equations. The model also accounts for the change in rate of radiocarbon formation in the earth atmosphere due to cosmic and geophysical effects (solar activity, solar cycle, etc.). (J.P.)

  7. Estimating the geographic distribution of human Tanapox and potential reservoirs using ecological niche modeling. (United States)

    Monroe, Benjamin P; Nakazawa, Yoshinori J; Reynolds, Mary G; Carroll, Darin S


    Tanapox virus is a zoonotic infection that causes mild febrile illness and one to several nodular skin lesions. The disease is endemic in parts of Africa. The principal reservoir for the virus that causes Tanapox is unknown, but has been hypothesized to be a non-human primate. This study employs ecological niche modeling (ENM) to determine areas of tropical Africa suitable for the occurrence of human Tanapox and a list of hypothetical reservoirs. The resultant niche model will be a useful tool to guide medical surveillance activities in the region. This study uses the Desktop GARP software to predict regions where human Tanapox might be expected to occur based on historical human case locations and environmental data. Additional modeling of primate species, using occurrence data from museum records was performed to determine suitable disease reservoirs. The final ENM predicts a potential distribution of Tanapox over much of equatorial Africa, exceeding the borders of Kenya and Democratic Republic of Congo (DRC) where it has been historically reported. Five genera of non-human primates were found to be potential reservoir taxa. Validity testing suggests the model created here is robust (p modeling technique has several limitations and results should be interpreted with caution. This study may increase knowledge and engage further research in this neglected disease.

  8. A New Model to Predict Productivity of Multiple-Fractured Horizontal Well in Naturally Fractured Reservoirs

    Directory of Open Access Journals (Sweden)

    Junchao Wang


    Full Text Available In order to predict productivity of multiple-fractured horizontal well in fractured reservoir, flow models of reservoir and hydraulic fractures based on the volumetric source idealization are developed. The models are solved by utilizing Laplace transformation and orthogonal transformation, and flow rate of the well is calculated by coupling the two models. Compared to traditional point source functions, volumetric source function has many advantages in properties of function and programming calculation. The productivity predicting model is verified via an analytical ternary-porosity model. Moreover, a practical example of fractured horizontal well is studied to analyze the productivity and its influent factors. The result shows that flow rate of each fracture is different and inner fracture contributes least to productivity. Meanwhile, there are optimizing ranges for number, length, and conductivity of hydraulic fractures. In low-permeability reservoir, increasing surface area in contact with reservoir by increasing number and length of hydraulic fractures is the most effective method to improve the productivity.

  9. Initialising reservoir models for history matching using pre-production 3D seismic data: constraining methods and uncertainties (United States)

    Niri, Mohammad Emami; Lumley, David E.


    Integration of 3D and time-lapse 4D seismic data into reservoir modelling and history matching processes poses a significant challenge due to the frequent mismatch between the initial reservoir model, the true reservoir geology, and the pre-production (baseline) seismic data. A fundamental step of a reservoir characterisation and performance study is the preconditioning of the initial reservoir model to equally honour both the geological knowledge and seismic data. In this paper we analyse the issues that have a significant impact on the (mis)match of the initial reservoir model with well logs and inverted 3D seismic data. These issues include the constraining methods for reservoir lithofacies modelling, the sensitivity of the results to the presence of realistic resolution and noise in the seismic data, the geostatistical modelling parameters, and the uncertainties associated with quantitative incorporation of inverted seismic data in reservoir lithofacies modelling. We demonstrate that in a geostatistical lithofacies simulation process, seismic constraining methods based on seismic litho-probability curves and seismic litho-probability cubes yield the best match to the reference model, even when realistic resolution and noise is included in the dataset. In addition, our analyses show that quantitative incorporation of inverted 3D seismic data in static reservoir modelling carries a range of uncertainties and should be cautiously applied in order to minimise the risk of misinterpretation. These uncertainties are due to the limited vertical resolution of the seismic data compared to the scale of the geological heterogeneities, the fundamental instability of the inverse problem, and the non-unique elastic properties of different lithofacies types.

  10. THMC Modeling of EGS Reservoirs -- Continuum through Discontinuum Representations. Capturing Reservoir Stimulation, Evolution and Induced Seismicity

    Energy Technology Data Exchange (ETDEWEB)

    Elsworth, Derek [Pennsylvania State Univ., State College, PA (United States); Izadi, Ghazal [Pennsylvania State Univ., State College, PA (United States); Gan, Quan [Pennsylvania State Univ., State College, PA (United States); Fang, Yi [Pennsylvania State Univ., State College, PA (United States); Taron, Josh [US Geological Survey, Menlo Park, CA (United States); Sonnenthal, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    This work has investigated the roles of effective stress induced by changes in fluid pressure, temperature and chemistry in contributing to the evolution of permeability and induced seismicity in geothermal reservoirs. This work has developed continuum models [1] to represent the progress or seismicity during both stimulation [2] and production [3]. These methods have been used to resolve anomalous observations of induced seismicity at the Newberry Volcano demonstration project [4] through the application of modeling and experimentation. Later work then focuses on the occurrence of late stage seismicity induced by thermal stresses [5] including the codifying of the timing and severity of such responses [6]. Furthermore, mechanistic linkages between observed seismicity and the evolution of permeability have been developed using data from the Newberry project [7] and benchmarked against field injection experiments. Finally, discontinuum models [8] incorporating the roles of discrete fracture networks have been applied to represent stimulation and then thermal recovery for new arrangements of geothermal wells incorporating the development of flow manifolds [9] in order to increase thermal output and longevity in EGS systems.

  11. Numerical modeling of fracking fluid and methane migration through fault zones in shale gas reservoirs (United States)

    Taherdangkoo, Reza; Tatomir, Alexandru; Sauter, Martin


    Hydraulic fracturing operation in shale gas reservoir has gained growing interest over the last few years. Groundwater contamination is one of the most important environmental concerns that have emerged surrounding shale gas development (Reagan et al., 2015). The potential impacts of hydraulic fracturing could be studied through the possible pathways for subsurface migration of contaminants towards overlying aquifers (Kissinger et al., 2013; Myers, 2012). The intent of this study is to investigate, by means of numerical simulation, two failure scenarios which are based on the presence of a fault zone that penetrates the full thickness of overburden and connect shale gas reservoir to aquifer. Scenario 1 addresses the potential transport of fracturing fluid from the shale into the subsurface. This scenario was modeled with COMSOL Multiphysics software. Scenario 2 deals with the leakage of methane from the reservoir into the overburden. The numerical modeling of this scenario was implemented in DuMux (free and open-source software), discrete fracture model (DFM) simulator (Tatomir, 2012). The modeling results are used to evaluate the influence of several important parameters (reservoir pressure, aquifer-reservoir separation thickness, fault zone inclination, porosity, permeability, etc.) that could affect the fluid transport through the fault zone. Furthermore, we determined the main transport mechanisms and circumstances in which would allow frack fluid or methane migrate through the fault zone into geological layers. The results show that presence of a conductive fault could reduce the contaminant travel time and a significant contaminant leakage, under certain hydraulic conditions, is most likely to occur. Bibliography Kissinger, A., Helmig, R., Ebigbo, A., Class, H., Lange, T., Sauter, M., Heitfeld, M., Klünker, J., Jahnke, W., 2013. Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system, part 2. Environ Earth Sci 70, 3855

  12. A Novel Integrated Approach to Modelling of Depletion-Induced Change in Full Permeability Tensor of Naturally Fractured Reservoirs

    Directory of Open Access Journals (Sweden)

    Zahra Izadi


    Full Text Available More than half of all hydrocarbon reservoirs are Naturally Fractured Reservoirs (NFRs, in which production forecasting is a complicated function of fluid flow in a fracture-matrix system. Modelling of fluid flow in NFRs is challenging due to formation heterogeneity and anisotropy. Stress sensitivity and depletion effect on already-complex reservoir permeability add to the sophistication. Horizontal permeability anisotropy and stress sensitivity are often ignored or inaccurately taken into account when simulating fluid flow in NFRs. The aim of this paper is to present an integrated approach for evaluating the dynamic and true anisotropic nature of permeability in naturally fractured reservoirs. Among other features, this approach considers the effect of reservoir depletion on reservoir permeability tensor, allowing more realistic production forecasts. In this approach the NFR is discretized into grids for which an analytical model yields full permeability tensors. Then, fluid flow is modelled using the finite-element method to obtain pore-pressure distribution within the reservoir. Next, another analytical model evaluates the change in the aperture of individual fractures as a function of effective stress and rock mechanical properties. The permeability tensor of each grid is then updated based on the apertures obtained for the current time step. The integrated model proceeds according to the next prescribed time increments.

  13. On-line Optimization-Based Simulators for Fractured and Non-fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Milind D. Deo


    Oil field development is a multi-million dollar business. Reservoir simulation is often used to guide the field management and development process. Reservoir characterization and geologic modeling tools have become increasingly sophisticated. As a result the geologic models produced are complex. Most reservoirs are fractured to a certain extent. The new geologic characterization methods are making it possible to map features such as faults and fractures, field-wide. Significant progress has been made in being able to predict properties of the faults and of the fractured zones. Traditionally, finite difference methods have been employed in discretizing the domains created by geologic means. For complex geometries, finite-element methods of discretization may be more suitable. Since reservoir simulation is a mature science, some of the advances in numerical methods (linear, nonlinear solvers and parallel computing) have not been fully realized in the implementation of most of the simulators. The purpose of this project was to address some of these issues. {sm_bullet} One of the goals of this project was to develop a series of finite-element simulators to handle problems of complex geometry, including systems containing faults and fractures. {sm_bullet} The idea was to incorporate the most modern computing tools; use of modular object-oriented computer languages, the most sophisticated linear and nonlinear solvers, parallel computing methods and good visualization tools. {sm_bullet} One of the tasks of the project was also to demonstrate the construction of fractures and faults in a reservoir using the available data and to assign properties to these features. {sm_bullet} Once the reservoir model is in place, it is desirable to find the operating conditions, which would provide the best reservoir performance. This can be accomplished by utilization optimization tools and coupling them with reservoir simulation. Optimization-based reservoir simulation was one of the

  14. The influence of geological data on the reservoir modelling and history matching process

    NARCIS (Netherlands)

    De Jager, G.


    For efficient production of hydrocarbons from subsurface reservoirs it is important to understand the spatial properties of the reservoir. As there is almost always too little information on the reservoir to build a representative model directly, other techniques have been developed for generating

  15. Towards an integrated workflow for structural reservoir model updating and history matching

    NARCIS (Netherlands)

    Leeuwenburgh, O.; Peters, E.; Wilschut, F.


    A history matching workflow, as typically used for updating of petrophysical reservoir model properties, is modified to include structural parameters including the top reservoir and several fault properties: position, slope, throw and transmissibility. A simple 2D synthetic oil reservoir produced by

  16. Risk Based Reservoir Operations Using Ensemble Streamflow Predictions for Lake Mendocino in Mendocino County, California (United States)

    Delaney, C.; Mendoza, J.; Whitin, B.; Hartman, R. K.


    Ensemble Forecast Operations (EFO) is a risk based approach of reservoir flood operations that incorporates ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, each member of an ESP is individually modeled to forecast system conditions and calculate risk of reaching critical operational thresholds. Reservoir release decisions are computed which seek to manage forecasted risk to established risk tolerance levels. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to evaluate the viability of the EFO alternative to improve water supply reliability but not increase downstream flood risk. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The EFO alternative was simulated using a 26-year (1985-2010) ESP hindcast generated by the CNRFC, which approximates flow forecasts for 61 ensemble members for a 15-day horizon. Model simulation results of the EFO alternative demonstrate a 36% increase in median end of water year (September 30) storage levels over existing operations. Additionally, model results show no increase in occurrence of flows above flood stage for points downstream of Lake Mendocino. This investigation demonstrates that the EFO alternative may be a viable approach for managing Lake Mendocino for multiple purposes (water supply, flood mitigation, ecosystems) and warrants further investigation through additional modeling and analysis.

  17. An analytical thermohydraulic model for discretely fractured geothermal reservoirs (United States)

    Fox, Don B.; Koch, Donald L.; Tester, Jefferson W.


    In discretely fractured reservoirs such as those found in Enhanced/Engineered Geothermal Systems (EGS), knowledge of the fracture network is important in understanding the thermal hydraulics, i.e., how the fluid flows and the resulting temporal evolution of the subsurface temperature. The purpose of this study was to develop an analytical model of the fluid flow and heat transport in a discretely fractured network that can be used for a wide range of modeling applications and serve as an alternative analysis tool to more computationally intensive numerical codes. Given the connectivity and structure of a fracture network, the flow in the system was solved using a linear system of algebraic equations for the pressure at the nodes of the network. With the flow determined, the temperature in the fracture was solved by coupling convective heat transport in the fracture with one-dimensional heat conduction perpendicular to the fracture, employing the Green's function derived solution for a single discrete fracture. The predicted temperatures along the fracture surfaces from the analytical solution were compared to numerical simulations using the TOUGH2 reservoir code. Through two case studies, we showed the capabilities of the analytical model and explored the effect of uncertainty in the fracture apertures and network structure on thermal performance. While both sources of uncertainty independently produce large variations in production temperature, uncertainty in the network structure, whenever present, had a predominant influence on thermal performance.

  18. A new approach to integrate seismic and production data in reservoir models

    Energy Technology Data Exchange (ETDEWEB)

    Ouenes, A.; Chawathe, A.; Weiss, W. [New Mexico Tech, Socorro, NM (United States)] [and others


    A great deal of effort is devoted to reducing the uncertainties in reservoir modeling. For example, seismic properties are used to improve the characterization of interwell properties by providing porosity maps constrained to seismic impedance. Another means to reduce uncertainties is to constrain the reservoir model to production data. This paper describes a new approach where the production and seismic data are simultaneously used to reduce the uncertainties. In this new approach, the primary geologic parameter that controls reservoir properties is identified. Next, the geophysical parameter that is sensitive to the dominant geologic parameter is determined. Then the geology and geophysics are linked using analytic correlations. Unfortunately, the initial guess resulted in a reservoir model that did not match the production history. Since the time required for trial and error matching of production history is exorbitant, an automatic history matching method based on a fast optimization method was used to find the correlating parameters. This new approach was illustrated with an actual field in the Williston Basin. Upscalling problems do not arise since the scale is imposed by the size of the seismic bin (66m, 219 ft) which is the size of the simulator gridblocks.

  19. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    John Rogers


    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume

  20. Geological modeling for methane hydrate reservoir characterization in the eastern Nankai Trough, offshore Japan (United States)

    Tamaki, M.; Komatsu, Y.; Suzuki, K.; Takayama, T.; Fujii, T.


    results show that geological modeling including AT1 well data is important to reduce the uncertainty of the reservoir properties around the production test site. The geological models including AT1 well data were constructed taking into account for the lateral continuity of turbidite formations based on the well correlations. The concepts of these models are considered to be much more effective for describing reservoir continuity and heterogeneity and predicting upcoming production tests.

  1. Maximization of wave motion within a hydrocarbon reservoir for wave-based enhanced oil recovery

    KAUST Repository

    Jeong, C.


    © 2015 Elsevier B.V. We discuss a systematic methodology for investigating the feasibility of mobilizing oil droplets trapped within the pore space of a target reservoir region by optimally directing wave energy to the region of interest. The motivation stems from field and laboratory observations, which have provided sufficient evidence suggesting that wave-based reservoir stimulation could lead to economically viable oil recovery.Using controlled active surface wave sources, we first describe the mathematical framework necessary for identifying optimal wave source signals that can maximize a desired motion metric (kinetic energy, particle acceleration, etc.) at the target region of interest. We use the apparatus of partial-differential-equation (PDE)-constrained optimization to formulate the associated inverse-source problem, and deploy state-of-the-art numerical wave simulation tools to resolve numerically the associated discrete inverse problem.Numerical experiments with a synthetic subsurface model featuring a shallow reservoir show that the optimizer converges to wave source signals capable of maximizing the motion within the reservoir. The spectra of the wave sources are dominated by the amplification frequencies of the formation. We also show that wave energy could be focused within the target reservoir area, while simultaneously minimizing the disturbance to neighboring formations - a concept that can also be exploited in fracking operations.Lastly, we compare the results of our numerical experiments conducted at the reservoir scale, with results obtained from semi-analytical studies at the granular level, to conclude that, in the case of shallow targets, the optimized wave sources are likely to mobilize trapped oil droplets, and thus enhance oil recovery.

  2. Determination of water flushing characteristics and their influencing factors on the Dahuofang Reservoir in China using an improved ECOMSED model (United States)

    Zhang, Ming; Shen, Yongming


    A three-dimensional hydrodynamic model with the capability to deal with changing land water boundaries was developed based on ECOMSED in this study. The model was configured to numerically study the water flushing characteristics of Dahuofang Reservoir in China through the determination of spatially distributed residence times. The model successfully reproduced the intra-annual water level variations, as well as the temporal evolution and spatial distribution of water temperature. Through a series of numerical experiments, it can be concluded that (1) the water flushing of the reservoir is both temporally and spatially variable; and (2) inflows and withdrawals are the decisive factors influencing the water flushing characteristics. Heat fluxes are the controlling factors of the water flushing of a strong stratified reservoir. Wind has the weakest effect, but it still should be considered in determination of reservoir water flushing characteristics.

  3. Investigation of seasonal thermal flow in a real dam reservoir using 3-D numerical modeling

    Directory of Open Access Journals (Sweden)

    Üneş Fatih


    Full Text Available Investigations indicate that correct estimation of seasonal thermal stratification in a dam reservoir is very important for the dam reservoir water quality modeling and water management problems. The main aim of this study is to develop a hydrodynamics model of an actual dam reservoir in three dimensions for simulating a real dam reservoir flows for different seasons. The model is developed using nonlinear and unsteady continuity, momentum, energy and k-ε turbulence model equations. In order to include the Coriolis force effect on the flow in a dam reservoir, Coriolis force parameter is also added the model equations. Those equations are constructed using actual dimensions, shape, boundary and initial conditions of the dam and reservoir. Temperature profiles and flow visualizations are used to evaluate flow conditions in the reservoir. Reservoir flow’s process and parameters are determined all over the reservoir. The mathematical model developed is capable of simulating the flow and thermal characteristics of the reservoir system for seasonal heat exchanges. Model simulations results obtained are compared with field measurements obtained from gauging stations for flows in different seasons. The results show a good agreement with the field measurements.

  4. The element-based finite volume method applied to petroleum reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cordazzo, Jonas; Maliska, Clovis R.; Silva, Antonio F.C. da; Hurtado, Fernando S.V. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica


    In this work a numerical model for simulating petroleum reservoirs using the Element-based Finite Volume Method (EbFVM) is presented. The method employs unstructured grids using triangular and/or quadrilateral elements, such that complex reservoir geometries can be easily represented. Due to the control-volume approach, local mass conservation is enforced, permitting a direct physical interpretation of the resulting discrete equations. It is demonstrated that this method can deal with the permeability maps without averaging procedures, since this scheme assumes uniform properties inside elements, instead inside of control volumes, avoiding the need of weighting the permeability values at the control volumes interfaces. Moreover, it is easy to include the full permeability tensor in this method, which is an important issue in simulating heterogeneous and anisotropic reservoirs. Finally, a comparison among the results obtained using the scheme proposed in this work in the EbFVM framework with those obtained employing the scheme commonly used in petroleum reservoir simulation is presented. It is also shown that the scheme proposed is less susceptible to the grid orientation effect with the increasing of the mobility ratio. (author)

  5. Reconstruction of rocks petrophysical properties as input data for reservoir modeling (United States)

    Cantucci, B.; Montegrossi, G.; Lucci, F.; Quattrocchi, F.


    The worldwide increasing energy demand triggered studies focused on defining the underground energy potential even in areas previously discharged or neglected. Nowadays, geological gas storage (CO2 and/or CH4) and geothermal energy are considered strategic for low-carbon energy development. A widespread and safe application of these technologies needs an accurate characterization of the underground, in terms of geology, hydrogeology, geochemistry, and geomechanics. However, during prefeasibility study-stage, the limited number of available direct measurements of reservoirs, and the high costs of reopening closed deep wells must be taken into account. The aim of this work is to overcome these limits, proposing a new methodology to reconstruct vertical profiles, from surface to reservoir base, of: (i) thermal capacity, (ii) thermal conductivity, (iii) porosity, and (iv) permeability, through integration of well-log information, petrographic observations on inland outcropping samples, and flow and heat transport modeling. As case study to test our procedure we selected a deep structure, located in the medium Tyrrhenian Sea (Italy). Obtained results are consistent with measured data, confirming the validity of the proposed model. Notwithstanding intrinsic limitations due to manual calibration of the model with measured data, this methodology represents an useful tool for reservoir and geochemical modelers that need to define petrophysical input data for underground modeling before the well reopening.

  6. A welfare study into capture fisheries in cirata reservoir: a bio-economic model (United States)

    Anna, Z.; Hindayani, P.


    Capture fishery in inland such as reservoirs can be a source of food security and even the economy and public welfare of the surrounding community. This research was conducted on Cirata reservoir fishery in West Java, to see how far reservoir capture fishery can contribute economically in the form of resource rents. The method used is the bioeconomic model Copes, which can analyze the demand and supply functions to calculate the optimization of stakeholders’ welfare in various management regimes. The results showed that the management of capture fishery using Maximum Economic Yield regime (MEY) gave the most efficient result, where fewer inputs would produce maximum profit. In the MEY management, the producer surplus obtained is IDR 2,610.203.099, - per quarter and IDR 273.885.400,- of consumer surplus per quarter. Furthermore, researches showed that sustainable management regime policy MEY result in the government rent/surplus ofIDR 217.891,345, - per quarter with the average price of fish per kg being IDR 13.929. In open access fishery, it was shown that the producer surplus becomesIDR 0. Thus the implementation of the MEY-based instrument policy becomes a necessity for Cirata reservoir capture fishery.

  7. Parallel processing using an optical delay-based reservoir computer (United States)

    Van der Sande, Guy; Nguimdo, Romain Modeste; Verschaffelt, Guy


    Delay systems subject to delayed optical feedback have recently shown great potential in solving computationally hard tasks. By implementing a neuro-inspired computational scheme relying on the transient response to optical data injection, high processing speeds have been demonstrated. However, reservoir computing systems based on delay dynamics discussed in the literature are designed by coupling many different stand-alone components which lead to bulky, lack of long-term stability, non-monolithic systems. Here we numerically investigate the possibility of implementing reservoir computing schemes based on semiconductor ring lasers. Semiconductor ring lasers are semiconductor lasers where the laser cavity consists of a ring-shaped waveguide. SRLs are highly integrable and scalable, making them ideal candidates for key components in photonic integrated circuits. SRLs can generate light in two counterpropagating directions between which bistability has been demonstrated. We demonstrate that two independent machine learning tasks , even with different nature of inputs with different input data signals can be simultaneously computed using a single photonic nonlinear node relying on the parallelism offered by photonics. We illustrate the performance on simultaneous chaotic time series prediction and a classification of the Nonlinear Channel Equalization. We take advantage of different directional modes to process individual tasks. Each directional mode processes one individual task to mitigate possible crosstalk between the tasks. Our results indicate that prediction/classification with errors comparable to the state-of-the-art performance can be obtained even with noise despite the two tasks being computed simultaneously. We also find that a good performance is obtained for both tasks for a broad range of the parameters. The results are discussed in detail in [Nguimdo et al., IEEE Trans. Neural Netw. Learn. Syst. 26, pp. 3301-3307, 2015

  8. Optimal nonlinear information processing capacity in delay-based reservoir computers (United States)

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo


    Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.

  9. General approach to characterizing reservoir fluids for EoS models using a large PVT database

    DEFF Research Database (Denmark)

    Varzandeh, Farhad; Stenby, Erling Halfdan; Yan, Wei


    Fluid characterization is needed when applying any EoS model to reservoir fluids. It is important especially for non-cubic models such as PC-SAFT where fluid characterization is less mature. Furthermore, there is a great interest to apply non-cubic models to high pressure high temperature reservoir...

  10. Modeling Wettability Alteration using Chemical EOR Processes in Naturally Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori


    The objective of our search is to develop a mechanistic simulation tool by adapting UTCHEM to model the wettability alteration in both conventional and naturally fractured reservoirs. This will be a unique simulator that can model surfactant floods in naturally fractured reservoir with coupling of wettability effects on relative permeabilities, capillary pressure, and capillary desaturation curves. The capability of wettability alteration will help us and others to better understand and predict the oil recovery mechanisms as a function of wettability in naturally fractured reservoirs. The lack of a reliable simulator for wettability alteration means that either the concept that has already been proven to be effective in the laboratory scale may never be applied commercially to increase oil production or the process must be tested in the field by trial and error and at large expense in time and money. The objective of Task 1 is to perform a literature survey to compile published data on relative permeability, capillary pressure, dispersion, interfacial tension, and capillary desaturation curve as a function of wettability to aid in the development of petrophysical property models as a function of wettability. The new models and correlations will be tested against published data. The models will then be implemented in the compositional chemical flooding reservoir simulator, UTCHEM. The objective of Task 2 is to understand the mechanisms and develop a correlation for the degree of wettability alteration based on published data. The objective of Task 3 is to validate the models and implementation against published data and to perform 3-D field-scale simulations to evaluate the impact of uncertainties in the fracture and matrix properties on surfactant alkaline and hot water floods.

  11. Modelling of fractured reservoirs. Case of multi-scale media; Modelisation des reservoirs fractures. Cas des milieux multi-echelles

    Energy Technology Data Exchange (ETDEWEB)

    Henn, N.


    Some of the most productive oil and gas reservoirs are found in formations crossed by multi-scale fractures/faults. Among them, conductive faults may closely control reservoir performance. However, their modelling encounters numerical and physical difficulties linked with (a) the necessity to keep an explicit representation of faults through small-size grid blocks, (b) the modelling of multiphase flow exchanges between the fault and the neighbouring medium. In this thesis, we propose a physically-representative and numerically efficient modelling approach in order to incorporate sub-vertical conductive faults in single and dual-porosity simulators. To validate our approach and demonstrate its efficiency, simulation results of multiphase displacements in representative field sector models are presented. (author)

  12. Evaluation of optimal reservoir prospectivity using acoustic-impedance model inversion: A case study of an offshore field, western Niger Delta, Nigeria

    Directory of Open Access Journals (Sweden)

    Kehinde D. Oyeyemi


    Full Text Available The evaluation of economic potential of any hydrocarbon field involves the understanding of the reservoir lithofacies and porosity variations. This in turns contributes immensely towards subsequent reservoir management and field development. In this study, integrated 3D seismic data and well log data were employed to assess the quality and prospectivity of the delineated reservoirs (H1–H5 within the OPO field, western Niger Delta using a model-based seismic inversion technique. The model inversion results revealed four distinct sedimentary packages based on the subsurface acoustic impedance properties and shale contents. Low acoustic impedance model values were associated with the delineated hydrocarbon bearing units, denoting their high porosity and good quality. Application of model-based inverted velocity, density and acoustic impedance properties on the generated time slices of reservoirs also revealed a regional fault and prospects within the field. Keywords: Acoustic impedance, Reservoir characterization, Seismic inversion, Hydrocarbon exploration, Niger Delta

  13. Time-lapse seismic waveform modelling and attribute analysis using hydromechanical models for a deep reservoir undergoing depletion (United States)

    He, Y.-X.; Angus, D. A.; Blanchard, T. D.; Wang, G.-L.; Yuan, S.-Y.; Garcia, A.


    Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and

  14. Estimating the Optimal Capacity for Reservoir Dam based on Reliability Level for Meeting Demands

    Directory of Open Access Journals (Sweden)

    Mehrdad Taghian


    Full Text Available Introduction: One of the practical and classic problems in the water resource studies is estimation of the optimal reservoir capacity to satisfy demands. However, full supplying demands for total periods need a very high dam to supply demands during severe drought conditions. That means a major part of reservoir capacity and costs is only usable for a short period of the reservoir lifetime, which would be unjustified in economic analysis. Thus, in the proposed method and model, the full meeting demand is only possible for a percent time of the statistical period that is according to reliability constraint. In the general methods, although this concept apparently seems simple, there is a necessity to add binary variables for meeting or not meeting demands in the linear programming model structures. Thus, with many binary variables, solving the problem will be time consuming and difficult. Another way to solve the problem is the application of the yield model. This model includes some simpler assumptions and that is so difficult to consider details of the water resource system. The applicationof evolutionary algorithms, for the problems have many constraints, is also very complicated. Therefore, this study pursues another solution. Materials and Methods: In this study, for development and improvement the usual methods, instead of mix integer linear programming (MILP and the above methods, a simulation model including flow network linear programming is used coupled with an interface manual code in Matlab to account the reliability based on output file of the simulation model. The acre reservoir simulation program (ARSP has been utilized as a simulation model. A major advantage of the ARSP is its inherent flexibility in defining the operating policies through a penalty structure specified by the user. The ARSP utilizes network flow optimization techniques to handle a subset of general linear programming (LP problems for individual time intervals

  15. Real-time reservoir geological model updating using the hybrid EnKF and geostatistical technique

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Chen, S.; Yang, D. [Regina Univ., SK (Canada). Petroleum Technology Research Centre


    Reservoir simulation plays an important role in modern reservoir management. Multiple geological models are needed in order to analyze the uncertainty of a given reservoir development scenario. Ideally, dynamic data should be incorporated into a reservoir geological model. This can be done by using history matching and tuning the model to match the past performance of reservoir history. This study proposed an assisted history matching technique to accelerate and improve the matching process. The Ensemble Kalman Filter (EnKF) technique, which is an efficient assisted history matching method, was integrated with a conditional geostatistical simulation technique to dynamically update reservoir geological models. The updated models were constrained to dynamic data, such as reservoir pressure and fluid saturations, and approaches geologically realistic at each time step by using the EnKF technique. The new technique was successfully applied in a heterogeneous synthetic reservoir. The uncertainty of the reservoir characterization was significantly reduced. More accurate forecasts were obtained from the updated models. 3 refs., 2 figs.

  16. Improving inflow forecasting into hydropower reservoirs through a complementary modelling framework (United States)

    Gragne, A. S.; Sharma, A.; Mehrotra, R.; Alfredsen, K.


    Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water resources and benefits gained through hydropower generation. Improving hourly reservoir inflow forecasts over a 24 h lead-time is considered within the day-ahead (Elspot) market of the Nordic exchange market. We present here a new approach for issuing hourly reservoir inflow forecasts that aims to improve on existing forecasting models that are in place operationally, without needing to modify the pre-existing approach, but instead formulating an additive or complementary model that is independent and captures the structure the existing model may be missing. Besides improving forecast skills of operational models, the approach estimates the uncertainty in the complementary model structure and produces probabilistic inflow forecasts that entrain suitable information for reducing uncertainty in the decision-making processes in hydropower systems operation. The procedure presented comprises an error model added on top of an un-alterable constant parameter conceptual model, the models being demonstrated with reference to the 207 km2 Krinsvatn catchment in central Norway. The structure of the error model is established based on attributes of the residual time series from the conceptual model. Deterministic and probabilistic evaluations revealed an overall significant improvement in forecast accuracy for lead-times up to 17 h. Season based evaluations indicated that the improvement in inflow forecasts varies across seasons and inflow forecasts in autumn and spring are less successful with the 95% prediction interval bracketing less than 95% of the observations for lead-times beyond 17 h.

  17. Make use of dynamic data - a constraint based EnKF for SAGD reservoir characterization and production management

    Energy Technology Data Exchange (ETDEWEB)

    Gul, Ali; Nejadi, Siavash; Shah, Sirish L; Trivedi, Japan J [University of Alberta (Canada)


    Steam assisted gravity drainage (SAGD) is a thermal recovery process widely used in the Athabasca oil sands, the largest bitumen reservoir in the world. In order to optimize the process, an accurate characterization of the reservoir heterogeneity and identification of the potential steam barriers is necessary. The aim of this paper was to assess the potential of constraint based ensemble Kalman filter (EnKF) approach with localization to address these issues. Data records from observation, production and injection wells were used and the method was tested on a twin well SAGD process and a single well SAGD model with hybrid grids. Results showed a better characterization of the reservoir's heterogeneity and a reduction of uncertainty in the prediction of steam chamber growth. The technique developed herein provides accurate information about the steam chamber and the reservoir heterogeneity and can be used for planning and decision making of other field development strategies.

  18. Modelling of sedimentation processes inside Roseires Reservoir (Sudan) (abstract)

    NARCIS (Netherlands)

    Ali, Y.S.A.; Omer, A.Y.A.; Crosato, A.


    Roseires Reservoir is located on the Blue Nile River, in Sudan (figure 1). It is the first trap to the sediments coming from the upper catchment in Ethiopia, which suffers from high erosion and desertification problems. The reservoir lost already more than one third of its storage capacity due to

  19. Modelling of sedimentation processes inside Roseires Reservoir (Sudan) (discussion)

    NARCIS (Netherlands)

    Omer, A.Y.A.; Ali, Y.S.A.; Roelvink, J.A.; Dastgheib, A.; Paron, P.; Crosato, A.


    Discussion paper. Roseires Reservoir, located on the Blue Nile River, in Sudan, is the first trap to the sediments coming from the upper catchment in Ethiopia, which suffers from high erosion and desertification problems. The reservoir lost already more than one third of its 5 storage capacity due

  20. Modelling of sedimentation processes inside Roseires Reservoir (Sudan)

    NARCIS (Netherlands)

    Omer, A.Y.A.; Ali, Y.S.A.; Roelvink, J.A.; Dastgheib, A.; Paron, P.; Crosato, A.


    Roseires Reservoir, located on the Blue Nile River in Sudan, is the first trap to the sediments coming from the vast upper river catchment in Ethiopia, which suffers from high erosion and desertification problems. The reservoir has already lost more than one-third of its storage capacity due to

  1. BEKWAAM, a model fit for reservoir design and management

    NARCIS (Netherlands)

    Benoist, A.P.; Brinkman, A.G.; Diepenbeek, van P.M.J.A.; Waals, J.M.J.


    In the Province of Limburg in the Netherlands a new reservoir will be used for the drinking water production of 20 million m3 per annum from the year 2002. With the use of this reservoir the WML is shifting towards the use of surface water (River Meuse) as primary source instead of ground water.

  2. Modelling of water inflow to the Kolyma reservoir in historical and future climates (United States)

    Lebedeva, Liudmila; Makarieva, Olga; Ushakov, Mikhail


    Kolyma hydropower plant is the most important electricity producer in the Magadan region, North of Russian Far East. North-Eastern Russia has sparse hydrometeorological network. The density is one hydrological gauge per 10 250 km2. Assessment of water inflow to the Kolyma reservoir is complicated by mountainous relief with altitudes more than 2000 m a.s.l., continuous permafrost and sparse data. The study aimed at application of process-based hydrological model to simulate water inflow to the Kolyma reservoir in historical time period and according to projections of future climate. Watershed area of the Kolyma reservoir is 61 500 km2. Dominant landscapes are mountainous tundra and larch forest. The Hydrograph model used in the study explicitly simulates heat and water dynamics in the soil profile thus is able to reflect ground thawing/freezing and change of soil storage capacity through the summer in permafrost environments. The key model parameters are vegetation and soil properties that relate to land surface classes. They are assessed based on field observations and literature data, don't need calibration and could be transferred to other basins with similar landscapes. Model time step is daily, meteorological input are air temperature, precipitation and air moisture. Parameter set that was firstly developed in the small research basins of the Kolyma water-balance station was transferred to middle and large river basins in the region. Precipitation dependences on altitude and air temperature inversions are accounted for in the modelling routine. Successful model application to six river basins with areas from 65 to 42600 km2 within the watershed of the Kolyma reservoir suggests that simulation results for the water inflow to the reservoir are satisfactory. Modelling according to projections of future climate change showed that air temperature increase will likely lead to earlier snowmelt and lower freshet peaks but doesn't change total inflow volume. The study

  3. Improving real-time inflow forecasting into hydropower reservoirs through a complementary modelling framework (United States)

    Gragne, A. S.; Sharma, A.; Mehrotra, R.; Alfredsen, K.


    Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water resources and benefits gained through hydropower generation. Improving hourly reservoir inflow forecasts over a 24 h lead time is considered within the day-ahead (Elspot) market of the Nordic exchange market. A complementary modelling framework presents an approach for improving real-time forecasting without needing to modify the pre-existing forecasting model, but instead formulating an independent additive or complementary model that captures the structure the existing operational model may be missing. We present here the application of this principle for issuing improved hourly inflow forecasts into hydropower reservoirs over extended lead times, and the parameter estimation procedure reformulated to deal with bias, persistence and heteroscedasticity. The procedure presented comprises an error model added on top of an unalterable constant parameter conceptual model. This procedure is applied in the 207 km2 Krinsvatn catchment in central Norway. The structure of the error model is established based on attributes of the residual time series from the conceptual model. Besides improving forecast skills of operational models, the approach estimates the uncertainty in the complementary model structure and produces probabilistic inflow forecasts that entrain suitable information for reducing uncertainty in the decision-making processes in hydropower systems operation. Deterministic and probabilistic evaluations revealed an overall significant improvement in forecast accuracy for lead times up to 17 h. Evaluation of the percentage of observations bracketed in the forecasted 95 % confidence interval indicated that the degree of success in containing 95 % of the observations varies across seasons and hydrologic years.

  4. More Novel Hantaviruses and Diversifying Reservoir Hosts — Time for Development of Reservoir-Derived Cell Culture Models?

    Directory of Open Access Journals (Sweden)

    Isabella Eckerle


    Full Text Available Due to novel, improved and high-throughput detection methods, there is a plethora of newly identified viruses within the genus Hantavirus. Furthermore, reservoir host species are increasingly recognized besides representatives of the order Rodentia, now including members of the mammalian orders Soricomorpha/Eulipotyphla and Chiroptera. Despite the great interest created by emerging zoonotic viruses, there is still a gross lack of in vitro models, which reflect the exclusive host adaptation of most zoonotic viruses. The usually narrow host range and genetic diversity of hantaviruses make them an exciting candidate for studying virus-host interactions on a cellular level. To do so, well-characterized reservoir cell lines covering a wide range of bat, insectivore and rodent species are essential. Most currently available cell culture models display a heterologous virus-host relationship and are therefore only of limited value. Here, we review the recently established approaches to generate reservoir-derived cell culture models for the in vitro study of virus-host interactions. These successfully used model systems almost exclusively originate from bats and bat-borne viruses other than hantaviruses. Therefore we propose a parallel approach for research on rodent- and insectivore-borne hantaviruses, taking the generation of novel rodent and insectivore cell lines from wildlife species into account. These cell lines would be also valuable for studies on further rodent-borne viruses, such as orthopox- and arenaviruses.

  5. Climate modeling - a tool for the assessment of the paleodistribution of source and reservoir rocks

    Energy Technology Data Exchange (ETDEWEB)

    Roscher, M.; Schneider, J.W. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Geologie; Berner, U. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany). Referat Organische Geochemie/Kohlenwasserstoff-Forschung


    In an on-going project of BGR and TU Bergakademie Freiberg, numeric paleo-climate modeling is used as a tool for the assessment of the paleo-distribution of organic rich deposits as well as of reservoir rocks. This modeling approach is based on new ideas concerning the formation of the Pangea supercontinent. The new plate tectonic concept is supported by paleo- magnetic data as it fits the 95% confidence interval of published data. Six Permocarboniferous time slices (340, 320, 300, 290, 270, 255 Ma) were chosen within a first paleo-climate modeling approach as they represent the most important changes of the Late Paleozoic climate development. The digital maps have a resolution of 2.8 x 2.8 (T42), suitable for high-resolution climate modeling, using the PLASIM model. CO{sub 2} concentrations of the paleo-atmosphere and paleo-insolation values have been estimated by published methods. For the purpose of validation, quantitative model output, had to be transformed into qualitative parameters in order to be able to compare digital data with qualitative data of geologic indicators. The model output of surface temperatures and precipitation was therefore converted into climate zones. The reconstructed occurrences of geological indicators like aeolian sands, evaporites, reefs, coals, oil source rocks, tillites, phosphorites and cherts were then compared to the computed paleo-climate zones. Examples of the Permian Pangea show a very good agreement between model results and geological indicators. From the modeling approach we are able to identify climatic processes which lead to the deposition of hydrocarbon source and reservoir rocks. The regional assessment of such atmospheric processes may be used for the identification of the paleo-distribution of organic rich deposits or rock types suitable to form hydrocarbon reservoirs. (orig.)

  6. Hybrid Stochastic Forecasting Model for Management of Large Open Water Reservoir with Storage Function (United States)

    Kozel, Tomas; Stary, Milos


    The main advantage of stochastic forecasting is fan of possible value whose deterministic method of forecasting could not give us. Future development of random process is described better by stochastic then deterministic forecasting. Discharge in measurement profile could be categorized as random process. Content of article is construction and application of forecasting model for managed large open water reservoir with supply function. Model is based on neural networks (NS) and zone models, which forecasting values of average monthly flow from inputs values of average monthly flow, learned neural network and random numbers. Part of data was sorted to one moving zone. The zone is created around last measurement average monthly flow. Matrix of correlation was assembled only from data belonging to zone. The model was compiled for forecast of 1 to 12 month with using backward month flows (NS inputs) from 2 to 11 months for model construction. Data was got ridded of asymmetry with help of Box-Cox rule (Box, Cox, 1964), value r was found by optimization. In next step were data transform to standard normal distribution. The data were with monthly step and forecast is not recurring. 90 years long real flow series was used for compile of the model. First 75 years were used for calibration of model (matrix input-output relationship), last 15 years were used only for validation. Outputs of model were compared with real flow series. For comparison between real flow series (100% successfully of forecast) and forecasts, was used application to management of artificially made reservoir. Course of water reservoir management using Genetic algorithm (GE) + real flow series was compared with Fuzzy model (Fuzzy) + forecast made by Moving zone model. During evaluation process was founding the best size of zone. Results show that the highest number of input did not give the best results and ideal size of zone is in interval from 25 to 35, when course of management was almost same for

  7. Application of Stochastic Partial Differential Equations to Reservoir Property Modelling

    KAUST Repository

    Potsepaev, R.


    Existing algorithms of geostatistics for stochastic modelling of reservoir parameters require a mapping (the \\'uvt-transform\\') into the parametric space and reconstruction of a stratigraphic co-ordinate system. The parametric space can be considered to represent a pre-deformed and pre-faulted depositional environment. Existing approximations of this mapping in many cases cause significant distortions to the correlation distances. In this work we propose a coordinate free approach for modelling stochastic textures through the application of stochastic partial differential equations. By avoiding the construction of a uvt-transform and stratigraphic coordinates, one can generate realizations directly in the physical space in the presence of deformations and faults. In particular the solution of the modified Helmholtz equation driven by Gaussian white noise is a zero mean Gaussian stationary random field with exponential correlation function (in 3-D). This equation can be used to generate realizations in parametric space. In order to sample in physical space we introduce a stochastic elliptic PDE with tensor coefficients, where the tensor is related to correlation anisotropy and its variation is physical space.

  8. Modeling of Turbidity Variation in Two Reservoirs Connected by a Water Transfer Tunnel in South Korea

    Directory of Open Access Journals (Sweden)

    Jae Chung Park


    Full Text Available The Andong and Imha reservoirs in South Korea are connected by a water transfer tunnel. The turbidity of the Imha reservoir is much higher than that of the Andong reservoir. Thus, it is necessary to examine the movement of turbidity between the two reservoirs via the water transfer tunnel. The aim of this study was to investigate the effect of the water transfer tunnel on the turbidity behavior of the two connecting reservoirs and to further understand the effect of reservoir turbidity distribution as a function of the selective withdrawal depth. This study applied the CE-QUAL-W2, a water quality and 2-dimensional hydrodynamic model, for simulating the hydrodynamic processes of the two reservoirs. Results indicate that, in the Andong reservoir, the turbidity of the released water with the water transfer tunnel was similar to that without the tunnel. However, in the Imha reservoir, the turbidity of the released water with the water transfer tunnel was lower than that without the tunnel. This can be attributed to the higher capacity of the Andong reservoir, which has double the storage of the Imha reservoir. Withdrawal turbidity in the Imha reservoir was investigated using the water transfer tunnel. This study applied three withdrawal selections as elevation (EL. 141.0 m, 146.5 m, and 152.0 m. The highest withdrawal turbidity resulted in EL. 141.0 m, which indicates that the high turbidity current is located at a vertical depth of about 20–30 m because of the density difference. These results will be helpful for understanding the release and selective withdrawal turbidity behaviors for a water transfer tunnel between two reservoirs.

  9. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others


    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  10. Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and Climate Warming (United States)

    Rheinheimer, David Emmanuel

    generally well simulated, mostly limited by the accuracy of inflow hydrology. System-wide hydropower generation is reduced by 9% with 6 °C warming. Most reductions in hydropower generation occur in the highly productive watersheds in the northern Sierra Nevada. The central Sierra Nevada sees less reduction in annual runoff and can adapt better to changes in runoff timing. Generation in southern watersheds is expected to decrease. System-wide, reservoirs adapt to capture earlier runoff, but mostly decrease in mean reservoir storage with warming due to decreasing annual runoff. Second, a multi-reservoir optimization model is developed using linear programming that considers the minimum instream flows (MIFs) and weekly down ramp rates (DRRs) in the Upper Yuba River in the northern Sierra Nevada. Weekly DRR constraints are used to mimic spring snowmelt flows, which are particularly important for downstream ecosystems in the Sierra Nevada but are currently missing due to the influence of dams. Trade-offs between MIFs, DRRs and hydropower are explored with air temperature warming (+0, 2, 4 and 6 °C). Under base case operations, mean annual hydropower generation increases slightly with 2 °C warming and decreases slightly with 6 °C warming. With 6 °C warming, the most ecologically beneficial MIF and DRR reduce hydropower generation 5.5% compared to base case operations and a historical climate, which has important implications for re-licensing the hydropower project. Finally, reservoir management for downstream temperatures is explored using a linear programming model to optimally release water from a reservoir using selective withdrawal. The objective function is to minimize deviations from desired downstream temperatures, which are specified to mimic the natural temperature regime in the river. One objective of this study was to develop a method that can be readily integrated into a basin-scale multi-reservoir optimization model using a network representation of system


    Energy Technology Data Exchange (ETDEWEB)

    P. Ortoleva; J. Comer; A. Park; D. Payne; W. Sibo; K. Tuncay


    Key natural gas reserves in Rocky Mountain and other U.S. basins are in reservoirs with economic producibility due to natural fractures. In this project, we evaluate a unique technology for predicting fractured reservoir location and characteristics ahead of drilling based on a 3-D basin/field simulator, Basin RTM. Recommendations are made for making Basin RTM a key element of a practical E&P strategy. A myriad of reaction, transport, and mechanical (RTM) processes underlie the creation, cementation and preservation of fractured reservoirs. These processes are often so strongly coupled that they cannot be understood individually. Furthermore, sedimentary nonuniformity, overall tectonics and basement heat flux histories make a basin a fundamentally 3-D object. Basin RTM is the only 3-D, comprehensive, fully coupled RTM basin simulator available for the exploration of fractured reservoirs. Results of Basin RTM simulations are presented, that demonstrate its capabilities and limitations. Furthermore, it is shown how Basin RTM is a basis for a revolutionary automated methodology for simultaneously using a range of remote and other basin datasets to locate reservoirs and to assess risk. Characteristics predicted by our model include reserves and composition, matrix and fracture permeability, reservoir rock strength, porosity, in situ stress and the statistics of fracture aperture, length and orientation. Our model integrates its input data (overall sedimentation, tectonic and basement heat flux histories) via the laws of physics and chemistry that describe the RTM processes to predict reservoir location and characteristics. Basin RTM uses 3-D, finite element solutions of the equations of rock mechanics, organic and inorganic diagenesis and multi-phase hydrology to make its predictions. As our model predicts reservoir characteristics, it can be used to optimize production approaches (e.g., assess the stability of horizontal wells or vulnerability of fractures to

  12. Rainfall-Runoff and Water-Balance Models for Management of the Fena Valley Reservoir, Guam (United States)

    Yeung, Chiu W.


    The U.S. Geological Survey's Precipitation-Runoff Modeling System (PRMS) and a generalized water-balance model were calibrated and verified for use in estimating future availability of water in the Fena Valley Reservoir in response to various combinations of water withdrawal rates and rainfall conditions. Application of PRMS provides a physically based method for estimating runoff from the Fena Valley Watershed during the annual dry season, which extends from January through May. Runoff estimates from the PRMS are used as input to the water-balance model to estimate change in water levels and storage in the reservoir. A previously published model was calibrated for the Maulap and Imong River watersheds using rainfall data collected outside of the watershed. That model was applied to the Almagosa River watershed by transferring calibrated parameters and coefficients because information on daily diversions at the Almagosa Springs upstream of the gaging station was not available at the time. Runoff from the ungaged land area was not modeled. For this study, the availability of Almagosa Springs diversion data allowed the calibration of PRMS for the Almagosa River watershed. Rainfall data collected at the Almagosa rain gage since 1992 also provided better estimates of rainfall distribution in the watershed. In addition, the discontinuation of pan-evaporation data collection in 1998 required a change in the evapotranspiration estimation method used in the PRMS model. These reasons prompted the update of the PRMS for the Fena Valley Watershed. Simulated runoff volume from the PRMS compared reasonably with measured values for gaging stations on Maulap, Almagosa, and Imong Rivers, tributaries to the Fena Valley Reservoir. On the basis of monthly runoff simulation for the dry seasons included in the entire simulation period (1992-2001), the total volume of runoff can be predicted within -3.66 percent at Maulap River, within 5.37 percent at Almagosa River, and within 10

  13. Numerical Well Testing Interpretation Model and Applications in Crossflow Double-Layer Reservoirs by Polymer Flooding

    Directory of Open Access Journals (Sweden)

    Haiyang Yu


    Full Text Available This work presents numerical well testing interpretation model and analysis techniques to evaluate formation by using pressure transient data acquired with logging tools in crossflow double-layer reservoirs by polymer flooding. A well testing model is established based on rheology experiments and by considering shear, diffusion, convection, inaccessible pore volume (IPV, permeability reduction, wellbore storage effect, and skin factors. The type curves were then developed based on this model, and parameter sensitivity is analyzed. Our research shows that the type curves have five segments with different flow status: (I wellbore storage section, (II intermediate flow section (transient section, (III mid-radial flow section, (IV crossflow section (from low permeability layer to high permeability layer, and (V systematic radial flow section. The polymer flooding field tests prove that our model can accurately determine formation parameters in crossflow double-layer reservoirs by polymer flooding. Moreover, formation damage caused by polymer flooding can also be evaluated by comparison of the interpreted permeability with initial layered permeability before polymer flooding. Comparison of the analysis of numerical solution based on flow mechanism with observed polymer flooding field test data highlights the potential for the application of this interpretation method in formation evaluation and enhanced oil recovery (EOR.

  14. Adaptive forward-inverse modeling of reservoir fluids away from wellbores; TOPICAL

    International Nuclear Information System (INIS)

    Ziagos, J P; Gelinas, R J; Doss, S K; Nelson, R G


    This Final Report contains the deliverables of the DeepLook Phase I project entitled, ''Adaptive Forward-Inverse Modeling of Reservoir Fluids Away from Wellbores''. The deliverables are: (i) a description of 2-D test problem results, analyses, and technical descriptions of the techniques used, (ii) a listing of program setup commands that construct and execute the codes for selected test problems (these commands are in mathematical terminology, which reinforces technical descriptions in the text), and (iii) an evaluation and recommendation regarding continuance of this project, including considerations of possible extensions to 3-D codes, additional technical scope, and budget for the out-years. The far-market objective in this project is to develop advanced technologies that can help locate and enhance the recovery of oil from heterogeneous rock formations. The specific technical objective in Phase I was to develop proof-of-concept of new forward and inverse (F-I) modeling techniques[Gelinas et al, 1998] that seek to enhance estimates (images) of formation permeability distributions and fluid motion away from wellbore volumes. This goes to the heart of improving industry's ability to jointly image reservoir permeability and flow predictions of trapped and recovered oil versus time. The estimation of formation permeability away from borehole measurements is an ''inverse'' problem. It is an inseparable part of modeling fluid flows throughout the reservoir in efforts to increase the efficiency of oil recovery at minimum cost. Classic issues of non-uniqueness, mathematical instability, noise effects, and inadequate numerical solution techniques have historically impeded progress in reservoir parameter estimations. Because information pertaining to fluid and rock properties is always sampled sparsely by wellbore measurements, a successful method for interpolating permeability and fluid data between the measurements must be: (i) physics-based, (ii) conditioned by signal

  15. Reservoir architecture modeling: Nonstationary models for quantitative geological characterization. Final report, April 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, D.; Epili, D.; Kelkar, M.; Redner, R.; Reynolds, A.


    The study was comprised of four investigations: facies architecture; seismic modeling and interpretation; Markov random field and Boolean models for geologic modeling of facies distribution; and estimation of geological architecture using the Bayesian/maximum entropy approach. This report discusses results from all four investigations. Investigations were performed using data from the E and F units of the Middle Frio Formation, Stratton Field, one of the major reservoir intervals in the Gulf Coast Basin.

  16. Analytical Model of Waterflood Sweep Efficiency in Vertical Heterogeneous Reservoirs under Constant Pressure

    Directory of Open Access Journals (Sweden)

    Lisha Zhao


    Full Text Available An analytical model has been developed for quantitative evaluation of vertical sweep efficiency based on heterogeneous multilayer reservoirs. By applying the Buckley-Leverett displacement mechanism, a theoretical relationship is deduced to describe dynamic changes of the front of water injection, water saturation of producing well, and swept volume during waterflooding under the condition of constant pressure, which substitutes for the condition of constant rate in the traditional way. Then, this method of calculating sweep efficiency is applied from single layer to multilayers, which can be used to accurately calculate the sweep efficiency of heterogeneous reservoirs and evaluate the degree of waterflooding in multilayer reservoirs. In the case study, the water frontal position, water cut, volumetric sweep efficiency, and oil recovery are compared between commingled injection and zonal injection by applying the derived equations. The results are verified by numerical simulators, respectively. It is shown that zonal injection works better than commingled injection in respect of sweep efficiency and oil recovery and has a longer period of water free production.

  17. Reactive Transport Modeling and Geophysical Monitoring of Bioclogging at Reservoir Scale (United States)

    Surasani, V.; Commer, M.; Ajo Franklin, J. B.; Li, L.; Hubbard, S. S.


    In Microbial-Enhanced-Hydrocarbon-Recovery (MEHR), preferential bioclogging targets the growth of the biofilms (def. immobilized biopolymers with active cells embodied in it) in highly permeable thief zones to enhance sweep efficiency in oil reservoirs. During MEHR, understanding and controlling bioclogging is hindered by the lack of advanced modeling and monitoring tools; these deficiencies contribute to suboptimal performance. Our focus in this study was on developing a systematic approach to understand and monitor bioclogging at the reservoir scale using a combination of reactive transport modeling and geophysical imaging tools (EM & seismic). In this study, we created a realistic reservoir model from a heterogeneous gas reservoir in the Southern Sacramento basin, California; the model well (Citizen Green #1) was characterized using sonic, electrical, nuclear, and NMR logs for hydrologic and geophysical properties. From the simplified 2D log data model, a strip of size 150m x75m with several high permeability streaks is identified for bioclogging simulation experiments. From the NMR log data it is observed that a good linear correlation exist between logarithmic permeability (0.55- 3.34 log (mD)) versus porosity (0.041-0.28). L. mesenteroides was chosen as the model bacteria. In the presence of sucrose, it enzymatically catalyzes the production of dextran, a useful bioclogging agent. Using microbial kinetics from our laboratory experiment and reservoir heterogeneity, a reactive transport model (RTM) is established for two kinds of bioclogging treatments based on whether microbes are present in situ or are supplied externally. In both cases, sucrose media (1.5 M) is injected at the rate of 1 liter/s for 20 days into the center of high permeable strip to stimulate microbes. Simulations show that the high dextran production was deep into the formation from the injection well. This phenomenon can be explained precisely with bacterial kinetics and injection rate. In

  18. Temporal-spatial distribution of non-point source pollution in a drinking water source reservoir watershed based on SWAT

    Directory of Open Access Journals (Sweden)

    M. Wang


    Full Text Available The conservation of drinking water source reservoirs has a close relationship between regional economic development and people’s livelihood. Research on the non-point pollution characteristics in its watershed is crucial for reservoir security. Tang Pu Reservoir watershed was selected as the study area. The non-point pollution model of Tang Pu Reservoir was established based on the SWAT (Soil and Water Assessment Tool model. The model was adjusted to analyse the temporal-spatial distribution patterns of total nitrogen (TN and total phosphorus (TP. The results showed that the loss of TN and TP in the reservoir watershed were related to precipitation in flood season. And the annual changes showed an "M" shape. It was found that the contribution of loss of TN and TP accounted for 84.5% and 85.3% in high flow years, and for 70.3% and 69.7% in low flow years, respectively. The contributions in normal flow years were 62.9% and 63.3%, respectively. The TN and TP mainly arise from Wangtan town, Gulai town, and Wangyuan town, etc. In addition, it was found that the source of TN and TP showed consistency in space.

  19. Integrating a reservoir regulation scheme into a spatially distributed hydrological model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Gang; Gao, Huilin; Naz, Bibi S.; Kao, Shih-Chieh; Voisin, Nathalie


    During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal/industrial water supplies, and hydropower generation. Consequently, natural streamflow timing and magnitude have been altered significantly by reservoir operations. In addition, the hydrological cycle can be modified by land use/land cover and climate changes. To understand the fine scale feedback between hydrological processes and water management decisions, a distributed hydrological model embedded with a reservoir component is of desire. In this study, a multi-purpose reservoir module with predefined complex operational rules was integrated into the Distributed Hydrology Soil Vegetation Model (DHSVM). Conditional operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The performance of the integrated model was tested over the upper Brazos River Basin in Texas, where two U.S. Army Corps of Engineers reservoirs, Lake Whitney and Aquilla Lake, are located. The integrated DHSVM model was calibrated and validated using observed reservoir inflow, outflow, and storage data. The error statistics were summarized for both reservoirs on a daily, weekly, and monthly basis. Using the weekly reservoir storage for Lake Whitney as an example, the coefficients of determination (R2) and the Nash-Sutcliff Efficiency (NSE) are 0.85 and 0.75, respectively. These results suggest that this reservoir module has promise for use in sub-monthly hydrological simulations. Enabled with the new reservoir component, the DHSVM model provides a platform to support adaptive water resources management under the impacts of evolving anthropogenic activities and substantial environmental changes.

  20. Use of XML and Java for collaborative petroleum reservoir modeling on the Internet (United States)

    Victorine, J.; Watney, W.L.; Bhattacharya, S.


    The GEMINI (Geo-Engineering Modeling through INternet Informatics) is a public-domain, web-based freeware that is made up of an integrated suite of 14 Java-based software tools to accomplish on-line, real-time geologic and engineering reservoir modeling. GEMINI facilitates distant collaborations for small company and academic clients, negotiating analyses of both single and multiple wells. The system operates on a single server and an enterprise database. External data sets must be uploaded into this database. Feedback from GEMINI users provided the impetus to develop Stand Alone Web Start Applications of GEMINI modules that reside in and operate from the user's PC. In this version, the GEMINI modules run as applets, which may reside in local user PCs, on the server, or Java Web Start. In this enhanced version, XML-based data handling procedures are used to access data from remote and local databases and save results for later access and analyses. The XML data handling process also integrates different stand-alone GEMINI modules enabling the user(s) to access multiple databases. It provides flexibility to the user to customize analytical approach, database location, and level of collaboration. An example integrated field-study using GEMINI modules and Stand Alone Web Start Applications is provided to demonstrate the versatile applicability of this freeware for cost-effective reservoir modeling. ?? 2005 Elsevier Ltd. All rights reserved.

  1. Reservoir triggering seismicity in Greece: An evidence based review (United States)

    Pavlou, Kyriaki; Drakatos, George; Kouskouna, Vasiliki; Makropoulos, Konstantinos


    First filling and water fluctuation in artificial lakes and reservoirs are known causes of local seismicity. In Greece, 117 dams were built over the past 60 years, of which, however, only 22 have a capacity greater than 20x206cm3 and could thus affect seismicity in a meaningful way. Most of these larger dams have been constructed and operated by the Greek Public Power Corporation (PPC). The paper aims at a comprehensive review of all relevant studies, undertaken so far, and critically examines the evidence of reservoir triggering seismicity and possible accelerated earthquake occurrence provided. The main reservoirs examined include the Marathon, Kremasta, Pournari, Ilarion and Polyphyto artificial lakes, all of which have recorded seismic events associated with their filling and/or operation for the time period up to 2010. Seismic activity that correlates with maximum or minimum water level fluctuations leads to conclusions about a possible triggering seismicity due to a pore pressure diffusion (drained or un-drained response). In each case we review the cross-correlation coefficients between the reservoir levels and triggered events, and discuss the reasons for their association from an engineering geological (mechanical properties of rocks and formations) and seismological (triggered events) perspective. Our work suggests that, whilst in these cases PCC performs very well the task of hydrological and energy management of the reservoirs, it is crucially important to monitor and validate the daily seismicity at and around the artificial lakes for a better understanding of the upmost limit of triggered seismicity, and possible triggered landslides in the areas surrounding its main reservoirs.

  2. Ecological risk assessment based on IHA-RVA in the lower Xiaolangdi reservoir under changed hydrological situation (United States)

    Bai, Tao; Ma, Pan-pan; Kan, Yan-bin; Huang, Qiang


    Ecological risk assessment of river is an important content for protection and improvement of ecological environment. In this paper, taking Xiaolangdi reservoir for example, ecological risk assessments are studied based on the 1956-1997 and 2002-2008 dairy runoff data as the pre and post of construction of Xiaolangdi reservoir. Considering pre and post hydrological regime of construction of Xiaolangdi, ecological risk assessment index systems of downstream are established based on Index of Hydrologic Alteration-Range of Variability Approach method (IHA-RVA), which considering characters of flow, time, frequency, delay and change rate. Then ecological risk fuzzy comprehensive evaluation assessment model downstream is established based on risk index and RVA method. The results show that after the construction of Xiaolangdi reservoir, ecological risk occurred in the downstream of Yellow River for changed hydrological indexes, such as monthly average flow, frequency and duration of extreme annual flow and so on, which probably destroy the whole ecosystems of the river. For example, ecological risk downstream of Xiaolangdi reservoir upgrade to level two in 2008. Research results make reference values and scientific basis both in ecological risk assessment and management of reservoir after construction.

  3. Marine and fluvial facies modelling at petroleum reservoir scale; Modelisation des heterogeneites lithologiques a l'echelle du reservoir petrolier en milieu marin et fluviatile

    Energy Technology Data Exchange (ETDEWEB)

    Leflon, B.


    When modelling a petroleum reservoir, well data are very useful to model properties at a sub-seismic scale. Petrophysical properties like porosity or permeability are linked to the rock-type. Two methods based on well data have been developed to model facies. The first one is used to model marine carbonates deposits. The geometry of sedimentary layers is modelled through a special parameterization of the reservoir similar to Wheeler space. The time parameter is defined along the well paths thanks to correlations. The layer thickness is then extrapolated between wells. A given relationship between facies and bathymetry of sedimentation makes it possible to compute bathymetry along the well paths. Bathymetry is then extrapolated from wells and a reference map using the concept of accommodation. The model created this way is stratigraphically consistent. Facies simulation can then be constrained by the computed bathymetry. The second method describes a novel approach to fluvial reservoirs modelling. The core of the method lies in the association of a fairway with the channels to be simulated. Fairways are positioned so that all data are taken in account; they can be stochastic if unknown or explicitly entered if identified on seismic data. A potential field is defined within the fairway. Specifying a transfer function to map this potential field to thickness results in generating a channel inside the fairway. A residual component is stochastically simulated and added to the potential field creating realistic channel geometries. Conditioning to well data is obtained by applying the inverse transfer function at the data location to derive thickness values that will constrain the simulation of residuals. (author)

  4. Reservoirs for Comets: Compositional Differences Based on Infrared Observations (United States)

    Disanti, Michael A.; Mumma, Michael J.

    Tracing measured compositions of comets to their origins continues to be of keen interest to cometary scientists and to dynamical modelers of Solar System formation and evolution. This requires building a taxonomy of comets from both present-day dynamical reservoirs: the Kuiper Belt (hereafter KB), sampled through observation of ecliptic comets (primarily Jupiter Family comets, or JFCs), and the Oort cloud (OC), represented observationally by the long-period comets and by Halley Family comets (HFCs). Because of their short orbital periods, JFCs are subjected to more frequent exposure to solar radiation compared with OC comets. The recent apparitions of the JFCs 9P/Tempel 1 and 73P/Schwassmann-Wachmann 3 permitted detailed observations of material issuing from below their surfaces—these comets added significantly to the compositional database on this dynamical class, which is under-represented in studies of cometary parent volatiles. This chapter reviews the latest techniques developed for analysis of high-resolution spectral observations from ˜2-5 μm, and compares measured abundances of native ices among comets. While no clear compositional delineation can be drawn along dynamical lines, interesting comparisons can be made. The sub-surface composition of comet 9P, as revealed by the Deep Impact ejecta, was similar to the majority of OC comets studied. Meanwhile, 73P was depleted in all native ices except HCN, similar to the disintegrated OC comet C/1999 S4 (LINEAR). These results suggest that 73P may have formed in the inner giant planets' region while 9P formed farther out or, alternatively, that both JFCs formed farther from the Sun but with 73P forming later in time.

  5. Characterization and 3D reservoir modelling of fluvial sandstones of the Williams Fork Formation, Rulison Field, Piceance Basin, Colorado, USA

    International Nuclear Information System (INIS)

    Pranter, Matthew J; Vargas, Marielis F; Davis, Thomas L


    This study describes the stratigraphic characteristics and distribution of fluvial deposits of the Upper Cretaceous Williams Fork Formation in a portion of Rulison Field and addresses 3D geologic modelling of reservoir sand bodies and their associated connectivity. Fluvial deposits include isolated and stacked point-bar deposits, crevasse splays and overbank (floodplain) mudrock. Within the Williams Fork Formation, the distribution and connectivity of fluvial sandstones significantly impact reservoir productivity and ultimate recovery. The reservoir sandstones are primarily fluvial point-bar deposits interbedded with shales and coals. Because of the lenticular geometry and limited lateral extent of the reservoir sandstones (common apparent widths of ∼500–1000 ft; ∼150–300 m), relatively high well densities (e.g. 10 acre (660 ft; 200 m) spacing) are often required to deplete the reservoir. Heterogeneity of these fluvial deposits includes larger scale stratigraphic variability associated with vertical stacking patterns and structural heterogeneities associated with faults that exhibit lateral and reverse offsets. The discontinuous character of the fluvial sandstones and lack of distinct marker beds in the middle and upper parts of the Williams Fork Formation make correlation between wells tenuous, even at a 10 acre well spacing. Some intervals of thicker and amalgamated sandstones within the middle and upper Williams Fork Formation can be correlated across greater distances. To aid correlation and for 3D reservoir modelling, vertical lithology proportion curves were used to estimate stratigraphic trends and define the stratigraphic zonation within the reservoir interval. Object-based and indicator-based modelling methods have been applied to the same data and results from the models were compared. Results from the 3D modelling indicate that sandstone connectivity increases with net-to-gross ratio and, at lower net-to-gross ratios (<30%), differences exist in


    Energy Technology Data Exchange (ETDEWEB)

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub


    of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

  7. Integrated hydrologic and hydrodynamic modeling to assess water exchange in a data-scarce reservoir (United States)

    Wu, Binbin; Wang, Guoqiang; Wang, Zhonggen; Liu, Changming; Ma, Jianming


    Integrated hydrologic and hydrodynamic modeling is useful in evaluating hydrodynamic characteristics (e.g. water exchange processes) in data-scarce water bodies, however, most studies lack verification of the hydrologic model. Here, water exchange (represented by water age) was investigated through integrated hydrologic and hydrodynamic modeling of the Hongfeng Reservoir, a poorly gauged reservoir in southwest China. The performance of the hydrologic model and parameter replacement among sub-basins with hydrological similarity was verified by historical data. Results showed that hydrological similarity based on the hierarchical cluster analysis and topographic index probability density distribution was reliable with satisfactory performance of parameter replacement. The hydrodynamic model was verified using daily water levels and water temperatures from 2009 and 2010. The water exchange processes in the Hongfeng Reservoir are very complex with temporal, vertical, and spatial variations. The temporal water age was primarily controlled by the variable inflow and outflow, and the maximum and minimum ages for the site near the dam were 406.10 d (15th June) and 90.74 d (3rd August), respectively, in 2010. Distinct vertical differences in water age showed that surface flow, interflow, and underflow appeared alternately, depending on the season and water depth. The worst water exchange situation was found in the central areas of the North Lake with the highest water ages in the bottom on both 15th June and 3rd August, in 2010. Comparison of the spatial water ages revealed that the more favorable hydraulic conditions on 3rd August mainly improved the water exchange in the dam areas and most areas of the South Lake, but had little effect on the bottom layers of the other deepest areas in the South and North Lakes. The presented framework can be applied in other data-scarce waterbodies worldwide to provide better understanding of water exchange processes.

  8. A new optimization framework using genetic algorithm and artificial neural network to reduce uncertainties in petroleum reservoir models (United States)

    Maschio, Célio; José Schiozer, Denis


    In this article, a new optimization framework to reduce uncertainties in petroleum reservoir attributes using artificial intelligence techniques (neural network and genetic algorithm) is proposed. Instead of using the deterministic values of the reservoir properties, as in a conventional process, the parameters of the probability density function of each uncertain attribute are set as design variables in an optimization process using a genetic algorithm. The objective function (OF) is based on the misfit of a set of models, sampled from the probability density function, and a symmetry factor (which represents the distribution of curves around the history) is used as weight in the OF. Artificial neural networks are trained to represent the production curves of each well and the proxy models generated are used to evaluate the OF in the optimization process. The proposed method was applied to a reservoir with 16 uncertain attributes and promising results were obtained.

  9. Molecular Simulation towards Efficient and Representative Subsurface Reservoirs Modeling

    KAUST Repository

    Kadoura, Ahmad


    This dissertation focuses on the application of Monte Carlo (MC) molecular simulation and Molecular Dynamics (MD) in modeling thermodynamics and flow of subsurface reservoir fluids. At first, MC molecular simulation is proposed as a promising method to replace correlations and equations of state in subsurface flow simulators. In order to accelerate MC simulations, a set of early rejection schemes (conservative, hybrid, and non-conservative) in addition to extrapolation methods through reweighting and reconstruction of pre-generated MC Markov chains were developed. Furthermore, an extensive study was conducted to investigate sorption and transport processes of methane, carbon dioxide, water, and their mixtures in the inorganic part of shale using both MC and MD simulations. These simulations covered a wide range of thermodynamic conditions, pore sizes, and fluid compositions shedding light on several interesting findings. For example, the possibility to have more carbon dioxide adsorbed with more preadsorbed water concentrations at relatively large basal spaces. The dissertation is divided into four chapters. The first chapter corresponds to the introductory part where a brief background about molecular simulation and motivations are given. The second chapter is devoted to discuss the theoretical aspects and methodology of the proposed MC speeding up techniques in addition to the corresponding results leading to the successful multi-scale simulation of the compressible single-phase flow scenario. In chapter 3, the results regarding our extensive study on shale gas at laboratory conditions are reported. At the fourth and last chapter, we end the dissertation with few concluding remarks highlighting the key findings and summarizing the future directions.

  10. Modeling of Salinity Effects on Waterflooding of Petroleum Reservoirs


    Alexeev, Artem; Shapiro, Alexander; Thomsen, Kaj


    ”Smart water flooding” er en forbedret olieindvindings (EOR) teknik, der er baseret på injektion af vand med kemisk optimeret saltindhold i olie reservoirer. Omfattende forskning, der er udført i løbet af de seneste to årtier har tydeligt vist, at smart water flooding kan forbedre den ultimative olieindvindingsgrad både i carbonat- og i sandstens- reservoirer. Der er blevet foreslået en række forskellige fysisk-kemiske mekanismer til at forklare smart water effekten, men ingen af dem har være...

  11. Evaluation of optimal reservoir prospectivity using acoustic-impedance model inversion: A case study of an offshore field, western Niger Delta, Nigeria (United States)

    Oyeyemi, Kehinde D.; Olowokere, Mary T.; Aizebeokhai, Ahzegbobor P.


    The evaluation of economic potential of any hydrocarbon field involves the understanding of the reservoir lithofacies and porosity variations. This in turns contributes immensely towards subsequent reservoir management and field development. In this study, integrated 3D seismic data and well log data were employed to assess the quality and prospectivity of the delineated reservoirs (H1-H5) within the OPO field, western Niger Delta using a model-based seismic inversion technique. The model inversion results revealed four distinct sedimentary packages based on the subsurface acoustic impedance properties and shale contents. Low acoustic impedance model values were associated with the delineated hydrocarbon bearing units, denoting their high porosity and good quality. Application of model-based inverted velocity, density and acoustic impedance properties on the generated time slices of reservoirs also revealed a regional fault and prospects within the field.

  12. Unstructured grids and an element based conservative approach for a black-oil reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Regis Lopes; Fernandes, Bruno Ramon Batista [Federal University of Ceara, Fortaleza, CE (Brazil). Dept. of Chemical Engineering; Araujo, Andre Luiz de Souza [Federal Institution of Education, Science and Technology of Ceara - IFCE, Fortaleza (Brazil). Industry Department], e-mail:; Marcondes, Francisco [Federal University of Ceara, Fortaleza, CE (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail:


    Unstructured meshes presented one upgrade in modeling the main important features of the reservoir such as discrete fractures, faults, and irregular boundaries. From several methodologies available, the Element based Finite Volume Method (EbFVM), in conjunction with unstructured meshes, is one methodology that deserves large attention. In this approach, the reservoir, for 2D domains, is discretized using a mixed two-dimensional mesh using quadrilateral and triangle elements. After the initial step of discretization, each element is divided into sub-elements and the mass balance for each component is developed for each sub-element. The equations for each control-volume using a cell vertex construction are formulated through the contribution of different neighboured elements. This paper presents an investigation of an element-based approach using the black-oil model based on pressure and global mass fractions. In this approach, even when all gas phase is dissolved in oil phase the global mass fraction of gas will be different from zero. Therefore, no additional numerical procedure is necessary in order to treat the gas phase appear/disappearance. In this paper the above mentioned approach is applied to multiphase flows involving oil, gas, and water. The mass balance equations in terms of global mass fraction of oil, gas and water are discretized through the EbFVM and linearized by the Newton's method. The results are presented in terms of volumetric rates of oil, gas, and water and phase saturations. (author)

  13. Fluvial facies reservoir productivity prediction method based on principal component analysis and artificial neural network

    Directory of Open Access Journals (Sweden)

    Pengyu Gao


    Full Text Available It is difficult to forecast the well productivity because of the complexity of vertical and horizontal developments in fluvial facies reservoir. This paper proposes a method based on Principal Component Analysis and Artificial Neural Network to predict well productivity of fluvial facies reservoir. The method summarizes the statistical reservoir factors and engineering factors that affect the well productivity, extracts information by applying the principal component analysis method and approximates arbitrary functions of the neural network to realize an accurate and efficient prediction on the fluvial facies reservoir well productivity. This method provides an effective way for forecasting the productivity of fluvial facies reservoir which is affected by multi-factors and complex mechanism. The study result shows that this method is a practical, effective, accurate and indirect productivity forecast method and is suitable for field application.

  14. 2-D Water Quality Modelling of a Drinking Water Reservoir

    Czech Academy of Sciences Publication Activity Database

    Růžička, Martin; Hejzlar, J.; Mikešová, P.; Cole, T. M.


    Roč. 50, č. 3 (2002), s. 258-272 ISSN 0042-790X R&D Projects: GA ČR GA103/98/0281; GA AV ČR IAA3042903 Grant - others:USARGD-UK(USA) N68171-99-M-6754 Keywords : CE-QUAL-W2 * Dimictic stratified reservoir * Sensitivity analysis Subject RIV: DA - Hydrology ; Limnology

  15. Prediction of tectonic stresses and fracture networks with geomechanical reservoir models

    Energy Technology Data Exchange (ETDEWEB)

    Henk, A.; Fischer, K. [TU Darmstadt (Germany). Inst. fuer Angewandte Geowissenschaften


    This project evaluates the potential of geomechanical Finite Element (FE) models for the prediction of in situ stresses and fracture networks in faulted reservoirs. Modeling focuses on spatial variations of the in situ stress distribution resulting from faults and contrasts in mechanical rock properties. In a first methodological part, a workflow is developed for building such geomechanical reservoir models and calibrating them to field data. In the second part, this workflow was applied successfully to an intensively faulted gas reservoir in the North German Basin. A truly field-scale geomechanical model covering more than 400km{sup 2} was built and calibrated. It includes a mechanical stratigraphy as well as a network of 86 faults. The latter are implemented as distinct planes of weakness and allow the fault-specific evaluation of shear and normal stresses. A so-called static model describes the recent state of the reservoir and, thus, after calibration its results reveal the present-day in situ stress distribution. Further geodynamic modeling work considers the major stages in the tectonic history of the reservoir and provides insights in the paleo stress distribution. These results are compared to fracture data and hydraulic fault behavior observed today. The outcome of this project confirms the potential of geomechanical FE models for robust stress and fracture predictions. The workflow is generally applicable and can be used for modeling of any stress-sensitive reservoir.

  16. Prediction of tectonic stresses and fracture networks with geomechanical reservoir models

    International Nuclear Information System (INIS)

    Henk, A.; Fischer, K.


    This project evaluates the potential of geomechanical Finite Element (FE) models for the prediction of in situ stresses and fracture networks in faulted reservoirs. Modeling focuses on spatial variations of the in situ stress distribution resulting from faults and contrasts in mechanical rock properties. In a first methodological part, a workflow is developed for building such geomechanical reservoir models and calibrating them to field data. In the second part, this workflow was applied successfully to an intensively faulted gas reservoir in the North German Basin. A truly field-scale geomechanical model covering more than 400km 2 was built and calibrated. It includes a mechanical stratigraphy as well as a network of 86 faults. The latter are implemented as distinct planes of weakness and allow the fault-specific evaluation of shear and normal stresses. A so-called static model describes the recent state of the reservoir and, thus, after calibration its results reveal the present-day in situ stress distribution. Further geodynamic modeling work considers the major stages in the tectonic history of the reservoir and provides insights in the paleo stress distribution. These results are compared to fracture data and hydraulic fault behavior observed today. The outcome of this project confirms the potential of geomechanical FE models for robust stress and fracture predictions. The workflow is generally applicable and can be used for modeling of any stress-sensitive reservoir.

  17. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms. (United States)

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong


    Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production.

  18. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms.

    Directory of Open Access Journals (Sweden)

    Chaohua Guo

    Full Text Available Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production.

  19. Simulation and optimisation modelling approach for operation of the Hoa Binh Reservoir, Vietnam

    DEFF Research Database (Denmark)

    Ngo, Long le; Madsen, Henrik; Rosbjerg, Dan


    . This paper proposes to optimise the control strategies for the Hoa Binh reservoir operation by applying a combination of simulation and optimisation models. The control strategies are set up in the MIKE 11 simulation model to guide the releases of the reservoir system according to the current storage level......, the hydro-meteorological conditions, and the time of the year. A heuristic global optimisation tool, the shuffled complex evolution (SCE) algorithm, is adopted for optimising the reservoir operation. The optimisation puts focus on the trade-off between flood control and hydropower generation for the Hoa...

  20. Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir. (United States)

    Wang, Weifeng; Roulet, Nigel T; Kim, Youngil; Strachan, Ian B; Del Giorgio, Paul; Prairie, Yves T; Tremblay, Alain


    To quantify CO 2 emissions from water surface of a reservoir that was shaped by flooding the boreal landscape, we developed a daily time-step reservoir biogeochemistry model. We calibrated the model using the measured concentrations of dissolved organic and inorganic carbon (C) in a young boreal hydroelectric reservoir, Eastmain-1 (EM-1), in northern Quebec, Canada. We validated the model against observed CO 2 fluxes from an eddy covariance tower in the middle of EM-1. The model predicted the variability of CO 2 emissions reasonably well compared to the observations (root mean square error: 0.4-1.3gCm -2 day -1 , revised Willmott index: 0.16-0.55). In particular, we demonstrated that the annual reservoir surface effluxes were initially high, steeply declined in the first three years, and then steadily decreased to ~115gCm -2 yr -1 with increasing reservoir age over the estimated "engineering" reservoir lifetime (i.e., 100years). Sensitivity analyses revealed that increasing air temperature stimulated CO 2 emissions by enhancing CO 2 production in the water column and sediment, and extending the duration of open water period over which emissions occur. Increasing the amount of terrestrial organic C flooded can enhance benthic CO 2 fluxes and CO 2 emissions from the reservoir water surface, but the effects were not significant over the simulation period. The model is useful for the understanding of the mechanism of C dynamics in reservoirs and could be used to assist the hydro-power industry and others interested in the role of boreal hydroelectric reservoirs as sources of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Evaluation of uncertainty in dam-break analysis resulting from dynamic representation of a reservoir; Evaluation de l'incertitude due au modele de representation du reservoir dans les analyses de rupture de barrage

    Energy Technology Data Exchange (ETDEWEB)

    Tchamen, G.W.; Gaucher, J. [Hydro-Quebec Production, Montreal, PQ (Canada). Direction Barrage et Environnement, Unite Barrages et Hydraulique


    Owners and operators of high capacity dams in Quebec have a legal obligation to conduct dam break analysis for each of their dams in order to ensure public safety. This paper described traditional hydraulic methodologies and models used to perform dam break analyses. In particular, it examined the influence of the reservoir drawdown submodel on the numerical results of a dam break analysis. Numerical techniques from the field of fluid mechanics and aerodynamics have provided the basis for developing effective hydrodynamic codes that reduce the level of uncertainties associated with dam-break analysis. A static representation that considers the storage curve was compared with a dynamic representation based on Saint-Venant equations and the real bathymetry of the reservoir. The comparison was based on breach of reservoir, maximum water level, flooded area, and wave arrival time in the valley downstream. The study showed that the greatest difference in attained water level was in the vicinity of the dam, and the difference decreased as the distance from the reservoir increased. The analysis showed that the static representation overestimated the maximum depth and inundated area by as much as 20 percent. This overestimation can be reduced by 30 to 40 percent by using dynamic representation. A dynamic model based on a synthetic trapezoidal reconstruction of the storage curve was used, given the lack of bathymetric data for the reservoir. It was concluded that this model can significantly reduce the uncertainty associated with the static model. 7 refs., 9 tabs., 7 figs.

  2. Cascade reservoir flood control operation based on risk grading and warning in the Upper Yellow River (United States)

    Xuejiao, M.; Chang, J.; Wang, Y.


    Flood risk reduction with non-engineering measures has become the main idea for flood management. It is more effective for flood risk management to take various non-engineering measures. In this paper, a flood control operation model for cascade reservoirs in the Upper Yellow River was proposed to lower the flood risk of the water system with multi-reservoir by combining the reservoir flood control operation (RFCO) and flood early warning together. Specifically, a discharge control chart was employed to build the joint RFCO simulation model for cascade reservoirs in the Upper Yellow River. And entropy-weighted fuzzy comprehensive evaluation method was adopted to establish a multi-factorial risk assessment model for flood warning grade. Furthermore, after determining the implementing mode of countermeasures with future inflow, an intelligent optimization algorithm was used to solve the optimization model for applicable water release scheme. In addition, another model without any countermeasure was set to be a comparative experiment. The results show that the model developed in this paper can further decrease the flood risk of water system with cascade reservoirs. It provides a new approach to flood risk management by coupling flood control operation and flood early warning of cascade reservoirs.

  3. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.


    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neutral reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  4. Rock music : a living legend of simulation modelling solves a reservoir problem by playing a different tune

    Energy Technology Data Exchange (ETDEWEB)

    Cope, G.


    Tight sand gas plays are low permeability reservoirs that have contributed an output of 5.7 trillion cubic feet of natural gas per year in the United States alone. Anadarko Petroleum Corporation has significant production from thousands of wells in Texas, Colorado, Wyoming and Utah. Hydraulic fracturing is the key to successful tight sand production. Production engineers use modelling software to calculate a well stimulation program in which large volumes of water are forced under high pressure in the reservoir, fracturing the rock and creating high permeability conduits for the natural gas to escape. Reservoir engineering researchers at the University of Calgary, led by world expert Tony Settari, have improved traditional software modelling of petroleum reservoirs by combining fracture analysis with geomechanical processes. This expertise has been a valuable asset to Anadarko, as the dynamic aspect can have a significant effect on the reservoir as it is being drilled. The challenges facing reservoir simulation is the high computing time needed for analyzing fluid production based on permeability, porosity, gas and fluid properties along with geomechanical analysis. Another challenge has been acquiring high quality field data. Using Anadarko's field data, the University of Calgary researchers found that water fracturing creates vertical primary fractures, and in some cases secondary fractures which enhance permeability. However, secondary fracturing is not permanent in all wells. The newly coupled geomechanical model makes it possible to model fracture growth more accurately. The Society of Petroleum Engineers recently awarded Settari with an award for distinguished achievement in improving the technique and practice of finding and producing petroleum. 1 fig.

  5. Model Studies on the Effectiveness of MBBR Reactors for the Restoration of Small Water Reservoirs (United States)

    Nowak, Agata; Mazur, Robert; Panek, Ewa; Chmist, Joanna


    The authors present the Moving Bed Biofilm Reactor (MBBR) model with a quasi-continuous flow for small water reservoir restoration, characterized by high concentrations of organic pollutants. To determine the efficiency of wastewater treatment the laboratory analysis of physic-chemical parameters were conducted for the model on a semi-technical scale of 1:3. Wastewater treatment process was carried out in 24 h for 1 m3 for raw sewage. The startup period was 2 weeks for all biofilters (biological beds). Approximately 50% reduction in COD and BOD5 was obtained on average for the studied bioreactors. Significant improvements were achieved in theclarity of the treated wastewater, with the reduction of suspension by 60%. The oxygen profile has improved significantly in 7 to 9 hours of the process, and a diametric reduction in the oxidative reduction potential was recorded. A preliminary model of biological treatment effectiveness was determined based on the conducted studies. In final stages, the operation mode was set in real conditions of polluted water reservoirs.

  6. Mapping of trophic states based on nutrients concentration and phytoplankton abundance in Jatibarang Reservoir (United States)

    Rudiyanti, Siti; Anggoro, Sutrisno; Rahman, Arif


    Jatibarang Reservoir is one of the Indonesian Reservoirs, which used for human activities such as tourism and agriculture. These activities will provide input of organic matter and nutrients into the water. These materials will impact water quality and eutrophication process. Eutrophication is the water enrichment by nutrients, especially nitrogen and phosphorus which can promote the growth of phytoplankton. Some indicators of eutrophication are increasing nutrients, trophic states, and change of phytoplankton composition. The relationship between water quality and phytoplankton community can be used as an indicator of trophic states in Jatibarang Reservoir. The aim of this study was to analyze the effect of nutrients concentration and phytoplankton abundance to the trophic states and mapping trophic states based on nutrients concentration and phytoplankton in Jatibarang Reservoir. This study was conducted in June and July 2017 at 9 stations around Jatibarang Reservoir. The results showed that average concentration of nitrate, phosphate, and chlorophyll-a in Jatibarang Reservoir was 0.69 mg/L, 0.27 mg/L, and 1.66 mg/m3, respectively. The phytoplankton abundance ranged 16-62,200 cells/L, consists of 21 genera of four classes, i.e. Chlorophyceae, Cyanophyceae, Bacillariophyceae, and Dinophyceae. Cyanophyceae was a dominant phytoplankton group based on the composition of abundance (>80%). High nutrient concentrations and phytoplankton dominated by Anabaena (Cyanophyceae) which indicated that the waters in Jatibarang Reservoir were eutrophic.

  7. Construction of a carbonate reservoir model using pressure transient data : field case study

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, S. [Petro-Iran, (Iran, Islamic Republic of); Ghanizadeh, M. [Tehran Energy, (Iran, Islamic Republic of); Haghighi, M. [Tehran Univ., (Iran, Islamic Republic of)


    Pressure transient data was integrated with other reservoir information to create a geological model of a carbonate reservoir in the Salaman offshore field in Iran. The model was created using seismic and well log data as well as the interpretation of 99 well tests performed in this field. Several features such as sealing faults, aquifer, fracturing and layering systems were observed. Two faults were identified in the northern part of the reservoir. The distance between the major fault and well number 27 was less than predicted from seismic data. An active aquifer and minor fault were also identified near well number 6. A fracture system was identified around well number 22. Most well tests showed communication between different layers of the reservoirs, suggesting interconnected layers in terms of geology. All calculated permeabilities from the well tests were found to be significantly higher than those from core analysis, suggesting that discrete fractures exist throughout the reservoir. The northern region of the reservoir has the highest permeability values and the lowest values are observed in the central part of the reservoir. 18 refs., 6 figs.

  8. Parallel, Multigrid Finite Element Simulator for Fractured/Faulted and Other Complex Reservoirs based on Common Component Architecture (CCA)

    Energy Technology Data Exchange (ETDEWEB)

    Milind Deo; Chung-Kan Huang; Huabing Wang


    volume of injection at lower rates. However, if oil production can be continued at high water cuts, the discounted cumulative production usually favors higher production rates. The workflow developed during the project was also used to perform multiphase simulations in heterogeneous, fracture-matrix systems. Compositional and thermal-compositional simulators were developed for fractured reservoirs using the generalized framework. The thermal-compositional simulator was based on a novel 'equation-alignment' approach that helped choose the correct variables to solve depending on the number of phases present and the prescribed component partitioning. The simulators were used in steamflooding and in insitu combustion applications. The framework was constructed to be inherently parallel. The partitioning routines employed in the framework allowed generalized partitioning on highly complex fractured reservoirs and in instances when wells (incorporated in these models as line sources) were divided between two or more processors.

  9. Increasing the predictive power of geostatistical reservoir models by integration of geological constraints from stratigraphic forward modeling

    NARCIS (Netherlands)

    Sacchi, Q.; Borello, E.S.; Weltje, G.J.; Dalman, R.


    Current static reservoir models are created by quantitative integration of interpreted well and seismic data through geostatistical tools. In these models, equiprobable realizations of structural settings and property distributions can be generated by stochastic simulation techniques. The

  10. Fena Valley Reservoir watershed and water-balance model updates and expansion of watershed modeling to southern Guam (United States)

    Rosa, Sarah N.; Hay, Lauren E.


    In 2014, the U.S. Geological Survey, in cooperation with the U.S. Department of Defense’s Strategic Environmental Research and Development Program, initiated a project to evaluate the potential impacts of projected climate-change on Department of Defense installations that rely on Guam’s water resources. A major task of that project was to develop a watershed model of southern Guam and a water-balance model for the Fena Valley Reservoir. The southern Guam watershed model provides a physically based tool to estimate surface-water availability in southern Guam. The U.S. Geological Survey’s Precipitation Runoff Modeling System, PRMS-IV, was used to construct the watershed model. The PRMS-IV code simulates different parts of the hydrologic cycle based on a set of user-defined modules. The southern Guam watershed model was constructed by updating a watershed model for the Fena Valley watersheds, and expanding the modeled area to include all of southern Guam. The Fena Valley watershed model was combined with a previously developed, but recently updated and recalibrated Fena Valley Reservoir water-balance model.Two important surface-water resources for the U.S. Navy and the citizens of Guam were modeled in this study; the extended model now includes the Ugum River watershed and improves upon the previous model of the Fena Valley watersheds. Surface water from the Ugum River watershed is diverted and treated for drinking water, and the Fena Valley watersheds feed the largest surface-water reservoir on Guam. The southern Guam watershed model performed “very good,” according to the criteria of Moriasi and others (2007), in the Ugum River watershed above Talofofo Falls with monthly Nash-Sutcliffe efficiency statistic values of 0.97 for the calibration period and 0.93 for the verification period (a value of 1.0 represents perfect model fit). In the Fena Valley watershed, monthly simulated streamflow volumes from the watershed model compared reasonably well with the

  11. A Combined Thermodynamic and Kinetic Model for Barite Prediction at Oil Reservoir Conditions

    DEFF Research Database (Denmark)

    Zhen Wu, Bi Yun

    dependence of Pitzer parameters for NaCl, Na2SO4 and BaCl2 were derived from published osmotic coefficient data (PhD Study 2). Furthermore, barite solubility was determined experimentally at 90 °C and pressures of 150 and 250 bar. Comparison of barite solubilities calculated with the Pitzer model...... of this research was to develop a model, based on thermodynamics and kinetics, for predicting barite precipitation rates in saline waters at the pressures and temperatures of oil bearing reservoirs, using the geochemical modelling code PHREEQC. This task is complicated by the conditions where traditional methods...... to 90 C at 1 bar of pressure. Resulting thermodynamic and kinetic parameters were combined and coupled with PHREEQC to predict precipitation scaling rates in three oil production wells, where barite has been observed. Average linear growth rates of 3, 2.5 and 2 mm of barite per year were estimated...

  12. Reservoir Engineering Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.; Schwarz, W.J.


    The Reservoir Engineering Management Program being conducted at Lawrence Berkeley Laboratory includes two major tasks: 1) the continuation of support to geothermal reservoir engineering related work, started under the NSF-RANN program and transferred to ERDA at the time of its formation; 2) the development and subsequent implementation of a broad plan for support of research in topics related to the exploitation of geothermal reservoirs. This plan is now known as the GREMP plan. Both the NSF-RANN legacies and GREMP are in direct support of the DOE/DGE mission in general and the goals of the Resource and Technology/Resource Exploitation and Assessment Branch in particular. These goals are to determine the magnitude and distribution of geothermal resources and reduce risk in their exploitation through improved understanding of generically different reservoir types. These goals are to be accomplished by: 1) the creation of a large data base about geothermal reservoirs, 2) improved tools and methods for gathering data on geothermal reservoirs, and 3) modeling of reservoirs and utilization options. The NSF legacies are more research and training oriented, and the GREMP is geared primarily to the practical development of the geothermal reservoirs. 2 tabs., 3 figs.

  13. Integrated reservoir characterization: Improvement in heterogeneities stochastic modelling by integration of additional external constraints

    Energy Technology Data Exchange (ETDEWEB)

    Doligez, B.; Eschard, R. [Institut Francais du Petrole, Rueil Malmaison (France); Geffroy, F. [Centre de Geostatistique, Fontainebleau (France)] [and others


    The classical approach to construct reservoir models is to start with a fine scale geological model which is informed with petrophysical properties. Then scaling-up techniques allow to obtain a reservoir model which is compatible with the fluid flow simulators. Geostatistical modelling techniques are widely used to build the geological models before scaling-up. These methods provide equiprobable images of the area under investigation, which honor the well data, and which variability is the same than the variability computed from the data. At an appraisal phase, when few data are available, or when the wells are insufficient to describe all the heterogeneities and the behavior of the field, additional constraints are needed to obtain a more realistic geological model. For example, seismic data or stratigraphic models can provide average reservoir information with an excellent areal coverage, but with a poor vertical resolution. New advances in modelisation techniques allow now to integrate this type of additional external information in order to constrain the simulations. In particular, 2D or 3D seismic derived information grids, or sand-shale ratios maps coming from stratigraphic models can be used as external drifts to compute the geological image of the reservoir at the fine scale. Examples are presented to illustrate the use of these new tools, their impact on the final reservoir model, and their sensitivity to some key parameters.

  14. Biogeochemical mass balances in a turbid tropical reservoir. Field data and modelling approach (United States)

    Phuong Doan, Thuy Kim; Némery, Julien; Gratiot, Nicolas; Schmid, Martin


    The turbid tropical Cointzio reservoir, located in the Trans Mexican Volcanic Belt (TMVB), behaves as a warm monomictic water body (area = 6 km2, capacity 66 Mm3, residence time ~ 1 year). It is strategic for the drinking water supply of the city of Morelia, capital of the state of Michoacán, and for downstream irrigation during the dry season. This reservoir is a perfect example of a human-impacted system since its watershed is mainly composed of degraded volcanic soils and is subjected to high erosion processes and agricultural loss. The reservoir is threatened by sediment accumulation and nutrients originating from untreated waters in the upstream watershed. The high content of very fine clay particles and the lack of water treatment plants lead to serious episodes of eutrophication (up to 70 μg chl. a L-1), high levels of turbidity (Secchi depth water vertical profiles, reservoir inflow and outflow) we determined suspended sediment (SS), carbon (C), nitrogen (N) and phosphorus (P) mass balances. Watershed SS yields were estimated at 35 t km2 y-1 of which 89-92 % were trapped in the Cointzio reservoir. As a consequence the reservoir has already lost 25 % of its initial storage capacity since its construction in 1940. Nutrient mass balances showed that 50 % and 46 % of incoming P and N were retained by sedimentation, and mainly eliminated through denitrification respectively. Removal of C by 30 % was also observed both by sedimentation and through gas emission. To complete field data analyses we examined the ability of vertical one dimensional (1DV) numerical models (Aquasim biogeochemical model coupled with k-ɛ mixing model) to reproduce the main biogeochemical cycles in the Cointzio reservoir. The model can describe all the mineralization processes both in the water column and in the sediment. The values of the entire mass balance of nutrients and of the mineralization rates (denitrification and aerobic benthic mineralization) calculated from the model

  15. Sediment Deposition Risk Analysis and PLSR Model Research for Cascade Reservoirs Upstream of the Yellow River

    Directory of Open Access Journals (Sweden)

    Jie Yang


    Full Text Available It is difficult to effectively identify and eliminate the multiple correlation influence among the independent factors by least-squares regression. Focusing on this insufficiency, the sediment deposition risk of cascade reservoirs and fitting model of sediment flux into the reservoir are studied. The partial least-squares regression (PLSR method is adopted for modeling analysis; the model fitting is organically combined with the non-model-style data content analysis, so as to realize the regression model, data structure simplification, and multiple correlations analysis among factors; meanwhile the accuracy of the model is ensured through cross validity check. The modeling analysis of sediment flux into the cascade reservoirs of Long-Liu section upstream of the Yellow River indicates that partial least-squares regression can effectively overcome the multiple correlation influence among factors, and the isolated factor variables have better ability to explain the physical cause of measured results.

  16. Characterization and modeling of turbidity density plume induced into stratified reservoir by flood runoffs. (United States)

    Chung, S W; Lee, H S


    In monsoon climate area, turbidity flows typically induced by flood runoffs cause numerous environmental impacts such as impairment of fish habitat and river attraction, and degradation of water supply efficiency. This study was aimed to characterize the physical dynamics of turbidity plume induced into a stratified reservoir using field monitoring and numerical simulations, and to assess the effect of different withdrawal scenarios on the control of downstream water quality. Three different turbidity models (RUN1, RUN2, RUN3) were developed based on a two-dimensional laterally averaged hydrodynamic and transport model, and validated against field data. RUN1 assumed constant settling velocity of suspended sediment, while RUN2 estimated the settling velocity as a function of particle size, density, and water temperature to consider vertical stratification. RUN3 included a lumped first-order turbidity attenuation rate taking into account the effects of particles aggregation and degradable organic particles. RUN3 showed best performance in replicating the observed variations of in-reservoir and release turbidity. Numerical experiments implemented to assess the effectiveness of different withdrawal depths showed that the alterations of withdrawal depth can modify the pathway and flow regimes of the turbidity plume, but its effect on the control of release water quality could be trivial.

  17. Identification of carbonate reservoirs based on well logging data for boreholes drilled using oil base muds

    International Nuclear Information System (INIS)

    Abdukhalikov, Ya.N; Serebrennikov, V.S.


    Experiment on carbonate reservoir identification according to well logging data for boreholes drilled using oil base muds is described. Pulse neutron-neutron logging (PNNL) was widely used at the territory of Pripyat' hole to solve the task. To evaluate volumetric clayiness of carbonate rocks the dependence of gamma-logging, that is data of gamma-logging against clayey rocks built for every hollow, is used. Quantitative estimation of clayiness of dense and clayey carbonate rocks-non-reservoirs is carried out on the basis of the data of neutron-gamma and acoustic logging. Porosity coefficient and lithological characteristic of rocks are also determined according to the data of acoustic and neutron gamma-logging

  18. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Watney, W.L.


    Reservoirs in the Lansing-Kansas City limestone result from complex interactions among paleotopography (deposition, concurrent structural deformation), sea level, and diagenesis. Analysis of reservoirs and surface and near-surface analogs has led to developing a {open_quotes}strandline grainstone model{close_quotes} in which relative sea-level stabilized during regressions, resulting in accumulation of multiple grainstone buildups along depositional strike. Resulting stratigraphy in these carbonate units are generally predictable correlating to inferred topographic elevation along the shelf. This model is a valuable predictive tool for (1) locating favorable reservoirs for exploration, and (2) anticipating internal properties of the reservoir for field development. Reservoirs in the Lansing-Kansas City limestones are developed in both oolitic and bioclastic grainstones, however, re-analysis of oomoldic reservoirs provides the greatest opportunity for developing bypassed oil. A new technique, the {open_quotes}Super{close_quotes} Pickett crossplot (formation resistivity vs. porosity) and its use in an integrated petrophysical characterization, has been developed to evaluate extractable oil remaining in these reservoirs. The manual method in combination with 3-D visualization and modeling can help to target production limiting heterogeneities in these complex reservoirs and moreover compute critical parameters for the field such as bulk volume water. Application of this technique indicates that from 6-9 million barrels of Lansing-Kansas City oil remain behind pipe in the Victory-Northeast Lemon Fields. Petroleum geologists are challenged to quantify inferred processes to aid in developing rationale geologically consistent models of sedimentation so that acceptable levels of prediction can be obtained.

  19. Multi-objective calibration of a reservoir model: aggregation and non-dominated sorting approaches (United States)

    Huang, Y.


    Numerical reservoir models can be helpful tools for water resource management. These models are generally calibrated against historical measurement data made in reservoirs. In this study, two methods are proposed for the multi-objective calibration of such models: aggregation and non-dominated sorting methods. Both methods use a hybrid genetic algorithm as an optimization engine and are different in fitness assignment. In the aggregation method, a weighted sum of scaled simulation errors is designed as an overall objective function to measure the fitness of solutions (i.e. parameter values). The contribution of this study to the aggregation method is the correlation analysis and its implication to the choice of weight factors. In the non-dominated sorting method, a novel method based on non-dominated sorting and the method of minimal distance is used to calculate the dummy fitness of solutions. The proposed methods are illustrated using a water quality model that was set up to simulate the water quality of Pepacton Reservoir, which is located to the north of New York City and is used for water supply of city. The study also compares the aggregation and the non-dominated sorting methods. The purpose of this comparison is not to evaluate the pros and cons between the two methods but to determine whether the parameter values, objective function values (simulation errors) and simulated results obtained are significantly different with each other. The final results (objective function values) from the two methods are good compromise between all objective functions, and none of these results are the worst for any objective function. The calibrated model provides an overall good performance and the simulated results with the calibrated parameter values match the observed data better than the un-calibrated parameters, which supports and justifies the use of multi-objective calibration. The results achieved in this study can be very useful for the calibration of water

  20. Study on fine geological modelling of the fluvial sandstone reservoir in Daqing oilfield

    Energy Technology Data Exchange (ETDEWEB)

    Zhoa Han-Qing [Daqing Research Institute, Helongjiang (China)


    These paper aims at developing a method for fine reservoir description in maturing oilfields by using close spaced well logging data. The main productive reservoirs in Daqing oilfield is a set of large fluvial-deltaic deposits in the Songliao Lake Basin, characterized by multi-layers and serious heterogeneities. Various fluvial channel sandstone reservoirs cover a fairly important proportion of reserves. After a long period of water flooding, most of them have turned into high water cut layers, but there are considerable residual reserves within them, which are difficult to find and tap. Making fine reservoir description and developing sound a geological model is essential for tapping residual oil and enhancing oil recovery. The principal reason for relative lower precision of predicting model developed by using geostatistics is incomplete recognition of complex distribution of fluvial reservoirs and their internal architecture`s. Tasking advantage of limited outcrop data from other regions (suppose no outcrop data available in oilfield) can only provide the knowledge of subtle changing of reservoir parameters and internal architecture. For the specific geometry distribution and internal architecture of subsurface reservoirs (such as in produced regions) can be gained only from continuous infilling logging well data available from studied areas. For developing a geological model, we think the first important thing is to characterize sandbodies geometries and their general architecture`s, which are the framework of models, and then the slight changing of interwell parameters and internal architecture`s, which are the contents and cells of the model. An excellent model should possess both of them, but the geometry is the key to model, because it controls the contents and cells distribution within a model.

  1. A Structurally Simplified Hybrid Model of Genetic Algorithm and Support Vector Machine for Prediction of Chlorophyll a in Reservoirs

    Directory of Open Access Journals (Sweden)

    Jieqiong Su


    Full Text Available With decreasing water availability as a result of climate change and human activities, analysis of the influential factors and variation trends of chlorophyll a has become important to prevent reservoir eutrophication and ensure water supply safety. In this paper, a structurally simplified hybrid model of the genetic algorithm (GA and the support vector machine (SVM was developed for the prediction of monthly concentration of chlorophyll a in the Miyun Reservoir of northern China over the period from 2000 to 2010. Based on the influence factor analysis, the four most relevant influence factors of chlorophyll a (i.e., total phosphorus, total nitrogen, permanganate index, and reservoir storage were extracted using the method of feature selection with the GA, which simplified the model structure, making it more practical and efficient for environmental management. The results showed that the developed simplified GA-SVM model could solve nonlinear problems of complex system, and was suitable for the simulation and prediction of chlorophyll a with better performance in accuracy and efficiency in the Miyun Reservoir.

  2. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    International Nuclear Information System (INIS)

    thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" data-affiliation=" (Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" >Nurhandoko, Bagus Endar B.; Susilowati


    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia

  3. Field Demonstration of Horizontal Infill Drilling Using Cost-effective Integrated Reservoir Modeling--Mississippian Carbonates, Central Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Saibal Bhattacharya


    Mississippian carbonate reservoirs have produced in excess of 1 billion barrels of oil in Kansas accounting for over 16% of the state's production. With declining production from other age reservoirs, the contribution of Mississippian reservoirs to Kansas's oil production has risen to 43% as of 2004. However, solution-enhanced features such as vertical shale intervals extending from the karst erosional surface at the top introduce complexities/compartmentalizations in Mississippian carbonate reservoirs. Coupled with this, strong water drives charge many of these reservoirs resulting in limited drainage from vertical wells due to high water cuts after an initial period of low water production. Moreover, most of these fields are operated by small independent operators without access to the knowledge bank of modern research in field characterization and exploitation/development practices. Thus, despite increasing importance of Mississippian fields to Kansas production, these fields are beset with low recovery factors and high abandonment rates leaving significant resources in the ground. Worldwide, horizontal infill wells have been successful in draining compartmentalized reservoirs with limited pressure depletion. The intent of this project was to demonstrate the application of horizontal wells to successfully exploit the remaining potential in mature Mississippian fields of the mid-continent. However, it is of critical importance that for horizontal wells to be economically successful, they must be selectively targeted. This project demonstrated the application of initial and secondary screening methods, based on publicly available data, to quickly shortlist fields in a target area for detailed studies to evaluate their potential to infill horizontal well applications. Advanced decline curve analyses were used to estimate missing well-level production data and to verify if the well produced under unchanging bottom-hole conditions--two commonly occurring

  4. Evaluation Method of Reservoir Producing Status Based on Cumulative Distribution Curve of Oil Displacement Efficiency

    Directory of Open Access Journals (Sweden)

    Cuo Guan


    Full Text Available This paper provides a method for evaluating the status of old oilfield development. This method mainly uses the abundant coring well data of the oilfield to obtain the cumulative distribution curve of the displacement efficiency after the displacement efficiency of the statistical wells in the study area in a similar period is ordered from small to large. Based on the cumulative distribution curve of displacement efficiency, combined with the reservoir ineffective circulation limit, the cumulative water absorption ratio of reservoirs and other data are used to study the reservoir producing degree, calculate the degree of oil recovery, evaluate the proportion of the remaining movable oil after water flooding, calculate the reservoir ineffective circulation thickness and ineffective circulation water volume, and so on.

  5. Technical note: Cascade of submerged reservoirs as a rainfall-runoff model (United States)

    Kurnatowski, Jacek


    The rainfall-runoff conceptual model as a cascade of submerged linear reservoirs with particular outflows depending on storages of adjoining reservoirs is developed. The model output contains different exponential functions with roots of Chebyshev polynomials of the first kind as exponents. The model is applied to instantaneous unit hydrograph (IUH) and recession curve problems and compared with the analogous results of the Nash cascade. A case study is performed on a basis of 46 recession periods. Obtained results show the usefulness of the model as an alternative concept to the Nash cascade.

  6. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs (Annex 1)

    Energy Technology Data Exchange (ETDEWEB)

    Watney, W.L.


    Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to link the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.

  7. Well test simulation through Discrete Fracture Network modelling in a fractured carbonate reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Casciano, C.; Ruvo, L.; Volpi, B.; Masserano, F.


    A Discrete Fracture Network (DFN) model was used to simulate the results of a production test carried out in a well drilled in a tight, fractured carbonate reservoir. Several static DFN models, depicting different geological scenarios, were built based on data from well logs, core analyses, PLT surveys and structural geology studies. Each of these models underwent a validation procedure, consisting of the simulation of the production test. The comparison between the simulated results and the actual data identified the scenarios whose results most closely matched the actual well behaviour. In order to compensate for the lack of geological data, an iterative loop was performed between the static model and the dynamic simulation. Constraints-added flow simulations provided new information for use in modifying the DFN model, resulting in a step-by-step updating of the static model itself. Finally, a geologically sound model accurately matching the results of the production test was obtained. The final DFN model was used to calculate the equivalent petrophysical parameters that were transferred to the corresponding region of the full field dual-porosity fluid flow model. (author)

  8. Using outcrop data for geological well test modelling in fractured reservoirs

    NARCIS (Netherlands)

    Aljuboori, F.; Corbett, P.; Bisdom, K.; Bertotti, G.; Geiger, S.


    Outcrop fracture data sets can now be acquired with ever more accuracy using drone technology augmented by field observations. These models can be used to form realistic, deterministic models of fractured reservoirs. Fractured well test models are traditionally seen to be finite or infinite

  9. The Pore-scale modeling of multiphase flows in reservoir rocks using the lattice Boltzmann method (United States)

    Mu, Y.; Baldwin, C. H.; Toelke, J.; Grader, A.


    Digital rock physics (DRP) is a new technology to compute the physical and fluid flow properties of reservoir rocks. In this approach, pore scale images of the porous rock are obtained and processed to create highly accurate 3D digital rock sample, and then the rock properties are evaluated by advanced numerical methods at the pore scale. Ingrain's DRP technology is a breakthrough for oil and gas companies that need large volumes of accurate results faster than the current special core analysis (SCAL) laboratories can normally deliver. In this work, we compute the multiphase fluid flow properties of 3D digital rocks using D3Q19 immiscible LBM with two relaxation times (TRT). For efficient implementation on GPU, we improved and reformulated color-gradient model proposed by Gunstensen and Rothmann. Furthermore, we only use one-lattice with the sparse data structure: only allocate memory for pore nodes on GPU. We achieved more than 100 million fluid lattice updates per second (MFLUPS) for two-phase LBM on single Fermi-GPU and high parallel efficiency on Multi-GPUs. We present and discuss our simulation results of important two-phase fluid flow properties, such as capillary pressure and relative permeabilities. We also investigate the effects of resolution and wettability on multiphase flows. Comparison of direct measurement results with the LBM-based simulations shows practical ability of DRP to predict two-phase flow properties of reservoir rock.


    Directory of Open Access Journals (Sweden)

    Teuku Ferijal


    Full Text Available This study aimed to model watershed area of Keliling Reservoir using SWAT model. The reservoir is located in Aceh Besar District, Province of Aceh. The model was setup using 90m x 90m digital elevation model, land use data extracted from remote sensing data and soil characteristic obtained from laboratory analysis on soil samples. Model was calibrated using observed daily reservoir volume and the model performance was analyzed using RMSE-observations standard deviation ratio (RSR, Nash-Sutcliffe efficiency (NSE and percent bias (PBIAS. The model delineated the study area into 3,448 Ha having 13 subwatersheds and 76 land units (HRUs. The watershed is mostly covered by forest (53% and grassland (31%. The analysis revealed the 10 most sensitive parameters i.e. GW_DELAY, CN2, REVAPMN, ALPHA_BF, SOL_AWC, GW_REVAP, GWQMN, CH_K2 and ESCO. Model performances were categorized into very good for monthly reservoir volume with ENS 0.95, RSR 0.23, and PBIAS 2.97. The model performance decreased when it used to analyze daily reservoir inflow with ENS 0.55, RSR 0.67, and PBIAS 3.46. Keywords: Keliling Reservoir, SWAT, Watershed   ABSTRAK Penelitian ini bertujuan untuk untuk memodelkan daerah tangkapan air Waduk Keliling dengan menggunakan Model SWAT. Waduk Keliling terletak di Kabupaten Aceh Besar, Propinsi Aceh. Dalam penelitian ini Model SWAT dikembangkan berdasarkan data digital elevasi model resolusi 90 m x90 m, tata guna lahan yang diperoleh dari intepretasi citra satelit dan data soil dari hasil analisa sampel tanah yang diperoleh di daerah penelitian. Model dikalibrasi dengan data volume waduk dan kinerja model dianalisa menggunakan parameter rasio akar rata-rata kuadrat error dan standard deviasi observasi (RSR, efesiensi Nash-Sutcliffe (NSE dan persentase bias (PBIAS. Hasil deleniasi untuk daerah penelitian menghasilkan suatu DAS dengan luas 3,448 Ha dan memiliki 13 Sub DAS yang dikelompokkan menjadi 76 unit lahan. Sebagian besar wilayah study

  11. Reduced-Order Model for Leakage Through an Open Wellbore from the Reservoir due to Carbon Dioxide Injection

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    Potential CO2 leakage through existing open wellbores is one of the most significant hazards that need to be addressed in geologic carbon sequestration (GCS) projects. In the framework of the National Risk Assessment Partnership (NRAP) which requires fast computations for uncertainty analysis, rigorous simulation of the coupled wellbore-reservoir system is not practical. We have developed a 7,200-point look-up table reduced-order model (ROM) for estimating the potential leakage rate up open wellbores in response to CO2 injection nearby. The ROM is based on coupled simulations using T2Well/ECO2H which was run repeatedly for representative conditions relevant to NRAP to create a look-up table response-surface ROM. The ROM applies to a wellbore that fully penetrates a 20-m thick reservoir that is used for CO2 storage. The radially symmetric reservoir is assumed to have initially uniform pressure, temperature, gas saturation, and brine salinity, and it is assumed these conditions are held constant at the far-field boundary (100 m away from the wellbore). In such a system, the leakage can quickly reach quasi-steady state. The ROM table can be used to estimate both the free-phase CO2 and brine leakage rates through an open well as a function of wellbore and reservoir conditions. Results show that injection-induced pressure and reservoir gas saturation play important roles in controlling leakage. Caution must be used in the application of this ROM because well leakage is formally transient and the ROM lookup table was populated using quasi-steady simulation output after 1000 time steps which may correspond to different physical times for the various parameter combinations of the coupled wellbore-reservoir system.

  12. Surrogate accelerated sampling of reservoir models with complex structures using sparse polynomial chaos expansion (United States)

    Bazargan, Hamid; Christie, Mike; Elsheikh, Ahmed H.; Ahmadi, Mohammad


    Markov Chain Monte Carlo (MCMC) methods are often used to probe the posterior probability distribution in inverse problems. This allows for computation of estimates of uncertain system responses conditioned on given observational data by means of approximate integration. However, MCMC methods suffer from the computational complexities in the case of expensive models as in the case of subsurface flow models. Hence, it is of great interest to develop alterative efficient methods utilizing emulators, that are cheap to evaluate, in order to replace the full physics simulator. In the current work, we develop a technique based on sparse response surfaces to represent the flow response within a subsurface reservoir and thus enable efficient exploration of the posterior probability density function and the conditional expectations given the data. Polynomial Chaos Expansion (PCE) is a powerful tool to quantify uncertainty in dynamical systems when there is probabilistic uncertainty in the system parameters. In the context of subsurface flow model, it has been shown to be more accurate and efficient compared with traditional experimental design (ED). PCEs have a significant advantage over other response surfaces as the convergence to the true probability distribution when the order of the PCE is increased can be proved for the random variables with finite variances. However, the major drawback of PCE is related to the curse of dimensionality as the number of terms to be estimated grows drastically with the number of the input random variables. This renders the computational cost of classical PCE schemes unaffordable for reservoir simulation purposes when the deterministic finite element model is expensive to evaluate. To address this issue, we propose the reduced-terms polynomial chaos representation which uses an impact factor to only retain the most relevant terms of the PCE decomposition. Accordingly, the reduced-terms polynomial chaos proxy can be used as the pseudo

  13. Use of black oil simulator for coal bed methane reservoir model

    Energy Technology Data Exchange (ETDEWEB)

    Sonwa, R.; Enachescu, C.; Rohs, S. [Golder Associates GmbH, Celle (Germany)


    This paper starts from the work done by Seidle et al. (1990) and other authors on the topic of coal degasification and develops a more accurate representative naturally fractured CBM-reservoir by using a Discrete Fracture Network modeling approach. For this issue we firstly calibrate the reservoir simulator tNAVIGATOR by showing his ability to reproduce the work done by Seidle et al. and secondly generate a DFN model using FracMan in accordance with the distribution and orientation of the cleats. tNavigator was then used to simulate multiphase flow through the DFN- Model. (orig.)

  14. Modeling and Crustal Structure in the Future Reservoir of Jequitaí, Brazil (United States)

    Teixeira, C. D.; Von Huelsen, M. G.; Chemale, F., Jr.; Nascimento, A. V. D. S., Sr.; do Sacramento, V., Sr.; Garcia, V. B. P., Sr.


    Integrated geophysical and geological data analysis in the state of Minas Gerais, Brazil, allowed the modeling of the subsurface framework in a region where a reservoir - the Jequitaí reservoir - will be constructed. Studies of this nature during the previous stages of the construction of large hydroelectric projects are highly important, because the regional geology understanding associated with geophysical data interpretation can help to prevent damage in the physical structure of the dam, which will aid in its preservation. The use of gravity and magnetic data in a 2D crustal model provided information on a possible framework of the area and revealed features not mapped until now, which may be useful for further studies and can contribute to the understanding of this portion of the crust. The results show the presence of high gravity anomalies in the southern part of the study area, besides extensive lineaments that cross the whole area, interpreted as possible faults and dykes. Depth estimation techniques, such as Euler deconvolution and radially averaged power spectrum, allowed the identification of continuous structures up to 400 m depth, and showed differences in the basement depth in the northern and southern portions of the study area. Inversion of the gravity data along a profile crossing a gravity anomaly yielded to information about the depth, thickness and shape of a possible intrusive body. The geological-geophysical model was consistent with the interpretations based on surface geology and in the gravity and magnetic signal, because the section could be modeled respecting the geophysical data and the pre-existing structural proposals.

  15. Productivity model for gas reservoirs with open-hole multi-fracturing horizontal wells and optimization of hydraulic fracture parameters

    Directory of Open Access Journals (Sweden)

    Jianqiang Xue


    Full Text Available Multi-fractured horizontal wells are commonly employed to improve the productivity of low and ultra-low permeability gas reservoirs. However, conventional productivity models for open-hole multi-fractured horizontal wells do not consider the interferences between hydraulic fractures and the open-hole segments, resulting in significant errors in calculation results. In this article, a novel productivity prediction model for gas reservoirs with open-hole multi-fractured horizontal wells was proposed based on complex potential theories, potential superimposition, and numerical analysis. Herein, an open-hole segment between two adjacent fractures was regarded as an equivalent fracture, which was discretized as in cases of artificial fractures. The proposed model was then applied to investigate the effects of various parameters, such as the angle between the fracture and horizontal shaft, fracture quantity, fracture length, diversion capacity of fractures, horizontal well length, and inter-fracture distance, on the productivity of low permeability gas reservoirs with multi-fractured horizontal wells. Simulation results revealed that the quantity, length, and distribution of fractures had significant effects on the productivity of low permeability gas reservoirs while the effects of the diversion capacity of fractures and the angle between the fracture and horizontal shaft were negligible. Additionally, a U-shaped distribution of fracture lengths was preferential as the quantity of fractures at shaft ends was twice that in the middle area. Keywords: Low permeability gas reservoir, Multi-fractured horizontal well, Productivity prediction, Open-hole completion, Unsteady-state flow, Fracture parameters optimization

  16. Uncertainty based analysis of the impact of watershed phosphorus load on reservoir phosphorus concentration (United States)

    Karamouz, Mohammad; Taheriyoun, Masoud; Seyedabadi, Mohammadreza; Nazif, Sara


    In many regions of the world that depend on surface reservoirs as a source of water supply, eutrophication is a major water quality problem. Developing simulation models to evaluate the impact of watershed nutrient loads on the reservoir's water quality is an essential step in eutrophication management. In this regard, analysis of model uncertainty gives an opportunity to assess the reliability and the margin of safety of the model predictions for Total Maximum Daily Load (TMDL) from the watershed nutrient load. In this study, a computational procedure has been proposed for the analysis of the model uncertainties in simulation of watershed phosphorous load and reservoir phosphorous concentration. Data from the Aharchai watershed which is located upstream of the Satarkhan reservoir in the northwestern part of Iran, is used as the study area to test the effectiveness of the proposed methodology. The Soil and Water Assessment Tools (SWAT) is utilized for assessment of watershed phosphorus load as the main agent resulting in the reservoir eutrophication in the region. The most effective parameters in model performance are identified by a global sensitivity analysis technique named modified Fourier Amplitude Sensitivity Test (FAST) which can incorporate parameter interdependencies. The Generalized Likelihood Uncertainty Estimation (GLUE) technique is also applied to set up behavioral ranges of the parameters that are relevant to the actual observations. Finally, the cumulative weighted-likelihood distribution functions (CWLDF) are derived for outputs of the SWAT. They are used jointly for estimation of results uncertainty limits using the Copula method. To assess the effectiveness of applying Best Management Practices (BMPs) in the watershed, two scenarios of with and without BMPs application are tested. The results showed the effectiveness of the proposed model in uncertainty estimation of watershed phosphorus load and reservoir phosphorus concentration as well as the

  17. Model-reduced gradient-based history matching

    NARCIS (Netherlands)

    Kaleta, M.P.


    Since the world's energy demand increases every year, the oil & gas industry makes a continuous effort to improve fossil fuel recovery. Physics-based petroleum reservoir modeling and closed-loop model-based reservoir management concept can play an important role here. In this concept measured data


    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini


    processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The models represent an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic models served as the framework for the simulations. The geologic-engineering models of the Appleton and Vocation Field reservoirs have been developed. These models are being tested. The geophysical interpretation for the paleotopographic feature being tested has been made, and the study of the data resulting from drilling of a well on this paleohigh is in progress. Numerous presentations on reservoir characterization and modeling at Appleton and Vocation Fields have been made at professional meetings and conferences and a short course on microbial reservoir characterization and modeling based on these fields has been prepared.

  19. Final Report to DOE EERE – Geothermal Technologies Program Project Title: Monitoring and modeling of fluid flow in a developing enhanced geothermal system (EGS) reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Fehler, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)


    The primary objective of this project was to improve our ability to predict performance of an Enhanced Geothermal System (EGS) reservoir over time by relating, in a quantitative manner, microseismic imaging with fluid and temperature changes within the reservoir. Historically, microseismic data have been used qualitatively to place bounds on the growth of EGS reservoirs created by large hydraulic fracturing experiments. Previous investigators used an experimentally based fracture opening relationship (fracture aperture as a function of pressure), the spatial extent of microseismic events, and some assumptions about fracture frequency to determine the size of an EGS reservoir created during large pumping tests. We addressed a number of issues (1) locating microearthquakes that occur during hydraulic fracturing, (2) obtaining more information about a reservoir than the microearthquake locations from the microearthquake data, for example, information about the seismic velocity structure of the reservoir or the scattering of seismic waves within the reservoir, (3) developing an improved methodology for estimating properties of fractures that intersect wellbores in a reservoir, and (4) developing a conceptual model for explaining the downward growth of observed seismicity that accompanies some hydraulic injections into geothermal reservoirs. We used two primary microseismic datasets for our work. The work was motivated by a dataset from the Salak Geothermal Field in Indonesia where seismicity accompanying a hydraulic injection was observed to migrate downward. We also used data from the Soultz EGS site in France. We also used Vertical Seismic Profiling data from a well in the United States. The work conducted is of benefit for characterizing reservoirs that are created by hydraulic fracturing for both EGS and for petroleum recovery.

  20. Rock Physics Modeling and Seismic Interpretation to Estimate Shally Cemented Zone in Carbonate Reservoir Rock

    Directory of Open Access Journals (Sweden)

    Handoyo Handoyo


    Full Text Available Carbonate rock are important hydrocarbon reservoir rocks with complex texture and petrophysical properties (porosity and permeability. These complexities make the prediction reservoir characteristics (e.g. porosity and permeability from their seismic properties more difficult. The goal of this paper are to understanding the relationship of physical properties and to see the signature carbonate initial rock and shally-carbonate rock from the reservoir. To understand the relationship between the seismic, petrophysical and geological properties, we used rock physics modeling from ultrasonic P- and S- wave velocity that measured from log data. The measurements obtained from carbonate reservoir field (gas production. X-ray diffraction and scanning electron microscope studies shown the reservoir rock are contain wackestone-packstone content. Effective medium theory to rock physics modeling are using Voigt, Reuss, and Hill.  It is shown the elastic moduly proposionally decrease with increasing porosity. Elastic properties and wave velocity are decreasing proporsionally with increasing porosity and shally cemented on the carbonate rock give higher elastic properties than initial carbonate non-cemented. Rock physics modeling can separated zones which rich of shale and less of shale.

  1. Stream, Lake, and Reservoir Management. (United States)

    Dai, Jingjing; Mei, Ying; Chang, Chein-Chi


    This review on stream, lake, and reservoir management covers selected 2016 publications on the focus of the following sections: Stream, lake, and reservoir management • Water quality of stream, lake, and reservoirReservoir operations • Models of stream, lake, and reservoir • Remediation and restoration of stream, lake, and reservoir • Biota of stream, lake, and reservoir • Climate effect of stream, lake, and reservoir.

  2. Reservoir Modeling of Carbonate on Fika Field: The Challenge to Capture the Complexity of Rock and Oil Types

    Directory of Open Access Journals (Sweden)

    Erawati Fitriyani Adji


    Full Text Available DOI: 10.17014/ijog.v1i2.181The carbonate on Fika Field has a special character, because it grew above a basement high with the thickness and internal character variation. To develop the field, a proper geological model which can be used in reservoir simulation was needed. This model has to represent the complexity of the rock type and the variety of oil types among the clusters. Creating this model was challenging due to the heterogeneity of the Baturaja Formation (BRF: Early Miocene reef, carbonate platform, and breccia conglomerate grew up above the basement with a variety of thickness and quality distributions. The reservoir thickness varies between 23 - 600 ft and 3D seismic frequency ranges from 1 - 80 Hz with 25 Hz dominant frequency. Structurally, the Fika Field has a high basement slope, which has an impact on the flow unit layering slope. Based on production data, each area shows different characteristics and performance: some areas have high water cut and low cumulative production. Oil properties from several clusters also vary in wax content. The wax content can potentially build up a deposit inside tubing and flow-line, resulted in a possible disturbance to the operation. Five well cores were analyzed, including thin section and XRD. Seven check-shot data and 3D seismic Pre-Stack Time Migration (PSTM were available with limited seismic resolution. A seismic analysis was done after well seismic tie was completed. This analysis included paleogeography, depth structure map, and distribution of reservoir and basement. Core and log data generated facies carbonate distribution and rock typing, defining properties for log analysis and permeability prediction for each zone. An Sw prediction for each well was created by J-function analysis. This elaborates capillary pressure from core data, so it is very similar to the real conditions. Different stages of the initial model were done i.e. scale-up properties, data analysis, variogram modeling

  3. Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber (United States)

    Tsuchiya, N.


    We are conducting supercritical geothermal project, and deep drilling project named as "JBBP: Japan Beyond Brittle Project" The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological

  4. An Outcrop-based Detailed Geological Model to Test Automated Interpretation of Seismic Inversion Results

    NARCIS (Netherlands)

    Feng, R.; Sharma, S.; Luthi, S.M.; Gisolf, A.


    Previously, Tetyukhina et al. (2014) developed a geological and petrophysical model based on the Book Cliffs outcrops that contained eight lithotypes. For reservoir modelling purposes, this model is judged to be too coarse because in the same lithotype it contains reservoir and non-reservoir

  5. 3a static model of Oligocene and lower Miocene oil reservoirs, Junin 5 block, Orinoco heavy oil belt, Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, G.; Simon, C.; Capoferri, E.; Redaelli, M.; Marcano, E. [Eni Venezuela B.V., Caracas (Venezuela, Bolivarian Republic of); Solorzano, E. [PDVSA Petroleos de Venezuela SA, Caracas (Venezuela, Bolivarian Republic of). CVP


    The presence of oil in Venezuela's Orinoco heavy oil belt has been known since the 1930's, but the first rigorous evaluation of the resource was only made in the 1980's and revised in 2005. The Faja Petrolifera del Orinoco (FPO) has been divided into 4 areas, namely the Boyaca (6 blocks), Junin (11 blocks), Ayacucho (7 blocks) and Carabobo (4 blocks). The Junin 5 block covers a surface area of 672 km{sup 2} and consists of extra-heavy oil accumulations with an average API gravity of 8. Field static and dynamic models were generated as part of a joint study agreement between PDVSA and Eni Venezuela that included the quantification and the certification of stock tank oil initially in place (STOIIP). A reservoir analysis was performed based on original geophysical, petrophysical, stratigraphic and sedimentological studies. The Cretaceous to Oligo-Miocene reservoir sequence consists of a complex mix of fluvial and tidal delta facies interbedded with alluvial and coastal plain non-reservoir intervals. Structurally, the sequence consists of a faulted monocline dipping north-northeast and onlapping southwards onto Paleozoic meta-sediments. The 6 petrophysical facies include coarse-medium sand, fine-medium sand, heterolithic deposits, coal, tight facies and shale. A relationship between petrophysical facies derived from electric logs and sedimentological facies described from bottom-hole cores was found. At least 15 hydraulic units were defined in the whole sequence. All the results of the reservoir analysis were integrated into a geo-cellular model of the whole Junin 5 block. The STOIIP of the Junin 5 block, which was computed taking into account all the pay facies, was found to be 39,416 MMSTB. The most important reservoirs are the Arenas Basales and the Oligocene which contain more than 85 per cent of the oil volume. 12 refs., 1 tab., 14 figs.

  6. Modelling the impacts of altered management practices, land use and climate changes on the water quality of the Millbrook catchment-reservoir system in South Australia. (United States)

    Nguyen, Hong Hanh; Recknagel, Friedrich; Meyer, Wayne; Frizenschaf, Jacqueline; Shrestha, Manoj Kumar


    Sustainable management of drinking water reservoirs requires taking into account the potential effects of their catchments' development. This study is an attempt to estimate the daily patterns of nutrients transport in the catchment - reservoir systems through the application of the ensemble of complementary models SWAT-SALMO. SWAT quantifies flow, nitrate and phosphate loadings originating in catchments before entering downstream reservoirs meanwhile SALMO determines phosphate, nitrate, and chlorophyll-a concentrations within the reservoirs. The study applies to the semi-arid Millbrook catchment-reservoir system that supplies drinking water to north-eastern suburbs of Adelaide, South Australia. The catchment hosts viti- and horticultural land uses. The warm-monomictic, mesotrophic reservoir is artificially aerated in summer. After validating the simulation results for both Millbrook catchment and reservoir, a comprehensive scenario analysis has been conducted to reveal cascading effects of altered management practices, land uses and climate conditions on water quality in the reservoir. Results suggest that the effect on reservoir condition in summer would be severe, most likely resulting in chlorophyll-a concentrations of greater than 40 μg/l if the artificial destratification was not applied from early summer. A 50% curbing of water diversion from an external pipeline to the catchment will slightly limit chlorophyll-a concentrations by 1.22% as an effect of reduced inflow phosphate loads. The simulation of prospective land use scenarios converting 50% of present pasture in the Millbrook catchment into residential and orchards areas indicates an increase of summer chlorophyll-a concentrations by 9.5-107.9%, respectively in the reservoir. Global warming scenarios based on the high emission simulated by SWAT-SALMO did result in earlier growth of chlorophyll-a but overall the effects on water quality in the Millbrook reservoir was not significant. However scenarios

  7. Carbonate Reservoiring Capability Evaluation Based on Multifractal Analysis of Micropore Structures (United States)

    Xie, S.; Cheng, Q.; Xing, X.; Liu, X.; Bao, Z.


    It has been of great importance for evaluating the petrophysical properties of the reserves and then predicting the productivity of petroleum fields. In tradition, the petrophysical porosity and permeability are measured by experiments which were usually time-consuming and may even result in incorrect conclusions. The fractal and multifractal analysis of pore spaces based on digital images have been attracting much attention. For the pore-scale analysis, it is challenging to study the irregularities of pore shapes and the frequency distributions of pore sizes. In this paper, based on one program for fractal and multifractal analysis of two-dimensional binary images (, Edith Perrier, Ana M. Tarquis, Annette Dathe) for soil pore space analysis, we studied the distribution patterns of the pore spaces of carbonate reservoiring rocks which are from the Tarim Basin in Xinjiang Province, China. In terms of the box-counting fractal dimensions, generalized fractal dimensions and multifractal spectra of the micropores, the reservoiring capacity of the rocks are quantitatively evaluated. The higher the fractal dimensions are, the greater the reservoiring capabilities would be. In this aspect, the fractal and multifractal parameters would be helpful for the quantitative evaluation of reservoiring capabilities. Key Words: ESEM images, Micropore, Fractal and Multifractal, Carbonate Reservoir.

  8. Effect of reservoir heterogeneity on air injection performance in a light oil reservoir

    Directory of Open Access Journals (Sweden)

    Hu Jia


    Full Text Available Air injection is a good option to development light oil reservoir. As well-known that, reservoir heterogeneity has great effect for various EOR processes. This also applies to air injection. However, oil recovery mechanisms and physical processes for air injection in heterogeneous reservoir with dip angle are still not well understood. The reported setting of reservoir heterogeneous for physical model or simulation model of air injection only simply uses different-layer permeability of porous media. In practice, reservoir heterogeneity follows the principle of geostatistics. How much of contrast in permeability actually challenges the air injection in light oil reservoir? This should be investigated by using layered porous medial settings of the classical Dykstra-Parsons style. Unfortunately, there has been no work addressing this issue for air injection in light oil reservoir. In this paper, Reservoir heterogeneity is quantified based on the use of different reservoir permeability distribution according to classical Dykstra-Parsons coefficients method. The aim of this work is to investigate the effect of reservoir heterogeneity on physical process and production performance of air injection in light oil reservoir through numerical reservoir simulation approach. The basic model is calibrated based on previous study. Total eleven pseudo compounders are included in this model and ten complexity of reactions are proposed to achieve the reaction scheme. Results show that oil recovery factor is decreased with the increasing of reservoir heterogeneity both for air and N2 injection from updip location, which is against the working behavior of air injection from updip location. Reservoir heterogeneity sometimes can act as positive effect to improve sweep efficiency as well as enhance production performance for air injection. High O2 content air injection can benefit oil recovery factor, also lead to early O2 breakthrough in heterogeneous reservoir. Well

  9. Coupled Thermo-Hydro-Mechanical-Chemical Modeling of Water Leak-Off Process during Hydraulic Fracturing in Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Fei Wang


    Full Text Available The water leak-off during hydraulic fracturing in shale gas reservoirs is a complicated transport behavior involving thermal (T, hydrodynamic (H, mechanical (M and chemical (C processes. Although many leak-off models have been published, none of the models fully coupled the transient fluid flow modeling with heat transfer, chemical-potential equilibrium and natural-fracture dilation phenomena. In this paper, a coupled thermo-hydro-mechanical-chemical (THMC model based on non-equilibrium thermodynamics, hydrodynamics, thermo-poroelastic rock mechanics, and non-isothermal chemical-potential equations is presented to simulate the water leak-off process in shale gas reservoirs. The THMC model takes into account a triple-porosity medium, which includes hydraulic fractures, natural fractures and shale matrix. The leak-off simulation with the THMC model involves all the important processes in this triple-porosity medium, including: (1 water transport driven by hydraulic, capillary, chemical and thermal osmotic convections; (2 gas transport induced by both hydraulic pressure driven convection and adsorption; (3 heat transport driven by thermal convection and conduction; and (4 natural-fracture dilation considered as a thermo-poroelastic rock deformation. The fluid and heat transport, coupled with rock deformation, are described by a set of partial differential equations resulting from the conservation of mass, momentum, and energy. The semi-implicit finite-difference algorithm is proposed to solve these equations. The evolution of pressure, temperature, saturation and salinity profiles of hydraulic fractures, natural fractures and matrix is calculated, revealing the multi-field coupled water leak-off process in shale gas reservoirs. The influences of hydraulic pressure, natural-fracture dilation, chemical osmosis and thermal osmosis on water leak-off are investigated. Results from this study are expected to provide a better understanding of the

  10. Forecasting monthly inflow discharge of the Iffezheim reservoir using data-driven models (United States)

    Zhang, Qing; Aljoumani, Basem; Hillebrand, Gudrun; Hoffmann, Thomas; Hinkelmann, Reinhard


    River stream flow is an essential element in hydrology study fields, especially for reservoir management, since it defines input into reservoirs. Forecasting this stream flow plays an important role in short or long-term planning and management in the reservoir, e.g. optimized reservoir and hydroelectric operation or agricultural irrigation. Highly accurate flow forecasting can significantly reduce economic losses and is always pursued by reservoir operators. Therefore, hydrologic time series forecasting has received tremendous attention of researchers. Many models have been proposed to improve the hydrological forecasting. Due to the fact that most natural phenomena occurring in environmental systems appear to behave in random or probabilistic ways, different cases may need a different methods to forecast the inflow and even a unique treatment to improve the forecast accuracy. The purpose of this study is to determine an appropriate model for forecasting monthly inflow to the Iffezheim reservoir in Germany, which is the last of the barrages in the Upper Rhine. Monthly time series of discharges, measured from 1946 to 2001 at the Plittersdorf station, which is located 6 km downstream of the Iffezheim reservoir, were applied. The accuracies of the used stochastic models - Fiering model and Auto-Regressive Integrated Moving Average models (ARIMA) are compared with Artificial Intelligence (AI) models - single Artificial Neural Network (ANN) and Wavelet ANN models (WANN). The Fiering model is a linear stochastic model and used for generating synthetic monthly data. The basic idea in modeling time series using ARIMA is to identify a simple model with as few model parameters as possible in order to provide a good statistical fit to the data. To identify and fit the ARIMA models, four phase approaches were used: identification, parameter estimation, diagnostic checking, and forecasting. An automatic selection criterion, such as the Akaike information criterion, is utilized

  11. Characterization of facies and permeability patterns in carbonate reservoirs based on outcrop analogs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kerans, C.; Lucia, F.J.; Senger, R.K.; Fogg, G.E.; Nance, H.S.; Hovorka, S.D.


    The primary objective of this research is to develop methods for better describing the three-dimensional geometry of carbonate reservoir flow units as related to conventional or enhanced recovery of oil. San Andres and Grayburg reservoirs were selected for study because of the 13 Bbbl of remaining mobile oil and 17 Bbbl of residual oil in these reservoirs. The key data base is provided by detailed characterization of geologic facies and rock permeability in reservior-scale outcrops of the Permian San Andres Formation in the Guadalupe Mountains of New Mexico. Emphasis is placed on developing an outcrop analog for San Andres strata that can be used as (1) a guide to interpreting the regional and local geologic framework of the subsurface reservoirs (2) a data source illustrating the scales and patterns of variability of rock-fabric facies and petrophysical properties, particularly in lateral dimension, and on scales that cannot be studied during subsurface reservoir characterization. The research approach taken to achieve these objectives utilizes the integration of geologic description, geostatistical techniques, and reservoir flow simulation experiments. Results from this research show that the spatial distribution of facies relative to the waterflood direction can significantly affect how the reservoir produces. Bypassing of unswept oil occurs due to cross flow of injected water from high permeability zones into lower permeability zones were high permeability zones terminate. An area of unswept oil develops because of the slower advance of the water-injection front in the lower permeability zones. When the injection pattern is reversed, the cross-flow effect changes due to the different arrangements of rock-fabric flow units relative to the flow of injected water, and the sweep efficiency is significantly different. Flow across low-permeability mudstones occurs showing that these layers do not necessarily represent flow barriers.

  12. Multi-Objective History Matching with a Proxy Model for the Characterization of Production Performances at the Shale Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Jaejun Kim


    Full Text Available This paper presents a fast, reliable multi-objective history-matching method based on proxy modeling to forecast the production performances of shale gas reservoirs for which all available post-hydraulic-fracturing production data, i.e., the daily gas rate and cumulative-production volume until the given date, are honored. The developed workflow consists of distance-based generalized sensitivity analysis (DGSA to determine the spatiotemporal-parameter significance, fast marching method (FMM as a proxy model, and a multi-objective evolutionary algorithm to integrate the dynamic data. The model validation confirms that the FMM is a sound surrogate model working within an error of approximately 2% for the estimated ultimate recovery (EUR, and it is 11 times faster than a full-reservoir simulation. The predictive accuracy on future production after matching 1.5-year production histories is assessed to examine the applicability of the proposed method. The DGSA determines the effective parameters with respect to the gas rate and the cumulative volume, including fracture permeability, fracture half-length, enhanced permeability in the stimulated reservoir volume, and average post-fracturing porosity. A comparison of the prediction accuracy for single-objective optimization shows that the proposed method accurately estimates the recoverable volume as well as the production profiles to within an error of 0.5%, while the single-objective consideration reveals the scale-dependency problem with lesser accuracy. The results of this study are useful to overcome the time-consuming effort of using a multi-objective evolutionary algorithm and full-scale reservoir simulation as well as to conduct a more-realistic prediction of the shale gas reserves and the corresponding production performances.

  13. Optimized reservoir operation model of regional wind and hydro power integration case study: Zambezi basin and South Africa

    International Nuclear Information System (INIS)

    Gebretsadik, Yohannes; Fant, Charles; Strzepek, Kenneth; Arndt, Channing


    Highlights: • The study introduced reliability assessment method of integrated wind–hydropower operation. • The method identifies optimum target power operations that maximizes the firm generation. • We test the proposed method on interconnected system of reservoirs in Southern Africa region. • Results indicate that higher penetration of wind power can be achieved through the proposed frame work of operation. - Abstract: The present study develops a reliability assessment method of wind resource using optimum reservoir target power operations that maximizes the firm generation of integrated wind and hydropower. A combination of water resources model for a system of reservoirs that implements a demand–priority based linear programing algorithm and a single node power grid system model is implemented on hourly time step. This model was accompanied by a global genetic algorithm solver to determine optimum operation targets for each storage reservoir aiming at maximizing the 90th percentile power generation produced by the integration of wind and hydro over the entire simulation period. This model was applied on the reservoir storages and hydropower system in the Zambezi river basin to test if the storage reservoirs could be efficiently be used to offset wind power intermittence in South Africa subjected to the different physical and policy constraints. Based on the optimized target operation and hourly annual real data for the year 2010, the water resources system and power interconnection system were simulated together to assess the maximum firm generation of power as a result of the new wind and hydro combination target for storage hydropower plants. The result obtained indicates that high regulation of wind and hydro can be achieved as a result of combined operation and showed 45% increase in the level of wind penetration in South Africa’s power system over the reference scenario. The result also indicated a reduced level of coal power utilization and

  14. HIV Model Parameter Estimates from Interruption Trial Data including Drug Efficacy and Reservoir Dynamics (United States)

    Luo, Rutao; Piovoso, Michael J.; Martinez-Picado, Javier; Zurakowski, Ryan


    Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used for prediction only if the model parameters are identifiable from clinical data. Most previous parameter identification studies for HIV have used sparsely sampled data from the decay phase following the introduction of therapy. In this paper, model parameters are identified from frequently sampled viral-load data taken from ten patients enrolled in the previously published AutoVac HAART interruption study, providing between 69 and 114 viral load measurements from 3–5 phases of viral decay and rebound for each patient. This dataset is considerably larger than those used in previously published parameter estimation studies. Furthermore, the measurements come from two separate experimental conditions, which allows for the direct estimation of drug efficacy and reservoir contribution rates, two parameters that cannot be identified from decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the model parameter values, with initial estimates obtained using nonlinear least-squares methods. The posterior distributions of the parameter estimates are reported and compared for all patients. PMID:22815727

  15. Modelling earthquake location errors at a reservoir scale: a case study in the Upper Rhine Graben (United States)

    Kinnaert, X.; Gaucher, E.; Achauer, U.; Kohl, T.


    Earthquake absolute location errors which can be encountered in an underground reservoir are investigated. In such an exploitation context, earthquake hypocentre errors can have an impact on the field development and economic consequences. The approach using the state-of-the-art techniques covers both the location uncertainty and the location inaccuracy—or bias—problematics. It consists, first, in creating a 3-D synthetic seismic cloud of events in the reservoir and calculating the seismic traveltimes to a monitoring network assuming certain propagation conditions. In a second phase, the earthquakes are relocated with assumptions different from the initial conditions. Finally, the initial and relocated hypocentres are compared. As a result, location errors driven by the seismic onset time picking uncertainties and inaccuracies are quantified in 3-D. Effects induced by erroneous assumptions associated with the velocity model are also modelled. In particular, 1-D velocity model uncertainties, a local 3-D perturbation of the velocity and a 3-D geostructural model are considered. The present approach is applied to the site of Rittershoffen (Alsace, France), which is one of the deep geothermal fields existing in the Upper Rhine Graben. This example allows setting realistic scenarios based on the knowledge of the site. In that case, the zone of interest, monitored by an existing seismic network, ranges between 1 and 5 km depth in a radius of 2 km around a geothermal well. Well log data provided a reference 1-D velocity model used for the synthetic earthquake relocation. The 3-D analysis highlights the role played by the seismic network coverage and the velocity model in the amplitude and orientation of the location uncertainties and inaccuracies at subsurface levels. The location errors are neither isotropic nor aleatoric in the zone of interest. This suggests that although location inaccuracies may be smaller than location uncertainties, both quantities can have a

  16. Modeling and optimizing the design of matrix treatments in carbonate reservoirs with self-diverting acid systems

    International Nuclear Information System (INIS)

    Bulgakova, G T; Kharisov, R Ya; Sharifullin, A R; Pestrikov, A V


    Application of a self-diverting-acid based on viscoelastic surfactant (SDVA) is a promising technology for improving the efficacy of acid treatment in oil and gas-bearing carbonate reservoirs. In this study, we present a mathematical model for assessing SDVA flow and reaction with carbonate rock using the SDVA rheological characteristics. The model calculates the technological parameters for acidizing operations and the prediction of well productivity after acid treatment, in addition to technical and economic optimization of the acidizing process by modeling different acid treatment options with varying volumes, injection rates, process fluids stages and initial economic scenarios

  17. Impact of Reservoir Operation to the Inflow Flood - a Case Study of Xinfengjiang Reservoir (United States)

    Chen, L.


    Building of reservoir shall impact the runoff production and routing characteristics, and changes the flood formation. This impact, called as reservoir flood effect, could be divided into three parts, including routing effect, volume effect and peak flow effect, and must be evaluated in a whole by using hydrological model. After analyzing the reservoir flood formation, the Liuxihe Model for reservoir flood forecasting is proposed. The Xinfengjiang Reservoir is studied as a case. Results show that the routing effect makes peak flow appear 4 to 6 hours in advance, volume effect is bigger for large flood than small one, and when rainfall focus on the reservoir area, this effect also increases peak flow largely, peak flow effect makes peak flow increase 6.63% to 8.95%. Reservoir flood effect is obvious, which have significant impact to reservoir flood. If this effect is not considered in the flood forecasting model, the flood could not be forecasted accurately, particularly the peak flow. Liuxihe Model proposed for Xinfengjiang Reservoir flood forecasting has a good performance, and could be used for real-time flood forecasting of Xinfengjiang Reservoir.Key words: Reservoir flood effect, reservoir flood forecasting, physically based distributed hydrological model, Liuxihe Model, parameter optimization

  18. 3D architecture modeling of reservoir compartments in a Shingled Turbidite Reservoir using high-resolution seismic data and sparse well control, example from Mars {open_quotes}Pink{close_quotes} reservoir, Mississippi Canyon Area, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, M.A.; Mahaffie, M.J.; Tiller, G.M. [Shell Exploration and Production Technology Co., Houston, TX (United States)


    Economics of most deep-water development projects require large reservoir volumes to be drained with relatively few wells. The presence of reservoir compartments must therefore be detected and planned for in a pre-development stage. We have used 3-D seismic data to constrain large-scale, deterministic reservoir bodies in a 3-D architecture model of Pliocene-turbidite sands of the {open_quotes}E{close_quotes} or {open_quotes}Pink{close_quotes} reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. Reservoir compartmentalization is influenced by stratigraphic shingling, which in turn is caused by low accommodation space predentin the upper portion of a ponded seismic sequence within a salt withdrawal mini-basin. The accumulation is limited by updip onlap onto a condensed section marl, and by lateral truncation by a large scale submarine erosion surface. Compartments were suggested by RFT pressure variations and by geochemical analysis of RFT fluid samples. A geological interpretation derived from high-resolution 3-D seismic and three wells was linked to 3-D architecture models through seismic inversion, resulting in a reservoir all available data. Distinguishing subtle stratigraphical shingles from faults was accomplished by detailed, loop-level mapping, and was important to characterize the different types of reservoir compartments. Seismic inversion was used to detune the seismic amplitude, adjust sandbody thickness, and update the rock properties. Recent development wells confirm the architectural style identified. This modeling project illustrates how high-quality seismic data and architecture models can be combined in a pre-development phase of a prospect, in order to optimize well placement.

  19. 3D architecture modeling of reservoir compartments in a Shingled Turbidite Reservoir using high-resolution seismic data and sparse well control, example from Mars [open quotes]Pink[close quotes] reservoir, Mississippi Canyon Area, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, M.A.; Mahaffie, M.J.; Tiller, G.M. (Shell Exploration and Production Technology Co., Houston, TX (United States))


    Economics of most deep-water development projects require large reservoir volumes to be drained with relatively few wells. The presence of reservoir compartments must therefore be detected and planned for in a pre-development stage. We have used 3-D seismic data to constrain large-scale, deterministic reservoir bodies in a 3-D architecture model of Pliocene-turbidite sands of the [open quotes]E[close quotes] or [open quotes]Pink[close quotes] reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. Reservoir compartmentalization is influenced by stratigraphic shingling, which in turn is caused by low accommodation space predentin the upper portion of a ponded seismic sequence within a salt withdrawal mini-basin. The accumulation is limited by updip onlap onto a condensed section marl, and by lateral truncation by a large scale submarine erosion surface. Compartments were suggested by RFT pressure variations and by geochemical analysis of RFT fluid samples. A geological interpretation derived from high-resolution 3-D seismic and three wells was linked to 3-D architecture models through seismic inversion, resulting in a reservoir all available data. Distinguishing subtle stratigraphical shingles from faults was accomplished by detailed, loop-level mapping, and was important to characterize the different types of reservoir compartments. Seismic inversion was used to detune the seismic amplitude, adjust sandbody thickness, and update the rock properties. Recent development wells confirm the architectural style identified. This modeling project illustrates how high-quality seismic data and architecture models can be combined in a pre-development phase of a prospect, in order to optimize well placement.

  20. A simple multistage closed-(box+reservoir model of chemical evolution

    Directory of Open Access Journals (Sweden)

    Caimmi R.


    Full Text Available Simple closed-box (CB models of chemical evolution are extended on two respects, namely (i simple closed-(box+reservoir (CBR models allowing gas outflow from the box into the reservoir (Hartwick 1976 or gas inflow into the box from the reservoir (Caimmi 2007 with rate proportional to the star formation rate, and (ii simple multistage closed-(box+reservoir (MCBR models allowing different stages of evolution characterized by different inflow or outflow rates. The theoretical differential oxygen abundance distribution (TDOD predicted by the model maintains close to a continuous broken straight line. An application is made where a fictitious sample is built up from two distinct samples of halo stars and taken as representative of the inner Galactic halo. The related empirical differential oxygen abundance distribution (EDOD is represented, to an acceptable extent, as a continuous broken line for two viable [O/H]-[Fe/H] empirical relations. The slopes and the intercepts of the regression lines are determined, and then used as input parameters to MCBR models. Within the errors (-+σ, regression line slopes correspond to a large inflow during the earlier stage of evolution and to low or moderate outflow during the subsequent stages. A possible inner halo - outer (metal-poor bulge connection is also briefly discussed. Quantitative results cannot be considered for applications to the inner Galactic halo, unless selection effects and disk contamination are removed from halo samples, and discrepancies between different oxygen abundance determination methods are explained.

  1. Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems (United States)

    Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.


    Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given

  2. An ensemble-based method for constrained reservoir life-cycle optimization

    NARCIS (Netherlands)

    Leeuwenburgh, O.; Egberts, P.J.P.; Chitu, A.G.


    We consider the problem of finding optimal long-term (life-cycle) recovery strategies for hydrocarbon reservoirs by use of simulation models. In such problems the presence of operating constraints, such as for example a maximum rate limit for a group of wells, may strongly influence the range of

  3. Petrologic characteristic and Geological Model of Igneous Reservoir: An example in Zhanhua Seg, Eastern China (United States)

    Li, Q.; Shao, S.; Kang, R.; Liu, K.


    The diabase is a typical igneous rock, which intrude the oil-bearing mudstone and form potential reservoir. As an example of Luo151 igneous rock in Zhanhua Seg, Eastern China, we studied the diabase reservoir in detail, including petrologic analysis, reservoir anisotropy and geological modeling. Four lithofacies zones are divided according to analyzing petrology, texture and structureϻwhich comprise carbonaceous slate, hornfels containing cordierite and grammite, border subfacies and central subfacies, and the petrologic types include carbonaceous slate, hornfels, and diabases. The diabase construction is divided into grammite hornfels micropore and diabase porous-fracture type reservoirs. The mudstone layers in Third Member of Shahejie Formation (Es3) provide favorable hydrocarbon source rock and cap formation, diabase and hornfels belts serve as reservoirs, faults and microcracks in the wall rocks as the pathways for oil and gas migration. The invasive time was about in the later deposition period of Dongying Formation and the middle of that of Guantao Formation, the oil generated from oil source rock of Es3 in the period of the Minghuazhen formation and is earlier more than the period of diabase oil trap and porous space forming.

  4. The Sustainable Development Assessment of Reservoir Resettlement Based on a BP Neural Network. (United States)

    Huang, Li; Huang, Jian; Wang, Wei


    Resettlement affects not only the resettlers' production activities and life but also, directly or indirectly, the normal operation of power stations, the sustainable development of the resettlers, and regional social stability. Therefore, a scientific evaluation index system for the sustainable development of reservoir resettlement must be established that fits Chinese national conditions and not only promotes reservoir resettlement research but also improves resettlement practice. This essay builds an evaluation index system for resettlers' sustainable development based on a back-propagation (BP) neural network, which can be adopted in China, taking the resettlement necessitated by step hydropower stations along the Wujiang River cascade as an example. The assessment results show that the resettlement caused by step power stations along the Wujiang River is sustainable, and this evaluation supports the conclusion that national policies and regulations, which are undergoing constant improvement, and resettlement has increasingly improved. The results provide a reference for hydropower reservoir resettlement in developing countries.

  5. Research of processes of eutrophication of Teteriv river reservoir based on neural networks mass

    Directory of Open Access Journals (Sweden)

    Yelnikova T.A.


    Full Text Available Methods of process control of eutrophication in water are based on water sampling, handling them in the laboratory and calculation of indexes of pond ecosystem. However, these methods have some significant drawbacks associated with using manual labor. The method of determining of the geometric parameters of phytoplankton through the use of neural networks for processing water samples is developed. Due to this method eutrophic processes of reservoirs of river Teteriv are investigated. A comparative analysis of eutrophic processes of reservoirs "Denyshi" and “Vidsichne” intake during 2014-2015 years are given. The differences between qualitative and quantitative composition of phytoplankton algae in two reservoirs of the river Teteriv used for water supply of Zhitomir city area are found out. The influence of exogenous and endogenous factors on the expansion of phytoplankton is researched. Research results can be used for monitoring and forecasting of ecological state of water for household purposes, used for water supply of cities.

  6. The Sustainable Development Assessment of Reservoir Resettlement Based on a BP Neural Network (United States)

    Huang, Li; Huang, Jian


    Resettlement affects not only the resettlers’ production activities and life but also, directly or indirectly, the normal operation of power stations, the sustainable development of the resettlers, and regional social stability. Therefore, a scientific evaluation index system for the sustainable development of reservoir resettlement must be established that fits Chinese national conditions and not only promotes reservoir resettlement research but also improves resettlement practice. This essay builds an evaluation index system for resettlers’ sustainable development based on a back-propagation (BP) neural network, which can be adopted in China, taking the resettlement necessitated by step hydropower stations along the Wujiang River cascade as an example. The assessment results show that the resettlement caused by step power stations along the Wujiang River is sustainable, and this evaluation supports the conclusion that national policies and regulations, which are undergoing constant improvement, and resettlement has increasingly improved. The results provide a reference for hydropower reservoir resettlement in developing countries. PMID:29346305

  7. The Sustainable Development Assessment of Reservoir Resettlement Based on a BP Neural Network

    Directory of Open Access Journals (Sweden)

    Li Huang


    Full Text Available Resettlement affects not only the resettlers’ production activities and life but also, directly or indirectly, the normal operation of power stations, the sustainable development of the resettlers, and regional social stability. Therefore, a scientific evaluation index system for the sustainable development of reservoir resettlement must be established that fits Chinese national conditions and not only promotes reservoir resettlement research but also improves resettlement practice. This essay builds an evaluation index system for resettlers’ sustainable development based on a back-propagation (BP neural network, which can be adopted in China, taking the resettlement necessitated by step hydropower stations along the Wujiang River cascade as an example. The assessment results show that the resettlement caused by step power stations along the Wujiang River is sustainable, and this evaluation supports the conclusion that national policies and regulations, which are undergoing constant improvement, and resettlement has increasingly improved. The results provide a reference for hydropower reservoir resettlement in developing countries.

  8. Hydrodynamic modeling of a reservoir used to supply water to Belem (Lake Agua Preta, Para, Brazil

    Directory of Open Access Journals (Sweden)

    Maria Lourdes Souza Santos


    Full Text Available Lake Agua Preta is used by the Sanitation Company of Para (Cosanpa to supply water to the Belem Metropolitan Region. This study aims to use the Base System Modeling Program Environmental Hydrodynamics (Sisbahia model to simulate seasonal hydrodynamic conditions in the lake and identify areas with the greatest silting. The model results revealed an identical distribution of the velocity module for each month of the year. However, at the outlet of the lake, a water channel variation speed of 0.28–0.32 m s-1 was observed. Furthermore, at the inlet of the lake, vortex silting tended to occur, as verified by bathymetry. Sedimentation mainly occurred during periods of low rainfall, which is when Cosanpa increases the inflow of water to maintain the reservoir level and this leads to an increase in sediments in suspension. With the model, it was possible to identify locations with higher rates of sedimentation, and in the future, such data can serve as an effective tool for managing this water resource.

  9. A vertically integrated eutrophication model and its application to a river-style reservoir--Fuchunjiang, China. (United States)

    Wu, Tingfeng; Luo, Liancong; Qin, Boqiang; Cui, Guangbai; Yu, Zuoming; Yao, Zhiming


    Based on a 2-D hydrodynamic model, a vertically integrated eutrophication model was developed. The physical sub-model can be used for calculation of water density at different depths, and the water quality sub-model was used for calculation of algal growth. The cohesive and non-cohesive sediments were simulated separately with different methods. The light extinction coefficient used in the underwater light regime sub-model was linearly related to the sum of sediment and phytoplankton biomass. Some components less important to the model were simplified to improve practicability and calculation efficiency. Using field data from Fuchunjiang Reservoir, we calculated the sensitivity of ecological parameters included in this model and validated the model. The results of sensitivity analysis showed that the parameters strongly influenced the phytoplankton biomass, including phytoplankton maximum growth rate, respiration rate, non-predatory mortality rate, settling rate, zooplankton maximum filtration rate, specific extinction coefficient for suspended solids and sediment oxygen demand rate. The model was calibrated by adjusting these parameters. Total chlorophyll a (chl-a) concentrations at different layers in the water column were reproduced very well by the model simulations. The simulated chl-a values were positively correlated to the measured values with Pearson correlation coefficient of 0.92. The mean difference between measured and simulated chl-a concentrations was 12% of the measured chl-a concentration. Measured and simulated DO concentrations were also positively correlated (r = 0.74) and the mean difference was 4% of measured DO concentrations. The successful validation of model indicated that it would be very useful in water quality management and algal bloom prediction in Fuchunjiang Reservoir and a good tool for water quality regulation of other river-style reservoirs.

  10. Reservoir creep and induced seismicity: inferences from geomechanical modeling of gas depletion in the Groningen field (United States)

    van Wees, Jan-Diederik; Osinga, Sander; Van Thienen-Visser, Karin; Fokker, Peter A.


    The Groningen gas field in the Netherlands experienced an immediate reduction in seismic events in the year following a massive cut in production. This reduction is inconsistent with existing models of seismicity predictions adopting compaction strains as proxy, since reservoir creep would then result in a more gradual reduction of seismic events after a production stop. We argue that the discontinuity in seismic response relates to a physical discontinuity in stress loading rate on faults upon the arrest of pressure change. The stresses originate from a combination of the direct poroelastic effect through the pressure changes and the delayed effect of ongoing compaction after cessation of reservoir production. Both mechanisms need to be taken into account. To this end, we employed finite-element models in a workflow that couples Kelvin-Chain reservoir creep with a semi-analytical approach for the solution of slip and seismic moment from the predicted stress change. For ratios of final creep and elastic compaction up to 5, the model predicts that the cumulative seismic moment evolution after a production stop is subject to a very moderate increase, 2-10 times less than the values predicted by the alternative approaches using reservoir compaction strain as proxy. This is in agreement with the low seismicity in the central area of the Groningen field immediately after reduction in production. The geomechanical model findings support scope for mitigating induced seismicity through adjusting rates of pressure change by cutting down production.

  11. Model of erosion–landslide interaction in the context of the reservoir ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 6. Model of erosion–landslide interaction in the context of the reservoir water level variations (East Siberia, Russia): Factors, environment and mechanisms. Oksana Mazaeva Viktoria Khak Elena Kozyreva. Volume 122 Issue 6 December 2013 pp 1515- ...

  12. Study on detailed geological modelling for fluvial sandstone reservoir in Daqing oil field

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Hanqing; Fu Zhiguo; Lu Xiaoguang [Institute of Petroleum Exploration and Development, Daqing (China)


    Guided by the sedimentation theory and knowledge of modern and ancient fluvial deposition and utilizing the abundant information of sedimentary series, microfacies type and petrophysical parameters from well logging curves of close spaced thousands of wells located in a large area. A new method for establishing detailed sedimentation and permeability distribution models for fluvial reservoirs have been developed successfully. This study aimed at the geometry and internal architecture of sandbodies, in accordance to their hierarchical levels of heterogeneity and building up sedimentation and permeability distribution models of fluvial reservoirs, describing the reservoir heterogeneity on the light of the river sedimentary rules. The results and methods obtained in outcrop and modem sedimentation studies have successfully supported the study. Taking advantage of this method, the major producing layers (PI{sub 1-2}), which have been considered as heterogeneous and thick fluvial reservoirs extending widely in lateral are researched in detail. These layers are subdivided into single sedimentary units vertically and the microfacies are identified horizontally. Furthermore, a complex system is recognized according to their hierarchical levels from large to small, meander belt, single channel sandbody, meander scroll, point bar, and lateral accretion bodies of point bar. The achieved results improved the description of areal distribution of point bar sandbodies, provide an accurate and detailed framework model for establishing high resolution predicting model. By using geostatistic technique, it also plays an important role in searching for enriched zone of residual oil distribution.

  13. Ensemble-based reservoir characterization using time-lapse seismic waveform data

    NARCIS (Netherlands)

    Leeuwenburgh, O.; Brouwer, J.; Trani, M.


    Assisted history matching methods are beginning to offer the possibility to use 4D seismic data in quantitative ways for reservoir characterization. We use the waveform data without any explicit inversion or interpretation step directly in an ensemble-based assisted history matching scheme with a 3D

  14. Model design for predicting extreme precipitation event impacts on water quality in a water supply reservoir (United States)

    Hagemann, M.; Jeznach, L. C.; Park, M. H.; Tobiason, J. E.


    Extreme precipitation events such as tropical storms and hurricanes are by their nature rare, yet have disproportionate and adverse effects on surface water quality. In the context of drinking water reservoirs, common concerns of such events include increased erosion and sediment transport and influx of natural organic matter and nutrients. As part of an effort to model the effects of an extreme precipitation event on water quality at the reservoir intake of a major municipal water system, this study sought to estimate extreme-event watershed responses including streamflow and exports of nutrients and organic matter for use as inputs to a 2-D hydrodynamic and water quality reservoir model. Since extreme-event watershed exports are highly uncertain, we characterized and propagated predictive uncertainty using a quasi-Monte Carlo approach to generate reservoir model inputs. Three storm precipitation depths—corresponding to recurrence intervals of 5, 50, and 100 years—were converted to streamflow in each of 9 tributaries by volumetrically scaling 2 storm hydrographs from the historical record. Rating-curve models for concentratoin, calibrated using 10 years of data for each of 5 constituents, were then used to estimate the parameters of a multivariate lognormal probability model of constituent concentrations, conditional on each scenario's storm date and streamflow. A quasi-random Halton sequence (n = 100) was drawn from the conditional distribution for each event scenario, and used to generate input files to a calibrated CE-QUAL-W2 reservoir model. The resulting simulated concentrations at the reservoir's drinking water intake constitute a low-discrepancy sample from the estimated uncertainty space of extreme-event source water-quality. Limiting factors to the suitability of this approach include poorly constrained relationships between hydrology and constituent concentrations, a high-dimensional space from which to generate inputs, and relatively long run

  15. A novel methodology improves reservoir characterization models using geologic fuzzy variables

    Energy Technology Data Exchange (ETDEWEB)

    Soto B, Rodolfo [DIGITOIL, Maracaibo (Venezuela); Soto O, David A. [Texas A and M University, College Station, TX (United States)


    One of the research projects carried out in Cusiana field to explain its rapid decline during the last years was to get better permeability models. The reservoir of this field has a complex layered system that it is not easy to model using conventional methods. The new technique included the development of porosity and permeability maps from cored wells following the same trend of the sand depositions for each facie or layer according to the sedimentary facie and the depositional system models. Then, we used fuzzy logic to reproduce those maps in three dimensions as geologic fuzzy variables. After multivariate statistical and factor analyses, we found independence and a good correlation coefficient between the geologic fuzzy variables and core permeability and porosity. This means, the geologic fuzzy variable could explain the fabric, the grain size and the pore geometry of the reservoir rock trough the field. Finally, we developed a neural network permeability model using porosity, gamma ray and the geologic fuzzy variable as input variables. This model has a cross-correlation coefficient of 0.873 and average absolute error of 33% compared with the actual model with a correlation coefficient of 0.511 and absolute error greater than 250%. We tested different methodologies, but this new one showed dramatically be a promiser way to get better permeability models. The use of the models have had a high impact in the explanation of well performance and workovers, and reservoir simulation models. (author)

  16. Effects of Reservoir Filling on Sediment and Nutrient Removal in the Lower Susquehanna River Reservoir: An Input-Output Analysis Based on Long-Term Monitoring (United States)

    Ball, W. P.; Zhang, Q.; Hirsch, R. M.


    Reduction of suspended sediment (SS), total phosphorus (TP), and total nitrogen is an important focus for Chesapeake Bay watershed management. Susquehanna River, the bay's largest tributary, has drawn attention because SS load from behind Conowingo Dam (near the river fall-line) has risen dramatically recently. To better understand these changes, we evaluated decadal-scale (1986-2013) history of concentrations and fluxes using data from sites above and below the reservoir. First, observed concentration-discharge relationships show declined SS and TP concentrations at the reservoir inlet under most discharges in recent years, but such changes have not been propagated to emerge at the outlet, implying recently diminished reservoir trapping. Second, best estimates of loadings show declined net depositions of SS and TP in recent decades, which occurred under a range of discharges, with the 75th~99.5th percentile of Conowingo discharge dominating such changes and carrying most sediment/nutrient loadings. Finally, stationary models that better accommodate effects of riverflow variability also show diminished reservoir trapping of SS and TP, which occurred under a range of flows including those well below the literature-documented scour threshold. These findings have significant implications in regard to our understanding and management of this major reservoir and illustrate the value of long-term monitoring programs.

  17. Productivity Analysis of Volume Fractured Vertical Well Model in Tight Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Jiahang Wang


    Full Text Available This paper presents a semianalytical model to simulate the productivity of a volume fractured vertical well in tight oil reservoirs. In the proposed model, the reservoir is a composite system which contains two regions. The inner region is described as formation with finite conductivity hydraulic fracture network and the flow in fracture is assumed to be linear, while the outer region is simulated by the classical Warren-Root model where radial flow is applied. The transient rate is calculated, and flow patterns and characteristic flowing periods caused by volume fractured vertical well are analyzed. Combining the calculated results with actual production data at the decline stage shows a good fitting performance. Finally, the effects of some sensitive parameters on the type curves are also analyzed extensively. The results demonstrate that the effect of fracture length is more obvious than that of fracture conductivity on improving production in tight oil reservoirs. When the length and conductivity of main fracture are constant, the contribution of stimulated reservoir volume (SRV to the cumulative oil production is not obvious. When the SRV is constant, the length of fracture should also be increased so as to improve the fracture penetration and well production.

  18. A study of well test data interpretation model for waterbearing reservoirs with phase redistribution (United States)

    Zhang, Junxiang; Deng, Rui; Liang, Haipeng; Yang, Jing


    In China, plentiful marine reservoirs exist. Net pay thickness in individual gas reservoirs where partial penetration was performed can be hundreds of meters. Due to the influence of condensate water and formation, water phase separation phenomenon, where gas rose up and liquid moved down, and a morsel of water production emerged in some gas wells, which makes the build-up curves distorted and thus unable to be interpreted. On the basis of seepage theory and Laplace transformation, a seepage mathematical model and a well test interpretation model for gas wells with phase separation considered are developed to analyze the impact of such various elements as phase separation and partial penetration on the pressure and pressure derivative log-log plot. With practical data of well test in Xihu Sag, reliability analysis of the mathematical model mentioned above was demonstrated. Theoretical research results proposed in our study substantially improved the accuracy of well test interpretation for thick water-bearing gas reservoirs and laid a technical foundation of development of the similar oil & gas reservoirs.

  19. Projective Modeling and System Change: Reservoir Management Examples

    NARCIS (Netherlands)

    Keesman, K.J.


    In this paper a projective modeling approach for ecological/ environmental systems is introduced. The basic idea behind projective modeling is to define (possible) future output behavior and to use identifiable timevarying system parameters, representing underlying sub-processes, as an (additional)

  20. Modeling lakes and reservoirs in the climate system

    NARCIS (Netherlands)

    MacKay, M.D.; Neale, P.J.; Arp, C.D.; De Senerpont Domis, L.N.; Fang, X.; Gal, G.; Jöhnk, K.D.; Kirillin, G.; Lenters, J.D.; Litchman, E.; MacIntyre, S.; Marsh, P.; Melack, J.; Mooij, W.M.; Peeters, F.; Quesada, A.; Schladow, S.G.; Schmid, M.; Spence, C.; Stokes, S.L.


    Modeling studies examining the effect of lakes on regional and global climate, as well as studies on the influence of climate variability and change on aquatic ecosystems, are surveyed. Fully coupled atmosphere–land surface–lake climate models that could be used for both of these types of study

  1. Markov process models of the dynamics of HIV reservoirs. (United States)

    Hawkins, Jane M


    While latently infected CD4+ T cells are extremely sparse, they are a reality that prevents HIV from being cured, and their dynamics are largely unknown. We begin with a two-state Markov process that models the outcomes of regular but infrequent blood tests for latently infected cells in an HIV positive patient under drug therapy. We then model the hidden dynamics of a latently infected CD4+ T cell in an HIV positive patient and show there is a limiting distribution, which indicates in which compartments the HIV typically can be found. Our model shows that the limiting distribution of latently infected cells reveals the presence of latency in every compartment with positive probability, supported by clinical data. We also show that the hidden Markov model determines the outcome of blood tests and analyze its connection to the blood test model. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. High Latitude North Atlantic Reservoir Age History: Implications for Age Models, Carbon Cycling, and the Timing of Ocean Circulation Changes (United States)

    Stern, J.; Lisiecki, L. E.


    Unraveling the mechanisms responsible for past climate changes depends on the development of accurate and precise age models for paleoclimate records from widely distributed sites. The high latitude North Atlantic represents an area of particular interest because of its proximity to deepwater formation regions and the well-established importance of ocean circulation changes during millennial-scale and deglacial climate adjustments. However, high latitude North Atlantic time scales for marine cores are hampered by a lack of correlative features between surface ocean and Greenland ice core records between about 23-15 ka. Radiocarbon dating offers a route to circumvent these ambiguous surface proxy correlations. Our study is one of the first to constrain high latitude North Atlantic reservoir ages before 15 ka. We achieve regional-scale significance in our results by including constraints from many more sites than previous studies and a robust statistical treatment of the errors associated with our method. We developed an average high latitude North Atlantic reservoir age history for 0-40 ka by aligning benthic oxygen isotope records from 25 deep (>2000 m) North Atlantic sites and using these alignments to compare separate high (40-65°N; 12 sites) and low (0-40°N; 13 sites) latitude age models based on planktonic radiocarbon dates. This method assumes synchronous benthic oxygen isotopic change within the deep North Atlantic and constant low latitude reservoir ages of 400 yr. We find large average high latitude North Atlantic reservoir ages >1700 yr from 18.5-16.5 ka with similar-to-modern 400 yr reservoir ages for 40-24 ka and 12.5-0 ka. During the Last Glacial Maximum (approximately 23.5-19 ka), we find reservoir ages between 600-1000 yr. These results are significant for the development of accurate North Atlantic age models, provide an important constraint for understanding glacial and deglacial carbon cycling, and suggest that major ocean circulation changes

  3. The rudist buildup depositional model, reservoir architecture and development strategy of the cretaceous Sarvak formation of Southwest Iran

    Directory of Open Access Journals (Sweden)

    Yang Du


    Full Text Available This paper studies the lithofacies, sedimentary facies, depositional models and reservoir architecture of the rudist-bearing Sar-3 zone of Cretaceous Sarvak in the Southwest of Iran by utilizing coring, thin section, XRD data of five coring wells and 3D seismic data. Research results include the following: According to lithofacies features and their association, the rudist-mound and tidal flat are the main microfacies in the Sar-3 depositional time. By investigating the regional tectonic setting and seismic interpretation, a depositional model was built for the Sar-3 zone, which highlights four key points: 1 The distribution of the rudist-buildup is controlled by the paleo-high. 2 The build-up outside of the wide colonize stage but reached the wave-base level in a short time by regression and formation uplift, and was destroyed by the high energy current, then forming the moundy allochthonous deposition after being dispersed and redeposited. 3 The tidal flat develops widely in the upper Sar-3, and the deposition thickness depends on the paleo-structure. The tidal channel develops in the valley and fringe of the Paleo-structure. 4 The exposure within the leaching effect by the meteoric water of the top of Sar-3 is the main controlling factor of the reservoir vertical architecture. The Sar-3 zone featured as the dualistic architecture consists of two regions: the lower is the rudist reef limestone reservoir and the upper is the tidal condense limestone interlayer. The thickness of each is controlled by the paleo-structure. The Paleo-high zone is the preferential development zone. Based on reservoir characteristics of the different zones, a targeted development strategy has been proposed. Keeping the trajectory in the middle of the oil-layer in the paleo-high, and in the paleo-low, make the trajectory crossing the oil-zone and then keep it in the lower.

  4. Application of Landsat 8 OLI Image and Empirical Model for Water Trophic Status Identification of Riam Kanan Reservoir, Banjar, South Kalimantan (United States)

    Saputra, A. N.; Danoedoro, P.; Kamal, M.


    Remote sensing has a potential for observing, mapping and monitoring the quality of lake water. Riam Kanan is a reservoir which has a water resource from Riam Kanan River with the area width of its watershed about 1043 km2. The accumulation of nutrient in this reservoir simultaneously deteriorates the condition of waters, which can cause an increasingly growth of harm micro algae or Harmful Algal Blooms (HABs). This research applied Carlson’s trophic status index (CTSI) at Riam Kanan Reservoir using Landsat-8 OLI satellite image. The Landsat 8 OLI image was recorded on 14 August 2016 and was used in this research based on its surface reflectance values. The result of correlation test shows that band 3 of the image as coefficient of chlorophyll-a parameter, channel 2 as coefficient of phosphate, and band ratio of SDT as coefficient of SDT. Based on the result of modelling using CTSI, the majority scale of CTSI score at Riam Kanan Reservoir is between 60 to70 in medium eutrophic class. The class of medium eutrophic at Riam Kanan Reservoir potentially emerges the threat both of the improvement of water fertility and the reduction of water quality. Improvement of the fertility is apprehensive since it can trigger an explosion of micro algae which will endanger the ecological condition at the area of Riam Kanan Reservoir.

  5. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe; Paul; Parney, Robert; Eiben, Thorsten; Dunleavy, Mike; Whitney, John


    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  6. High-Precision Spectral Decomposition Method Based on VMD/CWT/FWEO for Hydrocarbon Detection in Tight Sandstone Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Hui Chen


    Full Text Available Seismic time-frequency analysis methods can be used for hydrocarbon detection because of the phenomena of energy and abnormal attenuation of frequency when the seismic waves travel across reservoirs. A high-resolution method based on variational mode decomposition (VMD, continuous-wavelet transform (CWT and frequency-weighted energy operator (FWEO is proposed for hydrocarbon detection in tight sandstone gas reservoirs. VMD can decompose seismic signals into a set of intrinsic mode functions (IMF in the frequency domain. In order to avoid meaningful frequency loss, the CWT method is used to obtain the time-frequency spectra of the selected IMFs. The energy separation algorithm based on FWEO can improve the resolution of time-frequency spectra and highlight abnormal energy, which is applied to track the instantaneous energy in the time-frequency spectra. The difference between the high-frequency section and low-frequency section acquired by applying the proposed method is utilized to detect hydrocarbons. Applications using the model and field data further demonstrate that the proposed method can effectively detect hydrocarbons in tight sandstone reservoirs, with good anti-noise performance. The newly-proposed method can be used as an analysis tool to detect hydrocarbons.

  7. Integrated detection of fractures and caves in carbonate fractured-vuggy reservoirs based on seismic data and well data (United States)

    Cao, Zhanning; Li, Xiangyang; Sun, Shaohan; Liu, Qun; Deng, Guangxiao


    Aiming at the prediction of carbonate fractured-vuggy reservoirs, we put forward an integrated approach based on seismic and well data. We divide a carbonate fracture-cave system into four scales for study: micro-scale fracture, meso-scale fracture, macro-scale fracture and cave. Firstly, we analyze anisotropic attributes of prestack azimuth gathers based on multi-scale rock physics forward modeling. We select the frequency attenuation gradient attribute to calculate azimuth anisotropy intensity, and we constrain the result with Formation MicroScanner image data and trial production data to predict the distribution of both micro-scale and meso-scale fracture sets. Then, poststack seismic attributes, variance, curvature and ant algorithms are used to predict the distribution of macro-scale fractures. We also constrain the results with trial production data for accuracy. Next, the distribution of caves is predicted by the amplitude corresponding to the instantaneous peak frequency of the seismic imaging data. Finally, the meso-scale fracture sets, macro-scale fractures and caves are combined to obtain an integrated result. This integrated approach is applied to a real field in Tarim Basin in western China for the prediction of fracture-cave reservoirs. The results indicate that this approach can well explain the spatial distribution of carbonate reservoirs. It can solve the problem of non-uniqueness and improve fracture prediction accuracy.

  8. Integrating geologic and engineering data into 3-D reservoir models: an example from norman wells field, NWT, Canada

    International Nuclear Information System (INIS)

    Yose, L.A.


    A case study of the Norman Wells field will be presented to highlight the work-flow and data integration steps associated with characterization and modeling of a complex hydrocarbon reservoir. Norman Wells is a Devonian-age carbonate bank ('reef') located in the Northwest Territories of Canada, 60 kilometers south of the Arctic Circle. The reservoir reaches a maximum thickness of 130 meters in the reef interior and thins toward the basin due to depositional pinch outs. Norman Wells is an oil reservoir and is currently under a 5-spot water injection scheme for enhanced oil recovery (EOR). EOR strategies require a detailed understanding of how reservoir flow units, flow barriers and flow baffles are distributed to optimize hydrocarbon sweep and recovery and to minimize water handling. Reservoir models are routinely used by industry to characterize the 3-D distribution of reservoir architecture (stratigraphic layers, depositional facies, faults) and rock properties (porosity. permeability). Reservoir models are validated by matching historical performance data (e.g., reservoir pressures, well production or injection rates). Geologic models are adjusted until they produce a history match, and model adjustments are focused on inputs that have the greatest geologic uncertainty. Flow simulation models are then used to optimize field development strategies and to forecast field performance under different development scenarios. (author)

  9. Modeling Alpine hydropower reservoirs management to study the water-energy nexus under change. (United States)

    Castelletti, A.; Giuliani, M.; Fumagalli, E.; Weber, E.


    Climate change and growing population are expected to severely affect freshwater availability by the end of 21th century. Many river basins, especially in the Mediterranean region, are likely to become more prone to periods of reduced water supply, risking considerable impacts on the society, the environment, and the economy, thus emphasizing the need to rethink the way water resources are distributed, managed, and used at the regional and river basin scale. This paradigm shift will be essential to cope with the undergoing global change, characterized by growing water demands and by increasingly uncertain hydrologic regimes. Most of the literature traditionally focused on predicting the impacts of climate change on water resources, while our understanding of the human footprint on the hydrological cycle is limited. For example, changes in the operation of the Alpine hydropower reservoirs induced by socio-economic drivers (e.g., development of renewable energy) were already observed over the last few years and produced relevant impacts on multiple water uses due to the altered distribution of water volumes in time and space. Modeling human decisions as well as the links between society and environmental systems becomes key to develop reliable projections on the co-evolution of the coupled human-water systems and deliver robust adaptation strategies This work contributes a preliminary model-based analysis of the behaviour of hydropower operators under changing energy market and climate conditions. The proposed approach is developed for the San Giacomo-Cancano reservoir system, Italy. The identification of the current operating policy is supported by input variable selection methods to select the most relevant hydrological and market based drivers to explain the observed release time series.. The identified model is then simulated under a set of future scenarios, accounting for both climate and socio-economic change (e.g. expansion of the electric vehicle sector, load

  10. Optimization of Multipurpose Reservoir Systems Using Power Market Models

    DEFF Research Database (Denmark)

    Pereira-Cardenal, S. J.; Mo, B.; Riegels, N.


    and vice versa. To improve the representation of hydropower benefits in hydroeconomic models, an application of stochastic dynamic programming, known as the water value method, was used to maximize irrigation benefits while minimizing the costs of power generation within a power market. The method yields......Hydroeconomic models have been used to determine policies for efficient allocation of scarce water resources. Hydropower benefits are typically represented through exogenous electricity prices, but these do not consider the effect that the power market can have on the hydropower release policy...... realistic and sensitive to hydrological variability. Internally calculated hydropower prices provided better results than exogenous hydropower prices and can therefore improve the representation of hydropower benefits in hydroeconomic models. (C) 2014 American Society of Civil Engineers....

  11. Coupling of a reservoir model and of a poro-mechanical model. Application to the study of the compaction of petroleum reservoirs and of the associated subsidence; Couplage d'un modele de gisement et d'un modele mecanique. Application a l'etude de la compaction des reservoirs petroliers et de la subsidence associee

    Energy Technology Data Exchange (ETDEWEB)

    Bevillon, D.


    The aim of this study is to provide a better description of the rock contribution to fluid flows in petroleum reservoirs. The production of oil/gas in soft highly compacting reservoirs induces important reduction of the pore volume, which increases oil productivity. This compaction leads to undesirable effects such as surface subsidence or damage of well equipment. Analysis of compaction and subsidence can be performed using either engineering reservoir models or coupled poro-mechanical models. Poro-mechanical model offers a rigorous mechanical framework, but does not permit a complete description of the fluids. The reservoir model gives a good description of the fluid phases, but the description of the mechanic phenomenon is then simplified. To satisfy the set of equations (mechanical equilibrium and diffusivity equations), two simulators can be used together sequentially. Each of the two simulators solves its own system independently, and information passed both directions between simulators. This technique is usually referred to the partially coupled scheme. In this study, reservoir and hydro-mechanical simulations show that reservoir theory is not a rigorous framework to represent the evolution of the high porous rocks strains. Then, we introduce a partially coupled scheme that is shown to be consistent and unconditionally stable, which permits to describe correctly poro-mechanical theory in reservoir models. (author)

  12. Ecological Niche Modeling of main reservoir hosts of zoonotic cutaneous leishmaniasis in Iran. (United States)

    Gholamrezaei, Mostafa; Mohebali, Mehdi; Hanafi-Bojd, Ahmad Ali; Sedaghat, Mohammad Mehdi; Shirzadi, Mohammad Reza


    Zoonotic cutaneous leishmaniasis (ZCL), caused by Leishmania major, is a common zoonotic vector-borne disease in Iran. Close contact with infected reservoir hosts increases the probability of transmission of Leishmania parasite infections to susceptible humans. Four gerbil species (Rodentia: Gerbillidae) serve as the main reservoir hosts for ZCL in different endemic foci of Iran. These species include Rhombomys opimus, Meriones libycus, Meriones hurrianae and Tatera indica; while notable infection has been reported in Nesokia indica as well. The purpose of this study is to model the distribution of these reservoirs to identify the risk areas of ZCL. A data bank was developed including all published data during the period of 1970-2015. Maximum entropy model was used to find the most appropriate ecological niches for each species. The areas under curve obtained were 0.961, 0.927, 0.922, 0.997 and 0.899, instead of 1, for training test in R. opimus, M. libycus, T. indica, M. hurrianae and N. indica, respectively. The environmental variable with the highest gain when used in isolation was slope for R. opimus and N. indica, annual mean temperature for M. libycus, and seasonal precipitation for T. indica and M. hurrianae. Summation of presence probabilities for three main species, i.e., R. opimus, M. libycus and T. indica revealed favorable ecological niches in wide areas of 16 provinces. This is the first study to predict the distribution of ZCL reservoir hosts in Iran. Climatology and topography variables had high contributions toward the prediction of potential distribution of the main reservoir species; therefore, as climate changes, the models should be updated periodically with novel data, and the results should be used in disease-monitoring programs. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Estimates of Nitrogen Removal in U.S. Streams and Reservoirs from the SPARROW Watershed Model (United States)

    Alexander, R. B.; Smith, R. A.; Schwarz, G. E.; Nolan, J. V.; Boyer, E. W.


    Greater understanding is needed of the biotic and abiotic processes that remove nitrogen (N) from streams and reservoirs to quantify transport to downstream coastal waters where eutrophication is a major concern. Recent studies have improved estimates of N removal rates (e.g., denitrification, biological uptake) over small spatial scales in low-order streams. However, limited knowledge of the factors that explain the large variation in literature removal rates has made it difficult to accurately predict N transport through the range of stream and reservoir sizes that link sources to downstream waters. Spatially referenced watershed models (SPARROW) have been used to statistically estimate long-term mean-annual rates of total nitrogen removal in streams and reservoirs over large spatial scales. These rates are estimated as a function of physical and hydraulic properties (channel depth, water travel time) that influence the contact and exchange of water with benthic sediment. We recently refined our SPARROW model structure with expanded descriptions of climatic, topographic, and other surficial features of terrestrial and aquatic landscapes. We find that the net rates of N removal decline from about 0.3 day-1 of water travel time in streams with depths less than 0.5 meters to negligible quantities in large rivers (greater than 4 meters). These rates are generally consistent with those of earlier regional and national SPARROW models and with measured rates from the literature (adjusted for water travel time) over the reported range of stream depths. A settling velocity of approximately 8 meters year-1 is estimated for lakes and reservoirs and agrees well with literature rates for lakes where denitrification is the predominant removal process. We applied these removal rates within the SPARROW stream and reservoir network to estimate the regional-scale N transport and delivery to U.S. coastal waters.

  14. Efficient reinforcement learning of a reservoir network model of parametric working memory achieved with a cluster population winner-take-all readout mechanism. (United States)

    Cheng, Zhenbo; Deng, Zhidong; Hu, Xiaolin; Zhang, Bo; Yang, Tianming


    The brain often has to make decisions based on information stored in working memory, but the neural circuitry underlying working memory is not fully understood. Many theoretical efforts have been focused on modeling the persistent delay period activity in the prefrontal areas that is believed to represent working memory. Recent experiments reveal that the delay period activity in the prefrontal cortex is neither static nor homogeneous as previously assumed. Models based on reservoir networks have been proposed to model such a dynamical activity pattern. The connections between neurons within a reservoir are random and do not require explicit tuning. Information storage does not depend on the stable states of the network. However, it is not clear how the encoded information can be retrieved for decision making with a biologically realistic algorithm. We therefore built a reservoir-based neural network to model the neuronal responses of the prefrontal cortex in a somatosensory delayed discrimination task. We first illustrate that the neurons in the reservoir exhibit a heterogeneous and dynamical delay period activity observed in previous experiments. Then we show that a cluster population circuit decodes the information from the reservoir with a winner-take-all mechanism and contributes to the decision making. Finally, we show that the model achieves a good performance rapidly by shaping only the readout with reinforcement learning. Our model reproduces important features of previous behavior and neurophysiology data. We illustrate for the first time how task-specific information stored in a reservoir network can be retrieved with a biologically plausible reinforcement learning training scheme. Copyright © 2015 the American Physiological Society.

  15. Geothermal reservoir monitoring based upon spectral-element and adjoint methods (United States)

    Morency, C.; Templeton, D. C.; Harris, D.; Mellors, R. J.


    Induced seismicity associated with CO2 sequestration, enhanced oil recovery, and enhanced geothermal systems is triggered by fracturing during fluid injection. These events range from magnitude -1 (microseismicity) up to 3.5, for induced seismicity on pre-existing faults. In our approach, we are using seismic data collected at the Salton Sea geothermal field, to improve the current structural model (SCEC CVM4.0 including a 10m resolution topography) and to invert for the moment tensor and source location of the microseismic events. The key here is to refine the velocity model to then precisely invert for the location and mechanism (tensile or shear) of fracture openings. This information is crucial for geothermal reservoir assessment, especially in an unconventional setting where hydrofracturing is used to enhance productivity. The location of pre-existing and formed fractures as well as their type of openings are important elements for strategic decisions. Numerical simulations are performed using a spectral-element method, which contrary to finite-element methods (FEM), uses high degree Lagrange polynomials, allowing the technique to not only handle complex geometries, like the FEM, but also to retain the strength of exponential convergence and accuracy due to the use of high degree polynomials. Finite-frequency sensitivity kernels, used in the non-linear iterative inversions, are calculated based on an adjoint method.

  16. Hydrodynamic And Water Quality Surrogate Modeling For Reservoir Operation

    NARCIS (Netherlands)

    Aguilar Lopez, J.P.; Andel, Schalk Jan Van; Werner, M; Solomatine, D.P.; Piasecki, M


    Data for water management is increasingly easy to access, it has finer spatial and temporal resolution, and it is available from various sources. Precipitation data can be obtained from meteorological stations, radar, satellites and weather models. Land use data is also available from different

  17. System-level modeling for economic evaluation of geological CO2 storage in gas reservoirs

    International Nuclear Information System (INIS)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.


    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO 2 ) from industrial sources into deep geological formations such as brine aquifers or depleted oil or gas reservoirs. Research is being conducted to improve understanding of factors affecting particular aspects of geological CO 2 storage (such as storage performance, storage capacity, and health, safety and environmental (HSE) issues) as well as to lower the cost of CO 2 capture and related processes. However, there has been less emphasis to date on system-level analyses of geological CO 2 storage that consider geological, economic, and environmental issues by linking detailed process models to representations of engineering components and associated economic models. The objective of this study is to develop a system-level model for geological CO 2 storage, including CO 2 capture and separation, compression, pipeline transportation to the storage site, and CO 2 injection. Within our system model we are incorporating detailed reservoir simulations of CO 2 injection into a gas reservoir and related enhanced production of methane. Potential leakage and associated environmental impacts are also considered. The platform for the system-level model is GoldSim [GoldSim User's Guide. GoldSim Technology Group; 2006,]. The application of the system model focuses on evaluating the feasibility of carbon sequestration with enhanced gas recovery (CSEGR) in the Rio Vista region of California. The reservoir simulations are performed using a special module of the TOUGH2 simulator, EOS7C, for multicomponent gas mixtures of methane and CO 2 . Using a system-level modeling approach, the economic benefits of enhanced gas recovery can be directly weighed against the costs and benefits of CO 2 injection

  18. A GIS-model for predicting the impact of climate change on shore erosion in hydroelectric reservoirs

    International Nuclear Information System (INIS)

    Penner, L.A.; Zimmer, T.A.M.; St Laurent, M.


    Shoreline erosion affects inland lakes and hydroelectric reservoirs in several ways. This poster described a vector-based geographic information system (GIS) model designed to predict changes in shore zone geometry, top-of-bluff recession, and eroded sediment volumes. The model was designed for use in Manitoba Hydro's reservoirs in northern Manitoba, and simulated near-shore downcutting and bank recession caused by wind-generated waves. Parameters for the model included deep water wave energy, and water level fluctuations. Effective wave energy was seen as a function of the water level fluctuation range, wave conditions, and near-shore slope. The model was validated by field monitoring studies that included repeated shore zone transect surveys and sediment coring studies. Results of the study showed that the model provides a systematic method of predicting potential changes in erosion associated with climatic change. The volume and mass of eroded sediment predicted for the different modelling scenarios will be used as input data for future sedimentation models. tabs., figs

  19. An improved method for permeability estimation of the bioclastic limestone reservoir based on NMR data. (United States)

    Ge, Xinmin; Fan, Yiren; Liu, Jianyu; Zhang, Li; Han, Yujiao; Xing, Donghui


    Permeability is an important parameter in formation evaluation since it controls the fluid transportation of porous rocks. However, it is challengeable to compute the permeability of bioclastic limestone reservoirs by conventional methods linking petrophysical and geophysical data, due to the complex pore distributions. A new method is presented to estimate the permeability based on laboratory and downhole nuclear magnetic resonance (NMR) measurements. We divide the pore space into four intervals by the inflection points between the pore radius and the transversal relaxation time. Relationships between permeability and percentages of different pore intervals are investigated to investigate influential factors on the fluid transportation. Furthermore, an empirical model, which takes into account of the pore size distributions, is presented to compute the permeability. 212 core samples in our case show that the accuracy of permeability calculation is improved from 0.542 (SDR model), 0.507 (TIM model), 0.455 (conventional porosity-permeability regressions) to 0.803. To enhance the precision of downhole application of the new model, we developed a fluid correction algorithm to construct the water spectrum of in-situ NMR data, aiming to eliminate the influence of oil on the magnetization. The result reveals that permeability is positively correlated with percentages of mega-pores and macro-pores, but negatively correlated with the percentage of micro-pores. Poor correlation is observed between permeability and the percentage of meso-pores. NMR magnetizations and T 2 spectrums after the fluid correction agree well with laboratory results for samples saturated with water. Field application indicates that the improved method provides better performance than conventional models such as Schlumberger-Doll Research equation, Timur-Coates equation, and porosity-permeability regressions. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. An improved method for permeability estimation of the bioclastic limestone reservoir based on NMR data (United States)

    Ge, Xinmin; Fan, Yiren; Liu, Jianyu; Zhang, Li; Han, Yujiao; Xing, Donghui


    Permeability is an important parameter in formation evaluation since it controls the fluid transportation of porous rocks. However, it is challengeable to compute the permeability of bioclastic limestone reservoirs by conventional methods linking petrophysical and geophysical data, due to the complex pore distributions. A new method is presented to estimate the permeability based on laboratory and downhole nuclear magnetic resonance (NMR) measurements. We divide the pore space into four intervals by the inflection points between the pore radius and the transversal relaxation time. Relationships between permeability and percentages of different pore intervals are investigated to investigate influential factors on the fluid transportation. Furthermore, an empirical model, which takes into account of the pore size distributions, is presented to compute the permeability. 212 core samples in our case show that the accuracy of permeability calculation is improved from 0.542 (SDR model), 0.507 (TIM model), 0.455 (conventional porosity-permeability regressions) to 0.803. To enhance the precision of downhole application of the new model, we developed a fluid correction algorithm to construct the water spectrum of in-situ NMR data, aiming to eliminate the influence of oil on the magnetization. The result reveals that permeability is positively correlated with percentages of mega-pores and macro-pores, but negatively correlated with the percentage of micro-pores. Poor correlation is observed between permeability and the percentage of meso-pores. NMR magnetizations and T2 spectrums after the fluid correction agree well with laboratory results for samples saturated with water. Field application indicates that the improved method provides better performance than conventional models such as Schlumberger-Doll Research equation, Timur-Coates equation, and porosity-permeability regressions.

  1. PVT modeling of reservoir fluids using PC-SAFT EoS and Soave-BWR EoS

    DEFF Research Database (Denmark)

    Yan, Wei; Varzandeh, Farhad; Stenby, Erling Halfdan


    Cubic equations of state, such as the Soave-Redlich-Kwong (SRK) and the Peng-Robinson (PR) EoS, are still the mostly used models in PVT modeling of reservoir fluids, and almost the exclusively used models in compositional reservoir simulations. Nevertheless, it is promising that recently developed...... non-cubic EoS models, such as the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) EoS and the Soave modified Benedict-Webb-Rubin (Soave-BWR) EoS, may partly replace the roles of these classical cubic models in the upstream oil industry. Here, we attempt to make a comparative study...... of non-cubic models (PC-SAFT and Soave-BWR) and cubic models (SRK and PR) in several important aspects related to PVT modeling of reservoir fluids, including density description for typical pure components in reservoir fluids, description of binary VLE, prediction of multicomponent phase envelopes...


    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini


    reservoir architecture and geographic distribution of Smackover reservoirs is the fabric and texture of the depositional lithofacies, diagenesis (chiefly dolomitization) is a significant factor that preserves and enhances reservoir quality. The evaporative pumping mechanism is favored to explain the dolomitization of the thrombolite doloboundstone and dolostone reservoir flow units at Appleton and Vocation Fields. Geologic modeling, reservoir simulation, and the testing and applying the resulting integrated geologic-engineering models have shown that little oil remains to be recovered at Appleton Field and a significant amount of oil remains to be recovered at Vocation Field through a strategic infill drilling program. The drive mechanisms for primary production in Appleton and Vocation Fields remain effective; therefore, the initiation of a pressure maintenance program or enhanced recovery project is not required at this time. The integrated geologic-engineering model developed for a low-relief paleohigh (Appleton Field) was tested for three scenarios involving the variables of present-day structural elevation and the presence/absence of potential reef thrombolite lithofacies. In each case, the predictions based upon the model were correct. From this modeling, the characteristics of the ideal prospect in the basement ridge play include a low-relief paleohigh associated with dendroidal/chaotic thrombolite doloboundstone and dolostone that has sufficient present-day structural relief so that these carbonates rest above the oil-water contact. Such a prospect was identified from the modeling, and it is located northwest of well Permit No. 3854B (Appleton Field) and south of well No. Permit No.11030B (Northwest Appleton Field).

  3. Numerical Modeling of Permeability Enhancement by Hydroshearing: the Case of Phase I Reservoir Creation at Fenton Hill (United States)

    Rutqvist, J.; Rinaldi, A. P.


    The exploitation of a geothermal system is one of the most promising clean and almost inexhaustible forms of energy production. However, the exploitation of hot dry rock (HDR) reservoirs at depth requires circulation of a large amount of fluids. Indeed, the conceptual model of an Enhanced Geothermal System (EGS) requires that the circulation is enhanced by fluid injection. The pioneering experiments at Fenton Hill demonstrated the feasibility of EGS by producing the world's first HDR reservoirs. Such pioneering project demonstrated that the fluid circulation can be effectively enhanced by stimulating a preexisting fracture zone. The so-called "hydroshearing" involving shear activation of preexisting fractures is recognized as one of the main processes effectively enhancing permeability. The goal of this work is to quantify the effect of shear reactivation on permeability by proposing a model that accounts for fracture opening and shearing. We develop a case base on a pressure stimulation experiment at Fenton Hill, in which observation suggest that a fracture was jacked open by pressure increase. The proposed model can successfully reproduce such a behavior, and we compare the base case of pure elastic opening with the hydroshearing model to demonstrate that this latter could have occurred at the field, although no "felt" seismicity was observed. Then we investigate on the sensitivity of the proposed model by varying some of the critical parameters such as the maximum aperture, the dilation angle, as well as the fracture density.

  4. Dual permeability modeling of flow in a fractured geothermal reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.D.; Allman, D.W.


    A three dimensional fracture system synthesis and flow simulation has been developed to correlate drawdown characteristics measured in a geothermal well and to provide the basis for an analysis of tracer tests. A new dual permeability approach was developed which incorporates simulations at two levels to better represent a discrete fracture system within computer limitations. The first incorporates a discrete simulation of the largest fractures in the system plus distributed or representative element stimulation of the smaller fractures. The second determines the representative element properties by discrete simulation of the smaller fractures. The fracture system was synthesized from acoustic televiewer data on the orientation and separation of three distinct fracture sets, together with additional data from the literature. Lognormal and exponential distributions of fracture spacing and radius were studied with the exponential distribution providing more reasonable results. Hydraulic apertures were estimated as a function of distance from the model boundary to a constant head boundary. Mean values of 6.7, 101 and 46 were chosen as the most representative values for the three fracture sets. Recommendations are given for the additional fracture characterization needed to reduce the uncertainties in the model. 20 refs., 6 figs.

  5. Computer Modeling of the Displacement Behavior of Carbon Dioxide in Undersaturated Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Ju Binshan


    Full Text Available The injection of CO2 into oil reservoirs is performed not only to improve oil recovery but also to store CO2 captured from fuel combustion. The objective of this work is to develop a numerical simulator to predict quantitatively supercritical CO2 flooding behaviors for Enhanced Oil Recovery (EOR. A non-isothermal compositional flow mathematical model is developed. The phase transition diagram is designed according to the Minimum Miscibility Pressure (MMP and CO2 maximum solubility in oil phase. The convection and diffusion of CO2 mixtures in multiphase fluids in reservoirs, mass transfer between CO2 and crude and phase partitioning are considered. The governing equations are discretized by applying a fully implicit finite difference technique. Newton-Raphson iterative technique was used to solve the nonlinear equation systems and a simulator was developed. The performances of CO2 immiscible and miscible flooding in oil reservoirs are predicted by the new simulator. The distribution of pressure and temperature, phase saturations, mole fraction of each component in each phase, formation damage caused by asphaltene precipitation and the improved oil recovery are predicted by the simulator. Experimental data validate the developed simulator by comparison with simulation results. The applications of the simulator in prediction of CO2 flooding in oil reservoirs indicate that the simulator is robust for predicting CO2 flooding performance.

  6. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir. (United States)

    Jeznach, Lillian C; Hagemann, Mark; Park, Mi-Hyun; Tobiason, John E


    Extreme precipitation events are of concern to managers of drinking water sources because these occurrences can affect both water supply quantity and quality. However, little is known about how these low probability events impact organic matter and nutrient loads to surface water sources and how these loads may impact raw water quality. This study describes a method for evaluating the sensitivity of a water body of interest from watershed input simulations under extreme precipitation events. An example application of the method is illustrated using the Wachusett Reservoir, an oligo-mesotrophic surface water reservoir in central Massachusetts and a major drinking water supply to metropolitan Boston. Extreme precipitation event simulations during the spring and summer resulted in total organic carbon, UV-254 (a surrogate measurement for reactive organic matter), and total algae concentrations at the drinking water intake that exceeded recorded maximums. Nutrient concentrations after storm events were less likely to exceed recorded historical maximums. For this particular reservoir, increasing inter-reservoir transfers of water with lower organic matter content after a large precipitation event has been shown in practice and in model simulations to decrease organic matter levels at the drinking water intake, therefore decreasing treatment associated oxidant demand, energy for UV disinfection, and the potential for formation of disinfection byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Full field reservoir modeling of shale assets using advanced data-driven analytics

    Directory of Open Access Journals (Sweden)

    Soodabeh Esmaili


    Full Text Available Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism (sorption process and flow behavior in complex fracture systems - induced or natural leaves much to be desired. In this paper, we present and discuss a novel approach to modeling, history matching of hydrocarbon production from a Marcellus shale asset in southwestern Pennsylvania using advanced data mining, pattern recognition and machine learning technologies. In this new approach instead of imposing our understanding of the flow mechanism, the impact of multi-stage hydraulic fractures, and the production process on the reservoir model, we allow the production history, well log, completion and hydraulic fracturing data to guide our model and determine its behavior. The uniqueness of this technology is that it incorporates the so-called “hard data” directly into the reservoir model, so that the model can be used to optimize the hydraulic fracture process. The “hard data” refers to field measurements during the hydraulic fracturing process such as fluid and proppant type and amount, injection pressure and rate as well as proppant concentration. This novel approach contrasts with the current industry focus on the use of “soft data” (non-measured, interpretive data such as frac length, width, height and conductivity in the reservoir models. The study focuses on a Marcellus shale asset that includes 135 wells with multiple pads, different landing targets, well length and reservoir properties. The full field history matching process was successfully completed using this data driven approach thus capturing the production behavior with acceptable accuracy for individual wells and for the entire asset.

  8. Application of Neural Networks Technique in depositional environment interpretation for the Niger Delta a Novel computer-Based methodology for 3-D reservoir geological modelling and exploration studies. (The pilot application in X-Field, Niger Delta)

    International Nuclear Information System (INIS)

    Iloghalu, E.M.


    Artificial neural network is a virtual intelligence tool, which mimics the human brain to do analysis and come out with results. Its application in petroleum engineering is very recent and is gradually evolving and is set to dominate or take over other analytical tools used in the Exploration and Production industry.There are two types of neural network namely, unsupervised and supervised neural networks. A proper combination of these two types of neural networks produces high-resolution results.In this work, interpreted core data was depth matched to well logs and 5 genetic units were calibrated to define the combined log responses for each genetic unit. These combined log responses were then used to train the supervised neural networks to recognise and interpret these units elsewhere in the field. Thereafter, the unsupervised neural network was run to generate classes within the cored interval. The results were then compared with the supervised network output and were then extrapolated vertically and laterally to other parts of the field.This technique having been used successfully to perform automatic interpretation of genetic units and lithofacies associations in reservoir scale is also very useful and applicable in exploration. Specific reservoirs or stratigraphic units can be automatically interpreted across a wide area using well data controlled by one or a combination of lithostratigraphy, allostratigraphy, sequence stratigraphy and biostratigraphy.Using this technique, well data cost and time are saved tremendously. It is the key to achieving computerised Basin-Scale Reservoir characterisation for the Niger Delta

  9. Developing an integrated 3D-hydrodynamic and emerging contaminant model for assessing water quality in a Yangtze Estuary Reservoir. (United States)

    Xu, Cong; Zhang, Jingjie; Bi, Xiaowei; Xu, Zheng; He, Yiliang; Gin, Karina Yew-Hoong


    An integrated 3D-hydrodynamic and emerging contaminant model was developed for better understanding of the fate and transport of emerging contaminants in Qingcaosha Reservoir. The reservoir, which supplies drinking water for nearly half of Shanghai's population, is located in Yangtze Delta. The integrated model was built by Delft3D suite, a fully integrated multidimensional modeling software. Atrazine and Bisphenol A (BPA) were selected as two representative emerging contaminants for the study in this reservoir. The hydrodynamic model was calibrated and validated against observations from 2011 to 2015 while the integrated model was calibrated against observations from 2014 to 2015 and then applied to explore the potential risk of high atrazine concentrations in the reservoir driven by agriculture activities. Our results show that the model is capable of describing the spatial and temporal patterns of water temperature, salinity and the dynamic distributions of two representative emerging contaminants (i.e. atrazine and BPA) in the reservoir. The physical and biodegradation processes in this study were found to play a crucial role in determining the fate and transport of atrazine and BPA in the reservoir. The model also provides an insight into the potential risk of emerging contaminants and possible mitigation thresholds. The integrated approach can be a very useful tool to support policy-makers in the future management of Qingcaosha Reservoir. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. [Coupling SWAT and CE-QUAL-W2 models to simulate water quantity and quality in Shanmei Reservoir watershed]. (United States)

    Liu, Mei-Bing; Chen, Dong-Ping; Chen, Xing-Wei; Chen, Ying


    A coupled watershed-reservoir modeling approach consisting of a watershed distributed model (SWAT) and a two-dimensional laterally averaged model (CE-QUAL-W2) was adopted for simulating the impact of non-point source pollution from upland watershed on water quality of Shanmei Reservoir. Using the daily serial output from Shanmei Reservoir watershed by SWAT as the input to Shanmei Reservoir by CE-QUAL-W2, the coupled modeling was calibrated for runoff and outputs of sediment and pollutant at watershed scale and for elevation, temperature, nitrate, ammonium and total nitrogen in Shanmei Reservoir. The results indicated that the simulated values agreed fairly well with the observed data, although the calculation precision of downstream model would be affected by the accumulative errors generated from the simulation of upland model. The SWAT and CE-QUAL-W2 coupled modeling could be used to assess the hydrodynamic and water quality process in complex watershed comprised of upland watershed and downstream reservoir, and might further provide scientific basis for positioning key pollution source area and controlling the reservoir eutrophication.

  11. Structure of magma reservoirs beneath Merapi and surrounding volcanic centers of Central Java modeled from ambient noise tomography (United States)

    Koulakov, Ivan; Maksotova, Gulzhamal; Jaxybulatov, Kayrly; Kasatkina, Ekaterina; Shapiro, Nikolai M.; Luehr, Birger-G.; El Khrepy, Sami; Al-Arifi, Nassir


    We present a three-dimensional model of the distribution of S-wave velocity in the upper crust to a depth of 20 km beneath Central Java based on the analysis of seismic ambient noise data recorded by more than 100 seismic stations in 2004 associated with the MERAMEX project. To invert the Rayleigh wave dispersion curves to construct 2-D group-velocity maps and 3-D distributions of S-wave velocity, we have used a new tomographic algorithm based on iterative linearized inversion. We have performed a series of synthetic tests that demonstrate significantly higher resolution in the upper crust with this model compared to the local earthquake travel-time tomography (LET) model previously applied for the same station network. Beneath the southern flank of Merapi, we identify a large low-velocity anomaly that can be split into two layers. The upper layer reflects the ˜1 km thick sedimentary cover of volcanoclastic deposits. The deeper anomaly at depths of ˜4-8 km may represent a magma reservoir with partially molten rock that feeds several volcanoes in Central Java. Beneath the Merapi summit, we observe another low-velocity anomaly as deep as 8 km that may be associated with the active magma reservoir that feeds the eruptive activity of Merapi. In the southern portion of the study area, in the lower crust, we identify a low-velocity anomaly that may represent the top of the pathways of volatiles and melts ascending from the slab that was previously inferred from the LET model results. We observe that this anomaly is clearly separate from the felsic magma reservoirs in the upper crust.

  12. Thermo-hydrodynamical modelling of a flooded deep mine reservoir - Case of the Lorraine Coal Basin

    International Nuclear Information System (INIS)

    Reichart, Guillaume


    Since 2006, cessation of dewatering in Lorraine Coal Basin (France) led to the flooding of abandoned mines, resulting in a new hydrodynamic balance in the area. Recent researches concerning geothermal exploitation of flooded reservoirs raised new questions, which we propose to answer. Our work aimed to understand the thermos-hydrodynamic behaviour of mine water in a flooding or flooded system. Firstly, we synthesized the geographical, geological and hydrogeological contexts of the Lorraine Coal Basin, and we chose a specific area for our studies. Secondly, temperature and electric conductivity log profiles were measured in old pits of the Lorraine Coal Basin, giving a better understanding of the water behaviour at a deep mine shaft scale. We were able to build a thermos-hydrodynamic model and simulate water behaviour at this scale. Flow regime stability is also studied. Thirdly, a hydrodynamic spatialized meshed model was realized to study the hydrodynamic behaviour of a mine reservoir as a whole. Observed water-table rise was correctly reproduced: moreover, the model can be used in a predictive way after the flooding. Several tools were tested, improved or developed to ease the study of flooded reservoirs, as three-dimensional up-scaling of hydraulic conductivities and a coupled spatialized meshed model with a pipe network. (author) [fr

  13. Development of a Reservoir System Operation Model for Water Sustainability in the Yaqui River Basin (United States)

    Mounir, A.; Che, D.; Robles-Morua, A.; Kauneckis, D.


    The arid state of Sonora, Mexico underwent the Sonora SI project to provide additional water supply to the capital of Hermosillo. The main component of the project involves an interbasin transfer from the Yaqui River Basin (YRB) to the Sonora River Basin via the Independencia aqueduct. This project has generated conflicts over water among different social sectors in the YRB. To improve the management of the Yaqui reservoir system, we developed a daily watershed model. This model allowed us to predict the amount of water available in different regions of the basin. We integrated this simulation to an optimization model which calculates the best water allocation according to water rights established in Mexico's National Water Law. We compared different precipitation forcing scenarios: (1) a network of ground observations from Mexican water agencies during the historical period of 1980-2013, (2) gridded fields from the North America Land Data Assimilation System (NLDAS) at 12 km resolution, and (3) we will be studying a future forecast scenario. The simulation results were compared to historical observations at the three reservoirs existing in the YRB to generate confidence in the simulation tools. Our results are presented in the form of flow duration, reliability and exceedance frequency curves that are commonly used in the water management agencies. Through this effort, we anticipate building confidence among regional stakeholders in utilizing hydrological models in the development of reservoir operation policies.

  14. A Fully Three Dimensional Semianalytical Model for Shale Gas Reservoirs with Hydraulic Fractures

    Directory of Open Access Journals (Sweden)

    Yuwei Li


    Full Text Available Two challenges exist for modeling gas transport in shale. One is the existence of complex gas transport mechanisms, and the other is the impact of hydraulic fracture networks. In this study, a truly three dimensional semianalytical model was developed for shale gas reservoirs with hydraulic fractures of various shapes. Using the instantaneous point source solution, the pressure are solved for a bounded reservoir with fully 3D, partially penetrated hydraulic fractures of different strike angles and dip angles. The fractures could have various shapes such as rectangles, disks and ellipses. The shale gas diffusion equations considers complex transport mechanism such as gas slippage and gas diffusion. This semianalytical model is verified with a commercial software and an analytical method for single fully penetrated rectangle fracture, and the production results of shale gas are consistent. The impacts of fracture height and strike angles are investigated by five systematically constructed models. The comparison shows that the production increases proportionally with the fracture height, and decreases with the increase of strike angles. The method proposed in this study could also be applied in well testing to analyze the reservoir properties and used to forecast the production for tight oil and conventional resources.

  15. Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes

    Energy Technology Data Exchange (ETDEWEB)

    Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton


    Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications

  16. A non-reflecting boundary condition for the finite element modeling of infinite reservoir with layered sediment (United States)

    Gogoi, Indrani; Maity, Damodar


    The design of seismic resistant concrete gravity dam necessitates accurate determination of hydrodynamic pressure developed in the adjacent reservoir. The hydrodynamic pressure developed on structure is dependent on the physical characteristics of the boundaries surrounding the reservoir including reservoir bottom. The sedimentary material in the reservoir bottom absorbs energy at the bottom, which will affect the hydrodynamic pressure at the upstream face of the dam. The fundamental parameter characterizing the effect of absorption of hydrodynamic pressure waves at the reservoir bottom due to sediment is the reflection coefficient. The wave reflection coefficient is determined from parameters based on sediment layer thickness, its material properties and excitation frequencies. An analytical or a closed-form solution cannot account for the arbitrary geometry of the dam or reservoir bed profile. This problem can be efficiently tackled with finite element technique. The need for an accurate truncation boundary is felt to reduce the computational domain of the unbounded reservoir system. An efficient truncation boundary condition (TBC) which accounts for the reservoir bottom effect is proposed for the finite element analysis of infinite reservoir. The results show the efficiency of the proposed truncation boundary condition.

  17. Session: Reservoir Technology

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael


    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

  18. Modeling energy flow in a large Neotropical reservoir: a tool do evaluate fishing and stability

    Directory of Open Access Journals (Sweden)

    Ronaldo Angelini

    Full Text Available Recently, there is an increasing perception that the ecosystem approach gives important insights to support fisheries stock assessment and management. This paper aims to quantify energy flows in the Itaipu Reservoir (Brazil and to simulate increase of the fishing effort of some species, using Ecopath with Ecosim software, which could allow inferences on stability. Therefore, two steady-state Itaipu models were built (1983-87 and 1988-92. Results showed that: a there are no differences between models, and results on aging trends do not vary over time indicating that fishery does not alter the ecosystem as a whole; b results of fisheries simulations are approximate to mono-specific stock assessment for the same species and periods; c many authors believe that tropical ecosystems are environments where biotic and abiotic oscillations are annual and sometimes unexpected, but the results found for the Itaipu Reservoir indicate that stability was met after 16 years.

  19. Analytical modeling of coupled flow and geomechanics for vertical fractured well in tight gas reservoirs

    Directory of Open Access Journals (Sweden)

    Wang Ruifei


    Full Text Available The mathematical model of coupled flow and geomechanics for a vertical fractured well in tight gas reservoirs was established. The analytical modeling of unidirectional flow and radial flow was achieved by Laplace transforms and integral transforms. The results show that uncoupled flow would lead to an overestimate in performance of a vertical fractured well, especially in the later stage. The production rate decreases with elastic modulus because porosity and permeability decrease accordingly. Drawdown pressure should be optimized to lower the impact of coupled flow and geomechanics as a result of permeability decreasing. Production rate increases with fracture half-length significantly in the initial stage and becomes stable gradually. This study could provide a theoretical basis for effective development of tight gas reservoirs.

  20. Analytical modeling of coupled flow and geomechanics for vertical fractured well in tight gas reservoirs (United States)

    Wang, Ruifei; Gao, Xuhua; Song, Hongqing; Shang, Xinchun


    The mathematical model of coupled flow and geomechanics for a vertical fractured well in tight gas reservoirs was established. The analytical modeling of unidirectional flow and radial flow was achieved by Laplace transforms and integral transforms. The results show that uncoupled flow would lead to an overestimate in performance of a vertical fractured well, especially in the later stage. The production rate decreases with elastic modulus because porosity and permeability decrease accordingly. Drawdown pressure should be optimized to lower the impact of coupled flow and geomechanics as a result of permeability decreasing. Production rate increases with fracture half-length significantly in the initial stage and becomes stable gradually. This study could provide a theoretical basis for effective development of tight gas reservoirs.

  1. Multi variate regression model of the water level and production rate time series of the geothermal reservoir Waiwera (New Zealand) (United States)

    Kühn, Michael; Schöne, Tim


    Water management tools are essential to ensure the conservation of natural resources. The geothermal hot water reservoir below the village of Waiwera, on the Northern Island of New Zealand is used commercially since 1863. The continuous production of 50 °C hot geothermal water, to supply hotels and spas, has a negative impact on the reservoir. Until the year 1969 from all wells drilled the warm water flow was artesian. Due to overproduction the water needs to be pumped up nowadays. Further, within the years 1975 to 1976 the warm water seeps on the beach of Waiwera ran dry. In order to protect the reservoir and the historical and tourist site in the early 1980s a water management plan was deployed. The "Auckland Council" established guidelines to enable a sustainable management of the resource [1]. The management plan demands that the water level in the official and appropriate observation well of the council is 0.5 m above sea level throughout the year in average. Almost four decades of data (since 1978 until today) are now available [2]. For a sustainable water management, it is necessary to be able to forecast the water level as a function of the production rates in the production wells. The best predictions are provided by a multivariate regression model of the water level and production rate time series, which takes into account the production rates of individual wells. It is based on the inversely proportional relationship between the independent variable (production rate) and the dependent variable (measured water level). In production scenarios, a maximum total production rate of approx. 1,100 m3 / day is determined in order to comply with the guidelines of the "Auckland Council". [1] Kühn M., Stöfen H. (2005) A reactive flow model of the geothermal reservoir Waiwera, New Zealand. Hydrogeology Journal 13, 606-626, doi: 10.1007/s10040-004-0377-6 [2] Kühn M., Altmannsberger C. (2016) Assessment of data driven and process based water management tools for

  2. Agent-based modelling of cholera diffusion

    NARCIS (Netherlands)

    Augustijn-Beckers, Petronella; Doldersum, Tom; Useya, Juliana; Augustijn, Dionysius C.M.


    This paper introduces a spatially explicit agent-based simulation model for micro-scale cholera diffusion. The model simulates both an environmental reservoir of naturally occurring V.cholerae bacteria and hyperinfectious V. cholerae. Objective of the research is to test if runoff from open refuse

  3. Reservoir fisheries of Asia

    International Nuclear Information System (INIS)

    Silva, S.S. De.


    At a workshop on reservoir fisheries research, papers were presented on the limnology of reservoirs, the changes that follow impoundment, fisheries management and modelling, and fish culture techniques. Separate abstracts have been prepared for three papers from this workshop

  4. Analysis and Modelling of Taste and Odour Events in a Shallow Subtropical Reservoir

    Directory of Open Access Journals (Sweden)

    Edoardo Bertone


    Full Text Available Understanding and predicting Taste and Odour events is as difficult as critical for drinking water treatment plants. Following a number of events in recent years, a comprehensive statistical analysis of data from Lake Tingalpa (Queensland, Australia was conducted. Historical manual sampling data, as well as data remotely collected by a vertical profiler, were collected; regression analysis and self-organising maps were the used to determine correlations between Taste and Odour compounds and potential input variables. Results showed that the predominant Taste and Odour compound was geosmin. Although one of the main predictors was the occurrence of cyanobacteria blooms, it was noticed that the cyanobacteria species was also critical. Additionally, water temperature, reservoir volume and oxidised nitrogen availability, were key inputs determining the occurrence and magnitude of the geosmin peak events. Based on the results of the statistical analysis, a predictive regression model was developed to provide indications on the potential occurrence, and magnitude, of peaks in geosmin concentration. Additionally, it was found that the blue green algae probe of the lake’s vertical profiler has the potential to be used as one of the inputs for an automated geosmin early warning system.

  5. Evaluating Potential for Large Releases from CO2 Storage Reservoirs: Analogs, Scenarios, and Modeling Needs

    International Nuclear Information System (INIS)

    Birkholzer, Jens; Pruess, Karsten; Lewicki, Jennifer; Tsang, Chin-Fu; Karimjee, Anhar


    While the purpose of geologic storage of CO 2 in deep saline formations is to trap greenhouse gases underground, the potential exists for CO 2 to escape from the target reservoir, migrate upward along permeable pathways, and discharge at the land surface. Such discharge is not necessarily a serious concern, as CO 2 is a naturally abundant and relatively benign gas in low concentrations. However, there is a potential risk to health, safety and environment (HSE) in the event that large localized fluxes of CO 2 were to occur at the land surface, especially where CO 2 could accumulate. In this paper, we develop possible scenarios for large CO 2 fluxes based on the analysis of natural analogues, where large releases of gas have been observed. We are particularly interested in scenarios which could generate sudden, possibly self-enhancing, or even eruptive release events. The probability for such events may be low, but the circumstances under which they might occur and potential consequences need to be evaluated in order to design appropriate site selection and risk management strategies. Numerical modeling of hypothetical test cases is needed to determine critical conditions for such events, to evaluate whether such conditions may be possible at designated storage sites, and, if applicable, to evaluate the potential HSE impacts of such events and design appropriate mitigation strategies

  6. Trophic State and Toxic Cyanobacteria Density in Optimization Modeling of Multi-Reservoir Water Resource Systems

    Directory of Open Access Journals (Sweden)

    Andrea Sulis


    Full Text Available The definition of a synthetic index for classifying the quality of water bodies is a key aspect in integrated planning and management of water resource systems. In previous works [1,2], a water system optimization modeling approach that requires a single quality index for stored water in reservoirs has been applied to a complex multi-reservoir system. Considering the same modeling field, this paper presents an improved quality index estimated both on the basis of the overall trophic state of the water body and on the basis of the density values of the most potentially toxic Cyanobacteria. The implementation of the index into the optimization model makes it possible to reproduce the conditions limiting water use due to excessive nutrient enrichment in the water body and to the health hazard linked to toxic blooms. The analysis of an extended limnological database (1996–2012 in four reservoirs of the Flumendosa-Campidano system (Sardinia, Italy provides useful insights into the strengths and limitations of the proposed synthetic index.

  7. Scenario-based fitted Q-iteration for adaptive control of water reservoir systems under uncertainty (United States)

    Bertoni, Federica; Giuliani, Matteo; Castelletti, Andrea


    Over recent years, mathematical models have largely been used to support planning and management of water resources systems. Yet, the increasing uncertainties in their inputs - due to increased variability in the hydrological regimes - are a major challenge to the optimal operations of these systems. Such uncertainty, boosted by projected changing climate, violates the stationarity principle generally used for describing hydro-meteorological processes, which assumes time persisting statistical characteristics of a given variable as inferred by historical data. As this principle is unlikely to be valid in the future, the probability density function used for modeling stochastic disturbances (e.g., inflows) becomes an additional uncertain parameter of the problem, which can be described in a deterministic and set-membership based fashion. This study contributes a novel method for designing optimal, adaptive policies for controlling water reservoir systems under climate-related uncertainty. The proposed method, called scenario-based Fitted Q-Iteration (sFQI), extends the original Fitted Q-Iteration algorithm by enlarging the state space to include the space of the uncertain system's parameters (i.e., the uncertain climate scenarios). As a result, sFQI embeds the set-membership uncertainty of the future inflow scenarios in the action-value function and is able to approximate, with a single learning process, the optimal control policy associated to any scenario included in the uncertainty set. The method is demonstrated on a synthetic water system, consisting of a regulated lake operated for ensuring reliable water supply to downstream users. Numerical results show that the sFQI algorithm successfully identifies adaptive solutions to operate the system under different inflow scenarios, which outperform the control policy designed under historical conditions. Moreover, the sFQI policy generalizes over inflow scenarios not directly experienced during the policy design

  8. MEOR (microbial enhanced oil recovery) data base and evaluation of reservoir characteristics for MEOR projects

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, R.S.


    One aspect of NIPER's microbial enhanced oil recovery (MEOR) research program has been focused on obtaining all available information regarding the use of microorganisms in enhanced oil recovery field projects. The data have been evaluated in order to construct a data base of MEOR field projects. The data base has been used in this report to present a list of revised reservoir screening criteria for MEOR field processes. This list is by no means complete; however, until more information is available from ongoing field tests, it represents the best available data to date. The data base has been studied in this report in order to determine any significant reports from MEOR field projects where the microbial treatment was unsuccessful. Such information could indicate limitations of MEOR processes. The types of reservoir information sought from these projects that could be limitations of microorganisms include reservoir permeability, salinity, temperature, and high concentrations of minerals in the rock such as selenium, arsenic, or mercury. Unfortunately, most of the MEOR field projects to date have not reported this type of information; thus we still cannot assess field limitations until more projects report these data. 7 refs., 1 fig., 7 tabs.

  9. Reservoir adaptive operating rules based on both of historical streamflow and future projections (United States)

    Zhang, Wei; Liu, Pan; Wang, Hao; Chen, Jie; Lei, Xiaohui; Feng, Maoyuan


    Climate change is affecting hydrological variables and consequently is impacting water resources management. Historical strategies are no longer applicable under climate change. Therefore, adaptive management, especially adaptive operating rules for reservoirs, has been developed to mitigate the possible adverse effects of climate change. However, to date, adaptive operating rules are generally based on future projections involving uncertainties under climate change, yet ignoring historical information. To address this, we propose an approach for deriving adaptive operating rules considering both historical information and future projections, namely historical and future operating rules (HAFOR). A robustness index was developed by comparing benefits from HAFOR with benefits from conventional operating rules (COR). For both historical and future streamflow series, maximizations of both average benefits and the robustness index were employed as objectives, and four trade-offs were implemented to solve the multi-objective problem. Based on the integrated objective, the simulation-based optimization method was used to optimize the parameters of HAFOR. Using the Dongwushi Reservoir in China as a case study, HAFOR was demonstrated to be an effective and robust method for developing adaptive operating rules under the uncertain changing environment. Compared with historical or projected future operating rules (HOR or FPOR), HAFOR can reduce the uncertainty and increase the robustness for future projections, especially regarding results of reservoir releases and volumes. HAFOR, therefore, facilitates adaptive management in the context that climate change is difficult to predict accurately.

  10. A Reduced Order Model for Fast Production Prediction from an Oil Reservoir with a Gas Cap


    Yang, Yichen


    Master's thesis in Petroleum geosciences engineering Economic evaluations are essential inputs for oil and gas field development decisions. These evaluations are critically dependent on the unbiased assessment of uncertainty in the future oil and gas production from wells. However, many production prediction techniques come at significant computational costs as they often require a very large number of highly detailed grid based reservoir simulations. In this study, we present an alter...

  11. Data Assimilation Tools for CO2 Reservoir Model Development – A Review of Key Data Types, Analyses, and Selected Software

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Sullivan, E. C.; Murray, Christopher J.; Last, George V.; Black, Gary D.


    Pacific Northwest National Laboratory (PNNL) has embarked on an initiative to develop world-class capabilities for performing experimental and computational analyses associated with geologic sequestration of carbon dioxide. The ultimate goal of this initiative is to provide science-based solutions for helping to mitigate the adverse effects of greenhouse gas emissions. This Laboratory-Directed Research and Development (LDRD) initiative currently has two primary focus areas—advanced experimental methods and computational analysis. The experimental methods focus area involves the development of new experimental capabilities, supported in part by the U.S. Department of Energy’s (DOE) Environmental Molecular Science Laboratory (EMSL) housed at PNNL, for quantifying mineral reaction kinetics with CO2 under high temperature and pressure (supercritical) conditions. The computational analysis focus area involves numerical simulation of coupled, multi-scale processes associated with CO2 sequestration in geologic media, and the development of software to facilitate building and parameterizing conceptual and numerical models of subsurface reservoirs that represent geologic repositories for injected CO2. This report describes work in support of the computational analysis focus area. The computational analysis focus area currently consists of several collaborative research projects. These are all geared towards the development and application of conceptual and numerical models for geologic sequestration of CO2. The software being developed for this focus area is referred to as the Geologic Sequestration Software Suite or GS3. A wiki-based software framework is being developed to support GS3. This report summarizes work performed in FY09 on one of the LDRD projects in the computational analysis focus area. The title of this project is Data Assimilation Tools for CO2 Reservoir Model Development. Some key objectives of this project in FY09 were to assess the current state

  12. High-performance modeling of CO2 sequestration by coupling reservoir simulation and molecular dynamics

    KAUST Repository

    Bao, Kai


    The present work describes a parallel computational framework for CO2 sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel HPC systems. In this framework, a parallel reservoir simulator, Reservoir Simulation Toolbox (RST), solves the flow and transport equations that describe the subsurface flow behavior, while the molecular dynamics simulations are performed to provide the required physical parameters. Numerous technologies from different fields are employed to make this novel coupled system work efficiently. One of the major applications of the framework is the modeling of large scale CO2 sequestration for long-term storage in the subsurface geological formations, such as depleted reservoirs and deep saline aquifers, which has been proposed as one of the most attractive and practical solutions to reduce the CO2 emission problem to address the global-warming threat. To effectively solve such problems, fine grids and accurate prediction of the properties of fluid mixtures are essential for accuracy. In this work, the CO2 sequestration is presented as our first example to couple the reservoir simulation and molecular dynamics, while the framework can be extended naturally to the full multiphase multicomponent compositional flow simulation to handle more complicated physical process in the future. Accuracy and scalability analysis are performed on an IBM BlueGene/P and on an IBM BlueGene/Q, the latest IBM supercomputer. Results show good accuracy of our MD simulations compared with published data, and good scalability are observed with the massively parallel HPC systems. The performance and capacity of the proposed framework are well demonstrated with several experiments with hundreds of millions to a billion cells. To our best knowledge, the work represents the first attempt to couple the reservoir simulation and molecular simulation for large scale modeling. Due to the complexity of the subsurface systems

  13. High-Performance Modeling of Carbon Dioxide Sequestration by Coupling Reservoir Simulation and Molecular Dynamics

    KAUST Repository

    Bao, Kai


    The present work describes a parallel computational framework for carbon dioxide (CO2) sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel high-performance-computing (HPC) systems. In this framework, a parallel reservoir simulator, reservoir-simulation toolbox (RST), solves the flow and transport equations that describe the subsurface flow behavior, whereas the MD simulations are performed to provide the required physical parameters. Technologies from several different fields are used to make this novel coupled system work efficiently. One of the major applications of the framework is the modeling of large-scale CO2 sequestration for long-term storage in subsurface geological formations, such as depleted oil and gas reservoirs and deep saline aquifers, which has been proposed as one of the few attractive and practical solutions to reduce CO2 emissions and address the global-warming threat. Fine grids and accurate prediction of the properties of fluid mixtures under geological conditions are essential for accurate simulations. In this work, CO2 sequestration is presented as a first example for coupling reservoir simulation and MD, although the framework can be extended naturally to the full multiphase multicomponent compositional flow simulation to handle more complicated physical processes in the future. Accuracy and scalability analysis are performed on an IBM BlueGene/P and on an IBM BlueGene/Q, the latest IBM supercomputer. Results show good accuracy of our MD simulations compared with published data, and good scalability is observed with the massively parallel HPC systems. The performance and capacity of the proposed framework are well-demonstrated with several experiments with hundreds of millions to one billion cells. To the best of our knowledge, the present work represents the first attempt to couple reservoir simulation and molecular simulation for large-scale modeling. Because of the complexity of

  14. Model for energy planning of degraded river basins based on hydrological evaluation of hydroelectric reservoirs in operation; Modelo de planejamento energetico de bacias hidrograficas degradadas baseado na avaliacao hidrica de reservatorios hidreletricos em operacao

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Afonso Henriques Moreira [Universidade Federal de Itajuba (UNIFEI), MG (Brazil); Ferreira, Aloisio Caetano; Ottoni, Arthur Benedicto; Nogueira Neto, Claudio; Silva, Denis de Souza


    The human occupation of the hydrographic basin, made in the past without plans, generated alteration of the hydrology characteristics, presenting as direct consequence modifications of its hydric availabilities. Or either, the floods in the rainy periods and the droughts in the ones of dryness currently tend to be more frequent and with bigger intensity. These conditions have affected the operation as well as the planning of the hydroelectric reservoirs, that have generated energy in conditions of different hydric availabilities (worse) of those foreseeing at the time of the project. These situations result in uncertainties and energy losses for the investor as well as in the system. Under such premises, the present article analyzes the energy-economic influences of the deterioration of the hydric regimen of some on exploitations in operation to the system, located in basins degrades in the South, Southeastern and Northeast regions; enhancing the importance of the studies of hydric economy of these units of management (degraded basins) as subsidy of taking of decision for gradual recovery of its hydric availabilities; taking in account the energy optimization of the hydroelectric reservoirs in located operation as well as the minimization of inherent the financial losses to the uncertainties of its hydric resources. (author)

  15. Permeability Estimation of Rock Reservoir Based on PCA and Elman Neural Networks (United States)

    Shi, Ying; Jian, Shaoyong


    an intelligent method which based on fuzzy neural networks with PCA algorithm, is proposed to estimate the permeability of rock reservoir. First, the dimensionality reduction process is utilized for these parameters by principal component analysis method. Further, the mapping relationship between rock slice characteristic parameters and permeability had been found through fuzzy neural networks. The estimation validity and reliability for this method were tested with practical data from Yan’an region in Ordos Basin. The result showed that the average relative errors of permeability estimation for this method is 6.25%, and this method had the better convergence speed and more accuracy than other. Therefore, by using the cheap rock slice related information, the permeability of rock reservoir can be estimated efficiently and accurately, and it is of high reliability, practicability and application prospect.

  16. Modeling mineral alterations in shale reservoirs in contact with CO2 (United States)

    Maier, Uli; Tatomir, Alexandru; Sauter, Martin


    Hydraulic fracturing as well as CO2 storage, if in contact with cap rocks, can lead to alterations of the mineral phase of shale reservoirs driven by the changes in fluid composition and pressure. Underlying concepts describing the shifts in geochemical equilibria are discussed for typical shale gas mineral compositions using the geochemical codes Phreeqc and MIN3P, which have recently been upgraded to cope with the conditions of pressure and temperature in deep reservoirs. Models using field data from Heletz oil field (Israel) and the North-west-German sedimentary basins are presented. Alterations of the mineral phase over time are elucidated and their consequences on flow and transport properties of the shale gas formation.

  17. Multi-objective game-theory models for conflict analysis in reservoir watershed management. (United States)

    Lee, Chih-Sheng


    This study focuses on the development of a multi-objective game-theory model (MOGM) for balancing economic and environmental concerns in reservoir watershed management and for assistance in decision. Game theory is used as an alternative tool for analyzing strategic interaction between economic development (land use and development) and environmental protection (water-quality protection and eutrophication control). Geographic information system is used to concisely illustrate and calculate the areas of various land use types. The MOGM methodology is illustrated in a case study of multi-objective watershed management in the Tseng-Wen reservoir, Taiwan. The innovation and advantages of MOGM can be seen in the results, which balance economic and environmental concerns in watershed management and which can be interpreted easily by decision makers. For comparison, the decision-making process using conventional multi-objective method to produce many alternatives was found to be more difficult. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin (United States)

    Wu, Yiping; Liu, Shu-Guang


    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  19. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin. (United States)

    Wu, Yiping; Liu, Shuguang


    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (∼78%) and nutrients (∼30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  20. A Generalized Martingale Model of Streamflow Forecast Uncertainty Evolution and its Application in the Three Gorge Reservoir Operation (United States)

    Zhao, J.; Zhao, T.


    Streamflow forecasts are dynamically updated in real-time, which leads to a process of forecast uncertainty evolution. Generally, forecast uncertainty reduces as time progresses and more hydrologic information becomes available. This process of forecasting and uncertainty updating can be described by the martingale model of forecast evolution (MMFE), which formulates the total forecast uncertainty of streamflow in one future period as the sum of forecast improvements in the intermediate periods. This study tests the basic assumptions of MMFE with the streamflow forecast data from the Three Gorge Reservoir and shows that 1) real-world forecasts can be biased and tend to underestimate the actual streamflow and 2) real-world forecast uncertainty can be non-Gaussian and heavy-tailed. Based on these statistical tests, this study incorporates the normal quantile transform (NQT) method and issues a generalized NQT-MMFE model to simulate biased and non-Gaussian forecast uncertainties. The simulated streamflow forecast is similar to the real-world forecast in terms of NSE, MAE, and RMSE, which illustrates the effectiveness of the NQT-MMFE model. The simulated forecasts are further applied to a Monte-Carlo experiment of the Three Gorge Reservoir re-operation. The results illustrate that NQT-MMFE model within a rolling horizon decision making framework can efficiently exploit forecast information and make more robust decisions. The real-time streamflow forecast of TGR in 2008

  1. Estimation of Bank Erosion Due To Reservoir Operation in Cascade (Case Study: Citarum Cascade Reservoir

    Directory of Open Access Journals (Sweden)

    Sri Legowo


    Full Text Available Sedimentation is such a crucial issue to be noted once the accumulated sediment begins to fill the reservoir dead storage, this will then influence the long-term reservoir operation. The sediment accumulated requires a serious attention for it may influence the storage capacity and other reservoir management of activities. The continuous inflow of sediment to the reservoir will decrease the capacity of reservoir storage, the reservoir value in use, and the useful age of reservoir. Because of that, the rate of the sediment needs to be delayed as possible. In this research, the delay of the sediment rate is considered based on the rate of flow of landslide of the reservoir slope. The rate of flow of the sliding slope can be minimized by way of each reservoir autonomous efforts. This effort can be performed through; the regulation of fluctuating rate of reservoir surface current that does not cause suddenly drawdown and upraising as well. The research model is compiled using the searching technique of Non Linear Programming (NLP.The rate of bank erosion for the reservoir variates from 0.0009 to 0.0048 MCM/year, which is no sigrificant value to threaten the life time of reservoir.Mean while the rate of watershed sediment has a significant value, i.e: 3,02 MCM/year for Saguling that causes to fullfill the storage capacity in 40 next years (from years 2008.

  2. Sub-seasonal-to-seasonal Reservoir Inflow Forecast using Bayesian Hierarchical Hidden Markov Model (United States)

    Mukhopadhyay, S.; Arumugam, S.


    Sub-seasonal-to-seasonal (S2S) (15-90 days) streamflow forecasting is an emerging area of research that provides seamless information for reservoir operation from weather time scales to seasonal time scales. From an operational perspective, sub-seasonal inflow forecasts are highly valuable as these enable water managers to decide short-term releases (15-30 days), while holding water for seasonal needs (e.g., irrigation and municipal supply) and to meet end-of-the-season target storage at a desired level. We propose a Bayesian Hierarchical Hidden Markov Model (BHHMM) to develop S2S inflow forecasts for the Tennessee Valley Area (TVA) reservoir system. Here, the hidden states are predicted by relevant indices that influence the inflows at S2S time scale. The hidden Markov model also captures the both spatial and temporal hierarchy in predictors that operate at S2S time scale with model parameters being estimated as a posterior distribution using a Bayesian framework. We present our work in two steps, namely single site model and multi-site model. For proof of concept, we consider inflows to Douglas Dam, Tennessee, in the single site model. For multisite model we consider reservoirs in the upper Tennessee valley. Streamflow forecasts are issued and updated continuously every day at S2S time scale. We considered precipitation forecasts obtained from NOAA Climate Forecast System (CFSv2) GCM as predictors for developing S2S streamflow forecasts along with relevant indices for predicting hidden states. Spatial dependence of the inflow series of reservoirs are also preserved in the multi-site model. To circumvent the non-normality of the data, we consider the HMM in a Generalized Linear Model setting. Skill of the proposed approach is tested using split sample validation against a traditional multi-site canonical correlation model developed using the same set of predictors. From the posterior distribution of the inflow forecasts, we also highlight different system behavior

  3. Fracture-network analysis of the Latemar Platform (northern Italy): integrating outcrop studies to constrain the hydraulic properties of fractures in reservoir models

    NARCIS (Netherlands)

    Boro, H.; Rosero, E.; Bertotti, G.V.


    Fractures in subsurface reservoirs are known to have significant impacts on reservoir productivity. Quantifying their importance, however, is challenged by limited subsurface observations, and intense computations for modelling and upscaling. In this paper, we present a workflow to construct and

  4. [The primordial reservoir in the infectious contagion cicle. The avian influenza model]. (United States)

    Suárez Fernández, Guillermo


    An update of the role of the primordial reservoir in the biological cycle of the process of infection and contagion is made, using diseases of very frequent incidence at the present moment in the Mediterranean Area and the Iberian Peninsula. These diseases are, amongst others Severe and Acute Respiratory Syndrome (SARS), Rabies, Lyme disease, African Horse Sickness, Blue Tongue, African Swine Fever, Ebola Hemorrhagic Fever, Hantavirosis, and Avian Influenza. The zoonoses classification proposed by the WHO Control Center in Athens in 1994 for the Mediterranean Area, based on the type of reservoir, the importance of the process and the type of transmission, and not focusing on the etiological agent, is very positively valued. Finally, the problem of Avian Influenza and the real risk posed by aquatic migratory birds in the diffusion and contagion of the present Avian Influence epidemics is reviewed.

  5. Discrete fracture modeling of multiphase flow and hydrocarbon production in fractured shale or low permeability reservoirs (United States)

    Hao, Y.; Settgast, R. R.; Fu, P.; Tompson, A. F. B.; Morris, J.; Ryerson, F. J.


    It has long been recognized that multiphase flow and transport in fractured porous media is very important for various subsurface applications. Hydrocarbon fluid flow and production from hydraulically fractured shale reservoirs is an important and complicated example of multiphase flow in fractured formations. The combination of horizontal drilling and hydraulic fracturing is able to create extensive fracture networks in low permeability shale rocks, leading to increased formation permeability and enhanced hydrocarbon production. However, unconventional wells experience a much faster production decline than conventional hydrocarbon recovery. Maintaining sustainable and economically viable shale gas/oil production requires additional wells and re-fracturing. Excessive fracturing fluid loss during hydraulic fracturing operations may also drive up operation costs and raise potential environmental concerns. Understanding and modeling processes that contribute to decreasing productivity and fracturing fluid loss represent a critical component for unconventional hydrocarbon recovery analysis. Towards this effort we develop a discrete fracture model (DFM) in GEOS (LLNL multi-physics computational code) to simulate multiphase flow and transfer in hydraulically fractured reservoirs. The DFM model is able to explicitly account for both individual fractures and their surrounding rocks, therefore allowing for an accurate prediction of impacts of fracture-matrix interactions on hydrocarbon production. We apply the DFM model to simulate three-phase (water, oil, and gas) flow behaviors in fractured shale rocks as a result of different hydraulic stimulation scenarios. Numerical results show that multiphase flow behaviors at the fracture-matrix interface play a major role in controlling both hydrocarbon production and fracturing fluid recovery rates. The DFM model developed in this study will be coupled with the existing hydro-fracture model to provide a fully integrated

  6. An integrated model coupling open-channel flow, turbidity current and flow exchanges between main river and tributaries in Xiaolangdi Reservoir, China (United States)

    Wang, Zenghui; Xia, Junqiang; Li, Tao; Deng, Shanshan; Zhang, Junhua


    The ever growing importance of sustainable management of reservoir sedimentation has promoted the development and applications of turbidity current models. However, there are few effective and practical models in literature for turbidity currents in a reservoir where the impounded area involves both the main river and its many tributaries. An integrated numerical model coupling open-channel flow, turbidity current and flow exchanges between main river and tributaries is proposed, which can simulate the complex flow and sediment transport in a reservoir where these three physical processes coexist. The model consists of two sets of governing equations for the open-channel flow and turbidity current, which are based on the modified St. Venant equations by taking into account the effect of lateral flow exchanges. These two sets of equations are solved in the finite volume method framework and the solutions are executed in an alternating calculation mode. Different methods are respectively proposed to calculate the discharge of flow exchange caused by free surface gradient and turbidity current intrusion. For the surface-gradient driven flow exchange, a storage cell method, which re-defines the relationship between water level and representative cross-sectional area, is used to update the water level at confluence. For the turbidity current intrusion, a discharge formula is proposed based on the analysis of the energy and momentum transformation in the intruding turbid water body. This formula differs from previous ones in that the effect of tributary bed slope is considered. Two events of water-sediment regulation conducted in the Xiaolangdi Reservoir in 2004 and 2006 were simulated to test the ability of this model. The predicted reservoir drawdown process, the turbidity current evolution and the sediment venting efficiency were in close agreement with the measurements. The necessity to couple the flow exchanges was demonstrated by comparing the performance of the

  7. Double-Porosity Models for a Fissured Groundwater Reservoir With Fracture Skin (United States)

    Moench, Allen F.


    Theories of flow to a well in a double-porosity groundwater reservoir are modified to incorporate effects of a thin layer of low-permeability material or fracture skin that may be present at fracture-block interfaces as a result of mineral deposition or alteration. The commonly used theory for flow in double- porosity formations that is based upon the assumption of pseudo-steady state block-to-fissure flow is shown to be a special case of the theory presented in this paper. The latter is based on the assumption of transient block-to-fissure flow with fracture skin. Under conditions where fracture skin has a hydraulic conductivity that is less than that of the matrix rock, it may be assumed to impede the interchange of fluid between the fissures and blocks. Resistance to flow at fracture-block interfaces tends to reduce spatial variation of hydraulic head gradients within the blocks. This provides theoretical justification for neglecting the divergence of flow in the blocks as required by the pseudo-steady state flow model. Coupled boundary value problems for flow to a well discharging at a constant rate were solved in the Laplace domain. Both slab-shaped and sphere-shaped blocks were considered, as were effects of well bore storage and well bore skin. Results obtained by numerical inversion were used to construct dimensionless-type curves that were applied to well test data, for a pumped well and for an observation well, from the fractured volcanic rock terrane of the Nevada Test Site.

  8. Modeling the Risk of Commercial Failure for Hydraulic Fracturing Projects Due to Reservoir Heterogeneity

    Directory of Open Access Journals (Sweden)

    Hadi Parvizi


    Full Text Available Hydraulic fracturing technologies play a major role in the global energy supply and affect oil pricing. The current oil price fluctuations within 40 to 55 USD per barrel have caused diminished economical margins for hydraulic fracturing projects. Hence, successful decision making the for execution of hydraulic fracturing projects requires a higher level of integration of technical, commercial, and uncertainty analyses. However, the complexity of hydraulic fracturing modeling, and the sensitivity and the effects of uncertainty of reservoir heterogeneity on well performance renders the integration of such studies rather impractical. The impact of reservoir heterogeneity on hydraulic fracturing performance has been quantified by the introduction of Heterogeneity Impact Factor (HIF and formulas have been developed to forecast well performance using HIF. These advances provide a platform for introducing a practical approach for introducing the Risk of Commercial Failure (RCF due to reservoir heterogeneity in hydraulic fracturing projects. This paper defines such a parameter and the methodology to calculate it in a time-efficient manner. The proposed approach has been exercised on a real project in which a RCF of 20% is computed. The analysis also covers the sensitivity on Capital Expenditure (CAPEX, Operational Expenditure (OPEX, gas price, HIF and discount rate.

  9. An integrated multi-level watershed-reservoir modeling system for examining hydrological and biogeochemical processes in small prairie watersheds. (United States)

    Zhang, Hua; Huang, Guo H; Wang, Dunling; Zhang, Xiaodong; Li, Gongchen; An, Chunjiang; Cui, Zheng; Liao, Renfei; Nie, Xianghui


    Eutrophication of small prairie reservoirs presents a major challenge in water quality management and has led to a need for predictive water quality modeling. Studies are lacking in effectively integrating watershed models and reservoir models to explore nutrient dynamics and eutrophication pattern. A water quality model specific to small prairie water bodies is also desired in order to highlight key biogeochemical processes with an acceptable degree of parameterization. This study presents a Multi-level Watershed-Reservoir Modeling System (MWRMS) to simulate hydrological and biogeochemical processes in small prairie watersheds. It integrated a watershed model, a hydrodynamic model and an eutrophication model into a flexible modeling framework. It can comprehensively describe hydrological and biogeochemical processes across different spatial scales and effectively deal with the special drainage structure of small prairie watersheds. As a key component of MWRMS, a three-dimensional Willows Reservoir Eutrophication Model (WREM) is developed to addresses essential biogeochemical processes in prairie reservoirs and to generate 3D distributions of various water quality constituents; with a modest degree of parameterization, WREM is able to meet the limit of data availability that often confronts the modeling practices in small watersheds. MWRMS was applied to the Assiniboia Watershed in southern Saskatchewan, Canada. Extensive efforts of field work and lab analysis were undertaken to support model calibration and validation. MWRMS demonstrated its ability to reproduce the observed watershed water yield, reservoir water levels and temperatures, and concentrations of several water constituents. Results showed that the aquatic systems in the Assiniboia Watershed were nitrogen-limited and sediment flux played a crucial role in reservoir nutrient budget and dynamics. MWRMS can provide a broad context of decision support for water resources management and water quality

  10. Multi-objective calibration of a reservoir water quality model in aggregation and non-dominated sorting approaches (United States)

    Huang, Yongtai


    Numerical water quality models are developed to predict contaminant fate and transport in receiving waters such as reservoirs and lakes. They can be helpful tools for water resource management. The objective of this study is to calibrate a water quality model which was set up to simulate the water quality conditions of Pepacton Reservoir, Downsville, New York, USA, using an aggregation hybrid genetic algorithm (AHGA) and a non-dominated sorting hybrid genetic algorithm (NSHGA). Both AHGA and NSHGA use a hybrid genetic algorithm (HGA) as optimization engines but are different in fitness assignment. In the AHGA, a weighted sum of scaled simulation errors is designed as an overall objective function to measure the fitness of solutions (i.e., parameter values). In the NSHGA, a method based on non-dominated sorting and Euclidean distances is proposed to calculate the dummy fitness of solutions. In addition, this study also compares the AHGA and the NSHGA. The purpose of this comparison is to determine whether the objective function values (i.e., simulation errors) and simulated results obtained by the AHGA and the NSHGA are significantly different from each other. The results show that the objective function values from the two HGAs are good compromises between all objective functions, and the calibrated model results match the observed data reasonably well and are comparable to other studies, supporting and justifying the use of multi-objective calibration.

  11. Modeling Highly Buoyant Flows in the Castel Giorgio: Torre Alfina Deep Geothermal Reservoir

    Directory of Open Access Journals (Sweden)

    Giorgio Volpi


    Full Text Available The Castel Giorgio-Torre Alfina (CG-TA, central Italy is a geothermal reservoir whose fluids are hosted in a carbonate formation at temperatures ranging between 120°C and 210°C. Data from deep wells suggest the existence of convective flow. We present the 3D numerical model of the CG-TA to simulate the undisturbed natural geothermal field and investigate the impacts of the exploitation process. The open source finite-element code OpenGeoSys is applied to solve the coupled systems of partial differential equations. The commercial software FEFLOW® is also used as additional numerical constraint. Calculated pressure and temperature have been calibrated against data from geothermal wells. The flow field displays multicellular convective patterns that cover the entire geothermal reservoir. The resulting thermal plumes protrude vertically over 3 km at Darcy velocity of about 7⁎10-8 m/s. The analysis of the exploitation process demonstrated the sustainability of a geothermal doublet for the development of a 5 MW pilot plant. The buoyant circulation within the geothermal system allows the reservoir to sustain a 50-year production at a flow rate of 1050 t/h. The distance of 2 km, between the production and reinjection wells, is sufficient to prevent any thermal breakthrough within the estimated operational lifetime. OGS and FELFOW results are qualitatively very similar with differences in peak velocities and temperatures. The case study provides valuable guidelines for future exploitation of the CG-TA deep geothermal reservoir.

  12. EQUILGAS: Program to estimate temperatures and in situ two-phase conditions in geothermal reservoirs using three combined FT-HSH gas equilibria models (United States)

    Barragán, Rosa María; Núñez, José; Arellano, Víctor Manuel; Nieva, David


    Exploration and exploitation of geothermal resources require the estimation of important physical characteristics of reservoirs including temperatures, pressures and in situ two-phase conditions, in order to evaluate possible uses and/or investigate changes due to exploitation. As at relatively high temperatures (>150 °C) reservoir fluids usually attain chemical equilibrium in contact with hot rocks, different models based on the chemistry of fluids have been developed that allow deep conditions to be estimated. Currently either in water-dominated or steam-dominated reservoirs the chemistry of steam has been useful for working out reservoir conditions. In this context, three methods based on the Fischer-Tropsch (FT) and combined H2S-H2 (HSH) mineral-gas reactions have been developed for estimating temperatures and the quality of the in situ two-phase mixture prevailing in the reservoir. For these methods the mineral buffers considered to be controlling H2S-H2 composition of fluids are as follows. The pyrite-magnetite buffer (FT-HSH1); the pyrite-hematite buffer (FT-HSH2) and the pyrite-pyrrhotite buffer (FT-HSH3). Currently from such models the estimations of both, temperature and steam fraction in the two-phase fluid are obtained graphically by using a blank diagram with a background theoretical solution as reference. Thus large errors are involved since the isotherms are highly nonlinear functions while reservoir steam fractions are taken from a logarithmic scale. In order to facilitate the use of the three FT-HSH methods and minimize visual interpolation errors, the EQUILGAS program that numerically solves the equations of the FT-HSH methods was developed. In this work the FT-HSH methods and the EQUILGAS program are described. Illustrative examples for Mexican fields are also given in order to help the users in deciding which method could be more suitable for every specific data set.

  13. Historical Streamflow Series Analysis Applied to Furnas HPP Reservoir Watershed Using the SWAT Model

    Directory of Open Access Journals (Sweden)

    Viviane de Souza Dias


    Full Text Available Over the last few years, the operation of the Furnas Hydropower Plant (HPP reservoir, located in the Grande River Basin, has been threatened due to a significant reduction in inflow. In the region, hydrological modelling tools are being used and tested to support decision making and water sustainability. In this study, the streamflow was modelled in the area of direct influence of the Furnas HPP reservoir, and the Soil and Water Assessment Tool (SWAT model performance was verified for studies in the region. Analyses of sensitivity and uncertainty were undertaken using the Sequential Uncertainty Fitting algorithm (SUFI-2 with a Calibration Uncertainty Program (SWAT-CUP. The hydrological modelling, at a monthly scale, presented good results in the calibration (NS 0.86, with a slight reduction of the coefficient in the validation period (NS 0.64. The results suggested that this tool could be applied in future hydrological studies in the region of study. With the consideration that special attention should be given to the historical series used in the calibration and validation of the models. It is important to note that this region has high demands for water resources, primarily for agricultural use. Water demands must also be taken into account in future hydrological simulations. The validation of this methodology led to important contributions to the management of water resources in regions with tropical climates, whose climatological and geological reality resembles the one studied here.

  14. A Mathematical Pressure Transient Analysis Model for Multiple Fractured Horizontal Wells in Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Yan Zeng


    Full Text Available Multistage fractured horizontal wells (MFHWs have become the main technology for shale gas exploration. However, the existing models have neglected the percolation mechanism in nanopores of organic matter and failed to consider the differences among the reservoir properties in different areas. On that account, in this study, a modified apparent permeability model was proposed describing gas flow in shale gas reservoirs by integrating bulk gas flow in nanopores and gas desorption from nanopores. The apparent permeability was introduced into the macroseepage model to establish a dynamic pressure analysis model for MFHWs dual-porosity formations. The Laplace transformation and the regular perturbation method were used to obtain an analytical solution. The influences of fracture half-length, fracture permeability, Langmuir volume, matrix radius, matrix permeability, and induced fracture permeability on pressure and production were discussed. Results show that fracture half-length, fracture permeability, and induced fracture permeability exert a significant influence on production. A larger Langmuir volume results in a smaller pressure and pressure derivative. An increase in matrix permeability increases the production rate. Besides, this model fits the actual field data relatively well. It has a reliable theoretical foundation and can preferably describe the dynamic changes of pressure in the exploration process.

  15. Predicting Formation Damage in Aquifer Thermal Energy Storage Systems Utilizing a Coupled Hydraulic-Thermal-Chemical Reservoir Model (United States)

    Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali


    In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to

  16. GestAqua.AdaPT - Mediterranean river basin modeling and reservoir operation strategies for climate change adaptation (United States)

    Alexandre Diogo, Paulo; Nunes, João Pedro; Marco, Machado; Aal, Carlo; Carmona Rodrigues, António; Beça, Pedro; Casanova Lino, Rafael; Rocha, João; Carvalho Santos, Cláudia


    Climate change (CC) scenarios for the Mediterranean region include an increase in the frequency and intensity of extreme weather events such as drought periods. higher average temperatures and evapotranspiration, combined with the decrease of annual precipitation may strongly affect the sustainability of water resources. In face of these risks, improving water management actions? by anticipating necessary operational measures is required to insure water quantity and quality according to the needs of the populations and irrigation in agriculture. This is clearly the case of the Alentejo region, southern Portugal, where present climatic conditions already pose significant challenges to water resources stakeholders, mainly from the agricultural and the urban supply sectors. With this in mind, the GestAqua.AdaPT project is underway during 2015 and 2016, aiming at analyzing CC impacts until 2100 and develop operational procedures to ensure water needs are adequately satisfied in the Monte Novo and Vigia reservoirs, which supply water for the city of Évora and nearby irrigation systems. Specific project objectives include: a) defining management and operational adaptation strategies aiming to ensure resource sustainability, both quantitatively and qualitatively; b) evaluate future potential costs and available alternatives to the regional water transfer infrastructure linked with the large Alqueva reservoir implemented in 2011; c) defining CC adaptation strategies to reduce irrigation water needs and d) identification of CC adaptation strategies which can be suitable also to other similar water supply systems. The methodology is centered on the implementation of a cascade of modeling tools, allowing the integrated simulation of the multiple variables under analysis. The project is based on CC scenarios resulting from the CORDEX project for 10 combinations of Global and regional climate models (GCMs and RCMs). The study follows by using two of these combinations

  17. Methane hydrate reservoir model around the eastern Nankai trough area offshore Japan

    Energy Technology Data Exchange (ETDEWEB)

    Inamori, T.; Hayashi, M.; Kobayashi, T.; Shimoda, N.; Takano, O.; Takayama, T.; Fujii, T.; Saeki, T. [Japan Oil, Gas and Metals National Corp., Chiba (Japan). Dept. of Technology Research and Development


    This paper described a modelling study conducted to characterize gas hydrates in the eastern Nankai trough region near the coast of Japan. Two drilling campaigns were conducted in the region, and a total of 39 boreholes were drilled to obtain logging data. Data from exploratory wells drilled in the region were also presented. Methane hydrate-concentrated zones were delineated using seismic sequence analysis and 3-D seismic surveys. Methane hydrate-bearing sediments corresponded with turbidite sands using logging and coring data. A rock physics model was developed using data obtained from the analyses. The study showed that methane hydrate bearing-sediments near the eastern Nankai trough area are heterogenous and both vertically and horizontally complex, as the sediments were composed of turbidite sands with channel-levee and lobe systems. Sandy intervals had higher levels of methane hydrates than silty or muddy intervals. The reservoirs were divided into 3 distinct types: (1) low-saturation; (2) discontinuous high-saturation; and (3) continuous high-saturation. The reservoirs were delineated by selecting the bottom simulating reflector (BSM) as the top of the hydrate-bearing sediments for the turbidite channel-levee or lobe systems. The hydrate rock physics model was used to develop the matrix support model from the relationship between P and S wave velocities and methane hydrate saturation. 9 refs., 11 figs.

  18. Study of different factors affecting the electrical properties of natural gas reservoir rocks based on digital cores

    International Nuclear Information System (INIS)

    Jiang, Liming; Sun, Jianmeng; Wang, Haitao; Liu, Xuefeng


    The effects of the wettability and solubility of natural gas in formation water on the electrical properties of natural gas reservoir rocks are studied using the finite element method based on digital cores. The results show that the resistivity index of gas-wet reservoir rocks is significantly higher than that of water-wet reservoir rocks in the entire range of water saturation. The difference between them increases with decreasing water saturation. The resistivity index of natural gas reservoir rocks decreases with increasing additional conduction of water film. The solubility of natural gas in formation water has a dramatic effect on the electrical properties of reservoir rocks. The resistivity index of reservoir rocks increases as the solubility of natural gas increases. The effect of the solubility of natural gas on the resistivity index is very obvious under conditions of low water saturation, and it becomes weaker with increasing water saturation. Therefore, the reservoir wettability and the solubility of natural gas in formation water should be considered in defining the saturation exponent

  19. Accounting for geochemical alterations of caprock fracture permeability in basin-scale models of leakage from geologic CO2 reservoirs (United States)

    Guo, B.; Fitts, J. P.; Dobossy, M.; Bielicki, J. M.; Peters, C. A.


    Climate mitigation, public acceptance and energy, markets demand that the potential CO2 leakage rates from geologic storage reservoirs are predicted to be low and are known to a high level of certainty. Current approaches to predict CO2 leakage rates assume constant permeability of leakage pathways (e.g., wellbores, faults, fractures). A reactive transport model was developed to account for geochemical alterations that result in permeability evolution of leakage pathways. The one-dimensional reactive transport model was coupled with the basin-scale Estimating Leakage Semi-Analytical (ELSA) model to simulate CO2 and brine leakage through vertical caprock pathways for different CO2 storage reservoir sites and injection scenarios within the Mt. Simon and St. Peter sandstone formations of the Michigan basin. Mineral dissolution in the numerical reactive transport model expands leakage pathways and increases permeability as a result of calcite dissolution by reactions driven by CO2-acidified brine. A geochemical model compared kinetic and equilibrium treatments of calcite dissolution within each grid block for each time step. For a single fracture, we investigated the effect of the reactions on leakage by performing sensitivity analyses of fracture geometry, CO2 concentration, calcite abundance, initial permeability, and pressure gradient. Assuming that calcite dissolution reaches equilibrium at each time step produces unrealistic scenarios of buffering and permeability evolution within fractures. Therefore, the reactive transport model with a kinetic treatment of calcite dissolution was coupled to the ELSA model and used to compare brine and CO2 leakage rates at a variety of potential geologic storage sites within the Michigan basin. The results are used to construct maps based on the susceptibility to geochemically driven increases in leakage rates. These maps should provide useful and easily communicated inputs into decision-making processes for siting geologic CO2

  20. Simulation of California's Major Reservoirs Outflow Using Data Mining Technique (United States)

    Yang, T.; Gao, X.; Sorooshian, S.


    The reservoir's outflow is controlled by reservoir operators, which is different from the upstream inflow. The outflow is more important than the reservoir's inflow for the downstream water users. In order to simulate the complicated reservoir operation and extract the outflow decision making patterns for California's 12 major reservoirs, we build a data-driven, computer-based ("artificial intelligent") reservoir decision making tool, using decision regression and classification tree approach. This is a well-developed statistical and graphical modeling methodology in the field of data mining. A shuffled cross validation approach is also employed to extract the outflow decision making patterns and rules based on the selected decision variables (inflow amount, precipitation, timing, water type year etc.). To show the accuracy of the model, a verification study is carried out comparing the model-generated outflow decisions ("artificial intelligent" decisions) with that made by reservoir operators (human decisions). The simulation results show that the machine-generated outflow decisions are very similar to the real reservoir operators' decisions. This conclusion is based on statistical evaluations using the Nash-Sutcliffe test. The proposed model is able to detect the most influential variables and their weights when the reservoir operators make an outflow decision. While the proposed approach was firstly applied and tested on California's 12 major reservoirs, the method is universally adaptable to other reservoir systems.

  1. Large reservoirs: Chapter 17 (United States)

    Miranda, Leandro E.; Bettoli, Phillip William


    expressed effects, such as turbidity and water quality, zooplankton density and size composition, or fish growth rates and assemblage composition, are the upshot of large-scale factors operating outside reservoirs and not under the direct control of reservoir managers. Realistically, abiotic and biotic conditions in reservoirs are shaped by factors working inside and outside reservoirs, with the relative importance of external factors differing among reservoirs. With this perspective, large reservoirs are viewed from a habitat standpoint within the framework of a conceptual model in which individual reservoir characteristics are influenced by both local- and landscape-scale factors (Figure 17.1). In the sections that follow, how each element of this hierarchical model influences habitat and fish assemblages in reservoirs is considered. Important in-reservoir habitat issues and reservoirs as part of larger systems, where reservoir management requires looking for real solutions outside individual reservoirs are described.

  2. Modeling brine-rock interactions in an enhanced geothermal systemdeep fractured reservoir at Soultz-Sous-Forets (France): a joint approachusing two geochemical codes: frachem and toughreact

    Energy Technology Data Exchange (ETDEWEB)

    Andre, Laurent; Spycher, Nicolas; Xu, Tianfu; Vuataz,Francois-D.; Pruess, Karsten.


    precipitation, pH values calculated with FRACHEM and TOUGHREACT/Debye-Hueckel decrease by up to half a pH unit, whereas pH values calculated with TOUGHREACT/Pitzer increase by a similar amount. As a result of these differences, calcite solubilities computed using the Pitzer formalism (the more accurate approach) are up to about 1.5 orders of magnitude lower. Because of differences in Pitzer ion-interaction parameters, the calcite solubility computed with TOUGHREACT/Pitzer is also typically about 0.5 orders of magnitude lower than that computed with FRACHEM, with the latter expected to be most accurate. In a second part of this investigation, both models were applied to model the evolution of a Soultz-type geothermal reservoir under high pressure and temperature conditions. By specifying initial conditions reflecting a reservoir fluid saturated with respect to calcite (a reasonable assumption based on field data), we found that THC reservoir simulations with the three models yield similar results, including similar trends and amounts of reservoir porosity decrease over time, thus pointing to the importance of model conceptualization. This study also highlights the critical effect of input thermodynamic data on the results of reactive transport simulations, most particularly for systems involving brines.

  3. Modeling flow in nanoporous, membrane reservoirs and interpretation of coupled fluxes (United States)

    Geren, Filiz

    The average pore size in unconventional, tight-oil reservoirs is estimated to be less than 100 nm. At this pore size, Darcy flow is no longer the dominating flow mechanism and a combination of diffusive flows determines the flow characteristics. Concentration driven self-diffusion has been well known and included in the flow and transport models in porous media. However, when the sizes of the pores and pore-throats decrease down to the size of the hydrocarbon molecules, the porous medium acts like a semi-permeable membrane, and the size of the pore openings dictates the direction of transport between adjacent pores. Accordingly, characterization of flow and transport in tight unconventional plays requires understanding of their membrane properties. This Master of Science thesis first highlights the membrane properties of nanoporous, unconventional reservoirs and then discusses how filtration effects can be incorporated into the models of transport in nanoporous media within the coupled flux concept. The effect of filtration on fluid composition and its impact on black-oil fluid properties like bubble point pressure is also demonstrated. To define filtration and filtration pressure in unconventional, tight-oil reservoirs, analogy to chemical osmosis is applied two pore systems connected with a pore throat, which shows membrane properties. Because the pore throat selectivity permits the passage of fluid molecules by their sizes, given a filtration pressure difference between the two pore systems, the concentration difference between the systems is determined by flash calculations. The results are expressed in the form of filtration (membrane) efficiency, which is essential parameter to define coupled fluxes for porous media flow.

  4. Mitigation of turbidity currents in reservoirs with passive retention systems: validation of CFD modeling (United States)

    Ferreira, E.; Alves, E.; Ferreira, R. M. L.


    Sediment deposition by continuous turbidity currents may affect eco-environmental river dynamics in natural reservoirs and hinder the maneuverability of bottom discharge gates in dam reservoirs. In recent years, innovative techniques have been proposed to enforce the deposition of turbidity further upstream in the reservoir (and away from the dam), namely, the use of solid and permeable obstacles such as water jet screens , geotextile screens, etc.. The main objective of this study is to validate a computational fluid dynamics (CFD) code applied to the simulation of the interaction between a turbidity current and a passive retention system, designed to induce sediment deposition. To accomplish the proposed objective, laboratory tests were conducted where a simple obstacle configuration was subjected to the passage of currents with different initial sediment concentrations. The experimental data was used to build benchmark cases to validate the 3D CFD software ANSYS-CFX. Sensitivity tests of mesh design, turbulence models and discretization requirements were performed. The validation consisted in comparing experimental and numerical results, involving instantaneous and time-averaged sediment concentrations and velocities. In general, a good agreement between the numerical and the experimental values is achieved when: i) realistic outlet conditions are specified, ii) channel roughness is properly calibrated, iii) two equation k - ɛ models are employed iv) a fine mesh is employed near the bottom boundary. Acknowledgements This study was funded by the Portuguese Foundation for Science and Technology through the project PTDC/ECM/099485/2008. The first author thanks the assistance of Professor Moitinho de Almeida from ICIST and to all members of the project and of the Fluvial Hydraulics group of CEHIDRO.

  5. Estimates of reservoir methane emissions based on a spatially balanced probabilistic-survey (United States)

    Global estimates of methane (CH4) emissions from reservoirs are poorly constrained, partly due to the challenges of accounting for intra-reservoir spatial variability. Reservoir-scale emission rates are often estimated by extrapolating from measurement made at a few locations; h...


    Distribution systems are generally designed to ensure hydraulic reliability. Storage tanks, reservoirs and pumps are critical in maintaining this reliability. Although storage tanks, reservoirs and pumps are necessary for maintaining adequate pressure, they may also have a negati...

  7. Data assimilation in reservoir management

    NARCIS (Netherlands)

    Rommelse, J.R.


    The research presented in this thesis aims at improving computer models that allow simulations of water, oil and gas flows in subsurface petroleum reservoirs. This is done by integrating, or assimilating, measurements into physics-bases models. In recent years petroleum technology has developed

  8. Dynamic reservoir well interaction

    NARCIS (Netherlands)

    Sturm, W.L.; Belfroid, S.P.C.; Wolfswinkel, O. van; Peters, M.C.A.M.; Verhelst, F.J.P.C.M.


    In order to develop smart well control systems for unstable oil wells, realistic modeling of the dynamics of the well is essential. Most dynamic well models use a semi-steady state inflow model to describe the inflow of oil and gas from the reservoir. On the other hand, reservoir models use steady

  9. Geostatistical modeling of a fluviodeltaic reservoir in the Huyapari Field, Hamaca area, in the Faja Petrolifera del Orinoco, Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    De Ascencao, Erika M.; Munckton, Toni; Digregorio, Ricardo [Petropiar (Venezuela)


    The Huyapari field, situated within the Faja Petrolifera del Orinoco (FPO) of Venezuela presents unique problems in terms of modeling. This field is spread over a wide area and is therefore subject to variable oil quality and complex fluvial facies architecture. Ameriven and PDVSA have been working on characterizing the ld's reservoirs in this field since 2000 and the aim of this paper is to present these efforts. Among others, a 3-D seismic survey completed in 1998 and a stratigraphic framework built from 149 vertical wells were used for reservoir characterization. Geostatistical techniques such as sequential Gaussian simulation with locally varying mean and cloud transform were also used. Results showed that these geostatistical methods accurately represented the architecture and properties of the reservoir and its fluid distribution. This paper showed that the application of numerous different techniques in the Hamasca area permitted reservoir complexity to be captured.

  10. modelling for optimal number of line storage reservoirs in a water

    African Journals Online (AJOL)


    reservoirs and the source of pipe network both increase, while the costs of the demand pipe network decreases. Consequently, a trade-off exits between the storage reservoir and source network cost and the demand network costs. The optimal number of storage reservoirs is that number which gives a system of least total ...

  11. Tailoring dam structures to water quality predictions in new reservoir projects: assisting decision-making using numerical modeling. (United States)

    Marcé, Rafael; Moreno-Ostos, Enrique; García-Barcina, José Ma; Armengol, Joan


    Selection of reservoir location, the floodable basin forest handling, and the design of dam structures devoted to water supply (e.g. water outlets) constitute relevant features which strongly determine water quality and frequently demand management strategies to be adopted. Although these crucial aspects should be carefully examined during dam design before construction, currently the development of ad hoc limnological studies tailoring dam location and dam structures to the water quality characteristics expected in the future reservoir is not typical practice. In this study, we use numerical simulation to assist on the design of a new dam project in Spain with the aim of maximizing the quality of the water supplied by the future reservoir. First, we ran a well-known coupled hydrodynamic and biogeochemical dynamic numerical model (DYRESM-CAEDYM) to simulate the potential development of anoxic layers in the future reservoir. Then, we generated several scenarios corresponding to different potential hydraulic conditions and outlet configurations. Second, we built a simplified numerical model to simulate the development of the hypolimnetic oxygen content during the maturation stage after the first reservoir filling, taking into consideration the degradation of the terrestrial organic matter flooded and the adoption of different forest handling scenarios. Results are discussed in terms of reservoir design and water quality management. The combination of hypolimnetic withdrawal from two deep outlets and the removal of all the valuable terrestrial vegetal biomass before flooding resulted in the best water quality scenario. (c) 2010 Elsevier Ltd. All rights reserved.

  12. Study on fracture identification of shale reservoir based on electrical imaging logging (United States)

    Yu, Zhou; Lai, Fuqiang; Xu, Lei; Liu, Lin; Yu, Tong; Chen, Junyu; Zhu, Yuantong


    In recent years, shale gas exploration has made important development, access to a major breakthrough, in which the study of mud shale fractures is extremely important. The development of fractures has an important role in the development of gas reservoirs. Based on the core observation and the analysis of laboratory flakes and laboratory materials, this paper divides the lithology of the shale reservoirs of the XX well in Zhanhua Depression. Based on the response of the mudstone fractures in the logging curve, the fracture development and logging Response to the relationship between the conventional logging and electrical imaging logging to identify the fractures in the work, the final completion of the type of fractures in the area to determine and quantify the calculation of fractures. It is concluded that the fracture type of the study area is high and the microstructures are developed from the analysis of the XX wells in Zhanhua Depression. The shape of the fractures can be clearly seen by imaging logging technology to determine its type.

  13. Using Thermodynamics to Predict the Outcomes of Nitrate-Based Oil Reservoir Souring Control Interventions

    Directory of Open Access Journals (Sweden)

    Jan Dolfing


    Full Text Available Souring is the undesirable production of hydrogen sulfide (H2S in oil reservoirs by sulfate-reducing bacteria (SRB. Souring is a common problem during secondary oil recovery via water flooding, especially when seawater with its high sulfate concentration is introduced. Nitrate injection into these oil reservoirs can prevent and remediate souring by stimulating nitrate-reducing bacteria (NRB. Two conceptually different mechanisms for NRB-facilitated souring control have been proposed: nitrate-sulfate competition for electron donors (oil-derived organics or H2 and nitrate driven sulfide oxidation. Thermodynamics can facilitate predictions about which nitrate-driven mechanism is most likely to occur in different scenarios. From a thermodynamic perspective the question “Which reaction yields more energy, nitrate driven oxidation of sulfide or nitrate driven oxidation of organic compounds?” can be rephrased as: “Is acetate driven sulfate reduction to sulfide exergonic or endergonic?” Our analysis indicates that under conditions encountered in oil fields, sulfate driven oxidation of acetate (or other SRB organic electron donors is always more favorable than sulfide oxidation to sulfate. That predicts that organotrophic NRB that oxidize acetate would outcompete lithotrophic NRB that oxidize sulfide. However, sulfide oxidation to elemental sulfur is different. At low acetate HS− oxidation is more favorable than acetate oxidation. Incomplete oxidation of sulfide to S0 is likely to occur when nitrate levels are low, and is favored by low temperatures; conditions that can be encountered at oil field above-ground facilities where intermediate sulfur compounds like S0 may cause corrosion. These findings have implications for reservoir management strategies and for assessing the success and progress of nitrate-based souring control strategies and the attendant risks of corrosion associated with souring and nitrate injection.

  14. Using Thermodynamics to Predict the Outcomes of Nitrate-Based Oil Reservoir Souring Control Interventions (United States)

    Dolfing, Jan; Hubert, Casey R. J.


    Souring is the undesirable production of hydrogen sulfide (H2S) in oil reservoirs by sulfate-reducing bacteria (SRB). Souring is a common problem during secondary oil recovery via water flooding, especially when seawater with its high sulfate concentration is introduced. Nitrate injection into these oil reservoirs can prevent and remediate souring by stimulating nitrate-reducing bacteria (NRB). Two conceptually different mechanisms for NRB-facilitated souring control have been proposed: nitrate-sulfate competition for electron donors (oil-derived organics or H2) and nitrate driven sulfide oxidation. Thermodynamics can facilitate predictions about which nitrate-driven mechanism is most likely to occur in different scenarios. From a thermodynamic perspective the question “Which reaction yields more energy, nitrate driven oxidation of sulfide or nitrate driven oxidation of organic compounds?” can be rephrased as: “Is acetate driven sulfate reduction to sulfide exergonic or endergonic?” Our analysis indicates that under conditions encountered in oil fields, sulfate driven oxidation of acetate (or other SRB organic electron donors) is always more favorable than sulfide oxidation to sulfate. That predicts that organotrophic NRB that oxidize acetate would outcompete lithotrophic NRB that oxidize sulfide. However, sulfide oxidation to elemental sulfur is different. At low acetate HS− oxidation is more favorable than acetate oxidation. Incomplete oxidation of sulfide to S0 is likely to occur when nitrate levels are low, and is favored by low temperatures; conditions that can be encountered at oil field above-ground facilities where intermediate sulfur compounds like S0 may cause corrosion. These findings have implications for reservoir management strategies and for assessing the success and progress of nitrate-based souring control strategies and the attendant risks of corrosion associated with souring and nitrate injection. PMID:29312252

  15. Modeling Reservoir Formation Damage due to Water Injection for Oil Recovery

    DEFF Research Database (Denmark)

    Yuan, Hao


    The elliptic equation for non-Fickian transport of suspension in porous media is applied to simulate the reservoir formation damage due to water injection for oil recovery. The deposition release (erosion of reservoir formation) and the suspension deposition (pore plugging) are both taken...... into account. 1-D numerical simulations are carried out to reveal the erosion of reservoir formation due to water injection. 2-D numerical simulations are carried out to obtain the suspension and deposition profiles around the injection wells. These preliminary results indicate the non-Fickian behaviors...... of suspended reservoir fines and the corresponding formation damage due to erosion and relocation of reservoir fines....

  16. Modelling of the flooding in the Okavango Delta, Botswana, using a hybrid reservoir-GIS model (United States)

    Wolski, P.; Savenije, H. H. G.; Murray-Hudson, M.; Gumbricht, T.


    SummaryThe Okavango Delta is dominated by annual flood events from the Okavango River. During such events the inundated area increases from about 5000 km 2 to 6000-12,000 km 2. Several models of a conceptual character were developed previously to represent hydrological processes in that system. Although essentially successful in their applications, the models have been criticised for their conceptual simplicity and the arbitrary way of representing long-term variation in outflows. All the existing models required the use of correction factors to address the apparent non-homogeneity of the time series. This paper presents a new model that has overcome these shortcomings by introducing more physical knowledge of the Okavango Delta system into the model. In view of the spatial complexity of the system and lack of data to support spatially distributed parameterisation of hydrological processes, the semi-distributed semi-conceptual approach, based on large units, has been retained. The major improvements of the model are: a better representation of surface water-groundwater interactions and the use of measurement-based rather than model calibrated parameterisation of topographic controls of floodplain water storage. These enabled a successful representation of 34 years of observed outflows and 15 years of observed inundation area in a conceptually sound way. Additionally, a GIS model has been developed for determination of spatial distribution of the simulated floods. In this model, the within-unit flood distribution is obtained from remote sensing-derived flood maps. In this way, in spite of the semi-distributed nature of the hydrological model, flood distribution maps and ecologically important flooding characteristics can be determined for simulated and predicted floods with a spatial resolution much higher than that of the computational units. The hydrological model developed forms the basis for subsequent analyses of ecosystem response to hydrological change of

  17. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs (Annex I). Twelfth quarterly technical progress report, October 1, 1992--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Watney, W.L.


    The objectives of this research are to: (1) assist producers in locating and producing petroleum not currently being produced because of technological problems or the inability to identify details of reservoir compartmentalization, (2) to decrease risk in field development, and (3) accelerate the retrieval and analysis of baseline geoscience information for initial reservoir description. The interdisciplinary data sought in this research will be used to resolve specific problems in correlation of strata and to establish the mechanisms responsible for the Upper Pennsylvanian stratigraphic architecture in the Midcontinent. The data will better constrain ancillary problems related to the validation of depositional sequence and subsequence correlation, subsidence patterns, sedimentation rates, sea-level changes, and the relationship of sedimentary sequences to basement terrains. The geoscientific information, including data from field studies, surface and near-surface reservoir analogues, and regional data base development, will also be used for development of geologic computer process-based simulation models tailored to specific depositional sequences for use in improving prediction of reservoir characteristics.

  18. Geothermal Project Den Haag - 3-D models for temperature prediction and reservoir characterization (United States)

    Mottaghy, D.; Pechnig, R.; Willemsen, G.; Simmelink, H. J.; Vandeweijer, V.


    In the framework of the "Den Haag Zuidwest" geothermal district heating system a deep geothermal installation is projected. The target horizon of the planned doublet is the "Delft sandstone" which has been extensively explored for oil- and gas reservoirs in the last century. In the target area, this upper Jurassic sandstone layer is found at a depth of about 2300 m with an average thickness of about 50 m. The study presented here focuses on the prediction of reservoir temperatures and production behavior which is crucial for planning a deep geothermal installation. In the first phase, the main objective was to find out whether there is a significant influence of the 3-dimensional structures of anticlines and synclines on the temperature field, which could cause formation temperatures deviating from the predicted extrapolated temperature data from oil and gas exploration wells. To this end a regional model was set up as a basis for steady state numerical simulations. Since representative input parameters are decisive for reliable model results, all available information was compiled: a) the subsurface geometry, depth and thickness of the stratigraphic layers known from seismic data sets 2) borehole geophysical data and c) geological and petrographical information from exploration wells. In addition 50 cuttings samples were taken from two selected key wells in order to provide direct information on thermal properties of the underlying strata. Thermal conductivity and rock matrix density were measured in the laboratory. These data were combined with a petrophysical log analysis (Gamma Ray, Sonic, Density and Resistivity), which resulted in continuous profiles of porosity, effective thermal conductivity and radiogenetic heat production. These profiles allowed to asses in detail the variability of the petrophysical properties with depth and to check for lateral changes between the wells. All this data entered the numerical simulations which were performed by a 3-D

  19. Development of a compositional model fully coupled with geomechanics and its application to tight oil reservoir simulation (United States)

    Xiong, Yi

    Tight oil reservoirs have received great attention in recent years as unconventional and promising petroleum resources; they are reshaping the U.S. crude oil market due to their substantial production. However, fluid flow behaviors in tight oil reservoirs are not well studied or understood due to the complexities in the physics involved. Specific characteristics of tight oil reservoirs, such as nano-pore scale and strong stress-dependency result in complex porous medium fluid flow behaviors. Recent field observations and laboratory experiments indicate that large effects of pore confinement and rock compaction have non-negligible impacts on the production performance of tight oil reservoirs. On the other hand, there are approximations or limitations for modeling tight oil reservoirs under the effects of pore confinement and rock compaction with current reservoir simulation techniques. Thus this dissertation aims to develop a compositional model coupled with geomechanics with capabilities to model and understand the complex fluid flow behaviors of multiphase, multi-component fluids in tight oil reservoirs. MSFLOW_COM (Multiphase Subsurface FLOW COMpositional model) has been developed with the capability to model the effects of pore confinement and rock compaction for multiphase fluid flow in tight oil reservoirs. The pore confinement effect is represented by the effect of capillary pressure on vapor-liquid equilibrium (VLE), and modeled with the VLE calculation method in MSFLOW_COM. The fully coupled geomechanical model is developed from the linear elastic theory for a poro-elastic system and formulated in terms of the mean stress. Rock compaction is then described using stress-dependent rock properties, especially stress-dependent permeability. Thus MSFLOW_COM has the capabilities to model the complex fluid flow behaviors of tight oil reservoirs, fully coupled with geomechanics. In addition, MSFLOW_COM is validated against laboratory experimental data, analytical

  20. Upper Khami reservoir study using microscopic thin sections, core and mud lost data and modeling, Bibi Hakimeh oil field

    Directory of Open Access Journals (Sweden)

    B., Soleimani,


    Full Text Available The present study is an evaluation of diagenetic processes and reservoir quality of the upper Khami Group in Bibi Hakimeh oil field. The Khami Group is divided into upper (Fahliyan, Gadvan and Dariyan formations and lower parts (Surmeh and Haith formations. Lithologically, Fahliyan and Dariyan formations and Khalij Member of the Gadvan Formation are carbonate and Gadvan Formation is shale. The determined diagenetic processes are dolomitization, glauconitization, anhydritization, mechanical compaction and stylolitization, chertification, pyritization in the upper Khami. Reservoir geological model for describing the structure and fault effects, iso-grade mud loss and fracture maps were constructed by reservoir management system (RMS software. The results revealed that fractures development and as well as the effect of diagenetic processes such as dolomitization and dissolution seem to have increased the reservoir quality. There is good development of fractures in this reservoir. In general, existence of fractures and effects of processes such as dolomitization and dissolution seem to increase the reservoir quality in this field.

  1. Sustainable Irrigation Allocation Model for Dry and Wet Periods using Reservoir Storage and Inflow (United States)

    Surianarayanan, S.; Suribabu, C. R.; Ramakrishnan, K.


    The dry period agriculture is inevitable both for the farmers for their earning, and for the soil for its fertility by crop-rotation. In tropical countries like INDIA, dry period agriculture becomes difficult because of less (or) no rain fall. Hence a simple water balancing model for irrigation scheduling, using the measure “Volumetric Reliability” is prepared in this paper, with the storage and inflow of a reservoir both for the dry and wet periods. The case-study is done for a reservoir in INDIA with thirty one years of hydrological data(from 1982 to 2012). The objective of this paper is to prepare a simple water balance model taking 10 days periods of demand and supply for ID crop(Irrigated Dry crop, ground nut) with usage of volumetric reliability concept for the periods of deficiency and adoption of less water requirement crops to reduce the water-stress during critical periods of crop growth, and finally arrive at a feasible allocation schedule for the success of agriculture and the yield throughout the year both for wet and dry crops with the available storage on the start of irrigation for a particular year. The reservoir is divided for storages such as full, deficient and critical storages. The starting storage for the dry period from January is used after adequate allocation for wet crops, the quantity for riparian rights and for drinking water, for the sustainability. By the water-balancing, the time-series for thirty one years, it is found that for twenty two years the demand for the ID crops is satisfied with the storage in the reservoir, and in the remaining years of deficient inflows, for three years (1986,1996,2004)the demand is managed by using the safe reliability factor for demand which can nullify the deficit in demand for the whole supply period. But it is genuine to assure that the reduction in the amount of water for each 10 days periods should not exceed the survival limit of the crop. Necessary soil-moisture must be ensured in the crop

  2. A method of fundamental solutions in poroelasticity to model the stress field in geothermal reservoirs

    CERN Document Server

    Augustin, Matthias Albert


    This monograph focuses on the numerical methods needed in the context of developing a reliable simulation tool to promote the use of renewable energy. One very promising source of energy is the heat stored in the Earth’s crust, which is harnessed by so-called geothermal facilities. Scientists from fields like geology, geo-engineering, geophysics and especially geomathematics are called upon to help make geothermics a reliable and safe energy production method. One of the challenges they face involves modeling the mechanical stresses at work in a reservoir. The aim of this thesis is to develop a numerical solution scheme by means of which the fluid pressure and rock stresses in a geothermal reservoir can be determined prior to well drilling and during production. For this purpose, the method should (i) include poroelastic effects, (ii) provide a means of including thermoelastic effects, (iii) be inexpensive in terms of memory and computational power, and (iv) be flexible with regard to the locations of data ...

  3. Near-Real time, High Resolution Reservoir Monitoring and Modeling with Micro-earthquake Data (United States)

    Hutchings, L. J.; Jarpe, S.; Boyle, K. L.; Bonner, B. P.; Viegas, G.; Philson, H.; Statz-Boyer, P.; Majer, E.


    We present a micro-earthquake recording and automated processing system along with a methodology to provide near-real time, high resolution reservoir monitoring and modeling. An interactive program for testing micro-earthquake network designs helps identify configurations for optimum accuracy and resolution. We select the Northwest Geysers, California geothermal field to showcase the usefulness of the system. The system's inexpensive recorders requires very little time or expertise to install, and the automated processing requires merely placing flash memory chips (or telemetry) into a computer. Together these make the deployment of a large numbers of sensors feasible and thus rapid, high resolution results possible. Data are arranged into input files for tomography for Vp, Vs, Qp and Qs, and their combinations to provide for interpretation in terms of rock properties. Micro-earthquake source parameters include seismic moments, full moment tensor solutions, stress drops, source durations, radiated energy, and hypocentral locations. The methodology for interpretation is to utilize visualization with GUI analysis to cross compare tomography and source property results along with borehole or other independent information and rock physics to identify reservoir properties. The system can potentially provide information heretofore unattainable or affordable to many small companies, organizations, and countries around the world.

  4. Analysis of structural heterogeneities on drilled cores: a reservoir modeling oriented methodology; Analyse des heterogeneites structurales sur carottes: une methodologie axee vers la modelisation des reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, P.; Petit, J.P. [Montpellier-2 Univ., Lab. de Geophysique, Tectonique et Sedimentologie, UMR CNRS 5573, 34 (France); Guy, L. [ELF Aquitaine Production, 64 - Pau (France); Thiry-Bastien, Ph. [Lyon-1 Univ., 69 (France)


    The characterization of structural heterogeneities of reservoirs is of prime importance for hydrocarbons recovery. A methodology is presented which allows to compare the dynamic behaviour of fractured reservoirs and the observation of microstructures on drilled cores or surface reservoir analogues. (J.S.)

  5. Improving Mechanical Insight into Ring Fault Initiation and Caldera Formation via Elastic Models of Magma Reservoir Inflation (Invited) (United States)

    Grosfils, E. B.; McGovern, P. J.; Gregg, P. M.; Galgana, G. A.; Hurwitz, D. M.; Long, S.; Chestler, S.


    Elastic numerical models have become increasingly important for interpreting field data and gaining insight into the magmatic and volcanic processes spawned by shallow magma reservoirs on Earth and other planets. Using an approach introduced nearly a century ago, most researchers investigating magma reservoir inflation and rupture in response to the evolution of a subsurface magma reservoir have treated the reservoir as a cavity subjected only to over/underpressure in an otherwise unloaded elastic host. This approach is at times argued to be a more concise mathematical equivalent to solutions that retain a fully three-dimensional, gravitationally loaded stress tensor in the host rock. The two approaches are not equivalent, however, and detailed elucidation of this argument under diverse geological conditions (e.g., layering, edifice loading) has demonstrated the implications for several fundamental volcanic processes under an array of different conditions [cf. Grosfils, JVGR, 2007]. Given the importance of the link between subsurface magmatic processes and volcanic activity, gaining a better understanding of the basic assumptions underpinning these two endmember modeling approaches--and the attendant implications--is critical. In this presentation we intend to: (1) discuss what we see as the physical assumptions underpinning the two endmember model approaches, thereby framing a call for further field constraints upon the host rock conditions in the vicinity of a magma reservoir; (2) use models of ring fault formation and caldera initiation to illustrate the striking differences in outcome that can occur; (3) demonstrate that retaining the full gravitationally loaded host rock stress tensor reconciles comparable numerical and analogue model results, resolving persistent concerns regarding the ';mismatch' between outcomes obtained from these two complementary model styles; and, (4) briefly describe the importance--and limitations--of elastic model treatments when

  6. How Does Knowing Snowpack Distribution Help Model Calibration and Reservoir Management? (United States)

    Graham, C. B.; Mazurkiewicz, A.; McGurk, B. J.; Painter, T. H.


    Well calibrated hydrologic models are a necessary tool for reservoir managers to meet increasingly complicated regulatory, environmental and consumptive demands on water supply systems. Achieving these objectives is difficult during periods of drought, such as seen in the Sierra Nevada in recent years. This emphasizes the importance of accurate watershed modeling and forecasting of runoff. While basin discharge has traditionally been the main criteria for model calibration, many studies have shown it to be a poor control on model calibration where correct understanding of the subbasin hydrologic processes are required. Additional data sources such as snowpack accumulation and melt are often required to create a reliable model calibration. When allocating resources for monitoring snowpack conditions, water system managers often must choose between monitoring point locations at high temporal resolution (i.e. real time weather and snow monitoring stations) and large spatial surveys (i.e. remote sensing). NASA's Airborne Snow Observatory (ASO) provides a unique opportunity to test the relative value of spatially dense, temporally sparse measurements vs. temporally dense, spatially sparse measurements for hydrologic model calibration. The ASO is a demonstration mission using coupled LiDAR and imaging spectrometer mounted to an aircraft flying at 6100 m to collect high spatial density measurements of snow water content and albedo over the 1189 km2 Tuolumne River Basin. Snow depth and albedo were collected weekly throughout the snowmelt runoff period at 5 m2 resolution during the 2013-2014 snowmelt. We developed an implementation of the USGS Precipitation Runoff Modeling System (PRMS) for the Tuolumne River above Hetch Hetchy Reservoir, the primary water source for San Francisco. The modeled snow accumulation and ablation was calibrated in 2 models using either 2 years of weekly measurements of distributed snow water equivalent from the ASO, or 2 years of 15 minute snow

  7. Electromagnetic Heating Methods for Heavy Oil Reservoirs

    International Nuclear Information System (INIS)

    Sahni, A.; Kumar, M.; Knapp, R.B.


    The most widely used method of thermal oil recovery is by injecting steam into the reservoir. A well-designed steam injection project is very efficient in recovering oil, however its applicability is limited in many situations. Simulation studies and field experience has shown that for low injectivity reservoirs, small thickness of the oil-bearing zone, and reservoir heterogeneity limits the performance of steam injection. This paper discusses alternative methods of transferring heat to heavy oil reservoirs, based on electromagnetic energy. They present a detailed analysis of low frequency electric resistive (ohmic) heating and higher frequency electromagnetic heating (radio and microwave frequency). They show the applicability of electromagnetic heating in two example reservoirs. The first reservoir model has thin sand zones separated by impermeable shale layers, and very viscous oil. They model preheating the reservoir with low frequency current using two horizontal electrodes, before injecting steam. The second reservoir model has very low permeability and moderately viscous oil. In this case they use a high frequency microwave antenna located near the producing well as the heat source. Simulation results presented in this paper show that in some cases, electromagnetic heating may be a good alternative to steam injection or maybe used in combination with steam to improve heavy oil production. They identify the parameters which are critical in electromagnetic heating. They also discuss past field applications of electromagnetic heating including technical challenges and limitations

  8. Analytical filtration model for nonlinear viscoplastic oil in the theory of oil production stimulation and heating of oil reservoir in a dual-well system (United States)

    Ivanovich Astafev, Vladimir; Igorevich Gubanov, Sergey; Alexandrovna Olkhovskaya, Valeria; Mikhailovna Sylantyeva, Anastasia; Mikhailovich Zinovyev, Alexey


    Production of high-viscosity oil and design of field development systems for such oil is one of the most promising directions in the development of world oil industry. The ability of high-viscosity oil to show in filtration process properties typical for non-Newtonian systems is proven by experimental studies. Nonlinear relationship between the pressure gradient and the rate of oil flow is due to interaction of high-molecular substances, in particular, asphaltenes and tars that form a plastic structure in it. The authors of this article have used the analytical model of stationary influx of nonlinear viscoplastic oil to the well bottom in order to provide rationale for the intensifying impact on a reservoir. They also have analyzed the method of periodic heating of productive reservoir by means of dual-wells. The high-temperature source is placed at the bottom of the vertical well, very close to the reservoir; at the same time the side well, located outside the zone of expected rock damage, is used for production. Suggested method of systemic treatment of reservoirs with dual wells can be useful for small fields of high-viscosity oil. The effect is based on the opportunity to control the structural and mechanical properties of high-viscosity oil and to increase depletion of reserves.

  9. The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA. (United States)

    Cho, Kyung Hwa; Pachepsky, Yakov A; Kim, Joon Ha; Kim, Jung-Woo; Park, Mi-Hyun


    This study assessed fecal coliform contamination in the Wachusett Reservoir Watershed in Massachusetts, USA using Soil and Water Assessment Tool (SWAT) because bacteria are one of the major water quality parameters of concern. The bacteria subroutine in SWAT, considering in-stream bacteria die-off only, was modified in this study to include solar radiation-associated die-off and the contribution of wildlife. The result of sensitivity analysis demonstrates that solar radiation is one of the most significant fate factors of fecal coliform. A water temperature-associated function to represent the contribution of beaver activity in the watershed to fecal contamination improved prediction accuracy. The modified SWAT model provides an improved estimate of bacteria from the watershed. Our approach will be useful for simulating bacterial concentrations to provide predictive and reliable information of fecal contamination thus facilitating the implementation of effective watershed management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Possible revisions in reservoir operation rules as an adaptation to climate change assessed by a global hydrological model with anthropogenic activities and a state-of-the-art river routing model (United States)

    Oki, T.; Mateo, C. M. R.; Hanasaki, N.; Yamazaki, D.; Watanabe, S.; Kiguchi, M.; Komori, D.; Champathong, A.


    In the past decade, several advances have been made in incorporating anthropogenic impacts such as reservoir operation in global hydrological models. However, detailed examination of their performance in regional or large river basins is still lacking. The Chao Phraya River Basin in Thailand is a good site for a case study because of the availability of detailed and long-term hydrological records which include the operation of two huge reservoirs, the Bhumibol and Sirikit Reservoirs, in the basin. The ensemble means of the simulation results using eight bias-corrected CMIP5 general circulation models (GCMs), selected based on the availability of the atmospheric forcing inputs needed in a water balance model with human activities, the H08 model, under two representative concentration path scenarios (RCP), RCP4.5 and RCP8.5, for the near future from 2041 to 2059 were compared with the base period simulation from 1981 to 1999. The estimates projected an increase in runoff of 10-15% in RCP4.5 and 40-50% in RCP8.5. While the change in dry season ranges from -10mm to 10mm, the wet season runoff could increase by as much as 160mm in RCP8.5. Hence, the frequency of reservoir emptying will decrease while spilling will increase by as much as 5 times of that of the base period in RCP8.5. In RCP4.5, the frequency of reservoir emptying will not significantly change while spilling will most likely double. Consequently, flooding in the basin will be more frequent and more severe. It was found that the mean inundated area downstream of the two reservoirs, simulated by CaMa-Flood, will increase by approximately 30% in RCP4.5 and about 130% in RCP8.5. At flood inundation depth greater than 1.00m, flooded area will increase by about 95% and 460% in RCP4.5 and RCP8.5, respectively. Possible reservoir operation rules adapting to these changes are examined to minimize flooded area and inundation depth in the downstream area, and to avoid full water levels of the reservoirs. It is

  11. 1D Thermal-Hydraulic-Chemical (THC) Reactive transport modeling for deep geothermal systems: A case study of Groß Schönebeck reservoir, Germany (United States)

    Driba, D. L.; De Lucia, M.; Peiffer, S.


    Fluid-rock interactions in geothermal reservoirs are driven by the state of disequilibrium that persists among solid and solutes due to changing temperature and pressure. During operation of enhanced geothermal systems, injection of cooled water back into the reservoir disturbs the initial thermodynamic equilibrium between the reservoir and its geothermal fluid, which may induce modifications in permeability through changes in porosity and pore space geometry, consequently bringing about several impairments to the overall system.Modeling of fluid-rock interactions induced by injection of cold brine into Groß Schönebeck geothermal reservoir system situated in the Rotliegend sandstone at 4200m depth have been done by coupling geochemical modeling Code Phreeqc with OpenGeoSys. Through batch modeling the re-evaluation of the measured hydrochemical composition of the brine has been done using Quintessa databases, the results from the calculation indicate that a mineral phases comprising of K-feldspar, hematite, Barite, Calcite and Dolomite was found to match the hypothesis of equilibrium with the formation fluid, Reducing conditions are presumed in the model (pe = -3.5) in order to match the amount of observed dissolved Fe and thus considered as initial state for the reactive transport modeling. based on a measured composition of formation fluids and the predominant mineralogical assemblage of the host rock, a preliminary 1D Reactive transport modeling (RTM) was run with total time set to 30 years; results obtained for the initial simulation revealed that during this period, no significant change is evident for K-feldspar. Furthermore, the precipitation of calcite along the flow path in the brine results in a drop of pH from 6.2 to a value of 5.2 noticed over the simulated period. The circulation of cooled fluid in the reservoir is predicted to affect the temperature of the reservoir within the first 100 -150m from the injection well. Examination of porosity change in

  12. Hydrologic modeling in a small mediterranean basin as a tool to assess the feasibility of a limno-reservoir. (United States)

    Molina-Navarro, Eugenio; Martínez-Pérez, Silvia; Sastre-Merlín, Antonio; Bienes-Allas, Ramón


    The SWAT model was applied to the Ompólveda River Basin (Guadalajara, central Spain) to assess the hydrological feasibility of the Pareja Limno-reservoir. A limno-reservoir is a water management infrastructure designed to counteract some negative impacts caused by large reservoirs under Mediterranean climate. Highly detailed inputs were selected to set up the model. Its performance was evaluated by graphical and statistical techniques and compared with the previous knowledge of the basin. An overall good performance was obtained during the calibration and validation periods (monthly and annual NSE values of 0.67 and 0.60, respectively, for calibration and 0.70 and 0.83, respectively, for validation). Total discharge was well simulated, and flow components prediction was acceptable. However, the model is not accurate at predicting evapotranspiration. Once evaluated, the model was used to simulate the water discharge into the Pareja Limno-reservoir during 2008 and 2009, establishing a water balance and assessing its hydrologic feasibility. The water balance predicted the absence of surplus during summer (2008 and 2009) and autumn (2009), matching up with the decrease of water level and demonstrating the usefulness of SWAT as a tool to evaluate the hydrologic feasibility of the Pareja Limno-reservoir. Very low discharges from the Ompólveda River after a sequence of normal and dry years are the main factors responsible of this phenomenon, whereas the effect of the wastewater flow redirection in the Pareja village is negligible. These results question the usefulness of the Pareja Limno-reservoir during summer, the most favorable season for recreational activities. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Model Development to Establish Integrated Operational Rule Curves for Hungry Horse and Libby Reservoirs - Montana, 1996 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Marotz, Brian; Althen, Craig; Gustafson, Daniel


    Hungry Horse and Libby dams have profoundly affected the aquatic ecosystems in two major tributaries of the Columbia River by altering habitat and water quality, and by imposing barriers to fish migration. In 1980, the U.S. Congress passed the Pacific Northwest Electric Power Planning and Conservation Act, designed in part to balance hydropower development with other natural resources in the Columbia System. The Act formed the Northwest Power Planning Council (Council) who developed a program to protect, mitigate and enhance fish and wildlife on the Columbia River and its tributaries. Pursuant to the Council`s Fish and Wildlife Program for the Columbia River System (1987), we constructed computer models to simulate the trophic dynamics of the reservoir biota as related to dam operation. Results were used to develop strategies to minimize impacts and enhance the reservoir and riverine fisheries, following program measures 903(a)(1-4) and 903(b)(1-5). Two FORTRAN simulation models were developed for Hungry Horse and Libby reservoirs located in northwestern Montana. The models were designed to generate accurate, short-term predictions specific to two reservoirs and are not directly applicable to other waters. The modeling strategy, however, is portable to other reservoir systems where sufficient data are available. Reservoir operation guidelines were developed to balance fisheries concerns in the headwaters with anadromous species recovery actions in the lower Columbia (Biological Rule Curves). These BRCs were then integrated with power production and flood control to reduce the economic impact of basin-wide fisheries recovery actions. These Integrated Rule Curves (IRCs) were developed simultaneously in the Columbia Basin System Operation Review (SOR), the Council`s phase IV amendment process and recovery actions associated with endangered Columbia Basin fish species.

  14. Reservoir Modeling by Data Integration via Intermediate Spaces and Artificial Intelligence Tools in MPS Simulation Frameworks

    International Nuclear Information System (INIS)

    Ahmadi, Rouhollah; Khamehchi, Ehsan


    Conditioning stochastic simulations are very important in many geostatistical applications that call for the introduction of nonlinear and multiple-point data in reservoir modeling. Here, a new methodology is proposed for the incorporation of different data types into multiple-point statistics (MPS) simulation frameworks. Unlike the previous techniques that call for an approximate forward model (filter) for integration of secondary data into geologically constructed models, the proposed approach develops an intermediate space where all the primary and secondary data are easily mapped onto. Definition of the intermediate space, as may be achieved via application of artificial intelligence tools like neural networks and fuzzy inference systems, eliminates the need for using filters as in previous techniques. The applicability of the proposed approach in conditioning MPS simulations to static and geologic data is verified by modeling a real example of discrete fracture networks using conventional well-log data. The training patterns are well reproduced in the realizations, while the model is also consistent with the map of secondary data

  15. Reservoir Modeling by Data Integration via Intermediate Spaces and Artificial Intelligence Tools in MPS Simulation Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Rouhollah, E-mail: [Amirkabir University of Technology, PhD Student at Reservoir Engineering, Department of Petroleum Engineering (Iran, Islamic Republic of); Khamehchi, Ehsan [Amirkabir University of Technology, Faculty of Petroleum Engineering (Iran, Islamic Republic of)


    Conditioning stochastic simulations are very important in many geostatistical applications that call for the introduction of nonlinear and multiple-point data in reservoir modeling. Here, a new methodology is proposed for the incorporation of different data types into multiple-point statistics (MPS) simulation frameworks. Unlike the previous techniques that call for an approximate forward model (filter) for integration of secondary data into geologically constructed models, the proposed approach develops an intermediate space where all the primary and secondary data are easily mapped onto. Definition of the intermediate space, as may be achieved via application of artificial intelligence tools like neural networks and fuzzy inference systems, eliminates the need for using filters as in previous techniques. The applicability of the proposed approach in conditioning MPS simulations to static and geologic data is verified by modeling a real example of discrete fracture networks using conventional well-log data. The training patterns are well reproduced in the realizations, while the model is also consistent with the map of secondary data.

  16. Model documentation for relations between continuous real-time and discrete water-quality constituents in Cheney Reservoir near Cheney, Kansas, 2001--2009 (United States)

    Stone, Mandy L.; Graham, Jennifer L.; Gatotho, Jackline W.


    Cheney Reservoir, located in south-central Kansas, is one of the primary water supplies for the city of Wichita, Kansas. The U.S. Geological Survey has operated a continuous real-time water-quality monitoring station in Cheney Reservoir since 2001; continuously measured physicochemical properties include specific conductance, pH, water temperature, dissolved oxygen, turbidity, fluorescence (wavelength range 650 to 700 nanometers; estimate of total chlorophyll), and reservoir elevation. Discrete water-quality samples were collected during 2001 through 2009 and analyzed for sediment, nutrients, taste-and-odor compounds, cyanotoxins, phytoplankton community composition, actinomycetes bacteria, and other water-quality measures. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physicochemical properties to compute concentrations of constituents that are not easily measured in real time. The water-quality information in this report is important to the city of Wichita because it allows quantification and characterization of potential constituents of concern in Cheney Reservoir. This report updates linear regression models published in 2006 that were based on data collected during 2001 through 2003. The update uses discrete and continuous data collected during May 2001 through December 2009. Updated models to compute dissolved solids, sodium, chloride, and suspended solids were similar to previously published models. However, several other updated models changed substantially from previously published models. In addition to updating relations that were previously developed, models also were developed for four new constituents, including magnesium, dissolved phosphorus, actinomycetes bacteria, and the cyanotoxin microcystin. In addition, a conversion factor of 0.74 was established to convert the Yellow Springs Instruments (YSI) model 6026 turbidity sensor measurements to the newer YSI

  17. Benthic metal fluxes and sediment diagenesis in a water reservoir affected by acid mine drainage: A laboratory experiment and reactive transport modeling (United States)

    Torres, E.; Ayora, C.; Jiménez-Arias, J. L.; García-Robledo, E.; Papaspyrou, S.; Corzo, A.


    Reservoirs are one of the primary water supply sources. Knowledge of the metal fluxes at the water-sediment interfaces of reservoirs is essential for predicting their ecological quality. Redox oscillations in the water column are promoted by stratification; turnover events may significantly alter metal cycling, especially in reservoirs impacted by acid mine drainage (AMD). To study this phenomenon, an experiment was performed under controlled laboratory conditions. Sediment cores from an AMD-affected reservoir were maintained in a tank with reservoir water for approximately two months and subjected to alternating oxic-hypoxic conditions. A detailed metal speciation in solid phases of the sediment was initially performed by sequential extraction, and pore water was analyzed at the end of each redox period. Tank water metals concentrations were systematically monitored throughout the experiment. The experimental results were then used to calibrate a diffusion-reaction model and quantify the reaction rates and sediment-water fluxes. Under oxic conditions, pH, Fe and As concentrations decreased in the tank due to schwertmannite precipitation, whereas the concentrations of Al, Zn, Cu, Ni, and Co increased due to Al(OH)3 and sulfide dissolution. The reverse trends occurred under hypoxic conditions. Under oxic conditions, the fluxes calculated by applying Fick’s first law to experimental concentration gradients contradicted the fluxes expected based on the evolution of the tank water. According to the reactive transport calculations, this discrepancy can be attributed to the coarse resolution of sediment sampling. The one-cm-thick slices failed to capture effectively the notably narrow (1-2 mm) concentration peaks of several elements in the shallow pore water resulting from sulfide and Al(OH)3 dissolution. The diffusion-reaction model, extended to the complete year, computed that between 25% and 50% of the trace metals and less than 10% of the Al that precipitated under

  18. Predictive modeling of CO2 sequestration in deep saline sandstone reservoirs: Impacts of geochemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Balashov, Victor N.; Guthrie, George D.; Hakala, J. Alexandra; Lopano, Christina L.; Rimstidt, J. Donald; Brantley, Susan L.


    One idea for mitigating the increase in fossil-fuel generated CO{sub 2} in the atmosphere is to inject CO{sub 2} into subsurface saline sandstone reservoirs. To decide whether to try such sequestration at a globally significant scale will require the ability to predict the fate of injected CO{sub 2}. Thus, models are needed to predict the rates and extents of subsurface rock-water-gas interactions. Several reactive transport models for CO{sub 2} sequestration created in the last decade predicted sequestration in sandstone reservoirs of ~17 to ~90 kg CO{sub 2} m{sup -3|. To build confidence in such models, a baseline problem including rock + water chemistry is proposed as the basis for future modeling so that both the models and the parameterizations can be compared systematically. In addition, a reactive diffusion model is used to investigate the fate of injected supercritical CO{sub 2} fluid in the proposed baseline reservoir + brine system. In the baseline problem, injected CO{sub 2} is redistributed from the supercritical (SC) free phase by dissolution into pore brine and by formation of carbonates in the sandstone. The numerical transport model incorporates a full kinetic description of mineral-water reactions under the assumption that transport is by diffusion only. Sensitivity tests were also run to understand which mineral kinetics reactions are important for CO{sub 2} trapping. The diffusion transport model shows that for the first ~20 years after CO{sub 2} diffusion initiates, CO{sub 2} is mostly consumed by dissolution into the brine to form CO{sub 2,aq} (solubility trapping). From 20-200 years, both solubility and mineral trapping are important as calcite precipitation is driven by dissolution of oligoclase. From 200 to 1000 years, mineral trapping is the most important sequestration mechanism, as smectite dissolves and calcite precipitates. Beyond 2000 years, most trapping is due to formation of aqueous HCO{sub 3}{sup -}. Ninety-seven percent of the

  19. Modeling Self-Potential Effects During Reservoir Stimulation in Enhanced Geothermal Systems. (United States)

    Troiano, Antonio; Giulia Di Giuseppe, Maria; Monetti, Alessio; Patella, Domenico; Troise, Claudia; De Natale, Giuseppe


    Geothermal systems represent a large resource that can provide, with a reasonable investment, a very high and cost-effective power generating capacity. Considering also the very low environmental impact, their development represents, in the next decades, an enormous perspective. Despite its unquestionable potential, geothermal exploitation has long been perceived as limited, mainly because of the dependence from strict site-related conditions, mainly related to the reservoir rock's permeability and to the high thermal gradient, implying the presence of large amounts of hot fluids at reasonable depth. Many of such limitations can be overcome using Enhanced Geothermal Systems technology (EGS), where massive fluid injection is performed to increase the rock permeability by fracturing. This is a powerful method to exploit hot rocks with low natural permeability, otherwise not exploitable. Numerical procedures have already been presented in literature reproducing thermodynamic evolution and stress changes of systems where fluids are injected. However, stimulated fluid flow in geothermal reservoirs can produce also surface Self-Potential (SP) anomalies of several mV. A commonly accepted interpretation involves the activation of electrokinetic processes. Since the induced seismicity risk is generally correlated to fluid circulation stimulated in an area exceeding the well of several hundreds of meters, the wellbore pressure values can be totally uncorrelated to seismic hazard. However, SP anomalies, being generated from pressure gradients in the whole area where fluids flow, has an interesting potential as induced earthquake precursor. In this work, SP anomalies observed above the Soultz-sous-Forets (Alsace, France) geothermal reservoir while injecting cold water have been modeled, considering a source related to the fluid flow induced by the well stimulation process. In particular, the retrieved changes of pressure due to well stimulation in the EGS system have been used

  20. Ray-based stochastic inversion of pre-stack seismic data for improved reservoir characterisation

    NARCIS (Netherlands)

    van der Burg, D.W.


    To estimate rock and pore-fluid properties of oil and gas reservoirs in the subsurface, techniques can be used that invert seismic data. Hereby, the detailed information about the reservoir that is available at well locations, such as the thickness and porosity of individual layers, is extrapolated

  1. Reservoir characterization based on tracer response and rank analysis of production and injection rates

    Energy Technology Data Exchange (ETDEWEB)

    Refunjol, B.T. [Lagoven, S.A., Pdvsa (Venezuela); Lake, L.W. [Univ. of Texas, Austin, TX (United States)


    Quantification of the spatial distribution of properties is important for many reservoir-engineering applications. But, before applying any reservoir-characterization technique, the type of problem to be tackled and the information available should be analyzed. This is important because difficulties arise in reservoirs where production records are the only information for analysis. This paper presents the results of a practical technique to determine preferential flow trends in a reservoir. The technique is a combination of reservoir geology, tracer data, and Spearman rank correlation coefficient analysis. The Spearman analysis, in particular, will prove to be important because it appears to be insightful and uses injection/production data that are prevalent in circumstances where other data are nonexistent. The technique is applied to the North Buck Draw field, Campbell County, Wyoming. This work provides guidelines to assess information about reservoir continuity in interwell regions from widely available measurements of production and injection rates at existing wells. The information gained from the application of this technique can contribute to both the daily reservoir management and the future design, control, and interpretation of subsequent projects in the reservoir, without the need for additional data.

  2. 3D modelling of a dolomitized syn-sedimentary structure: an exhumed potential analogue of hydrocarbon reservoir. (United States)

    Martinelli, Mattia; Franceschi, Marco; Massironi, Matteo; Bistacchi, Andrea; Di Cuia, Raffaele; Rizzi, Alessandro


    further increase the potential creation of potential hydrocarbon traps. These complex conditions are visible in a syn-sedimentary structure spectacularly exposed on the Monte Testo (Trentino, Italy). In this contribution, we present a 3D geo-model of this structure, obtained with SKUA-gOcad, based on 3D photogrammetric modelling, detailed geological mapping and structural analysis, porosity analysis carried out on representative sections, and geostatistical simulation of porosity on dolomitized bodies. Thanks to the 3D model we obtained: i) a thickness map of the Rotzo Formation that allow us to understand which faults were active during the deposition of the formation and which areas could have been more suitable for hydrocarbon accumulation; ii) a geometric and volumetric model of the structure that permitted us to study the porosity distribution and to define the potential volume of hydrocarbons that could be hosted by a similar structure. These results were eventually extrapolated to the entire platform, providing clues on the hydrocarbon potential of similar buried geologic bodies.

  3. Modelling the impacts of climate change on hydrology and water quality in a mediterranean limno-reservoir

    DEFF Research Database (Denmark)

    Molina-Navarro, Euginio; Trolle, Dennis; Martinez-Pérez, Silvia

    Water scarcity and water pollution constitute a big challenge for water managers in the Mediterranean region today and will exacerbate in a projected future warmer world, making a holistic approach for water resources management at the catchment scale essential. We expanded the Soil and Water...... Assessment Tool (SWAT) model developed for a small Mediterranean catchment to quantify the potential effects of various climate change scenarios on catchment hydrology as well as the trophic state of a new kind of waterbody, a limno-reservoir (Pareja Limno-reservoir), created for environmental...

  4. Application of the new Gassmann theory in seismic modeling of selected gas reservoirs, offshore Netherlands

    NARCIS (Netherlands)

    Auduson, A.E.


    In the Southern North Sea, Buntsandstein reservoirs which, can be gas- or water-bearing, frequently contain solid (salt) in the pores spaces. Recent literatures on extension of the Gassmann equation investigate the substitution of fluids and solids in the pore space of reservoir rock. Conventional

  5. Modeling of non-equilibrium effects in solvent-enhanced spontaneous imbibition in fractured reservoirs

    NARCIS (Netherlands)

    Chahardowli, M.; Bruining, J.


    In fractured reservoirs, much of the oil is stored in low permeable matrix blocks that are surrounded by a high permeability fracture network. Therefore, production from fractured reservoir depends on the transfer between fracture and matrix, which is critically dependent on their interaction.

  6. Applying the Back-Propagation Neural Network model and fuzzy classification to evaluate the trophic status of a reservoir system. (United States)

    Chang, C L; Liu, H C


    The trophic state index, and in particular, the Carlson Trophic State Index (CTSI), is critical for evaluating reservoir water quality. Despite its common use in evaluating static water quality, the reliability of the CTSI may decrease when water turbidity is high. Therefore, this study examines the reliability of the CTSI and uses the Back-Propagation Neural Network (BPNN) model to create a new trophic state index. Fuzzy theory, rather than binary logic, is implemented to classify the trophic status into its three grades. The results show that compared to the CTSI with traditional classification, the new index with fuzzy classification can improve trophic status evaluation with high water turbidity. A reliable trophic state index can correctly describe reservoir water quality and allow relevant agencies to address proper water quality management strategies for a reservoir system.

  7. Base reinforcement of the provisional platform for the construction of piles screen on the Flix reservoir (Tarragona)

    International Nuclear Information System (INIS)

    Amo Sanz, P.; Diego Pereda, I.; Santalla Prieto, J.


    Decontamination works on Flix reservoir aimed at the removal of accumulated debris in the bed of the river Ebro, as result of historical discharge of pollutants by a chemical complex located there. The Flix reservoir currently retains in his base a lot of cubic meters of sludge from the solid fraction of the discharge of the aforementioned complex that sits on the right bank ( a non-negligible volume of alluvial substrate potentially affected by pollution from the sludge must be considered). The contaminants belong to there main groups: organo chlorines, heavy metals (particularly mercury) and radionuclides. they are in high concentrations, capable of transmitting contamination to the sediments and basement of the reservoir and the water flowing through the river. In the case of water, that transmission occurs in fact, and there is a register of episodes that have exceeded the limits of tolerance of aggressive components contained in the ecosystem. (Author)

  8. Reservoir souring: Problems, uncertainties and modelling. Part I: Problems and uncertainty involved in prediction. Part II: Preliminary investigations of a computational model

    International Nuclear Information System (INIS)

    Paulsen, J.E.; Read, P.A.; Thompson, C.P.; Jelley, C.; Lezeau, P.


    The paper relates to improved oil recovery (IOR) techniques by mathematical modelling. The uncertainty involved in modelling of reservoir souring is discussed. IOR processes are speculated to influence a souring process in a positive direction. Most models do not take into account pH in reservoir fluids, and thus do not account for partitioning behaviour of sulfide. Also, sulfide is antagonistic to bacterial metabolism and impedes to bacterial metabolism and impedes the sulfate reduction rate, this may be an important factor in modelling. Biofilms are thought to play a crucial role in a reservoir souring process. Biofilm in a reservoir matrix is different from biofilm in open systems. This has major impact on microbial impact on microbial transport and behaviour. Studies on microbial activity in reservoir matrices must be carried out with model cores, in order to mimic a realistic situation. Sufficient data do not exist today. The main conclusion is that a model does not reflect a true situation before the nature of these elements is understood. A simplified version of an Norwegian developed biofilm model is discussed. The model incorporates all the important physical phenomena studied in the above references such as bacteria growth limited by nutrients and/or energy sources and hydrogen sulfide adsorption. 18 refs., 8 figs., 1 tab


    Energy Technology Data Exchange (ETDEWEB)

    Matthias G. Imhof; James W. Castle


    The objective of the project is to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study is performed at West Coalinga Field in California. We continued our investigation on the nature of seismic reactions from heterogeneous reservoirs. We began testing our algorithm to infer parameters of object-based reservoir models from seismic data. We began integration of seismic and geologic data to determine the deterministic limits of conventional seismic data interpretation. Lastly, we began integration of seismic and geologic heterogeneity using stochastic models conditioned both on wireline and seismic data.

  10. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)


    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to e