WorldWideScience

Sample records for reservoir management methods

  1. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neutral reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  2. Reservoir Engineering Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.; Schwarz, W.J.

    1977-12-14

    The Reservoir Engineering Management Program being conducted at Lawrence Berkeley Laboratory includes two major tasks: 1) the continuation of support to geothermal reservoir engineering related work, started under the NSF-RANN program and transferred to ERDA at the time of its formation; 2) the development and subsequent implementation of a broad plan for support of research in topics related to the exploitation of geothermal reservoirs. This plan is now known as the GREMP plan. Both the NSF-RANN legacies and GREMP are in direct support of the DOE/DGE mission in general and the goals of the Resource and Technology/Resource Exploitation and Assessment Branch in particular. These goals are to determine the magnitude and distribution of geothermal resources and reduce risk in their exploitation through improved understanding of generically different reservoir types. These goals are to be accomplished by: 1) the creation of a large data base about geothermal reservoirs, 2) improved tools and methods for gathering data on geothermal reservoirs, and 3) modeling of reservoirs and utilization options. The NSF legacies are more research and training oriented, and the GREMP is geared primarily to the practical development of the geothermal reservoirs. 2 tabs., 3 figs.

  3. Stream, Lake, and Reservoir Management.

    Science.gov (United States)

    Dai, Jingjing; Mei, Ying; Chang, Chein-Chi

    2017-10-01

    This review on stream, lake, and reservoir management covers selected 2016 publications on the focus of the following sections: Stream, lake, and reservoir management • Water quality of stream, lake, and reservoirReservoir operations • Models of stream, lake, and reservoir • Remediation and restoration of stream, lake, and reservoir • Biota of stream, lake, and reservoir • Climate effect of stream, lake, and reservoir.

  4. Sediment management for reservoir

    International Nuclear Information System (INIS)

    Rahman, A.

    2005-01-01

    All natural lakes and reservoirs whether on rivers, tributaries or off channel storages are doomed to be sited up. Pakistan has two major reservoirs of Tarbela and Managla and shallow lake created by Chashma Barrage. Tarbela and Mangla Lakes are losing their capacities ever since first impounding, Tarbela since 1974 and Mangla since 1967. Tarbela Reservoir receives average annual flow of about 62 MAF and sediment deposits of 0.11 MAF whereas Mangla gets about 23 MAF of average annual flows and is losing its storage at the rate of average 34,000 MAF annually. The loss of storage is a great concern and studies for Tarbela were carried out by TAMS and Wallingford to sustain its capacity whereas no study has been done for Mangla as yet except as part of study for Raised Mangla, which is only desk work. Delta of Tarbala reservoir has advanced to about 6.59 miles (Pivot Point) from power intakes. In case of liquefaction of delta by tremor as low as 0.12g peak ground acceleration the power tunnels I, 2 and 3 will be blocked. Minimum Pool of reservoir is being raised so as to check the advance of delta. Mangla delta will follow the trend of Tarbela. Tarbela has vast amount of data as reservoir is surveyed every year, whereas Mangla Reservoir survey was done at five-year interval, which has now been proposed .to be reduced to three-year interval. In addition suspended sediment sampling of inflow streams is being done by Surface Water Hydrology Project of WAPDA as also some bed load sampling. The problem of Chasma Reservoir has also been highlighted, as it is being indiscriminately being filled up and drawdown several times a year without regard to its reaction to this treatment. The Sediment Management of these reservoirs is essential and the paper discusses pros and cons of various alternatives. (author)

  5. APPLICATION OF INTEGRATED RESERVOIR MANAGEMENT AND RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jack Bergeron; Tom Blasingame; Louis Doublet; Mohan Kelkar; George Freeman; Jeff Callard; David Moore; David Davies; Richard Vessell; Brian Pregger; Bill Dixon; Bryce Bezant

    2000-03-01

    Reservoir performance and characterization are vital parameters during the development phase of a project. Infill drilling of wells on a uniform spacing, without regard to characterization does not optimize development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, especially carbonate reservoirs. These reservoirs are typically characterized by: (1) large, discontinuous pay intervals; (2) vertical and lateral changes in reservoir properties; (3) low reservoir energy; (4) high residual oil saturation; and (5) low recovery efficiency. The operational problems they encounter in these types of reservoirs include: (1) poor or inadequate completions and stimulations; (2) early water breakthrough; (3) poor reservoir sweep efficiency in contacting oil throughout the reservoir as well as in the nearby well regions; (4) channeling of injected fluids due to preferential fracturing caused by excessive injection rates; and (5) limited data availability and poor data quality. Infill drilling operations only need target areas of the reservoir which will be economically successful. If the most productive areas of a reservoir can be accurately identified by combining the results of geological, petrophysical, reservoir performance, and pressure transient analyses, then this ''integrated'' approach can be used to optimize reservoir performance during secondary and tertiary recovery operations without resorting to ''blanket'' infill drilling methods. New and emerging technologies such as geostatistical modeling, rock typing, and rigorous decline type curve analysis can be used to quantify reservoir quality and the degree of interwell communication. These results can then be used to develop a 3-D simulation model for prediction of infill locations. The application of reservoir surveillance techniques to identify additional reservoir ''pay'' zones

  6. Geothermal reservoir management

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, C.R.; Golabi, K.

    1978-02-01

    The optimal management of a hot water geothermal reservoir was considered. The physical system investigated includes a three-dimensional aquifer from which hot water is pumped and circulated through a heat exchanger. Heat removed from the geothermal fluid is transferred to a building complex or other facility for space heating. After passing through the heat exchanger, the (now cooled) geothermal fluid is reinjected into the aquifer. This cools the reservoir at a rate predicted by an expression relating pumping rate, time, and production hole temperature. The economic model proposed in the study maximizes discounted value of energy transferred across the heat exchanger minus the discounted cost of wells, equipment, and pumping energy. The real value of energy is assumed to increase at r percent per year. A major decision variable is the production or pumping rate (which is constant over the project life). Other decision variables in this optimization are production timing, reinjection temperature, and the economic life of the reservoir at the selected pumping rate. Results show that waiting time to production and production life increases as r increases and decreases as the discount rate increases. Production rate decreases as r increases and increases as the discount rate increases. The optimal injection temperature is very close to the temperature of the steam produced on the other side of the heat exchanger, and is virtually independent of r and the discount rate. Sensitivity of the decision variables to geohydrological parameters was also investigated. Initial aquifer temperature and permeability have a major influence on these variables, although aquifer porosity is of less importance. A penalty was considered for production delay after the lease is granted.

  7. Superposition well-test method for reservoir characterization and pressure management during CO2 injection

    Science.gov (United States)

    White, J. A.

    2014-12-01

    As a significant fraction of a carbon storage project's budget is devoted to site characterization and monitoring, there has been an intense drive in recent years to both lower cost and improve the quality of data obtained. Two data streams that are cheap and always available are pressure and flow rate measurements from the injection well. Falloff testing, in which the well is shut-in for some period of time and the pressure decline curve measured, is often used to probe the storage zone and look for indications of hydraulic barriers, fracture-dominated flow, and other reservoir characteristics. These tests can be used to monitor many hydromechanical processes of interest, including hydraulic fracturing and fault reactivation. Unfortunately, the length of the shut-in period controls how far away from the injector information may be obtained. For operational reasons these tests are typically kept short and infrequent, limiting their usefulness. In this work, we present a new analysis method in which ongoing injection data is used to reconstruct an equivalent falloff test, without shutting in the well. The entire history of injection may therefore be used as a stand in for a very long test. The method relies upon a simple superposition principle to transform a multi-rate injection sequence into an equivalent single-rate process. We demonstrate the effectiveness of the method using injection data from the Snøhvit storage project. We also explore its utility in an active pressure management scenario. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Suspended-sediment transport and storage: A demonstration of acoustic methods in the evaluation of reservoir management strategies for a small water-supply reservoir in western Colorado

    Science.gov (United States)

    Williams, Cory A.; Richards, Rodney J.; Collins, Kent L.

    2015-01-01

    The U.S. Bureau of Reclamation (USBR) and local stakeholder groups are evaluating reservoir-management strategies within Paonia Reservoir. This small reservoir fills to capacity each spring and requires approximately half of the snowmelt-runoff volume from its sediment-laden source waters, Muddy Creek. The U.S. Geological Survey is currently conducting high-resolution (15-minute data-recording interval) sediment monitoring to characterize incoming and outgoing sediment flux during reservoir operations at two sites on Muddy Creek. The high-resolution monitoring is being used to establish current rates of reservoir sedimentation, support USBR sediment transport and storage models, and assess the viability of water-storage recovery in Paonia Reservoir. These sites are equipped with in situ, single-frequency, side-looking acoustic Doppler current meters in conjunction with turbidity sensors to monitor sediment flux. This project serves as a demonstration of the capability of using surrogate techniques to predict suspended-sediment concentrations in small streams (less than 20 meters in width and 2 meters in depth). These two sites provide the ability to report near real-time suspended-sediment concentrations through the U.S. Geological Survey National Water Information System (NWIS) web interface and National Real-Time Water Quality websites (NRTWQ) to aid in reservoir operations and assessments.

  9. A reservoir operating method for riverine ecosystem protection, reservoir sedimentation control and water supply

    Science.gov (United States)

    Yin, Xin-An; Yang, Zhi-Feng; Petts, Geoffrey E.; Kondolf, G. Mathias

    2014-05-01

    Riverine ecosystem protection requires the maintenance of natural flow and sediment regimes downstream from dams. In reservoir management schedules this requirement should be integrated with sedimentation control and human water supply. However, traditional eco-friendly reservoir operating methods have usually only considered the natural flow regime. This paper seeks to develop a reservoir operating method that accounts for both the natural flow and sediment regimes as well as optimizing the water supply allocations. Herein, reservoir water level (RWL), sediment-occupied ratio of reservoir volume (SOR) and rate of change of SOR (RCSOR) are adopted as three triggers of a drawdown-flushing-based sediment management policy. Two different groups of reservoir operating rule curves (RORCs) are designed for sediment-flushing and non-sediment-flushing years, and the three triggers, RWL, SOR and RCSOR, are used to change the “static” RORCs to “dynamic” ones. The approach is applied to the Wangkuai Reservoir, China to test its effectiveness. This shows that the approach can improve the flexibility of reservoir operators to balance the reservoir management, water supply management and the flow and sediment needs of the downstream riverine ecosystem.

  10. Assessment of Spatial Interpolation Methods to Map the Bathymetry of an Amazonian Hydroelectric Reservoir to Aid in Decision Making for Water Management

    Directory of Open Access Journals (Sweden)

    Marcelo Curtarelli

    2015-02-01

    Full Text Available The generation of reliable information for improving the understanding of hydroelectric reservoir dynamics is fundamental for guiding decision-makers to implement best management practices. In this way, we assessed the performance of different interpolation algorithms to map the bathymetry of the Tucuruí hydroelectric reservoir, located in the Brazilian Amazon, as an aid to manage and operate Amazonian reservoirs. We evaluated three different deterministic and one geostatistical algorithms. The performance of the algorithms was assessed through cross-validation and Monte Carlo Simulation. Finally, operational information was derived from the bathymetric grid with the best performance. The results showed that all interpolation methods were able to map important bathymetric features. The best performance was obtained with the geostatistical method (RMSE = 0.92 m. The information derived from the bathymetric map (e.g., the level-area and level-volume diagram and the three-dimensional grid will allow for optimization of operational monitoring of the Tucuruí hydroelectric reservoir as well as the development of three-dimensional modeling studies.

  11. Mrica Reservoir Sedimentation: Current Situation and Future Necessary Management

    Directory of Open Access Journals (Sweden)

    Puji Utomo

    2017-09-01

    Full Text Available Mrica Reservoir is one of many reservoirs located in Central Java that experienced a considerably high sedimentation during the last ten years. This condition has caused a rapid decrease in reservoir capacity. Various countermeasures have been introduced to reduce the rate of the reservoir sedimentation through catchment management and reservoir operation by means of flushing and/or dredging. However, the sedimentation remains intensive so that the fulfillment of water demand for electrical power generation was seriously affected. This paper presents the results of evaluation on the dynamics of the purpose of this research is to evaluate the sediment balance of the Mrica Reservoir based on two different scenarios, i.e. the existing condition and another certain type of reservoir management. The study on sediment balance was carried out by estimating the sediment inflow applying sheet erosion method in combination with the analysis of sediment rating curve. The measurement of the deposited sediment rate in the reservoir was conducted through the periodic echo sounding, whereas identification of the number of sediment that has been released from the reservoir was carried out through the observation on both flushing and dredging activities. The results show that during the last decade, the rate of the sediment inflow was approximately 5.869 MCM/year, whereas the released sediment from the reservoir was 4.097 MCM/year. In order to maintain the reservoir capacity, therefore, at least 1.772 MCM/year should be released from the reservoir by means of either flushing or dredging. Sedimentation management may prolong the reservoir’s service life to exceed the design life. Without sediment management, the lifetime of the reservoir would have finished by 2016, whereas with the proper management the lifetime may be extended to 2025.

  12. A statistical data assimilation method for seasonal streamflow forecasting to optimize hydropower reservoir management in data-scarce regions

    Science.gov (United States)

    Arsenault, R.; Mai, J.; Latraverse, M.; Tolson, B.

    2017-12-01

    developed to assess the performance of each individual process in the reservoir management chain. Here the proposed method was compared to the PF algorithm while keeping all other elements intact. Preliminary results are encouraging in terms of power generation and robustness for the proposed approach.

  13. Hydrological ensemble predictions for reservoir inflow management

    Science.gov (United States)

    Zalachori, Ioanna; Ramos, Maria-Helena; Garçon, Rémy; Gailhard, Joel

    2013-04-01

    Hydrologic forecasting is a topic of special importance for a variety of users with different purposes. It concerns operational hydrologists interested in forecasting hazardous events (eg., floods and droughts) for early warning and prevention, as well as planners and managers searching to optimize the management of water resources systems at different space-time scales. The general aim of this study is to investigate the benefits of using hydrological ensemble predictions for reservoir inflow management. Ensemble weather forecasts are used as input to a hydrologic forecasting model and daily ensemble streamflow forecasts are generated up to a lead time of 7 days. Forecasts are then integrated into a heuristic decision model for reservoir management procedures. Performance is evaluated in terms of potential gain in energy production. The sensitivity of the results to various reservoir characteristics and future streamflow scenarios is assessed. A set of 11 catchments in France is used to illustrate the added value of ensemble streamflow forecasts for reservoir management.

  14. Some practical aspects of reservoir management

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.L.; Young, M.A.; Cole, E.L.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)

    1996-09-01

    The practical essence of reservoir management is the optimal application of available resources-people, equipment, technology, and money to maximize profitability and recovery. Success must include knowledge and consideration of (1) the reservoir system, (2) the technologies available, and (3) the reservoir management business environment. Two Reservoir Management Demonstration projects (one in a small, newly-discovered field and one in a large, mature water-flood) implemented by the Department of Energy through BDM-Oklahoma illustrate the diversity of situations suited for reservoir management efforts. Project teams made up of experienced engineers, geoscientists, and other professionals arrived at an overall reservoir management strategy for each field. in 1993, Belden & Blake Corporation discovered a regionally significant oil reservoir (East Randolph Field) in the Cambrian Rose Run formation in Portage County, Ohio. Project objectives are to improve field operational economics and optimize oil recovery. The team focused on characterizing the reservoir geology and analyzing primary production and reservoir data to develop simulation models. Historical performance was simulated and predictions were made to assess infill drilling, water flooding, and gas repressurization. The Citronelle Field, discovered in 1955 in Mobile County, Alabama, has produced 160 million barrels from fluvial sandstones of the Cretaceous Rodessa formation. Project objectives are to address improving recovery through waterflood optimization and problems related to drilling, recompletions, production operations, and regulatory and environmental issues. Initial efforts focused on defining specific problems and on defining a geographic area within the field where solutions might best be pursued. Geologic and reservoir models were used to evaluate past performance and to investigate improved recovery operations.

  15. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  16. Data assimilation in reservoir management

    NARCIS (Netherlands)

    Rommelse, J.R.

    2009-01-01

    The research presented in this thesis aims at improving computer models that allow simulations of water, oil and gas flows in subsurface petroleum reservoirs. This is done by integrating, or assimilating, measurements into physics-bases models. In recent years petroleum technology has developed

  17. Why don't Practitioners use Reservoir Optimization Methods? Results from a Survey of UK Water Managers

    Science.gov (United States)

    Dobson, B.; Pianosi, F.; Wagener, T.

    2016-12-01

    Extensive scientific literature exists on the study of how operation decisions in water resource systems can be made more effectively through the use of optimization methods. However, to the best of the authors' knowledge, there is little in the literature on the implementation of these optimization methods by practitioners. We have performed a survey among UK reservoir operators to assess the current state of method implementation in practice. We also ask questions to assess the potential for implementation of operation optimization. This will help academics to target industry in their current research, identify any misconceptions in industry about the area and open new branches of research for which there is an unsatisfied demand. The UK is a good case study because the regulatory framework is changing to impose "no build" solutions for supply issues, as well as planning across entire water resource systems rather than individual components. Additionally there is a high appetite for efficiency due to the water industry's privatization and most operators are part of companies that control multiple water resources, increasing the potential for cooperation and coordination.

  18. Electromagnetic Heating Methods for Heavy Oil Reservoirs

    International Nuclear Information System (INIS)

    Sahni, A.; Kumar, M.; Knapp, R.B.

    2000-01-01

    The most widely used method of thermal oil recovery is by injecting steam into the reservoir. A well-designed steam injection project is very efficient in recovering oil, however its applicability is limited in many situations. Simulation studies and field experience has shown that for low injectivity reservoirs, small thickness of the oil-bearing zone, and reservoir heterogeneity limits the performance of steam injection. This paper discusses alternative methods of transferring heat to heavy oil reservoirs, based on electromagnetic energy. They present a detailed analysis of low frequency electric resistive (ohmic) heating and higher frequency electromagnetic heating (radio and microwave frequency). They show the applicability of electromagnetic heating in two example reservoirs. The first reservoir model has thin sand zones separated by impermeable shale layers, and very viscous oil. They model preheating the reservoir with low frequency current using two horizontal electrodes, before injecting steam. The second reservoir model has very low permeability and moderately viscous oil. In this case they use a high frequency microwave antenna located near the producing well as the heat source. Simulation results presented in this paper show that in some cases, electromagnetic heating may be a good alternative to steam injection or maybe used in combination with steam to improve heavy oil production. They identify the parameters which are critical in electromagnetic heating. They also discuss past field applications of electromagnetic heating including technical challenges and limitations

  19. Reservoir management under geological uncertainty using fast model update

    NARCIS (Netherlands)

    Hanea, R.; Evensen, G.; Hustoft, L.; Ek, T.; Chitu, A.; Wilschut, F.

    2015-01-01

    Statoil is implementing "Fast Model Update (FMU)," an integrated and automated workflow for reservoir modeling and characterization. FMU connects all steps and disciplines from seismic depth conversion to prediction and reservoir management taking into account relevant reservoir uncertainty. FMU

  20. A Bayesian-based two-stage inexact optimization method for supporting stream water quality management in the Three Gorges Reservoir region.

    Science.gov (United States)

    Hu, X H; Li, Y P; Huang, G H; Zhuang, X W; Ding, X W

    2016-05-01

    In this study, a Bayesian-based two-stage inexact optimization (BTIO) method is developed for supporting water quality management through coupling Bayesian analysis with interval two-stage stochastic programming (ITSP). The BTIO method is capable of addressing uncertainties caused by insufficient inputs in water quality model as well as uncertainties expressed as probabilistic distributions and interval numbers. The BTIO method is applied to a real case of water quality management for the Xiangxi River basin in the Three Gorges Reservoir region to seek optimal water quality management schemes under various uncertainties. Interval solutions for production patterns under a range of probabilistic water quality constraints have been generated. Results obtained demonstrate compromises between the system benefit and the system failure risk due to inherent uncertainties that exist in various system components. Moreover, information about pollutant emission is accomplished, which would help managers to adjust production patterns of regional industry and local policies considering interactions of water quality requirement, economic benefit, and industry structure.

  1. Model based management of a reservoir system

    Energy Technology Data Exchange (ETDEWEB)

    Scharaw, B.; Westerhoff, T. [Fraunhofer IITB, Ilmenau (Germany). Anwendungszentrum Systemtechnik; Puta, H.; Wernstedt, J. [Technische Univ. Ilmenau (Germany)

    2000-07-01

    The main goals of reservoir management systems consist of prevention against flood water damages, the catchment of raw water and keeping all of the quality parameters within their limits besides controlling the water flows. In consideration of these goals a system model of the complete reservoir system Ohra-Schmalwasser-Tambach Dietharz was developed. This model has been used to develop optimized strategies for minimization of raw water production cost, for maximization of electrical energy production and to cover flood situations, as well. Therefore a proper forecast of the inflow to the reservoir from the catchment areas (especially flooding rivers) and the biological processes in the reservoir is important. The forecast model for the inflow to the reservoir is based on the catchment area model of Lorent and Gevers. It uses area precipitation, water supply from the snow cover, evapotranspiration and soil wetness data to calculate the amount of flow in rivers. The other aim of the project is to ensure the raw water quality using quality models, as well. Then a quality driven raw water supply will be possible. (orig.)

  2. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

    2001-08-07

    This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

  3. Multiobjective reservoir operating rules based on cascade reservoir input variable selection method

    Science.gov (United States)

    Yang, Guang; Guo, Shenglian; Liu, Pan; Li, Liping; Xu, Chongyu

    2017-04-01

    The input variable selection in multiobjective cascade reservoir operation is an important and difficult task. To address this problem, this study proposes the cascade reservoir input variable selection (CIS) method that searches for the most valuable input variables for decision making in multiple-objectivity cascade reservoir operations. From a case study of Hanjiang cascade reservoirs in China, we derive reservoir operating rules based on the combination of CIS and Gaussian radial basis functions (RBFs) methods and optimize the rules through Pareto-archived dynamically dimensioned search (PA-DDS) with two objectives: to maximize both power generation and water supply. We select the most effective input variables and evaluate their impacts on cascade reservoir operations. From the simulated trajectories of reservoir water level, power generation, and water supply, we analyze the multiobjective operating rules with several input variables. The results demonstrate that the CIS method performs well in the selection of input variables for the cascade reservoir operation, and the RBFs method can fully express the nonlinear operating rules for cascade reservoirs. We conclude that the CIS method is an effective and stable approach to identifying the most valuable information from a large number of candidate input variables. While the reservoir storage state is the most valuable information for the Hanjiang cascade reservoir multiobjective operation, the reservoir inflow is the most effective input variable for the single-objective operation of Danjiangkou.

  4. The role of rainfall variability in reservoir storage management at ...

    African Journals Online (AJOL)

    Reservoir operation and management is usually patterned after the background of long standing water resources management experience. Reservoir management for optimum power production at any hydropower station requires constant assessment of the quantity of available water. The hydrographic responses of flow ...

  5. Application of integrated reservoir management and reservoir characterization to optimize infill drilling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities were identified and tested. The geologically targeted infill drilling program currently being implemented is a result of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

  6. Application of integrated reservoir management and reservoir characterization to optimize infill drilling, Class II

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Jack; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill; Bezant, Bryce

    2000-03-16

    The major purpose of this project was to demonstrate the use of cost effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability carbonate reservoirs such as the North Robertson (Clearfork) Unit.

  7. Reservoir management strategy for East Randolph Field, Randolph Township, Portage County, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Safley, L.E.; Salamy, S.P.; Young, M.A.; Fowler, M.L.; Wing, J.L.; Thomas, J.B.; Mills, J.; Wood, D.

    1998-07-01

    The primary objective of the Reservoir Management Field Demonstration Program is to demonstrate that multidisciplinary reservoir management teams using appropriate software and methodologies with efforts scaled to the size of the resource are a cost-effective method for: Increasing current profitability of field operations; Forestalling abandonment of the reservoir; and Improving long-term economic recovery for the company. The primary objective of the Reservoir Management Demonstration Project with Belden and Blake Corporation is to develop a comprehensive reservoir management strategy to improve the operational economics and optimize oil production from East Randolph field, Randolph Township, Portage County, Ohio. This strategy identifies the viable improved recovery process options and defines related operational and facility requirements. In addition, strategies are addressed for field operation problems, such as paraffin buildup, hydraulic fracture stimulation, pumping system optimization, and production treatment requirements, with the goal of reducing operating costs and improving oil recovery.

  8. An experimental unification of reservoir computing methods.

    Science.gov (United States)

    Verstraeten, D; Schrauwen, B; D'Haene, M; Stroobandt, D

    2007-04-01

    Three different uses of a recurrent neural network (RNN) as a reservoir that is not trained but instead read out by a simple external classification layer have been described in the literature: Liquid State Machines (LSMs), Echo State Networks (ESNs) and the Backpropagation Decorrelation (BPDC) learning rule. Individual descriptions of these techniques exist, but a overview is still lacking. Here, we present a series of experimental results that compares all three implementations, and draw conclusions about the relation between a broad range of reservoir parameters and network dynamics, memory, node complexity and performance on a variety of benchmark tests with different characteristics. Next, we introduce a new measure for the reservoir dynamics based on Lyapunov exponents. Unlike previous measures in the literature, this measure is dependent on the dynamics of the reservoir in response to the inputs, and in the cases we tried, it indicates an optimal value for the global scaling of the weight matrix, irrespective of the standard measures. We also describe the Reservoir Computing Toolbox that was used for these experiments, which implements all the types of Reservoir Computing and allows the easy simulation of a wide range of reservoir topologies for a number of benchmarks.

  9. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  10. Hydroeconomic optimization of reservoir management under downstream water quality constraints

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo

    2015-01-01

    A hydroeconomic optimization approach is used to guide water management in a Chinese river basin with the objectives of meeting water quantity and water quality constraints, in line with the China 2011 No. 1 Policy Document and 2015 Ten-point Water Plan. The proposed modeling framework couples...... water quantity and water quality management and minimizes the total costs over a planning period assuming stochastic future runoff. The outcome includes cost-optimal reservoir releases, groundwater pumping, water allocation, wastewater treatments and water curtailments. The optimization model uses...... a variant of stochastic dynamic programming known as the water value method. Nonlinearity arising from the water quality constraints is handled with an effective hybrid method combining genetic algorithms and linear programming. Untreated pollutant loads are represented by biochemical oxygen demand (BOD...

  11. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Quarterly progress report, June 13, 1995--September 12, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Pande, P.K.

    1995-09-12

    At this stage of the reservoir characterization research, the main emphasis is on the geostatistics and reservoir simulation. Progress is reported on geological analysis, reservoir simulation, and reservoir management.

  12. A New Method for Fracturing Wells Reservoir Evaluation in Fractured Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2014-01-01

    Full Text Available Natural fracture is a geological phenomenon widely distributed in tight formation, and fractured gas reservoir stimulation effect mainly depends on the communication of natural fractures. Therefore it is necessary to carry out the evaluation of this reservoir and to find out the optimal natural fractures development wells. By analyzing the interactions and nonlinear relationships of the parameters, it establishes three-level index system of reservoir evaluation and proposes a new method for gas well reservoir evaluation model in fractured gas reservoir on the basis of fuzzy logic theory and multilevel gray correlation. For this method, the Gaussian membership functions to quantify the degree of every factor in the decision-making system and the multilevel gray relation to determine the weight of each parameter on stimulation effect. Finally through fuzzy arithmetic operator between multilevel weights and fuzzy evaluation matrix, score, rank, the reservoir quality, and predicted production will be gotten. Result of this new method shows that the evaluation of the production coincidence rate reaches 80%, which provides a new way for fractured gas reservoir evaluation.

  13. Master plan: Guntersville Reservoir Aquatic Plant Management. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    In 1989, Congress provided funding to start a five-year comprehensive project to manage aquatic plants in Guntersville Reservoir, to be jointly implemented by the US Army Corps of Engineers (Corps) and Tennessee Valley Authority (TVA). TVA serves as the overall project coordinator and is the lead agency for this project. Known as the Joint Agency Guntersville Project (JAGP), the project will test and demonstrate innovative management technologies, and incorporate the most effective technologies into a comprehensive aquatic plant management plan for Guntersville Reservoir. The JAGP is intended to serve as a National Demonstration Project for aquatic plant management. As part of this JAGP, the Master Plan for Aquatic Plant Management for the Guntersville Reservoir Project, Alabama-Tennessee is authorized by Corps Contract Number DACW62-90-C-0067.

  14. A Time Domain Update Method for Reservoir History Matching of Electromagnetic Data

    KAUST Repository

    Katterbauer, Klemens

    2014-03-25

    The oil & gas industry has been the backbone of the world\\'s economy in the last century and will continue to be in the decades to come. With increasing demand and conventional reservoirs depleting, new oil industry projects have become more complex and expensive, operating in areas that were previously considered impossible and uneconomical. Therefore, good reservoir management is key for the economical success of complex projects requiring the incorporation of reliable uncertainty estimates for reliable production forecasts and optimizing reservoir exploitation. Reservoir history matching has played here a key role incorporating production, seismic, electromagnetic and logging data for forecasting the development of reservoirs and its depletion. With the advances in the last decade, electromagnetic techniques, such as crosswell electromagnetic tomography, have enabled engineers to more precisely map the reservoirs and understand their evolution. Incorporating the large amount of data efficiently and reducing uncertainty in the forecasts has been one of the key challenges for reservoir management. Computing the conductivity distribution for the field for adjusting parameters in the forecasting process via solving the inverse problem has been a challenge, due to the strong ill-posedness of the inversion problem and the extensive manual calibration required, making it impossible to be included into an efficient reservoir history matching forecasting algorithm. In the presented research, we have developed a novel Finite Difference Time Domain (FDTD) based method for incorporating electromagnetic data directly into the reservoir simulator. Based on an extended Archie relationship, EM simulations are performed for both forecasted and Porosity-Saturation retrieved conductivity parameters being incorporated directly into an update step for the reservoir parameters. This novel direct update method has significant advantages such as that it overcomes the expensive and ill

  15. Review and Evaluation of Reservoir Management Strategies for Harmful Algal Blooms

    Science.gov (United States)

    2017-07-28

    reports, published accounts of potential management options, effectiveness of management, and potential impacts of management actions on lake/reservoir...management options, effectiveness of management, potential impacts of management actions on lake/reservoir ecosystem processes and biota, and recommendations...and potential impacts of management actions on lake/reservoir ecosystem processes and biota, and recommendations for future research. This re- port

  16. Stress estimation in reservoirs using an integrated inverse method

    Science.gov (United States)

    Mazuyer, Antoine; Cupillard, Paul; Giot, Richard; Conin, Marianne; Leroy, Yves; Thore, Pierre

    2018-05-01

    Estimating the stress in reservoirs and their surroundings prior to the production is a key issue for reservoir management planning. In this study, we propose an integrated inverse method to estimate such initial stress state. The 3D stress state is constructed with the displacement-based finite element method assuming linear isotropic elasticity and small perturbations in the current geometry of the geological structures. The Neumann boundary conditions are defined as piecewise linear functions of depth. The discontinuous functions are determined with the CMA-ES (Covariance Matrix Adaptation Evolution Strategy) optimization algorithm to fit wellbore stress data deduced from leak-off tests and breakouts. The disregard of the geological history and the simplified rheological assumptions mean that only the stress field, statically admissible and matching the wellbore data should be exploited. The spatial domain of validity of this statement is assessed by comparing the stress estimations for a synthetic folded structure of finite amplitude with a history constructed assuming a viscous response.

  17. Conservation implications of weed management of lake reservoirs ...

    African Journals Online (AJOL)

    Management of weeds around lake reservoirs is often implemented to reduce any possibility of siltation. However, machineries used in weed management have resulted in habitat degradation and geometrical multiplication of weeds by chopping rhizomes and scattering seeds. In general, the removal offers some feedbacks ...

  18. Integration of rock typing methods for carbonate reservoir characterization

    International Nuclear Information System (INIS)

    Aliakbardoust, E; Rahimpour-Bonab, H

    2013-01-01

    Reservoir rock typing is the most important part of all reservoir modelling. For integrated reservoir rock typing, static and dynamic properties need to be combined, but sometimes these two are incompatible. The failure is due to the misunderstanding of the crucial parameters that control the dynamic behaviour of the reservoir rock and thus selecting inappropriate methods for defining static rock types. In this study, rock types were defined by combining the SCAL data with the rock properties, particularly rock fabric and pore types. First, air-displacing-water capillary pressure curues were classified because they are representative of fluid saturation and behaviour under capillary forces. Next the most important rock properties which control the fluid flow and saturation behaviour (rock fabric and pore types) were combined with defined classes. Corresponding petrophysical properties were also attributed to reservoir rock types and eventually, defined rock types were compared with relative permeability curves. This study focused on representing the importance of the pore system, specifically pore types in fluid saturation and entrapment in the reservoir rock. The most common tests in static rock typing, such as electrofacies analysis and porosity–permeability correlation, were carried out and the results indicate that these are not appropriate approaches for reservoir rock typing in carbonate reservoirs with a complicated pore system. (paper)

  19. Flood risk management for large reservoirs

    International Nuclear Information System (INIS)

    Poupart, M.

    2006-01-01

    Floods are a major risk for dams: uncontrolled reservoir water level may cause dam overtopping, and then its failure, particularly for fill dams. Poor control of spillway discharges must be taken into consideration too, as it can increase the flood consequences downstream. In both cases, consequences on the public or on properties may be significant. Spillway design to withstand extreme floods is one response to these risks, but must be complemented by strict operating rules: hydrological forecasting, surveillance and periodic equipment controls, operating guides and the training of operators are mandatory too, in order to guarantee safe operations. (author)

  20. Decision Support System for Reservoir Management and Operation in Africa

    Science.gov (United States)

    Navar, D. A.

    2016-12-01

    Africa is currently experiencing a surge in dam construction for flood control, water supply and hydropower production, but ineffective reservoir management has caused problems in the region, such as water shortages, flooding and loss of potential hydropower generation. Our research aims to remedy ineffective reservoir management by developing a novel Decision Support System(DSS) to equip water managers with a technical planning tool based on the state of the art in hydrological sciences. The DSS incorporates a climate forecast model, a hydraulic model of the watershed, and an optimization model to effectively plan for the operation of a system of cascade large-scale reservoirs for hydropower production, while treating water supply and flood control as constraints. Our team will use the newly constructed hydropower plants in the Omo Gibe basin of Ethiopia as the test case. Using the basic HIDROTERM software developed in Brazil, the General Algebraic Modeling System (GAMS) utilizes a combination of linear programing (LP) and non-linear programming (NLP) in conjunction with real time hydrologic and energy demand data to optimize the monthly and daily operations of the reservoir system. We compare the DSS model results with the current reservoir operating policy used by the water managers of that region. We also hope the DSS will eliminate the current dangers associated with the mismanagement of large scale water resources projects in Africa.

  1. A Study of the Optimal Planning Model for Reservoir Sustainable Management- A Case Study of Shihmen Reservoir

    Science.gov (United States)

    Chen, Y. Y.; Ho, C. C.; Chang, L. C.

    2017-12-01

    The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.

  2. Modeling reservoir geomechanics using discrete element method : Application to reservoir monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Alassi, Haitham Tayseer

    2008-09-15

    Understanding reservoir geomechanical behavior is becoming more and more important for the petroleum industry. Reservoir compaction, which may result in surface subsidence and fault reactivation, occurs during reservoir depletion. Stress changes and possible fracture development inside and outside a depleting reservoir can be monitored using time-lapse (so-called '4D') seismic and/or passive seismic, and this can give valuable information about the conditions of a given reservoir during production. In this study we will focus on using the (particle-based) Discrete Element Method (DEM) to model reservoir geomechanical behavior during depletion and fluid injection. We show in this study that DEM can be used in modeling reservoir geomechanical behavior by comparing results obtained from DEM to those obtained from analytical solutions. The match of the displacement field between DEM and the analytical solution is good, however there is mismatch of the stress field which is related to the way stress is measured in DEM. A good match is however obtained by measuring the stress field carefully. We also use DEM to model reservoir geomechanical behavior beyond the elasticity limit where fractures can develop and faults can reactivate. A general technique has been developed to relate DEM parameters to rock properties. This is necessary in order to use correct reservoir geomechanical properties during modeling. For any type of particle packing there is a limitation that the maximum ratio between P- and S-wave velocity Vp/Vs that can be modeled is 3 . The static behavior for a loose packing is different from the dynamic behavior. Empirical relations are needed for the static behavior based on numerical test observations. The dynamic behavior for both dense and loose packing can be given by analytical relations. Cosserat continuum theory is needed to derive relations for Vp and Vs. It is shown that by constraining the particle rotation, the S-wave velocity can be

  3. From eutrophic to mesotrophic: modelling watershed management scenarios to change the trophic status of a reservoir.

    Science.gov (United States)

    Mateus, Marcos; Almeida, Carina; Brito, David; Neves, Ramiro

    2014-03-12

    Management decisions related with water quality in lakes and reservoirs require a combined land-water processes study approach. This study reports on an integrated watershed-reservoir modeling methodology: the Soil and Water Assessment Tool (SWAT) model to estimate the nutrient input loads from the watershed, used afterwards as boundary conditions to the reservoir model, CE-QUAL-W2. The integrated modeling system was applied to the Torrão reservoir and drainage basin. The objective of the study was to quantify the total maximum input load that allows the reservoir to be classified as mesotrophic. Torrão reservoir is located in the Tâmega River, one of the most important tributaries of the Douro River in Portugal. The watershed is characterized by a variety of land uses and urban areas, accounting for a total Waste Water Treatment Plants (WWTP) discharge of ~100,000 p.e. According to the criteria defined by the National Water Institute (based on the WWTP Directive), the Torrão reservoir is classified as eutrophic. Model estimates show that a 10% reduction in nutrient loads will suffice to change the state to mesotrophic, and should target primarily WWTP effluents, but also act on diffuse sources. The method applied in this study should provide a basis for water environmental management decision-making.

  4. Hydroeconomic optimization of reservoir management under downstream water quality constraints

    Science.gov (United States)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Holm, Peter E.; Trapp, Stefan; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2015-10-01

    A hydroeconomic optimization approach is used to guide water management in a Chinese river basin with the objectives of meeting water quantity and water quality constraints, in line with the China 2011 No. 1 Policy Document and 2015 Ten-point Water Plan. The proposed modeling framework couples water quantity and water quality management and minimizes the total costs over a planning period assuming stochastic future runoff. The outcome includes cost-optimal reservoir releases, groundwater pumping, water allocation, wastewater treatments and water curtailments. The optimization model uses a variant of stochastic dynamic programming known as the water value method. Nonlinearity arising from the water quality constraints is handled with an effective hybrid method combining genetic algorithms and linear programming. Untreated pollutant loads are represented by biochemical oxygen demand (BOD), and the resulting minimum dissolved oxygen (DO) concentration is computed with the Streeter-Phelps equation and constrained to match Chinese water quality targets. The baseline water scarcity and operational costs are estimated to 15.6 billion CNY/year. Compliance to water quality grade III causes a relatively low increase to 16.4 billion CNY/year. Dilution plays an important role and increases the share of surface water allocations to users situated furthest downstream in the system. The modeling framework generates decision rules that result in the economically efficient strategy for complying with both water quantity and water quality constraints.

  5. Value of information in closed-loop reservoir management

    NARCIS (Netherlands)

    Barros, E.G.D.; Jansen, J.D.; Van den Hof, P.M.J.

    2014-01-01

    This paper proposes a new methodology to perform value of information (VOI) analysis within a closed-loop reservoir management (CLRM) framework. The workflow combines tools such as robust optimization and history matching in an environment of uncertainty characterization. The approach is illustrated

  6. Value of information in closed-loop reservoir management

    NARCIS (Netherlands)

    Barros, E.G.D.; Van den Hof, P.M.J.; Jansen, J.D.

    2015-01-01

    This paper proposes a new methodology to perform value of information (VOI) analysis within a closed-loop reservoir management (CLRM) framework. The workflow combines tools such as robust optimization and history matching in an environment of uncertainty characterization. The approach is illustrated

  7. Automatic high frequency monitoring for improved lake and reservoir management

    Czech Academy of Sciences Publication Activity Database

    Marcé, R.; George, G.; Buscarinu, P.; Deidda, M.; Dunalska, J.; de Eyto, E.; Flaim, G.; Grossart, H. P.; Istvánovics, V.; Lenhardt, M.; Moreno-Ostos, E.; Obrador, B.; Ostrovsky, I.; Pierson, D. C.; Potužák, Jan; Poikane, S.; Rinke, K.; Rodríguez-Mozaz, S.; Staehr, P. A.; Šumberová, Kateřina; Waajen, G.; Weyhenmeyer, G. A.; Weathers, K. C.; Zion, M.; Ibelings, B. W.; Jennings, E.

    2016-01-01

    Roč. 50, č. 20 (2016), s. 10780-10794 ISSN 0013-936X R&D Projects: GA MŠk(CZ) LD14045 Institutional support: RVO:67985939 Keywords : monitoring of water resources * water reservoir management * sensors Subject RIV: EH - Ecology, Behaviour Impact factor: 6.198, year: 2016

  8. Dredged Material Management Plan and Environmental Impact Statement. McNary Reservoir and Lower Snake River Reservoirs. Appendix C: Economic Analysis

    National Research Council Canada - National Science Library

    2002-01-01

    ...; for managment of dredged material from these reservoirs; and for maintenance of flow conveyance capacity at the most upstream extent of the Lower Granite reservoir for the remaining economic life of the dam and reservoir project (to year 2074...

  9. Methods and systems using encapsulated tracers and chemicals for reservoir interrogation and manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jeffery; Aines, Roger D; Duoss, Eric B; Spadaccini, Christopher M

    2014-11-04

    An apparatus, method, and system of reservoir interrogation. A tracer is encapsulating in a receptacle. The receptacle containing the tracer is injected into the reservoir. The tracer is analyzed for reservoir interrogation.

  10. Use of Operational Climate Forecasts in Reservoir Management and Operation

    Science.gov (United States)

    Arumugam, S.; Lall, U.

    2005-12-01

    Seasonal streamflow forecasts contingent on climate information are essential for short-term planning and for setting up contingency measures during extreme years. Similarly, monthly updates of streamflow forecasts are useful in quantifying surplus and shortfall in addressing the change in streamflow potential during the season. In this study, an operational streamflow forecasts for managing the Angat Reservoir System, Philippines, is developed using the precipitation forecasts from Atmospheric General Circulation Models (AGCM) that are forced by persisted Sea Surface Temperature (SST) conditions. The methodology employs principal components regression (PCR) to downscale the AGCM predicted precipitation fields to monthly streamflow forecasts. By performing retrospective analyses that combines streamflow forecasts with a dynamic water allocation model, we show that use of updated climate forecasts in reservoir operation results in increased reservoir system yields in comparison to using the seasonal streamflow forecasts alone. Revising the reservoir operation strategy based on updated streamflow forecasts is particularly critical in hydropower systems, since the increased yields from reduced spillage could be effectively utilized for power generation during above-normal inflow years. Further, analyzing the system performance under different scenarios of storage and demand, we show that the utility of climate information based reservoir inflow forecasts is more pronounced for systems with low storage to demand ratio.

  11. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Annual report, June 13, 1994--June 12, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Pande, P.K.

    1996-11-01

    This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period have consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities are being identified and tested. The geologically targeted infill drilling program will be implemented using the results of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

  12. The management of the Diama reservoir (Senegal River)

    Science.gov (United States)

    Duvail, S.; Hamerlynck, O.

    2003-04-01

    The Senegal River is regulated by 2 dams built in the 1980's by the "Organisation pour la Mise en Valeur du fleuve Sénégal" (OMVS), a river basin management organisation grouping Mali, Senegal and Mauritania. The initial objectives of OMVS, which were to regulate the Senegal flows in order to develop irrigated agriculture, produce hydropower and facilitate river navigation has been only partially met. The maintenance of the annual flood by the upstream dam (Manantali), initially to be phased out when irrigated agriculture would have replaced the traditional recession agriculture, is now scheduled to continue indefinitely on the basis of socio-economic and environmental concerns. This change of mindset has however not affected the management of the downstream dam (Diama). Initially conceived as a salt-wedge dam, its function evolved to a reservoir dam with a high and constant water level. During the dry season, the water level is maintained high and constant in order to reduce the pumping costs for the irrigated agriculture in the delta. During the flood season (July-October) the dam is primarily managed for risk avoidance: limit flooding downstream of the dam (especially the city of St. Louis) and secure the infrastructure of the dam itself. The permanent freshwater reservoir lake has adverse effects on ecosystems, on human and animal health and a high social cost for the traditional stakeholders of the deltaic floodplain (fishermen, livestock keepers and gatherers). Upstream of the reservoir there is an excess of stagnant freshwater and managers are confronted with the development of invasive species while substantial downstream flooding is essential for the estuarine ecosystems and local livelihoods. The presentation will review the different approaches to the management of the Diama reservoir and proposes different management scenarios and compares their economical, environmental, and social costs and benefits.

  13. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-01-01

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  14. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    Energy Technology Data Exchange (ETDEWEB)

    P. K. Pande

    1998-10-29

    Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

  15. Evaluation of sediment management strategies on reservoir storage depletion rate: a case study

    NARCIS (Netherlands)

    Ali, M.; Sterk, G.

    2010-01-01

    Sedimentation aspects have a major role during the design of new reservoir projects because life of the reservoir mainly depends upon sediment handling during reservoir operation. Therefore, proper sediment management strategies should be adopted to enhance the life span of reservoirs. Basha

  16. Nonlinear Model Predictive Control for Oil Reservoirs Management

    DEFF Research Database (Denmark)

    Capolei, Andrea

    . The controller consists of -A model based optimizer for maximizing some predicted financial measure of the reservoir (e.g. the net present value). -A parameter and state estimator. -Use of the moving horizon principle for data assimilation and implementation of the computed control input. The optimizer uses...... Optimization has been suggested to compensate for inherent geological uncertainties in an oil field. In robust optimization of an oil reservoir, the water injection and production borehole pressures are computed such that the predicted net present value of an ensemble of permeability field realizations...... equivalent strategy is not justified for the particular case studied in this paper. The third contribution of this thesis is a mean-variance method for risk mitigation in production optimization of oil reservoirs. We introduce a return-risk bicriterion objective function for the profit-risk tradeoff...

  17. Evaluation method for krypton-81m reservoir administration systems

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, A.G.; van Weeren, F.H.; de Goeij, J.J.; Wijnhoven, G.P.; Witsenboer, T.J.

    1989-05-01

    Large variations have been reported in counting rates during lung ventilation studies using different /sup 81m/Kr administration systems and among different patients. A method was set up to determine the activity utilization efficiency (AUE) using various administration systems. For that purpose a simple lung simulator was developed for combination with reservoir administration systems to be tested. It was found that under normal breathing conditions the AUE is 50% using a reservoir system and only 18% in the absence of a reservoir in the administration system. The measured results were confirmed by a mathematic model. The suggested simulator is suitable for use in hospitals and also enables an indirect check on the /sup 81/Rb//sup 81/mKr generator performance.

  18. Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: a case study of the Xinfengjiang reservoir in southern China

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2013-01-01

    The ever-increasing demand for water due to growth of population and socioeconomic development in the past several decades has posed a worldwide threat to water supply security and to the environmental health of rivers. This study aims to derive reservoir operating rules through establishing a multi-objective optimization model for the Xinfengjiang (XFJ) reservoir in the East River Basin in southern China to minimize water supply deficit and maximize hydropower generation. Additionally, to enhance the estimation of irrigation water demand from the downstream agricultural area of the XFJ reservoir, a conventional method for calculating crop water demand is improved using hydrological model simulation results. Although the optimal reservoir operating rules are derived for the XFJ reservoir with three priority scenarios (water supply only, hydropower generation only, and equal priority), the river environmental health is set as the basic demand no matter which scenario is adopted. The results show that the new rules derived under the three scenarios can improve the reservoir operation for both water supply and hydropower generation when comparing to the historical performance. Moreover, these alternative reservoir operating policies provide the flexibility for the reservoir authority to choose the most appropriate one. Although changing the current operating rules may influence its hydropower-oriented functions, the new rules can be significant to cope with the increasingly prominent water shortage and degradation in the aquatic environment. Overall, our results and methods (improved estimation of irrigation water demand and formulation of the reservoir optimization model) can be useful for local watershed managers and valuable for other researchers worldwide.

  19. 75 FR 40034 - Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort...

    Science.gov (United States)

    2010-07-13

    ... TENNESSEE VALLEY AUTHORITY Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek...-managed public land on Beaver Creek, Clear Creek, Boone, Fort Patrick Henry, South Holston, Watauga, and.... Watauga and Wilbur reservoirs are along the Watauga River. Beaver Creek and Clear Creek reservoirs are on...

  20. Data assimilation method for fractured reservoirs using mimetic finite differences and ensemble Kalman filter

    KAUST Repository

    Ping, Jing

    2017-05-19

    Optimal management of subsurface processes requires the characterization of the uncertainty in reservoir description and reservoir performance prediction. For fractured reservoirs, the location and orientation of fractures are crucial for predicting production characteristics. With the help of accurate and comprehensive knowledge of fracture distributions, early water/CO 2 breakthrough can be prevented and sweep efficiency can be improved. However, since the rock property fields are highly non-Gaussian in this case, it is a challenge to estimate fracture distributions by conventional history matching approaches. In this work, a method that combines vector-based level-set parameterization technique and ensemble Kalman filter (EnKF) for estimating fracture distributions is presented. Performing the necessary forward modeling is particularly challenging. In addition to the large number of forward models needed, each model is used for sampling of randomly located fractures. Conventional mesh generation for such systems would be time consuming if possible at all. For these reasons, we rely on a novel polyhedral mesh method using the mimetic finite difference (MFD) method. A discrete fracture model is adopted that maintains the full geometry of the fracture network. By using a cut-cell paradigm, a computational mesh for the matrix can be generated quickly and reliably. In this research, we apply this workflow on 2D two-phase fractured reservoirs. The combination of MFD approach, level-set parameterization, and EnKF provides an effective solution to address the challenges in the history matching problem of highly non-Gaussian fractured reservoirs.

  1. Stochastic Management of the Open Large Water Reservoir with Storage Function with Using a Genetic Algorithm

    Science.gov (United States)

    Kozel, Tomas; Stary, Milos

    2016-10-01

    Described models are used random forecasting period of flow line with different length. The length is shorter than 1 year. Forecasting period of flow line is transformed to line of managing discharges with same length as forecast. Adaptive managing is used only first value of line of discharges. Stochastic management is worked with dispersion of controlling discharge value. Main advantage stochastic management is fun of possibilities. In article is described construction and evaluation of adaptive stochastic model base on genetic algorithm (classic optimization method). Model was used for stochastic management of open large water reservoir with storage function. Genetic algorithm is used as optimization algorithm. Forecasted inflow is given to model and controlling discharge value is computed by model for chosen probability of controlling discharge value. Model was tested and validated on made up large open water reservoir. Results of stochastic model were evaluated for given probability and were compared to results of same model for 100% forecast (forecasted values are real values). The management of the large open water reservoir with storage function was done logically and with increased sum number of forecast from 300 to 500 the results given by model were better, but another increased from 500 to 750 and 1000 did not get expected improvement. Influence on course of management was tested for different length forecasted inflow and their sum number. Classical optimization model is needed too much time for calculation, therefore stochastic model base on genetic algorithm was used parallel calculation on cluster.

  2. Multipurpose Water Reservoir Management: An Evolutionary Multiobjective Optimization Approach

    Directory of Open Access Journals (Sweden)

    Luís A. Scola

    2014-01-01

    Full Text Available The reservoirs that feed large hydropower plants should be managed in order to provide other uses for the water resources. Those uses include, for instance, flood control and avoidance, irrigation, navigability in the rivers, and other ones. This work presents an evolutionary multiobjective optimization approach for the study of multiple water usages in multiple interlinked reservoirs, including both power generation objectives and other objectives not related to energy generation. The classical evolutionary algorithm NSGA-II is employed as the basic multiobjective optimization machinery, being modified in order to cope with specific problem features. The case studies, which include the analysis of a problem which involves an objective of navigability on the river, are tailored in order to illustrate the usefulness of the data generated by the proposed methodology for decision-making on the problem of operation planning of multiple reservoirs with multiple usages. It is shown that it is even possible to use the generated data in order to determine the cost of any new usage of the water, in terms of the opportunity cost that can be measured on the revenues related to electric energy sales.

  3. Multi-objective game-theory models for conflict analysis in reservoir watershed management.

    Science.gov (United States)

    Lee, Chih-Sheng

    2012-05-01

    This study focuses on the development of a multi-objective game-theory model (MOGM) for balancing economic and environmental concerns in reservoir watershed management and for assistance in decision. Game theory is used as an alternative tool for analyzing strategic interaction between economic development (land use and development) and environmental protection (water-quality protection and eutrophication control). Geographic information system is used to concisely illustrate and calculate the areas of various land use types. The MOGM methodology is illustrated in a case study of multi-objective watershed management in the Tseng-Wen reservoir, Taiwan. The innovation and advantages of MOGM can be seen in the results, which balance economic and environmental concerns in watershed management and which can be interpreted easily by decision makers. For comparison, the decision-making process using conventional multi-objective method to produce many alternatives was found to be more difficult. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Managing a hydro-energy reservoir: A policy approach

    International Nuclear Information System (INIS)

    Van Ackere, Ann; Ochoa, Patricia

    2010-01-01

    Liberalisation and privatisation have increased the need to gain more understanding into the management of hydro storage (HS) plants. We analyse what types of reservoir management policies enable an owner or a public authority to achieve their respective objectives. By 'policy' we understand simple, easily applicable decision rules, which enable a decision maker to decide when and how much to produce based on currently available information. We use a stylised deterministic simulation model of a hydro-power producer (HP) who behaves strategically. We study a non-liberalised market, where the authorities aim to minimise the total electricity cost for customers and a liberalised market where the HP attempts to maximise his contribution. This enables us to evaluate the impact of the liberalisation of HS production decisions on production volumes and electricity prices. We conclude that imposing rigid policies with the aim of limiting the potential for strategic behaviour can create incentives to produce only at very high prices throughout the year. This can lead to very high total costs, especially when the producer has most flexibility (large reservoirs combined with large turbine capacity). More surprisingly, we observe lower total production in a non-liberalised market. (author)

  5. Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

    2011-07-01

    The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel

  6. Underground natural gas storage reservoir management: Phase 2. Final report, June 1, 1995--March 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, I.; Anthony, R.V.

    1996-12-31

    Gas storage operators are facing increased and more complex responsibilities for managing storage operations under Order 636 which requires unbundling of storage from other pipeline services. Low cost methods that improve the accuracy of inventory verification are needed to optimally manage this stored natural gas. Migration of injected gas out of the storage reservoir has not been well documented by industry. The first portion of this study addressed the scope of unaccounted for gas which may have been due to migration. The volume range was estimated from available databases and reported on an aggregate basis. Information on working gas, base gas, operating capacity, injection and withdrawal volumes, current and non-current revenues, gas losses, storage field demographics and reservoir types is contained among the FERC Form 2, EIA Form 191, AGA and FERC Jurisdictional databases. The key elements of this study show that gas migration can result if reservoir limits have not been properly identified, gas migration can occur in formation with extremely low permeability (0.001 md), horizontal wellbores can reduce gas migration losses and over-pressuring (unintentionally) storage reservoirs by reinjecting working gas over a shorter time period may increase gas migration effects.

  7. Impact of overpressures on subsurface exploration and reservoir management

    Science.gov (United States)

    Kukla, P.

    2009-04-01

    The presence of overpressures in the subsurface poses major problems for safety and cost efficient well design, but less well known is their importance for exploration and reservoir development. Overpressures reduce the vertical effective stress (VES, the difference between the vertical stress and fluid pressure) experienced by the sediment. As sediment compaction is primarily an irreversible function of VES, a reduction in VES will halt compaction. Similarly, a reduction in its rate of increase will reduce the rate of porosity loss. Porosity and other key rock properties will therefore reflect changes in vertical effective stress. Any measurement that senses porosity, or seismic velocity (e.g. sonic, density or resistivity logs) will provide a means of estimating overpressures. The reduction of porosity with vertical effective stress is exponential in nature. Consequently, overpressures generated early in the burial history, such as those generated by disequilibrium compaction, will have a greater impact on rock properties than those generated or emplaced during late burial. Indeed, late overpressuring, so-called inflation, may have little or no impact on rock properties and therefore methods for the prediction of overpressures from properties such as seismic velocity will not provide reliable pressure estimates. In order for fluid pressures to rise in a basin, the pressures have to be contained by rocks with sufficiently low permeability. Overpressures are transient and gradually leak away when the generation mechanism ceases to operate. In some areas, such as in parts of the central North Sea and the Middle East, fluid pressures have built up until the failure envelope of the seal is reached, leading to a subsequent loss of the sealing capacity. The failure envelope is usually considered to be determined by the minimum horizontal stress. The failure pressure for the seal systematically increases with depth and this variation will control the maximum pressures

  8. Assessing water reservoirs management and development in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    A. Castelletti

    2012-01-01

    Full Text Available In many developing countries water is a key renewable resource to complement carbon-emitting energy production and support food security in the face of demand pressure from fast-growing industrial production and urbanization. To cope with undergoing changes, water resources development and management have to be reconsidered by enlarging their scope across sectors and adopting effective tools to analyze current and projected infrastructure potential and operation strategies. In this paper we use multi-objective deterministic and stochastic optimization to assess the current reservoir operation and planned capacity expansion in the Red River Basin (Northern Vietnam, and to evaluate the potential improvement by the adoption of a more sophisticated information system. To reach this goal we analyze the historical operation of the major controllable infrastructure in the basin, the HoaBinh reservoir on the Da River, explore re-operation options corresponding to different tradeoffs among the three main objectives (hydropower production, flood control and water supply, using multi-objective optimization techniques, namely Multi-Objective Genetic Algorithm. Finally, we assess the structural system potential and the need for capacity expansion by application of Deterministic Dynamic Programming. Results show that the current operation can only be relatively improved by advanced optimization techniques, while investment should be put into enlarging the system storage capacity and exploiting additional information to inform the operation.

  9. Reservoir management under consideration of stratification and hydraulic phenomena

    NARCIS (Netherlands)

    Nandalal, K.D.W.

    1995-01-01


    Reservoirs are the most important components in a water resources system. They are used to store water to extend its temporal availability. The physical, chemical and biological characteristics of water change when impounded in reservoirs. This implies the possibility of using reservoirs

  10. Multigrid Methods for Fully Implicit Oil Reservoir Simulation

    Science.gov (United States)

    Molenaar, J.

    1996-01-01

    In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for

  11. Development of optimal strategies in executive management of special waste resulting from dredging of oil products reservoirs using SWOT and QSPM method in National Iranian Oil Product Distribution Company

    Directory of Open Access Journals (Sweden)

    Monireh Abbasi

    2017-09-01

    Full Text Available Mismanagement of special wastes can bring about destructive environmental effects. Therefore, development of strategic solutions in this sector requires a special attention. SWOT analysis was benefited from in this research as an instrument for planning special waste management system. In order to achieve an acceptable point in special waste management resulting from dredging of reservoirs, internal and external factors in the company were investigated. Then, optimal strategies were developed and eventually in order to specify the relative attractiveness of the determined strategies, Quantitative Strategic Planning Matrix (QSPM matrix was employed. Based on Internal Factor Evaluation and External Factor Evaluation matrices, it was found that the strong points were more than the weak points, while the available opportunities are less than the threats. Out of the developed strategies, construction of a suitable site to maintain the oily sludges according to environmental requirements are among the top priorities of the strategies.

  12. CO2 plume management in saline reservoir sequestration

    Science.gov (United States)

    Frailey, S.M.; Finley, R.J.

    2011-01-01

    A significant difference between injecting CO2 into saline aquifers for sequestration and injecting fluids into oil reservoirs or natural gas into aquifer storage reservoirs is the availability and use of other production and injection wells surrounding the primary injection well(s). Of major concern for CO2 sequestration using a single well is the distribution of pressure and CO2 saturation within the injection zone. Pressure is of concern with regards to caprock integrity and potential migration of brine or CO2 outside of the injection zone, while CO2 saturation is of interest for storage rights and displacement efficiency. For oil reservoirs, the presence of additional wells is intended to maximize oil recovery by injecting CO2 into the same hydraulic flow units from which the producing wells are withdrawing fluids. Completing injectors and producers in the same flow unit increases CO2 throughput, maximizes oil displacement efficiency, and controls pressure buildup. Additional injectors may surround the CO2 injection well and oil production wells in order to provide external pressure to these wells to prevent the injected CO2 from migrating from the pattern between two of the producing wells. Natural gas storage practices are similar in that to reduce the amount of "cushion" gas and increase the amount of cycled or working gas, edge wells may be used for withdrawal of gas and center wells used for gas injection. This reduces loss of gas to the formation via residual trapping far from the injection well. Moreover, this maximizes the natural gas storage efficiency between the injection and production wells and reduces the areal extent of the natural gas plume. Proposed U.S. EPA regulations include monitoring pressure and suggest the "plume" may be defined by pressure in addition to the CO2 saturated area. For pressure monitoring, it seems that this can only be accomplished by injection zone monitoring wells. For pressure, these wells would not need to be very

  13. Quantum Bayesian perspective for intelligence reservoir characterization, monitoring and management

    Science.gov (United States)

    Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia; de Jesús Correa, María

    2017-10-01

    The paper starts with a brief review of the literature about uncertainty in geological, geophysical and petrophysical data. In particular, we present the viewpoints of experts in geophysics on the application of Bayesian inference and subjective probability. Then we present arguments that the use of classical probability theory (CP) does not match completely the structure of geophysical data. We emphasize that such data are characterized by contextuality and non-Kolmogorovness (the impossibility to use the CP model), incompleteness as well as incompatibility of some geophysical measurements. These characteristics of geophysical data are similar to the characteristics of quantum physical data. Notwithstanding all this, contextuality can be seen as a major deviation of quantum theory from classical physics. In particular, the contextual probability viewpoint is the essence of the Växjö interpretation of quantum mechanics. We propose to use quantum probability (QP) for decision-making during the characterization, modelling, exploring and management of the intelligent hydrocarbon reservoir. Quantum Bayesianism (QBism), one of the recently developed information interpretations of quantum theory, can be used as the interpretational basis for such QP decision-making in geology, geophysics and petroleum projects design and management. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  14. Quantum Bayesian perspective for intelligence reservoir characterization, monitoring and management.

    Science.gov (United States)

    Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia; de Jesús Correa, María

    2017-11-13

    The paper starts with a brief review of the literature about uncertainty in geological, geophysical and petrophysical data. In particular, we present the viewpoints of experts in geophysics on the application of Bayesian inference and subjective probability. Then we present arguments that the use of classical probability theory (CP) does not match completely the structure of geophysical data. We emphasize that such data are characterized by contextuality and non-Kolmogorovness (the impossibility to use the CP model), incompleteness as well as incompatibility of some geophysical measurements. These characteristics of geophysical data are similar to the characteristics of quantum physical data. Notwithstanding all this, contextuality can be seen as a major deviation of quantum theory from classical physics. In particular, the contextual probability viewpoint is the essence of the Växjö interpretation of quantum mechanics. We propose to use quantum probability (QP) for decision-making during the characterization, modelling, exploring and management of the intelligent hydrocarbon reservoir Quantum Bayesianism (QBism), one of the recently developed information interpretations of quantum theory, can be used as the interpretational basis for such QP decision-making in geology, geophysics and petroleum projects design and management.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).

  15. Gradient-based methods for production optimization of oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Suwartadi, Eka

    2012-07-01

    Production optimization for water flooding in the secondary phase of oil recovery is the main topic in this thesis. The emphasis has been on numerical optimization algorithms, tested on case examples using simple hypothetical oil reservoirs. Gradientbased optimization, which utilizes adjoint-based gradient computation, is used to solve the optimization problems. The first contribution of this thesis is to address output constraint problems. These kinds of constraints are natural in production optimization. Limiting total water production and water cut at producer wells are examples of such constraints. To maintain the feasibility of an optimization solution, a Lagrangian barrier method is proposed to handle the output constraints. This method incorporates the output constraints into the objective function, thus avoiding additional computations for the constraints gradient (Jacobian) which may be detrimental to the efficiency of the adjoint method. The second contribution is the study of the use of second-order adjoint-gradient information for production optimization. In order to speedup convergence rate in the optimization, one usually uses quasi-Newton approaches such as BFGS and SR1 methods. These methods compute an approximation of the inverse of the Hessian matrix given the first-order gradient from the adjoint method. The methods may not give significant speedup if the Hessian is ill-conditioned. We have developed and implemented the Hessian matrix computation using the adjoint method. Due to high computational cost of the Newton method itself, we instead compute the Hessian-timesvector product which is used in a conjugate gradient algorithm. Finally, the last contribution of this thesis is on surrogate optimization for water flooding in the presence of the output constraints. Two kinds of model order reduction techniques are applied to build surrogate models. These are proper orthogonal decomposition (POD) and the discrete empirical interpolation method (DEIM

  16. BEKWAAM, a model fit for reservoir design and management

    NARCIS (Netherlands)

    Benoist, A.P.; Brinkman, A.G.; Diepenbeek, van P.M.J.A.; Waals, J.M.J.

    1998-01-01

    In the Province of Limburg in the Netherlands a new reservoir will be used for the drinking water production of 20 million m3 per annum from the year 2002. With the use of this reservoir the WML is shifting towards the use of surface water (River Meuse) as primary source instead of ground water.

  17. The Role of Rainfall Variability in Reservoir Storage Management at ...

    African Journals Online (AJOL)

    Bheema

    The objective is to develop functional hydrological relationship between (rainfall, inflow, reservoir storage and turbine releases) over the dam. This will provide scientific basis for operational decisions which can lead to optimum power plant utilization. 1.1. The Study Area. The study area is the Shiroro dam reservoir.

  18. Hybrid Stochastic Forecasting Model for Management of Large Open Water Reservoir with Storage Function

    Science.gov (United States)

    Kozel, Tomas; Stary, Milos

    2017-12-01

    The main advantage of stochastic forecasting is fan of possible value whose deterministic method of forecasting could not give us. Future development of random process is described better by stochastic then deterministic forecasting. Discharge in measurement profile could be categorized as random process. Content of article is construction and application of forecasting model for managed large open water reservoir with supply function. Model is based on neural networks (NS) and zone models, which forecasting values of average monthly flow from inputs values of average monthly flow, learned neural network and random numbers. Part of data was sorted to one moving zone. The zone is created around last measurement average monthly flow. Matrix of correlation was assembled only from data belonging to zone. The model was compiled for forecast of 1 to 12 month with using backward month flows (NS inputs) from 2 to 11 months for model construction. Data was got ridded of asymmetry with help of Box-Cox rule (Box, Cox, 1964), value r was found by optimization. In next step were data transform to standard normal distribution. The data were with monthly step and forecast is not recurring. 90 years long real flow series was used for compile of the model. First 75 years were used for calibration of model (matrix input-output relationship), last 15 years were used only for validation. Outputs of model were compared with real flow series. For comparison between real flow series (100% successfully of forecast) and forecasts, was used application to management of artificially made reservoir. Course of water reservoir management using Genetic algorithm (GE) + real flow series was compared with Fuzzy model (Fuzzy) + forecast made by Moving zone model. During evaluation process was founding the best size of zone. Results show that the highest number of input did not give the best results and ideal size of zone is in interval from 25 to 35, when course of management was almost same for

  19. A method for improving predictions of bed-load discharges to reservoirs

    Science.gov (United States)

    Lopes, V.L.; Osterkamp, W.R.; Bravo-Espinosa, M.

    2007-01-01

    Effective management options for mitigating the loss of reservoir water storage capacity to sedimentation depend on improved predictions of bed-load discharges into the reservoirs. Most predictions of bed-load discharges, however, are based on the assumption that the rates of bed-load sediment availability equal the transport capacity of the flow, ignoring the spatio-temporal variability of the sediment supply. This paper develops a semiquantitative method to characterize bed-load sediment transport in alluvial channels, assuming a channel reach is non-supply limited when the bed-load discharge of a given sediment particle-size class is functionally related to the energy that is available to transport that fraction of the total bed-load. The method was applied to 22 alluvial stream channels in the USA to determine whether a channel reach had a supply-limited or non-supply-limited bed-load transport regime. The non-supply-limited transport regime was further subdivided into two groups on the basis of statistical tests. The results indicated the pattern of bed-load sediment transport in alluvial channels depends on the complete spectrum of sediment particle sizes available for transport rather than individual particle-size fractions represented by one characteristic particle size. The application of the method developed in this paper should assist reservoir managers in selecting bed-load sediment transport equations to improve predictions of bed-load discharge in alluvial streams, thereby significantly increasing the efficiency of management options for maintaining the storage capacity of waterbodies. ?? 2007 Blackwell Publishing Asia Pty Ltd.

  20. The meshless Galerkin method for pressure distribution simulation of horizontal well reservoir

    Directory of Open Access Journals (Sweden)

    Shuyong Hu

    2015-06-01

    Full Text Available This paper provides a novel three-dimensional meshless Galerkin for horizontal well reservoir simulation. The pressure function is approached by moving least-square method which consists of weight function, basic function and coefficient. Based on Galerkin principle and use penalty function method, the paper deduces the meshless Galerkin numerical linear equations. Cut off the pressure distribution of the horizontal section from the simulation database of horizontal well reservoir. It demonstrates that meshless Galerkin is a feasible numerical method for the horizontal well reservoir simulation. It is useful to research complex reservoir.

  1. A Novel Method for Performance Analysis of Compartmentalized Reservoirs

    Directory of Open Access Journals (Sweden)

    Shahamat Mohammad Sadeq

    2016-05-01

    Full Text Available This paper presents a simple analytical model for performance analysis of compartmentalized reservoirs producing under Constant Terminal Rate (CTR and Constant Terminal Pressure (CTP. The model is based on the well-known material balance and boundary dominated flow equations and is written in terms of capacitance and resistance of a production and a support compartment. These capacitance and resistance terms account for a combination of reservoir parameters which enable the developed model to be used for characterizing such systems. In addition to considering the properties contrast between the two reservoir compartments, the model takes into account existence of transmissibility barriers with the use of resistance terms. The model is used to analyze production performance of unconventional reservoirs, where the multistage fracturing of horizontal wells effectively creates a Stimulated Reservoir Volume (SRV with an enhanced permeability surrounded by a non-stimulated region. It can also be used for analysis of compartmentalized conventional reservoirs. The analytical solutions provide type curves through which the controlling reservoirs parameters of a compartmentalized system can be estimated. The contribution of the supporting compartment is modeled based on a boundary dominated flow assumption. The transient behaviour of the support compartment is captured by application of “distance of investigation” concept. The model shows that depletion of the production and support compartments exhibit two unit slopes on a log-log plot of pressure versus time for CTR. For CTP, however, the depletions display two exponential declines. The depletion signatures are separated by transition periods, which depend on the contribution of the support compartment (i.e. transient or boundary dominated flow. The developed equations can be implemented easily in a spreadsheet application, and are corroborated with the use of a numerical simulation. The study

  2. Environmental hedging: A theory and method for reconciling reservoir operations for downstream ecology and water supply

    Science.gov (United States)

    Adams, L. E.; Lund, J. R.; Moyle, P. B.; Quiñones, R. M.; Herman, J. D.; O'Rear, T. A.

    2017-09-01

    Building reservoir release schedules to manage engineered river systems can involve costly trade-offs between storing and releasing water. As a result, the design of release schedules requires metrics that quantify the benefit and damages created by releases to the downstream ecosystem. Such metrics should support making operational decisions under uncertain hydrologic conditions, including drought and flood seasons. This study addresses this need and develops a reservoir operation rule structure and method to maximize downstream environmental benefit while meeting human water demands. The result is a general approach for hedging downstream environmental objectives. A multistage stochastic mixed-integer nonlinear program with Markov Chains, identifies optimal "environmental hedging," releases to maximize environmental benefits subject to probabilistic seasonal hydrologic conditions, current, past, and future environmental demand, human water supply needs, infrastructure limitations, population dynamics, drought storage protection, and the river's carrying capacity. Environmental hedging "hedges bets" for drought by reducing releases for fish, sometimes intentionally killing some fish early to reduce the likelihood of large fish kills and storage crises later. This approach is applied to Folsom reservoir in California to support survival of fall-run Chinook salmon in the lower American River for a range of carryover and initial storage cases. Benefit is measured in terms of fish survival; maintaining self-sustaining native fish populations is a significant indicator of ecosystem function. Environmental hedging meets human demand and outperforms other operating rules, including the current Folsom operating strategy, based on metrics of fish extirpation and water supply reliability.

  3. A dimension reduction method for flood compensation operation of multi-reservoir system

    Science.gov (United States)

    Jia, B.; Wu, S.; Fan, Z.

    2017-12-01

    Multiple reservoirs cooperation compensation operations coping with uncontrolled flood play vital role in real-time flood mitigation. This paper come up with a reservoir flood compensation operation index (ResFCOI), which formed by elements of flood control storage, flood inflow volume, flood transmission time and cooperation operations period, then establish a flood cooperation compensation operations model of multi-reservoir system, according to the ResFCOI to determine a computational order of each reservoir, and lastly the differential evolution algorithm is implemented for computing single reservoir flood compensation optimization in turn, so that a dimension reduction method is formed to reduce computational complexity. Shiguan River Basin with two large reservoirs and an extensive uncontrolled flood area, is used as a case study, results show that (a) reservoirs' flood discharges and the uncontrolled flood are superimposed at Jiangjiaji Station, while the formed flood peak flow is as small as possible; (b) cooperation compensation operations slightly increase in usage of flood storage capacity in reservoirs, when comparing to rule-based operations; (c) it takes 50 seconds in average when computing a cooperation compensation operations scheme. The dimension reduction method to guide flood compensation operations of multi-reservoir system, can make each reservoir adjust its flood discharge strategy dynamically according to the uncontrolled flood magnitude and pattern, so as to mitigate the downstream flood disaster.

  4. Management of complex multi-reservoir water distribution systems using advanced control theoretic tools and techniques

    CERN Document Server

    Chmielowski, Wojciech Z

    2013-01-01

    This study discusses issues of optimal water management in a complex distribution system. The main elements of the water-management system under consideration are retention reservoirs, among which water transfers are possible, and a network of connections between these reservoirs and water treatment plants (WTPs). System operation optimisation involves determining the proper water transport routes and their flow volumes from the retention reservoirs to the WTPs, and the volumes of possible transfers among the reservoirs, taking into account transport-related delays for inflows, outflows and water transfers in the system. Total system operation costs defined by an assumed quality coefficient should be minimal. An analytical solution of the optimisation task so formulated has been obtained as a result of using Pontriagin’s maximum principle with reference to the quality coefficient assumed. Stable start and end conditions in reservoir state trajectories have been assumed. The researchers have taken into accou...

  5. Fluvial facies reservoir productivity prediction method based on principal component analysis and artificial neural network

    Directory of Open Access Journals (Sweden)

    Pengyu Gao

    2016-03-01

    Full Text Available It is difficult to forecast the well productivity because of the complexity of vertical and horizontal developments in fluvial facies reservoir. This paper proposes a method based on Principal Component Analysis and Artificial Neural Network to predict well productivity of fluvial facies reservoir. The method summarizes the statistical reservoir factors and engineering factors that affect the well productivity, extracts information by applying the principal component analysis method and approximates arbitrary functions of the neural network to realize an accurate and efficient prediction on the fluvial facies reservoir well productivity. This method provides an effective way for forecasting the productivity of fluvial facies reservoir which is affected by multi-factors and complex mechanism. The study result shows that this method is a practical, effective, accurate and indirect productivity forecast method and is suitable for field application.

  6. Development of a segmentation method for analysis of Campos basin typical reservoir rocks

    Energy Technology Data Exchange (ETDEWEB)

    Rego, Eneida Arendt; Bueno, Andre Duarte [Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Macae, RJ (Brazil). Lab. de Engenharia e Exploracao de Petroleo (LENEP)]. E-mails: eneida@lenep.uenf.br; bueno@lenep.uenf.br

    2008-07-01

    This paper represents a master thesis proposal in Exploration and Reservoir Engineering that have the objective to development a specific segmentation method for digital images of reservoir rocks, which produce better results than the global methods available in the bibliography for the determination of rocks physical properties as porosity and permeability. (author)

  7. Characterization of heterogeneous reservoirs: sentinels method and quantification of uncertainties; Caracterisation des reservoirs heterogenes: methode des sentinelles et quantification des incertitudes

    Energy Technology Data Exchange (ETDEWEB)

    Mezghani, M.

    1999-02-11

    The aim of this thesis is to propose a new inversion method to allow both an improved reservoir characterization and a management of uncertainties. In this approach, the identification of the permeability distribution is conducted using the sentinel method in order to match the pressure data. This approach, based on optimal control theory, can be seen as an alternative of least-squares method. Here, we prove the existence of exact sentinels under regularity hypothesis. From a numerical point of view, we consider regularized sentinels. We suggest a novel approach to update the penalization coefficient in order to improve numerical robustness. Moreover, the flexibility of the sentinel method enables to develop a way to treat noisy pressure data. To deal with geostatistical modelling of permeability distribution, we propose to link the pilot point method with sentinels to reach the identification of permeability. We particularly focus on the optimal location of pilot points. Finally, we present an original method, based on adjoint state computations, to quantify the dynamic data contribution to the characterisation of a calibrated geostatistical model. (author) 67 refs.

  8. Lake and Reservoir Evaporation Estimation: Sensitivity Analysis and Ranking Existing Methods

    Directory of Open Access Journals (Sweden)

    maysam majidi

    2016-02-01

    Full Text Available Introduction: Water when harvested is commonly stored in dams, but approximately up to half of it may be lost due to evaporation leading to a huge waste of our resources. Estimating evaporation from lakes and reservoirs is not a simple task as there are a number of factors that can affect the evaporation rate, notably the climate and physiography of the water body and its surroundings. Several methods are currently used to predict evaporation from meteorological data in open water reservoirs. Based on the accuracy and simplicity of the application, each of these methods has advantages and disadvantages. Although evaporation pan method is well known to have significant uncertainties both in magnitude and timing, it is extensively used in Iran because of its simplicity. Evaporation pan provides a measurement of the combined effect of temperature, humidity, wind speed and solar radiation on the evaporation. However, they may not be adequate for the reservoir operations/development and water accounting strategies for managing drinking water in arid and semi-arid conditions which require accurate evaporation estimates. However, there has not been a consensus on which methods were better to employ due to the lack of important long-term measured data such as temperature profile, radiation and heat fluxes in most lakes and reservoirs in Iran. Consequently, we initiated this research to find the best cost−effective evaporation method with possibly fewer data requirements in our study area, i.e. the Doosti dam reservoir which is located in a semi-arid region of Iran. Materials and Methods: Our study site was the Doosti dam reservoir located between Iran and Turkmenistan borders, which was constructed by the Ministry of Water and Land Reclamation of the Republic of Turkmenistan and the Khorasan Razavi Regional Water Board of the Islamic Republic of Iran. Meteorological data including maximum and minimum air temperature and evaporation from class A pan

  9. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drillings. Annual technical progress report, June 13, 1996 to June 12, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Nevans, Jerry W.; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill

    1999-04-27

    Infill drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, does not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations. Other technologies, such as inter-well injection tracers and magnetic flow conditioners, can also aid in the efficient evaluation and operation of both injection and producing wells. The purpose of this project was to demonstrate useful and cost effective methods of exploitation of the shallow shelf carbonate reservoirs of the Permian Basin located in West Texas.

  10. Estimation of oil reservoir thermal properties through temperature log data using inversion method

    International Nuclear Information System (INIS)

    Cheng, Wen-Long; Nian, Yong-Le; Li, Tong-Tong; Wang, Chang-Long

    2013-01-01

    Oil reservoir thermal properties not only play an important role in steam injection well heat transfer, but also are the basic parameters for evaluating the oil saturation in reservoir. In this study, for estimating reservoir thermal properties, a novel heat and mass transfer model of steam injection well was established at first, this model made full analysis on the wellbore-reservoir heat and mass transfer as well as the wellbore-formation, and the simulated results by the model were quite consistent with the log data. Then this study presented an effective inversion method for estimating the reservoir thermal properties through temperature log data. This method is based on the heat transfer model in steam injection wells, and can be used to predict the thermal properties as a stochastic approximation method. The inversion method was applied to estimate the reservoir thermal properties of two steam injection wells, it was found that the relative error of thermal conductivity for the two wells were 2.9% and 6.5%, and the relative error of volumetric specific heat capacity were 6.7% and 7.0%,which demonstrated the feasibility of the proposed method for estimating the reservoir thermal properties. - Highlights: • An effective inversion method for predicting the oil reservoir thermal properties was presented. • A novel model for steam injection well made full study on the wellbore-reservoir heat and mass transfer. • The wellbore temperature field and steam parameters can be simulated by the model efficiently. • Both reservoirs and formation thermal properties could be estimated simultaneously by the proposed method. • The estimated steam temperature was quite consistent with the field data

  11. Use of modified nanoparticles in oil and gas reservoir management

    NARCIS (Netherlands)

    Turkenburg, D.H.; Chin, P.T.K.; Fischer, H.R.

    2012-01-01

    We describe a water dispersed nano sensor cocktail based on InP/ZnS quantum dots (QDs) and atomic silver clusters with a bright and visible luminescence combined with optimized sensor functionalities for the water flooding process. The QDs and Ag nano sensors were tested in simulated reservoir

  12. Design and modeling of reservoir operation strategies for sediment management

    NARCIS (Netherlands)

    Sloff, C.J.; Omer, A.Y.A.; Heynert, K.V.; Mohamed, Y.A.

    2015-01-01

    Appropriate operation strategies that allow for sediment flushing and sluicing (sediment routing) can reduce rapid storage losses of (hydropower and water-supply) reservoirs. In this study we have shown, using field observations and computational models, that the efficiency of these operations

  13. The Role of Rainfall Variability in Reservoir Storage Management at ...

    African Journals Online (AJOL)

    Statistical analysis of hydro-meteorological data (rainfall, inflow, reservoir storage and turbine release) at Shiroro dam were carried out with the aim of detecting spatio-temporal trends. Correlation and regression analysis were used to develop models for the variables. The correlation of between 0.120 and 0.774 revealed ...

  14. Superposition method used for treating oilfield interference in Iranian water-drive reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, K. [National Iranian South Oil Company, (Iran, Islamic Republic of)

    2003-07-01

    Water-drive oil fields that share a common aquifer are in hydrodynamic communication. Production from such fields is accompanied by pressure loss that manifests itself as pressure interference because the decline in pressure is transmitted through the aquifer to other fields even several miles away from a producing pool. In order to address the challenge of discovering new Iranian oil reserves, attention has focused on the efficient development of existing reservoirs. The Asmari reservoir consists of a high permeability sand and carbonate section in an elongated anticlinal structure. A drop in reservoir pressure was observed in field 'A' in 1974. This drop in pressure was noted one year after field 'B' in the same reservoir reached peak oil production of 1.1 MMBPD. A practical analytical method was developed to help the reservoir engineer analyze oilfield interference problems. Reservoir performance indicates that the aquifer from field 'A' has strong communication with field 'B'. The most practical method for treating oilfield interference in water-drive Iranian reservoirs was the superposition technique. It was emphasized that the impact of nearby fields should be considered in all reservoir simulations to accurately identify regional aquifer effects on flow rates and oil-water contact movement. 13 refs., 2 tabs., 4 figs.

  15. Methodical ICT Project Management

    OpenAIRE

    Anna Kaczorowska; Sabina Motyka; Jolanta Słoniec

    2016-01-01

    The main aim of this publication is to provide the practitioners and theoreticians of project management with an indispensable insight into the offer of the best methods of ICT projects and their best adjustment to the organization's actual needs. The morphological analysis was used to construct the tool for evaluation of the needs and level of support offered by the ICT project management methods. The use of morphological matrix as a research tool allowed to carry out a comprehensive analysi...

  16. Impact of climate changes on management plans for the St. Francois and Aylmer reservoirs : preliminary results

    International Nuclear Information System (INIS)

    Turcotte, R.; Fortin, L.G.; Pugin, S.; Cyr, J.F.; Picard, F.; Poirier, C.; Lacombe, P.

    2004-01-01

    Dams used for flood control, water supply, recreational activities and hydroelectricity in the province of Quebec are managed by the Centre d'Expertise Hydrique du Quebec (CEHQ). This paper addressed the issue of global warming and the changes that may occur in the hydrological regime within the next decades in response to predicted changes in climate. As a result of the changes in hydrological regime, there is a risk of losing the equilibrium between various objectives, identifiable through water management plans. The CEHQ is conducting a pilot study for the Saint-Francois and Aylmer reservoirs in order to develop a method to evaluate the adaptability of current management plans to climate change. The project is based on potential climate change scenarios as well as on deterministic and distributed hydrological models. Daily time steps are used to evaluate the hydrological impacts of climate change. CEHQ has developed a model that simulates the use of current management plans. The model makes it possible to evaluate and compare the occurrences where stream flows and water levels exceed critical values. The effectiveness of the management plans in both current and climate change scenarios can thereby be evaluated. Preliminary results suggest a possible increase in flood risk and fewer low water level occurrences. 18 refs., 4 tabs., 12 figs

  17. Towards an Improved Represenation of Reservoirs and Water Management in a Land Surface-Hydrology Model

    Science.gov (United States)

    Yassin, F.; Anis, M. R.; Razavi, S.; Wheater, H. S.

    2017-12-01

    Water management through reservoirs, diversions, and irrigation have significantly changed river flow regimes and basin-wide energy and water balance cycles. Failure to represent these effects limits the performance of land surface-hydrology models not only for streamflow prediction but also for the estimation of soil moisture, evapotranspiration, and feedbacks to the atmosphere. Despite recent research to improve the representation of water management in land surface models, there remains a need to develop improved modeling approaches that work in complex and highly regulated basins such as the 406,000 km2 Saskatchewan River Basin (SaskRB). A particular challenge for regional and global application is a lack of local information on reservoir operational management. To this end, we implemented a reservoir operation, water abstraction, and irrigation algorithm in the MESH land surface-hydrology model and tested it over the SaskRB. MESH is Environment Canada's Land Surface-hydrology modeling system that couples Canadian Land Surface Scheme (CLASS) with hydrological routing model. The implemented reservoir algorithm uses an inflow-outflow relationship that accounts for the physical characteristics of reservoirs (e.g., storage-area-elevation relationships) and includes simplified operational characteristics based on local information (e.g., monthly target volume and release under limited, normal, and flood storage zone). The irrigation algorithm uses the difference between actual and potential evapotranspiration to estimate irrigation water demand. This irrigation demand is supplied from the neighboring reservoirs/diversion in the river system. We calibrated the model enabled with the new reservoir and irrigation modules in a multi-objective optimization setting. Results showed that the reservoir and irrigation modules significantly improved the MESH model performance in generating streamflow and evapotranspiration across the SaskRB and that this our approach provides

  18. Review on applications of artificial intelligence methods for dam and reservoir-hydro-environment models.

    Science.gov (United States)

    Allawi, Mohammed Falah; Jaafar, Othman; Mohamad Hamzah, Firdaus; Abdullah, Sharifah Mastura Syed; El-Shafie, Ahmed

    2018-04-03

    Efficacious operation for dam and reservoir system could guarantee not only a defenselessness policy against natural hazard but also identify rule to meet the water demand. Successful operation of dam and reservoir systems to ensure optimal use of water resources could be unattainable without accurate and reliable simulation models. According to the highly stochastic nature of hydrologic parameters, developing accurate predictive model that efficiently mimic such a complex pattern is an increasing domain of research. During the last two decades, artificial intelligence (AI) techniques have been significantly utilized for attaining a robust modeling to handle different stochastic hydrological parameters. AI techniques have also shown considerable progress in finding optimal rules for reservoir operation. This review research explores the history of developing AI in reservoir inflow forecasting and prediction of evaporation from a reservoir as the major components of the reservoir simulation. In addition, critical assessment of the advantages and disadvantages of integrated AI simulation methods with optimization methods has been reported. Future research on the potential of utilizing new innovative methods based AI techniques for reservoir simulation and optimization models have also been discussed. Finally, proposal for the new mathematical procedure to accomplish the realistic evaluation of the whole optimization model performance (reliability, resilience, and vulnerability indices) has been recommended.

  19. Reservoir compartmentalization and management strategies: Lessons learned in the Illinois basin

    Energy Technology Data Exchange (ETDEWEB)

    Grube, J.P.; Crockett, J.E.; Huff, B.G. [and others

    1997-08-01

    A research project jointly sponsored by the US Department of Energy and the Illinois State Geological Survey focused on the Cypress and Aux Vases Formations (Mississippian), major clastic reservoirs in the Illinois Basin. Results from the research showed that understanding the nature and distribution of reservoir compartments, and using effective reservoir management strategies, can significantly improve recovery efficiencies from oil fields in this mature basin. Compartments can be most effectively drained where they are geologically well defined and reservoir management practices are coordinated through unified, compartment-wide, development programs. Our studies showed that the Cypress and Aux Vases reservoirs contain lateral and vertical permeability barriers forming compartments that range in size from isolated, interlaminated sandstone and shale beds to sandstone bodies tens of feet in thickness and more than a mile in length. Stacked or shingled, genetically similar sandstone bodies are commonly separated by thin impermeable intervals that can be difficult to distinguish on logs and can, therefore, cause correlation problems, even between wells drilled on spacing of less than ten acres. Lateral separation of sandstone bodies causes similar problems. Reservoir compartmentalization reduces primary and particularly secondary recovery by trapping pockets of by-passed or banked oil. Compartments can be detected by comparing recovery factors of genetically similar sandstone bodies within a field; using packers to separate commingled intervals and analyzing fluid recoveries and pressures; making detailed core-to-log calibrations that identify compartment boundaries; and analyzing pressure data from waterflood programs.

  20. New developments in high resolution borehole seismology and their applications to reservoir development and management

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson, B.N.P. [Chevron Petroleum Technology Company, La Habra, CA (United States)

    1997-08-01

    Single-well seismology, Reverse Vertical Seismic Profiles (VSP`s) and Crosswell seismology are three new seismic techniques that we jointly refer to as borehole seismology. Borehole seismic techniques are of great interest because they can obtain much higher resolution images of oil and gas reservoirs than what is obtainable with currently used seismic techniques. The quality of oil and gas reservoir management decisions depend on the knowledge of both the large and the fine scale features in the reservoirs. Borehole seismology is capable of mapping reservoirs with an order of magnitude improvement in resolution compared with currently used technology. In borehole seismology we use a high frequency seismic source in an oil or gas well and record the signal in the same well, in other wells, or on the surface of the earth.

  1. Managing geological uncertainty in CO2-EOR reservoir assessments

    Science.gov (United States)

    Welkenhuysen, Kris; Piessens, Kris

    2014-05-01

    Recently the European Parliament has agreed that an atlas for the storage potential of CO2 is of high importance to have a successful commercial introduction of CCS (CO2 capture and geological storage) technology in Europe. CO2-enhanced oil recovery (CO2-EOR) is often proposed as a promising business case for CCS, and likely has a high potential in the North Sea region. Traditional economic assessments for CO2-EOR largely neglect the geological reality of reservoir uncertainties because these are difficult to introduce realistically in such calculations. There is indeed a gap between the outcome of a reservoir simulation and the input values for e.g. cost-benefit evaluations, especially where it concerns uncertainty. The approach outlined here is to turn the procedure around, and to start from which geological data is typically (or minimally) requested for an economic assessment. Thereafter it is evaluated how this data can realistically be provided by geologists and reservoir engineers. For the storage of CO2 these parameters are total and yearly CO2 injection capacity, and containment or potential on leakage. Specifically for the EOR operation, two additional parameters can be defined: the EOR ratio, or the ratio of recovered oil over injected CO2, and the CO2 recycling ratio of CO2 that is reproduced after breakthrough at the production well. A critical but typically estimated parameter for CO2-EOR projects is the EOR ratio, taken in this brief outline as an example. The EOR ratio depends mainly on local geology (e.g. injection per well), field design (e.g. number of wells), and time. Costs related to engineering can be estimated fairly good, given some uncertainty range. The problem is usually to reliably estimate the geological parameters that define the EOR ratio. Reliable data is only available from (onshore) CO2-EOR projects in the US. Published studies for the North Sea generally refer to these data in a simplified form, without uncertainty ranges, and are

  2. A method for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands

    Science.gov (United States)

    Ai, Xueshan; Dong, Zuo; Mo, Mingzhu

    2017-04-01

    The optimal reservoir operation is in generally a multi-objective problem. In real life, most of the reservoir operation optimization problems involve conflicting objectives, for which there is no single optimal solution which can simultaneously gain an optimal result of all the purposes, but rather a set of well distributed non-inferior solutions or Pareto frontier exists. On the other hand, most of the reservoirs operation rules is to gain greater social and economic benefits at the expense of ecological environment, resulting to the destruction of riverine ecology and reduction of aquatic biodiversity. To overcome these drawbacks, this study developed a multi-objective model for the reservoir operating with the conflicting functions of hydroelectric energy generation, irrigation and ecological protection. To solve the model with the objectives of maximize energy production, maximize the water demand satisfaction rate of irrigation and ecology, we proposed a multi-objective optimization method of variable penalty coefficient (VPC), which was based on integrate dynamic programming (DP) with discrete differential dynamic programming (DDDP), to generate a well distributed non-inferior along the Pareto front by changing the penalties coefficient of different objectives. This method was applied to an existing China reservoir named Donggu, through a course of a year, which is a multi-annual storage reservoir with multiple purposes. The case study results showed a good relationship between any two of the objectives and a good Pareto optimal solutions, which provide a reference for the reservoir decision makers.

  3. A new method of well test analysis in naturally fractured reservoirs based on elliptical flow

    Energy Technology Data Exchange (ETDEWEB)

    Igbokoyi, A.O.; Tiab, D. [Oklahoma Univ., Norman, OK (United States)

    2008-07-01

    Well testing analysis in naturally fractured reservoirs is usually based on the radial flow model. However, this model is only applicable to purely homogeneous system and long time solution and cannot provide complete formation analysis in a reservoir that exhibits anisotropy. This paper presented a new method of estimating permeability anisotropy in naturally fractured reservoirs. Maximum and minimum permeability were obtained in one well test. The paper discussed the mathematical formulation for the study which used Warren and Root's matrix pseudo-steady state model. The paper presented the assumptions for this model which included an isotropic homogeneous or anisotropic homogeneous formation; a slightly compressible fluid with single phase flow in both the matrix and fracture; initial reservoir pressure; two-dimensional flow; and laminar flow which obeys Darcy's law. The paper also discussed the computation of wellbore pressure and interpretation methods for both early linear flow and the long time radial flow regimes. Anisotropy was also outlined as the purpose of the study was to use an elliptical flow model in quantifying the permeability anisotropy of the reservoir. The type curve model was also explained to demonstrate the validity of the method of quantifying the permeability anisotropy with a known problem. Last, the paper explained the direct method with several example. It was concluded that the elliptical flow model is the most appropriate method of analyzing pressure transient data in naturally fractured reservoirs. 22 refs., 5 tabs., 15 figs., 3 appendices.

  4. Methodical ICT Project Management

    Directory of Open Access Journals (Sweden)

    Anna Kaczorowska

    2016-07-01

    Full Text Available The main aim of this publication is to provide the practitioners and theoreticians of project management with an indispensable insight into the offer of the best methods of ICT projects and their best adjustment to the organization's actual needs. The morphological analysis was used to construct the tool for evaluation of the needs and level of support offered by the ICT project management methods. The use of morphological matrix as a research tool allowed to carry out a comprehensive analysis of the needs within implementation of particular problem areas.

  5. Evaluation Method of Reservoir Producing Status Based on Cumulative Distribution Curve of Oil Displacement Efficiency

    Directory of Open Access Journals (Sweden)

    Cuo Guan

    2017-01-01

    Full Text Available This paper provides a method for evaluating the status of old oilfield development. This method mainly uses the abundant coring well data of the oilfield to obtain the cumulative distribution curve of the displacement efficiency after the displacement efficiency of the statistical wells in the study area in a similar period is ordered from small to large. Based on the cumulative distribution curve of displacement efficiency, combined with the reservoir ineffective circulation limit, the cumulative water absorption ratio of reservoirs and other data are used to study the reservoir producing degree, calculate the degree of oil recovery, evaluate the proportion of the remaining movable oil after water flooding, calculate the reservoir ineffective circulation thickness and ineffective circulation water volume, and so on.

  6. Explicit Singly Diagonally Implicit Runge-Kutta Methods and Adaptive Stepsize Control for Reservoir Simulation

    DEFF Research Database (Denmark)

    Völcker, Carsten; Jørgensen, John Bagterp; Thomsen, Per Grove

    2010-01-01

    The implicit Euler method, normally refered to as the fully implicit (FIM) method, and the implicit pressure explicit saturation (IMPES) method are the traditional choices for temporal discretization in reservoir simulation. The FIM method offers unconditionally stability in the sense of discrete....... Current reservoir simulators apply timestepping algorithms that are based on safeguarded heuristics, and can neither guarantee convergence in the underlying equation solver, nor provide estimates of the relations between convergence, integration error and stepsizes. We establish predictive stepsize...... control applied to high order methods for temporal discretization in reservoir simulation. The family of Runge-Kutta methods is presented and in particular the explicit singly diagonally implicit Runge-Kutta (ESDIRK) method with an embedded error estimate is described. A predictive stepsize adjustment...

  7. Explicit Singly Diagonally Implicit Runge-Kutta Methods and Adaptive Stepsize Control for Reservoir Simulation

    DEFF Research Database (Denmark)

    Völcker, Carsten; Jørgensen, John Bagterp; Thomsen, Per Grove

    2010-01-01

    The implicit Euler method, normally refered to as the fully implicit (FIM) method, and the implicit pressure explicit saturation (IMPES) method are the traditional choices for temporal discretization in reservoir simulation. The FIM method offers unconditionally stability in the sense of discrete...

  8. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1983-1987 Methods and Data Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Ian

    1989-12-01

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin. The authorized purpose of the dam is to provide power, flood control, and navigation and other benefits. Research began in May 1983 to determine how operations of Libby dam impact the reservoir fishery and to suggest ways to lessen these impacts. This study is unique in that it was designed to accomplish its goal through detailed information gathering on every trophic level in the reservoir system and integration of this information into a quantitative computer model. The specific study objectives are to: quantify available reservoir habitat, determine abundance, growth and distribution of fish within the reservoir and potential recruitment of salmonids from Libby Reservoir tributaries within the United States, determine abundance and availability of food organisms for fish in the reservoir, quantify fish use of available food items, develop relationships between reservoir drawdown and reservoir habitat for fish and fish food organisms, and estimate impacts of reservoir operation on the reservoir fishery. 115 refs., 22 figs., 51 tabs.

  9. The dynamic capacity calculation method and the flood control ability of the Three Gorges Reservoir

    Science.gov (United States)

    Zhang, Shanghong; Jing, Zhu; Yi, Yujun; Wu, Yu; Zhao, Yong

    2017-12-01

    To evaluate the flood control ability of a river-type reservoir, an accurate simulation method for the flood storage, discharge process, and dynamic capacity of the reservoir is important. As the world's largest reservoir, the storage capacity and flood control capacity of the Three Gorges Reservoir (TGR) has attracted widespread interest and academic debate for nearly 20 years. In this study, a model for calculating the dynamic capacity of a river-type reservoir is established based on data from 394 river cross sections and 2.5-m resolution digital elevation model (DEM) data of the TGR area. The storage capacity and flood control capacity of the TGR were analysed based on the scheduling procedures of a normal impoundment period. The results show that the static capacity of the TGR is 43.43 billion m3, the dynamic flood control capacity is 22.45 billion m3, and the maximum floodwater flow regulated by the dynamic capacity at Zhicheng is no more than 67,700 m3/s. This study supply new simulation method and up-to-date high-precision data to discuss the 20 years debate, and the results reveal the TGR design is conservative for flood control according to the Preliminary Design Report of the Three Gorges Project. The dynamic capacity calculation method used here can provide a reference for flood regulation of large river-type reservoirs.

  10. A stochastic conflict resolution model for water quality management in reservoir river systems

    Science.gov (United States)

    Kerachian, Reza; Karamouz, Mohammad

    2007-04-01

    In this paper, optimal operating rules for water quality management in reservoir-river systems are developed using a methodology combining a water quality simulation model and a stochastic GA-based conflict resolution technique. As different decision-makers and stakeholders are involved in the water quality management in reservoir-river systems, a new stochastic form of the Nash bargaining theory is used to resolve the existing conflict of interests related to water supply to different demands, allocated water quality and waste load allocation in downstream river. The expected value of the Nash product is considered as the objective function of the model which can incorporate the inherent uncertainty of reservoir inflow. A water quality simulation model is also developed to simulate the thermal stratification cycle in the reservoir, the quality of releases from different outlets as well as the temporal and spatial variation of the pollutants in the downstream river. In this study, a Varying Chromosome Length Genetic Algorithm (VLGA), which has computational advantages comparing to other alternative models, is used. VLGA provides a good initial solution for Simple Genetic Algorithms and comparing to Stochastic Dynamic Programming (SDP) reduces the number of state transitions checked in each stage. The proposed model, which is called Stochastic Varying Chromosome Length Genetic Algorithm with water Quality constraints (SVLGAQ), is applied to the Ghomrud Reservoir-River system in the central part of Iran. The results show, the proposed model for reservoir operation and waste load allocation can reduce the salinity of the allocated water demands as well as the salinity build-up in the reservoir.

  11. Towards an optimal integrated reservoir system management for the Awash River Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    R. Müller

    2016-05-01

    Full Text Available Recently, the Kessem–Tendaho project is completed to bring about socioeconomic development and growth in the Awash River Basin, Ethiopia. To support reservoir Koka, two new reservoirs where built together with extensive infrastructure for new irrigation projects. For best possible socioeconomic benefits under conflicting management goals, like energy production at three hydropower stations and basin wide water supply at various sites, an integrated reservoir system management is required. To satisfy the multi-purpose nature of the reservoir system, multi-objective parameterization-simulation-optimization model is applied. Different Pareto-optimal trade-off solutions between water supply and hydro-power generation are provided for two scenarios (i recent conditions and (ii future planned increases for Tendaho and Upper Awash Irrigation projects. Reservoir performance is further assessed under (i rule curves with a high degree of freedom – this allows for best performance, but may result in rules curves to variable for real word operation and (ii smooth rule curves, obtained by artificial neuronal networks. The results show no performance penalty for smooth rule curves under future conditions but a notable penalty under recent conditions.

  12. Optimal Reoperation of Multi-Reservoirs for Integrated Watershed Management with Multiple Benefits

    Directory of Open Access Journals (Sweden)

    Xinyi Xu

    2014-04-01

    Full Text Available Constructing reservoirs can make more efficient use of water resources for human society. However, the negative impacts of these projects on the environment are often ignored. Optimal reoperation of reservoirs, which considers not only in socio-economic values but also environmental benefits, is increasingly important. A model of optimal reoperation of multi-reservoirs for integrated watershed management with multiple benefits was proposed to alleviate the conflict between water use and environmental deterioration. The social, economic, water quality and ecological benefits were respectively taken into account as the scheduling objectives and quantified according to economic models. River minimum ecological flows and reservoir water levels based on flood control were taken as key constraint conditions. Feasible search discrete differential dynamic programming (FS-DDDP was used to run the model. The proposed model was used in the upstream of the Nanpan River, to quantitatively evaluate the difference between optimal reoperation and routine operation. The results indicated that the reoperation could significantly increase the water quality benefit and have a minor effect on the benefits of power generation and irrigation under different hydrological years. The model can be readily adapted to other multi-reservoir systems for water resources management.

  13. Towards an optimal integrated reservoir system management for the Awash River Basin, Ethiopia

    Science.gov (United States)

    Müller, Ruben; Gebretsadik, Henok Y.; Schütze, Niels

    2016-05-01

    Recently, the Kessem-Tendaho project is completed to bring about socioeconomic development and growth in the Awash River Basin, Ethiopia. To support reservoir Koka, two new reservoirs where built together with extensive infrastructure for new irrigation projects. For best possible socioeconomic benefits under conflicting management goals, like energy production at three hydropower stations and basin wide water supply at various sites, an integrated reservoir system management is required. To satisfy the multi-purpose nature of the reservoir system, multi-objective parameterization-simulation-optimization model is applied. Different Pareto-optimal trade-off solutions between water supply and hydro-power generation are provided for two scenarios (i) recent conditions and (ii) future planned increases for Tendaho and Upper Awash Irrigation projects. Reservoir performance is further assessed under (i) rule curves with a high degree of freedom - this allows for best performance, but may result in rules curves to variable for real word operation and (ii) smooth rule curves, obtained by artificial neuronal networks. The results show no performance penalty for smooth rule curves under future conditions but a notable penalty under recent conditions.

  14. Reservoir Management using seasonal forecasts in Lake Kariba and Lake Kahora Bassa: Initial results and plans

    CSIR Research Space (South Africa)

    Muchuru, S

    2012-06-01

    Full Text Available Seasonal forecasting as a tool to improve on reservoir management in Zimbabwe is presented. The focus of the talk is on predicting rainfall extremes over the Lake Kariba catchments. The forecast systems to do the predictions and the levels of skill...

  15. On automatic data processing and well-test analysis in real-time reservoir management applications

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Stig

    2011-06-15

    The use of pressure and rate sensors for continuous measurements in the oil and gas wells are becoming more common. This provides better and more measurements in real time that can be analyzed to optimize the extraction of oil and gas. An analysis which can provide valuable information on oil and gas production, is transient analysis. In transient analysis pressure build-up in a well when it closed in are analyzed and parameters that describe the flow of oil and gas in the reservoir is estimated. However, it is very time consuming to manage and analyze real-time data and the result is often that only a limited amount of the available data are analyzed. It is therefore desirable to have more effective methods to analyze real time data from oil and gas wells. Olsen automated transient analysis in order to extract the information of real-time data in an efficient and labor-saving manner. The analysis must be initialized with well and reservoir-specific data, but when this is done, the analysis is performed automatically each time the well is closed in. For each shut-in are parameters that describe the flow of oil and gas in the reservoir estimated. By repeated shut, it will then appear time series of estimated parameters. One of the goals of the automated transient analysis lights up is to detect any changes in these time series so that the focus of the engineers can aim on the analysis results that deviate from normal. As part of this work it was also necessary to develop automated data filters for noise removal and data compression. The filter is designed so that it continuously filters the data using methods that are optimized for use on the typical pressure and rate signals measured in the oil and gas wells. The thesis shows Olsen examples of the use of automated data filtering and automated transient analysis of both synthetic data and real data from a field in the North Sea. (AG)

  16. Learning to manage quality in a multiple reservoir system ...

    African Journals Online (AJOL)

    This paper describes the role of participatory modelling and simulation as a way to provide a meaningful framework to enable actors to understand the interdependencies in peri-urban catchment management. A role-playing game, connecting the quantitative and qualitative dynamics of the resources with social interactions ...

  17. Application of remote sensing methods for detection of water pollution degree in rivers and water reservoirs

    International Nuclear Information System (INIS)

    Krzyworzeka, M.; Piasek, Z.

    1997-01-01

    The paper presents non-contact registration methods of the electromagnetic radiation which can be used for the detection of water pollution in rivers and water reservoirs. These methods include aerial photographs, satellite images and thermograms. The satellite images need reprocessing to obtain the mutual comparability of the images from various multispectral scanners (TM and MSS)

  18. Low flows and reservoir management for the Durance River basin (Southern France) in the 2050s

    Science.gov (United States)

    Sauquet, Eric

    2015-04-01

    The Durance River is one of the major rivers located in the Southern part of France. Water resources are under high pressure due to significant water abstractions for human uses within and out of the natural boundaries of the river basin through an extended open channel network. Water demands are related to irrigation, hydropower, drinking water, industries and more recently water management has included water needs for recreational uses as well as for preserving ecological services. Water is crucial for all these activities and for the socio-economic development of South Eastern France. Both socio-economic development and population evolution will probably modify needs for water supply, irrigation, energy consumption, tourism, industry, etc. In addition the Durance river basin will have to face climate change and its impact on water availability that may question the sustainability of the current rules for water allocation. The research project R²D²-2050 "Risk, water Resources and sustainable Development within the Durance river basin in 2050" aims at assessing future water availability and risks of water shortage in the 2050s by taking into account changes in both climate and water management. R²D²-2050 is partially funded by the French Ministry in charge of Ecology and the Rhône-Méditerranée Water Agency. This multidisciplinary project (2010-2014) involves Irstea, Electricité de France (EDF), the University Pierre et Marie Curie (Paris), LTHE (CNRS), the Société du Canal de Provence (SCP) and the research and consultancy company ACTeon. A set of models have been developed to simulate climate at regional scale (given by 330 projections obtained by applying three downscaling methods), water resources (provided by seven rainfall-runoff models forced by a subset of 330 climate projections), water demand for agriculture and drinking water, for different sub basins of the Durance River basin upstream of Mallemort under present day and under future conditions

  19. Power manager and method for managing power

    NARCIS (Netherlands)

    Burchard, A.T.; Kersten, G.; Molnos, A.M.; Milutinovic, A.; Goossens, K.G.W.; Steffens, E.F.M.

    2009-01-01

    A power manager (106) and method for managing the power supplied to an electronic device is provided. Furthermore, a system wherein the power supplied to an electronic device is managed is provided. The power manager (106) is operative to monitor a hardware monitor (104) during a monitoring time

  20. A location-based multiple point statistics method: modelling the reservoir with non-stationary characteristics

    Science.gov (United States)

    Yin, Yanshu; Feng, Wenjie

    2017-12-01

    In this paper, a location-based multiple point statistics method is developed to model a non-stationary reservoir. The proposed method characterizes the relationship between the sedimentary pattern and the deposit location using the relative central position distance function, which alleviates the requirement that the training image and the simulated grids have the same dimension. The weights in every direction of the distance function can be changed to characterize the reservoir heterogeneity in various directions. The local integral replacements of data events, structured random path, distance tolerance and multi-grid strategy are applied to reproduce the sedimentary patterns and obtain a more realistic result. This method is compared with the traditional Snesim method using a synthesized 3-D training image of Poyang Lake and a reservoir model of Shengli Oilfield in China. The results indicate that the new method can reproduce the non-stationary characteristics better than the traditional method and is more suitable for simulation of delta-front deposits. These results show that the new method is a powerful tool for modelling a reservoir with non-stationary characteristics.

  1. Quantification of Libby Reservoir Water Levels Needed to Maintain or Enhance Reservoir Fisheries, 1988-1996 Methods and Data Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Dalbey, Steven Ray

    1998-03-01

    The Libby Reservoir study is part of the Northwest Power Planning Council's resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. This report summarizes the data collected from Libby Reservoir during 1988 through 1996.

  2. Quantifying suspended sediment loads delivered to Cheney Reservoir, Kansas: Temporal patterns and management implications

    Science.gov (United States)

    Stone, Mandy L.; Juracek, Kyle E.; Graham, Jennifer L.; Foster, Guy

    2015-01-01

    average, within ±20% of estimates based on streamflow and turbidity combined. Results demonstrate that large suspended sediment loads are delivered to Cheney Reservoir in very short time periods, indicating that sediment management plans eventually must address large, infrequent inflow events to be effective.

  3. Climate Change Impacts on Sediment Quality of Subalpine Reservoirs: Implications on Management

    Directory of Open Access Journals (Sweden)

    Marziali Laura

    2017-09-01

    Full Text Available Reservoirs are characterized by accumulation of sediments where micropollutants may concentrate, with potential toxic effects on downstream river ecosystems. However, sediment management such as flushing is needed to maintain storage capacity. Climate change is expected to increase sediment loads, but potential effects on their quality are scarcely known. In this context, sediment contamination by trace elements (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn and organics (Polycyclic Aromatic Hydrocarbons PAHs, Polychlorinated Biphenyls PCBs and C > 12 hydrocarbons was analyzed in 20 reservoirs located in Italian Central Alps. A strong As and a moderate Cd, Hg and Pb enrichment was emphasized by Igeo, with potential ecotoxicological risk according to Probable Effect Concentration quotients. Sedimentation rate, granulometry, total organic carbon (TOC and altitude resulted as the main drivers governing pollutant concentrations in sediments. According to climate change models, expected increase of rainfall erosivity will enhance soil erosion and consequently the sediment flow to reservoirs, potentially increasing coarse grain fractions and thus potentially diluting pollutants. Conversely, increased weathering may enhance metal fluxes to reservoirs. Increased vegetation cover will potentially result in higher TOC concentrations, which may contrast contaminant bioavailability and thus toxicity. Our results may provide elements for a proper management of contaminated sediments in a climate change scenario aiming at preserving water quality and ecosystem functioning.

  4. Bioassessment of a Drinking Water Reservoir Using Plankton: High Throughput Sequencing vs. Traditional Morphological Method

    Directory of Open Access Journals (Sweden)

    Wanli Gao

    2018-01-01

    Full Text Available Drinking water safety is increasingly perceived as one of the top global environmental issues. Plankton has been commonly used as a bioindicator for water quality in lakes and reservoirs. Recently, DNA sequencing technology has been applied to bioassessment. In this study, we compared the effectiveness of the 16S and 18S rRNA high throughput sequencing method (HTS and the traditional optical microscopy method (TOM in the bioassessment of drinking water quality. Five stations reflecting different habitats and hydrological conditions in Danjiangkou Reservoir, one of the largest drinking water reservoirs in Asia, were sampled May 2016. Non-metric multi-dimensional scaling (NMDS analysis showed that plankton assemblages varied among the stations and the spatial patterns revealed by the two methods were consistent. The correlation between TOM and HTS in a symmetric Procrustes analysis was 0.61, revealing overall good concordance between the two methods. Procrustes analysis also showed that site-specific differences between the two methods varied among the stations. Station Heijizui (H, a site heavily influenced by two tributaries, had the largest difference while station Qushou (Q, a confluence site close to the outlet dam, had the smallest difference between the two methods. Our results show that DNA sequencing has the potential to provide consistent identification of taxa, and reliable bioassessment in a long-term biomonitoring and assessment program for drinking water reservoirs.

  5. Monitoring of magnetic EOR fluids in reservoir under production by using the electromagnetic method

    Science.gov (United States)

    KIM, S.; Min, D. J.; Moon, S.; Kim, W. K.; Shin, Y.

    2014-12-01

    To increase the amount of oil and gas extracted during production, some techniques like EOR (Enhanced Oil Recovery) are applied by injecting some materials such as water and CO2. Recently, there are some researches for injecting magnetic nanoparticles with fluids during EOR. The size of particle is nano-scale, which can prevent particles from adhering to the pores of reservoir. The main purpose of injecting magnetic nanoparticles is to monitor movement or distribution of EOR fluids. To monitor the injected magnetic EOR fluids in the reservoir, CSEM (controlled source electromagnetic method) can be the most optimized geophysical method among various geophysical monitoring methods. Depending on the reservoir circumstances, we can control the electric or magnetic sources to monitor reservoir during oil or gas production. In this study, we perform numerical simulation of CSEM for 3D horizontal-layered models assuming a reservoir under production. We suppose that there are two wells: one is for the controlled source; the other is for the receiver. By changing the distribution, movement and magnetization of EOR fluids, we compare the electric or magnetic fields recorded at the receiver. Maxwell's equations are the governing equation of CSEM and are approximated by using the edge-based finite-element method. Direct solver is applied to solve the linear equations. Because injected magnetic nanoparticle changes the conductivity of EOR fluid, there is high contrast of conductivity of reservoir. This high contrast of conductivity induces secondary electric or magnetic fields that are recorded at the receiver well. We compare these recorded secondary fields generated by various movement or distribution of magnetic EOR fluid. Acknowledgements This work was supported by the "Development of Technology for CO2 Marine Geological Storage" grant funded by the Ministry of Oceans and Fisheries of Korea, by the "Civil Military Technology Cooperation Center", and by the International

  6. NN-Based Implicit Stochastic Optimization of Multi-Reservoir Systems Management

    Directory of Open Access Journals (Sweden)

    Matteo Sangiorgio

    2018-03-01

    Full Text Available Multi-reservoir systems management is complex because of the uncertainty on future events and the variety of purposes, usually conflicting, of the involved actors. An efficient management of these systems can help improving resource allocation, preventing political crisis and reducing the conflicts between the stakeholders. Bellman stochastic dynamic programming (SDP is the most famous among the many proposed approaches to solve this optimal control problem. Unfortunately, SDP is affected by the curse of dimensionality: computational effort increases exponentially with the complexity of the considered system (i.e., number of reservoirs, and the problem rapidly becomes intractable. This paper proposes an implicit stochastic optimization approach for the solution of the reservoir management problem. The core idea is using extremely flexible functions, such as artificial neural networks (NN, for designing release rules which approximate the optimal policies obtained by an open-loop approach. These trained NNs can then be used to take decisions in real time. The approach thus requires a sufficiently long series of historical or synthetic inflows, and the definition of a compromise solution to be approximated. This work analyzes with particular emphasis the importance of the information which represents the input of the control laws, investigating the effects of different degrees of completeness. The methodology is applied to the Nile River basin considering the main management objectives (minimization of the irrigation water deficit and maximization of the hydropower production, but can be easily adopted also in other cases.

  7. Local Water Management of Small Reservoirs: Lessons from Two Case Studies in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Hilmy Sally

    2011-10-01

    Full Text Available Burkina Faso is actively pursuing the implementation of Integrated Water Resources Management (IWRM in its development plans. Several policy and institutional mechanisms have been put in place, including the adoption of a national IWRM action plan (PAGIRE and the establishment so far of 30 local water management committees (Comités Locaux de l’Eau, or CLE. The stated purpose of the CLE is to take responsibility for managing water at sub-basin level. The two case studies discussed in this paper illustrate gaps between the policy objective of promoting IWRM on the one hand, and the realities associated with its practical on-the-ground implementation on the other. A significant adjustment that occurred in practice is the fact that the two CLE studied have been set up as entities focused on reservoir management, whereas it is envisioned that a CLE would constitute a platform for sub-basin management. This reflects a concern to minimise conflict and optimally manage the country’s primary water resource and illustrates the type of pragmatic actions that have to be taken to make IWRM a reality. It is also observed that the local water management committees have not been able to satisfactorily address questions regarding access to, and allocation of, water, which are crucial for the satisfactory functioning of the reservoirs. Water resources in the reservoirs appear to be controlled by the dominant user. In order to correct this trend, measures to build mutual trust and confidence among water users 'condemned' to work together to manage their common resource are suggested, foremost of which is the need to collect and share reliable data. Awareness of power relationships among water user groups and building on functioning, already existing formal or informal arrangements for water sharing are key determinants for successful implementation of the water reform process underway.

  8. Oil Reservoir Production Optimization using Single Shooting and ESDIRK Methods

    DEFF Research Database (Denmark)

    Capolei, Andrea; Völcker, Carsten; Frydendall, Jan

    2012-01-01

    the injections and oil production such that flow is uniform in a given geological structure. Even in the case of conventional water flooding, feedback based optimal control technologies may enable higher oil recovery than with conventional operational strategies. The optimal control problems that must be solved......Conventional recovery techniques enable recovery of 10-50% of the oil in an oil field. Advances in smart well technology and enhanced oil recovery techniques enable significant larger recovery. To realize this potential, feedback model-based optimal control technologies are needed to manipulate...... are large-scale problems and require specialized numerical algorithms. In this paper, we combine a single shooting optimization algorithm based on sequential quadratic programming (SQP) with explicit singly diagonally implicit Runge-Kutta (ESDIRK) integration methods and the a continuous adjoint method...

  9. The element-based finite volume method applied to petroleum reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cordazzo, Jonas; Maliska, Clovis R.; Silva, Antonio F.C. da; Hurtado, Fernando S.V. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica

    2004-07-01

    In this work a numerical model for simulating petroleum reservoirs using the Element-based Finite Volume Method (EbFVM) is presented. The method employs unstructured grids using triangular and/or quadrilateral elements, such that complex reservoir geometries can be easily represented. Due to the control-volume approach, local mass conservation is enforced, permitting a direct physical interpretation of the resulting discrete equations. It is demonstrated that this method can deal with the permeability maps without averaging procedures, since this scheme assumes uniform properties inside elements, instead inside of control volumes, avoiding the need of weighting the permeability values at the control volumes interfaces. Moreover, it is easy to include the full permeability tensor in this method, which is an important issue in simulating heterogeneous and anisotropic reservoirs. Finally, a comparison among the results obtained using the scheme proposed in this work in the EbFVM framework with those obtained employing the scheme commonly used in petroleum reservoir simulation is presented. It is also shown that the scheme proposed is less susceptible to the grid orientation effect with the increasing of the mobility ratio. (author)

  10. Permeability Prediction for Nahr-Umr Reservoir / Subba field by Using FZI Method

    Directory of Open Access Journals (Sweden)

    Sameera M. Hamd- Allah

    2016-09-01

    Full Text Available The permeability determination in the reservoirs that are anisotropic and heterogeneous is a complicated problem due to the limited number of wells that contain core samples and well test data. This paper presents hydraulic flow units and flow zone indicator for predicting permeability of rock mass from core for Nahr-Umr reservoir/ Subba field. The Permeability measurement is better found in the laboratory work on the cored rock that taken from the formation. Nahr-Umr Formation is the main lower cretaceous sandstone reservoir in southern of Iraq. This formation is made up mainly of sandstone. Nahr-Umr formation was deposited on a gradually rising basin floor. The digenesis of Nahr-Umr sediments is very important due to its direct relation to the porosity and permeability. In this study permeability has been predicated by using the flow zone indicator methods. This method attempts to identify the flow zone indicator in un-cored wells using log records. Once the flow zone indicator is calculated from the core data, a relationship between this FZI value and the well logs can be obtained. Three relationships have been found for Nahr-Umr reservoir/Subba field by FZI method. By plotting the permeability of the core versus the permeability that is predicted by FZI method the parameter R2 was found (0.905 which is very good for predict the permeability.

  11. Pressurization Risk Assessment of CO2 Reservoirs Utilizing Design of Experiments and Response Surface Methods

    Science.gov (United States)

    Guyant, E.; Han, W. S.; Kim, K. Y.; Park, E.; Han, K.

    2015-12-01

    Monitoring of pressure buildup can provide explicit information on reservoir integrity and is an appealing tool, however pressure variation is dependent on a variety of factors causing high uncertainty in pressure predictions. This work evaluated pressurization of a reservoir system in the presence of leakage pathways as well as exploring the effects of compartmentalization of the reservoir utilizing design of experiments (Definitive Screening, Box Behnken, Central Composite, and Latin Hypercube designs) and response surface methods. Two models were developed, 1) an idealized injection scenario in order to evaluate the performance of multiple designs, and 2) a complex injection scenario implementing the best performing design to investigate pressurization of the reservoir system. A holistic evaluation of scenario 1, determined that the Central Composite design would be used for the complex injection scenario. The complex scenario evaluated 5 risk factors: reservoir, seal, leakage pathway and fault permeabilities, and horizontal position of the pathway. A total of 60 response surface models (RSM) were developed for the complex scenario with an average R2 of 0.95 and a NRMSE of 0.067. Sensitivity to the input factors was dynamic through space and time; at the earliest time (0.05 years) the reservoir permeability was dominant, and for later times (>0.5 years) the fault permeability became dominant for all locations. The RSM's were then used to conduct a Monte Carlo Analysis to further analyze pressurization risks, identifying the P10, P50, P90 values. This identified the in zone (lower) P90 values as 2.16, 1.77, and 1.53 MPa and above zone values of 1.35, 1.23, 1.09 MPa for monitoring locations 1, 2, and 3, respectively. In summary, the design of experiments and response surface methods allowed for an efficient sensitivity and uncertainty analysis to be conducted permitting a complete evaluation of the pressurization across the entire parameter space.

  12. Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    James Reeves

    2005-01-31

    In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

  13. Exploring How Changing Monsoonal Dynamics and Human Pressures Challenge Multi-Reservoir Management of Food-Energy-Water Tradeoffs

    Science.gov (United States)

    Quinn, J.; Reed, P. M.; Giuliani, M.; Castelletti, A.; Oyler, J.; Nicholas, R.

    2017-12-01

    Multi-reservoir systems require robust and adaptive control policies capable of managing evolving hydroclimatic variability and human demands across a wide range of time scales. This is especially true for systems with high intra-annual and inter-annual variability, such as monsoonal river systems that need to buffer against seasonal droughts while also managing extreme floods. Moreover, the timing, intensity, duration, and frequency of these hydrologic extremes may be affected by deeply uncertain changes in socioeconomic and climatic pressures. This study contributes an innovative method for exploring how possible changes in the timing and magnitude of monsoonal seasonal extremes impact the robustness of reservoir operating policies optimized to historical conditions assuming stationarity. We illustrate this analysis on the Red River basin in Vietnam, where reservoirs and dams serve as important sources of hydropower production, irrigable water supply, and flood protection for the capital city of Hanoi. Applying our scenario discovery approach, we find food-energy-water tradeoffs are exacerbated by potential hydrologic shifts, with wetter worlds threatening the ability of operating strategies to manage flood risk and drier worlds threatening their ability to provide sufficient water supply and hydropower production, especially if demands increase. Most notably, though, amplification of the within-year monsoonal cycle and increased inter-annual variability threaten all of the above. These findings highlight the importance of considering changes in both lower order moments of annual streamflow and intra-annual monsoonal behavior when evaluating the robustness of alternative water systems control strategies for managing deeply uncertain futures.

  14. Evolving simple-to-use method to determine water–oil relative permeability in petroleum reservoirs

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi

    2016-03-01

    Full Text Available In the current research, a new approach constructed based on artificial intelligence concept is introduced to determine water/oil relative permeability at various conditions. To attain an effective tool, various artificial intelligence approaches such as artificial neural network (ANN, hybrid of genetic algorithm and particle swarm optimization (HGAPSO are examined. Intrinsic potential of feed-forward artificial neural network (ANN optimized by different optimization algorithms are composed to estimate water/oil relative permeability. The optimization methods such as genetic algorithm, particle swarm optimization and hybrid approach of them are implemented to obtain optimal connection weights involved in the developed smart technique. The constructed intelligent models are evaluated by utilizing extensive experimental data reported in open literature. Results obtained from the proposed intelligent tools were compared with the corresponding experimental relative permeability data. The average absolute deviation between the model predictions and the relevant experimental data was found to be less than 0.1% for hybrid genetic algorithm and particle swarm optimization technique. It is expected that implication of HGAPSO-ANN in relative permeability of water/oil estimation leads to more reliable water/oil relative permeability predictions, resulting in design of more comprehensive simulation and further plans for reservoir production and management.

  15. Assessment of water management tools for the geothermal reservoir Waiwera (New Zealand)

    Science.gov (United States)

    Kühn, Michael; Altmannsberger, Charlotte

    2016-04-01

    Water management tools are essential to ensure the conservation of natural resources. The geothermal hot water reservoir below the village of Waiwera, on the Northern Island of New Zealand is used commercially since 1863. The continuous production of 50 °C hot geothermal water, to supply hotels and spas, has a negative impact on the reservoir. Until the year 1969 from all wells drilled the warm water flow was artesian. Due to overproduction the water needs to be pumped up nowadays. Further, within the years 1975 to 1976 the warm water seeps on the beach of Waiwera ran dry. In order to protect the reservoir and the historical and tourist site in the early 1980s a Water Management Plan was deployed. The "Auckland Regional Water Board" today "Auckland Regional Council" established guidelines to enable a sustainable management [1]. The management plan demands that the water level in the official and appropriate observation well of the council is 0.5 m above sea level throughout the year in average. Almost four decades of data (since 1978 until today) are now available [2]. The minimum water level was observed beginning of the 1980s with -1.25 m and the maximum recently with 1.6 m. The higher the production rates from the field, the lower the water level in the observation well. Highest abstraction rates reached almost 1,500 m3/day and lowest were just above 500 m3/day. Several models of varying complexity where used from purely data driven statistical to fully coupled process simulation models. In all cases the available data were used for calibration and the models were then applied for predictive purposes. We used the Nash-Sutcliffe efficiency index to quantify their predictive ability. The recommendation for the full implementation of the water management plan is the regular revision of an existing multivariate regression model which is based on the Theis well equation. Further, we suggest improving the underlying geological model of the process simulations to

  16. Recycling of Clay Sediments for Geopolymer Binder Production. A New Perspective for Reservoir Management in the Framework of Italian Legislation: The Occhito Reservoir Case Study.

    Science.gov (United States)

    Molino, Bruno; De Vincenzo, Annamaria; Ferone, Claudio; Messina, Francesco; Colangelo, Francesco; Cioffi, Raffaele

    2014-07-31

    Reservoir silting is an unavoidable issue. It is estimated that in Italy, the potential rate of silting-up in large reservoirs ranges from 0.1% to 1% in the presence of wooded river basins and intensive agricultural land use, respectively. In medium and small-sized reservoirs, these values vary between 0.3% and 2%. Considering both the types of reservoirs, the annual average loss of storage capacity would be of about 1.59%. In this paper, a management strategy aimed at sediment productive reuse is presented. Particularly, the main engineering outcomes of an extensive experimental program on geopolymer binder synthesis is reported. The case study deals with Occhito reservoir, located in Southern Italy. Clay sediments coming from this silted-up artificial lake were characterized, calcined and activated, by means of a wide set of alkaline activating solutions. The results showed the feasibility of this recovery process, optimizing a few chemical parameters. The possible reuse in building material production (binders, precast concrete, bricks, etc. ) represents a relevant sustainable alternative to landfill and other more consolidated practices.

  17. Recycling of Clay Sediments for Geopolymer Binder Production. A New Perspective for Reservoir Management in the Framework of Italian Legislation: The Occhito Reservoir Case Study

    Directory of Open Access Journals (Sweden)

    Bruno Molino

    2014-07-01

    Full Text Available Reservoir silting is an unavoidable issue. It is estimated that in Italy, the potential rate of silting-up in large reservoirs ranges from 0.1% to 1% in the presence of wooded river basins and intensive agricultural land use, respectively. In medium and small-sized reservoirs, these values vary between 0.3% and 2%. Considering both the types of reservoirs, the annual average loss of storage capacity would be of about 1.59%. In this paper, a management strategy aimed at sediment productive reuse is presented. Particularly, the main engineering outcomes of an extensive experimental program on geopolymer binder synthesis is reported. The case study deals with Occhito reservoir, located in Southern Italy. Clay sediments coming from this silted-up artificial lake were characterized, calcined and activated, by means of a wide set of alkaline activating solutions. The results showed the feasibility of this recovery process, optimizing a few chemical parameters. The possible reuse in building material production (binders, precast concrete, bricks, etc. represents a relevant sustainable alternative to landfill and other more consolidated practices.

  18. A new method for calculating gas saturation of low-resistivity shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Jinyan Zhang

    2017-09-01

    Full Text Available The Jiaoshiba shale gas field is located in the Fuling area of the Sichuan Basin, with the Upper Ordovician Wufeng–Lower Silurian Longmaxi Fm as the pay zone. At the bottom of the pay zone, a high-quality shale gas reservoir about 20 m thick is generally developed with high organic contents and gas abundance, but its resistivity is relatively low. Accordingly, the gas saturation calculated by formulas (e.g. Archie using electric logging data is often much lower than the experiment-derived value. In this paper, a new method was presented for calculating gas saturation more accurately based on non-electric logging data. Firstly, the causes for the low resistivity of shale gas reservoirs in this area were analyzed. Then, the limitation of traditional methods for calculating gas saturation based on electric logging data was diagnosed, and the feasibility of the neutron–density porosity overlay method was illustrated. According to the response characteristics of neutron, density and other porosity logging in shale gas reservoirs, a model for calculating gas saturation of shale gas was established by core experimental calibration based on the density logging value, the density porosity and the difference between density porosity and neutron porosity, by means of multiple methods (e.g. the dual-porosity overlay method by optimizing the best overlay coefficient. This new method avoids the effect of low resistivity, and thus can provide normal calculated gas saturation of high-quality shale gas reservoirs. It works well in practical application. This new method provides a technical support for the calculation of shale gas reserves in this area. Keywords: Shale gas, Gas saturation, Low resistivity, Non-electric logging, Volume density, Compensated neutron, Overlay method, Reserves calculation, Sichuan Basin, Jiaoshiba shale gas field

  19. SCREENING METHODS FOR SELECTION OF SURFACTANT FORMULATIONS FOR IOR FROM FRACTURED CARBONATE RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    William A. Goddard III; Yongchun Tang; Patrick Shuler; Mario Blanco; Yongfu Wu; Seung Soon Jang

    2005-07-01

    This topical report presents details of the laboratory work performed to complete Task 1 of this project; developing rapid screening methods to assess surfactant performance for IOR (Improved Oil Recovery) from fractured carbonate reservoirs. The desired outcome is to identify surfactant formulations that increase the rate and amount of aqueous phase imbibition into oil-rich, oil-wet carbonate reservoir rock. Changing the wettability from oil-wet to water-wet is one key to enhancing this water-phase imbibition process that in turn recovers additional oil from the matrix portion of a carbonate reservoir. The common laboratory test to evaluate candidate surfactant formulations is to measure directly the aqueous imbibition rate and oil recovery from small outcrop or reservoir cores, but this procedure typically requires several weeks. Two methods are presented here for the rapid screening of candidate surfactant formulations for their potential IOR performance in carbonate reservoirs. One promising surfactant screening protocol is based on the ability of a surfactant solution to remove aged crude oil that coats a clear calcite crystal (Iceland Spar). Good surfactant candidate solutions remove the most oil the quickest from the chips, plus change the apparent contact angle of the remaining oil droplets on the surface that thereby indicate increased water-wetting. The other fast surfactant screening method is based on the flotation behavior of powdered calcite in water. In this test protocol, first the calcite power is pre-treated to make the surface oil-wet. The next step is to add the pre-treated powder to a test tube and add a candidate aqueous surfactant formulation; the greater the percentage of the calcite that now sinks to the bottom rather than floats, the more effective the surfactant is in changing the solids to become now preferentially water-wet. Results from the screening test generally are consistent with surfactant performance reported in the literature.

  20. Modeling Alpine hydropower reservoirs management to study the water-energy nexus under change.

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.; Fumagalli, E.; Weber, E.

    2014-12-01

    Climate change and growing population are expected to severely affect freshwater availability by the end of 21th century. Many river basins, especially in the Mediterranean region, are likely to become more prone to periods of reduced water supply, risking considerable impacts on the society, the environment, and the economy, thus emphasizing the need to rethink the way water resources are distributed, managed, and used at the regional and river basin scale. This paradigm shift will be essential to cope with the undergoing global change, characterized by growing water demands and by increasingly uncertain hydrologic regimes. Most of the literature traditionally focused on predicting the impacts of climate change on water resources, while our understanding of the human footprint on the hydrological cycle is limited. For example, changes in the operation of the Alpine hydropower reservoirs induced by socio-economic drivers (e.g., development of renewable energy) were already observed over the last few years and produced relevant impacts on multiple water uses due to the altered distribution of water volumes in time and space. Modeling human decisions as well as the links between society and environmental systems becomes key to develop reliable projections on the co-evolution of the coupled human-water systems and deliver robust adaptation strategies This work contributes a preliminary model-based analysis of the behaviour of hydropower operators under changing energy market and climate conditions. The proposed approach is developed for the San Giacomo-Cancano reservoir system, Italy. The identification of the current operating policy is supported by input variable selection methods to select the most relevant hydrological and market based drivers to explain the observed release time series.. The identified model is then simulated under a set of future scenarios, accounting for both climate and socio-economic change (e.g. expansion of the electric vehicle sector, load

  1. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    Science.gov (United States)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  2. Simulation of the hydrodynamic behaviour of a Mediterranean reservoir under different climate change and management scenarios

    Directory of Open Access Journals (Sweden)

    Jordi Prats

    2017-11-01

    Full Text Available One of the most important current issues in the management of lakes and reservoirs is the prediction of global climate change effects to determine appropriate mitigation and adaptation actions. In this paper we analyse whether management actions can limit the effects of climate change on water temperatures in a reservoir. For this, we used the model EOLE to simulate the hydrodynamic and thermal behaviour of the reservoir of Bimont (Provence region, France in the medium term (2036-2065 and in the long term (2066-2095 using regionalised projections by the model CNRM-CERFACS-CNRM-CM5 under the emission scenarios RCP 4.5 and RCP 8.5. Water temperature projections were compared to simulations for the reference period 1993-2013, the longest period for which we had year-long data for both hydrology and meteorology. We calibrated the model using profile measurements for the period 2010-2011 and we carried an extensive validation and assessment of model performance. In fact, we validated the model using profile measurements for 2012-2014, obtaining a root mean square error of 1.08°C and mean bias of -0.11°C, and we assured the consistency of model simulations in the long term by comparing simulated surface temperature to satellite measurements for 1999-2013. We assessed the effect using synthetic input data instead of measured input data by comparing simulations made using both kinds of data for the reference period. Using synthetic data resulted in slightly lower (-0.3°C average and maximum epilimnion temperatures, a somewhat deeper thermocline, and slightly higher evaporation (+7%. To investigate the effect of different management strategies, we considered three management scenarios: i bottom outlet and present water level; ii bottom outlet and elevated water level; and iii surface outlet and elevated water level. According to the simulations, the reservoir of Bimont will have a low rate of warming of the epilimnion of 0.009-0.024 °C·yr-1, but a

  3. Dispersion measurement as a method of quantifying geologic characterization and defining reservoir heterogeneity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Menzie, D.E.

    1995-05-01

    The main objective of this research project is to investigate dispersion as a method of quantifying geological characterization and defining reservoir heterogeneity in order to enhance crude oil recovery. The dispersion of flow of a reservoir rock (dispersion coefficient and dispersivity) was identified as one of the physical properties of a reservoir rock by measuring the mixing of two miscible fluids, one displacing the other in a porous medium. A rock was 100% saturated with a resident fluid and displaced by a miscible fluid of equal viscosity and equal density. Some specific experiments were performed with unequal densities. Produced fluid was analyzed by refractometer, nuclear reaction, electrical conductivity and X-ray scan. Several physical and flow characteristics were measured on the sand rock sample in order to establish correlations with the measured dispersion property. Absolute permeability, effective porosity, relative permeability, capillary pressure, the heterogeneity factor and electrical conductivity were used to better understand the flow system. Linear, transverse, 2-D and 3-D dispersions were measured and used to characterize the rock heterogeneity of the flow system. A new system of measuring dispersion was developed using a gas displacing gas system in a porous medium. An attempt was also made to determine the dispersion property of an actual reservoir from present day well log data on a producing well. 275 refs., 102 figs., 17 tabs.

  4. Challenges of reservoir properties and production history matching in a CHOPS reservoir study

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Mahbub [Department of Geoscience, University of Calgary (Canada)

    2011-07-01

    In order to meet increasing world energy demand, wells have to be drilled within very thin reservoir beds. This paper, we present one of the solutions for optimizing the reservoir characterization. Reservoir characterization is the process between the discovery of a property and the reservoir management phase. Principal data for reservoir modeling are: 4D Seismic interpretation, wireline log interpretation, core analysis, and petrophysical analysis. Reservoir conditions, perforation and completion technology are the key issues to the production rate of cold production. Reservoir modeling intends to minimize the risk factor, maximize production, and help determine the location for infill drillings. Cold heavy oil production with sand (CHOPS) is a method for enhancing primary production from heavy oil reservoirs. Gravitational forces, natural fluid pressure gradients and foamy oil flow phenomena are the major driving forces of the CHOPS mechanism. Finally, Reservoir characterization allows better understanding of permeability and porosity prediction.

  5. A method for the assessment of long-term changes in carbon stock by construction of a hydropower reservoir.

    Science.gov (United States)

    Bernardo, Julio Werner Yoshioka; Mannich, Michael; Hilgert, Stephan; Fernandes, Cristovão Vicente Scapulatempo; Bleninger, Tobias

    2017-09-01

    Sustainability of hydropower reservoirs has been questioned since the detection of their greenhouse gas (GHG) emissions which are mainly composed of carbon dioxide and methane. A method to assess the impact on the carbon cycle caused by the transition from a natural river system into a reservoir is presented and discussed. The method evaluates the long term changes in carbon stock instead of the current approach of monitoring and integrating continuous short term fluxes. A case study was conducted in a subtropical reservoir in Brazil, showing that the carbon content within the reservoir exceeds that of the previous landuse. The average carbon sequestration over 43 years since damming was 895 mg C m[Formula: see text] and found to be mainly due to storage of carbon in sediments. These results demonstrate that reservoirs have two opposite effects on the balance of GHGs. By storing organic C in sediments, reservoirs are an important carbon sink. On the other hand, reservoirs increase the flux of methane into the atmosphere. If the sediments of reservoirs could be used for long term C storage, reservoirs might have a positive effect on the balance of GHGs.

  6. Mercury bioaccumulation in the food web of Three Gorges Reservoir (China): Tempo-spatial patterns and effect of reservoir management

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Zhou, Qiong, E-mail: hainan@mail.hzau.edu.cn [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Yuan, Gailing; He, Xugang [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Xie, Ping [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China)

    2015-09-15

    Tempo-spatial patterns of mercury bioaccumulation and tropho-dynamics, and the potential for a reservoir effect were evaluated in the Three Gorges Reservoir (TGR, China) from 2011 to 2012, using total mercury concentrations (THg) and stable isotopes (δ{sup 13}C and δ{sup 15}N) of food web components (seston, aquatic invertebrates and fish). Hg concentrations in aquatic invertebrates and fish indicated a significant temporal trend associated with regular seasonal water-level manipulation. This includes water level lowering to allow for storage of water during the wet season (summer); a decrease of water levels from September to June providing a setting for flood storage. Hg concentrations in organisms were the highest after flooding. Higher Hg concentrations in fish were observed at the location farthest from the dam. Hg concentrations in water and sediment were correlated. Compared with the reservoirs of United States and Canada, TGR had lower trophic magnification factors (0.046–0.066), that are explained primarily by organic carbon concentrations in sediment, and the effect of “growth dilution”. Based on comparison before and after the impoundment of TGR, THg concentration in biota did not display an obvious long-term reservoir effect due to (i) short time since inundation, (ii) regular water discharge associated with water-level regulation, and/or (iii) low organic matter content in the sediment. - Highlights: • Hg concentrations were measured in biota of the main stem of 3 Gorges Reservoir. • Fish Hg concentration post-flood period > pre-flood period > flood period. • Fish Hg concentrations were the highest farthest from the dam. • THg in fish 2 years after inundation were the same as before impoundment. • Low biomagnification was ascribed to low DOC content in the sediment.

  7. The pressure equation arising in reservoir simulation. Mathematical properties, numerical methods and upscaling

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Bjoern Fredrik

    1997-12-31

    The main purpose of this thesis has been to analyse self-adjoint second order elliptic partial differential equations arising in reservoir simulation. It studies several mathematical and numerical problems for the pressure equation arising in models of fluid flow in porous media. The theoretical results obtained have been illustrated by a series of numerical experiments. The influence of large variations in the mobility tensor upon the solution of the pressure equation is analysed. The performance of numerical methods applied to such problems have been studied. A new upscaling technique for one-phase flow in heterogeneous reservoirs is developed. The stability of the solution of the pressure equation with respect to small perturbations of the mobility tensor is studied. The results are used to develop a new numerical method for a model of fully nonlinear water waves. 158 refs, 39 figs., 12 tabs.

  8. An Analytical Method for Deriving Reservoir Operation Curves to Maximize Social Benefits from Multiple Uses of Water in the Willamette River Basin

    Science.gov (United States)

    Moore, K. M.; Jaeger, W. K.; Jones, J. A.

    2013-12-01

    A central characteristic of large river basins in the western US is the spatial and temporal disjunction between the supply of and demand for water. Water sources are typically concentrated in forested mountain regions distant from municipal and agricultural water users, while precipitation is super-abundant in winter and deficient in summer. To cope with these disparities, systems of reservoirs have been constructed throughout the West. These reservoir systems are managed to serve two main competing purposes: to control flooding during winter and spring, and to store spring runoff and deliver it to populated, agricultural valleys during the summer. The reservoirs also provide additional benefits, including recreation, hydropower and instream flows for stream ecology. Since the storage capacity of the reservoirs cannot be used for both flood control and storage at the same time, these uses are traded-off during spring, as the most important, or dominant use of the reservoir, shifts from buffering floods to storing water for summer use. This tradeoff is expressed in the operations rule curve, which specifies the maximum level to which a reservoir can be filled throughout the year, apart from real-time flood operations. These rule curves were often established at the time a reservoir was built. However, climate change and human impacts may be altering the timing and amplitude of flood events and water scarcity is expected to intensify with anticipated changes in climate, land cover and population. These changes imply that reservoir management using current rule curves may not match future societal values for the diverse uses of water from reservoirs. Despite a broad literature on mathematical optimization for reservoir operation, these methods are not often used because they 1) simplify the hydrologic system, raising doubts about the real-world applicability of the solutions, 2) exhibit perfect foresight and assume stationarity, whereas reservoir operators face

  9. A Prospective Method to Increase Oil Recovery in Waxy-Shallow Reservoir

    Science.gov (United States)

    Hidayat, F.; Abdurrahman, M.

    2018-02-01

    Waxy oil has been the main characteristics of The X field. Initial screening criteria studies indicated that cyclic steam stimulation (CSS) would be the optimum option because favorable reservoir condition. Based on this method we would like to know how much oil gain and the effect of steam for the stimulated and surrounding well. The injection of steam was done for 7 days followed by 14 days of soaking period. 39,000 liter of Marine fuel oil was used to generate steam for stimulation with an average produce steam quality about 80%. Average of 255 MMBTU of steam was injected each day with total steam injected was about 1.7 BBTU. The oil production was increased four times from 5 bopd into 21 bopd. Proper well candidate and high permeability are some reason for this method successfully increase oil production. Additional heat from steam reduced the damage near wellbore due to wax deposition. This is verifying by increasing productivity index from 3 bbl/psi to 4 bbl/psi. From results and observation data, this method can be a platform for typical shallow depth reservoir with high paraffinic content especially other reservoir in Sihapas formation.

  10. Climate change impacts on water supply: implications for reservoir management in Upper Sabor, northeast Portugal

    Science.gov (United States)

    Carvalho-Santos, Claudia; Monteiro, António T.; Azevedo, João; Nunes, João Pedro

    2016-04-01

    Climate change scenarios project warmer temperatures and less precipitation in Mediterranean watersheds. This can aggravate drought conditions, with negative impacts on water supply. Here, reservoirs may play an important role to mitigate these impacts. However, the implications of climate change are not always considered in the reservoir planning and management. This study aimed to address this issue for the Upper Sabor watershed, northeast Portugal. This is a medium watershed (403km2), part of the Sabor river, a tributary of Douro (one of the major rivers in the Iberian Peninsula). It is a mountainous watershed (up to 1500m), characterized by humid Mediterranean climate, with three dry months in summer. Almost 52% of the area is occupied by shrubland and 18% agriculture. Water supply for about 33 000 people has been based almost exclusively in one reservoir, but constant problems of water supply in dry summers, which coincide with a doubling of population due to summer holidays, led to the construction of a new reservoir in 2015. The Soil and Water Assessment Tool (SWAT) model was used for a climate change impact assessment, considering the current water supply regime (single reservoir) and the construction of the new reservoir. SWAT was calibrated and validated against daily-observed discharge and reservoir volume, with a good agreement between model predictions and observations. Results from four GCMs (General Circulation Models) for two scenarios (RCP 4.5 and RCP 8.5) were statistically downscaled and bias-corrected with ground observations; climate scenarios for 2021-2040 and 2041-2060 were compared with a control period in 1981-2000. In the future, a general increase of temperatures is expected in the Upper Sabor watershed, especially in the maximum temperature under RCP 8.5 scenario for 2041-2060 (Tmax: +2.88°C). The change in precipitation is more uncertain, with larger differences according to the selected climate model. Annual precipitation would

  11. Financial Risk Reduction and Management of Water Reservoirs Using Forecasts: A Case for Pernambuco, Brazil

    Science.gov (United States)

    Kumar, I.; Josset, L.; e Silva, E. C.; Possas, J. M. C.; Asfora, M. C.; Lall, U.

    2017-12-01

    The financial health and sustainability, ensuring adequate supply, and adapting to climate are fundamental challenges faced by water managers. These challenges are worsened in semi-arid regions with socio-economic pressures, seasonal supply of water, and projected increase in intensity and frequency of droughts. Over time, probabilistic rainfall forecasts are improving and for water managers, it could be key in addressing the above challenges. Using forecasts can also help make informed decisions about future infrastructure. The study proposes a model to minimize cost of water supply (including cost of deficit) given ensemble forecasts. The model can be applied to seasonal to annual ensemble forecasts, to determine the least cost solution. The objective of the model is to evaluate the resiliency and cost associated to supplying water. A case study is conducted in one of the largest reservoirs (Jucazinho) in Pernambuco state, Brazil, and four other reservoirs, which provide water to nineteen municipalities in the Jucazinho system. The state has been in drought since 2011, and the Jucazinho reservoir, has been empty since January 2017. The importance of climate adaptation along with risk management and financial sustainability are important to the state as it is extremely vulnerable to droughts, and has seasonal streamflow. The objectives of the case study are first, to check if streamflow forecasts help reduce future supply costs by comparing k-nearest neighbor ensemble forecasts with a fixed release policy. Second, to determine the value of future infrastructure, a new source of supply from Rio São Francisco, considered to mitigate drought conditions. The study concludes that using forecasts improve the supply and financial sustainability of water, by reducing cost of failure. It also concludes that additional infrastructure can help reduce the risks of failure significantly, but does not guarantee supply during prolonged droughts like the one experienced

  12. Efficient Data-Worth Analysis Using a Multilevel Monte Carlo Method Applied in Oil Reservoir Simulations

    Science.gov (United States)

    Lu, D.; Ricciuto, D. M.; Evans, K. J.

    2017-12-01

    Data-worth analysis plays an essential role in improving the understanding of the subsurface system, in developing and refining subsurface models, and in supporting rational water resources management. However, data-worth analysis is computationally expensive as it requires quantifying parameter uncertainty, prediction uncertainty, and both current and potential data uncertainties. Assessment of these uncertainties in large-scale stochastic subsurface simulations using standard Monte Carlo (MC) sampling or advanced surrogate modeling is extremely computationally intensive, sometimes even infeasible. In this work, we propose efficient Bayesian analysis of data-worth using a multilevel Monte Carlo (MLMC) method. Compared to the standard MC that requires a significantly large number of high-fidelity model executions to achieve a prescribed accuracy in estimating expectations, the MLMC can substantially reduce the computational cost with the use of multifidelity approximations. As the data-worth analysis involves a great deal of expectation estimations, the cost savings from MLMC in the assessment can be very outstanding. While the proposed MLMC-based data-worth analysis is broadly applicable, we use it to a highly heterogeneous oil reservoir simulation to select an optimal candidate data set that gives the largest uncertainty reduction in predicting mass flow rates at four production wells. The choices made by the MLMC estimation are validated by the actual measurements of the potential data, and consistent with the estimation obtained from the standard MC. But compared to the standard MC, the MLMC greatly reduces the computational costs in the uncertainty reduction estimation, with up to 600 days cost savings when one processor is used.

  13. Evaluating the Implications of Climate Phenomenon Indices in Supporting Reservoir Operation Using the Artificial Neural Network and Decision-Tree Methods: A Case Study on Trinity Lake in Northern California

    Science.gov (United States)

    Yang, T.; Akbari Asanjan, A.; Gao, X.; Sorooshian, S.

    2016-12-01

    Reservoirs are fundamental human-built infrastructures that collect, store, and deliver fresh surface water in a timely manner for all kinds of purposes, including residential and industrial water supply, flood control, hydropower, and irrigation, etc. Efficient reservoir operation requires that policy makers and operators understand how reservoir inflows, available storage, and discharges are changing under different climatic conditions. Over the last decade, the uses of Artificial Intelligence and Data Mining (AI & DM) techniques in assisting reservoir management and seasonal forecasts have been increasing. Therefore, in this study, two distinct AI & DM methods, Artificial Neural Network (ANN) and Random Forest (RF), are employed and compared with respect to their capabilities of predicting monthly reservoir inflow, managing storage, and scheduling reservoir releases. A case study on Trinity Lake in northern California is conducted using long-term (over 50 years) reservoir operation records and 17 known climate phenomenon indices, i.e. PDO and ENSO, etc., as predictors. Results show that (1) both ANN and RF are capable of providing reasonable monthly reservoir storage, inflow, and outflow prediction with satisfactory statistics, and (2) climate phenomenon indices are useful in assisting monthly or seasonal forecasts of reservoir inflow and outflow. It is also found that reservoir storage has a consistent high autocorrelation effect, while inflow and outflow are more likely to be influenced by climate conditions. Using a Gini diversity index, RF method identifies that the reservoir discharges are associated with Southern Oscillation Index (SOI) and reservoir inflows are influenced by multiple climate phenomenon indices during different seasons. Furthermore, results also show that, during the winter season, reservoir discharges are controlled by the storage level for flood-control purposes, while, during the summer season, the flood-control operation is not as

  14. QUANTITATIVE METHODS FOR RESERVOIR CHARACTERIZATION AND IMPROVED RECOVERY: APPLICATION TO HEAVY OIL SANDS

    Energy Technology Data Exchange (ETDEWEB)

    James W. Castle; Fred J. Molz; Ronald W. Falta; Cynthia L. Dinwiddie; Scott E. Brame; Robert A. Bridges

    2002-10-30

    Improved prediction of interwell reservoir heterogeneity has the potential to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involves application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation, particularly in heavy oil sands. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field. Observations of lateral variability and vertical sequences observed in Temblor Formation outcrops has led to a better understanding of reservoir geology in West Coalinga Field. Based on the characteristics of stratigraphic bounding surfaces in the outcrops, these surfaces were identified in the subsurface using cores and logs. The bounding surfaces were mapped and then used as reference horizons in the reservoir modeling. Facies groups and facies tracts were recognized from outcrops and cores of the Temblor Formation and were applied to defining the stratigraphic framework and facies architecture for building 3D geological models. The following facies tracts were recognized: incised valley, estuarine, tide- to wave-dominated shoreline, diatomite, and subtidal. A new minipermeameter probe, which has important advantages over previous methods of measuring outcrop permeability, was developed during this project. The device, which measures permeability at the distal end of a small drillhole, avoids surface weathering effects and provides a superior seal compared with previous methods for measuring outcrop permeability. The new probe was used successfully for obtaining a high-quality permeability data set from an outcrop in southern Utah

  15. Optimisation of production from an oil-reservoir using augmented Lagrangian methods

    Energy Technology Data Exchange (ETDEWEB)

    Doublet, Daniel Christopher

    2007-07-01

    This work studies the use of augmented Lagrangian methods for water flooding production optimisation from an oil reservoir. Commonly, water flooding is used as a means to enhance oil recovery, and due to heterogeneous rock properties, water will flow with different velocities throughout the reservoir. Due to this, water breakthrough can occur when great regions of the reservoir are still unflooded so that much of the oil may become 'trapped' in the reservoir. To avoid or reduce this problem, one can control the production so that the oil recovery rate is maximised, or alternatively the net present value (NPV) of the reservoir is maximised. We have considered water flooding, using smart wells. Smart wells with down-hole valves gives us the possibility to control the injection/production at each of the valve openings along the well, so that it is possible to control the flowregime. One can control the injection/production at all valve openings, and the setting of the valves may be changed during the production period, which gives us a great deal of control over the production and we want to control the injection/ production so that the profit obtained from the reservoir is maximised. The problem is regarded as an optimal control problem, and it is formulated as an augmented Lagrangian saddle point problem. We develop a method for optimal control based on solving the Karush-Kuhn-Tucker conditions for the augmented Lagrangian functional, a method, which to my knowledge has not been presented in the literature before. The advantage of this method is that we do not need to solve the forward problem for each new estimate of the control variables, which reduces the computational effort compared to other methods that requires the solution of the forward problem every time we find a new estimate of the control variables, such as the adjoint method. We test this method on several examples, where it is compared to the adjoint method. Our numerical experiments show

  16. High Order Adjoint Derivatives using ESDIRK Methods for Oil Reservoir Production Optimization

    DEFF Research Database (Denmark)

    Capolei, Andrea; Stenby, Erling Halfdan; Jørgensen, John Bagterp

    2012-01-01

    In production optimization, computation of the gradients is the computationally expensive step. We improve the computational efficiency of such algorithms by improving the gradient computation using high-order ESDIRK (Explicit Singly Diagonally Implicit Runge-Kutta) temporal integration methods...... and continuous adjoints . The high order integration scheme allows larger time steps and therefore faster solution times. We compare gradient computation by the continuous adjoint method to the discrete adjoint method and the finite-difference method. The methods are implemented for a two phase flow reservoir...... simulator. Computational experiments demonstrate that the accuracy of the sensitivities obtained by the adjoint methods are comparable to the accuracy obtained by the finite difference method. The continuous adjoint method is able to use a different time grid than the forward integration. Therefore, it can...

  17. Method of improving heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control

    Science.gov (United States)

    Zhao, Ling; Xia, Huifen

    2018-01-01

    The project of polymer flooding has achieved great success in Daqing oilfield, and the main oil reservoir recovery can be improved by more than 15%. But, for some strong oil reservoir heterogeneity carrying out polymer flooding, polymer solution will be inefficient and invalid loop problem in the high permeability layer, then cause the larger polymer volume, and a significant reduction in the polymer flooding efficiency. Aiming at this problem, it is studied the method that improves heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control. The research results show that the polymer physical and chemical reaction of positively-charged gel with the residual polymer in high permeability layer can generate three-dimensional network of polymer, plugging high permeable layer, and increase injection pressure gradient, then improve the effect of polymer flooding development. Under the condition of the same dosage, positively-charged gel profile control can improve the polymer flooding recovery factor by 2.3∼3.8 percentage points. Under the condition of the same polymer flooding recovery factor increase value, after positively-charged gel profile control, it can reduce the polymer volume by 50 %. Applying mechanism of positively-charged gel profile control technology is feasible, cost savings, simple construction, and no environmental pollution, therefore has good application prospect.

  18. SWOT data assimilation for operational reservoir management on the upper Niger River Basin

    Science.gov (United States)

    Munier, S.; Polebistki, A.; Brown, C.; Belaud, G.; Lettenmaier, D. P.

    2015-01-01

    The future Surface Water and Ocean Topography (SWOT) satellite mission will provide two-dimensional maps of water elevation for rivers with width greater than 100 m globally. We describe a modeling framework and an automatic control algorithm that prescribe optimal releases from the Selingue dam in the Upper Niger River Basin, with the objective of understanding how SWOT data might be used to the benefit of operational water management. The modeling framework was used in a twin experiment to simulate the "true" system state and an ensemble of corrupted model states. Virtual SWOT observations of reservoir and river levels were assimilated into the model with a repeat cycle of 21 days. The updated state was used to initialize a Model Predictive Control (MPC) algorithm that computed the optimal reservoir release that meets a minimum flow requirement 300 km downstream of the dam. The data assimilation results indicate that the model updates had a positive effect on estimates of both water level and discharge. The "persistence," which describes the duration of the assimilation effect, was clearly improved (greater than 21 days) by integrating a smoother into the assimilation procedure. We compared performances of the MPC with SWOT data assimilation to an open-loop MPC simulation. Results show that the data assimilation resulted in substantial improvements in the performances of the Selingue dam management with a greater ability to meet environmental requirements (the number of days the target is missed falls to zero) and a minimum volume of water released from the dam.

  19. Application of Nemerow Index Method and Integrated Water Quality Index Method in Water Quality Assessment of Zhangze Reservoir

    Science.gov (United States)

    Zhang, Qian; Feng, Minquan; Hao, Xiaoyan

    2018-03-01

    [Objective] Based on the water quality historical data from the Zhangze Reservoir from the last five years, the water quality was assessed by the integrated water quality identification index method and the Nemerow pollution index method. The results of different evaluation methods were analyzed and compared and the characteristics of each method were identified.[Methods] The suitability of the water quality assessment methods were compared and analyzed, based on these results.[Results] the water quality tended to decrease over time with 2016 being the year with the worst water quality. The sections with the worst water quality were the southern and northern sections.[Conclusion] The results produced by the traditional Nemerow index method fluctuated greatly in each section of water quality monitoring and therefore could not effectively reveal the trend of water quality at each section. The combination of qualitative and quantitative measures of the comprehensive pollution index identification method meant it could evaluate the degree of water pollution as well as determine that the river water was black and odorous. However, the evaluation results showed that the water pollution was relatively low.The results from the improved Nemerow index evaluation were better as the single indicators and evaluation results are in strong agreement; therefore the method is able to objectively reflect the water quality of each water quality monitoring section and is more suitable for the water quality evaluation of the reservoir.

  20. Two-phase flow in volatile oil reservoir using two-phase pseudo-pressure well test method

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, M.; Ahmadi, M. [Calgary Univ., AB (Canada)

    2009-09-15

    A study was conducted to better understand the behaviour of volatile oil reservoirs. Retrograde condensation occurs in gas-condensate reservoirs when the flowing bottomhole pressure (BHP) lowers below the dewpoint pressure, thus creating 4 regions in the reservoir with different liquid saturations. Similarly, when the BHP of volatile oil reservoirs falls below the bubblepoint pressure, two phases are created in the region around the wellbore, and a single phase (oil) appears in regions away from the well. In turn, higher gas saturation causes the oil relative permeability to decrease towards the near-wellbore region. Reservoir compositional simulations were used in this study to predict the fluid behaviour below the bubblepoint. The flowing bottomhole pressure was then exported to a well test package to diagnose the occurrence of different mobility regions. The study also investigated the use of a two-phase pseudo-pressure method on volatile and highly volatile oil reservoirs. It was concluded that this method can successfully predict the true permeability and mechanical skin. It can also distinguish between mechanical skin and condensate bank skin. As such, the two-phase pseudo-pressure method is particularly useful for developing after-drilling well treatment and enhanced oil recovery process designs. However, accurate relative permeability and PVT data must be available for reliable interpretation of the well test in volatile oil reservoirs. 18 refs., 3 tabs., 9 figs.

  1. Fully implicit two-phase reservoir simulation with the additive schwarz preconditioned inexact newton method

    KAUST Repository

    Liu, Lulu

    2013-01-01

    The fully implicit approach is attractive in reservoir simulation for reasons of numerical stability and the avoidance of splitting errors when solving multiphase flow problems, but a large nonlinear system must be solved at each time step, so efficient and robust numerical methods are required to treat the nonlinearity. The Additive Schwarz Preconditioned Inexact Newton (ASPIN) framework, as an option for the outermost solver, successfully handles strong nonlinearities in computational fluid dynamics, but is barely explored for the highly nonlinear models of complex multiphase flow with capillarity, heterogeneity, and complex geometry. In this paper, the fully implicit ASPIN method is demonstrated for a finite volume discretization based on incompressible two-phase reservoir simulators in the presence of capillary forces and gravity. Numerical experiments show that the number of global nonlinear iterations is not only scalable with respect to the number of processors, but also significantly reduced compared with the standard inexact Newton method with a backtracking technique. Moreover, the ASPIN method, in contrast with the IMPES method, saves overall execution time because of the savings in timestep size.

  2. Simulation of extreme reservoir level distribution with the SCHADEX method (EXTRAFLO project)

    Science.gov (United States)

    Paquet, Emmanuel; Penot, David; Garavaglia, Federico

    2013-04-01

    The standard practice for the design of dam spillways structures and gates is to consider the maximum reservoir level reached for a given hydrologic scenario. This scenario has several components: peak discharge, flood volumes on different durations, discharge gradients etc. Within a probabilistic analysis framework, several scenarios can be associated with different return times, although a reference return level (e.g. 1000 years) is often prescribed by the local regulation rules or usual practice. Using continuous simulation method for extreme flood estimation is a convenient solution to provide a great variety of hydrological scenarios to feed a hydraulic model of dam operation: flood hydrographs are explicitly simulated by a rainfall-runoff model fed by a stochastic rainfall generator. The maximum reservoir level reached will be conditioned by the scale and the dynamics of the generated hydrograph, by the filling of the reservoir prior to the flood, and by the dam gates and spillway operation during the event. The simulation of a great number of floods will allow building a probabilistic distribution of maximum reservoir levels. A design value can be chosen at a definite return level. An alternative approach is proposed here, based on the SCHADEX method for extreme flood estimation, proposed by Paquet et al. (2006, 2013). SCHADEX is a so-called "semi-continuous" stochastic simulation method in that flood events are simulated on an event basis and are superimposed on a continuous simulation of the catchment saturation hazard using rainfall-runoff modelling. The SCHADEX process works at the study time-step (e.g. daily), and the peak flow distribution is deduced from the simulated daily flow distribution by a peak-to-volume ratio. A reference hydrograph relevant for extreme floods is proposed. In the standard version of the method, both the peak-to-volume and the reference hydrograph are constant. An enhancement of this method is presented, with variable peak

  3. Rainfall-Runoff and Water-Balance Models for Management of the Fena Valley Reservoir, Guam

    Science.gov (United States)

    Yeung, Chiu W.

    2005-01-01

    The U.S. Geological Survey's Precipitation-Runoff Modeling System (PRMS) and a generalized water-balance model were calibrated and verified for use in estimating future availability of water in the Fena Valley Reservoir in response to various combinations of water withdrawal rates and rainfall conditions. Application of PRMS provides a physically based method for estimating runoff from the Fena Valley Watershed during the annual dry season, which extends from January through May. Runoff estimates from the PRMS are used as input to the water-balance model to estimate change in water levels and storage in the reservoir. A previously published model was calibrated for the Maulap and Imong River watersheds using rainfall data collected outside of the watershed. That model was applied to the Almagosa River watershed by transferring calibrated parameters and coefficients because information on daily diversions at the Almagosa Springs upstream of the gaging station was not available at the time. Runoff from the ungaged land area was not modeled. For this study, the availability of Almagosa Springs diversion data allowed the calibration of PRMS for the Almagosa River watershed. Rainfall data collected at the Almagosa rain gage since 1992 also provided better estimates of rainfall distribution in the watershed. In addition, the discontinuation of pan-evaporation data collection in 1998 required a change in the evapotranspiration estimation method used in the PRMS model. These reasons prompted the update of the PRMS for the Fena Valley Watershed. Simulated runoff volume from the PRMS compared reasonably with measured values for gaging stations on Maulap, Almagosa, and Imong Rivers, tributaries to the Fena Valley Reservoir. On the basis of monthly runoff simulation for the dry seasons included in the entire simulation period (1992-2001), the total volume of runoff can be predicted within -3.66 percent at Maulap River, within 5.37 percent at Almagosa River, and within 10

  4. Effects of rainfall patterns on water quality in a stratified reservoir subject to eutrophication: Implications for management.

    Science.gov (United States)

    Li, Xuan; Huang, Tinglin; Ma, Weixing; Sun, Xin; Zhang, Haihan

    2015-07-15

    The seasonal variation of hydrological conditions caused by shifting rainfall patterns observed in recent years has significant effects on water quality. High-volume inflows following heavy rainfall events that significantly disturb stratification lead to increased dissolved oxygen (DO) at the bottom of the reservoir, inhibiting the release of nutrients from sediments and causing a rapid reduction of algal biomass in the reservoir. However, the duration and extent of these effects depend not only on the frequency and intensity of heavy rainfall events but also on the period of thermal stratification in the reservoir. The effects of heavy rainfall events on water quality during three typical stratification periods of the reservoir were systematically investigated using extensive field data. The continuous heavy rainfall that occurred in September 2011 (stratification began to diminish) completely mixed the reservoir and produced a high concentration of DO along with a low phytoplankton concentration throughout the reservoir until stratification occurred the following year. Conversely, several days were required for anoxic conditions (in the hypolimnion) and cyanobacterial blooms to reappear after the storm runoff that occurred during the stable period of stratification (August 2012). In addition, the heavy rainfall that occurred in May 2013 accelerated the formation of an anoxic zone at the bottom of the reservoir and promoted cyanobacterial blooms due to the high nutrient input and the increased water temperature after the storm runoff ended. Water-lifting aerators (WLAs) were employed in the Shibianyu Reservoir to inhibit algal growth and to control the release of nutrients. Based on our field observations and theoretical analyses, optimized management strategies are recommended to improve water quality in the reservoir under different rainfall patterns at a reduced cost. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Quarterly progress report, June 13, 1996--September 12, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-12

    At this time, eighteen (18) 10-acre infill wells have been drilled as part of the Field Demonstration phase of the project. Of the fourteen producing wells drilled to date, twelve are currently on production, and ten are pumped-off and producing at stable rates. Current Unit production is approximately 3,600-3,700 STBO/D, and approximately 850 STBO/D incremental production has been added to date. The remaining producing well and four injection wells are currently being completed. A change in the Statement of Work has been approved so that we can drill additional 10-acre infill wells during the next quarter as budget constraints allow. Production flowlines are laid for each new producing well as they are put on production. Injection lines are being laid for the injection wells as they are completed. All data required for the validation of the Budget Period I Reservoir Characterization, Reservoir Management, and Reservoir Simulation Studies are being acquired and analyzed during the Field Demonstration Period.

  6. Reservoir fisheries of Asia

    International Nuclear Information System (INIS)

    Silva, S.S. De.

    1990-01-01

    At a workshop on reservoir fisheries research, papers were presented on the limnology of reservoirs, the changes that follow impoundment, fisheries management and modelling, and fish culture techniques. Separate abstracts have been prepared for three papers from this workshop

  7. Characterization of reservoir-type microcapsules made by the solvent exchange method.

    Science.gov (United States)

    Yeo, Yoon; Park, Kinam

    2004-09-17

    The purpose of this research was to characterize and optimize the properties of microcapsules produced by the solvent exchange method, a new microencapsulation technique. Reservoir-type microcapsules containing lysozyme as a model protein were produced using a coaxial ultrasonic atomizer under various formulation and instrument settings, and characterized with respect to in vitro release kinetics and stability of the encapsulated protein. The solvent exchange method could encapsulate protein drugs with high efficiency under an optimized condition and was mild enough to preserve the integrity of the encapsulated lysozyme during the process. In vitro release studies showed that the microcapsules could release proteins in a controllable manner. The solvent exchange method is a mild and simple microencapsulation method that could encapsulate lysozyme, maintaining its functional integrity.

  8. Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios

    DEFF Research Database (Denmark)

    Molina Navarro, Eugenio; Trolle, Dennis; Martínez-Pérez, Silvia

    2014-01-01

    Water scarcity and water pollution constitute a big challenge for water managers in the Mediterranean region today and will exacerbate in a projected future warmer world, making a holistic approach for water resources management at the catchment scale essential. We expanded the Soil and Water...... Assessment Tool (SWAT) model developed for a small Mediterranean catchment to quantify the potential effects of various climate and land use change scenarios on catchment hydrology as well as the trophic state of a new kind of waterbody, a limno-reservoir (Pareja Limno-reservoir), created for environmental...

  9. A method of fundamental solutions in poroelasticity to model the stress field in geothermal reservoirs

    CERN Document Server

    Augustin, Matthias Albert

    2015-01-01

    This monograph focuses on the numerical methods needed in the context of developing a reliable simulation tool to promote the use of renewable energy. One very promising source of energy is the heat stored in the Earth’s crust, which is harnessed by so-called geothermal facilities. Scientists from fields like geology, geo-engineering, geophysics and especially geomathematics are called upon to help make geothermics a reliable and safe energy production method. One of the challenges they face involves modeling the mechanical stresses at work in a reservoir. The aim of this thesis is to develop a numerical solution scheme by means of which the fluid pressure and rock stresses in a geothermal reservoir can be determined prior to well drilling and during production. For this purpose, the method should (i) include poroelastic effects, (ii) provide a means of including thermoelastic effects, (iii) be inexpensive in terms of memory and computational power, and (iv) be flexible with regard to the locations of data ...

  10. Initialising reservoir models for history matching using pre-production 3D seismic data: constraining methods and uncertainties

    Science.gov (United States)

    Niri, Mohammad Emami; Lumley, David E.

    2017-10-01

    Integration of 3D and time-lapse 4D seismic data into reservoir modelling and history matching processes poses a significant challenge due to the frequent mismatch between the initial reservoir model, the true reservoir geology, and the pre-production (baseline) seismic data. A fundamental step of a reservoir characterisation and performance study is the preconditioning of the initial reservoir model to equally honour both the geological knowledge and seismic data. In this paper we analyse the issues that have a significant impact on the (mis)match of the initial reservoir model with well logs and inverted 3D seismic data. These issues include the constraining methods for reservoir lithofacies modelling, the sensitivity of the results to the presence of realistic resolution and noise in the seismic data, the geostatistical modelling parameters, and the uncertainties associated with quantitative incorporation of inverted seismic data in reservoir lithofacies modelling. We demonstrate that in a geostatistical lithofacies simulation process, seismic constraining methods based on seismic litho-probability curves and seismic litho-probability cubes yield the best match to the reference model, even when realistic resolution and noise is included in the dataset. In addition, our analyses show that quantitative incorporation of inverted 3D seismic data in static reservoir modelling carries a range of uncertainties and should be cautiously applied in order to minimise the risk of misinterpretation. These uncertainties are due to the limited vertical resolution of the seismic data compared to the scale of the geological heterogeneities, the fundamental instability of the inverse problem, and the non-unique elastic properties of different lithofacies types.

  11. Numerical simulation of groundwater movement and managed aquifer recharge from Sand Hollow Reservoir, Hurricane Bench area, Washington County, Utah

    Science.gov (United States)

    Marston, Thomas M.; Heilweil, Victor M.

    2012-01-01

    The Hurricane Bench area of Washington County, Utah, is a 70 square-mile area extending south from the Virgin River and encompassing Sand Hollow basin. Sand Hollow Reservoir, located on Hurricane Bench, was completed in March 2002 and is operated primarily as a managed aquifer recharge project by the Washington County Water Conservancy District. The reservoir is situated on a thick sequence of the Navajo Sandstone and Kayenta Formation. Total recharge to the underlying Navajo aquifer from the reservoir was about 86,000 acre-feet from 2002 to 2009. Natural recharge as infiltration of precipitation was approximately 2,100 acre-feet per year for the same period. Discharge occurs as seepage to the Virgin River, municipal and irrigation well withdrawals, and seepage to drains at the base of reservoir dams. Within the Hurricane Bench area, unconfined groundwater-flow conditions generally exist throughout the Navajo Sandstone. Navajo Sandstone hydraulic-conductivity values from regional aquifer testing range from 0.8 to 32 feet per day. The large variability in hydraulic conductivity is attributed to bedrock fractures that trend north-northeast across the study area.A numerical groundwater-flow model was developed to simulate groundwater movement in the Hurricane Bench area and to simulate the movement of managed aquifer recharge from Sand Hollow Reservoir through the groundwater system. The model was calibrated to combined steady- and transient-state conditions. The steady-state portion of the simulation was developed and calibrated by using hydrologic data that represented average conditions for 1975. The transient-state portion of the simulation was developed and calibrated by using hydrologic data collected from 1976 to 2009. Areally, the model grid was 98 rows by 76 columns with a variable cell size ranging from about 1.5 to 25 acres. Smaller cells were used to represent the reservoir to accurately simulate the reservoir bathymetry and nearby monitoring wells; larger

  12. Impact of sediments resuspension on metal solubilization and water quality during recurrent reservoir sluicing management

    Energy Technology Data Exchange (ETDEWEB)

    Frémion, Franck; Courtin-Nomade, Alexandra [Groupement de Recherche Eau Sol Environnement, Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex (France); Bordas, François, E-mail: francois.bordas@unilim.fr [Groupement de Recherche Eau Sol Environnement, Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex (France); Lenain, Jean-François [Groupement de Recherche Eau Sol Environnement, Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex (France); Jugé, Philippe [CETU – ELMIS Ingénieries, Université François Rabelais, , 60 Rue du Plat d' Étain, 37000 Tours (France); Kestens, Tim [EDF – DPIH, Unité de Production Centre, 19 bis avenue de la Révolution, BP 406, 87012 Limoges Cedex (France); Mourier, Brice [Groupement de Recherche Eau Sol Environnement, Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex (France)

    2016-08-15

    In dam contexts, sluicing operations can be performed to reestablish sediments continuity, as proposed by the EU Water Framework Directive, as well as to preserve the reservoirs' water storage capacity. Such management permits the rapid release of high quantities of reservoir sediments through the opening of dam bottom valves. This work aims to study the impact of such operation on the evolution of environmental physicochemical conditions notably changes in dissolved metallic elements concentrations (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) through field and laboratory investigations. Results were interpreted in terms of concentrations and fluxes, and compared with data collected on an annual basis regarding both suspended matter and metallic elements. The release of high quantities of sediments (4,500 tons dry weight in 24 h), with concentrations representing up to 300 times the inter-annual mean suspended sediments discharge, significantly modified water parameters, notably solid/liquid (S/L) ratio, pH and redox conditions. Despite the fact that they are mainly trapped in stable phases, a clear increase of the solubilized metals content was measured, representing up to 60 times the maximum values of current exploitation. This solubilization is related to desorption phenomena from sediments through changes in chemical equilibriums as highlighted by laboratory characterizations and experiments. These chemical modifications are mainly attributed to S/L ratio variations. Indeed, the low S/L ratios (≤ 1.3 g·L{sup −1}) measured in situ are typically the ones for which metals solubilization is the highest, as shown by laboratory experiments. Additional thermodynamic modeling highlighted that the decrease in pH measured during the operation favors the release of the free forms of metallic elements (Al and Cu), and decreases the OM complexation influence. These changes, either in term of physical conditions or speciation, increasing metals long term

  13. Age structure and mortality of walleyes in Kansas reservoirs: Use of mortality caps to establish realistic management objectives

    Science.gov (United States)

    Quist, M.C.; Stephen, J.L.; Guy, C.S.; Schultz, R.D.

    2004-01-01

    Age structure, total annual mortality, and mortality caps (maximum mortality thresholds established by managers) were investigated for walleye Sander vitreus (formerly Stizostedion vitreum) populations sampled from eight Kansas reservoirs during 1991-1999. We assessed age structure by examining the relative frequency of different ages in the population; total annual mortality of age-2 and older walleyes was estimated by use of a weighted catch curve. To evaluate the utility of mortality caps, we modeled threshold values of mortality by varying growth rates and management objectives. Estimated mortality thresholds were then compared with observed growth and mortality rates. The maximum age of walleyes varied from 5 to 11 years across reservoirs. Age structure was dominated (???72%) by walleyes age 3 and younger in all reservoirs, corresponding to ages that were not yet vulnerable to harvest. Total annual mortality rates varied from 40.7% to 59.5% across reservoirs and averaged 51.1% overall (SE = 2.3). Analysis of mortality caps indicated that a management objective of 500 mm for the mean length of walleyes harvested by anglers was realistic for all reservoirs with a 457-mm minimum length limit but not for those with a 381-mm minimum length limit. For a 500-mm mean length objective to be realized for reservoirs with a 381-mm length limit, managers must either reduce mortality rates (e.g., through restrictive harvest regulations) or increase growth of walleyes. When the assumed objective was to maintain the mean length of harvested walleyes at current levels, the observed annual mortality rates were below the mortality cap for all reservoirs except one. Mortality caps also provided insight on management objectives expressed in terms of proportional stock density (PSD). Results indicated that a PSD objective of 20-40 was realistic for most reservoirs. This study provides important walleye mortality information that can be used for monitoring or for inclusion into

  14. Estimation of evaporation from open water - A review of selected studies, summary of U.S. Army Corps of Engineers data collection and methods, and evaluation of two methods for estimation of evaporation from five reservoirs in Texas

    Science.gov (United States)

    Harwell, Glenn R.

    2012-01-01

    Organizations responsible for the management of water resources, such as the U.S. Army Corps of Engineers (USACE), are tasked with estimation of evaporation for water-budgeting and planning purposes. The USACE has historically used Class A pan evaporation data (pan data) to estimate evaporation from reservoirs but many USACE Districts have been experimenting with other techniques for an alternative to collecting pan data. The energy-budget method generally is considered the preferred method for accurate estimation of open-water evaporation from lakes and reservoirs. Complex equations to estimate evaporation, such as the Penman, DeBruin-Keijman, and Priestley-Taylor, perform well when compared with energy-budget method estimates when all of the important energy terms are included in the equations and ideal data are collected. However, sometimes nonideal data are collected and energy terms, such as the change in the amount of stored energy and advected energy, are not included in the equations. When this is done, the corresponding errors in evaporation estimates are not quantifiable. Much simpler methods, such as the Hamon method and a method developed by the U.S. Weather Bureau (USWB) (renamed the National Weather Service in 1970), have been shown to provide reasonable estimates of evaporation when compared to energy-budget method estimates. Data requirements for the Hamon and USWB methods are minimal and sometimes perform well with remotely collected data. The Hamon method requires average daily air temperature, and the USWB method requires daily averages of air temperature, relative humidity, wind speed, and solar radiation. Estimates of annual lake evaporation from pan data are frequently within 20 percent of energy-budget method estimates. Results of evaporation estimates from the Hamon method and the USWB method were compared against historical pan data at five selected reservoirs in Texas (Benbrook Lake, Canyon Lake, Granger Lake, Hords Creek Lake, and Sam

  15. Make use of dynamic data - a constraint based EnKF for SAGD reservoir characterization and production management

    Energy Technology Data Exchange (ETDEWEB)

    Gul, Ali; Nejadi, Siavash; Shah, Sirish L; Trivedi, Japan J [University of Alberta (Canada)

    2011-07-01

    Steam assisted gravity drainage (SAGD) is a thermal recovery process widely used in the Athabasca oil sands, the largest bitumen reservoir in the world. In order to optimize the process, an accurate characterization of the reservoir heterogeneity and identification of the potential steam barriers is necessary. The aim of this paper was to assess the potential of constraint based ensemble Kalman filter (EnKF) approach with localization to address these issues. Data records from observation, production and injection wells were used and the method was tested on a twin well SAGD process and a single well SAGD model with hybrid grids. Results showed a better characterization of the reservoir's heterogeneity and a reduction of uncertainty in the prediction of steam chamber growth. The technique developed herein provides accurate information about the steam chamber and the reservoir heterogeneity and can be used for planning and decision making of other field development strategies.

  16. The Pore-scale modeling of multiphase flows in reservoir rocks using the lattice Boltzmann method

    Science.gov (United States)

    Mu, Y.; Baldwin, C. H.; Toelke, J.; Grader, A.

    2011-12-01

    Digital rock physics (DRP) is a new technology to compute the physical and fluid flow properties of reservoir rocks. In this approach, pore scale images of the porous rock are obtained and processed to create highly accurate 3D digital rock sample, and then the rock properties are evaluated by advanced numerical methods at the pore scale. Ingrain's DRP technology is a breakthrough for oil and gas companies that need large volumes of accurate results faster than the current special core analysis (SCAL) laboratories can normally deliver. In this work, we compute the multiphase fluid flow properties of 3D digital rocks using D3Q19 immiscible LBM with two relaxation times (TRT). For efficient implementation on GPU, we improved and reformulated color-gradient model proposed by Gunstensen and Rothmann. Furthermore, we only use one-lattice with the sparse data structure: only allocate memory for pore nodes on GPU. We achieved more than 100 million fluid lattice updates per second (MFLUPS) for two-phase LBM on single Fermi-GPU and high parallel efficiency on Multi-GPUs. We present and discuss our simulation results of important two-phase fluid flow properties, such as capillary pressure and relative permeabilities. We also investigate the effects of resolution and wettability on multiphase flows. Comparison of direct measurement results with the LBM-based simulations shows practical ability of DRP to predict two-phase flow properties of reservoir rock.

  17. Assessment of managed aquifer recharge at Sand Hollow Reservoir, Washington County, Utah, updated to conditions through 2007

    Science.gov (United States)

    Heilweil, Victor M.; Ortiz, Gema; Susong, David D.

    2009-01-01

    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily as an aquifer storage and recovery project by the Washington County Water Conservancy District (WCWCD). Since its inception in 2002 through 2007, surface-water diversions of about 126,000 acre-feet to Sand Hollow Reservoir have resulted in a generally rising reservoir stage and surface area. Large volumes of runoff during spring 2005-06 allowed the WCWCD to fill the reservoir to a total storage capacity of more than 50,000 acre-feet, with a corresponding surface area of about 1,300 acres and reservoir stage of about 3,060 feet during 2006. During 2007, reservoir stage generally decreased to about 3,040 feet with a surface-water storage volume of about 30,000 acre-feet. Water temperature in the reservoir shows large seasonal variation and has ranged from about 3 to 30 deg C from 2003 through 2007. Except for anomalously high recharge rates during the first year when the vadose zone beneath the reservoir was becoming saturated, estimated ground-water recharge rates have ranged from 0.01 to 0.09 feet per day. Estimated recharge volumes have ranged from about 200 to 3,500 acre-feet per month from March 2002 through December 2007. Total ground-water recharge during the same period is estimated to have been about 69,000 acre-feet. Estimated evaporation rates have varied from 0.04 to 0.97 feet per month, resulting in evaporation losses of 20 to 1,200 acre-feet per month. Total evaporation from March 2002 through December 2007 is estimated to have been about 25,000 acre-feet. Results of water-quality sampling at monitoring wells indicate that by 2007, managed aquifer recharge had arrived at sites 37 and 36, located 60 and 160 feet from the reservoir, respectively. However, different peak arrival dates for specific conductance, chloride, chloride/bromide ratios, dissolved oxygen, and total dissolved-gas pressures at each monitoring well indicate the complicated nature of

  18. ASPECTS OF INTEGRATION MANAGEMENT METHODS

    Directory of Open Access Journals (Sweden)

    Artemy Varshapetian

    2015-10-01

    Full Text Available For manufacturing companies to succeed in today's unstable economic environment, it is necessary to restructure the main components of its activities: designing innovative product, production using modern reconfigurable manufacturing systems, a business model that takes into account the global strategy and management methods using modern management models and tools. The first three components are discussed in numerous publications, for example, (Koren, 2010 and is therefore not considered in the article. A large number of publications devoted to the methods and tools of production management, for example (Halevi, 2007. On the basis of what was said in the article discusses the possibility of the integration of only three methods have received in recent years, the most widely used, namely: Six Sigma method - SS (George et al., 2005 and supplements its-Design for six sigm? - DFSS (Taguchi, 2003; Lean production transformed with the development to the "Lean management" and further to the "Lean thinking" - Lean (Hirano et al., 2006; Theory of Constraints, developed E.Goldratt - TOC (Dettmer, 2001. The article investigates some aspects of this integration: applications in diverse fields, positive features, changes in management structure, etc.

  19. G-REALM: A lake/reservoir monitoring tool for drought monitoring and water resources management.

    Science.gov (United States)

    Birkett, C. M.; Ricko, M.; Beckley, B. D.; Yang, X.; Tetrault, R. L.

    2017-12-01

    G-REALM is a NASA/USDA funded operational program offering water-level products for lakes and reservoirs and these are currently derived from the NASA/CNES Topex/Jason series of satellite radar altimeters. The main stakeholder is the USDA/Foreign Agricultural Service (FAS) though many other end-users utilize the products for a variety of interdisciplinary science and operational programs. The FAS utilize the products within their CropExplorer Decision Support System (DSS) to help assess irrigation potential, and to monitor both short-term (agricultural) and longer-term (hydrological) drought conditions. There is increasing demand for a more global monitoring service that in particular, captures the variations in the smallest (1 to 100km2) reservoirs and water holdings in arid and semi-arid regions. Here, water resources are critical to both agriculture and regional security. A recent G-REALM 10-day resolution product upgrade and expansion has allowed for more accurate lake level products to be released and for a greater number of water bodies to be monitored. The next program phase focuses on the exploration of the enhanced radar altimeter data sets from the Cryosat-2 and Sentinel-3 missions with their improved spatial resolution, and the expansion of the system to the monitoring of 1,000 water bodies across the globe. In addition, a new element, the monitoring of surface water levels in wetland zones, is also being introduced. This aims to satisfy research and stakeholder requirements with respect to programs examining the links between inland fisheries catch potential and declining water levels, and to those monitoring the delicate balance between water resources, agriculture, and fisheries management in arid basins.

  20. Evaluation/Optimization of reservoir operation rules for flood management using an integrated hydrologic-hydraulic framework

    OpenAIRE

    Sordo Ward, Alvaro; Bianucci, Sandra Paola; Pérez Díaz, Juan Ignacio; García Palacios, Jaime; Cuevas Velasquez, Victor; Garrote de Marcos, Luis

    2011-01-01

    Se ha presentado la evaluación y optimización de las reglas de operación de un embalse para gestión de avenidas usando un entorno integrado hidrológico- hidráulico de tipo Monte Carlo. Some reservoirs play a major role in flood protection, managing the floods and reducing or delaying the peak discharges in the river downstream. However, the changing environment (natural and anthropological changes) requires the development of more elaborated strategies for reservoir operation. Three factors a...

  1. How Does Knowing Snowpack Distribution Help Model Calibration and Reservoir Management?

    Science.gov (United States)

    Graham, C. B.; Mazurkiewicz, A.; McGurk, B. J.; Painter, T. H.

    2014-12-01

    Well calibrated hydrologic models are a necessary tool for reservoir managers to meet increasingly complicated regulatory, environmental and consumptive demands on water supply systems. Achieving these objectives is difficult during periods of drought, such as seen in the Sierra Nevada in recent years. This emphasizes the importance of accurate watershed modeling and forecasting of runoff. While basin discharge has traditionally been the main criteria for model calibration, many studies have shown it to be a poor control on model calibration where correct understanding of the subbasin hydrologic processes are required. Additional data sources such as snowpack accumulation and melt are often required to create a reliable model calibration. When allocating resources for monitoring snowpack conditions, water system managers often must choose between monitoring point locations at high temporal resolution (i.e. real time weather and snow monitoring stations) and large spatial surveys (i.e. remote sensing). NASA's Airborne Snow Observatory (ASO) provides a unique opportunity to test the relative value of spatially dense, temporally sparse measurements vs. temporally dense, spatially sparse measurements for hydrologic model calibration. The ASO is a demonstration mission using coupled LiDAR and imaging spectrometer mounted to an aircraft flying at 6100 m to collect high spatial density measurements of snow water content and albedo over the 1189 km2 Tuolumne River Basin. Snow depth and albedo were collected weekly throughout the snowmelt runoff period at 5 m2 resolution during the 2013-2014 snowmelt. We developed an implementation of the USGS Precipitation Runoff Modeling System (PRMS) for the Tuolumne River above Hetch Hetchy Reservoir, the primary water source for San Francisco. The modeled snow accumulation and ablation was calibrated in 2 models using either 2 years of weekly measurements of distributed snow water equivalent from the ASO, or 2 years of 15 minute snow

  2. Large reservoirs: Chapter 17

    Science.gov (United States)

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  3. Controlling Eutrophication in A Mediterranean Shallow Reservoir by Phosphorus Loading Reduction: The Need for an Integrated Management Approach.

    Science.gov (United States)

    Zaragüeta, Mikel; Acebes, Pablo

    2017-04-01

    Increased nutrient enrichment in Mediterranean standing waters has enhanced the risk of being affected by cyanobacterial blooms. Because phosphorus abatement is shaped as a crucial strategy for controlling eutrophication, this study introduces a structural thinking, experiential learning laboratory with animation dynamic model elaborated for Cazalegas Reservoir (Spain) to assess the feasibility of implementing a set of internal and external control measures and hydromorphological adjustments to meet the goal of oligotrophication. This shallow reservoir is another case where recurrent eutrophication has led to reach annual mean total phosphorus concentrations (0.16 ± 0.08 mg total phosphorus/L) over the threshold of current water policies, triggering cyanobacterial growth up to undesirable levels in summer time (approximately 50,000 cells/mL). Modeling results showed that (i) after upgrading water treatment in the main tributary, (ii) applying a lanthanum-modified bentonite into the water column and sediment, and (iii) increasing reservoir water level, in-lake P concentrations and cyanobacterial abundance decreased in an 88% (below 0.01 mg total phosphorus/L) and 84% (below 6000 cells/mL), respectively in the most critical periods. However, the constraints of the proposed management strategies are associated with their costs of implementation and the time span for a stable trophic recovery of the reservoir. In that end, integrated management approaches are aimed to be adopted by water managers to reach adequate ecological status of freshwater bodies.

  4. Controlling Eutrophication in A Mediterranean Shallow Reservoir by Phosphorus Loading Reduction: The Need for an Integrated Management Approach

    Science.gov (United States)

    Zaragüeta, Mikel; Acebes, Pablo

    2017-04-01

    Increased nutrient enrichment in Mediterranean standing waters has enhanced the risk of being affected by cyanobacterial blooms. Because phosphorus abatement is shaped as a crucial strategy for controlling eutrophication, this study introduces a structural thinking, experiential learning laboratory with animation dynamic model elaborated for Cazalegas Reservoir (Spain) to assess the feasibility of implementing a set of internal and external control measures and hydromorphological adjustments to meet the goal of oligotrophication. This shallow reservoir is another case where recurrent eutrophication has led to reach annual mean total phosphorus concentrations (0.16 ± 0.08 mg total phosphorus/L) over the threshold of current water policies, triggering cyanobacterial growth up to undesirable levels in summer time (approximately 50,000 cells/mL). Modeling results showed that (i) after upgrading water treatment in the main tributary, (ii) applying a lanthanum-modified bentonite into the water column and sediment, and (iii) increasing reservoir water level, in-lake P concentrations and cyanobacterial abundance decreased in an 88% (below 0.01 mg total phosphorus/L) and 84% (below 6000 cells/mL), respectively in the most critical periods. However, the constraints of the proposed management strategies are associated with their costs of implementation and the time span for a stable trophic recovery of the reservoir. In that end, integrated management approaches are aimed to be adopted by water managers to reach adequate ecological status of freshwater bodies.

  5. A method to implement the reservoir-wave hypothesis using phase-contrast magnetic resonance imaging

    OpenAIRE

    Gray, Robert D.M.; Parker, Kim H.; Quail, Michael A.; Taylor, Andrew M.; Biglino, Giovanni

    2016-01-01

    The reservoir-wave hypothesis states that the blood pressure waveform can be usefully divided into a “reservoir pressure” related to the global compliance and resistance of the arterial system, and an “excess pressure” that depends on local conditions. The formulation of the reservoir-wave hypothesis applied to the area waveform is shown, and the analysis is applied to area and velocity data from high-resolution phase-contrast cardiovascular magnetic resonance (CMR) imaging. A validation stud...

  6. Methods of forming thermal management systems and thermal management methods

    Science.gov (United States)

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  7. Evaluation of Management of Water Release for Painted Rocks Reservoir, Bitterroot River, Montana, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lere, Mark E. (Montana Department of Fish, Wildlife and Parks, Missoula, MT)

    1984-11-01

    control section and 82.3mm in the dewatered section. Population estimates conducted in the Spring, 1984 indicated densities of mountain whitefish (Prosopium williamsoni) greater than 254 mm in total length were not significantly different between the control and dewatered sections (p > 0.20). Young of the year rainbow trout and brown trout per 10m of river edge electrofished during 1984 were more abundant in the control section than the dewatered section and were more abundant in side channel habitat than main channel habitat. Minimum flow recommendations obtained from wetted perimeter-discharge relationships averaged 8.5m{sup 3}/sec in the control section and 10.6m{sup 3}/sec in the dewatered section of the Bitterroot River. The quantity of supplemental water from Painted Rocks Reservoir needed to maintain minimum flow recommendations is discussed in the Draft Water Management Plan for the Proposed Purchase of Supplemental Water from Painted Rocks Reservoir, Bitterroot River, Montana (Lere 1984).

  8. 3-D Seismic Methods for Geothermal Reservoir Exploration and Assessment--Summary

    Energy Technology Data Exchange (ETDEWEB)

    Majer, E.L.

    2003-07-14

    A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured reservoirs. The application could be for exploration of new resources or for in-fill/step-out drilling in existing fields. In most geothermal environments the challenge has been to separate the ''background'' natural complexity and heterogeneity of the matrix from the fracture/fault heterogeneity controlling the fluid flow. Ideally one not only wants to find the fractures, but the fractures that are controlling the flow of the fluids. Evaluated in this work is current state-of-the-art surface (seismic reflection) and borehole seismic methods (Vertical Seismic Profiling (VSP), Crosswell and Single Well) to locate and quantify geothermal reservoir characteristics. The focus is on active methods; the assumption being that accuracy is needed for successful well siting. Passive methods are useful for exploration and detailed monitoring for in-fill drilling, but in general the passive methods lack the precision and accuracy for well siting in new or step out areas. In addition, MEQ activity is usually associated with production, after the field has been taken to a mature state, thus in most cases it is assumed that there is not enough MEQ activity in unproduced areas to accurately find the permeable pathways. The premise of this review is that there may new developments in theory and modeling, as well as in data acquisition and processing, which could make it possible to image the subsurface in much more detail than 15 years ago. New understanding of

  9. The optimized log interpretation method and sweet-spot prediction of gas-bearing shale reservoirs

    Science.gov (United States)

    Tan, Maojin; Bai, Ze; Xu, Jingjing

    2017-04-01

    Shale gas is one of the most important unconventional oil and gas resources, and its lithology and reservoir type are both different from conventional reservoirs [1,2]. "Where are shale reservoirs" "How to determine the hydrocarbon potential" "How to evaluate the reservoir quality", these are some key problems in front of geophysicists. These are sweet spots prediction and quantitative evaluation. As we known, sweet spots of organic shale include geological sweet spot and engineering sweet spot. Geophysical well logging can provide a lot of in-site formation information along the borehole, and all parameters describing the sweet spots of organic shale are attained by geophysical log interpretation[2]. Based on geological and petrophysical characteristics of gas shale, the log response characteristics of gas shales are summarized. Geological sweet spot includes hydrocarbon potential, porosity, fracture, water saturation and total gas content, which can be calculated by using wireline logs[3]. Firstly, the based-logging hydrocarbon potential evaluation is carried out, and the RBF neural network method is developed to estimate the total organic carbon content (TOC), which was proved more effective and suitable than empirical formula and ΔlogR methods [4]. Next, the optimized log interpretation is achieved by using model-searching, and the mineral concentrations of kerogen, clay, feldspar and pyrite and porosity are calculated. On the other hand, engineering sweet spot of shale refers to the rock physical properties and rock mechanism parameters. Some elastic properties including volume module, shear modulus and Poisson's ratio are correspondingly determined from log interpretation, and the brittleness index (BI), effective stress and pore pressure are also estimated. BI is one of the most important engineering sweet spot parameters. A large number of instances show that the summarized log responses can accurately identify the gas-bearing shale, and the proposed RBF

  10. Methods for estimating petrophysical parameters from well logs in tight oil reservoirs: a case study

    International Nuclear Information System (INIS)

    Zhao, Peiqiang; Zhuang, Wen; Mao, Zhiqiang; Tong, Zemin; Sun, Zhongchun; Wang, Zhenlin; Luo, Xingping

    2016-01-01

    Estimating petrophysical parameters from well logs plays a significant role in the exploration and development of tight oil resources, but faces challenges. What’s more, the methods for petrophysical parameters from well logs are paid little attention at present. In this paper, the typical tight oil reservoirs of Northwest China are used as an example. Based on the characteristics of mineralogy and fluids in the study field, the rock is assumed into five components which are clays, quartz and feldspar, carbonates, kerogen and pore fluids (porosity). The sum of kerogen content and porosity is defined as the apparent porosity. Then, two porosity log response equations are established. Once the clay content is determined by an individual method, the quartz and feldspar content, carbonate content and apparent porosity are calculated through the established equations. The kerogen content is the difference of the apparent porosity and porosity from nuclear magnetic resonance (NMR) logs. This paper also presents a new approach that combines the complex refractive index method (CRIM) and pseudo Archie method to compute saturation from dielectric logs, which avoids selection for the dielectric constants of each of the minerals. The effectiveness and reliability of these methods are verified by the successful application in the study of the target tight oil play in Northwest China. (paper)

  11. Methods of Control of the Leishmania infantum Dog Reservoir: State of the Art

    Directory of Open Access Journals (Sweden)

    Michele Podaliri Vulpiani

    2011-01-01

    Full Text Available Leishmania infantum is a protozoan parasite causing severe vector-borne visceral diseases both in humans and dogs. The latter are the most important natural reservoir and therefore should be the main target of control measures. The real efficacy of seropositive dogs culling as a direct control method is still debated, and the new sensitivity of large part of population considers ethically unacceptable this kind of approach. Treatment of infectious dogs with one of the available therapeutic protocols is recommendable as it allows to reduce parasite burdens and therefore the possibility of transmission of Leishmania infantum to vectors. Vaccination has been proven to be a very effective control tool, but the absence of a commonly recognized diagnostic method able to distinguish vaccinate from seropositive individuals is still an important limit. Concerning indirect control methods, a number of studies have demonstrated the efficacy of topical insecticides treatment (collars, spot-on, and sprays in reducing incidence and prevalence of L. infantum. Also, the reduction of the odds of seroconversion in humans in endemic areas has been reported after the application of indirect control measures on dogs. The contemporary use of direct and indirect methods is even more effective in reducing seroprevalence in dogs.

  12. Application of a New Wavelet Threshold Method in Unconventional Oil and Gas Reservoir Seismic Data Denoising

    Directory of Open Access Journals (Sweden)

    Guxi Wang

    2015-01-01

    Full Text Available Seismic data processing is an important aspect to improve the signal to noise ratio. The main work of this paper is to combine the characteristics of seismic data, using wavelet transform method, to eliminate and control such random noise, aiming to improve the signal to noise ratio and the technical methods used in large data systems, so that there can be better promotion and application. In recent years, prestack data denoising of all-digital three-dimensional seismic data is the key to data processing. Contrapose the characteristics of all-digital three-dimensional seismic data, and, on the basis of previous studies, a new threshold function is proposed. Comparing between conventional hard threshold and soft threshold, this function not only is easy to compute, but also has excellent mathematical properties and a clear physical meaning. The simulation results proved that this method can well remove the random noise. Using this threshold function in actual seismic processing of unconventional lithologic gas reservoir with low porosity, low permeability, low abundance, and strong heterogeneity, the results show that the denoising method can availably improve seismic processing effects and enhance the signal to noise ratio (SNR.

  13. Several Methods to Increase Production from Carbonate Reservoirs, Developed by means of Horizontal Technology

    Directory of Open Access Journals (Sweden)

    R.Kh. Akhmadullin

    2017-12-01

    Full Text Available Market conditions during the economic crisis require the provision of high efficiency of capital investments at all stages of production in two main areas: increasing the flow rate of new wells, recovering production from highly-drained and inactive stock of wells, and reducing drilling and well site construction costs. The task is solved by improving the existing development systems, broadly implementing the already proven methods of increasing oil recovery, including the use of horizontal technology that provides more complete production of inter-well space and massive geological and technical measures to restore production from inactive and highly watered wells. Among the latter, there is little costly technology to restore oil production in open wells with a horizontal end, which operate carbonate reservoirs of the Lower and Middle Carboniferous deposits in the Republic of Tatarstan. The essence of the technology is to lower the suspension of the pump directly to the horizontal part of the well, if possible, to the lowest hypsometric mark of its trajectory in the oil-saturated part of the operational object. At the same time, the oil production rate increases, the watering of the well production decreases, its service life is extended, the design levels of production are maintained, the most complete production of oil reserves is achieved and the ultimate oil recovery factor is increased. Taking into account the positive results of the application of the technology, it is proposed to extend it to all fields of Tatarstan, where the carbonate reservoirs with wells with horizontal end are operated.

  14. A Novel 3D Viscoelastic Acoustic Wave Equation Based Update Method for Reservoir History Matching

    KAUST Repository

    Katterbauer, Klemens

    2014-12-10

    The oil and gas industry has been revolutionized within the last decade, with horizontal drilling and hydraulic fracturing enabling the extraction of huge amounts of shale gas in areas previously considered impossible and the recovering of hydrocarbons in harsh environments like the arctic or in previously unimaginable depths like the off-shore exploration in the South China sea and Gulf of Mexico. With the development of 4D seismic, engineers and scientists have been enabled to map the evolution of fluid fronts within the reservoir and determine the displacement caused by the injected fluids. This in turn has led to enhanced production strategies, cost reduction and increased profits. Conventional approaches to incorporate seismic data into the history matching process have been to invert these data for constraints that are subsequently employed in the history matching process. This approach makes the incorporation computationally expensive and requires a lot of manual processing for obtaining the correct interpretation due to the potential artifacts that are generated by the generally ill-conditioned inversion problems. I have presented here a novel approach via including the time-lapse cross-well seismic survey data directly into the history matching process. The generated time-lapse seismic data are obtained from the full wave 3D viscoelastic acoustic wave equation. Furthermore an extensive analysis has been performed showing the robustness of the method and enhanced forecastability of the critical reservoir parameters, reducing uncertainties and exhibiting the benefits of a full wave 3D seismic approach. Finally, the improved performance has been statistically confirmed. The improvements illustrate the significant improvements in forecasting that are obtained via readily available seismic data without the need for inversion. This further optimizes oil production in addition to increasing return-on-investment on oil & gas field development projects, especially

  15. ENHANCING RESERVOIR MANAGEMENT IN THE APPALACHIAN BASIN BY IDENTIFYING TECHNICAL BARRIER AND PREFERRED PRACTICES

    Energy Technology Data Exchange (ETDEWEB)

    Ronald R. McDowell; Khashayar Aminian; Katharine L. Avary; John M. Bocan; Michael Ed. Hohn; Douglas G. Patchen

    2003-09-01

    The Preferred Upstream Management Practices (PUMP) project, a two-year study sponsored by the United States Department of Energy (USDOE), had three primary objectives: (1) the identification of problems, problematic issues, potential solutions and preferred practices related to oil production; (2) the creation of an Appalachian Regional Council to oversee and continue this investigation beyond the end of the project; and (3) the dissemination of investigative results to the widest possible audience, primarily by means of an interactive website. Investigation and identification of oil production problems and preferred management practices began with a Problem Identification Workshop in January of 2002. Three general issues were selected by participants for discussion: Data Management; Reservoir Engineering; and Drilling Practices. At the same meeting, the concept of the creation of an oversight organization to evaluate and disseminated preferred management practices (PMP's) after the end of the project was put forth and volunteers were solicited. In-depth interviews were arranged with oil producers to gain more insight into problems and potential solutions. Project members encountered considerable reticence on the part of interviewees when it came to revealing company-specific production problems or company-specific solutions. This was the case even though interviewees were assured that all responses would be held in confidence. Nevertheless, the following production issues were identified and ranked in order of decreasing importance: Water production including brine disposal; Management of production and business data; Oil field power costs; Paraffin accumulation; Production practices including cementing. An number of secondary issues were also noted: Problems associated with Enhanced Oil Recovery (EOR) and Waterflooding; Reservoir characterization; Employee availability, training, and safety; and Sale and Purchase problems. One item was mentioned both in

  16. Optimisation of Oil Production in Two – Phase Flow Reservoir Using Simultaneous Method and Interior Point Optimiser

    DEFF Research Database (Denmark)

    Lerch, Dariusz Michal; Völcker, Carsten; Capolei, Andrea

    2012-01-01

    Natural petroleum reservoirs are characterised by 2-phase flow of oil and water in the porous media (e.g. rocks) which they are built of. Conventional methods of extracting oil from those fields, which utilise high initial pressure obtained from natural drive, leave more than 70 % of oil in the r......Natural petroleum reservoirs are characterised by 2-phase flow of oil and water in the porous media (e.g. rocks) which they are built of. Conventional methods of extracting oil from those fields, which utilise high initial pressure obtained from natural drive, leave more than 70 % of oil...... structure leading to change of permeability with position in the reservoir, or high oil viscosity. Therefore it is desired to take into account all these phenomena by implementing a realistic simulator of the 2-phase flow reservoir, which imposes the set of constraints on the state variables of optimisation...... problem. Then, thanks to optimal control, it is possible to adjust effectively injection valves to control 2 phase immiscible flow in every grid block of the reservoir and navigate oil to the production wells so it does not remain in the porous media. The use of such a smart technology known also as smart...

  17. Thermal management systems and methods

    Science.gov (United States)

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  18. Methods to evaluate some reservoir characterization by means of the geophysical data in the strata of limestone and marl

    Directory of Open Access Journals (Sweden)

    V. M. Seidov

    2017-12-01

    Full Text Available As we know, the main goal of interpreting the materials of well logging, including the allocation of collectors and assessment of their saturation, are successfully achieved when the process of interpretation has a strong methodological support. This means, that it is justified by the necessary interpretational models and effective instructional techniques are used. They are based on structural and petrophysical models of reservoirs of the section investigated. The problem of studying the marl rocks with the help of the geophysical methods is not worked out properly. Many years of experience of studying limestone and marl rocks has made it possible to justify the optimal method of data interpretation of geophysical research wells in carbonate sections, which was represented by limestone and marl formations. A new method was developed to study marl rocks. It includes the following main studies: detection of reservoirs in the carbonate section according to the materials of geophysical studies of wells; determination of the geophysical parameters of each reservoir; assessment of the quality of well logging curves; introduction of amendments; selection of reference layers; the calculation of the relative double differencing parameters; the involvement of core data; identifying the lithological rock composition; the rationale for structural models of reservoirs; the definition of the block and of the total porosity; determination of argillaceous carbonate rocks; determination of the coefficient of water saturation of formations based on the type of the collector; setting a critical value for effective porosity, etc. This method was applied in the Eocene deposits of the Interfluve of the Kura and Iori, which is a promising object of hydrocarbons in Azerbaijan. The following conclusions have been made: this methodology successfully solves the problem of petrophysical characteristics of marl rocks; bad connection is observed between some of the

  19. Non-equilibrium simulation of CH4 production through the depressurization method from gas hydrate reservoirs

    Science.gov (United States)

    Qorbani, Khadijeh; Kvamme, Bjørn

    2016-04-01

    Natural gas hydrates (NGHs) in nature are formed from various hydrate formers (i.e. aqueous, gas, and adsorbed phases). As a result, due to Gibbs phase rule and the combined first and second laws of thermodynamics CH4-hydrate cannot reach thermodynamic equilibrium in real reservoir conditions. CH4 is the dominant component in NGH reservoirs. It is formed as a result of biogenic degradation of biological material in the upper few hundred meters of subsurface. It has been estimated that the amount of fuel-gas reserve in NGHs exceed the total amount of fossil fuel explored until today. Thus, these reservoirs have the potential to satisfy the energy requirements of the future. However, released CH4 from dissociated NGHs could find its way to the atmosphere and it is a far more aggressive greenhouse gas than CO2, even though its life-time is shorter. Lack of reliable field data makes it difficult to predict the production potential, as well as safety of CH4 production from NGHs. Computer simulations can be used as a tool to investigate CH4 production through different scenarios. Most hydrate simulators within academia and industry treat hydrate phase transitions as an equilibrium process and those which employ the kinetic approach utilize simple laboratory data in their models. Furthermore, it is typical to utilize a limited thermodynamic description where only temperature and pressure projections are considered. Another widely used simplification is to assume only a single route for the hydrate phase transitions. The non-equilibrium nature of hydrate indicates a need for proper kinetic models to describe hydrate dissociation and reformation in the reservoir with respect to thermodynamics variables, CH4 mole-fraction, pressure and temperature. The RetrasoCodeBright (RCB) hydrate simulator has previously been extended to model CH4-hydrate dissociation towards CH4 gas and water. CH4-hydrate is added to the RCB data-base as a pseudo mineral. Phase transitions are treated

  20. A remote sensing method for estimating regional reservoir area and evaporative loss

    Science.gov (United States)

    Zhang, Hua; Gorelick, Steven M.; Zimba, Paul V.; Zhang, Xiaodong

    2017-12-01

    Evaporation from the water surface of a reservoir can significantly affect its function of ensuring the availability and temporal stability of water supply. Current estimations of reservoir evaporative loss are dependent on water area derived from a reservoir storage-area curve. Such curves are unavailable if the reservoir is located in a data-sparse region or questionable if long-term sedimentation has changed the original elevation-area relationship. We propose a remote sensing framework to estimate reservoir evaporative loss at the regional scale. This framework uses a multispectral water index to extract reservoir area from Landsat imagery and estimate monthly evaporation volume based on pan-derived evaporative rates. The optimal index threshold is determined based on local observations and extended to unobserved locations and periods. Built on the cloud computing capacity of the Google Earth Engine, this framework can efficiently analyze satellite images at large spatiotemporal scales, where such analysis is infeasible with a single computer. Our study involves 200 major reservoirs in Texas, captured in 17,811 Landsat images over a 32-year period. The results show that these reservoirs contribute to an annual evaporative loss of 8.0 billion cubic meters, equivalent to 20% of their total active storage or 53% of total annual water use in Texas. At five coastal basins, reservoir evaporative losses exceed the minimum freshwater inflows required to sustain ecosystem health and fishery productivity of the receiving estuaries. Reservoir evaporative loss can be significant enough to counterbalance the positive effects of impounding water and to offset the contribution of water conservation and reuse practices. Our results also reveal the spatially variable performance of the multispectral water index and indicate the limitation of using scene-level cloud cover to screen satellite images. This study demonstrates the advantage of combining satellite remote sensing and

  1. Geothermal reservoir monitoring based upon spectral-element and adjoint methods

    Science.gov (United States)

    Morency, C.; Templeton, D. C.; Harris, D.; Mellors, R. J.

    2011-12-01

    Induced seismicity associated with CO2 sequestration, enhanced oil recovery, and enhanced geothermal systems is triggered by fracturing during fluid injection. These events range from magnitude -1 (microseismicity) up to 3.5, for induced seismicity on pre-existing faults. In our approach, we are using seismic data collected at the Salton Sea geothermal field, to improve the current structural model (SCEC CVM4.0 including a 10m resolution topography) and to invert for the moment tensor and source location of the microseismic events. The key here is to refine the velocity model to then precisely invert for the location and mechanism (tensile or shear) of fracture openings. This information is crucial for geothermal reservoir assessment, especially in an unconventional setting where hydrofracturing is used to enhance productivity. The location of pre-existing and formed fractures as well as their type of openings are important elements for strategic decisions. Numerical simulations are performed using a spectral-element method, which contrary to finite-element methods (FEM), uses high degree Lagrange polynomials, allowing the technique to not only handle complex geometries, like the FEM, but also to retain the strength of exponential convergence and accuracy due to the use of high degree polynomials. Finite-frequency sensitivity kernels, used in the non-linear iterative inversions, are calculated based on an adjoint method.

  2. The Similar Structure Method for Solving the Model of Fractal Dual-Porosity Reservoir

    Directory of Open Access Journals (Sweden)

    Li Xu

    2013-01-01

    Full Text Available This paper proposes a similar structure method (SSM to solve the boundary value problem of the extended modified Bessel equation. The method could efficiently solve a second-order linear homogeneous differential equation’s boundary value problem and obtain its solutions’ similar structure. A mathematics model is set up on the dual-porosity media, in which the influence of fractal dimension, spherical flow, wellbore storage, and skin factor is taken into cosideration. Researches in the model found that it was a special type of the extended modified Bessel equation in Laplace space. Then, the formation pressure and wellbore pressure under three types of outer boundaries (infinite, constant pressure, and closed are obtained via SSM in Laplace space. Combining SSM with the Stehfest algorithm, we propose the similar structure method algorithm (SSMA which can be used to calculate wellbore pressure and pressure derivative of reservoir seepage models clearly. Type curves of fractal dual-porosity spherical flow are plotted by SSMA. The presented algorithm promotes the development of well test analysis software.

  3. Global mass conservation method for dual-continuum gas reservoir simulation

    KAUST Repository

    Wang, Yi

    2018-03-17

    In this paper, we find that the numerical simulation of gas flow in dual-continuum porous media may generate unphysical or non-robust results using regular finite difference method. The reason is the unphysical mass loss caused by the gas compressibility and the non-diagonal dominance of the discretized equations caused by the non-linear well term. The well term contains the product of density and pressure. For oil flow, density is independent of pressure so that the well term is linear. For gas flow, density is related to pressure by the gas law so that the well term is non-linear. To avoid these two problems, numerical methods are proposed using the mass balance relation and the local linearization of the non-linear source term to ensure the global mass conservation and the diagonal dominance of discretized equations in the computation. The proposed numerical methods are successfully applied to dual-continuum gas reservoir simulation. Mass conservation is satisfied while the computation becomes robust. Numerical results show that the location of the production well relative to the large-permeability region is very sensitive to the production efficiency. It decreases apparently when the production well is moved from the large-permeability region to the small-permeability region, even though the well is very close to the interface of the two regions. The production well is suggested to be placed inside the large-permeability region regardless of the specific position.

  4. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  5. Multiunit water resource systems management by decomposition, optimization and emulated evolution : a case study of seven water supply reservoirs in Tunisia

    NARCIS (Netherlands)

    Milutin, D.

    1998-01-01

    Being one of the essential elements of almost any water resource system, reservoirs are indispensable in our struggle to harness, utilize and manage natural water resources. Consequently, the derivation of appropriate reservoir operating strategies draws significant attention in water

  6. A fully-coupled discontinuous Galerkin spectral element method for two-phase flow in petroleum reservoirs

    Science.gov (United States)

    Taneja, Ankur; Higdon, Jonathan

    2018-01-01

    A high-order spectral element discontinuous Galerkin method is presented for simulating immiscible two-phase flow in petroleum reservoirs. The governing equations involve a coupled system of strongly nonlinear partial differential equations for the pressure and fluid saturation in the reservoir. A fully implicit method is used with a high-order accurate time integration using an implicit Rosenbrock method. Numerical tests give the first demonstration of high order hp spatial convergence results for multiphase flow in petroleum reservoirs with industry standard relative permeability models. High order convergence is shown formally for spectral elements with up to 8th order polynomials for both homogeneous and heterogeneous permeability fields. Numerical results are presented for multiphase fluid flow in heterogeneous reservoirs with complex geometric or geologic features using up to 11th order polynomials. Robust, stable simulations are presented for heterogeneous geologic features, including globally heterogeneous permeability fields, anisotropic permeability tensors, broad regions of low-permeability, high-permeability channels, thin shale barriers and thin high-permeability fractures. A major result of this paper is the demonstration that the resolution of the high order spectral element method may be exploited to achieve accurate results utilizing a simple cartesian mesh for non-conforming geological features. Eliminating the need to mesh to the boundaries of geological features greatly simplifies the workflow for petroleum engineers testing multiple scenarios in the face of uncertainty in the subsurface geology.

  7. THE METHOD OF ESTIMATION OF ACCEPTABLE DISCHARGE OF RADIONUCLIDES INTO FLOWING RESERVOIR

    Directory of Open Access Journals (Sweden)

    O. N. Prokof'ev

    2008-01-01

    Full Text Available Abroad and in Russia there exist the practices of discharge of liquids, which maintain radionuclides in reservoirs. In order to ensure radiation protection of environment and population such discharge must be carried out under control. For carrying out of the control it is necessary to determine the value of acceptable discharge of radionuclides into reservoir with consideration of specific conditions and to supervise the actual value of discharge. The value of acceptable discharge of radionuclide into reservoir depends on such parameters as its volume and rate of the water pour off.

  8. Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios

    Science.gov (United States)

    Molina-Navarro, Eugenio; Trolle, Dennis; Martínez-Pérez, Silvia; Sastre-Merlín, Antonio; Jeppesen, Erik

    2014-02-01

    Water scarcity and water pollution constitute a big challenge for water managers in the Mediterranean region today and will exacerbate in a projected future warmer world, making a holistic approach for water resources management at the catchment scale essential. We expanded the Soil and Water Assessment Tool (SWAT) model developed for a small Mediterranean catchment to quantify the potential effects of various climate and land use change scenarios on catchment hydrology as well as the trophic state of a new kind of waterbody, a limno-reservoir (Pareja Limno-reservoir), created for environmental and recreational purposes. We also checked for the possible synergistic effects of changes in climate and land use on water flow and nutrient exports from the catchment. Simulations showed a noticeable impact of climate change in the river flow regime and consequently the water level of the limno-reservoir, especially during summer, complicating the fulfillment of its purposes. Most of the scenarios also predicted a deterioration of trophic conditions in the limno-reservoir. Fertilization and soil erosion were the main factors affecting nitrate and total phosphorus concentrations. Combined climate and land use change scenarios showed noticeable synergistic effects on nutrients exports, relative to running the scenarios individually. While the impact of fertilization on nitrate export is projected to be reduced with warming in most cases, an additional 13% increase in the total phosphorus export is expected in the worst-case combined scenario compared to the sum of individual scenarios. Our model framework may help water managers to assess and manage how these multiple environmental stressors interact and ultimately affect aquatic ecosystems.

  9. Consequences of eutrophication in the management of water resources in Mediterranean reservoirs: A case study of Lake Cedrino (Sardinia, Italy

    Directory of Open Access Journals (Sweden)

    Bachisio Mario Padedda

    2017-10-01

    Full Text Available One of the primary detrimental effects of eutrophication is the tendency of nuisance cyanobacterial species to increase in number and biomass in freshwater ecosystems. The aim of this study was to investigate possible management actions to control eutrophication and assure water use of a eutrophic deep Mediterranean climate reservoir, dominated by cyanobacteria. With this goal, we defined the trophic state of Lake Cedrino (Sardinia, Italy and studied its phytoplankton, paying particular attention to cyanobacteria, and to seasonal variation of phytoplankton in relation to seasonal variation of environmental variables. The water samples were collected monthly from September 2010 to August 2011 at differing depths from the surface of the water to the bottom at a station located in the deeper portion of the reservoir. Physical, chemical, nutrient, qualitative and quantitative analyses of phytoplankton were performed, and the trophic state was evaluated based on the Trophic State Index and the OECD model. Abundance of nutrients and phytoplankton (cell density, biomass and chlorophyll a indicated a eutrophic condition of the reservoir. In summer, phytoplankton species composition was dominated by nuisance cyanobacteria, particularly Aphanizomenon flosaquae, thereby requiring management plans for harmful blooms. On the base of lake features, we propose management actions at different scales and levels to resolve eutrophication and to allow water use: from nutrient load reduction in the watershed (primarily from point-sources to deep water aeration, to immediately face an attenuation of eutrophic effects. This study is the first explorative step in planning restoration of Lake Cedrino.

  10. Application of magnetic method to assess the extent of high temperature geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Soengkono, S.; Hochstein, M.P.

    1995-01-26

    The extent of thermally altered rocks in high temperature geothermal reservoirs hosted by young volcanic rocks can be assessed from magnetic surveys. Magnetic anomalies associated with many geothermal field in New Zealand and Indonesia can be interpreted in terms of thick (up to 1 km) demagnetized reservoir rocks. Demagnetization of these rocks has been confirmed by core studies and is caused by hydrothermal alteration produced from fluid/rock interactions. Models of the demagnetized Wairakei (NZ) and Kamojang (Indonesia) reservoirs are presented which include the productive areas. Magnetic surveys give fast and economical investigations of high temperature prospects if measurements are made from the air. The magnetic interpretation models can provide important constraints for reservoir models. Magnetic ground surveys can also be used to assess the extent of concealed near surface alteration which can be used in site selection of engineering structures.

  11. New geomechanical developments for reservoir management; Desenvolvimentos experimentais e computacionais para analises geomecanicas de reservatorio

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Antonio C.; Menezes Filho, Armando Prestes; Silvestre, Jose R. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The common assumption that oil is produced under a constant rate only considering reservoir depletion has been questioned for some time. An usual hypothesis is that the physical properties of a reservoir are not constants during time, but they vary according to the properties of reservoir rock and the characteristics of the external loads. More precisely, as soon as a reservoir is explored, the volume of fluid diminishes, decreasing the static pressure and increasing the effective stress over the rock skeleton, which, depending on the nature of rock, can lead to a gradual deformation and alteration of reservoir's porosity and permeability, and oil productivity as well. This paper aims at showing numerical and experimental achievements, developed by the Well bore Engineering Technology Department of CENPES, devoted to the characterization of the influence of stress-strain states on the permeability and production of reservoir rocks. It is believed that these developments can possibly bring some light to the understanding of this complex phenomenon, besides allowing the establishment of more realistic relations involving stress-strain-permeability in coupled fluid dynamic problems. (author)

  12. An improved method for permeability estimation of the bioclastic limestone reservoir based on NMR data.

    Science.gov (United States)

    Ge, Xinmin; Fan, Yiren; Liu, Jianyu; Zhang, Li; Han, Yujiao; Xing, Donghui

    2017-10-01

    Permeability is an important parameter in formation evaluation since it controls the fluid transportation of porous rocks. However, it is challengeable to compute the permeability of bioclastic limestone reservoirs by conventional methods linking petrophysical and geophysical data, due to the complex pore distributions. A new method is presented to estimate the permeability based on laboratory and downhole nuclear magnetic resonance (NMR) measurements. We divide the pore space into four intervals by the inflection points between the pore radius and the transversal relaxation time. Relationships between permeability and percentages of different pore intervals are investigated to investigate influential factors on the fluid transportation. Furthermore, an empirical model, which takes into account of the pore size distributions, is presented to compute the permeability. 212 core samples in our case show that the accuracy of permeability calculation is improved from 0.542 (SDR model), 0.507 (TIM model), 0.455 (conventional porosity-permeability regressions) to 0.803. To enhance the precision of downhole application of the new model, we developed a fluid correction algorithm to construct the water spectrum of in-situ NMR data, aiming to eliminate the influence of oil on the magnetization. The result reveals that permeability is positively correlated with percentages of mega-pores and macro-pores, but negatively correlated with the percentage of micro-pores. Poor correlation is observed between permeability and the percentage of meso-pores. NMR magnetizations and T 2 spectrums after the fluid correction agree well with laboratory results for samples saturated with water. Field application indicates that the improved method provides better performance than conventional models such as Schlumberger-Doll Research equation, Timur-Coates equation, and porosity-permeability regressions. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. An improved method for permeability estimation of the bioclastic limestone reservoir based on NMR data

    Science.gov (United States)

    Ge, Xinmin; Fan, Yiren; Liu, Jianyu; Zhang, Li; Han, Yujiao; Xing, Donghui

    2017-10-01

    Permeability is an important parameter in formation evaluation since it controls the fluid transportation of porous rocks. However, it is challengeable to compute the permeability of bioclastic limestone reservoirs by conventional methods linking petrophysical and geophysical data, due to the complex pore distributions. A new method is presented to estimate the permeability based on laboratory and downhole nuclear magnetic resonance (NMR) measurements. We divide the pore space into four intervals by the inflection points between the pore radius and the transversal relaxation time. Relationships between permeability and percentages of different pore intervals are investigated to investigate influential factors on the fluid transportation. Furthermore, an empirical model, which takes into account of the pore size distributions, is presented to compute the permeability. 212 core samples in our case show that the accuracy of permeability calculation is improved from 0.542 (SDR model), 0.507 (TIM model), 0.455 (conventional porosity-permeability regressions) to 0.803. To enhance the precision of downhole application of the new model, we developed a fluid correction algorithm to construct the water spectrum of in-situ NMR data, aiming to eliminate the influence of oil on the magnetization. The result reveals that permeability is positively correlated with percentages of mega-pores and macro-pores, but negatively correlated with the percentage of micro-pores. Poor correlation is observed between permeability and the percentage of meso-pores. NMR magnetizations and T2 spectrums after the fluid correction agree well with laboratory results for samples saturated with water. Field application indicates that the improved method provides better performance than conventional models such as Schlumberger-Doll Research equation, Timur-Coates equation, and porosity-permeability regressions.

  14. Scoping Summary Report: Development of Lower Basin Shortage Guidelines and Coordinated Management Strategies for Lake Powell and Lake Mead, Particularly Under Low Reservoir Conditions

    OpenAIRE

    U.S. Department of the Interior, Bureau of Reclamation

    2006-01-01

    The Bureau of Reclamation (Reclamation) acting on behalf of the Secretary of the Department of the Interior (Secretary) proposes to take action to adopt specific Colorado River Lower Basin shortage guidelines and coordinated reservoir management strategies to address operations of Lake Powell and Lake Mead, particularly under low reservoir conditions. This proposed Action will provide a greater degree of certainty to all water users and managers in the Colorado River Basin by providing more d...

  15. Technology strategy for integrated operations and real time reservoir management; Technology Target Areas; TTA5 - Integrated operations and RTRM

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    In Norway Integrated Operations (IO) is a concept which in the first phase (G1) has been used to describe how to integrate processes and people onshore and offshore using ICT solutions and facilities that improve onshore's ability to support offshore operationally. The second generation (G2) Integrated Operations aims to help operators utilize vendors' core competencies and services more efficiently. Utilizing digital services and vendor products, operators will be able to update reservoir models, drilling targets and well trajectories as wells are drilled, manage well completions remotely, optimize production from reservoir to export lines, and implement condition-based maintenance concepts. The total impact on production, recovery rates, costs and safety will be profound. When the international petroleum business moves to the Arctic region the setting is very different from what is the case on the Norwegian Continental Shelf (NCS) and new challenges will arise. The Norwegian Ministry of Environment has recently issued an Integrated Management Plan for the Barents Sea where one focus is on 'Monitoring of the Marine Environment in the North'. The Government aims to establish a new and more coordinated system for monitoring the marine ecosystems in the north. A representative group consisting of the major Operators, the Service Industry, Academia and the Authorities have developed the enclosed strategy for the OG21 Integrated Operations and Real Time Reservoir Management (IO and RTRM) Technology Target Area (TTA). Major technology and work process research and development gaps have been identified in several areas: Bandwidth down-hole to surface; Sensor development including Nano-technology; Cross discipline use of Visualisation, Simulation and model development particularly in Drilling and Reservoir management areas; Software development in terms of data handling, model updating and calculation speed; Enabling reliable and robust communications

  16. High-Precision Spectral Decomposition Method Based on VMD/CWT/FWEO for Hydrocarbon Detection in Tight Sandstone Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2017-07-01

    Full Text Available Seismic time-frequency analysis methods can be used for hydrocarbon detection because of the phenomena of energy and abnormal attenuation of frequency when the seismic waves travel across reservoirs. A high-resolution method based on variational mode decomposition (VMD, continuous-wavelet transform (CWT and frequency-weighted energy operator (FWEO is proposed for hydrocarbon detection in tight sandstone gas reservoirs. VMD can decompose seismic signals into a set of intrinsic mode functions (IMF in the frequency domain. In order to avoid meaningful frequency loss, the CWT method is used to obtain the time-frequency spectra of the selected IMFs. The energy separation algorithm based on FWEO can improve the resolution of time-frequency spectra and highlight abnormal energy, which is applied to track the instantaneous energy in the time-frequency spectra. The difference between the high-frequency section and low-frequency section acquired by applying the proposed method is utilized to detect hydrocarbons. Applications using the model and field data further demonstrate that the proposed method can effectively detect hydrocarbons in tight sandstone reservoirs, with good anti-noise performance. The newly-proposed method can be used as an analysis tool to detect hydrocarbons.

  17. Mathematical and field analysis of longitudinal reservoir infill

    Science.gov (United States)

    Ke, W. T.; Capart, H.

    2016-12-01

    In reservoirs, severe problems are caused by infilled sediment deposits. In long term, the sediment accumulation reduces the capacity of reservoir storage and flood control benefits. In the short term, the sediment deposits influence the intakes of water-supply and hydroelectricity generation. For the management of reservoir, it is important to understand the deposition process and then to predict the sedimentation in reservoir. To investigate the behaviors of sediment deposits, we propose a one-dimensional simplified theory derived by the Exner equation to predict the longitudinal sedimentation distribution in idealized reservoirs. The theory models the reservoir infill geomorphic actions for three scenarios: delta progradation, near-dam bottom deposition, and final infill. These yield three kinds of self-similar analytical solutions for the reservoir bed profiles, under different boundary conditions. Three analytical solutions are composed by error function, complementary error function, and imaginary error function, respectively. The theory is also computed by finite volume method to test the analytical solutions. The theoretical and numerical predictions are in good agreement with one-dimensional small-scale laboratory experiment. As the theory is simple to apply with analytical solutions and numerical computation, we propose some applications to simulate the long-profile evolution of field reservoirs and focus on the infill sediment deposit volume resulting the uplift of near-dam bottom elevation. These field reservoirs introduced here are Wushe Reservoir, Tsengwen Reservoir, Mudan Reservoir in Taiwan, Lago Dos Bocas in Puerto Rico, and Sakuma Dam in Japan.

  18. [Research progress on phosphorus budgets and regulations in reservoirs].

    Science.gov (United States)

    Shen, Xiao; Li, Xu; Zhang, Wang-shou

    2014-12-01

    Phosphorus is an important limiting factor of water eutrophication. A clear understanding of its budget and regulated method is fundamental for reservoir ecological health. In order to pro- mote systematic research further and improve phosphorus regulation system, the budget balance of reservoir phosphorus and its influencing factors were concluded, as well as conventional regulation and control measures. In general, the main phosphorus sources of reservoirs include upstream input, overland runoff, industrial and domestic wastewater, aquaculture, atmospheric deposition and sediment release. Upstream input is the largest phosphorus source among them. The principal output path of phosphorus is the flood discharge, the emission load of which is mainly influenced by drainage patterns. In addition, biological harvest also can export a fraction of phosphorus. There are some factors affecting the reservoir phosphorus balance, including reservoirs' function, hydrological conditions, physical and chemical properties of water, etc. Therefore, the phosphorus budgets of different reservoirs vary greatly, according to different seasons and regions. In order to reduce the phosphorus loading in reservoirs, some methods are carried out, including constructed wetlands, prefix reservoir, sediment dredging, biomanipulation, etc. Different methods need to be chosen and combined according to different reservoirs' characteristics and water quality management goals. Thus, in the future research, it is reasonable to highlight reservoir ecological characteristics and proceed to a complete and systematic analysis of the inherent complexity of phosphorus budget and its impact factors for the reservoirs' management. Besides, the interaction between phosphorus budget and other nutrients in reservoirs also needs to be conducted. It is fundamental to reduce the reservoirs' phosphorus loading to establish a scientific and improved management system based on those researches.

  19. Fish community and fisheries management of Brno Reservoir following revitalisation measures

    Czech Academy of Sciences Publication Activity Database

    Jurajda, Pavel; Adámek, Zdeněk; Valová, Zdenka; Janáč, Michal; Roche, Kevin Francis

    2015-01-01

    Roč. 64, č. 2 (2015), s. 112-122 ISSN 0139-7893 R&D Projects: GA ČR GBP505/12/G112 Institutional support: RVO:68081766 Keywords : biomanipulation * recreational reservoir * eutrophication Subject RIV: EG - Zoology Impact factor: 0.592, year: 2015

  20. A test of the Lake Habitat Survey method in Cleveland Reservoir ...

    African Journals Online (AJOL)

    However, there were significant differences in the number of macrophyte species and shoreline/riparian pressures between the two reservoirs. In conclusion, the use of the LHS can better enhance quality and reliability of lake hydromorphological assessments in tropical systems, where such an investigation is required to ...

  1. An ensemble-based method for constrained reservoir life-cycle optimization

    NARCIS (Netherlands)

    Leeuwenburgh, O.; Egberts, P.J.P.; Chitu, A.G.

    2015-01-01

    We consider the problem of finding optimal long-term (life-cycle) recovery strategies for hydrocarbon reservoirs by use of simulation models. In such problems the presence of operating constraints, such as for example a maximum rate limit for a group of wells, may strongly influence the range of

  2. Oil Reservoir Production Optimization using Optimal Control

    DEFF Research Database (Denmark)

    Völcker, Carsten; Jørgensen, John Bagterp; Stenby, Erling Halfdan

    2011-01-01

    Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using the adjo...... reservoir using water ooding and smart well technology. Compared to the uncontrolled case, the optimal operation increases the Net Present Value of the oil field by 10%.......Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using...

  3. Developing a TQM quality management method model

    OpenAIRE

    Zhang, Zhihai

    1997-01-01

    From an extensive review of total quality management literature, the external and internal environment affecting an organization's quality performance and the eleven primary elements of TQM are identified. Based on the primary TQM elements, a TQM quality management method model is developed. This model describes the primary quality management methods which may be used to assess an organization's present strengths and weaknesses with regard to its use of quality management methods. This model ...

  4. Modelling the impacts of altered management practices, land use and climate changes on the water quality of the Millbrook catchment-reservoir system in South Australia.

    Science.gov (United States)

    Nguyen, Hong Hanh; Recknagel, Friedrich; Meyer, Wayne; Frizenschaf, Jacqueline; Shrestha, Manoj Kumar

    2017-11-01

    Sustainable management of drinking water reservoirs requires taking into account the potential effects of their catchments' development. This study is an attempt to estimate the daily patterns of nutrients transport in the catchment - reservoir systems through the application of the ensemble of complementary models SWAT-SALMO. SWAT quantifies flow, nitrate and phosphate loadings originating in catchments before entering downstream reservoirs meanwhile SALMO determines phosphate, nitrate, and chlorophyll-a concentrations within the reservoirs. The study applies to the semi-arid Millbrook catchment-reservoir system that supplies drinking water to north-eastern suburbs of Adelaide, South Australia. The catchment hosts viti- and horticultural land uses. The warm-monomictic, mesotrophic reservoir is artificially aerated in summer. After validating the simulation results for both Millbrook catchment and reservoir, a comprehensive scenario analysis has been conducted to reveal cascading effects of altered management practices, land uses and climate conditions on water quality in the reservoir. Results suggest that the effect on reservoir condition in summer would be severe, most likely resulting in chlorophyll-a concentrations of greater than 40 μg/l if the artificial destratification was not applied from early summer. A 50% curbing of water diversion from an external pipeline to the catchment will slightly limit chlorophyll-a concentrations by 1.22% as an effect of reduced inflow phosphate loads. The simulation of prospective land use scenarios converting 50% of present pasture in the Millbrook catchment into residential and orchards areas indicates an increase of summer chlorophyll-a concentrations by 9.5-107.9%, respectively in the reservoir. Global warming scenarios based on the high emission simulated by SWAT-SALMO did result in earlier growth of chlorophyll-a but overall the effects on water quality in the Millbrook reservoir was not significant. However scenarios

  5. Evaluation of Management of Water Releases for Painted Rocks Reservoir, Bitterroot River, Montana, 1983-1986, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Spoon, Ronald L. (Montana Department of Fish, Wildlife and Parks, Missoula, MT)

    1987-06-01

    This study was initiated in July, 1983 to develop a water management plan for the release of water purchased from Painted Rocks Reservoir. Releases were designed to provide optimum benefits to the Bitterroot River fishery. Fisheries, habitat, and stream flow information was gathered to evaluate the effectiveness of these supplemental releases in improving trout populations in the Bitterroot River. The study was part of the Northwest Power Planning Council's Fish and Wildlife Program and was funded by the Bonneville Power Administration. This report presents data collected from 1983 through 1986.

  6. Considerations in Managing the Fill Rate of the Grand Ethiopian Renaissance Dam Reservoir Using a System Dynamics Approach.

    Science.gov (United States)

    Keith, Bruce; Ford, David N.; Horton, Radley M.

    2016-01-01

    The purpose of this study is to evaluate simulated fill rate scenarios for the Grand Ethiopian Renaissance Dam while taking into account plausible climate change outcomes for the Nile River Basin. The region lacks a comprehensive equitable water resource management strategy, which creates regional security concerns and future possible conflicts. We employ climate estimates from 33 general circulation models within a system dynamics model as a step in moving toward a feasible regional water resource management strategy. We find that annual reservoir fill rates of 8-15% are capable of building hydroelectric capacity in Ethiopia while concurrently ensuring a minimum level of stream flow disruption into Egypt before 2039. Insofar as climate change estimates suggest a modest average increase in stream flow into the Aswan, climate changes through 2039 are unlikely to affect the fill rate policies. However, larger fill rates will have a more detrimental effect on stream flow into the Aswan, particularly beyond a policy of 15%. While this study demonstrates that a technical solution for reservoir fill rates is feasible, the corresponding policy challenge is political. Implementation of water resource management strategies in the Nile River Basin specifically and Africa generally will necessitate a national and regional willingness to cooperate.

  7. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.

    1995-02-01

    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  8. Statistical methods for nuclear material management

    International Nuclear Information System (INIS)

    Bowen, W.M.; Bennett, C.A.

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems

  9. Statistical methods for nuclear material management

    Energy Technology Data Exchange (ETDEWEB)

    Bowen W.M.; Bennett, C.A. (eds.)

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems.

  10. Managing Injected Water Composition To Improve Oil Recovery: A Case Study of North Sea Chalk Reservoirs

    DEFF Research Database (Denmark)

    Zahid, Adeel; Shapiro, Alexander; Stenby, Erling Halfdan

    2012-01-01

    imbibition, which has been applied in most of the previous studies. Two different flooding schemes (with and without aging) were used for flooding North Sea reservoir chalk samples. For comparison, two tests were also carried out with Stevns Klint core plugs. The flooding tests were carried out...... composition but also the formation water composition affected the oil recovery at high temperatures from the Stevns Klint chalk rock....

  11. Management diplomacy: myths and methods.

    Science.gov (United States)

    Pierpaoli, P G

    1987-02-01

    The importance of a manager's ability to tolerate and overcome ambiguity is discussed in relation to achieving excellence in hospital pharmacy management. Health-care programming and policy in the 1980s are shaped largely by financing and increased corporate control; in this environment, hospital pharmacy managers face new definitions of excellence in management. Today's director of pharmacy must be "bilingual" in a sense, since he or she must effectively relate to the hospital's corporate administration on the one hand and the professional staff and patients on the other. The hallmark of excellence in a modern director of pharmacy is the ability to tolerate and overcome ambiguity that arises from both of these sources. Ambiguity may be rooted in issues external to the pharmacy department, including structural or organizational barriers that distort power and authority, the gap between professional values and bureaucratic expectations of behavioral norms, the potential for encroachment on professional boundaries, and the difficulties associated with establishing the effectiveness of clinical pharmaceutical services. Intradepartmental ambiguity may be rooted in structural flaws in departmental organization coupled with inappropriate management styles. If the pharmacy profession is to cope effectively with mounting ambiguity, a theory of clinical systems and practice management will have to be developed. This will require the knowledge, skills, and leadership of "bilingual" directors of pharmacy.

  12. A multi-reservoir based water-hydroenergy management model for identifying the risk horizon of regional resources-energy policy under uncertainties

    International Nuclear Information System (INIS)

    Zeng, X.T.; Zhang, S.J.; Feng, J.; Huang, G.H.; Li, Y.P.; Zhang, P.; Chen, J.P.; Li, K.L.

    2017-01-01

    Highlights: • A multi-reservoir system can handle water/energy deficit, flood and sediment damage. • A MWH model is developed for planning a water allocation and energy generation issue. • A mixed fuzzy-stochastic risk analysis method (MFSR) can handle uncertainties in MWH. • A hybrid MWH model can plan human-recourse-energy with a robust and effective manner. • Results can support adjusting water-energy policy to satisfy increasing demands. - Abstract: In this study, a multi-reservoir based water-hydroenergy management (MWH) model is developed for planning water allocation and hydroenergy generation (WAHG) under uncertainties. A mixed fuzzy-stochastic risk analysis method (MFSR) is introduced to handle objective and subjective uncertainties in MWH model, which can couple fuzzy credibility programming and risk management within a general two-stage context, with aim to reflect the infeasibility risks between expected targets and random second-stage recourse costs. The developed MWH model (embedded by MFSR method) can be applied to a practical study of WAHG issue in Jing River Basin (China), which encounters conflicts between human activity and resource/energy crisis. The construction of water-energy nexus (WEN) is built to reflect integrity of economic development and resource/energy conservation, as well as confronting natural and artificial damages such as water deficit, electricity insufficient, floodwater, high sedimentation deposition contemporarily. Meanwhile, the obtained results with various credibility levels and target-violated risk levels can support generating a robust plan associated with risk control for identification of the optimized water-allocation and hydroenergy-generation alternatives, as well as flood controls. Moreover, results can be beneficial for policymakers to discern the optimal water/sediment release routes, reservoirs’ storage variations (impacted by sediment deposition), electricity supply schedules and system benefit

  13. A method and system for power management

    NARCIS (Netherlands)

    Burchard, Arthur Tadeusz; Goossens, Koos Gerard Willen; Milutinovic, A.; Molnos, Anca Mariana; Steffens, Elisabeth Francisca Maria

    2009-01-01

    A method and system for power management is provided. To control power supplied to a second electronic device (106), an electronic system (100) comprises a power management subsystem (110), a first electronic device (102); The power management subsystem (110) monitors the power consumed by the first

  14. Decoherence of Two-qubits Coupled with Reservoirs Studied with New Ket-Bra Entangled State Method

    Science.gov (United States)

    Ren, Yi-Chong; Fan, Hong-Yi

    2016-04-01

    For the first time we define a so-called Ket-Bra Entangled State (KBES) for two-qubits coupled with reservoirs by introduce an extra fictitious mode vector, and convert the corresponding master equation into Schrödinger-like equation by virtue of this state. Via this approach we concisely obtain the dynamic evolution of two uncoupled qubits each immersed in local thermal noise. Based on this, the decoherence evolution for the extended Werner-like states is derived and how purity and temperature influence the concurrence is analyzed. This KBES method may also be applied to tackling master equations of limited atomic level systems.

  15. Integrated method to optimize well connection and platform placement on a multi-reservoir scenario

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Sergio Henrique Guerra de; Madeira, Marcelo Gomes; Franca, Martha Salles [Halliburton, Rio de Janeiro, RJ (Brazil); Mota, Rosane Oliveira; Silva, Edilon Ribeiro da; King, Vanessa Pereira Spear [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    This paper describes a workflow created to optimize the platform placement and well-platform connections on a multi reservoir scenario using an integrated reservoir simulator paired with an optimization engine. The proposed methodology describes how a new platform, being incorporated into a pre-existing asset, can be better used to develop newly-discovered fields, while helping increase the production of existing fields by sharing their production load. The sharing of production facilities is highly important in Brazilian offshore assets because of their high price (a few billion dollars per facility) and the fact that total production is usually limited to the installed capacity of liquid processing, which is an important constraint on high water-cut well production rates typical to this region. The case study asset used to present the workflow consists of two deep water oil fields, each one developed by its own production platform, and a newly-discovered field with strong aquifer support that will be entirely developed with a new production platform. Because this new field should not include injector wells owing to the strong aquifer presence, the idea is to consider reconnecting existing wells from the two pre-existing fields to better use the production resources. In this scenario, the platform location is an important optimization issue, as a balance between supporting the production of the planned wells on the new field and the production of re-routed wells from the existing fields must be reached to achieve improved overall asset production. If the new platform is too far away from any interconnected production well, pressure-drop issues along the pipeline might actually decrease production from the existing fields rather than augment it. The main contribution of this work is giving the reader insights on how to model and optimize these complex decisions to generate high-quality scenarios. (author)

  16. A new method in predicting productivity of multi-stage fractured horizontal well in tight gas reservoirs

    Directory of Open Access Journals (Sweden)

    Yunsheng Wei

    2016-10-01

    Full Text Available The generally accomplished technique for horizontal wells in tight gas reservoirs is by multi-stage hydraulic fracturing, not to mention, the flow characteristics of a horizontal well with multiple transverse fractures are very intricate. Conventional methods, well as an evaluation unit, are difficult to accurately predict production capacity of each fracture and productivity differences between wells with a different number of fractures. Thus, a single fracture sets the minimum evaluation unit, matrix, fractures, and lateral wellbore model that are then combined integrally to approximate horizontal well with multiple transverse hydraulic fractures in tight gas reservoirs. This paper presents a new semi-analytical methodology for predicting the production capacity of a horizontal well with multiple transverse hydraulic fractures in tight gas reservoirs. Firstly, a mathematical flow model used as a medium, which is disturbed by finite conductivity vertical fractures and rectangular shaped boundaries, is established and explained by the Fourier integral transform. Then the idea of a single stage fracture analysis is incorporated to establish linear flow model within a single fracture with a variable rate. The Fredholm integral numerical solution is applicable for the fracture conductivity function. Finally, the pipe flow model along the lateral wellbore is adapted to couple multi-stages fracture mathematical models, and the equation group of predicting productivity of a multi-stage fractured horizontal well. The whole flow process from the matrix to bottom-hole and production interference between adjacent fractures is also established. Meanwhile, the corresponding iterative algorithm of the equations is given. In this case analysis, the productions of each well and fracture are calculated under the different bottom-hole flowing pressure, and this method also contributes to obtaining the distribution of pressure drop and production for every

  17. Game theory and fuzzy programming approaches for bi-objective optimization of reservoir watershed management: a case study in Namazgah reservoir.

    Science.gov (United States)

    Üçler, N; Engin, G Onkal; Köçken, H G; Öncel, M S

    2015-05-01

    In this study, game theory and fuzzy programming approaches were used to balance economic and environmental impacts in the Namazgah reservoir, Turkey. The main goals identified were to maximize economic benefits of land use and to protect water quality of reservoir and land resources. Total phosphorous load (kg ha(-1) year(-1)) and economic income (USD ha(-1) year(-1)) from land use were determined as environmental value and economic value, respectively. The surface area of existing land use types, which are grouped under 10 headings according to the investigations on the watershed area, and the constraint values for the watershed were calculated using aerial photos, master plans, and basin slope map. The results of fuzzy programming approach were found to be very close to the results of the game theory model. It was concluded that the amount of fertilizer used in the current situation presents a danger to the reservoir and, therefore, unnecessary fertilizer use should be prevented. Additionally, nuts, fruit, and vegetable cultivation, instead of wheat and corn cultivation, was found to be more suitable due to their high economic income and low total phosphorus (TP) load. Apart from agricultural activities, livestock farming should also be considered in the area as a second source of income. It is believed that the results obtained in this study will help decision makers to identify possible problems of the watershed.

  18. Heat Extraction Project, geothermal reservoir engineering research at Stanford

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.

    1989-01-01

    The main objective of the SGP Heat Extraction Project is to provide a means for estimating the thermal behavior of geothermal fluids produced from fractured hydrothermal resources. The methods are based on estimated thermal properties of the reservoir components, reservoir management planning of production and reinjection, and the mixing of reservoir fluids: geothermal, resource fluid cooled by drawdown and infiltrating groundwater, and reinjected recharge heated by sweep flow through the reservoir formation. Several reports and publications, listed in Appendix A, describe the development of the analytical methods which were part of five Engineer and PhD dissertations, and the results from many applications of the methods to achieve the project objectives. The Heat Extraction Project is to evaluate the thermal properties of fractured geothermal resource and forecasted effects of reinjection recharge into operating reservoirs.

  19. 75 FR 6257 - Watts Bar Reservoir Land Management Plan, Loudon, Meigs, Rhea, and Roane Counties, TN

    Science.gov (United States)

    2010-02-08

    ... impacts that could occur. Comments expressed concerns about the importance of water quality and... recommended that a 100-foot-buffer strip of natural vegetation and ground cover be retained between the... management buffer zones of 50 feet are established on qualifying shoreline access approvals when TVA-managed...

  20. Spatial analysis in recreation resource management for the Berlin Lake Reservoir Project

    Science.gov (United States)

    Edwardo, H. A.; Koryak, M.; Miller, M. S.; Wilson, H.; Merry, C. J.

    1984-01-01

    Spatial analysis of geographic information systems and the acquisition and use of remotely-sensed data within the U.S. Army Corps of Engineers is an emerging Technology Work units have been developed under te Remote Sensing Research and Development Program, which are most relevant to the productive needs of the Corps in both the military and civil works missions. Corps participation in the SPOT simulation champaign is one such example of this research. This paper describes the application of spatial analysis and remote sensing in recreation resource managmaster planning at the Berlin Lake Reservoir Project within the Pittsburgh District. SPOT simulator data was acquired over Berlin Lake, Site No. 10, on July 8, 1983. The first part of this paper describes the background of the U.S. Army Corps of Engineers and the Berlin Lake project, the geographic information system being developed, and the planned use of SPOT and similar data. The remainder of the paper describes the results on an analysis of the simulated SPOT data conducted at the NASA Goddard Institut for Space Studies.

  1. Comparison of moisture management methods for the ...

    African Journals Online (AJOL)

    Different moisture management methods were compared for biodegradation efficiency in sandy and organic soils. The conventional method consisted in maintaining the soil moisture at approximately 50 to 75% field capacity accompanied by daily aeration and mixing. In the test method, the soil was allowed to dry out ...

  2. A two-stage method of quantitative flood risk analysis for reservoir real-time operation using ensemble-based hydrologic forecasts

    Science.gov (United States)

    Liu, P.

    2013-12-01

    Quantitative analysis of the risk for reservoir real-time operation is a hard task owing to the difficulty of accurate description of inflow uncertainties. The ensemble-based hydrologic forecasts directly depict the inflows not only the marginal distributions but also their persistence via scenarios. This motivates us to analyze the reservoir real-time operating risk with ensemble-based hydrologic forecasts as inputs. A method is developed by using the forecast horizon point to divide the future time into two stages, the forecast lead-time and the unpredicted time. The risk within the forecast lead-time is computed based on counting the failure number of forecast scenarios, and the risk in the unpredicted time is estimated using reservoir routing with the design floods and the reservoir water levels of forecast horizon point. As a result, a two-stage risk analysis method is set up to quantify the entire flood risks by defining the ratio of the number of scenarios that excessive the critical value to the total number of scenarios. The China's Three Gorges Reservoir (TGR) is selected as a case study, where the parameter and precipitation uncertainties are implemented to produce ensemble-based hydrologic forecasts. The Bayesian inference, Markov Chain Monte Carlo, is used to account for the parameter uncertainty. Two reservoir operation schemes, the real operated and scenario optimization, are evaluated for the flood risks and hydropower profits analysis. With the 2010 flood, it is found that the improvement of the hydrologic forecast accuracy is unnecessary to decrease the reservoir real-time operation risk, and most risks are from the forecast lead-time. It is therefore valuable to decrease the avarice of ensemble-based hydrologic forecasts with less bias for a reservoir operational purpose.

  3. A New Tree-Type Fracturing Method for Stimulating Coal Seam Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Qian Li

    2017-09-01

    Full Text Available Hydraulic fracturing is used widely to stimulate coalbed methane production in coal mines. However, some factors associated with conventional hydraulic fracturing, such as the simple morphology of the fractures it generates and inhomogeneous stress relief, limit its scope of application in coal mines. These problems mean that gas extraction efficiency is low. Conventional fracturing may leave hidden pockets of gas, which will be safety hazards for subsequent coal mining operations. Based on a new drilling technique applicable to drilling boreholes in coal seams, this paper proposes a tree-type fracturing technique for stimulating reservoir volumes. Tree-type fracturing simulation experiments using a large-scale triaxial testing apparatus were conducted in the laboratory. In contrast to the single hole drilled for conventional hydraulic fracturing, the tree-type sub-boreholes induce radial and tangential fractures that form complex fracture networks. These fracture networks can eliminate the “blank area” that may host dangerous gas pockets. Gas seepage in tree-type fractures was analyzed, and gas seepage tests after tree-type fracturing showed that permeability was greatly enhanced. The equipment developed for tree-type fracturing was tested in the Fengchun underground coal mine in China. After implementing tree-type fracturing, the gas extraction rate was around 2.3 times greater than that for traditional fracturing, and the extraction rate remained high for a long time during a 30-day test. This shortened the gas drainage time and improved gas extraction efficiency.

  4. Waterproofing with polymeric geo synthetic barriers (GBR-P) in the manual for the design, construction, management and maintenance of reservoirs

    International Nuclear Information System (INIS)

    Blanco, M.; Cea, J. C.; Garcia, F.; Sanchez, F. J.; Castillo, F.; Mora, J.; Crespo, M. A.

    2010-01-01

    This article presents a part of Manual for the Design, Construction, Management and Maintenance of Reservoirs relative to waterproofing with Polymeric Geo synthetic Barriers (GBR-P). the nature materials of geo membranes is studied also theirs characteristics and specifications. (Author) 26 refs.

  5. Developing a TQM quality management method model

    NARCIS (Netherlands)

    Zhang, Zhihai

    1997-01-01

    From an extensive review of total quality management literature, the external and internal environment affecting an organization's quality performance and the eleven primary elements of TQM are identified. Based on the primary TQM elements, a TQM quality management method model is developed. This

  6. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Quarterly technical progress report, September 13--December 12, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The eighteen 10-acre infill wells which were drilled as part of the field demonstration portion of the project are all currently in service with no operational problems. These wells consist of fourteen producing wells and four injection wells. The producing wells are currently producing a total of approximately 450 bopd, down from a peak rate of 900 bopd. Unit production is currently averaging approximately 2,700 bopd, 12,000 bwpd and 18,000 bwipd. The paper describes progress on hydraulic fracture design, reservoir surveillance, data analysis procedures, and deterministic modeling and simulation.

  7. Applications of stable isotopes and radioisotopes in the exploration and reservoir management of Philippine geothermal fields

    International Nuclear Information System (INIS)

    Ferrer, H.P.; Alvis-Isidro, R.R.

    1996-01-01

    The development of indigenous geothermal energy resources is currently one of the primary thrusts of the country's energy program. Presently, the Philippines has a total of geothermal generating capacity of about 1400 MWe. This comprises about 20% of the total energy mix and electricity requirements of the country. By 1998, an additional capacity of about 500 MWe will be commissioned, and the PHilippines would be generating 1900 MWe of electricity from geothermal energy resources. From 1990 to 1993, PNOC EDC (Philippine National Oil Company, Energy Development Corporation) has been granted a research contract by the International Atomic Energy Agency (IAEA). The Company has also been a recipient since 1991 of an IAEA Technical Assistance on the use of stable isotope techniques in geothermal hydrology. Stable isotopes, particularly 18 O and 2 H, in conjunction with other geochemical parameters and geological and geophysical data, have been used to: a) establish the local meteoric water line; b) determine the origin of geothermal fluids; c) delineate the elevation of recharge of geothermal and ground water systems; d) confirm pre-exploitation hydrochemical models; e) identify physical and chemical processes due to exploitation of the geothermal resource (i.e. reinjection fluid returns, incursion of cold meteoric water, boiling due to pressure drawdown and mixing with acidic steam condensates); and, f) estimate reservoir temperatures. Techniques using radioisotopes, such as 14 C, have also been used for the age-dating of charred wood samples collected from some of our geothermal exploration areas. The detection of 3 H has also been used as an indicator for the incursion of recent cold meteoric water into the geothermal system. Tracer studies using 131 I, have also been previously carried out, in coordination with the Philippine Nuclear Research Institute, to determine local hydrology and flow paths of reinjected water in some of our geothermal fields

  8. Agricultural non-point source pollution management in a reservoir watershed based on ecological network analysis of soil nitrogen cycling.

    Science.gov (United States)

    Xu, Wen; Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Li, Chunhui; Wang, Xuan

    2018-03-01

    The Miyun Reservoir plays a pivotal role in providing drinking water for the city of Beijing. In this research, ecological network analysis and scenario analysis were integrated to explore soil nitrogen cycling of chestnut and Chinese pine forests in the upper basin of the Miyun Reservoir, as well as to seek favorable fertilization modes to reduce agricultural non-point source pollution. Ecological network analysis results showed that (1) the turnover time was 0.04 to 0.37 year in the NH 4 + compartment and were 15.78 to 138.36 years in the organic N compartment; (2) the Finn cycling index and the ratio of indirect to direct flow were 0.73 and 11.92 for the chestnut forest model, respectively. Those of the Chinese pine forest model were 0.88 and 29.23, respectively; and (3) in the chestnut forest model, NO 3 - accounted for 96% of the total soil nitrogen loss, followed by plant N (2%), NH 4 + (1%), and organic N (1%). In the Chinese pine forest, NH 4 + accounted for 56% of the total soil nitrogen loss, followed by organic N (34%) and NO 3 - (10%). Fertilization mode was identified as the main factor affecting soil N export. To minimize NH 4 + and NO 3 - outputs while maintaining the current plant yield (i.e., 7.85e0 kg N/year), a fertilization mode of 162.50 kg N/year offered by manure should be adopted. Whereas, to achieve a maximum plant yield (i.e., 3.35e1 kg N/year) while reducing NH 4 + and NO 3 - outputs, a fertilization mode of 325.00 kg N/year offered by manure should be utilized. This research is of wide suitability to support agricultural non-point source pollution management at the watershed scale.

  9. Constructing development and integrated coastal zone management in the conditions of the landslide slopes of Cheboksary water reservoir (Volga River)

    Science.gov (United States)

    Nikonorova, I. V.

    2018-01-01

    Uncontrolled construction and insufficient accounting of engineering-geological and hydro-geological conditions of the coastal zone, intensified technogenic impact on sloping surfaces and active urbanization led to the emergence of serious problems and emergency situations on the coasts of many Volga reservoirs, including the Cheboksary reservoir, within Cheboksary urban district and adjacent territories of Chuvashia. This article is devoted to substantiation of the possibility of rational construction development of landslide slopes of the Cheboksary water reservoir.

  10. Method for determining formation quality factor from well log data and its application to seismic reservoir characterization

    Science.gov (United States)

    Walls, Joel; Taner, M. Turhan; Dvorkin, Jack

    2006-08-08

    A method for seismic characterization of subsurface Earth formations includes determining at least one of compressional velocity and shear velocity, and determining reservoir parameters of subsurface Earth formations, at least including density, from data obtained from a wellbore penetrating the formations. A quality factor for the subsurface formations is calculated from the velocity, the density and the water saturation. A synthetic seismogram is calculated from the calculated quality factor and from the velocity and density. The synthetic seismogram is compared to a seismic survey made in the vicinity of the wellbore. At least one parameter is adjusted. The synthetic seismogram is recalculated using the adjusted parameter, and the adjusting, recalculating and comparing are repeated until a difference between the synthetic seismogram and the seismic survey falls below a selected threshold.

  11. Comment on “Short-term combined economic emission scheduling of hydrothermal power systems with cascaded reservoirs using differential evolution” by K.K. Mandal and N. Chakaborty [Energy Convers. Manage. 50 (2009) 97–104

    International Nuclear Information System (INIS)

    Ahmadi, Abdollah; Nezhad, Ali Esmaeel

    2015-01-01

    This paper discusses the short-term combined economic emission scheduling of hydrothermal power systems with cascaded reservoirs [Energy Convers Manage. 50 (2009) 97–104], while differential evolution algorithm has been employed to solve the optimization problem. However, this problem is subjected to several constraints like the generation limitations of generating units. The solutions reported in the original paper do not satisfy the constraint on the initial and final reservoir storage volumes of hydro units as well as the constraint on the generated power by such units, which should be positive at any time of the scheduling period. Thus, this paper intends to prove this issue and solve the problem using Normal Boundary Intersection (NBI) method, in order to propose the correct solutions satisfying all the constraints of the short-term hydrothermal scheduling problem

  12. From Hydroclimatic Prediction to Negotiated and Risk Managed Water Allocation and Reservoir Operation (Invited)

    Science.gov (United States)

    Lall, U.

    2013-12-01

    The availability of long lead climate forecasts that can in turn inform streamflow, agricultural, ecological and municipal/industrial and energy demands provides an opportunity for innovations in water resources management that go beyond the current practices and paradigms. In a practical setting, managers seek to meet registered demands as well as they can. Pricing mechanisms to manage demand are rarely invoked. Drought restrictions and operations are implemented as needed, and pressures from special interest groups are sometimes accommodated through a variety of processes. In the academic literature, there is a notion that demand curves for different sectors could be established and used for "optimal management". However, the few attempts to implement such ideas have invariably failed as elicitation of demand elasticity and socio-political factors is imperfect at best. In this talk, I will focus on what is worth predicting and for whom and how operational risks for the water system can be securitized while providing a platform for priced and negotiated allocation of the resources in the presence of imperfect forecasts. The possibility of a national or regional market for water contracts as part of the framework is explored, and its potential benefits and pitfalls identified.

  13. Comparison of two methods for detection of fecal indicator bacteria used in water quality monitoring of the Three Gorges Reservoir.

    Science.gov (United States)

    Wang, Zhaodan; Xiao, Guosheng; Zhou, Nong; Qi, Wenhua; Han, Lin; Ruan, Yu; Guo, Dongqin; Zhou, Hong

    2015-12-01

    Scientifically sound methods to rapidly measure fecal indicator bacteria are important to ensure safe water for drinking and recreational purposes. A total of 200 water samples obtained from the Three Gorges Reservoir during three successive one-year study periods (October 2009 to September 2012) were analyzed using multiple-tube fermentation (MTF) and most probable numbers combined with polymerase chain reaction (MPN-PCR). The MPN-PCR method was found to be significantly more sensitive than the MTF method for detecting Escherichia coli and Enterococcus spp., and of equal sensitivity for detecting total coliforms when all surface water samples were grouped together. The two analytical methods had a strong, significant relationship, but MPN-PCR took only 12-18hr, compared with the 3-8days needed using the MTF method. Bacterial concentrations varied per sampling site but were significantly lower in the mainstream of the Yangtze River than those in the backwater areas of tributaries. The water quality of 85.8% of water samples from the mainstream was suitable for use as a centralized potable water source, while the water quality of 52.5% of water samples from the backwater areas was unsuitable for recreational activities. Relationships between fecal indicator bacteria showed significant correlation (r=0.636-0.909, pcoliforms, E. coli, and Enterococcus spp. in surface water. Copyright © 2015. Published by Elsevier B.V.

  14. Constrained genetic algorithms for optimizing multi-use reservoir operation

    Science.gov (United States)

    Chang, Li-Chiu; Chang, Fi-John; Wang, Kuo-Wei; Dai, Shin-Yi

    2010-08-01

    To derive an optimal strategy for reservoir operations to assist the decision-making process, we propose a methodology that incorporates the constrained genetic algorithm (CGA) where the ecological base flow requirements are considered as constraints to water release of reservoir operation when optimizing the 10-day reservoir storage. Furthermore, a number of penalty functions designed for different types of constraints are integrated into reservoir operational objectives to form the fitness function. To validate the applicability of this proposed methodology for reservoir operations, the Shih-Men Reservoir and its downstream water demands are used as a case study. By implementing the proposed CGA in optimizing the operational performance of the Shih-Men Reservoir for the last 20 years, we find this method provides much better performance in terms of a small generalized shortage index (GSI) for human water demands and greater ecological base flows for most of the years than historical operations do. We demonstrate the CGA approach can significantly improve the efficiency and effectiveness of water supply capability to both human and ecological base flow requirements and thus optimize reservoir operations for multiple water users. The CGA can be a powerful tool in searching for the optimal strategy for multi-use reservoir operations in water resources management.

  15. Gravity observations for hydrocarbon reservoir monitoring

    OpenAIRE

    Glegola, M.A.

    2013-01-01

    In this thesis the added value of gravity observations for hydrocarbon reservoir monitoring and characterization is investigated. Reservoir processes and reservoir types most suitable for gravimetric monitoring are identified. Major noise sources affecting time-lapse gravimetry are analyzed. The added value of gravity data for reservoir monitoring and characterization is analyzed within closed-loop reservoir management concept. Synthetic 2D and 3D numerical experiments are performed where var...

  16. Manage Short-term Flood Events and Long-term Water Needs via Reservoir Operation: A Risk Analysis Study

    Science.gov (United States)

    Cheng, W.; Hsu, N.; Wei, C.; Cheng, W.

    2010-12-01

    This study proposes a methodology to assess the risk of the water shortage during a drought period and the risk of the downstream over-levee flows during a flood period based on the reservoir operation rules for flood control. These rules are defined by upper limits (or flood control storage zone).Through a Monte Carlo simulation, a series of hydrographs are generated to represent the reservoir inflow during a flood period based on historic typhoon events. This series of generated hydrographs are then applied to a reservoir flood operation simulation model. The simulation model calculates the water levels of reservoir at the end of a flood period and the reservoir release during the typhoon the events. Reservoir release is used to calculate the water level at downstream control locations for evaluation of a short-term over-levee risk. The ending water level of the reservoir is used as the initial condition for a water distribution optimization model that evaluates drought conditions for long-term water supply. By applying risk analysis, an assessment is made on the risk of both the water shortage during a drought and over-levee flows during flooding seasons. Based on the results of the risk analysis, we evaluate the relationship among upper-limit sets, shortage risk, and over-levee risk and also provide reservoir operation suggestions based on the risk evaluation.

  17. Ensemble methods for reservoir life-cycle optimzation and well placement

    NARCIS (Netherlands)

    Leeuwenburgh, O.; Egberts, P.J.P.; Abbink, O.A.

    2010-01-01

    Several simple examples are presented that demonstrate the application of an ensemble-based method to production optimization. In particular, some practical aspects of the method such as ensemble size, perturbation, regularization and smoothing, and robust gradient estimation are discussed by

  18. An Efficient Upscaling Procedure Based on Stokes-Brinkman Model and Discrete Fracture Network Method for Naturally Fractured Carbonate Karst Reservoirs

    KAUST Repository

    Qin, Guan

    2010-01-01

    Naturally-fractured carbonate karst reservoirs are characterized by various-sized solution caves that are connected via fracture networks at multiple scales. These complex geologic features can not be fully resolved in reservoir simulations due to the underlying uncertainty in geologic models and the large computational resource requirement. They also bring in multiple flow physics which adds to the modeling difficulties. It is thus necessary to develop a method to accurately represent the effect of caves, fractures and their interconnectivities in coarse-scale simulation models. In this paper, we present a procedure based on our previously proposed Stokes-Brinkman model (SPE 125593) and the discrete fracture network method for accurate and efficient upscaling of naturally fractured carbonate karst reservoirs.

  19. Play-level distributions of estimates of recovery factors for a miscible carbon dioxide enhanced oil recovery method used in oil reservoirs in the conterminous United States

    Science.gov (United States)

    Attanasi, E.D.; Freeman, P.A.

    2016-03-02

    In a U.S. Geological Survey (USGS) study, recovery-factor estimates were calculated by using a publicly available reservoir simulator (CO2 Prophet) to estimate how much oil might be recovered with the application of a miscible carbon dioxide (CO2) enhanced oil recovery (EOR) method to technically screened oil reservoirs located in onshore and State offshore areas in the conterminous United States. A recovery factor represents the percentage of an oil reservoir’s original oil in place estimated to be recoverable by the application of a miscible CO2-EOR method. The USGS estimates were calculated for 2,018 clastic and 1,681 carbonate candidate reservoirs in the “Significant Oil and Gas Fields of the United States Database” prepared by Nehring Associates, Inc. (2012).

  20. Analysis for pressure transient of coalbed methane reservoir based on Laplace transform finite difference method

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2015-09-01

    Full Text Available Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare with the results from the analytical method, the result from Laplace transform finite difference method turns out to be accurate. The influence factors are analyzed, including fractal dimension, fractal index, skin factor, well bore storage coefficient, energy storage ratio, interporosity flow coefficient and the adsorption factor. The calculating error of Laplace transform difference method is small. Laplace transform difference method has advantages in well-test application since any moment simulation does not rely on other moment results and space grid.

  1. Automated Traffic Management System and Method

    Science.gov (United States)

    Glass, Brian J. (Inventor); Spirkovska, Liljana (Inventor); McDermott, William J. (Inventor); Reisman, Ronald J. (Inventor); Gibson, James (Inventor); Iverson, David L. (Inventor)

    2000-01-01

    A data management system and method that enables acquisition, integration, and management of real-time data generated at different rates, by multiple heterogeneous incompatible data sources. The system achieves this functionality by using an expert system to fuse data from a variety of airline, airport operations, ramp control, and air traffic control tower sources, to establish and update reference data values for every aircraft surface operation. The system may be configured as a real-time airport surface traffic management system (TMS) that electronically interconnects air traffic control, airline data, and airport operations data to facilitate information sharing and improve taxi queuing. In the TMS operational mode, empirical data shows substantial benefits in ramp operations for airlines, reducing departure taxi times by about one minute per aircraft in operational use, translating as $12 to $15 million per year savings to airlines at the Atlanta, Georgia airport. The data management system and method may also be used for scheduling the movement of multiple vehicles in other applications, such as marine vessels in harbors and ports, trucks or railroad cars in ports or shipping yards, and railroad cars in switching yards. Finally, the data management system and method may be used for managing containers at a shipping dock, stock on a factory floor or in a warehouse, or as a training tool for improving situational awareness of FAA tower controllers, ramp and airport operators, or commercial airline personnel in airfield surface operations.

  2. Practical Methods for Information Security Risk Management

    Directory of Open Access Journals (Sweden)

    Cristian AMANCEI

    2011-01-01

    Full Text Available The purpose of this paper is to present some directions to perform the risk man-agement for information security. The article follows to practical methods through question-naire that asses the internal control, and through evaluation based on existing controls as part of vulnerability assessment. The methods presented contains all the key elements that concurs in risk management, through the elements proposed for evaluation questionnaire, list of threats, resource classification and evaluation, correlation between risks and controls and residual risk computation.

  3. Risk management method for small photovoltaic plants

    Directory of Open Access Journals (Sweden)

    Kirova Milena

    2016-09-01

    Full Text Available Risk management is necessary for achieving the goals of the organization. There are many methods, approaches, and instruments in the literature concerning risk management. However, these are often highly specialized and transferring them to a different field can prove difficult. Therefore, managers often face situations where they have no tools to use for risk management. This is the case with small photovoltaic plants (according to a definition by the Bulgarian State Energy and Water Regulatory Commission small applies to systems with a total installed power of 200 kWp. There are some good practices in the energy field for minimizing risks, but they offer only partial risk prevention and are not sufficient. Therefore a new risk management method needs to be introduced. Small photovoltaic plants offer plenty of advantages in comparison to the other renewable energy sources which makes risk management in their case more important. There is no classification of risks for the exploitation of small photovoltaic systems in the available literature as well as to what degree the damages from those risks could spread. This makes risk analysis and evaluation necessary for obtaining information which could aid taking decisions for improving risk management. The owner of the invested capital takes a decision regarding the degree of acceptable risk for his organization and it must be protected depending on the goals set. Investors in small photovoltaic systems need to decide to what degree the existing risks can influence the goals previously set, the payback of the investment, and what is the acceptable level of damages for the investor. The purpose of this work is to present a risk management method, which currently does not exist in the Bulgaria, so that the risks and the damages that could occur during the exploitation of small photovoltaic plants could be identified and the investment in such technology – justified.

  4. Method to form a barrier in a reservoir with a magnetorheological fluid

    NARCIS (Netherlands)

    Zitha, P.L.J.

    2003-01-01

    The invention relates to a method of winning oil from a source via a bored well, wherein a magnetorheological fluid is introduced into the source via the bored well to re duce the water content of the oil won. Oil drilling is resumed in the presence of a magnetic field, thereby increasing the oil

  5. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  6. Method to form a barrier in a reservoir with a magnetorheological fluid

    OpenAIRE

    Zitha, P.L.J.

    2003-01-01

    The invention relates to a method of winning oil from a source via a bored well, wherein a magnetorheological fluid is introduced into the source via the bored well to re duce the water content of the oil won. Oil drilling is resumed in the presence of a magnetic field, thereby increasing the oil yield and/or decreasing the water content of the drilled oil.

  7. Validation of qPCR Methods for the Detection of Mycobacterium in New World Animal Reservoirs

    OpenAIRE

    Housman, Genevieve; Malukiewicz, Joanna; Boere, Vanner; Grativol, Adriana D.; Pereira, Luiz Cezar M.; Silva, Ita de Oliveira e; Ruiz-Miranda, Carlos R.; Truman, Richard; Stone, Anne C.

    2015-01-01

    Zoonotic pathogens that cause leprosy (Mycobacterium leprae) and tuberculosis (Mycobacterium tuberculosis complex, MTBC) continue to impact modern human populations. Therefore, methods able to survey mycobacterial infection in potential animal hosts are necessary for proper evaluation of human exposure threats. Here we tested for mycobacterial-specific single- and multi-copy loci using qPCR. In a trial study in which armadillos were artificially infected with M. leprae, these techniques were ...

  8. Research on the calculation method of shale and tuff content: taking tuffaceous reservoirs of X depression in the Hailar–Tamtsag Basin as an example

    International Nuclear Information System (INIS)

    Liu, Sihui; Huang, Buzhou; Pan, Baozhi; Guo, Yuhang; Fang, Chunhui; Wang, Guiping; Sun, Fengxian; Qiu, Haibo; Jiang, Bici

    2015-01-01

    Shale content is known in reservoir evaluation as an important parameter in well logging. However, the log response characteristics are simultaneously affected by shale and tuff existing in tuffaceous sandstone reservoirs. Due to the fact that tuff content exerts an influence on the calculation of shale content, the former is equally important as the latter. Owing to the differences in the source and composition between shale and tuff, the calculation of tuff content using the same methods for shale content cannot meet the accuracy requirements of logging evaluation. The present study takes the tuffaceous reservoirs in the X depression of the Hailar–Tamtsag Basin as an example. The differences in the log response characteristics between shale and tuff are theoretically analyzed and verified using core analysis data. The tuff is then divided into fine- and coarse-grained fractions, according to the differences in the distribution of the radioactive elements, uranium, thorium and potassium. Next, a volume model suitable for tuffaceous sandstone reservoirs is established to include a sandstone matrix, shale, fine-grained tuff, coarse-grained tuff and pore. A comparison of three optimization algorithms shows that the particle swarm optimization (PSO) yields better calculation results with small mean errors. The resistivity differences among shale, fine-grained tuff and coarse-grained tuff are considered in the calculation of saturation. The water saturation of tuffaceous reservoirs is computed using the improved Poupon’s equation, which is suitable for tuffaceous sandstone reservoirs with low water salinity. The method is used in well Y, and is shown to have a good application effect. (paper)

  9. Reservoir characterisation by a binary level set method and adaptive multiscale estimation

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Lars Kristian

    2006-01-15

    The main focus of this work is on estimation of the absolute permeability as a solution of an inverse problem. We have both considered a single-phase and a two-phase flow model. Two novel approaches have been introduced and tested numerical for solving the inverse problems. The first approach is a multi scale zonation technique which is treated in Paper A. The purpose of the work in this paper is to find a coarse scale solution based on production data from wells. In the suggested approach, the robustness of an already developed method, the adaptive multi scale estimation (AME), has been improved by utilising information from several candidate solutions generated by a stochastic optimizer. The new approach also suggests a way of combining a stochastic and a gradient search method, which in general is a problematic issue. The second approach is a piecewise constant level set approach and is applied in Paper B, C, D and E. Paper B considers the stationary single-phase problem, while Paper C, D and E use a two-phase flow model. In the two-phase flow problem we have utilised information from both production data in wells and spatially distributed data gathered from seismic surveys. Due to the higher content of information provided by the spatially distributed data, we search solutions on a slightly finer scale than one typically does with only production data included. The applied level set method is suitable for reconstruction of fields with a supposed known facies-type of solution. That is, the solution should be close to piecewise constant. This information is utilised through a strong restriction of the number of constant levels in the estimate. On the other hand, the flexibility in the geometries of the zones is much larger for this method than in a typical zonation approach, for example the multi scale approach applied in Paper A. In all these papers, the numerical studies are done on synthetic data sets. An advantage of synthetic data studies is that the true

  10. Validation of qPCR Methods for the Detection of Mycobacterium in New World Animal Reservoirs

    Science.gov (United States)

    Housman, Genevieve; Malukiewicz, Joanna; Boere, Vanner; Grativol, Adriana D.; Pereira, Luiz Cezar M.; Silva, Ita de Oliveira e; Ruiz-Miranda, Carlos R.; Truman, Richard; Stone, Anne C.

    2015-01-01

    Zoonotic pathogens that cause leprosy (Mycobacterium leprae) and tuberculosis (Mycobacterium tuberculosis complex, MTBC) continue to impact modern human populations. Therefore, methods able to survey mycobacterial infection in potential animal hosts are necessary for proper evaluation of human exposure threats. Here we tested for mycobacterial-specific single- and multi-copy loci using qPCR. In a trial study in which armadillos were artificially infected with M. leprae, these techniques were specific and sensitive to pathogen detection, while more traditional ELISAs were only specific. These assays were then employed in a case study to detect M. leprae as well as MTBC in wild marmosets. All marmosets were negative for M. leprae DNA, but 14 were positive for the mycobacterial rpoB gene assay. Targeted capture and sequencing of rpoB and other MTBC genes validated the presence of mycobacterial DNA in these samples and revealed that qPCR is useful for identifying mycobacterial-infected animal hosts. PMID:26571269

  11. Validation of qPCR Methods for the Detection of Mycobacterium in New World Animal Reservoirs.

    Science.gov (United States)

    Housman, Genevieve; Malukiewicz, Joanna; Boere, Vanner; Grativol, Adriana D; Pereira, Luiz Cezar M; Silva, Ita de Oliveira; Ruiz-Miranda, Carlos R; Truman, Richard; Stone, Anne C

    2015-11-01

    Zoonotic pathogens that cause leprosy (Mycobacterium leprae) and tuberculosis (Mycobacterium tuberculosis complex, MTBC) continue to impact modern human populations. Therefore, methods able to survey mycobacterial infection in potential animal hosts are necessary for proper evaluation of human exposure threats. Here we tested for mycobacterial-specific single- and multi-copy loci using qPCR. In a trial study in which armadillos were artificially infected with M. leprae, these techniques were specific and sensitive to pathogen detection, while more traditional ELISAs were only specific. These assays were then employed in a case study to detect M. leprae as well as MTBC in wild marmosets. All marmosets were negative for M. leprae DNA, but 14 were positive for the mycobacterial rpoB gene assay. Targeted capture and sequencing of rpoB and other MTBC genes validated the presence of mycobacterial DNA in these samples and revealed that qPCR is useful for identifying mycobacterial-infected animal hosts.

  12. Life in the slow lane; biogeochemistry of biodegraded petroleum containing reservoirs and implications for energy recovery and carbon management

    Science.gov (United States)

    Head, Ian M.; Gray, Neil D.; Larter, Stephen R.

    2014-01-01

    Our understanding of the processes underlying the formation of heavy oil has been transformed in the last decade. The process was once thought to be driven by oxygen delivered to deep petroleum reservoirs by meteoric water. This paradigm has been replaced by a view that the process is anaerobic and frequently associated with methanogenic hydrocarbon degradation. The thermal history of a reservoir exerts a fundamental control on the occurrence of biodegraded petroleum, and microbial activity is focused at the base of the oil column in the oil water transition zone, that represents a hotspot in the petroleum reservoir biome. Here we present a synthesis of new and existing microbiological, geochemical, and biogeochemical data that expands our view of the processes that regulate deep life in petroleum reservoir ecosystems and highlights interactions of a range of biotic and abiotic factors that determine whether petroleum is likely to be biodegraded in situ, with important consequences for oil exploration and production. Specifically we propose that the salinity of reservoir formation waters exerts a key control on the occurrence of biodegraded heavy oil reservoirs and introduce the concept of palaeopickling. We also evaluate the interaction between temperature and salinity to explain the occurrence of non-degraded oil in reservoirs where the temperature has not reached the 80–90°C required for palaeopasteurization. In addition we evaluate several hypotheses that might explain the occurrence of organisms conventionally considered to be aerobic, in nominally anoxic petroleum reservoir habitats. Finally we discuss the role of microbial processes for energy recovery as we make the transition from fossil fuel reliance, and how these fit within the broader socioeconomic landscape of energy futures. PMID:25426105

  13. The estimation of the load of non-point source nitrogen and phosphorus based on observation experiments and export coefficient method in Three Gorges Reservoir Area

    Science.gov (United States)

    Tong, X. X.; Hu, B.; Xu, W. S.; Liu, J. G.; Zhang, P. C.

    2017-12-01

    In this paper, Three Gorges Reservoir Area (TGRA) was chosen to be the study area, the export coefficients of different land-use type were calculated through the observation experiments and literature consultation, and then the load of non-point source (NPS) nitrogen and phosphorus of different pollution sources such as farmland pollution sources, decentralized livestock and poultry breeding pollution sources and domestic pollution sources were estimated. The results show as follows: the pollution load of dry land is the main source of farmland pollution. The order of total nitrogen load of different pollution sources from high to low is livestock breeding pollution, domestic pollution, land use pollution, while the order of phosphorus load of different pollution sources from high to low is land use pollution, livestock breeding pollution, domestic pollution, Therefore, reasonable farmland management, effective control methods of dry land fertilization and sewage discharge of livestock breeding are the keys to the prevention and control of NPS nitrogen and phosphorus in TGRA.

  14. A GIS method for assessment of rock slide tsunami hazard in all Norwegian lakes and reservoirs

    Directory of Open Access Journals (Sweden)

    B. Romstad

    2009-03-01

    Full Text Available An evaluation of rock slide tsunami hazard is applied to all Norwegian lakes larger than 0.1 km2 based on their topographical setting. The analysis results in a topographic rock slide potential score that indicates the relative hazard in each lake. Even though the score value each lake receives should be interpreted with caution, the distribution of score values shows that we are able to make a clear distinction between lakes with a high vs. lakes with a low hazard. The results also show a clustering of threatened lakes in parts of Western Norway as well as some locations in Northern Norway. This makes the results useful as a tool for focusing further studies on regions or specific lakes that received high scores. The results also show how the method may be used for more detailed analysis of a given lake (or fjord. Maps can be produced that may serve as a guide when carrying out field campaigns or when designing scenarios for numerical simulations of tsunamis in the lake. It should be emphasised that the rock slide potential reported for each lake is based on the topographical setting alone and hence, does not represent the actual probability of rock slides into the lakes. For a given area, more detailed investigations of the geology, triggering factors and frequency of previous rock slide events should be carried out before definite statements about the actual hazard can be made.

  15. Validation of qPCR Methods for the Detection of Mycobacterium in New World Animal Reservoirs.

    Directory of Open Access Journals (Sweden)

    Genevieve Housman

    2015-11-01

    Full Text Available Zoonotic pathogens that cause leprosy (Mycobacterium leprae and tuberculosis (Mycobacterium tuberculosis complex, MTBC continue to impact modern human populations. Therefore, methods able to survey mycobacterial infection in potential animal hosts are necessary for proper evaluation of human exposure threats. Here we tested for mycobacterial-specific single- and multi-copy loci using qPCR. In a trial study in which armadillos were artificially infected with M. leprae, these techniques were specific and sensitive to pathogen detection, while more traditional ELISAs were only specific. These assays were then employed in a case study to detect M. leprae as well as MTBC in wild marmosets. All marmosets were negative for M. leprae DNA, but 14 were positive for the mycobacterial rpoB gene assay. Targeted capture and sequencing of rpoB and other MTBC genes validated the presence of mycobacterial DNA in these samples and revealed that qPCR is useful for identifying mycobacterial-infected animal hosts.

  16. Mechanics and upscaling of heavy oil bitumen recovery by steam-over-solvent injection in fractured reservoirs method

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R.; Babadagli, T. [Alberta Univ., Edmonton, AB (Canada)

    2011-01-15

    This paper discussed a numerical modelling scheme applied to the steam-over-solvent injection in fractured reservoirs (SOS-FR) method for a single-matrix block. After modelling the process at the core scale, sensitivity tests were performed to determine the optimal injection conditions for efficient oil recovery and solvent retrieval. The basic mechanisms and physics of the process were described along with the amount of injectant and the time required for recovering target oil for field-scale application. In the physics of the recovery mechanism, gravity was found to have a substantial effect on oil recovery when the matrix was exposed to solvent. Special attention was paid to the solvent retrieval rate and amount in the third cycle and the permeability reduction caused by asphaltene precipitation in the solvent injection phase; the latter factor was observed to be substantially critical for the process. An upscaling analysis yielded an encouraging straight-line relationship between the time value to reach ultimate recovery and the matrix size with a non-integer exponent less than 2. 21 refs., 1 tab., 15 figs.

  17. Modelling of Reservoir Operations using Fuzzy Logic and ANNs

    Science.gov (United States)

    Van De Giesen, N.; Coerver, B.; Rutten, M.

    2015-12-01

    Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, , was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.

  18. Advantageous Reservoir Characterization Technology in Extra Low Permeability Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Yutian Luo

    2017-01-01

    Full Text Available This paper took extra low permeability reservoirs in Dagang Liujianfang Oilfield as an example and analyzed different types of microscopic pore structures by SEM, casting thin sections fluorescence microscope, and so on. With adoption of rate-controlled mercury penetration, NMR, and some other advanced techniques, based on evaluation parameters, namely, throat radius, volume percentage of mobile fluid, start-up pressure gradient, and clay content, the classification and assessment method of extra low permeability reservoirs was improved and the parameter boundaries of the advantageous reservoirs were established. The physical properties of reservoirs with different depth are different. Clay mineral variation range is 7.0%, and throat radius variation range is 1.81 μm, and start pressure gradient range is 0.23 MPa/m, and movable fluid percentage change range is 17.4%. The class IV reservoirs account for 9.56%, class II reservoirs account for 12.16%, and class III reservoirs account for 78.29%. According to the comparison of different development methods, class II reservoir is most suitable for waterflooding development, and class IV reservoir is most suitable for gas injection development. Taking into account the gas injection in the upper section of the reservoir, the next section of water injection development will achieve the best results.

  19. A new method for calculation of water saturation in shale gas reservoirs using V P -to-V S ratio and porosity

    Science.gov (United States)

    Liu, Kun; Sun, Jianmeng; Zhang, Hongpan; Liu, Haitao; Chen, Xiangyang

    2018-02-01

    Total water saturation is an important parameter for calculating the free gas content of shale gas reservoirs. Owing to the limitations of the Archie formula and its extended solutions in zones rich in organic or conductive minerals, a new method was proposed to estimate total water saturation according to the relationship between total water saturation, V P -to-V S ratio and total porosity. Firstly, the ranges of the relevant parameters in the viscoelastic BISQ model in shale gas reservoirs were estimated. Then, the effects of relevant parameters on the V P -to-V S ratio were simulated based on the partially saturated viscoelastic BISQ model. These parameters were total water saturation, total porosity, permeability, characteristic squirt-flow length, fluid viscosity and sonic frequency. The simulation results showed that the main factors influencing V P -to-V S ratio were total porosity and total water saturation. When the permeability and the characteristic squirt-flow length changed slightly for a particular shale gas reservoir, their influences could be neglected. Then an empirical equation for total water saturation with respect to total porosity and V P -to-V S ratio was obtained according to the experimental data. Finally, the new method was successfully applied to estimate total water saturation in a sequence formation of shale gas reservoirs. Practical applications have shown good agreement with the results calculated by the Archie model.

  20. Empowerment methods and techniques for sport managers

    Directory of Open Access Journals (Sweden)

    THANOS KRIEMADIS

    2006-01-01

    Full Text Available We live in a globalize economic, social and technological environment where organizations can be successful only if they have required resources (material resources, facilities and equipment, and human resources. The managers and the organizations should empower and enable employees to accomplish their work in meaningful ways. Empowerment has been described as a means to enable employees to make decisions and as a personal phenomenon where individuals take responsibility for their own actions. The aim of the present study was to present effective methods and techniques of employee empowerment which constitute for the organization a source of competitive advantage. The paper will present and explain empowerment methods and techniques such as: (a organizational culture, (b vision statements, (c organizational values, (d teamwork, (e the role of manager - leadership, (f devolving responsibility accountability, (g information sharing, (h continuous training, (i appraisal rewards, (j goal setting, and (k performance appraisal process.

  1. A reservoir management plan

    Energy Technology Data Exchange (ETDEWEB)

    Allis, R.G.

    1989-06-16

    There are numerous documented cases of extraction of fluids from the ground causing surface subsidence. The cases include groundwater, oil and gas, as well as geothermal fluid withdrawal. A recent comprehensive review of all types of man-induced land subsidence was published by the Geological Survey of America. At the early stages of a geothermal power development project it is standard practice in most countries for an environmental impact report to be required. The possibility of geothermal subsidence has to be addressed, and usually it falls on the geophysicists and/or geologists to make some predictions. The advice given is vital for planning the power plant location and the borefield pipe and drain layout. It is not so much the vertical settlement that occurs with subsidence but the accompanying horizontal ground strains that can do the most damage to any man-made structure.

  2. Encapsulated microsensors for reservoir interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  3. Methods for Distributed Optimal Energy Management

    DEFF Research Database (Denmark)

    Brehm, Robert

    micro-grids by prevention of meteorologic power flows into high voltage grids. A method, based on mathematical optimisation and a consensus algorithm is introduced and evaluated to coordinate charge/discharge scheduling for batteries between a number of buildings in order to improve self......The presented research deals with the fundamental underlying methods and concepts of how the growing number of distributed generation units based on renewable energy resources and distributed storage devices can be most efficiently integrated into the existing utility grid. In contrast......-consumption of renewable energy resources in low voltage grids. It can be shown that this method prevents mutual discharging of batteries and prevents peak loads, a supervisory control instance can dictate the level of autarchy from the utility grid. Further it is shown that the problem of optimal energy flow management...

  4. Force Management Methods. Task 1 Report. Current Methods

    Science.gov (United States)

    1978-12-01

    OF-THE-ART REVIEW FORCE MANAGEMENT METHODS A/C TYPE: F-ill A/E/D/F FLEET INFORMATION NO. OF AIRCRAFT: 455 : YEAR SERVICE BEGAN: 1970 Warren Toone...DETECT CHANGE IN USAGE? Usage/NZC/loads/damage all used REMARKS: A/24U-6 has some evidence of record dropout during high-g buffett as found during...restricted. 391 Page 4 of 5 A/C TYPE: F-Ill A/E/D/F (Continued) FSM PLAN MAINTENANCE REQUIREMENTS BASE: Bill Sutherland & Warren Toone MSG- 2 Analysis

  5. Evaluation of the long term monitoring of phytoplankton assemblages in a canyon-shape reservoir using multivariate statistical methods

    Czech Academy of Sciences Publication Activity Database

    Komárková, Jaroslava; Komárek, O.; Hejzlar, Josef

    2003-01-01

    Roč. 504, - (2003), s. 143-157 ISSN 0018-8158. [Reservoir Limnology and Water Quality /4./. České Budějovice, 12.08.2002-16.08.2002] R&D Projects: GA AV ČR IBS6017004; GA AV ČR KSK3046108; GA ČR GA206/99/P062 Institutional research plan: CEZ:MSM 123100004 Keywords : reservoirs * phytoplankton * Canoco Subject RIV: DJ - Water Pollution ; Quality Impact factor: 0.720, year: 2003

  6. Reasons and Methods to Learn the Management

    Science.gov (United States)

    Li, Hongxin; Ding, Mengchun

    2010-01-01

    Reasons for learning the management include (1) perfecting the knowledge structure, (2) the management is the base of all organizations, (3) one person may be the manager or the managed person, (4) the management is absolutely not simple knowledge, and (5) the learning of the theoretical knowledge of the management can not be replaced by the…

  7. Congestion Management Requirements, Methods and Performance Indices

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, B.J.

    2002-08-28

    Transmission congestion occurs when there is insufficient transmission capacity to simultaneously accommodate all requests for transmission service within a region. Historically, vertically integrated utilities managed this condition by constraining the economic dispatch of generators with the objective of ensuring security and reliability of their own and/or neighboring systems. Electric power industry restructuring has moved generation investment and operations decisions into the competitive market but has left transmission as a communal resource in the regulated environment. This mixing of competitive generation and regulated transmission makes congestion management difficult. The difficulty is compounded by increases in the amount of congestion resulting from increased commercial transactions and the relative decline in the amount of transmission. Transmission capacity, relative to peak load, has been declining in all regions of the U.S. for over a decade. This decline is expected to continue. Congestion management schemes used today have negative impacts on energy markets, such as disruptions and monetary penalties, under some conditions. To mitigate these concerns various congestion management methods have been proposed, including redispatch and curtailment of scheduled energy transmission. In the restructured electric energy industry environment, new congestion management approaches are being developed that strive to achieve the desired degree of reliability while supporting competition in the bulk power market. This report first presents an overview and background on key issues and emerging approaches to congestion management. It goes on to identify and describe policies affecting congestion management that are favored and/or are now being considered by FERC, NERC, and one of the regional reliability councils (WSCC). It reviews the operational procedures in use or proposed by three of the leading independent system operators (ISOs) including ERCOT

  8. Quantitative methods for management and economics

    CERN Document Server

    Chakravarty, Pulak

    2009-01-01

    ""Quantitative Methods for Management and Economics"" is specially prepared for the MBA students in India and all over the world. It starts from the basics, such that even a beginner with out much mathematical sophistication can grasp the ideas and then comes forward to more complex and professional problems. Thus, both the ordinary students as well as ""above average: i.e., ""bright and sincere"" students would be benefited equally through this book.Since, most of the problems are solved or hints are given, students can do well within the short duration of the semesters of their busy course.

  9. 4. International reservoir characterization technical conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  10. [Characterization of bacterial diversity in the Shengli-S12 oil reservoir by culture-dependent and culture-independent methods].

    Science.gov (United States)

    Yuan, Sangqing; Xue, Yanfen; Wang, Weidong; Li, Ximing; Ma, Yanhe

    2008-08-01

    Examining bacterial diversity in an oil reservoir of Shengli oil field by both culture-independent molecular technique and enrichment method. The heterotrophic bacteria, hydrocarbon-degrading bacteria and sulfate-reducing bacteria were enriched from S12-4 oil-well samples by the corresponding media. Then the genomic DNAs of the enrichments were extracted and the 16S rRNA gene clone libraries were constructed. The phylogenetic analysis revealed that the bacterial 16S rRNA gene clone libraries of the 3 enrichments were dominated by clones of Thermotoga, Thermaerobacter and Thermotoga, respectively. Sequences of the other co-dominant clones observed only in the enrichments of hydrocarbon-degrading bacteria and sulfate-reducing bacteria were, respectively, associated with Marinobacter and Moorella. The uncultured 16S rRNA gene library was also generated directly from total DNA of S12-4 oil-well samples by bacterial primer set. Sequence analysis of this bacterial library indicated that a large percentage of clones were highly related to the genus Pseudomonas and the dominant species emerging in the enrichment samples had a very low content in the tested oil reservoir. The significant difference of the bacterial composition between the samples obtained from independent-culture method and enrichment method implies that the specialized nutrient may lead to a distinctive selection of dominant organisms. Through culture-dependent and culture-independent methods, we acquired important information on the bacterial diversity of ShengLi oil reservoir. These results may expand our understanding of the microbial diversity of oil reservoir and provide useful information for MEOR(microbial enhancement of oil recovery).

  11. Methods of process management in radiology

    International Nuclear Information System (INIS)

    Teichgraeber, U.K.M.; Gillessen, C.; Neumann, F.

    2003-01-01

    The main emphasis in health care has been on quality and availability but increasing cost pressure has made cost efficiency ever more relevant for nurses, technicians, and physicians. Within a hospital, the radiologist considerably influences the patient's length of stay through the availability of service and diagnostic information. Therefore, coordinating and timing radiologic examinations become increasingly more important. Physicians are not taught organizational management during their medical education and residency training, and the necessary expertise in economics is generally acquired through the literature or specialized courses. Beyond the medical service, the physicians are increasingly required to optimize their work flow according to economic factors. This review introduces various tools for process management and its application in radiology. By means of simple paper-based methods, the work flow of most processes can be analyzed. For more complex work flow, it is suggested to choose a method that allows for an exact qualitative and quantitative prediction of the effect of variations. This review introduces network planning technique and process simulation. (orig.) [de

  12. An environmental data base for all Hydro-Quebec reservoirs

    International Nuclear Information System (INIS)

    Demers, C.

    1988-01-01

    Hydro-Quebec has created two management positions specifically for reservoirs, namely Reservoir Ecology Advisor and Reservoir Management Advisor. To assist management decisions, a means was required of bringing together all existing environmental information for each reservoir operated by Hydro-Quebec, including storage reservoirs, auxiliary reservoirs and forebays. A relational database using Reflex software was developed on a network of Macintosh computers. The database contains five blocks of information: general information, and physical, physiochemical, biologic and socioeconomic characteristics for each reservoir. Data will be collected on over 100 sites, and the tool will form the basis for developing a medium-range study program on reservoir ecology. The program must take into account the physical, biological and socioeconomic aspects of the environment, as well as the concerns of management personnel operating the reservoirs, the local population, reservoir users, and various government departments. 2 figs

  13. Processes Affecting Phosphorus and Copper Concentrations and Their Relation to Algal Growth in Two Supply Reservoirs in the Lower Coastal Plain of Virginia, 2002-2003, and Implications for Alternative Management Strategies

    Science.gov (United States)

    Speiran, Gary K.; Simon, Nancy S.; Mood-Brown, Maria L.

    2007-01-01

    Elevated phosphorus concentrations commonly promote excessive growth of algae in waters nationwide. When such waters are used for public supply, the algae can plug filters during treatment and impart tastes and odors to the finished water. This increases treatment costs and results in finished water that may not be of the quality desired for public supply. Consequently, copper sulfate is routinely applied to many reservoirs to control algal growth but only is a 'temporary fix' and must be reapplied at intervals that can range from more than 30 days in the winter to less than 7 days in the summer. Because copper has a maximum allowable concentration in public drinking water and can be toxic to aquatic life, water suppliers commonly seek to develop alternative, long-term strategies for managing reservoirs. Because these are nationwide issues and part of the mission of the U.S. Geological Survey (USGS) is to define and protect the quality of the Nation's water resources and better understand the physical, chemical, and biological processes in wetlands, lakes, reservoirs, and estuaries, investigations into these issues are important to the fulfillment of the mission of the USGS. The City of Newport News, Virginia, provides 50 million gallons per day of treated water for public supply from Lee Hall and Harwoods Mill Reservoirs (terminal reservoirs) to communities on the lower York-James Peninsula. About 3,500 pounds of copper sulfate are applied to each reservoir at 3- to 99-day intervals to control algal growth. Consequently, the USGS, in cooperation with the City of Newport News, investigated the effects of management practices and natural processes on phosphorus (the apparent growth-limiting nutrient), copper, and algal concentrations in the terminal reservoirs to provide information that can be used to develop alternative management strategies for the terminal reservoirs. Initial parts of the research evaluated circulation and stratification in the reservoirs

  14. Economic Effects of Reservoir Re-operation Policy in the Rio Grande/Bravo for Sustainable Human and Environmental Water Management

    Science.gov (United States)

    Ortiz Partida, J. P.; Sandoval Solis, S.; Lane, B.

    2015-12-01

    A central challenge of integrated water management is the design and implementation of policies to allocate water to both humans and the environment in a sustainable manner. This study uses the results from a reach-scale water-planning model to quantify and compare the economic benefits of two water management policies: (1) a business as usual (Baseline) policy and (2) a proposed reservoir re-operation policy to provide environmental flows (EFs). Results show that the EF policy would increase water supply profit, slightly decrease recreational activities profit, and reduce costs from flood damage and environmental restoration compared to the Baseline policy. In addition to supporting ecological objectives, the proposed EF policy would increase the economic benefits of water management objectives.

  15. Reservoir resistivity characterization incorporating flow dynamics

    KAUST Repository

    Arango, Santiago

    2016-04-07

    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie\\'s parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  16. Application of the Taguchi Method for Optimizing the Process Parameters of Producing Lightweight Aggregates by Incorporating Tile Grinding Sludge with Reservoir Sediments.

    Science.gov (United States)

    Chen, How-Ji; Chang, Sheng-Nan; Tang, Chao-Wei

    2017-11-10

    This study aimed to apply the Taguchi optimization technique to determine the process conditions for producing synthetic lightweight aggregate (LWA) by incorporating tile grinding sludge powder with reservoir sediments. An orthogonal array L 16 (4⁵) was adopted, which consisted of five controllable four-level factors (i.e., sludge content, preheat temperature, preheat time, sintering temperature, and sintering time). Moreover, the analysis of variance method was used to explore the effects of the experimental factors on the particle density, water absorption, bloating ratio, and loss on ignition of the produced LWA. Overall, the produced aggregates had particle densities ranging from 0.43 to 2.1 g/cm³ and water absorption ranging from 0.6% to 13.4%. These values are comparable to the requirements for ordinary and high-performance LWAs. The results indicated that it is considerably feasible to produce high-performance LWA by incorporating tile grinding sludge with reservoir sediments.

  17. An Evaluation of Common Cleaning Methods for the Removal of a Clinical Isolate of Escherichia coli in Personal Hydration System Water Reservoirs.

    Science.gov (United States)

    Helmus, Stephanie; Blythe, Jauchia; Guevara, Peter; Washington, Michael A

    2016-01-01

    Waterborne infection is an important cause of morbidity and mortality throughout the world. Personal hydration packs have been used by military personnel since the Gulf War and are now a common issue item. Since military personnel tend to operate under austere conditions and may use a variety of water sources, preventing the acquisition of waterborne infections is extremely important. Further, since hydration pack water reservoir replacements may not be available during combat operations, the development of a reliable cleaning protocol for use in the field is essential. Several methods for cleaning have been described. In the current study, three common cleaning methodologies-bleach treatment, baking soda treatment, and proprietary CAMELBAK Cleaning Tabs™-were evaluated for the ability to remove Escherichia coli contamination from hydration pack water reservoirs. The study results suggest that the use of bleach and proprietary CAMELBAK tablets should be encouraged since they both operate by releasing bactericidal chlorine compounds into solution, which is more effective at reducing post-treatment bacterial burden. It should be noted that no method was 100% effective at completely eliminating bacteria from the reservoirs and that mechanical cleaning was not attempted. 2016.

  18. Session: Reservoir Technology

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

  19. A Comparative Study between a Pseudo-Forward Equation (PFE and Intelligence Methods for the Characterization of the North Sea Reservoir

    Directory of Open Access Journals (Sweden)

    Saeed Mojeddifar

    2014-12-01

    Full Text Available This paper presents a comparative study between three versions of adaptive neuro-fuzzy inference system (ANFIS algorithms and a pseudo-forward equation (PFE to characterize the North Sea reservoir (F3 block based on seismic data. According to the statistical studies, four attributes (energy, envelope, spectral decomposition and similarity are known to be useful as fundamental attributes in porosity estimation. Different ANFIS models were constructed using three clustering methods of grid partitioning (GP, subtractive clustering method (SCM and fuzzy c-means clustering (FCM. An experimental equation, called PFE and based on similarity attributes, was also proposed to estimate porosity values of the reservoir. When the validation set derived from training wells was used, the R-square coefficient between two variables (actual and predicted values was obtained as 0.7935 and 0.7404 for the ANFIS algorithm and the PFE model, respectively. But when the testing set derived from testing wells was used, the same coefficients decreased to 0.252 and 0.5133 for the ANFIS algorithm and the PFE model, respectively. According to these results, and the geological characteristics observed in the F3 block, it seems that the ANFIS algorithms cannot estimate the porosity acceptably. By contrast, in the outputs of PFE, the ability to detect geological structures such as faults (gas chimney, folds (salt dome, and bright spots, alongside the porosity estimation of sandstone reservoirs, could help in determining the drilling target locations. Finally, this work proposes that the developed PFE could be a good technique for characterizing the reservoir of the F3 block.

  20. unconventional natural gas reservoirs

    International Nuclear Information System (INIS)

    Correa G, Tomas F; Osorio, Nelson; Restrepo R, Dora P

    2009-01-01

    This work is an exploration about different unconventional gas reservoirs worldwide: coal bed methane, tight gas, shale gas and gas hydrate? describing aspects such as definition, reserves, production methods, environmental issues and economics. The overview also mentioned preliminary studies about these sources in Colombia.

  1. Development of infill drilling recovery models for carbonates reservoirs using neural networks and multivariate statistical as a novel method

    International Nuclear Information System (INIS)

    Soto, R; Wu, Ch. H; Bubela, A M

    1999-01-01

    This work introduces a novel methodology to improve reservoir characterization models. In this methodology we integrated multivariate statistical analyses, and neural network models for forecasting the infill drilling ultimate oil recovery from reservoirs in San Andres and Clearfork carbonate formations in west Texas. Development of the oil recovery forecast models help us to understand the relative importance of dominant reservoir characteristics and operational variables, reproduce recoveries for units included in the database, forecast recoveries for possible new units in similar geological setting, and make operational (infill drilling) decisions. The variety of applications demands the creation of multiple recovery forecast models. We have developed intelligent software (Soto, 1998), oilfield intelligence (01), as an engineering tool to improve the characterization of oil and gas reservoirs. 01 integrates neural networks and multivariate statistical analysis. It is composed of five main subsystems: data input, preprocessing, architecture design, graphic design, and inference engine modules. One of the challenges in this research was to identify the dominant and the optimum number of independent variables. The variables include porosity, permeability, water saturation, depth, area, net thickness, gross thickness, formation volume factor, pressure, viscosity, API gravity, number of wells in initial water flooding, number of wells for primary recovery, number of infill wells over the initial water flooding, PRUR, IWUR, and IDUR. Multivariate principal component analysis is used to identify the dominant and the optimum number of independent variables. We compared the results from neural network models with the non-parametric approach. The advantage of the non-parametric regression is that it is easy to use. The disadvantage is that it retains a large variance of forecast results for a particular data set. We also used neural network concepts to develop recovery

  2. LED lamp power management system and method

    Science.gov (United States)

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

    2013-03-19

    An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

  3. Knowledge information management toolkit and method

    Science.gov (United States)

    Hempstead, Antoinette R.; Brown, Kenneth L.

    2006-08-15

    A system is provided for managing user entry and/or modification of knowledge information into a knowledge base file having an integrator support component and a data source access support component. The system includes processing circuitry, memory, a user interface, and a knowledge base toolkit. The memory communicates with the processing circuitry and is configured to store at least one knowledge base. The user interface communicates with the processing circuitry and is configured for user entry and/or modification of knowledge pieces within a knowledge base. The knowledge base toolkit is configured for converting knowledge in at least one knowledge base from a first knowledge base form into a second knowledge base form. A method is also provided.

  4. Identifying sources of groundwater recharge in the Merguellil basin (Tunisia) using isotopic methods: implication of dam reservoir water accounting

    Science.gov (United States)

    Dassi, Lassaad; Zouari, Kamel; Faye, Serigne

    2005-11-01

    Thirty-two groundwater samples collected from the Merguellil Wadi basin (central Tunisia) complemented by the Haouareb dam reservoir water samples have been isotopically analysed in order to investigate the implication of the reservoir water to recharging the aquifer, and also to infer the sources, relative ages and mixing processes in the aquifer system. Plots of the stable isotopes data against the local meteoric lines of Tunis-Carthage and Sfax indicate a strong implication of the dam water noticeable up to a distance of 6-7 km. A contribution as much as 80% of the pumped water has been evidenced using isotopic mass balance. In addition, poorly distinguished water clusters in the stable isotope plots, but clearly identified in the diagrams δ18O versus 3H and 3H versus 14C, indicate various water types related to sources and timing of recharge. The isotopic signatures of the dam accounting water, the “old” and “native” recharged waters, have been evidenced in relation to their geographical distribution and also to their radiogenic isotopes (3H and 14C) contents. In the south-western part of the aquifer, mixing process occurs between the dam reservoir water and both the “old” and “native” water components.

  5. Reservoir Sedimentation Based on Uncertainty Analysis

    Directory of Open Access Journals (Sweden)

    Farhad Imanshoar

    2014-01-01

    Full Text Available Reservoir sedimentation can result in loss of much needed reservoir storage capacity, reducing the useful life of dams. Thus, sufficient sediment storage capacity should be provided for the reservoir design stage to ensure that sediment accumulation will not impair the functioning of the reservoir during the useful operational-economic life of the project. However, an important issue to consider when estimating reservoir sedimentation and accumulation is the uncertainty involved in reservoir sedimentation. In this paper, the basic factors influencing the density of sediments deposited in reservoirs are discussed, and uncertainties in reservoir sedimentation have been determined using the Delta method. Further, Kenny Reservoir in the White River Basin in northwestern Colorado was selected to determine the density of deposits in the reservoir and the coefficient of variation. The results of this investigation have indicated that by using the Delta method in the case of Kenny Reservoir, the uncertainty regarding accumulated sediment density, expressed by the coefficient of variation for a period of 50 years of reservoir operation, could be reduced to about 10%. Results of the Delta method suggest an applicable approach for dead storage planning via interfacing with uncertainties associated with reservoir sedimentation.

  6. Space program management methods and tools

    CERN Document Server

    Spagnulo, Marcello; Balduccini, Mauro; Nasini, Federico

    2013-01-01

    Beginning with the basic elements that differentiate space programs from other management challenges, Space Program Management explains through theory and example of real programs from around the world, the philosophical and technical tools needed to successfully manage large, technically complex space programs both in the government and commercial environment. Chapters address both systems and configuration management, the management of risk, estimation, measurement and control of both funding and the program schedule, and the structure of the aerospace industry worldwide.

  7. Tono Reservoir fishery contribution to poverty reduction among ...

    African Journals Online (AJOL)

    Fishery characteristics and livelihood status of fishers at Tono Reservoir, Ghana, were investigated between January 2015 and June 2016. Data on fisher demography, fishing gears, fishing methods, perceptions of the state of fish stocks, management practices, income and consumption of fishers were obtained through ...

  8. Modeling a complex system of multipurpose reservoirs under prospective scenarios (hydrology, water uses, water management): the case of the Durance River basin (South Eastern France, 12 800 km2)

    Science.gov (United States)

    Monteil, Céline; Hendrickx, Frédéric; Samie, René; Sauquet, Eric

    2015-04-01

    but also evapotranspiration process. However changes in total precipitation are highly uncertain. The six tested rainfall-runoff models project reduced flows, especially in the spring and summer seasons. Depending on the socio-economic scenarios and the area, the downstream total water needs could decrease or remain stable. Considering the present day constraints, these changes would lead to a decrease in energy production (mainly due to reduced annual inflows) and to less flexibility for hydropower management during winter peak energy demand. Results of the R²D² 2050 project suggest also that the downscaling methods still fail to reproduce some crucial aspects of the climate at regional scale. Unexpected biases are propagated along the chain of models. The key issue to simulate accurately reservoir operations under present and future climate conditions is the filling curves that depict the balance between water supply and demand. Probabilistic filling curves were calibrated here to meet the constraint on water level in summer objective nine years over ten. A large proportion of regional climates generated over the baseline period lead to unrealistic curves, pointing out higher levels of requirement in models output to assess global change impacts on water management systems like on the Durance River basin.

  9. Modelling of Hydropower Reservoir Variables for Energy Generation ...

    African Journals Online (AJOL)

    Efficient management of hydropower reservoir can only be realized when there is sufficient understanding of interactions existing between reservoir variables and energy generation. Reservoir inflow, storage, reservoir elevation, turbine release, net generating had, plant use coefficient, tail race level and evaporation losses ...

  10. 7 CFR 301.50-10 - Treatments and management method.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Treatments and management method. 301.50-10 Section... Treatments and management method. (a) Fumigation is authorized for use on pine logs with bark attached, pine... reduce the possibility of phytotoxic effects. (d) Management method for pine bark products. The following...

  11. Limnological evaluation of the fisheries potentials and productivity of a small shallow tropical African reservoir.

    Science.gov (United States)

    Mustapha, Moshood K

    2009-12-01

    Morphometrics and physico-chemical parameters of Oyun reservoir, Offa, Nigeria (a small shallow tropical African Reservoir) were used to estimate the potential fish yield of the reservoir according to the morpho-edaphic index (MEI). Physico-chemical characteristics of the water body were sampled monthly from three stations between January 2002 and December 2003 with standard methods. Estimates of the potential fish yield were obtained using the physico-chemical characteristics of the reservoir and the relationship Y = 23.281 MEI(0.447), where Y is the potential fish yield in kg/ha, MEI is the morpho-edaphic index (given in microS/cm and estimated by dividing the mean conductivity by the mean depth). The reservoir mean depth and conductivity values were 2.6m and 113.10 microS/cm respectively, while its potential fish yield was estimated at 125.72 kg/ha. This estimate was higher than other small shallower and larger African reservoirs. The reservoir high ionic content, high nutrient and dissolved oxygen levels, good pH, low level of pollution and shallow depth were responsible for the high estimate of the fish yield. In order to realize this high potential fish yield and sustainable exploration of the fisheries, effective management of the reservoir to curb eutrophication should be adopted, while other management practices such as stocking and conservation of desirable and indigenous fish species, implementation of fishing regulations and adoption of best management practices should be implemented.

  12. Breakthrough Propulsion Physics Project: Project Management Methods

    Science.gov (United States)

    Millis, Marc G.

    2004-01-01

    To leap past the limitations of existing propulsion, the NASA Breakthrough Propulsion Physics (BPP) Project seeks further advancements in physics from which new propulsion methods can eventually be derived. Three visionary breakthroughs are sought: (1) propulsion that requires no propellant, (2) propulsion that circumvents existing speed limits, and (3) breakthrough methods of energy production to power such devices. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify credible research that will make measurable progress toward these goals in the near-term. The management techniques to address this challenge are presented, with a special emphasis on the process used to review, prioritize, and select research tasks. This selection process includes these key features: (a) research tasks are constrained to only address the immediate unknowns, curious effects or critical issues, (b) reliability of assertions is more important than the implications of the assertions, which includes the practice where the reviewers judge credibility rather than feasibility, and (c) total scores are obtained by multiplying the criteria scores rather than by adding. Lessons learned and revisions planned are discussed.

  13. The Impact of Personality Traits on Conflict Management Methods

    Directory of Open Access Journals (Sweden)

    Muharrem Tuna

    2015-12-01

    Full Text Available It is widely accepted that the personality traits influence the occurrence of conflicts and that the managers have important responsibilities to deal with these conflicts. The subject of this work is to find the relationship between the personal traits of the managers and the conflict management methods that they use. Within this context, a survey was conducted on A group travel agencies and three, four and five star hotels operating in the seven regions of Turkey. Reliability and validity of the scale used to measure the opinions of the 1098 managers has been analyzed and correlation and regression analysis have been conducted. The findings suggest that the managers with dominant, revengeful and cold personal traits employ the management method of domination, that the introvert managers and the managers that can be exploited use the avoidance method and that the altruistic and the extrovert managers employ the accomodation method of conflict management.

  14. New safety management method at Cominak

    International Nuclear Information System (INIS)

    Kallam, A.

    1993-01-01

    Operations manager Mr. Kallam presents the new safety management system, its implementation and results in this underground uranium mine in northern Niger, where the rate of accidents increased dangerously during the eighties. 3 figs., 3 photos

  15. Reservoir Simulations of Low-Temperature Geothermal Reservoirs

    Science.gov (United States)

    Bedre, Madhur Ganesh

    The eastern United States generally has lower temperature gradients than the western United States. However, West Virginia, in particular, has higher temperature gradients compared to other eastern states. A recent study at Southern Methodist University by Blackwell et al. has shown the presence of a hot spot in the eastern part of West Virginia with temperatures reaching 150°C at a depth of between 4.5 and 5 km. This thesis work examines similar reservoirs at a depth of around 5 km resembling the geology of West Virginia, USA. The temperature gradients used are in accordance with the SMU study. In order to assess the effects of geothermal reservoir conditions on the lifetime of a low-temperature geothermal system, a sensitivity analysis study was performed on following seven natural and human-controlled parameters within a geothermal reservoir: reservoir temperature, injection fluid temperature, injection flow rate, porosity, rock thermal conductivity, water loss (%) and well spacing. This sensitivity analysis is completed by using ‘One factor at a time method (OFAT)’ and ‘Plackett-Burman design’ methods. The data used for this study was obtained by carrying out the reservoir simulations using TOUGH2 simulator. The second part of this work is to create a database of thermal potential and time-dependant reservoir conditions for low-temperature geothermal reservoirs by studying a number of possible scenarios. Variations in the parameters identified in sensitivity analysis study are used to expand the scope of database. Main results include the thermal potential of reservoir, pressure and temperature profile of the reservoir over its operational life (30 years for this study), the plant capacity and required pumping power. The results of this database will help the supply curves calculations for low-temperature geothermal reservoirs in the United States, which is the long term goal of the work being done by the geothermal research group under Dr. Anderson at

  16. Distributed snow data as a tool to inform water management decisions: Using Airborne Snow Observatory (ASO) at the Hetch Hetchy Reservoir in Yosemite National Park, City and County of San Francisco.

    Science.gov (United States)

    Graham, C. B.

    2016-12-01

    The timing and magnitude of spring snowmelt and runoff is critical in managing reservoirs in the Western United States. The Hetch Hetchy Reservoir in Yosemite National Park provides drinking water for 2.6 million customers in over 30 communities in the San Francisco Bay Area. Power generation from Hetch Hetchy meets the municipal load of the City and County of San Francisco. Water from the Hetch Hetchy Reservoir is also released in the Tuolumne River, supporting critical ecosystems in Yosemite National Park and the Stanislaus National Forest. Better predictions of long (seasonal) and short (weekly) term streamflow allow for more secure water resource planning, earlier power generation and ecologically beneficial releases from the Reservoir. Hetch Hetchy Reservoir is fed by snow dominated watersheds in the Sierra Mountains. Better knowledge of snowpack conditions allow for better predictions of inflows, both at the seasonal and at the weekly time scales. The ASO project has provided the managers of Hetch Hetchy Reservoir with high resolution estimates of total snowpack and snowpack distribution in the 460 mi2 Hetch Hetchy. We show that there is a tight correlation between snowpack estimates and future streamflow, allowing earlier, more confident operational decisions. We also show how distributed SWE estimates were used to develop and test a hydrologic model of the system (PRMS). This model, calibrated directly to snowpack conditions, is shown to correctly simulate snowpack volume and distribution, as well as streamflow patterns.

  17. Professional competence of social workers’: management methods

    Directory of Open Access Journals (Sweden)

    V. V. Dudaryov

    2015-02-01

    Full Text Available In the article the problem of social workers’ professional competence is actualized. It is proved that finding ways to optimize the specialists for social welfare system professional training is in line with common didactic problems of the high school pedagogies. The theoretical analysis of Ukrainian and foreign scientists’ works connected with the aspects of social workers’ professional competence is done. The definition of «competence» and «professional competence» is given. The main components of social workers’ professional competence are defined. These are: motivation (psychological readiness to professional activity; value and semantic (orientation, values, meanings; cognitive and professional (general culture, literacy, vocational education; action and professional (work with people at different social levels, work with information, achievement, etc.; auto­psychological (personal and professional reflection; regulatory (emotional and volitional self­regulation. The general structure and content criteria of social worker’s professional competence are under analysis. The characteristic of innovative forms and methods of social workers’ professional competence management (such as case­study, socio­psychological training is given. The causes for social workers’ successful training in high school are defined. The conclusions of the study are made and promising areas for future studies of the issues related to the subject under consideration are defined.

  18. A New Method to Identify Reservoirs in Tight Sandstones Based on the New Model of Transverse Relaxation Time and Relative Permeability

    Directory of Open Access Journals (Sweden)

    Yuhang Guo

    2017-01-01

    Full Text Available Relative permeability and transverse relaxation time are both important physical parameters of rock physics. In this paper, a new transformation model between the transverse relaxation time and the wetting phase’s relative permeability is established. The data shows that the cores in the northwest of China have continuous fractal dimension characteristics, and great differences existed in the different pore size scales. Therefore, a piece-wise method is used to calculate the fractal dimension in our transformation model. The transformation results are found to be quite consistent with the relative permeability curve of the laboratory measurements. Based on this new model, we put forward a new method to identify reservoir in tight sandstone reservoir. We focus on the Well M in the northwestern China. Nuclear magnetic resonance (NMR logging is used to obtain the point-by-point relative permeability curve. In addition, we identify the gas and water layers based on new T2-Kr model and the results showed our new method is feasible. In the case of the price of crude oil being low, this method can save time and reduce the cost.

  19. Understanding the Role of Reservoir Size on Probable Maximum Precipitation

    Science.gov (United States)

    Woldemichael, A. T.; Hossain, F.

    2011-12-01

    This study addresses the question 'Does surface area of an artificial reservoir matter in the estimation of probable maximum precipitation (PMP) for an impounded basin?' The motivation of the study was based on the notion that the stationarity assumption that is implicit in the PMP for dam design can be undermined in the post-dam era due to an enhancement of extreme precipitation patterns by an artificial reservoir. In addition, the study lays the foundation for use of regional atmospheric models as one way to perform life cycle assessment for planned or existing dams to formulate best management practices. The American River Watershed (ARW) with the Folsom dam at the confluence of the American River was selected as the study region and the Dec-Jan 1996-97 storm event was selected for the study period. The numerical atmospheric model used for the study was the Regional Atmospheric Modeling System (RAMS). First, the numerical modeling system, RAMS, was calibrated and validated with selected station and spatially interpolated precipitation data. Best combinations of parameterization schemes in RAMS were accordingly selected. Second, to mimic the standard method of PMP estimation by moisture maximization technique, relative humidity terms in the model were raised to 100% from ground up to the 500mb level. The obtained model-based maximum 72-hr precipitation values were named extreme precipitation (EP) as a distinction from the PMPs obtained by the standard methods. Third, six hypothetical reservoir size scenarios ranging from no-dam (all-dry) to the reservoir submerging half of basin were established to test the influence of reservoir size variation on EP. For the case of the ARW, our study clearly demonstrated that the assumption of stationarity that is implicit the traditional estimation of PMP can be rendered invalid to a large part due to the very presence of the artificial reservoir. Cloud tracking procedures performed on the basin also give indication of the

  20. Application of NUREG-1150 methods and results to accident management

    International Nuclear Information System (INIS)

    Dingman, S.; Sype, T.; Camp, A.; Maloney, K.

    1991-01-01

    The use of NUREG-1150 and similar probabilistic risk assessments in the Nuclear Regulatory Commission (NRC) and industry risk management programs is discussed. Risk management is more comprehensive than the commonly used term accident management. Accident management includes strategies to prevent vessel breach, mitigate radionuclide releases from the reactor coolant system, and mitigate radionuclide releases to the environment. Risk management also addresses prevention of accident initiators, prevention of core damage, and implementation of effective emergency response procedures. The methods and results produced in NUREG-1150 provide a framework within which current risk management strategies can be evaluated, and future risk management programs can be developed and assessed. Examples of the use of the NUREG-1150 framework for identifying and evaluating risk management options are presented. All phases of risk management are discussed, with particular attention given to the early phases of accidents. Plans and methods for evaluating accident management strategies that have been identified in the NRC accident management program are discussed

  1. Application of NUREG-1150 methods and results to accident management

    International Nuclear Information System (INIS)

    Dingman, S.; Sype, T.; Camp, A.; Maloney, K.

    1990-01-01

    The use of NUREG-1150 and similar Probabilistic Risk Assessments in NRC and industry risk management programs is discussed. ''Risk management'' is more comprehensive than the commonly used term ''accident management.'' Accident management includes strategies to prevent vessel breach, mitigate radionuclide releases from the reactor coolant system, and mitigate radionuclide releases to the environment. Risk management also addresses prevention of accident initiators, prevention of core damage, and implementation of effective emergency response procedures. The methods and results produced in NUREG-1150 provide a framework within which current risk management strategies can be evaluated, and future risk management programs can be developed and assessed. Examples of the use of the NUREG-1150 framework for identifying and evaluating risk management options are presented. All phases of risk management are discussed, with particular attention given to the early phases of accidents. Plans and methods for evaluating accident management strategies that have been identified in the NRC accident management program are discussed. 2 refs., 3 figs

  2. Research on removing reservoir core water sensitivity using the method of ultrasound-chemical agent for enhanced oil recovery.

    Science.gov (United States)

    Wang, Zhenjun; Huang, Jiehao

    2018-04-01

    The phenomenon of water sensitivity often occurs in the oil reservoir core during the process of crude oil production, which seriously affects the efficiency of oil extraction. In recent years, near-well ultrasonic processing technology attaches more attention due to its safety and energy efficient. In this paper, the comparison of removing core water sensitivity by ultrasonic wave, chemical injection and ultrasound-chemical combination technique are investigated through experiments. Results show that: lower ultrasonic frequency and higher power can improve the efficiency of core water sensitivity removal; the effects of removing core water sensitivity under ultrasonic treatment get better with increase of core initial permeability; the effect of removing core water sensitivity using ultrasonic treatment won't get better over time. Ultrasonic treatment time should be controlled in a reasonable range; the effect of removing core water sensitivity using chemical agent alone is slightly better than that using ultrasonic treatment, however, chemical injection could be replaced by ultrasonic treatment for removing core water sensitivity from the viewpoint of oil reservoir protection and the sustainable development of oil field; ultrasound-chemical combination technique has the best effect for water sensitivity removal than using ultrasonic treatment or chemical injection alone. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A hybrid framework for reservoir characterization using fuzzy ranking and an artificial neural network

    Science.gov (United States)

    Wang, Baijie; Wang, Xin; Chen, Zhangxin

    2013-08-01

    Reservoir characterization refers to the process of quantitatively assigning reservoir properties using all available field data. Artificial neural networks (ANN) have recently been introduced to solve reservoir characterization problems dealing with the complex underlying relationships inherent in well log data. Despite the utility of ANNs, the current limitation is that most existing applications simply focus on directly implementing existing ANN models instead of improving/customizing them to fit the specific reservoir characterization tasks at hand. In this paper, we propose a novel intelligent framework that integrates fuzzy ranking (FR) and multilayer perceptron (MLP) neural networks for reservoir characterization. FR can automatically identify a minimum subset of well log data as neural inputs, and the MLP is trained to learn the complex correlations from the selected well log data to a target reservoir property. FR guarantees the selection of the optimal subset of representative data from the overall well log data set for the characterization of a specific reservoir property; and, this implicitly improves the modeling and predication accuracy of the MLP. In addition, a growing number of industrial agencies are implementing geographic information systems (GIS) in field data management; and, we have designed the GFAR solution (GIS-based FR ANN Reservoir characterization solution) system, which integrates the proposed framework into a GIS system that provides an efficient characterization solution. Three separate petroleum wells from southwestern Alberta, Canada, were used in the presented case study of reservoir porosity characterization. Our experiments demonstrate that our method can generate reliable results.

  4. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    Science.gov (United States)

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  5. Real-time reservoir geological model updating using the hybrid EnKF and geostatistical technique

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Chen, S.; Yang, D. [Regina Univ., SK (Canada). Petroleum Technology Research Centre

    2008-07-01

    Reservoir simulation plays an important role in modern reservoir management. Multiple geological models are needed in order to analyze the uncertainty of a given reservoir development scenario. Ideally, dynamic data should be incorporated into a reservoir geological model. This can be done by using history matching and tuning the model to match the past performance of reservoir history. This study proposed an assisted history matching technique to accelerate and improve the matching process. The Ensemble Kalman Filter (EnKF) technique, which is an efficient assisted history matching method, was integrated with a conditional geostatistical simulation technique to dynamically update reservoir geological models. The updated models were constrained to dynamic data, such as reservoir pressure and fluid saturations, and approaches geologically realistic at each time step by using the EnKF technique. The new technique was successfully applied in a heterogeneous synthetic reservoir. The uncertainty of the reservoir characterization was significantly reduced. More accurate forecasts were obtained from the updated models. 3 refs., 2 figs.

  6. Proposal and Evaluation of Management Method for College Mechatronics Education Applying the Project Management

    Science.gov (United States)

    Ando, Yoshinobu; Eguchi, Yuya; Mizukawa, Makoto

    In this research, we proposed and evaluated a management method of college mechatronics education. We applied the project management to college mechatronics education. We practiced our management method to the seminar “Microcomputer Seminar” for 3rd grade students who belong to Department of Electrical Engineering, Shibaura Institute of Technology. We succeeded in management of Microcomputer Seminar in 2006. We obtained the good evaluation for our management method by means of questionnaire.

  7. Metal and physico-chemical variations at a hydroelectric reservoir analyzed by Multivariate Analyses and Artificial Neural Networks: environmental management and policy/decision-making tools.

    Science.gov (United States)

    Cavalcante, Y L; Hauser-Davis, R A; Saraiva, A C F; Brandão, I L S; Oliveira, T F; Silveira, A M

    2013-01-01

    This paper compared and evaluated seasonal variations in physico-chemical parameters and metals at a hydroelectric power station reservoir by applying Multivariate Analyses and Artificial Neural Networks (ANN) statistical techniques. A Factor Analysis was used to reduce the number of variables: the first factor was composed of elements Ca, K, Mg and Na, and the second by Chemical Oxygen Demand. The ANN showed 100% correct classifications in training and validation samples. Physico-chemical analyses showed that water pH values were not statistically different between the dry and rainy seasons, while temperature, conductivity, alkalinity, ammonia and DO were higher in the dry period. TSS, hardness and COD, on the other hand, were higher during the rainy season. The statistical analyses showed that Ca, K, Mg and Na are directly connected to the Chemical Oxygen Demand, which indicates a possibility of their input into the reservoir system by domestic sewage and agricultural run-offs. These statistical applications, thus, are also relevant in cases of environmental management and policy decision-making processes, to identify which factors should be further studied and/or modified to recover degraded or contaminated water bodies. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Estimating long-term evolution of fine sediment budget in the Iffezheim reservoir using a simplified method based on classification of boundary conditions

    Science.gov (United States)

    Zhang, Qing; Hillebrand, Gudrun; Hoffmann, Thomas; Hinkelmann, Reinhard

    2017-04-01

    , and 2 longer ones, which include several short-term periods. Short-term periods spread from 1 to 3 months, whereas long-term periods indicate 2 and 5 years. The simulation results showed an acceptable agreement with the measurements. It was also found that the long-term periods had less deviation to the measurements than the short ones. This simplified method exhibited clear savings in computational time compared to the instationary simulations; in this case only 3 hours of computational time were needed for 5 years simulation period using the reference computer mentioned above. Further research is needed with respect to the limits of this linear approach, i.e. with respect to the frequency with which the set of steady simulations has to be updated due to significant changes in morphology and in turn in hydraulics. Yet, the preliminary results are promising, suggesting that the developed approach is very suitable for a long-term simulation of riverbed evolution. REFERENCES Olsen, N.R.B. 2014. A three-dimensional numerical model for simulation of sediment movements in water intakes with multiblock option. Version 1 and 2. User's manual. Department of Hydraulic and Environmental Engineering. The Norwegian University of Science and Technology, Trondheim, Norway. Wasser- und Schifffahrtsamt (WSA) Freiburg. 2011. Sachstandsbericht oberer Wehrkanal Staustufe Iffezheim. Technical report - Upper weir channel of the Iffezheim hydropower reservoir. Zhang, Q., Hillebrand, G. Moser, H. & Hinkelmann, R. 2015. Simulation of non-uniform sediment transport in a German Reservoir with the SSIIM Model and sensitivity analysis. Proceedings of the 36th IAHR World Congress. The Hague, The Netherland.

  9. A new method for estimating the free-to-adsorbed ratio in shale gas reservoirs using acoustic amplitude attenuation and porosity

    Science.gov (United States)

    Liu, Kun; Sun, Jianmeng; Gu, Ming; Liu, Haitao; Chen, Xiangyang

    2017-10-01

    Free and adsorbed gas content are the key parameters for estimating the volume of initially in-place shale gas. Due to the difficulty of accurately obtaining water saturation and pore pressure in shale gas reservoirs, as well as other drawbacks, a new method is proposed to estimate the free-to-adsorbed ratio based on the acoustic amplitude attenuation coefficient and porosity. Moreover, a joint experiment of the adsorption isotherm and acoustic amplitude measurement is carried out to study the main factors influencing the free-to-adsorbed ratio. Firstly, the experimental operation process was designed; then, the relationship between pore space and net pressure was studied. After that, the adsorbed and free gas content were calculated. Secondly, the amplitude obtained by the fast Fourier transform (FFT) was compared with the amplitude obtained from the root mean square (RMS) approach. Then, the acoustic amplitude attenuation coefficient was estimated in order to study the relationship between the free-to-adsorbed ratio, acoustic amplitude attenuation coefficient as well as porosity. Thirdly, according to the experimental data, the empirical formula of the free-to-adsorbed ratio was acquired and was successfully applied to estimate the free-to-adsorbed ratio in shale gas reservoirs in the YS area. Finally, with satisfying accuracy, the practical applications were found to be in good agreement with the results of the traditional methods, which proves the reliability of the introduced method.

  10. Method for Business Process Management System Selection

    NARCIS (Netherlands)

    Thijs van de Westelaken; Bas Terwee; Pascal Ravesteijn

    2013-01-01

    In recent years business process management (BPM) and specifically information systems that support the analysis, design and execution of processes (also called business process management systems (BPMS)) are getting more attention. This has lead to an increase in research on BPM and BPMS. However

  11. MAPPING OF RESERVOIR PROPERTIES AND FACIES THROUGH INTEGRATION OF STATIC AND DYNAMIC DATA

    Energy Technology Data Exchange (ETDEWEB)

    Albert C. Reynolds; Dean S. Oliver; Yannong Dong; Ning Liu; Guohua Gao; Fengjun Zhang; Ruijian Li

    2004-12-01

    Knowledge of the distribution of permeability and porosity in a reservoir is necessary for the prediction of future oil production, estimation of the location of bypassed oil, and optimization of reservoir management. The volume of data that can potentially provide information on reservoir architecture and fluid distributions has increased enormously in the past decade. The techniques developed in this research will make it easier to use all the available data in an integrated fashion. While it is relatively easy to generate plausible reservoir models that honor static data such as core, log, and seismic data, it is far more difficult to generate plausible reservoir models that honor dynamic data such as transient pressures, saturations, and flow rates. As a result, the uncertainty in reservoir properties is higher than it could be and reservoir management can not be optimized. In this project, we have developed computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Specifically, we have developed methods for adjusting porosity and permeability fields to match both production and time-lapse seismic data and have also developed a procedure to adjust the locations of boundaries between facies to match production data. In all cases, the history matched rock property fields are consistent with a prior model based on static data and geologic information. Our work also indicates that it is possible to adjust relative permeability curves when history matching production data.

  12. Safety and Waste Management for SAM Chemistry Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the chemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  13. Safety and Waste Management for SAM Pathogen Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the pathogens included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  14. Safety and Waste Management for SAM Radiochemical Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the radiochemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  15. Safety and Waste Management for SAM Biotoxin Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the biotoxins included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  16. Chickamauga reservoir embayment study - 1990

    Energy Technology Data Exchange (ETDEWEB)

    Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

    1992-12-01

    The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

  17. Shoreline to Height (S2H): an algorithm to monitor reservoirs' water height from satellite images. A flood risk management application

    Science.gov (United States)

    Cenci, Luca; Boni, Giorgio; Pulvirenti, Luca; Gabellani, Simone; Gardella, Fabio; Squicciarino, Giuseppe; Pierdicca, Nazzareno; Benedetto, Catia

    2016-04-01

    In a reservoir, water level monitoring is important for emergency management purposes. This information can be used to estimate the degree of filling of the water body, thus helping decision makers in flood control operations. Furthermore, if assimilated in hydrological models and coupled with rainfall forecasts, this information can be used for flood forecast and early warning. In many cases, water level is not known (e.g. data-scarce environments), or not shared by operators. Remote sensing may allow overcoming these limitations, enabling its estimation. The objective of this work is to present the Shoreline to Height (S2H) algorithm, developed to retrieve the height of the water stored in reservoirs from satellite images. To this aim, some auxiliary data are needed: a DEM and the maximum/minimum height that can be reached by the water. In data-scarce environments, these information can be easily obtained on the Internet (e.g. free, worldwide DEM and design data for artificial reservoirs). S2H was tested with different satellite data, both optical and SAR (Landsat and Cosmo SkyMed®-CSK®) in order to assess the impact of different sensors on the final estimates. The study area was the Place-Moulin Lake (Valle d'Aosta-VdA, Italy), where it is present a monitoring network that can provide reliable ground-truths for validating the algorithm and assessing its accuracy. When the algorithm was developed, it was assumed to be in absence of any "official"-auxiliary data. Therefore, two DEMs (SRTM 1 arc-second and ASTER GDEM) were used to evaluate their performances. The maximum/minimum water height values were found on the website of VdA Region. The S2H is based on three steps: i) satellite data preprocessing (Landsat: atmospheric correction; CSK®: geocoding and speckle filtering); ii) water mask generation (using a thresholding and region growing algorithm) and shoreline extraction; iii) retrieval of the shoreline height according to the reference DEMs (adopting a

  18. Real-time optimisation of the Hoa Binh reservoir, Vietnam

    DEFF Research Database (Denmark)

    Richaud, Bertrand; Madsen, Henrik; Rosbjerg, Dan

    2011-01-01

    Multi-purpose reservoirs often have to be managed according to conflicting objectives, which requires efficient tools for trading-off the objectives. This paper proposes a multi-objective simulation-optimisation approach that couples off-line rule curve optimisation with on-line real......-time optimisation. First, the simulation-optimisation framework is applied for optimising reservoir operating rules. Secondly, real-time and forecast information is used for on-line optimisation that focuses on short-term goals, such as flood control or hydropower generation, without compromising the deviation...... of the long-term objectives from the optimised rule curves. The method is illustrated for optimisation of the Hoa Binh reservoir in Vietnam. The approach is proven efficient to trade-off conflicting objectives. Selected by a Pareto optimisation method, the preferred optimum is able to mitigate the floods...

  19. Forecast-Informed Reservoir Operations: Lessons Learned from a Multi-Agency Collaborative Research and Operations Effort to improve Flood Risk Management, Water Supply and Environmental Benefits

    Science.gov (United States)

    Talbot, C. A.; Ralph, M.; Jasperse, J.; Forbis, J.

    2017-12-01

    Lessons learned from the multi-agency Forecast-Informed Reservoir Operations (FIRO) effort demonstrate how research and observations can inform operations and policy decisions at Federal, State and Local water management agencies with the collaborative engagement and support of researchers, engineers, operators and stakeholders. The FIRO steering committee consists of scientists, engineers and operators from research and operational elements of the National Oceanographic and Atmospheric Administration and the US Army Corps of Engineers, researchers from the US Geological Survey and the US Bureau of Reclamation, the state climatologist from the California Department of Water Resources, the chief engineer from the Sonoma County Water Agency, and the director of the Scripps Institution of Oceanography's Center for Western Weather and Water Extremes at the University of California-San Diego. The FIRO framework also provides a means of testing and demonstrating the benefits of next-generation water cycle observations, understanding and models in water resources operations.

  20. Credit Institutions Management Evaluation using Quantitative Methods

    Directory of Open Access Journals (Sweden)

    Nicolae Dardac

    2006-04-01

    Full Text Available Credit institutions supervising mission by state authorities is mostly assimilated with systemic risk prevention. In present, the mission is orientated on analyzing the risk profile of the credit institutions, the mechanism and existing systems as management tools providing to bank rules the proper instruments to avoid and control specific bank risks. Rating systems are sophisticated measurement instruments which are capable to assure the above objectives, such as success in banking risk management. The management quality is one of the most important elements from the set of variables used in the quoting process in credit operations. Evaluation of this quality is – generally speaking – fundamented on quantitative appreciations which can induce subjectivism and heterogeneity in quotation. The problem can be solved by using, complementary, quantitative technics such us DEA (Data Envelopment Analysis.

  1. Credit Institutions Management Evaluation using Quantitative Methods

    Directory of Open Access Journals (Sweden)

    Nicolae Dardac

    2006-02-01

    Full Text Available Credit institutions supervising mission by state authorities is mostly assimilated with systemic risk prevention. In present, the mission is orientated on analyzing the risk profile of the credit institutions, the mechanism and existing systems as management tools providing to bank rules the proper instruments to avoid and control specific bank risks. Rating systems are sophisticated measurement instruments which are capable to assure the above objectives, such as success in banking risk management. The management quality is one of the most important elements from the set of variables used in the quoting process in credit operations. Evaluation of this quality is – generally speaking – fundamented on quantitative appreciations which can induce subjectivism and heterogeneity in quotation. The problem can be solved by using, complementary, quantitative technics such us DEA (Data Envelopment Analysis.

  2. A reservoir simulation approach for modeling of naturally fractured reservoirs

    Directory of Open Access Journals (Sweden)

    H. Mohammadi

    2012-12-01

    Full Text Available In this investigation, the Warren and Root model proposed for the simulation of naturally fractured reservoir was improved. A reservoir simulation approach was used to develop a 2D model of a synthetic oil reservoir. Main rock properties of each gridblock were defined for two different types of gridblocks called matrix and fracture gridblocks. These two gridblocks were different in porosity and permeability values which were higher for fracture gridblocks compared to the matrix gridblocks. This model was solved using the implicit finite difference method. Results showed an improvement in the Warren and Root model especially in region 2 of the semilog plot of pressure drop versus time, which indicated a linear transition zone with no inflection point as predicted by other investigators. Effects of fracture spacing, fracture permeability, fracture porosity, matrix permeability and matrix porosity on the behavior of a typical naturally fractured reservoir were also presented.

  3. Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China

    Science.gov (United States)

    Zhou, Chao; Yin, Kunlong; Cao, Ying; Ahmed, Bayes; Li, Yuanyao; Catani, Filippo; Pourghasemi, Hamid Reza

    2018-03-01

    Landslide is a common natural hazard and responsible for extensive damage and losses in mountainous areas. In this study, Longju in the Three Gorges Reservoir area in China was taken as a case study for landslide susceptibility assessment in order to develop effective risk prevention and mitigation strategies. To begin, 202 landslides were identified, including 95 colluvial landslides and 107 rockfalls. Twelve landslide causal factor maps were prepared initially, and the relationship between these factors and each landslide type was analyzed using the information value model. Later, the unimportant factors were selected and eliminated using the information gain ratio technique. The landslide locations were randomly divided into two groups: 70% for training and 30% for verifying. Two machine learning models: the support vector machine (SVM) and artificial neural network (ANN), and a multivariate statistical model: the logistic regression (LR), were applied for landslide susceptibility modeling (LSM) for each type. The LSM index maps, obtained from combining the assessment results of the two landslide types, were classified into five levels. The performance of the LSMs was evaluated using the receiver operating characteristics curve and Friedman test. Results show that the elimination of noise-generating factors and the separated modeling of each landslide type have significantly increased the prediction accuracy. The machine learning models outperformed the multivariate statistical model and SVM model was found ideal for the case study area.

  4. Field demonstration of an active reservoir pressure management through fluid injection and displaced fluid extractions at the Rock Springs Uplift, a priority geologic CO2 storage site for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zunsheng [Univ. of Wyoming, Laramie, WY (United States)

    2017-04-05

    This report provides the results from the project entitled Field Demonstration of Reservoir Pressure Management through Fluid Injection and Displaced Fluid Extraction at the Rock Springs Uplift, a Priority Geologic CO2 Storage Site for Wyoming (DE-FE0026159 for both original performance period (September 1, 2015 to August 31, 2016) and no-cost extension (September 1, 2016 to January 6, 2017)).

  5. Heat Extraction Project, geothermal reservoir engineering research at Stanford. Fourth annual report, January 1, 1988--December 1, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.

    1989-01-01

    The main objective of the SGP Heat Extraction Project is to provide a means for estimating the thermal behavior of geothermal fluids produced from fractured hydrothermal resources. The methods are based on estimated thermal properties of the reservoir components, reservoir management planning of production and reinjection, and the mixing of reservoir fluids: geothermal, resource fluid cooled by drawdown and infiltrating groundwater, and reinjected recharge heated by sweep flow through the reservoir formation. Several reports and publications, listed in Appendix A, describe the development of the analytical methods which were part of five Engineer and PhD dissertations, and the results from many applications of the methods to achieve the project objectives. The Heat Extraction Project is to evaluate the thermal properties of fractured geothermal resource and forecasted effects of reinjection recharge into operating reservoirs.

  6. Dynamic management of sustainable development methods for large technical systems

    CERN Document Server

    Krishans, Zigurds; Merkuryev, Yuri; Oleinikova, Irina

    2014-01-01

    Dynamic Management of Sustainable Development presents a concise summary of the authors' research in dynamic methods analysis of technical systems development. The text illustrates mathematical methods, with a focus on practical realization and applications.

  7. THE MANAGEMENT METHODS IN PERFORMANCE SPORTS

    Directory of Open Access Journals (Sweden)

    Silvia GRĂDINARU

    2015-12-01

    Full Text Available Sports are a widespread phenomenon, capable of raising human energies and mobilize financial and material resources that can be difficult compared with those in other areas of social life. Management of sports organizations is influenced and determined by the compliance and requirements arising from the documents issued by international organizations with authority in the field. Organizational development is considered essentially as a strategy to increase organizational effectiveness by determining changes that consider both human resources and organizations. On the whole society, it is accelerated by an industry evolving sport with distinctive features. Its development is conditional on macroeconomics and technology. The complexity of the activities of sports organizations performance, the main laboratory performance national and international sports, requiring a more thorough investigation to enable knowledge of the complex mechanisms of their management and simultaneously identify some optimization solutions throughout the economic-financial and human resources.

  8. Applying a life cycle approach to project management methods

    OpenAIRE

    Biggins, David; Trollsund, F.; Høiby, A.L.

    2016-01-01

    Project management is increasingly important to organisations because projects are the method\\ud by which organisations respond to their environment. A key element within project management\\ud is the standards and methods that are used to control and conduct projects, collectively known as\\ud project management methods (PMMs) and exemplified by PRINCE2, the Project Management\\ud Institute’s and the Association for Project Management’s Bodies of Knowledge (PMBOK and\\ud APMBOK. The purpose of t...

  9. System and method for advanced power management

    Science.gov (United States)

    Atcitty, Stanley [Albuquerque, NM; Symons, Philip C [Surprise, AZ; Butler, Paul C [Albuquerque, NM; Corey, Garth P [Albuquerque, NM

    2009-07-28

    A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

  10. A reverse method to estimate initial temperatures in geothermal reservoirs; Un metodo inverso para estimacion de la temperatura inicial de yacimientos geotermicos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Gutierrez, Alfonso [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Cuernavaca, Morelos (Mexico)]. E-mail: aggarcia@iie.org.mx; Ramos Alcantara, Jose R. [Centro Nacional de Investigacion y Desarrollo Tecnologico, Departamento de Ingenieria Mecanica, Cuernavaca, Morelos (Mexico); Arellano Gomez, Victor M. [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Cuernavaca, Morelos (Mexico)

    2010-01-15

    A method is presented for estimating the initial temperature in geothermal-reservoir formations. The method is based on control theory where the measured temperatures or temperature logs are compared with corresponding simulated temperatures for different times with the well closed. The comparison is made using a control algorithm that makes changes to the originally assumed reservoir temperatures and performs iterations until the best fit between the temperature logs and the simulated temperatures is obtained. The simulation of fluid transport and heat in the well includes the processes of circulation and stop in the presence of circulation losses, modeled on macroscopic balances of momentum and energy. The transport processes in the formation regard the reservoir as an isotropic porous medium and fluid flow is described by Darcy's law. This model generates the fields of temperatures, pressures and speeds as a function of time and space. The method was tested with data from well LV-3 in Las Tres Virgenes geothermal field, Baja California Sur, Mexico. The estimated temperatures of the undisturbed formation-or initial temperatures-are compared within {+-}15 degrees Celsius with the measured temperatures, which is an acceptable outcome from an engineering point of view. [Spanish] Se presenta un metodo para la estimacion de la temperatura inicial en las formaciones de yacimientos geotermicos. El metodo se basa en la teoria de control donde las temperaturas medidas o registros de temperatura se comparan con las correspondientes temperaturas simuladas a diferentes tiempos con el pozo cerrado. La comparacion se hace usando un algoritmo de control el cual hace cambios a las temperaturas de yacimiento originalmente supuestas y realiza iteraciones hasta que se obtiene el mejor ajuste entre los registros de temperatura y las temperaturas simuladas. La simulacion del transporte de fluidos y calor en el pozo incluye los procesos de circulacion y paro en presencia de

  11. Managing Small-Scale Fisheries: Alternative Directions and Methods

    International Development Research Centre (IDRC) Digital Library (Canada)

    Managing Small-Scale Fisheries: Alternative Directions and Methods. Book cover Managing Small-Scale Fisheries: Alternative Directions and Methods. Auteur(s) : Fikret Berkes, Robin Mahon, Patrick McConney, Richard Pollnac, and Robert Pomeroy. Maison(s) d'édition : IDRC. 31 juillet 2001. ISBN : 0889369437.

  12. Managing Small-Scale Fisheries : Alternative Directions and Methods

    International Development Research Centre (IDRC) Digital Library (Canada)

    Managing Small-Scale Fisheries : Alternative Directions and Methods. Couverture du livre Managing Small-Scale Fisheries: Alternative Directions and Methods. Auteur(s):. Fikret Berkes, Robin Mahon, Patrick McConney, Richard Pollnac, et Robert Pomeroy. Maison(s) d'édition: CRDI 2001. 31 juillet 2001. ISBN :.

  13. Methods Adopted for Management of Teething Problems by ...

    African Journals Online (AJOL)

    Background: Several traditional and orthodox remedies are usually employed in the management of teething problems in Nigeria. Objectives: To describe the various methods used by Nigerian mothers for the management of teething problems. Method: A questionnaire survey was conducted among 333 mothers attending ...

  14. Management systems, control and motivation methods used at enterprises groups

    OpenAIRE

    Leugaudaitė, Dalia

    2017-01-01

    MANAGEMENT SYSTEMS, CONTROL AND MOTIVATION METHODS USED AT ENTERPRISES GROUPS 69 pages, 3 tables, 25 pictures, 39 literature references. The aim of the Master's paper is to determine the implementation impact of the motivation and controlling methods to achieve efficiency in management systems. As a result of the scientific literature analysis, the advantages and disadvantages of the management systems were selected. These statements were used for the primary survey of the initial group of co...

  15. The Methods of Stress Management and Their Classification

    Directory of Open Access Journals (Sweden)

    Honchar Mykhailo F.

    2017-12-01

    Full Text Available The article considers the content and classification of methods of stress management, which provides systematization of their varieties by the number of existing (character, time interval of application, direction of impact, period of action, way of account the interests of employees, level of formation, method of substantiation, content and the allocated new attributes (scale of changes in terms of stress management systems, level of novelty at enterprise, consistency, which allows to choose the appropriate types of such methods in overcoming undesirable deviations that have a significant negative impact on the functioning of economic entities. It has been determined that such methods are formed in the implementing of technology of stress-management; are the result of management activities of the steering subsystem of organization at each level of management; have alternative nature; form an information-management base for the adoption of managerial decisions in terms of the systems of stress administration. It has been specified that, with the assistance of certain methods in terms of stress management systems, managers can track existing and potential problems in the complex and dynamic environment of the organization, identify their relationships, identify «weak signals», adjust goals and tasks of management of critical undesirable deviations, determine indicators and criteria of stress-management, etc.

  16. Estimation of Bank Erosion Due To Reservoir Operation in Cascade (Case Study: Citarum Cascade Reservoir

    Directory of Open Access Journals (Sweden)

    Sri Legowo

    2009-11-01

    Full Text Available Sedimentation is such a crucial issue to be noted once the accumulated sediment begins to fill the reservoir dead storage, this will then influence the long-term reservoir operation. The sediment accumulated requires a serious attention for it may influence the storage capacity and other reservoir management of activities. The continuous inflow of sediment to the reservoir will decrease the capacity of reservoir storage, the reservoir value in use, and the useful age of reservoir. Because of that, the rate of the sediment needs to be delayed as possible. In this research, the delay of the sediment rate is considered based on the rate of flow of landslide of the reservoir slope. The rate of flow of the sliding slope can be minimized by way of each reservoir autonomous efforts. This effort can be performed through; the regulation of fluctuating rate of reservoir surface current that does not cause suddenly drawdown and upraising as well. The research model is compiled using the searching technique of Non Linear Programming (NLP.The rate of bank erosion for the reservoir variates from 0.0009 to 0.0048 MCM/year, which is no sigrificant value to threaten the life time of reservoir.Mean while the rate of watershed sediment has a significant value, i.e: 3,02 MCM/year for Saguling that causes to fullfill the storage capacity in 40 next years (from years 2008.

  17. Multiscale ensemble filtering for reservoir engineering applications

    NARCIS (Netherlands)

    Lawniczak, W.; Hanea, R.G.; Heemink, A.; McLaughlin, D.

    2009-01-01

    Reservoir management requires periodic updates of the simulation models using the production data available over time. Traditionally, validation of reservoir models with production data is done using a history matching process. Uncertainties in the data, as well as in the model, lead to a nonunique

  18. Budgetary Approach to Project Management by Percentage of Completion Method

    Directory of Open Access Journals (Sweden)

    Leszek Borowiec

    2011-07-01

    Full Text Available Efficient and effective project management process is made possible by the use of methods and techniques of project management. The aim of this paper is to present the problems of project management by using Percentage of Completion method. The research material was gathered based on the experience in implementing this method by the Johnson Controls International Company. The article attempts to demonstrate the validity of the thesis that the POC project management method, allows for effective implementation and monitoring of the project and thus is an effective tool in the managing of companies which exploit the budgetary approach. The study presents planning process of basic parameters affecting the effectiveness of the project (such as costs, revenue, margin and characterized how the primary measurements used to evaluate it. The present theme is illustrating by numerous examples for showing the essence of the raised problems and the results are presenting by using descriptive methods, graphical and tabular.

  19. Effect of reservoir heterogeneity on air injection performance in a light oil reservoir

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available Air injection is a good option to development light oil reservoir. As well-known that, reservoir heterogeneity has great effect for various EOR processes. This also applies to air injection. However, oil recovery mechanisms and physical processes for air injection in heterogeneous reservoir with dip angle are still not well understood. The reported setting of reservoir heterogeneous for physical model or simulation model of air injection only simply uses different-layer permeability of porous media. In practice, reservoir heterogeneity follows the principle of geostatistics. How much of contrast in permeability actually challenges the air injection in light oil reservoir? This should be investigated by using layered porous medial settings of the classical Dykstra-Parsons style. Unfortunately, there has been no work addressing this issue for air injection in light oil reservoir. In this paper, Reservoir heterogeneity is quantified based on the use of different reservoir permeability distribution according to classical Dykstra-Parsons coefficients method. The aim of this work is to investigate the effect of reservoir heterogeneity on physical process and production performance of air injection in light oil reservoir through numerical reservoir simulation approach. The basic model is calibrated based on previous study. Total eleven pseudo compounders are included in this model and ten complexity of reactions are proposed to achieve the reaction scheme. Results show that oil recovery factor is decreased with the increasing of reservoir heterogeneity both for air and N2 injection from updip location, which is against the working behavior of air injection from updip location. Reservoir heterogeneity sometimes can act as positive effect to improve sweep efficiency as well as enhance production performance for air injection. High O2 content air injection can benefit oil recovery factor, also lead to early O2 breakthrough in heterogeneous reservoir. Well

  20. A Dynamic Management Method for Fast Manufacturing Resource Reconfiguration

    Science.gov (United States)

    Yuan, Zhiye

    To fast and optimally reconfigure manufacturing resource, a dynamic management method for fast manufacturing resource reconfiguration based on holon was proposed. In this method, a dynamic management structure for fast manufacturing resource reconfiguration was established based on holon. Moreover, the cooperation relationship among holons for fast manufacturing resource reconfiguration and the manufacturing information cooperation mechanism based on holonic were constructed. Finally, the simulation system of a dynamic management method for fast manufacturing resource reconfiguration was demonstrated and validated by Flexsim software. It has shown the proposed method can dynamically and optimally reconfigure manufacturing resource, and it can effectively improve the efficiency of manufacturing processes.

  1. DETERMINATION OF LOW PERMEABLE LITHOFACIES, AS TYPE OF UNCONVENTIONAL HYDROCARBON RESERVOIRS, USING SEQUENTIAL INDICATOR METHODS, CASE STUDY FROM THE KLOŠTAR FIELD

    Directory of Open Access Journals (Sweden)

    Kristina Novak Zelenika

    2014-07-01

    Full Text Available Geostatistical methods are very successfully used in Upper Miocene (Lower Pontian Kloštar structure modelling. Mapping of the two variables (porosity and thickness and their common observation in certain cut-off values gave the insight in depositional channel location, transitional lithofacies, material transport direction and variables distribution within representative Lower Pontian reservoir. It was possible to observe direction of the turbidites and role of the normal fault in detritus flow direction in the analyzed structure. Intercalation between turbiditic sandstones and basinal pelitic marls were the locations with the highest thicknesses. Sequential Indicator Simulations highlighted porosity maps as primary and thickness maps as secondary (additional data source (the paper is published in Croatian.

  2. DOE methods for evaluating environmental and waste management samples.

    Energy Technology Data Exchange (ETDEWEB)

    Goheen, S C; McCulloch, M; Thomas, B L; Riley, R G; Sklarew, D S; Mong, G M; Fadeff, S K [eds.; Pacific Northwest Lab., Richland, WA (United States)

    1994-04-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) provides applicable methods in use by. the US Department of Energy (DOE) laboratories for sampling and analyzing constituents of waste and environmental samples. The development of DOE Methods is supported by the Laboratory Management Division (LMD) of the DOE. This document contains chapters and methods that are proposed for use in evaluating components of DOE environmental and waste management samples. DOE Methods is a resource intended to support sampling and analytical activities that will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the US Environmental Protection Agency (EPA), or others.

  3. DOE methods for evaluating environmental and waste management samples

    International Nuclear Information System (INIS)

    Goheen, S.C.; McCulloch, M.; Thomas, B.L.; Riley, R.G.; Sklarew, D.S.; Mong, G.M.; Fadeff, S.K.

    1993-03-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) provides applicable methods in use by. the US Department of Energy (DOE) laboratories for sampling and analyzing constituents of waste and environmental samples. The development of DOE Methods is supported by the Laboratory Management Division (LMD) of the DOE. This document contains chapters and methods that are proposed for use in evaluating components of DOE environmental and waste management samples. DOE Methods is a resource intended to support sampling and analytical activities that will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the US Environmental Protection Agency (EPA), or others

  4. Modern Methods for Cost Management in Construction Enterprises

    Directory of Open Access Journals (Sweden)

    Mesároš Peter

    2015-06-01

    Full Text Available Cost management should be seen as an essential function of enterprises which perform their activities in current market environment. One of the main factors affecting the level of achieved profit and favourable market position is cost structure. The company's ability to obtain necessary and reliable information on their own cost, subsequent processing and effective cost management is crucial for achieving success. This study focuses on cost management and the use of modern methods of cost management in construction enterprises. The aim of this paper is to identify approaches to cost management in Slovak construction enterprises, based on own empirical research.

  5. Reservoir hydrocarbon delineation using spectral decomposition: The application of S-Transform and empirical mode decomposition (EMD) method

    Science.gov (United States)

    Haris, A.; Morena, V.; Riyanto, A.; Zulivandama, S. R.

    2017-07-01

    Non-stationer signal from the seismic survey is difficult to be directly interpreted in time domain analysis. Spectral decomposition is one of the spectral analysis methods that can analyze the non-stationer signal in frequency domain. The Fast Fourier Transform method was commonly used for spectral decomposition analysis, however, this method had a limitation in the scaled window analysis and produced pure quality for low-frequency shadow. The S-Transform and Empirical the Mode Decomposition (EMD) is another method of spectral decomposition that can be used to enhanced low-frequency shadows. In this research, comparison of the S-Transform and the EMD methods that can show the difference imaging result of low-frequency shadows zone is applied to Eldo Field, Jambi Province. The spectral decomposition result based on the EMD method produced better imaging of low-frequency shadows zone in tuning thickness compared to S-Transform methods.

  6. Efficient Load Scheduling Method For Power Management

    Directory of Open Access Journals (Sweden)

    Vijo M Joy

    2015-08-01

    Full Text Available An efficient load scheduling method to meet varying power supply needs is presented in this paper. At peak load times the power generation system fails due to its instability. Traditionally we use load shedding process. In load shedding process disconnect the unnecessary and extra loads. The proposed method overcomes this problem by scheduling the load based on the requirement. Artificial neural networks are used for this optimal load scheduling process. For generate economic scheduling artificial neural network has been used because generation of power from each source is economically different. In this the total load required is the inputs of this network and the power generation from each source and power losses at the time of transmission are the output of the neural network. Training and programming of the artificial neural networks are done using MATLAB.

  7. Fish community response to the longitudinal environmental gradient in Czech deep-valley reservoirs: Implications for ecological monitoring and management.

    Czech Academy of Sciences Publication Activity Database

    Vašek, Mojmír; Prchalová, Marie; Říha, Milan; Blabolil, Petr; Čech, Martin; Draštík, Vladislav; Frouzová, Jaroslava; Jůza, Tomáš; Kratochvíl, Michal; Muška, Milan; Peterka, Jiří; Sajdlová, Zuzana; Šmejkal, Marek; Tušer, Michal; Vejřík, Lukáš; Znachor, Petr; Mrkvička, Tomáš; Seďa, Jaromír; Kubečka, Jan

    2016-01-01

    Roč. 63, April (2016), s. 219-230 ISSN 1470-160X R&D Projects: GA MŠk(CZ) EE2.3.20.0204; GA ČR(CZ) GA15-01625S Institutional support: RVO:60077344 Keywords : ecological quality * eutrophication * fish community * gradients * water management Subject RIV: EH - Ecology, Behaviour Impact factor: 3.898, year: 2016

  8. Tectonic framework of the southern portion of the Paraná Basin based on magnetotelluric method: a contribution to the understanding of unconventional reservoirs

    Science.gov (United States)

    Rolim, S.

    2015-12-01

    The characterization of the tectonic framework of Paleozoic terrains is crucial for the investigation of unconventional fractured volcanic reservoirs. In recent years, the need for exploitation of these areas showed the value of the non-seismic methods in Brazil. Here we present the results of a magnetotelluric imaging (MT) to identify and characterize the structural framework of the southern portion of the Paraná Basin, southern Brazil. We carried out a SW-NE ,1200 km-long MT profile, with 68 stations spaced between 5-15 km on the southernmost states in Brazil. The observation of the PSI profile highlights the presence of large scale NW-SE faults and emphasize the presence of two major regional structures: (i) the Rio Grande Arc in the southern portion, and (ii) the Torres Syncline in the northern portion. The Rio Grande Arc is a horst highlighted by the basement uplift and the thicker layers of sedimentary rocks in the extremes south and north of this structure. The fault system observed along the profile suggests simultaneously uplifting of the basement and deposition of the sedimentary sequences of the Paraná Basin. This hypothesis is in agreement with stratigraphic, borehole and geochronological data, which have shown that the Rio Grande arc is contemporaneous with the deposition of the Triassic to Early Jurassic sediments. The Torres Syncline is a structure characterized by the increasing thickness of sedimentary layers in the north section of our MT profile. The continuity of the layers is interrupted by large regional fault systems, which also affect the volcanic rocks of the Serra Geral Formation, indicating that the faults were active after the Cretaceous. The results show that the MT modeling brings a distinct contribution to the understanding of the present structural architecture of the Paraná basin and the construction of a model for potential fractured volcanic reservoirs.

  9. Combining AHP and DEA Methods for Selecting a Project Manager

    Directory of Open Access Journals (Sweden)

    Baruch Keren

    2014-07-01

    Full Text Available A project manager has a major influence on the success or failure of the project. A good project manager can match between the strategy and objectives of the organization and the goals of the project. Therefore, the selection of the appropriate project manager is a key factor for the success of the project. A potential project manager is judged by his or her proven performance and personal qualifications. This paper proposes a method to calculate the weighted scores and the full rank of candidates for managing a project, and to select the best of those candidates. The proposed method combines specific methodologies: the Data Envelopment Analysis (DEA and the Analytical Hierarchical Process (AHP and uses DEA Ranking Methods to enhance selection.

  10. Entrepreneur environment management behavior evaluation method derived from environmental economy.

    Science.gov (United States)

    Zhang, Lili; Hou, Xilin; Xi, Fengru

    2013-12-01

    Evaluation system can encourage and guide entrepreneurs, and impel them to perform well in environment management. An evaluation method based on advantage structure is established. It is used to analyze entrepreneur environment management behavior in China. Entrepreneur environment management behavior evaluation index system is constructed based on empirical research. Evaluation method of entrepreneurs is put forward, from the point of objective programming-theory to alert entrepreneurs concerned to think much of it, which means to take minimized objective function as comprehensive evaluation result and identify disadvantage structure pattern. Application research shows that overall behavior of Chinese entrepreneurs environmental management are good, specially, environment strategic behavior are best, environmental management behavior are second, cultural behavior ranks last. Application results show the efficiency and feasibility of this method. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  11. Cloud computing and Reservoir project

    International Nuclear Information System (INIS)

    Beco, S.; Maraschini, A.; Pacini, F.; Biran, O.

    2009-01-01

    The support for complex services delivery is becoming a key point in current internet technology. Current trends in internet applications are characterized by on demand delivery of ever growing amounts of content. The future internet of services will have to deliver content intensive applications to users with quality of service and security guarantees. This paper describes the Reservoir project and the challenge of a reliable and effective delivery of services as utilities in a commercial scenario. It starts by analyzing the needs of a future infrastructure provider and introducing the key concept of a service oriented architecture that combines virtualisation-aware grid with grid-aware virtualisation, while being driven by business service management. This article will then focus on the benefits and the innovations derived from the Reservoir approach. Eventually, a high level view of Reservoir general architecture is illustrated.

  12. Effective Stress Approximation using Geomechanical Formulation of Fracturing Technology (GFFT) in Petroleum Reservoirs

    Science.gov (United States)

    Haghi, A.; Asef, M.; Kharrat, R.

    2010-12-01

    Recently, rock mechanics and geophysics contribution in petroleum industry has been significantly increased. Wellbore stability analysis in horizontal wells, sand production problem while extracting hydrocarbon from sandstone reservoirs, land subsidence due to production induced reservoir compaction, reservoir management, casing shearing are samples of these contributions. In this context, determination of the magnitude and orientation of the in-situ stresses is an essential parameter. This paper is presenting new method to estimate the magnitude of in-situ stresses based on fracturing technology data. Accordingly, kirsch equations for the circular cavities and fracturing technology models in permeable formations have been used to develop an innovative Geomechanical Formulation (GFFT). GFFT introduces a direct reasonable relation between the reservoir stresses and the breakdown pressure of fracture, while the concept of effective stress was employed. Thus, this complex formula contains functions of some rock mechanic parameters such as poison ratio, Biot’s coefficient, Young’s modulus, rock tensile strength, depth of reservoir and breakdown/reservoir pressure difference. Hence, this approach yields a direct method to estimate maximum and minimum effective/insitu stresses in an oil field and improves minimum in-situ stress estimation compared to previous studies. In case of hydraulic fracturing; a new stress analysis method is developed based on well known Darcy equations for fluid flow in porous media which improves in-situ stress estimation using reservoir parameters such as permeability, and injection flow rate. The accuracy of the method would be verified using reservoir data of a case history. The concepts discussed in this research would eventually suggest an alternative methodology with sufficient accuracy to derive in-situ stresses in hydrocarbon reservoirs, while no extra experimental work is accomplished for this purpose.

  13. Integrating SANS and fluid-invasion methods to characterize pore structure of typical American shale oil reservoirs.

    Science.gov (United States)

    Zhao, Jianhua; Jin, Zhijun; Hu, Qinhong; Jin, Zhenkui; Barber, Troy J; Zhang, Yuxiang; Bleuel, Markus

    2017-11-13

    An integration of small-angle neutron scattering (SANS), low-pressure N 2 physisorption (LPNP), and mercury injection capillary pressure (MICP) methods was employed to study the pore structure of four oil shale samples from leading Niobrara, Wolfcamp, Bakken, and Utica Formations in USA. Porosity values obtained from SANS are higher than those from two fluid-invasion methods, due to the ability of neutrons to probe pore spaces inaccessible to N 2 and mercury. However, SANS and LPNP methods exhibit a similar pore-size distribution, and both methods (in measuring total pore volume) show different results of porosity and pore-size distribution obtained from the MICP method (quantifying pore throats). Multi-scale (five pore-diameter intervals) inaccessible porosity to N 2 was determined using SANS and LPNP data. Overall, a large value of inaccessible porosity occurs at pore diameters pores in these shales. While each method probes a unique aspect of complex pore structure of shale, the discrepancy between pore structure results from different methods is explained with respect to their difference in measurable ranges of pore diameter, pore space, pore type, sample size and associated pore connectivity, as well as theoretical base and interpretation.

  14. Monitoring small reservoirs' storage with satellite remote sensing in inaccessible areas

    Science.gov (United States)

    Avisse, Nicolas; Tilmant, Amaury; François Müller, Marc; Zhang, Hua

    2017-12-01

    In river basins with water storage facilities, the availability of regularly updated information on reservoir level and capacity is of paramount importance for the effective management of those systems. However, for the vast majority of reservoirs around the world, storage levels are either not measured or not readily available due to financial, political, or legal considerations. This paper proposes a novel approach using Landsat imagery and digital elevation models (DEMs) to retrieve information on storage variations in any inaccessible region. Unlike existing approaches, the method does not require any in situ measurement and is appropriate for monitoring small, and often undocumented, irrigation reservoirs. It consists of three recovery steps: (i) a 2-D dynamic classification of Landsat spectral band information to quantify the surface area of water, (ii) a statistical correction of DEM data to characterize the topography of each reservoir, and (iii) a 3-D reconstruction algorithm to correct for clouds and Landsat 7 Scan Line Corrector failure. The method is applied to quantify reservoir storage in the Yarmouk basin in southern Syria, where ground monitoring is impeded by the ongoing civil war. It is validated against available in situ measurements in neighbouring Jordanian reservoirs. Coefficients of determination range from 0.69 to 0.84, and the normalized root-mean-square error from 10 to 16 % for storage estimations on six Jordanian reservoirs with maximal water surface areas ranging from 0.59 to 3.79 km2.

  15. Seasonal assessment, treatment and removal of heavy metal concentrations in a tropical drinking water reservoir

    Directory of Open Access Journals (Sweden)

    Mustapha Moshood Keke

    2016-06-01

    Full Text Available Heavy metals are present in low concentrations in reservoirs, but seasonal anthropogenic activities usually elevate the concentrations to a level that could become a health hazard. The dry season concentrations of cadmium, copper, iron, lead, mercury, nickel and zinc were assessed from three sites for 12 weeks in Oyun reservoir, Offa, Nigeria. Triplicate surface water samples were collected and analysed using atomic absorption spectrophotometry. The trend in the level of concentrations in the three sites is site C > B > A, while the trend in the levels of the concentrations in the reservoir is Ni > Fe > Zn > Pb > Cd > Cu > Hg. Ni, Cd, Pb and Hg were found to be higher than the WHO guidelines for the metals in drinking water. The high concentration of these metals was from anthropogenic watershed run-off of industrial effluents, domestic sewages and agricultural materials into the reservoir coming from several human activities such as washing, bathing, fish smoking, especially in site C. The health effects of high concentration of these metals in the reservoir were highlighted. Methods for the treatment and removal of the heavy metals from the reservoir during water purification such as active carbon adsorption, coagulation-flocculation, oxidation-filtration, softening treatment and reverse osmosis process were highlighted. Other methods that could be used include phytoremediation, rhizofiltration, bisorption and bioremediation. Watershed best management practices (BMP remains the best solution to reduce the intrusion of the heavy metals from the watershed into the reservoir.

  16. Soil Management Methods under Rice Cultivation in Ndokwa ...

    African Journals Online (AJOL)

    User

    Abstract. The study examines the soil management methods under rice cultivation in. Ndokwa grassland soils with the aim of determining the most effective soil management measures for rice cultivation. Soil samples were collected at three locations where rice is presently cultivated in the area. Five plots of. 20m x 20m ...

  17. The contemporary art of cost management methods during product development

    NARCIS (Netherlands)

    Wouters, M.; Morales, S.; Epstein, M.J.; Lee, J.Y.

    2014-01-01

    Purpose To provide an overview of research published in the management accounting literature on methods for cost management in new product development, such as a target costing, life cycle costing, component commonality, and modular design. Methodology/approach The structured literature search

  18. Defining collaborative business rules management solutions : framework and method

    NARCIS (Netherlands)

    dr. Martijn Zoet; Johan Versendaal

    2014-01-01

    From the publishers' website: The goal of this research is to define a method for configuring a collaborative business rules management solution from a value proposition perspective. In an earlier published study (Business rules management solutions: added value by means of business

  19. Dynamic Subsidy Method for Congestion Management in Distribution Networks

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei

    2016-01-01

    Dynamic subsidy (DS) is a locational price paid by the distribution system operator (DSO) to its customers in order to shift energy consumption to designated hours and nodes. It is promising for demand side management and congestion management. This paper proposes a new DS method for congestion...... management in distribution networks, including the market mechanism, the mathematical formulation through a two-level optimization, and the method solving the optimization by tightening the constraints and linearization. Case studies were conducted with a one node system and the Bus 4 distribution network...... of the Roy Billinton Test System (RBTS) with high penetration of electric vehicles (EVs) and heat pumps (HPs). The case studies demonstrate the efficacy of the DS method for congestion management in distribution networks. Studies in this paper show that the DS method offers the customers a fair opportunity...

  20. Key Updating Methods for Combinatorial Design Based Key Management Schemes

    Directory of Open Access Journals (Sweden)

    Chonghuan Xu

    2014-01-01

    Full Text Available Wireless sensor network (WSN has become one of the most promising network technologies for many useful applications. However, for the lack of resources, it is different but important to ensure the security of the WSNs. Key management is a corner stone on which to build secure WSNs for it has a fundamental role in confidentiality, authentication, and so on. Combinatorial design theory has been used to generate good-designed key rings for each sensor node in WSNs. A large number of combinatorial design based key management schemes have been proposed but none of them have taken key updating into consideration. In this paper, we point out the essence of key updating for the unital design based key management scheme and propose two key updating methods; then, we conduct performance analysis on the two methods from three aspects; at last, we generalize the two methods to other combinatorial design based key management schemes and enhance the second method.

  1. Researching on quantitative project management plan and implementation method

    Science.gov (United States)

    Wang, Xin; Ren, Aihua; Liu, Xiangshang

    2017-08-01

    With the practice of high maturity process improvement, more and more attention has been paid to CMMI and other process improvement frameworks. The key to improve the process of high maturity is to quantify the process. At present, the method of improving the software process of high maturity is lack of specific introduction to the corresponding improvement link or process implementation. In this paper, based on the current improvement in the quantitative management of the framework and statistical analysis technical of the high maturity recommended for the enterprise to improve the process of planning and implementation methods. These methods provide quantitative process management for the enterprise, as well as quantitative management of the project to provide a systematic process, and finally evaluate the effectiveness of quantitative management projects. Finally, this method is used to verify the effectiveness of the framework in guiding the enterprise to improve the process of high maturity.

  2. Gaming Methods in the Management Teaching at Secondary Schools

    Directory of Open Access Journals (Sweden)

    Polčáková Martina

    2017-04-01

    Full Text Available Introduction: The paper deals with the design of gaming methods for teaching Management at secondary schools and the importance of using effective games in the process secondary education.

  3. Cascade reservoir flood control operation based on risk grading and warning in the Upper Yellow River

    Science.gov (United States)

    Xuejiao, M.; Chang, J.; Wang, Y.

    2017-12-01

    Flood risk reduction with non-engineering measures has become the main idea for flood management. It is more effective for flood risk management to take various non-engineering measures. In this paper, a flood control operation model for cascade reservoirs in the Upper Yellow River was proposed to lower the flood risk of the water system with multi-reservoir by combining the reservoir flood control operation (RFCO) and flood early warning together. Specifically, a discharge control chart was employed to build the joint RFCO simulation model for cascade reservoirs in the Upper Yellow River. And entropy-weighted fuzzy comprehensive evaluation method was adopted to establish a multi-factorial risk assessment model for flood warning grade. Furthermore, after determining the implementing mode of countermeasures with future inflow, an intelligent optimization algorithm was used to solve the optimization model for applicable water release scheme. In addition, another model without any countermeasure was set to be a comparative experiment. The results show that the model developed in this paper can further decrease the flood risk of water system with cascade reservoirs. It provides a new approach to flood risk management by coupling flood control operation and flood early warning of cascade reservoirs.

  4. An accurate Rb density measurement method for a plasma wakefield accelerator experiment using a novel Rb reservoir

    CERN Document Server

    Öz, E.; Muggli, P.

    2016-01-01

    A method to accurately measure the density of Rb vapor is described. We plan on using this method for the Advanced Wakefield (AWAKE)~\\cite{bib:awake} project at CERN , which will be the world's first proton driven plasma wakefield experiment. The method is similar to the hook~\\cite{bib:Hook} method and has been described in great detail in the work by W. Tendell Hill et. al.~\\cite{bib:densitymeter}. In this method a cosine fit is applied to the interferogram to obtain a relative accuracy on the order of $1\\%$ for the vapor density-length product. A single-mode, fiber-based, Mach-Zenhder interferometer will be built and used near the ends of the 10 meter-long AWAKE plasma source to be able to make accurate relative density measurement between these two locations. This can then be used to infer the vapor density gradient along the AWAKE plasma source and also change it to the value desired for the plasma wakefield experiment. Here we describe the plan in detail and show preliminary results obtained using a prot...

  5. Reservoir characterization of Pennsylvanian Sandstone Reservoirs. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.

    1992-09-01

    This annual report describes the progress during the second year of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description and scale-up procedures; (ii) outcrop investigation; (iii) in-fill drilling potential. The first section describes the methods by which a reservoir can be characterized, can be described in three dimensions, and can be scaled up with respect to its properties, appropriate for simulation purposes. The second section describes the progress on investigation of an outcrop. The outcrop is an analog of Bartlesville Sandstone. We have drilled ten wells behind the outcrop and collected extensive log and core data. The cores have been slabbed, photographed and the several plugs have been taken. In addition, minipermeameter is used to measure permeabilities on the core surface at six inch intervals. The plugs have been analyzed for the permeability and porosity values. The variations in property values will be tied to the geological descriptions as well as the subsurface data collected from the Glen Pool field. The third section discusses the application of geostatistical techniques to infer in-fill well locations. The geostatistical technique used is the simulated annealing technique because of its flexibility. One of the important reservoir data is the production data. Use of production data will allow us to define the reservoir continuities, which may in turn, determine the in-fill well locations. The proposed technique allows us to incorporate some of the production data as constraints in the reservoir descriptions. The technique has been validated by comparing the results with numerical simulations.

  6. Risk Management Method In It Project: A Review

    Directory of Open Access Journals (Sweden)

    Ikhtiar Faahakhododo

    2016-09-01

    Full Text Available In the development of a software, there are several aspects that must be taken to ensure that the process can produce a useful product and make a profit. This article clarified some of the methods of risk management exist. There was two techniques to determine the risks used in this study, those were Metrics of Process Structure and Referential Model or could be referred as the Comparison to the Referential Model technique. That technique will produce Software Process Meta Model, Model of Risk Management, and Manage Risks in Project models. Those models were used to help managers in mapping the risks of the project.

  7. Radiochemistry methods in DOE methods for evaluating environmental and waste management samples

    International Nuclear Information System (INIS)

    Fadeff, S.K.; Goheen, S.C.

    1994-08-01

    Current standard sources of radiochemistry methods are often inappropriate for use in evaluating US Department of Energy environmental and waste management (DOE/EW) samples. Examples of current sources include EPA, ASTM, Standard Methods for the Examination of Water and Wastewater and HASL-300. Applicability of these methods is limited to specific matrices (usually water), radiation levels (usually environmental levels), and analytes (limited number). Radiochemistry methods in DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) attempt to fill the applicability gap that exists between standard methods and those needed for DOE/EM activities. The Radiochemistry chapter in DOE Methods includes an ''analysis and reporting'' guidance section as well as radiochemistry methods. A basis for identifying the DOE/EM radiochemistry needs is discussed. Within this needs framework, the applicability of standard methods and targeted new methods is identified. Sources of new methods (consolidated methods from DOE laboratories and submissions from individuals) and the methods review process will be discussed. The processes involved in generating consolidated methods add editing individually submitted methods will be compared. DOE Methods is a living document and continues to expand by adding various kinds of methods. Radiochemistry methods are highlighted in this paper. DOE Methods is intended to be a resource for methods applicable to DOE/EM problems. Although it is intended to support DOE, the guidance and methods are not necessarily exclusive to DOE. The document is available at no cost through the Laboratory Management Division of DOE, Office of Technology Development

  8. How Agile Methods Inspire Project Management - The Half Double Initiative

    DEFF Research Database (Denmark)

    Heeager, Lise Tordrup; Svejvig, Per; Schlichter, Bjarne Rerup

    (identified in theory) and the Half Double Methodology developed by the Danish Project Half Double initiative; a Methodology developed with practitioners and tested in seven Danish case companies. The analysis shows how the general project management to a great extent has been inspired by agile methods......Increased complexity in projects has forced new project management initiatives. In software development several agile methods have emerged and are today highly implemented in practice. Observations of general project management practice show how it has been inspired by agile software development......, but very little research addresses the issue of agile project management. In order to understand and to provide suggestions for future practice on how agility can be incorporated in general project management, this paper provides an analysis which compares ten characteristics of agile software development...

  9. Methodical approach to financial stimulation of logistics managers

    Directory of Open Access Journals (Sweden)

    Melnykova Kateryna V.

    2014-01-01

    Full Text Available The article offers a methodical approach to financial stimulation of logistics managers, which allows calculation of the incentive amount with consideration of profit obtained from introduction of optimisation logistics solutions. The author generalises measures, which would allow increase of stimulation of labour of logistics managers by the enterprise top managers. The article marks out motivation factors, which exert influence upon relation of logistics managers to execution of optimisation logistical solutions, which minimise logistical costs. The author builds a scale of financial encouragement for introduction of optimisation logistical solutions proposed by logistics managers. This scale is basic for functioning of the encouragement system and influences the increase of efficiency of logistics managers operation and also optimisation of enterprise logistical solutions.

  10. Study of sustainable production in two-phase liquid dominated with steam cap underlying brine reservoir by numerical simulation

    Science.gov (United States)

    Pratama, Heru Berian; Miryani Saptadji, Nenny

    2017-12-01

    The main issue in the management of the two-phase liquid-dominated geothermal field is rapid decline pressure in the reservoir so that the supply of steam to the power plant cannot be fulfilled. To understanding that, modelling and numerical simulation used reservoir simulators. The model is developed on liquid-dominated geothermal fields are assessed in various scenarios of production strategies (focusing only steam cap, brine reservoir and a combination) and injection strategies (deep and shallow injection, centered and dispersed injection), with the calculation using separated steam cycle method. The simulation results of the model for sustainable production are production 25% from steam cap + 75% from brine reservoir, dispersed and deep reinjection with make-up wells from steam cap results 9 make-up well number. The implementation of production-injection strategy needs to be planned right from the beginning of exploitation so that the strategy can adapt to changes in reservoir characteristics.

  11. DOE methods for evaluating environmental and waste management samples

    International Nuclear Information System (INIS)

    Goheen, S.C.; McCulloch, M.; Thomas, B.L.; Riley, R.G.; Sklarew, D.S.; Mong, G.M.; Fadeff, S.K.

    1994-04-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) is a resource intended to support sampling and analytical activities for the evaluation of environmental and waste management samples from U.S. Department of Energy (DOE) sites. DOE Methods is the result of extensive cooperation from all DOE analytical laboratories. All of these laboratories have contributed key information and provided technical reviews as well as significant moral support leading to the success of this document. DOE Methods is designed to encompass methods for collecting representative samples and for determining the radioisotope activity and organic and inorganic composition of a sample. These determinations will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the U.S. Environmental Protection Agency, or others. The development of DOE Methods is supported by the Laboratory Management Division of the DOE. Methods are prepared for entry into DOE Methods as chapter editors, together with DOE and other participants in this program, identify analytical and sampling method needs. Unique methods or methods consolidated from similar procedures in the DOE Procedures Database are selected for potential inclusion in this document. Initial selection is based largely on DOE needs and procedure applicability and completeness. Methods appearing in this document are one of two types. open-quotes Draftclose quotes or open-quotes Verified.close quotes. open-quotes Draftclose quotes methods that have been reviewed internally and show potential for eventual verification are included in this document, but they have not been reviewed externally, and their precision and bias may not be known. open-quotes Verifiedclose quotes methods in DOE Methods have been reviewed by volunteers from various DOE sites and private corporations

  12. PRACTICAL METHODS OF BANKING MANAGEMENT – APPLICATION IN PRACTICE

    Directory of Open Access Journals (Sweden)

    Bodretskiy M.

    2018-03-01

    Full Text Available Introduction. The article presents the latest trends in the development of banking management in Ukraine. Purpose. The research is aimed at the study of practical methods of banking institutions management in Ukraine. Results. The results of the research, which prove the determination by most banks of such management methods based on the principles of minimizing operating costs of a banking institution, are proved. The main areas of such a minimization, most banks identified: the involvement of inexperienced staff, increase the level of automation of banking processes, increasing attention to non-price methods of attracting customers. A classification of non-price methods of attracting customers is made. The use of mathematical tools for determining the quality of management by a banking institution is proposed. The article states that in order to prevent the manifestations of crisis phenomena in a banking institution (predictors of which may be: the emergence of a negative spread, loss-making activity of the bank, etc. it is necessary to have an optimal, economically sound portfolio of practical management methods that can be practically useful for execution on operational and tactical level of managerial decisions of banking management. The article contains the results of the survey of specialists and scientists who took part in the scientific and practical conference “Anti-crisis management of economy and finances”, held in 2017. The main areas of work of the mentioned conference were: search of ways of overcoming of crisis phenomena in economy and finances of Ukraine; definition of strategic aspects of the development of the financial system of the state in the context of the growth of the negative consequences of the growth of tension in international and economic relations; definition of fiscal policy of Ukraine and the impact of its quality on the quality of the banking system in the conditions of stagnation of financial markets, etc

  13. Methods and techniques of nuclear in-core fuel management

    International Nuclear Information System (INIS)

    Jong, A.J. de.

    1992-04-01

    Review of methods of nuclear in-core fuel management (the minimal critical mass problem, minimal power peaking) and calculational techniques: reactorphysical calculations (point reactivity models, continuous refueling, empirical methods, depletion perturbation theory, nodal computer programs); optimization techniques (stochastic search, linear programming, heuristic parameter optimization). (orig./HP)

  14. LABOR MOTIVATION AND STIMULATION AS ORGANIZATIONAL BEHAVIOR MANAGEMENT METHOD

    Directory of Open Access Journals (Sweden)

    R. D. Tregoubova

    2012-01-01

    Full Text Available Main organizational behavior management methods are material incentives, wages, rewards, participation in profits. Motivation andstimulation concepts are specified, components of the mechanism of forming the system of personnel stimulus and motives are discussed along with organization personnel motivation and stimulation forms and methods.

  15. An Analytical Method for Measuring Competence in Project Management

    Science.gov (United States)

    González-Marcos, Ana; Alba-Elías, Fernando; Ordieres-Meré, Joaquín

    2016-01-01

    The goal of this paper is to present a competence assessment method in project management that is based on participants' performance and value creation. It seeks to close an existing gap in competence assessment in higher education. The proposed method relies on information and communication technology (ICT) tools and combines Project Management…

  16. Land management planning: a method of evaluating alternatives

    Science.gov (United States)

    Andres Weintraub; Richard Adams; Linda Yellin

    1982-01-01

    A method is described for developing and evaluating alternatives in land management planning. A structured set of 15 steps provides a framework for such an evaluation. when multiple objectives and uncertainty must be considered in the planning process. The method is consistent with other processes used in organizational evaluation, and allows for the interaction of...

  17. Isotope methods in water resources assessment and environmental management

    International Nuclear Information System (INIS)

    Araguas-Araguas, L.

    1996-01-01

    Availability of water and protection of water resources have become top environmental issues in many countries. Governments are forced to issue strict guidelines to protect the environment and create agencies to pursue these aspects as well as enforce such regulations. The supply of good-quality water from rivers and lakes is becoming a costly and complex problem for many institutes responsible for water supply. Because of the high pollution levels in surface waters, ground water is the main source of drinking water in many countries. It is estimated that 1.5 billion people world-wide depend on it for drinking water. Since ground water cannot be directly measured, and despite its importance for drinking purposes there is not enough public concern about its protection. In other cases, it is found that the exploited ground water is not a renewable resource. In many countries in arid and semi-arid regions, fossil ground water is being tapped for extensive agricultural development, but such extraction depletes the reserves, in the same way as an oil reservoir. The availability of correct information, before decisions are taken will lead to improved management of water resources, distributing the available resources for different uses according to their quality, and ultimately, to manage the resource. Nuclear science has developed a series of methodologies based on the use of naturally-occurring isotopes and artificial tracers to study the processes involved in the occurrence and circulation of water. The discipline called 'Isotope Hydrology' provides a deep insight into many parts of the water cycle; from the evaporation over the ocean or the continents, to the formation of surface runoff and ground water and in the discharge of aquifer systems into the ocean. Isotope hydrology, as a scientific and applied discipline in earth sciences, was created during the late 1950s and early 1960s, beyond the classical hydrological science. In these early stages, new methodologies

  18. Status of Wheeler Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

  19. Well Test Analysis of Naturally Fractured Vuggy Reservoirs with an Analytical Triple Porosity – Double Permeability Model and a Global Optimization Method

    Directory of Open Access Journals (Sweden)

    Gómez Susana

    2014-07-01

    Full Text Available The aim of this work is to study the automatic characterization of Naturally Fractured Vuggy Reservoirs via well test analysis, using a triple porosity-dual permeability model. The inter-porosity flow parameters, the storativity ratios, as well as the permeability ratio, the wellbore storage effect, the skin and the total permeability will be identified as parameters of the model. In this work, we will perform the well test interpretation in Laplace space, using numerical algorithms to transfer the discrete real data given in fully dimensional time to Laplace space. The well test interpretation problem in Laplace space has been posed as a nonlinear least squares optimization problem with box constraints and a linear inequality constraint, which is usually solved using local Newton type methods with a trust region. However, local methods as the one used in our work called TRON or the well-known Levenberg-Marquardt method, are often not able to find an optimal solution with a good fit of the data. Also well test analysis with the triple porosity-double permeability model, like most inverse problems, can yield multiple solutions with good match to the data. To deal with these specific characteristics, we will use a global optimization algorithm called the Tunneling Method (TM. In the design of the algorithm, we take into account issues of the problem like the fact that the parameter estimation has to be done with high precision, the presence of noise in the measurements and the need to solve the problem computationally fast. We demonstrate that the use of the TM in this study, showed to be an efficient and robust alternative to solve the well test characterization, as several optimal solutions, with very good match to the data were obtained.

  20. A review of distributed parameter groundwater management modeling methods

    Science.gov (United States)

    Gorelick, Steven M.

    1983-01-01

    Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.

  1. A direct method for determining complete positive and negative capillary pressure curves for reservoir rock using the centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Spinler, E.A.; Baldwin, B.A. [Phillips Petroleum Co., Bartlesville, OK (United States)

    1997-08-01

    A method is being developed for direct experimental determination of capillary pressure curves from saturation distributions produced during centrifuging fluids in a rock plug. A free water level is positioned along the length of the plugs to enable simultaneous determination of both positive and negative capillary pressures. Octadecane as the oil phase is solidified by temperature reduction while centrifuging to prevent fluid redistribution upon removal from the centrifuge. The water saturation is then measured via magnetic resonance imaging. The saturation profile within the plug and the calculation of pressures for each point of the saturation profile allows for a complete capillary pressure curve to be determined from one experiment. Centrifuging under oil with a free water level into a 100 percent water saturated plug results in the development of a primary drainage capillary pressure curve. Centrifuging similarly at an initial water saturation in the plug results in the development of an imbibition capillary pressure curve. Examples of these measurements are presented for Berea sandstone and chalk rocks.

  2. MODERN ECONOMETRIC METHODS - INTELLECTUAL TOOLS OF ENGINEERS, MANAGERS AND ECONOMISTS

    OpenAIRE

    Orlov A. I.

    2016-01-01

    Statistical methods are widely used in domestic feasibility studies. However, for most managers, economists and engineers, they are exotic. This is because modern statistical methods are not taught in the universities. We discuss the situation, focusing on the statistical methods for economic and feasibility studies, ie, econometrics. In the world of science, econometrics has a rightful place. There are scientific journals in econometrics, Nobel Prizes in Economics are awarded to series of re...

  3. THE CHALLENGES OF ADVANCED MANAGEMENT METHODS FOR THE ROMANIAN ORGANISATIONS

    OpenAIRE

    Eduard EDELHAUSER

    2012-01-01

    The aim of the paper is to study the use of the advanced management methods in Romania, through the evolution of the Enterprise Resource Planning (ERP) and Business Intelligence (BI) systems. The study set sights on Romanian organizations which implemented a SIVECO ERP and BI software and the methodology used is both quantitative and qualitative. In the past few years I have attempted to point out certain essential elements of integrated information systems, used as decision and management in...

  4. Human resource training and development. The outdoor management method.

    OpenAIRE

    THANOS KRIEMADIS; ANNA KOURTESOPOULOU

    2008-01-01

    In the age of international competition in today’s economy, companies must train their employees and prepare them for jobs in the future. There are many different types and educational approaches in human resource training, but the present study will focus on the Outdoor Management Development (OMD). For better understanding, the particular training method and the core stages of the training process will be examined and the definitions of OMD as an educational tool for management development ...

  5. A Physical Pre-Treatment Method (Vertical Weir Curtain for Mitigating Cyanobacteria and Some of Their Metabolites in a Drinking Water Reservoir

    Directory of Open Access Journals (Sweden)

    Chae-Hong Park

    2017-10-01

    Full Text Available Harmful cyanobacteria and their metabolites often contaminate drinking water resources, and effective control remains challenging. Here, we developed a physical algal pre-treatment method, the vertical weir curtain (VWC, to mitigate cyanobacteria and some of their metabolites (geosmin, 2-methylisoborneol (2-MIB, and microcystins in situ and evaluated its performance in a raw water reservoir used for drinking water supply. The VWC was manufactured with two fibrous polypropylene mats (0% and 92% porosity which were mounted to maintain a constant underwater depth. We installed the VWC to cover the entire epilimnion of the drinking water intake zone and monitored its efficiency during an algal bloom period (July–October 2015. Reduction rates were 40–59% for total algae, 60–75% for cyanobacteria, 23–55% for geosmin, 30–51% for 2-MIB, and 47–89% for microcystin-LR during the study period. Significant reductions were observed in the shallow layer of the water column (1–3 m water depth, particularly during August, when cyanobacterial density was the highest. The results indicate that the VWC can effectively mitigate harmful cyanobacteria and their metabolites when suitably applied, serving as a valuable reference for the algal reduction in raw drinking water resources.

  6. Clustering Methods Application for Customer Segmentation to Manage Advertisement Campaign

    Directory of Open Access Journals (Sweden)

    Maciej Kutera

    2010-10-01

    Full Text Available Clustering methods are recently so advanced elaborated algorithms for large collection data analysis that they have been already included today to data mining methods. Clustering methods are nowadays larger and larger group of methods, very quickly evolving and having more and more various applications. In the article, our research concerning usefulness of clustering methods in customer segmentation to manage advertisement campaign is presented. We introduce results obtained by using four selected methods which have been chosen because their peculiarities suggested their applicability to our purposes. One of the analyzed method – k-means clustering with random selected initial cluster seeds gave very good results in customer segmentation to manage advertisement campaign and these results were presented in details in the article. In contrast one of the methods (hierarchical average linkage was found useless in customer segmentation. Further investigations concerning benefits of clustering methods in customer segmentation to manage advertisement campaign is worth continuing, particularly that finding solutions in this field can give measurable profits for marketing activity.

  7. Reservoir structural model updating using the Ensemble Kalman Filter

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Alexandra

    2010-09-15

    In reservoir characterization, a large emphasis is placed on risk management and uncertainty assessment, and the dangers of basing decisions on a single base-case reservoir model are widely recognized. In the last years, statistical methods for assisted history matching have gained popularity for providing integrated models with quantified uncertainty, conditioned on all available data. Structural modeling is the first step in a reservoir modeling work flow and consists in defining the geometrical framework of the reservoir, based on the information from seismic surveys and well data. Large uncertainties are typically associated with the processing and interpretation of seismic data. However, the structural model is often fixed to a single interpretation in history-matching work flows due to the complexity of updating the structural model and related reservoir grid. This thesis present a method that allows to account for the uncertainties in the structural model and continuously update the model and related uncertainties by assimilation of production data using the Ensemble Kalman Filter (EnKF). We consider uncertainties in the depth of the reservoir horizons and in the fault geometry, and assimilate production data, such as oil production rate, gas-oil ratio and water-cut. In the EnKF model-updating work flow, an ensemble of reservoir models, expressing explicitly the model uncertainty, is created. We present a parameterization that allows to generate different realizations of the structural model to account for the uncertainties in faults and horizons and that maintains the consistency throughout the reservoir characterization project, from the structural model to the prediction of production profiles. The uncertainty in the depth of the horizons is parameterized as simulated depth surfaces, the fault position as a displacement vector and the fault throw as a throw-scaling factor. In the EnKF, the model parameters and state variables are updated sequentially in

  8. Results of high resolution seismic imaging experiments for defining permeable pathways in fractured gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Majer, E.L.; Peterson, J.E.; Daley, T. [and others

    1997-10-01

    As part of its Department of Energy (DOE) Industry cooperative program in oil and gas, Berkeley Lab has an ongoing effort in cooperation with Industry partners to develop equipment, field techniques, and interpretational methods to further the practice of characterizing fractured heterogeneous reservoirs. The goal of this work is to demonstrate the combined use of state-of-the-art technology in fluid flow modeling and geophysical imaging into an interdisciplinary approach for predicting the behavior of heterogeneous fractured gas reservoirs. The efforts in this program have mainly focused on using seismic methods linked with geologic and reservoir engineering analysis for the detection and characterization of fracture systems in tight gas formations, i.e., where and how to detect the fractures, what are the characteristics of the fractures, and how the fractures interact with the natural stresses, lithology, and their effect on reservoir performance. The project has also integrated advanced reservoir engineering methods for analyzing flow in fractured systems such that reservoir management strategies can be optimized. The work at Berkeley Lab focuses on integrating high resolution seismic imaging, (VSP, crosswell, and single well imaging), geologic information and well test data to invert for flow paths in fractured systems.

  9. The Potential Use of Forensic DNA Methods Applied to Sand Fly Blood Meal Analysis to Identify the Infection Reservoirs of Anthroponotic Visceral Leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Ehud Inbar

    2016-05-01

    Full Text Available In the Indian sub-continent, visceral leishmaniasis (VL, also known as kala azar, is a fatal form of leishmaniasis caused by the kinetoplastid parasite Leishmania donovani and transmitted by the sand fly Phlebotomus argentipes. VL is prevalent in northeast India where it is believed to have an exclusive anthroponotic transmission cycle. There are four distinct cohorts of L. donovani exposed individuals who can potentially serve as infection reservoirs: patients with active disease, cured VL cases, patients with post kala azar dermal leishmaniasis (PKDL, and asymptomatic individuals. The relative contribution of each group to sustaining the transmission cycle of VL is not known.To answer this critical epidemiological question, we have addressed the feasibility of an approach that would use forensic DNA methods to recover human DNA profiles from the blood meals of infected sand flies that would then be matched to reference DNA sampled from individuals living or working in the vicinity of the sand fly collections. We found that the ability to obtain readable human DNA fingerprints from sand flies depended entirely on the size of the blood meal and the kinetics of its digestion. Useable profiles were obtained from most flies within the first 24 hours post blood meal (PBM, with a sharp decline at 48 hours and no readable profiles at 72 hours. This early time frame necessitated development of a sensitive, nested-PCR method compatible with detecting L. donovani within a fresh, 24 hours blood meal in flies fed on infected hamsters.Our findings establish the feasibility of the forensic DNA method to directly trace the human source of an infected blood meal, with constraints imposed by the requirement that the flies be recovered for analysis within 24 hours of their infective feed.

  10. The Potential Use of Forensic DNA Methods Applied to Sand Fly Blood Meal Analysis to Identify the Infection Reservoirs of Anthroponotic Visceral Leishmaniasis.

    Science.gov (United States)

    Inbar, Ehud; Lawyer, Philip; Sacks, David; Podini, Daniele

    2016-05-01

    In the Indian sub-continent, visceral leishmaniasis (VL), also known as kala azar, is a fatal form of leishmaniasis caused by the kinetoplastid parasite Leishmania donovani and transmitted by the sand fly Phlebotomus argentipes. VL is prevalent in northeast India where it is believed to have an exclusive anthroponotic transmission cycle. There are four distinct cohorts of L. donovani exposed individuals who can potentially serve as infection reservoirs: patients with active disease, cured VL cases, patients with post kala azar dermal leishmaniasis (PKDL), and asymptomatic individuals. The relative contribution of each group to sustaining the transmission cycle of VL is not known. To answer this critical epidemiological question, we have addressed the feasibility of an approach that would use forensic DNA methods to recover human DNA profiles from the blood meals of infected sand flies that would then be matched to reference DNA sampled from individuals living or working in the vicinity of the sand fly collections. We found that the ability to obtain readable human DNA fingerprints from sand flies depended entirely on the size of the blood meal and the kinetics of its digestion. Useable profiles were obtained from most flies within the first 24 hours post blood meal (PBM), with a sharp decline at 48 hours and no readable profiles at 72 hours. This early time frame necessitated development of a sensitive, nested-PCR method compatible with detecting L. donovani within a fresh, 24 hours blood meal in flies fed on infected hamsters. Our findings establish the feasibility of the forensic DNA method to directly trace the human source of an infected blood meal, with constraints imposed by the requirement that the flies be recovered for analysis within 24 hours of their infective feed.

  11. Characteristics of Soil Nutrient and Spatial Distribution on Riparian Zone Restored by Different Vegetation Restoration Methods at Wanzhou Section in the Three Gorges Reservoir Area, China

    Directory of Open Access Journals (Sweden)

    WANG Ya-jing

    2016-03-01

    Full Text Available Riparian vegetation and water-level fluctuation are critical factors influencing soil nutrients and their spatial distribution. Taking Wanzhou section as a case study, the characteristics of soil nutrient and spatial distribution in riparian vegetation restored by different methods in the Three Gorges Reservoir area were uncovered by field investigation and chemical analysis of soil samples collected from the artificial and natural restoration plots, respectively. Results showed that restoration method had significant effect on soil nutrients. The content of soil nutrients in the artificial restoration plot was generally higher than that in the natural recovery plot indicating that artificial restoration promoted accumulation of soil nutrients in vegetation. Under the influence of the reverse seasonal water-level fluctuation, a special spatial distribution pattern that the riparian soil nutrients increased and then decreased with the increasing latitude appeared on the artificial restoration plot. The maximum content of soil nutrients occurred at the middle riparian part(altitude 165 m. However, soil organic matter and total nitrogen increased with the increasing of altitude gradient on the natural restoration plot, and reached the maximum at the upper riparian part(altitude 175 m. The spatial distribution pattern of soil nutrients resulted from the differentiation of water-level fluctuation disturbance and vegetation among altitude gradients. Restoration methods also affected the spatial distribution of soil nutrients as it influenced vegetation restoration. Appropriate tree and shrub species adapting to the disturbance of the reverse seasonal water-level fluctuation should be further introduced to the upper riparian part to promote the vegetation capacity of holding soil nutrients.

  12. Water resources review: Wheeler Reservoir, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.

  13. New knowledge network evaluation method for design rationale management

    Science.gov (United States)

    Jing, Shikai; Zhan, Hongfei; Liu, Jihong; Wang, Kuan; Jiang, Hao; Zhou, Jingtao

    2015-01-01

    Current design rationale (DR) systems have not demonstrated the value of the approach in practice since little attention is put to the evaluation method of DR knowledge. To systematize knowledge management process for future computer-aided DR applications, a prerequisite is to provide the measure for the DR knowledge. In this paper, a new knowledge network evaluation method for DR management is presented. The method characterizes the DR knowledge value from four perspectives, namely, the design rationale structure scale, association knowledge and reasoning ability, degree of design justification support and degree of knowledge representation conciseness. The DR knowledge comprehensive value is also measured by the proposed method. To validate the proposed method, different style of DR knowledge network and the performance of the proposed measure are discussed. The evaluation method has been applied in two realistic design cases and compared with the structural measures. The research proposes the DR knowledge evaluation method which can provide object metric and selection basis for the DR knowledge reuse during the product design process. In addition, the method is proved to be more effective guidance and support for the application and management of DR knowledge.

  14. DOE methods for evaluating environmental and waste management samples

    Energy Technology Data Exchange (ETDEWEB)

    Goheen, S.C.; McCulloch, M.; Thomas, B.L.; Riley, R.G.; Sklarew, D.S.; Mong, G.M.; Fadeff, S.K. [eds.

    1994-10-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) is a resource intended to support sampling and analytical activities for the evaluation of environmental and waste management samples from U.S. Department of Energy (DOE) sites. DOE Methods is the result of extensive cooperation from all DOE analytical laboratories. All of these laboratories have contributed key information and provided technical reviews as well as significant moral support leading to the success of this document. DOE Methods is designed to encompass methods for collecting representative samples and for determining the radioisotope activity and organic and inorganic composition of a sample. These determinations will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the U.S. Environmental Protection Agency, or others. The development of DOE Methods is supported by the Analytical Services Division of DOE. Unique methods or methods consolidated from similar procedures in the DOE Procedures Database are selected for potential inclusion in this document. Initial selection is based largely on DOE needs and procedure applicability and completeness. Methods appearing in this document are one of two types, {open_quotes}Draft{close_quotes} or {open_quotes}Verified{close_quotes}. {open_quotes}Draft{close_quotes} methods that have been reviewed internally and show potential for eventual verification are included in this document, but they have not been reviewed externally, and their precision and bias may not be known. {open_quotes}Verified{close_quotes} methods in DOE Methods have been reviewed by volunteers from various DOE sites and private corporations. These methods have delineated measures of precision and accuracy.

  15. DOE methods for evaluating environmental and waste management samples

    International Nuclear Information System (INIS)

    Goheen, S.C.; McCulloch, M.; Thomas, B.L.; Riley, R.G.; Sklarew, D.S.; Mong, G.M.; Fadeff, S.K.

    1994-10-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) is a resource intended to support sampling and analytical activities for the evaluation of environmental and waste management samples from U.S. Department of Energy (DOE) sites. DOE Methods is the result of extensive cooperation from all DOE analytical laboratories. All of these laboratories have contributed key information and provided technical reviews as well as significant moral support leading to the success of this document. DOE Methods is designed to encompass methods for collecting representative samples and for determining the radioisotope activity and organic and inorganic composition of a sample. These determinations will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the U.S. Environmental Protection Agency, or others. The development of DOE Methods is supported by the Analytical Services Division of DOE. Unique methods or methods consolidated from similar procedures in the DOE Procedures Database are selected for potential inclusion in this document. Initial selection is based largely on DOE needs and procedure applicability and completeness. Methods appearing in this document are one of two types, open-quotes Draftclose quotes or open-quotes Verifiedclose quotes. open-quotes Draftclose quotes methods that have been reviewed internally and show potential for eventual verification are included in this document, but they have not been reviewed externally, and their precision and bias may not be known. open-quotes Verifiedclose quotes methods in DOE Methods have been reviewed by volunteers from various DOE sites and private corporations. These methods have delineated measures of precision and accuracy

  16. An evaluation of seepage gains and losses in Indian Creek Reservoir, Ada County, Idaho, April 2010–November 2011

    Science.gov (United States)

    Williams, Marshall L.; Etheridge, Alexandra B.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources, conducted an investigation on Indian Creek Reservoir, a small impoundment in east Ada County, Idaho, to quantify groundwater seepage into and out of the reservoir. Data from the study will assist the Idaho Water Resources Department’s Comprehensive Aquifer Management Planning effort to estimate available water resources in Ada County. Three independent methods were utilized to estimate groundwater seepage: (1) the water-budget method; (2) the seepage-meter method; and (3) the segmented Darcy method. Reservoir seepage was quantified during the periods of April through August 2010 and February through November 2011. With the water-budget method, all measureable sources of inflow to and outflow from the reservoir were quantified, with the exception of groundwater; the water-budget equation was solved for groundwater inflow to or outflow from the reservoir. The seepage-meter method relies on the placement of seepage meters into the bottom sediments of the reservoir for the direct measurement of water flux across the sediment-water interface. The segmented-Darcy method utilizes a combination of water-level measurements in the reservoir and in adjacent near-shore wells to calculate water-table gradients between the wells and the reservoir within defined segments of the reservoir shoreline. The Darcy equation was used to calculate groundwater inflow to and outflow from the reservoir. Water-budget results provided continuous, daily estimates of seepage over the full period of data collection, while the seepage-meter and segmented Darcy methods provided instantaneous estimates of seepage. As a result of these and other difference in methodologies, comparisons of seepage estimates provided by the three methods are considered semi-quantitative. The results of the water-budget derived estimates of seepage indicate seepage to be seasonally variable in terms of the direction and magnitude

  17. Evaluation of the Theoretical Geothermal Potential of Inferred Geothermal Reservoirs within the Vicano–Cimino and the Sabatini Volcanic Districts (Central Italy) by the Application of the Volume Method

    OpenAIRE

    Daniele Cinti; Monia Procesi; Pier Paolo Poncia

    2018-01-01

    The evaluation of the theoretical geothermal potential of identified unexploited hydrothermal reservoirs within the Vicano–Cimino and Sabatini volcanic districts (Latium region, Italy) has been made on the basis of a revised version of the classical volume method. This method is based on the distribution of the partial pressure of CO2 (pCO2) in shallow and deep aquifers to delimit areas of geothermal interest, according to the hypothesis that zones of high CO2 flux, either from soil degassing...

  18. Improving reservoir history matching of EM heated heavy oil reservoirs via cross-well seismic tomography

    KAUST Repository

    Katterbauer, Klemens

    2014-01-01

    Enhanced recovery methods have become significant in the industry\\'s drive to increase recovery rates from oil and gas reservoirs. For heavy oil reservoirs, the immobility of the oil at reservoir temperatures, caused by its high viscosity, limits the recovery rates and strains the economic viability of these fields. While thermal recovery methods, such as steam injection or THAI, have extensively been applied in the field, their success has so far been limited due to prohibitive heat losses and the difficulty in controlling the combustion process. Electromagnetic (EM) heating via high-frequency EM radiation has attracted attention due to its wide applicability in different environments, its efficiency, and the improved controllability of the heating process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase recovery rates. Limited research has been undertaken so far to capture the nonlinear reservoir dynamics and significantly varying flow rates for thermally heated heavy oil reservoir that may notably change production rates and render conventional history matching frameworks more challenging. We present a new history matching framework for EM heated heavy oil reservoirs incorporating cross-well seismic imaging. Interfacing an EM heating solver to a reservoir simulator via Andrade’s equation, we couple the system to an ensemble Kalman filter based history matching framework incorporating a cross-well seismic survey module. With increasing power levels and heating applied to the heavy oil reservoirs, reservoir dynamics change considerably and may lead to widely differing production forecasts and increased uncertainty. We have shown that the incorporation of seismic observations into the EnKF framework can significantly enhance reservoir simulations, decrease forecasting

  19. Assembling evidence for identifying reservoirs of infection

    Science.gov (United States)

    Mafalda, Viana; Rebecca, Mancy; Roman, Biek; Sarah, Cleaveland; Cross, Paul C.; James O, Lloyd-Smith; Daniel T, Haydon

    2014-01-01

    Many pathogens persist in multihost systems, making the identification of infection reservoirs crucial for devising effective interventions. Here, we present a conceptual framework for classifying patterns of incidence and prevalence, and review recent scientific advances that allow us to study and manage reservoirs simultaneously. We argue that interventions can have a crucial role in enriching our mechanistic understanding of how reservoirs function and should be embedded as quasi-experimental studies in adaptive management frameworks. Single approaches to the study of reservoirs are unlikely to generate conclusive insights whereas the formal integration of data and methodologies, involving interventions, pathogen genetics, and contemporary surveillance techniques, promises to open up new opportunities to advance understanding of complex multihost systems.

  20. Reliability methods in nuclear power plant ageing management

    International Nuclear Information System (INIS)

    Simola, K.

    1999-01-01

    The aim of nuclear power plant ageing management is to maintain an adequate safety level throughout the lifetime of the plant. In ageing studies, the reliability of components, systems and structures is evaluated taking into account the possible time-dependent degradation. The phases of ageing analyses are generally the identification of critical components, identification and evaluation of ageing effects, and development of mitigation methods. This thesis focuses on the use of reliability methods and analyses of plant- specific operating experience in nuclear power plant ageing studies. The presented applications and method development have been related to nuclear power plants, but many of the approaches can also be applied outside the nuclear industry. The thesis consists of a summary and seven publications. The summary provides an overview of ageing management and discusses the role of reliability methods in ageing analyses. In the publications, practical applications and method development are described in more detail. The application areas at component and system level are motor-operated valves and protection automation systems, for which experience-based ageing analyses have been demonstrated. Furthermore, Bayesian ageing models for repairable components have been developed, and the management of ageing by improving maintenance practices is discussed. Recommendations for improvement of plant information management in order to facilitate ageing analyses are also given. The evaluation and mitigation of ageing effects on structural components is addressed by promoting the use of probabilistic modelling of crack growth, and developing models for evaluation of the reliability of inspection results. (orig.)

  1. Reliability methods in nuclear power plant ageing management

    Energy Technology Data Exchange (ETDEWEB)

    Simola, K. [VTT Automation, Espoo (Finland). Industrial Automation

    1999-07-01

    The aim of nuclear power plant ageing management is to maintain an adequate safety level throughout the lifetime of the plant. In ageing studies, the reliability of components, systems and structures is evaluated taking into account the possible time-dependent degradation. The phases of ageing analyses are generally the identification of critical components, identification and evaluation of ageing effects, and development of mitigation methods. This thesis focuses on the use of reliability methods and analyses of plant- specific operating experience in nuclear power plant ageing studies. The presented applications and method development have been related to nuclear power plants, but many of the approaches can also be applied outside the nuclear industry. The thesis consists of a summary and seven publications. The summary provides an overview of ageing management and discusses the role of reliability methods in ageing analyses. In the publications, practical applications and method development are described in more detail. The application areas at component and system level are motor-operated valves and protection automation systems, for which experience-based ageing analyses have been demonstrated. Furthermore, Bayesian ageing models for repairable components have been developed, and the management of ageing by improving maintenance practices is discussed. Recommendations for improvement of plant information management in order to facilitate ageing analyses are also given. The evaluation and mitigation of ageing effects on structural components is addressed by promoting the use of probabilistic modelling of crack growth, and developing models for evaluation of the reliability of inspection results. (orig.)

  2. Sedimentological and geophysical studies of clastic reservoir analogs: Methods, applications and developments of ground-penetrating radar for determination of reservoir geometries in near-surface settings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McMechan, G.A.; Soegaard, K.

    1998-05-25

    An integrated sedimentologic and GPR investigation has been carried out on a fluvial channel sandstone in the mid-Cretaceous Ferron Sandstone at Coyote Basin along the southwestern flank of the San Rafael Uplift in east-central Utah. This near-surface study, which covers a area of 40 {times} 16.5 meters to a depth of 15 meters, integrates detailed stratigraphic data from outcrop sections and facies maps with multi-frequency 3-D GPR surveys. The objectives of this investigation are two-fold: (1) to develop new ground-penetrating radar (GPR) technology for imaging shallow subsurface sandstone bodies, and (2) to construct an empirical three-dimensional sandstone reservoir model suitable for hydrocarbon flow-simulation by imaging near-surface sandstone reservoir analogs with the use of GPR. The sedimentological data base consists of a geologic map of the survey area and a detailed facies map of the cliff face immediately adjacent to the survey area. Five vertical sections were measured along the cliff face adjacent to the survey area. In addition, four wells were cored within the survey area from which logs were recorded. In the sections and well logs primary sedimentary structures were documented along with textural information and permeability data. Gamma-ray profiles were also obtained for all sections and core logs. The sedimentologic and stratigraphic information serves as the basis from which much of the processing and interpretation of the GPR data was made. Three 3-D GPR data sets were collected over the survey area at frequencies of 50 MHZ, 100 MHZ, and 200 MHZ.

  3. Identification and Assessment of Potential Water Quality Impact Factors for Drinking-Water Reservoirs

    Science.gov (United States)

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-01-01

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources. PMID:24919129

  4. Quantitative Methods in Supply Chain Management Models and Algorithms

    CERN Document Server

    Christou, Ioannis T

    2012-01-01

    Quantitative Methods in Supply Chain Management presents some of the most important methods and tools available for modeling and solving problems arising in the context of supply chain management. In the context of this book, “solving problems” usually means designing efficient algorithms for obtaining high-quality solutions. The first chapter is an extensive optimization review covering continuous unconstrained and constrained linear and nonlinear optimization algorithms, as well as dynamic programming and discrete optimization exact methods and heuristics. The second chapter presents time-series forecasting methods together with prediction market techniques for demand forecasting of new products and services. The third chapter details models and algorithms for planning and scheduling with an emphasis on production planning and personnel scheduling. The fourth chapter presents deterministic and stochastic models for inventory control with a detailed analysis on periodic review systems and algorithmic dev...

  5. A stochastic approach to the operative control of flood flows through a reservoir

    Directory of Open Access Journals (Sweden)

    Jaroš Lubomír

    2016-03-01

    Full Text Available The contribution focuses on the design of a control algorithm aimed at the operative control of runoff water from a reservoir during flood situations. Management is based on the stochastically specified forecast of water inflow into the reservoir. From a mathematical perspective, the solved task presents the control of a dynamic system whose predicted hydrological input (water inflow is characterised by significant uncertainty. The algorithm uses a combination of simulation model data, in which the position of the bottom outlets is sought via nonlinear optimisation methods, and artificial intelligence methods (adaptation and fuzzy model. The task is written in the technical computing language MATLAB using the Fuzzy Logic Toolbox.

  6. Institutions, mechanisms and methods of innovative subsurface resources management

    Directory of Open Access Journals (Sweden)

    Irina Gennadyevna Polyanskaya

    2013-03-01

    Full Text Available In the article, the attempt to form the innovation system as a set of subsurface resources management of institutions, mechanisms and tools is made on the basis of an analysis of existing institutions to promote innovation. The timeliness and the need for systemic innovation development of subsurface resources management for Russia are mentioned in contexts of organization the national and global innovation systems. The authors take notice to the locality of activities of institutions of government, business and science and the lack of balance in their methods and instruments among themselves. The necessary to eliminate underdevelopment of individual institutions and the establishment of the mechanism to determinethetotaleffectiveness of theinnovativesubsurfaceresources management istheconclusion. Well-oiled mechanism of interaction involves the simultaneous use of all elements of the system of the innovative subsurface resources management. It allows to adapt the overall system to a particular area with mineral deposits and to improve its competitiveness.

  7. A PBOM configuration and management method based on templates

    Science.gov (United States)

    Guo, Kai; Qiao, Lihong; Qie, Yifan

    2018-03-01

    The design of Process Bill of Materials (PBOM) holds a hinge position in the process of product development. The requirements of PBOM configuration design and management for complex products are analysed in this paper, which include the reuse technique of configuration procedure and urgent management need of huge quantity of product family PBOM data. Based on the analysis, the function framework of PBOM configuration and management has been established. Configuration templates and modules are defined in the framework to support the customization and the reuse of configuration process. The configuration process of a detection sensor PBOM is shown as an illustration case in the end. The rapid and agile PBOM configuration and management can be achieved utilizing template-based method, which has a vital significance to improve the development efficiency for complex products.

  8. Review of dynamic optimization methods in renewable natural resource management

    Science.gov (United States)

    Williams, B.K.

    1989-01-01

    In recent years, the applications of dynamic optimization procedures in natural resource management have proliferated. A systematic review of these applications is given in terms of a number of optimization methodologies and natural resource systems. The applicability of the methods to renewable natural resource systems are compared in terms of system complexity, system size, and precision of the optimal solutions. Recommendations are made concerning the appropriate methods for certain kinds of biological resource problems.

  9. Methods and tools for innovation management procuring enterprises

    Directory of Open Access Journals (Sweden)

    A. V. Bogomolov

    2013-01-01

    Full Text Available The traditional methods of quality control of grain, dock-led feasibility, proposed and tested in practice near-mill elevator innovative methods of management organization, introduction of resource-saving technologies, different allow using «piezo electronic sensor» more quickly and accurately detect early damage of grain of wheat and ensure its further storage without loss of quality are described.

  10. A Review of Deterministic Optimization Methods in Engineering and Management

    Directory of Open Access Journals (Sweden)

    Ming-Hua Lin

    2012-01-01

    Full Text Available With the increasing reliance on modeling optimization problems in practical applications, a number of theoretical and algorithmic contributions of optimization have been proposed. The approaches developed for treating optimization problems can be classified into deterministic and heuristic. This paper aims to introduce recent advances in deterministic methods for solving signomial programming problems and mixed-integer nonlinear programming problems. A number of important applications in engineering and management are also reviewed to reveal the usefulness of the optimization methods.

  11. Reservoir engineering and hydrogeology

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Summaries are included which show advances in the following areas: fractured porous media, flow in single fractures or networks of fractures, hydrothermal flow, hydromechanical effects, hydrochemical processes, unsaturated-saturated systems, and multiphase multicomponent flows. The main thrust of these efforts is to understand the movement of mass and energy through rocks. This has involved treating fracture rock masses in which the flow phenomena within both the fractures and the matrix must be investigated. Studies also address the complex coupling between aspects of thermal, hydraulic, and mechanical processes associated with a nuclear waste repository in a fractured rock medium. In all these projects, both numerical modeling and simulation, as well as field studies, were employed. In the theoretical area, a basic understanding of multiphase flow, nonisothermal unsaturated behavior, and new numerical methods have been developed. The field work has involved reservoir testing, data analysis, and case histories at a number of geothermal projects

  12. Production Optimization of Oil Reservoirs

    DEFF Research Database (Denmark)

    Völcker, Carsten

    With an increasing demand for oil and diculties in nding new major oil elds, research on methods to improve oil recovery from existing elds is more necessary now than ever. The subject of this thesis is to construct ecient numerical methods for simulation and optimization of oil recovery...... programming (SQP) with line-search and BFGS approximations of the Hessian, and the adjoint method for ecient computation of the gradients. We demonstrate that the application of NMPC for optimal control of smart-wells has the potential to increase the economic value of an oil reservoir....... with emphasis on optimal control of water ooding with the use of smartwell technology. We have implemented immiscible ow of water and oil in isothermal reservoirs with isotropic heterogenous permeability elds. We use the method of lines for solution of the partial differential equation (PDE) system that governs...

  13. Soil Management Methods under Rice Cultivation in Ndokwa ...

    African Journals Online (AJOL)

    Soil samples were collected and analyzed for physical, chemical and heavy metals properties in the soil using the most probable instruments and analytical methods. The yield of rice harvested was measured in tons per hectares (He). The results revealed that the application of soil management techniques has enhanced ...

  14. APPLICATION OF CHEMICAL METHODS TO THE SOLID WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    C. P. Bulimaga

    2008-12-01

    Full Text Available The present article is a synthesis analysis of application of chemical methods for the development of technologies of hazardous waste management. Here are offered some technologies of neutralization of the waste containing hexacyanofferates, galvanic wastes and those with contain of vanadium, which are collected at Power Thermoelectric Plants.

  15. A proactive method for safety management in nuclear facilities

    International Nuclear Information System (INIS)

    Grecco, Claudio Henrique dos Santos; Carvalho, Paulo Victor Rodrigues de; Santos, Isaac Antonio Luquetti dos

    2014-01-01

    Due to the modern approach to address the safety of nuclear facilities which highlights that these organizations must be able to assess and proactively manage their activities becomes increasingly important the need for instruments to evaluate working conditions. In this context, this work presents a proactive method of managing organizational safety, which has three innovative features: 1) the use of predictive indicators that provide current information on the performance of activities, allowing preventive actions and not just reactive in safety management, different from safety indicators traditionally used (reactive indicators) that are obtained after the occurrence of undesired events; 2) the adoption of resilience engineering approach in the development of indicators - indicators are based on six principles of resilience engineering: top management commitment, learning, flexibility, awareness, culture of justice and preparation for the problems; 3) the adoption of the concepts and properties of fuzzy set theory to deal with subjectivity and consistency of human trials in the evaluation of the indicators. The fuzzy theory is used primarily to map qualitative models of decision-making, and inaccurate representation methods. The results of this study aim an improvement in performance and safety in organizations. The method was applied in a radiopharmaceutical shipping sector of a nuclear facility. The results showed that the method is a good monitoring tool objectively and proactively of the working conditions of an organizational domain

  16. Objective, Way and Method of Faculty Management Based on Ergonomics

    Science.gov (United States)

    WANG, Hong-bin; Liu, Yu-hua

    2008-01-01

    The core problem that influences educational quality of talents in colleges and universities is the faculty management. Without advanced faculty, it is difficult to cultivate excellent talents. With regard to some problems in present faculty construction of colleges and universities, this paper puts forward the new objectives, ways and methods of…

  17. Indigenous methods used for the management of diarrhoea in an ...

    African Journals Online (AJOL)

    A survey of 500 women aged 20–70 years in Benin City, Edo State, Nigeria, was conducted to examine indigenous methods used by women in an urban community for the treatment and management of diarrhoea. Four hundred and seventy (94%) of the respondents had had diarrhoea at different times in their lives, ranging ...

  18. TEACHING METHODS IN MBA AND LIFELONG LEARNING PROGRAMMES FOR MANAGERS

    Directory of Open Access Journals (Sweden)

    Jarošová, Eva

    2017-09-01

    Full Text Available Teaching methods in MBA and Lifelong Learning Programmes (LLP for managers should be topically relevant in terms of content as well as the teaching methods used. In terms of the content, the integral part of MBA and Lifelong Learning Programmes for managers should be the development of participants’ leadership competencies and their understanding of current leadership concepts. The teaching methods in educational programmes for managers as adult learners should correspond to the strategy of learner-centred teaching that focuses on the participants’ learning process and their active involvement in class. The focus on the participants’ learning process also raises questions about whether the programme’s participants perceive the teaching methods used as useful and relevant for their development as leaders. The paper presents the results of the analysis of the responses to these questions in a sample of 54 Czech participants in the MBA programme and of lifelong learning programmes at the University of Economics, Prague. The data was acquired based on written or electronically submitted questionnaires. The data was analysed in relation to the usefulness of the teaching methods for understanding the concepts of leadership, leadership skills development as well as respondents’ personal growth. The results show that the respondents most valued the methods that enabled them to get feedback, activated them throughout the programme and got them involved in discussions with others in class. Implications for managerial education practices are discussed.

  19. A method for examining the geospatial distribution of CO2 storage resources applied to the Pre-Punta Gorda Composite and Dollar Bay reservoirs of the South Florida Basin, U.S.A

    Science.gov (United States)

    Roberts-Ashby, Tina; Brandon N. Ashby,

    2016-01-01

    This paper demonstrates geospatial modification of the USGS methodology for assessing geologic CO2 storage resources, and was applied to the Pre-Punta Gorda Composite and Dollar Bay reservoirs of the South Florida Basin. The study provides detailed evaluation of porous intervals within these reservoirs and utilizes GIS to evaluate the potential spatial distribution of reservoir parameters and volume of CO2 that can be stored. This study also shows that incorporating spatial variation of parameters using detailed and robust datasets may improve estimates of storage resources when compared to applying uniform values across the study area derived from small datasets, like many assessment methodologies. Geospatially derived estimates of storage resources presented here (Pre-Punta Gorda Composite = 105,570 MtCO2; Dollar Bay = 24,760 MtCO2) were greater than previous assessments, which was largely attributed to the fact that detailed evaluation of these reservoirs resulted in higher estimates of porosity and net-porous thickness, and areas of high porosity and thick net-porous intervals were incorporated into the model, likely increasing the calculated volume of storage space available for CO2 sequestration. The geospatial method for evaluating CO2 storage resources also provides the ability to identify areas that potentially contain higher volumes of storage resources, as well as areas that might be less favorable.

  20. Monthly Optimal Reservoirs Operation for Multicrop Deficit Irrigation under Fuzzy Stochastic Uncertainties

    Directory of Open Access Journals (Sweden)

    Liudong Zhang

    2014-01-01

    Full Text Available An uncertain monthly reservoirs operation and multicrop deficit irrigation model was proposed under conjunctive use of underground and surface water for water resources optimization management. The objective is to maximize the total crop yield of the entire irrigation districts. Meanwhile, ecological water remained for the downstream demand. Because of the shortage of water resources, the monthly crop water production function was adopted for multiperiod deficit irrigation management. The model reflects the characteristics of water resources repetitive transformation in typical inland rivers irrigation system. The model was used as an example for water resources optimization management in Shiyang River Basin, China. Uncertainties in reservoir management shown as fuzzy probability were treated through chance-constraint parameter for decision makers. Necessity of dominance (ND was used to analyse the advantages of the method. The optimization results including reservoirs real-time operation policy, deficit irrigation management, and the available water resource allocation could be used to provide decision support for local irrigation management. Besides, the strategies obtained could help with the risk analysis of reservoirs operation stochastically.

  1. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.B.

    1996-07-26

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. Specific goals to attain the objective are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the U.S. oil and gas industry.

  2. A chemical EOR benchmark study of different reservoir simulators

    Science.gov (United States)

    Goudarzi, Ali; Delshad, Mojdeh; Sepehrnoori, Kamy

    2016-09-01

    Interest in chemical EOR processes has intensified in recent years due to the advancements in chemical formulations and injection techniques. Injecting Polymer (P), surfactant/polymer (SP), and alkaline/surfactant/polymer (ASP) are techniques for improving sweep and displacement efficiencies with the aim of improving oil production in both secondary and tertiary floods. There has been great interest in chemical flooding recently for different challenging situations. These include high temperature reservoirs, formations with extreme salinity and hardness, naturally fractured carbonates, and sandstone reservoirs with heavy and viscous crude oils. More oil reservoirs are reaching maturity where secondary polymer floods and tertiary surfactant methods have become increasingly important. This significance has added to the industry's interest in using reservoir simulators as tools for reservoir evaluation and management to minimize costs and increase the process efficiency. Reservoir simulators with special features are needed to represent coupled chemical and physical processes present in chemical EOR processes. The simulators need to be first validated against well controlled lab and pilot scale experiments to reliably predict the full field implementations. The available data from laboratory scale include 1) phase behavior and rheological data; and 2) results of secondary and tertiary coreflood experiments for P, SP, and ASP floods under reservoir conditions, i.e. chemical retentions, pressure drop, and oil recovery. Data collected from corefloods are used as benchmark tests comparing numerical reservoir simulators with chemical EOR modeling capabilities such as STARS of CMG, ECLIPSE-100 of Schlumberger, REVEAL of Petroleum Experts. The research UTCHEM simulator from The University of Texas at Austin is also included since it has been the benchmark for chemical flooding simulation for over 25 years. The results of this benchmark comparison will be utilized to improve

  3. An index of reservoir habitat impairment

    Science.gov (United States)

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  4. Uncertainty Management of Dynamic Tariff Method for Congestion Management in Distribution Networks

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei; Cheng, Lin

    2016-01-01

    The dynamic tariff (DT) method is designed for the distribution system operator (DSO) to alleviate congestions that might occur in a distribution network with high penetration of distributed energy resources (DERs). Uncertainty management is required for the decentralized DT method because the DT...

  5. Requirements for Participative Management as a Source of Sustainable Competitive Advantage and Tipical Management Method

    Directory of Open Access Journals (Sweden)

    Muscalu Emanoil

    2015-12-01

    Full Text Available The economic context in the recent years has undergone major changes in modern methods and techniques used in management. The current competitive environment is characterized by permanent turbulences influencing firstly the managerial act itself. Out of the many methods and techniques applied so far, some turn out to be less adaptable to the current economic and social context.

  6. Justification of computational methods to ensure information management systems

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2016-01-01

    Full Text Available Summary. Due to the diversity and complexity of organizational management tasks a large enterprise, the construction of an information management system requires the establishment of interconnected complexes of means, implementing the most efficient way collect, transfer, accumulation and processing of information necessary drivers handle different ranks in the governance process. The main trends of the construction of integrated logistics management information systems can be considered: the creation of integrated data processing systems by centralizing storage and processing of data arrays; organization of computer systems to realize the time-sharing; aggregate-block principle of the integrated logistics; Use a wide range of peripheral devices with the unification of information and hardware communication. Main attention is paid to the application of the system of research of complex technical support, in particular, the definition of quality criteria for the operation of technical complex, the development of information base analysis methods of management information systems and define the requirements for technical means, as well as methods of structural synthesis of the major subsystems of integrated logistics. Thus, the aim is to study on the basis of systematic approach of integrated logistics management information system and the development of a number of methods of analysis and synthesis of complex logistics that are suitable for use in the practice of engineering systems design. The objective function of the complex logistics management information systems is the task of gathering systems, transmission and processing of specified amounts of information in the regulated time intervals with the required degree of accuracy while minimizing the reduced costs for the establishment and operation of technical complex. Achieving the objective function of the complex logistics to carry out certain organization of interaction of information

  7. Evaluation of an Empirical Reservoir Shape Function to Define Sediment Distributions in Small Reservoirs

    Directory of Open Access Journals (Sweden)

    Bogusław Michalec

    2015-08-01

    Full Text Available Understanding and defining the spatial distribution of sediment deposited in reservoirs is essential not only at the design stage but also during the operation. The majority of research concerns the distribution of sediment deposition in medium and large water reservoirs. Most empirical methods do not provide satisfactory results when applied to the determination of sediment deposition in small reservoirs. Small reservoir’s volumes do not exceed 5 × 106 m3 and their capacity-inflow ratio is less than 10%. Long-term silting measurements of three small reservoirs were used to evaluate the method described by Rahmanian and Banihashemi for predicting sediment distributions in small reservoirs. Rahmanian and Banihashemi stated that their model of distribution of sediment deposition in water reservoir works well for a long duration operation. In the presented study, the silting rate was used in order to determine the long duration operation. Silting rate is a quotient of volume of the sediment deposited in the reservoir and its original volume. It was stated that when the silting rate had reached 50%, the sediment deposition in the reservoir may be described by an empirical reservoir depth shape function (RDSF.

  8. Reservoir Identification: Parameter Characterization or Feature Classification

    Science.gov (United States)

    Cao, J.

    2017-12-01

    The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601

  9. Assessment methods for solid waste management: A literature review.

    Science.gov (United States)

    Allesch, Astrid; Brunner, Paul H

    2014-06-01

    Assessment methods are common tools to support decisions regarding waste management. The objective of this review article is to provide guidance for the selection of appropriate evaluation methods. For this purpose, frequently used assessment methods are reviewed, categorised, and summarised. In total, 151 studies have been considered in view of their goals, methodologies, systems investigated, and results regarding economic, environmental, and social issues. A goal shared by all studies is the support of stakeholders. Most studies are based on life cycle assessments, multi-criteria-decision-making, cost-benefit analysis, risk assessments, and benchmarking. Approximately 40% of the reviewed articles are life cycle assessment-based; and more than 50% apply scenario analysis to identify the best waste management options. Most studies focus on municipal solid waste and consider specific environmental loadings. Economic aspects are considered by approximately 50% of the studies, and only a small number evaluate social aspects. The choice of system elements and boundaries varies significantly among the studies; thus, assessment results are sometimes contradictory. Based on the results of this review, we recommend the following considerations when assessing waste management systems: (i) a mass balance approach based on a rigid input-output analysis of the entire system, (ii) a goal-oriented evaluation of the results of the mass balance, which takes into account the intended waste management objectives; and (iii) a transparent and reproducible presentation of the methodology, data, and results. © The Author(s) 2014.

  10. Human resource training and development. The outdoor management method.

    Directory of Open Access Journals (Sweden)

    THANOS KRIEMADIS

    2008-01-01

    Full Text Available In the age of international competition in today’s economy, companies must train their employees and prepare them for jobs in the future. There are many different types and educational approaches in human resource training, but the present study will focus on the Outdoor Management Development (OMD. For better understanding, the particular training method and the core stages of the training process will be examined and the definitions of OMD as an educational tool for management development will be presented. Basic theories and models will be analysed as well as the benefits earned and evaluation concerns about the effectiveness of such training programs.

  11. Evaluation of Gaussian approximations for data assimilation in reservoir models

    KAUST Repository

    Iglesias, Marco A.

    2013-07-14

    The Bayesian framework is the standard approach for data assimilation in reservoir modeling. This framework involves characterizing the posterior distribution of geological parameters in terms of a given prior distribution and data from the reservoir dynamics, together with a forward model connecting the space of geological parameters to the data space. Since the posterior distribution quantifies the uncertainty in the geologic parameters of the reservoir, the characterization of the posterior is fundamental for the optimal management of reservoirs. Unfortunately, due to the large-scale highly nonlinear properties of standard reservoir models, characterizing the posterior is computationally prohibitive. Instead, more affordable ad hoc techniques, based on Gaussian approximations, are often used for characterizing the posterior distribution. Evaluating the performance of those Gaussian approximations is typically conducted by assessing their ability at reproducing the truth within the confidence interval provided by the ad hoc technique under consideration. This has the disadvantage of mixing up the approximation properties of the history matching algorithm employed with the information content of the particular observations used, making it hard to evaluate the effect of the ad hoc approximations alone. In this paper, we avoid this disadvantage by comparing the ad hoc techniques with a fully resolved state-of-the-art probing of the Bayesian posterior distribution. The ad hoc techniques whose performance we assess are based on (1) linearization around the maximum a posteriori estimate, (2) randomized maximum likelihood, and (3) ensemble Kalman filter-type methods. In order to fully resolve the posterior distribution, we implement a state-of-the art Markov chain Monte Carlo (MCMC) method that scales well with respect to the dimension of the parameter space, enabling us to study realistic forward models, in two space dimensions, at a high level of grid refinement. Our

  12. DECISION SUPPORT SYSTEMS BASED ON QUALITATIVE METHODS FOR PROJECT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Олег Николаевич ГУЦА

    2017-03-01

    Full Text Available State-of-the-art decision support systems (DSS used in project management are mainly based on quantitative methods. However, formal methods of modern mathematics alone are not capable of being a universal means of solving all practical problems in this area. Due to their limited capabilities and lack of statistical and other relevant information, economic-mathematical methods find limited application in management and marketing. In addition, there are few reliable validation and verification methods available. On the other hand, expert assessment methods are free of these disadvantages and are almost the only way to solve this type of problem. Advantages of this approach include simplicity of prediction in nearly every case and excellent performance in incomplete information scenarios. This work presents a new information technology which generates a DSS, based on qualitative methods of verbal decision analysis. The authors propose certain modifications to the method of ordinary classification. The proposed technology is implemented as a web application, which is used to design a system that evaluates the probability of a successful project.

  13. Drawdown flushing of a hydroelectric reservoir on the Rhône River: Impacts on the fish community and implications for the sediment management.

    Science.gov (United States)

    Grimardias, David; Guillard, Jean; Cattanéo, Franck

    2017-07-15

    Sediment flushings of hydropower reservoirs are commonly performed to maintain water resource uses and ecosystem services, but may have strong impacts on fish communities. Despite the worldwide scope of this issue, very few studies report quantitative in situ evaluations of these impacts. In June 2012, the drawdown flushing of the Verbois reservoir (Rhône River) was performed and subsequent impacts on the fish community were assessed, both inside the reservoir (fish densities by hydroacoustic surveys) and downstream (short-term movement and survival of radio tracked adult fish). Results showed that after the flushing fish acoustic density decreased by 57% in the reservoir, and no recolonization process was observed over the following 16 months. Downstream of the dam, the global apparent survival of fish to the flushing was estimated at 74%, but differed between species. The nine-year delay from the previous flushing and thus the amount of sediments to remove were too stressful for the low-resilience fish community of the Rhône River. Alternative flushing schedules are discussed to reduce these impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Use of multiple fish-removal methods during biomanipulation of a drinking water reservoir – Evaluation of the first four years

    Czech Academy of Sciences Publication Activity Database

    Jurajda, Pavel; Adámek, Zdeněk; Janáč, Michal; Roche, Kevin Francis; Mikl, Libor; Rederer, L.; Zapletal, T.; Koza, V.; Špaček, J.

    2016-01-01

    Roč. 173, č. 1 (2016), s. 101-108 ISSN 0165-7836 R&D Projects: GA ČR GBP505/12/G112 Institutional support: RVO:68081766 Keywords : Biomanipulation * Drinking water reservoir * Fish removal * Trophic interactions * Zooplankton density Subject RIV: EH - Ecology, Behaviour Impact factor: 2.185, year: 2016

  15. SELECTING A MANAGEMENT SYSTEM HOSPITAL BY A METHOD MULTICRITERIA

    Directory of Open Access Journals (Sweden)

    Vitorino, Sidney L.

    2016-12-01

    Full Text Available The objective of this report is to assess how the multi-criteria method Analytic Hierarchy Process [HP] can help a hospital complex to choose a more suitable management system, known as Enterprise Resource Planning (ERP. The choice coated is very complex due to the novelty of the process of choosing and conflicts generated between areas that did not have a single view of organizational needs, generating a lot of pressure in the department responsible for implementing systems. To assist in this process, he was hired an expert consultant in decision-making and AHP, which in its role of facilitator, contributed to the criteria for system selection were defined, and the choice to occur within a consensual process. We used the study of a single case, based on two indepth interviews with the consultant and the project manager, and documents generated by the advisory and the tool that supported the method. The results of this analysis showed that the method could effectively collaborate in the system acquisition process, but knowledge of the problems of employees and senior management support, it was not used in new decisions of the organization. We conclude that this method contributed to the consensus in the procurement process, team commitment and engagement of those involved.

  16. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...

  17. SILTATION IN RESERVOIRS

    African Journals Online (AJOL)

    Calls have been made to the government through various media to assist its populace in combating this nagging problem. It was concluded that sediment maximum accumulation is experienced in reservoir during the periods of maximum flow. Keywords: reservoir model, siltation, sediment, catchment, sediment transport. 1.

  18. Dynamic reservoir well interaction

    NARCIS (Netherlands)

    Sturm, W.L.; Belfroid, S.P.C.; Wolfswinkel, O. van; Peters, M.C.A.M.; Verhelst, F.J.P.C.M.

    2004-01-01

    In order to develop smart well control systems for unstable oil wells, realistic modeling of the dynamics of the well is essential. Most dynamic well models use a semi-steady state inflow model to describe the inflow of oil and gas from the reservoir. On the other hand, reservoir models use steady

  19. BUSINESS PROCESS REENGINEERING AS THE METHOD OF PROCESS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    O. Honcharova

    2013-09-01

    Full Text Available The article is devoted to the analysis of process management approach. The main understanding of process management approach has been researched in the article. The definition of process and process management has been given. Also the methods of business process improvement has been analyzed, among them are fast-analysis solution technology (FAST, benchmarking, reprojecting and reengineering. The main results of using business process improvement have been described in figures of reducing cycle time, costs and errors. Also the tasks of business process reengineering have been noticed. The main stages of business process reengineering have been noticed. The main efficiency results of business process reengineering and its success factors have been determined.

  20. Forecasting the remaining reservoir capacity in the Laurentian Great Lakes watershed

    Science.gov (United States)

    Alighalehbabakhani, Fatemeh; Miller, Carol J.; Baskaran, Mark; Selegean, James P.; Barkach, John H.; Dahl, Travis; Abkenar, Seyed Mohsen Sadatiyan

    2017-12-01

    Sediment accumulation behind a dam is a significant factor in reservoir operation and watershed management. There are many dams located within the Laurentian Great Lakes watershed whose operations have been adversely affected by excessive reservoir sedimentation. Reservoir sedimentation effects include reduction of flood control capability and limitations to both water supply withdrawals and power generation due to reduced reservoir storage. In this research, the sediment accumulation rates of twelve reservoirs within the Great Lakes watershed were evaluated using the Soil and Water Assessment Tool (SWAT). The estimated sediment accumulation rates by SWAT were compared to estimates relying on radionuclide dating of sediment cores and bathymetric survey methods. Based on the sediment accumulation rate, the remaining reservoir capacity for each study site was estimated. Evaluation of the anthropogenic impacts including land use change and dam construction on the sediment yield were assessed in this research. The regression analysis was done on the current and pre-European settlement sediment yield for the modeled watersheds to predict the current and natural sediment yield in un-modeled watersheds. These eleven watersheds are in the state of Indiana, Michigan, Ohio, New York, and Wisconsin.

  1. Synthetic data. A proposed method for applied risk management

    OpenAIRE

    Carbajal De Nova, Carolina

    2017-01-01

    The proposed method attempts to contribute towards the econometric and simulation applied risk management literature. It consists on an algorithm to construct synthetic data and risk simulation econometric models, supported by a set of behavioral assumptions. This algorithm has the advantage of replicating natural phenomena and uncertainty events in a short period of time. These features convey economically low costs besides computational efficiency. An application for wheat farmers is develo...

  2. UK methods for studying fuel management in water moderated reactors

    International Nuclear Information System (INIS)

    Fayers, F.J.

    1970-10-01

    Current UK methods for studying fuel management and for predicting the reactor physics performance for both light and heavy water moderated power reactors are reviewed. Brief descriptions are given of the less costly computer codes used for initial assessment studies, and also the more elaborate programs associated with detailed evaluation are discussed. Some of the considerations influencing the accuracy of predictions are included with examples of various types of experimental confirmation. (author)

  3. Multilevel techniques for Reservoir Simulation

    DEFF Research Database (Denmark)

    Christensen, Max la Cour

    for both variational upscaling and the construction of linear solvers. In particular, it is found to be beneficial (or even necessary) to apply an AMGe based multigrid solver to solve the upscaled problems. It is found that the AMGe upscaling changes the spectral properties of the matrix, which renders...... is extended to include a hybrid strategy, where FAS is combined with Newton’s method to construct a multilevel nonlinear preconditioner. This method demonstrates high efficiency and robustness. Second, an improved IMPES formulated reservoir simulator is implemented using a novel variational upscaling approach...... based on element-based Algebraic Multigrid (AMGe). In particular, an advanced AMGe technique with guaranteed approximation properties is used to construct a coarse multilevel hierarchy of Raviart-Thomas and L2 spaces for the Galerkin coarsening of a mixed formulation of the reservoir simulation...

  4. Sustainable urban built environment: Modern management concepts and evaluation methods

    Science.gov (United States)

    Ovsiannikova, Tatiana; Nikolaenko, Mariya

    2017-01-01

    The paper is focused on the analysis of modern concepts in urban development management. It is established that they are based on the principles of ecocentrism and anthropocentrism. The purpose of this research is to develop a system of quality indicators of urban built environment and justification of their application in management of city development. The need for observing the indicators characterizing the urban built environment in the planning of the territory development was proved. Based on the data and reports of the Russian and international organizations the analysis of the existing systems of urban development indicators is made. The suggested solution is to extend the existing indicators systems with that related to urban built environment quality which are recommended for planning urban areas development. The proposed system of indicators includes private, aggregate, normalized, and integrated urban built environment quality indicators using methods of economic-statistical and comparative analysis and index method. Application of these methods allowed calculating the indicators for urban areas of Tomsk Region. The results of calculations are presented in the paper. According to normalized indicators the priority areas for investment and development of urban areas were determined. The scenario conditions allowed estimating changes of quality indicators for urban built environment. Finally, the paper suggests recommendations for making management decisions when creating sustainable environment of life in urban areas.

  5. Group Management Method of RFID Passwords for Privacy Protection

    Science.gov (United States)

    Kobayashi, Yuichi; Kuwana, Toshiyuki; Taniguchi, Yoji; Komoda, Norihisa

    When RFID tag is used in the whole item lifecycle including a consumer scene or a recycle scene, we have to protect consumer privacy in the state that RFID tag is stuck on an item. We use the low cost RFID tag that has the access control function using a password, and we propose a method which manages RFID tags by passwords identical to each group of RFID tags. This proposal improves safety of RFID system because the proposal method is able to reduce the traceability for a RFID tag, and hold down the influence for disclosure of RFID passwords in the both scenes.

  6. A discrete optimization method for nuclear fuel management

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1993-04-01

    Nuclear loading pattern elaboration can be seen as a combinational optimization problem of tremendous size and with non-linear cost-functions, and search are always numerically expensive. After a brief introduction of the main aspects of nuclear fuel management, this paper presents a new idea to treat the combinational problem by using informations included in the gradient of a cost function. The method is to choose, by direct observation of the gradient, the more interesting changes in fuel loading patterns. An example is then developed to illustrate an operating mode of the method, and finally, connections with simulated annealing and genetic algorithms are described as an attempt to improve search processes

  7. Methods and apparatus for managing corrosion in buildings

    Science.gov (United States)

    Chey, S Jay; Hamann, Hendrik F; Klein, Levente Ioan; Schappert, Michael Alan; Stepanchuk, Andriy

    2015-02-03

    Principles of the invention provide methods and apparatus for providing corrosion management in buildings. In one aspect, an exemplary method includes the step of receiving first data relating corrosion rate to a plurality of environmental conditions. This first data is subsequently utilized to determine a quantitative relationship between corrosion rate and the plurality of environmental conditions. In another step, second data indicative of one or more environmental conditions within a building is received. A corrosion rate in the building is then determined at least in part by applying the determined quantitative relationship to this second data.

  8. A Model-Driven Development Method for Management Information Systems

    Science.gov (United States)

    Mizuno, Tomoki; Matsumoto, Keinosuke; Mori, Naoki

    Traditionally, a Management Information System (MIS) has been developed without using formal methods. By the informal methods, the MIS is developed on its lifecycle without having any models. It causes many problems such as lack of the reliability of system design specifications. In order to overcome these problems, a model theory approach was proposed. The approach is based on an idea that a system can be modeled by automata and set theory. However, it is very difficult to generate automata of the system to be developed right from the start. On the other hand, there is a model-driven development method that can flexibly correspond to changes of business logics or implementing technologies. In the model-driven development, a system is modeled using a modeling language such as UML. This paper proposes a new development method for management information systems applying the model-driven development method to a component of the model theory approach. The experiment has shown that a reduced amount of efforts is more than 30% of all the efforts.

  9. The Calculation Of Ngancar Batuwarna Reservoir, Wonogiri, Central Java

    Directory of Open Access Journals (Sweden)

    Azura Ulfa

    2018-01-01

    Full Text Available Evaluation of reservoir capacity is needed to find out how big the effective volume change of Ngancar Reservoir from the beginning of measurement until 2016. The purpose of this research is measuring volume of Ngancar Reservoir using bathymetry method with echosounder and calculating the remaining relative age of Ngancar Reservoir. Measurement topography of Ngancar Reservoir is done by bathymetry method of aquatic systematic random sampling method through certain path using echosounder. Analysis of reservoir capacity is done by calculating the volumes of Ngancar Reservoir and calculating the residual life of the reservoir relative. Fluctuation analysis of volume change was done by calculating the effective volume of reservoirs 1946-2016 and graphs. The calculation of the volume of the Ngancar Reservoir from the topographic map produces an effective volume value of 2016 is 1269905 m3 and the effective puddle area is 1393416 m2. An increase in sedimentation volume from 2011-2016 amounted to 296119.75 m3 with sedimentation rate was 59223.95 / year. With the assumption that the same landuse and sedimentation rate tend to be stable then the remaining age of Ngancar Reservoir is 21 years and 95 years old.

  10. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  11. Geothermal Reservoir Technology Research Program: Abstracts of selected research projects

    Energy Technology Data Exchange (ETDEWEB)

    Reed, M.J. (ed.)

    1993-03-01

    Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

  12. Food web (bio-)manipulation of South African reservoirs – viable ...

    African Journals Online (AJOL)

    2006-10-04

    Oct 4, 2006 ... consequences in local reservoirs, although conversely, these are offset by suspended-clay turbidity. ... Keywords: eutrophication, management constraints and options, warm-water reservoirs, biomanipulation, research needs. Introduction ... a collective term to include both conventional algae (photosyn-.

  13. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    Energy Technology Data Exchange (ETDEWEB)

    Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

    2002-11-18

    The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

  14. Development of the statisticlal analysis methods for managing setpoint drifts

    International Nuclear Information System (INIS)

    Jang, S. C.; Lim, T. J.

    2004-08-01

    The nuclear industry has generally accepted the statistical approach suggested in ISA-67.04(1994) for ensuring that the setpoints for safety-related instrumentation are established and maintained within the technical specification limits (NRC RG1.105, 1999). However, the current methodologies of the document may be insufficient to manage the setpoint drift of instrumentation devices, because they are basically designed to determine an instrument setpoint using statistical prediction techniques. In this report, we propose a new statistical analysis procedure composed of six steps for the management of the setpoint drift using the plant-specific as-found/as-left data of the instrumentation devices. For the applicability of the proposed method, an example is illustrated based on practical as-found/as-left data obtained from the channel functional test of a bistable at a one-month surveillance interval in a Korean Standard Nuclear Power Plant. All analysis were performed using the SeDA(Setpoint Drift Analysis) program that has been developed in accordance with the new 6-step procedure. The use of more statistical graphic tools can facilitate the process of the previous setpoint drift evaluation. The scope of the drift analysis is enlarged by the adoption of non-parametric statistical methods from the view point of the methodology. Several statistical process control techniques will provide the plant staff with more efficiency for the management of the instrumentation device

  15. Improved Oil Recovery in Mississippian Carbonate Reservoirs of Kansas -- Near-Term -- Class 2

    Energy Technology Data Exchange (ETDEWEB)

    Carr, Timothy R.; Green, Don W.; Willhite, G. Paul

    1999-07-08

    This report describes progress during the third year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of this project is development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and mid-continent. The project introduced a number of potentially useful technologies, and demonstrated these technologies in actual oil field operations. Advanced technology was tailored specifically to the scale appropriate to the operations of Kansas producers. An extensive technology transfer effort is ongoing. Traditional technology transfer methods (e.g., publications and workshops) are supplemented with a public domain relational database and an online package of project results that is available through the Internet. The goal is to provide the independent complete access to project data, project results and project technology on their desktop. Included in this report is a summary of significant project results at the demonstration site (Schaben Field, Ness County, Kansas). The value of cost-effective techniques for reservoir characterization and simulation at Schaben Field were demonstrated to independent operators. All major operators at Schaben have used results of the reservoir management strategy to locate and drill additional infill locations. At the Schaben Demonstration Site, the additional locations resulted in incremental production increases of 200 BOPD from a smaller number of wells.

  16. IMPROVED OIL RECOVERY IN MISSISSIPPIAN CARBONATE RESERVOIRS OF KANSAS--NEAR TERM--CLASS 2

    Energy Technology Data Exchange (ETDEWEB)

    Timothy R. Carr; Don W. Green; G. Paul Willhite

    1999-06-01

    This annual report describes progress during the third year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of this project is development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent. The project introduced a number of potentially useful technologies, and demonstrated these technologies in actual oil field operations. Advanced technology was tailored specifically to the scale appropriate to the operations of Kansas producers. An extensive technology transfer effort is ongoing. Traditional technology transfer methods (e.g., publications and workshops) are supplemented with a public domain relational database and an online package of project results that is available through the Internet. The goal is to provide the independent complete access to project data, project results and project technology on their desktop. Included in this report is a summary of significant project results at the demonstration site (Schaben Field, Ness County, Kansas). The value of cost-effective techniques for reservoir characterization and simulation at Schaben Field were demonstrated to independent operators. All major operators at Schaben have used results of the reservoir management strategy to locate and drill additional infill locations. At the Schaben Demonstration Site, the additional locations resulted in incremental production increases of 200 BOPD from a smaller number of wells.

  17. Urban and Building Design Methods for Resource Management

    DEFF Research Database (Denmark)

    Sattrup, Peter Andreas

    2014-01-01

    Design has great impacts on resource use. For instance, the demand for transportation is dependent on thedesign of cities, the demand for energy is dependent on the design of buildings, which in turn affect thehealth and well-being of citizens, society’s human resources and social capital, to name....... Having a structured approach to design methods, a design methodology, is a fundamental aid in decisionmaking and resource management through design. At DTU Civil Engineering experiments are made in crossdisciplinary collaboration between engineers of different specializations and outside collaborators...... from practice will serve as cases, whereresearch based design methods have been developed into innovative design tools and services.The discussion is taken further as there is a pressing demand for further cross disciplinary integration andcollaboration on developing tools and methods for resource...

  18. Nonlinear Multigrid for Reservoir Simulation

    DEFF Research Database (Denmark)

    Christensen, Max la Cour; Eskildsen, Klaus Langgren; Engsig-Karup, Allan Peter

    2016-01-01

    modeled after local linearization, leading to a nonlinear multigrid method in the form of the full-approximation scheme (FAS). It is demonstrated through numerical experiments that, without loss of robustness, the FAS method can outperform the conventional techniques in terms of algorithmic and numerical...... efficiency for a black-oil model. Furthermore, the use of the FAS method enables a significant reduction in memory usage compared with conventional techniques, which suggests new possibilities for improved large-scale reservoir simulation and numerical efficiency. Last, nonlinear multilevel preconditioning...

  19. TANK OPERATIONS CONTRACT CONSTRUCTION MANAGEMENT METHODOLOGY UTILIZING THE AGENCY METHOD OF CONSTRUCTION MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    LESKO KF; BERRIOCHOA MV

    2010-02-26

    Washington River Protection Solutions, LLC (WRPS) has faced significant project management challenges in managing Davis-Bacon construction work that meets contractually required small business goals. The unique challenge is to provide contracting opportunities to multiple small business constructioin subcontractors while performing high hazard work in a safe and productive manner. Previous to the WRPS contract, construction work at the Hanford Tank Farms was contracted to large companies, while current Department of Energy (DOE) Contracts typically emphasize small business awards. As an integral part of Nuclear Project Management at Hanford Tank Farms, construction involves removal of old equipment and structures and installation of new infrastructure to support waste retrieval and waste feed delivery to the Waste Treatment Plant. Utilizing the optimum construction approach ensures that the contractors responsible for this work are successful in meeting safety, quality, cost and schedule objectives while working in a very hazardous environment. This paper descirbes the successful transition from a traditional project delivery method that utilized a large business general contractor and subcontractors to a new project construction management model that is more oriented to small businesses. Construction has selected the Agency Construction Management Method (John E Schaufelberger, Len Holm, "Management of Construction Projects, A Constructor's Perspective", University of Washington, Prentice Hall 2002). This method was implemented in the first quarter of Fiscal Year 2009 (FY2009), where Construction Management is performed by substantially home office resources from the URS Northwest Office in Richland, Washington. The Agency Method has allowed WRPS to provide proven Construction Managers and Field Leads to mentor and direct small business contractors, thus providing expertise and assurance of a successful project. Construction execution contracts are

  20. Tank Operations Contract Construction Management Methodology. Utilizing The Agency Method Of Construction Management

    International Nuclear Information System (INIS)

    Lesko, K.F.; Berriochoa, M.V.

    2010-01-01

    Washington River Protection Solutions, LLC (WRPS) has faced significant project management challenges in managing Davis-Bacon construction work that meets contractually required small business goals. The unique challenge is to provide contracting opportunities to multiple small business constructioin subcontractors while performing high hazard work in a safe and productive manner. Previous to the WRPS contract, construction work at the Hanford Tank Farms was contracted to large companies, while current Department of Energy (DOE) Contracts typically emphasize small business awards. As an integral part of Nuclear Project Management at Hanford Tank Farms, construction involves removal of old equipment and structures and installation of new infrastructure to support waste retrieval and waste feed delivery to the Waste Treatment Plant. Utilizing the optimum construction approach ensures that the contractors responsible for this work are successful in meeting safety, quality, cost and schedule objectives while working in a very hazardous environment. This paper descirbes the successful transition from a traditional project delivery method that utilized a large business general contractor and subcontractors to a new project construction management model that is more oriented to small businesses. Construction has selected the Agency Construction Management Method (John E Schaufelberger, Len Holm, 'Management of Construction Projects, A Constructor's Perspective', University of Washington, Prentice Hall 2002). This method was implemented in the first quarter of Fiscal Year 2009 (FY2009), where Construction Management is performed by substantially home office resources from the URS Northwest Office in Richland, Washington. The Agency Method has allowed WRPS to provide proven Construction Managers and Field Leads to mentor and direct small business contractors, thus providing expertise and assurance of a successful project. Construction execution contracts are subcontracted

  1. Evaluation of teaching methods for the company management course

    Directory of Open Access Journals (Sweden)

    Mirjana Ivanuša Bezjak

    2006-12-01

    Full Text Available Teaching process depends on its contents, professional and didactical realization. Successful combination of these three factors is a condition to reach a quality-based objective of the pedagogical process on one side and having successfully passed the exam on the other side. Nevertheless, teachers' aims are to encourage students to use their acquired knowledge, and develop a new viewpoint of work in their professional life. In this discussion the evaluation of didactical realization of the Company Management Course in a higher educational program for commerce is presented. The results of the questionnaire and their analysis are represented. Mentioned data is feedback information, which the teachers find useful to improve their skills in Company Management Course in the following academic year. The reader of this discussion will be able to get new ideas for modernization of his or her didactical methods of teaching.

  2. Methods for exploring uncertainty in groundwater management predictions

    Science.gov (United States)

    Guillaume, Joseph H. A.; Hunt, Randall J.; Comunian, Alessandro; Fu, Baihua; Blakers, Rachel S; Jakeman, Anthony J.; Barreteau, Olivier; Hunt, Randall J.; Rinaudo, Jean-Daniel; Ross, Andrew

    2016-01-01

    Models of groundwater systems help to integrate knowledge about the natural and human system covering different spatial and temporal scales, often from multiple disciplines, in order to address a range of issues of concern to various stakeholders. A model is simply a tool to express what we think we know. Uncertainty, due to lack of knowledge or natural variability, means that there are always alternative models that may need to be considered. This chapter provides an overview of uncertainty in models and in the definition of a problem to model, highlights approaches to communicating and using predictions of uncertain outcomes and summarises commonly used methods to explore uncertainty in groundwater management predictions. It is intended to raise awareness of how alternative models and hence uncertainty can be explored in order to facilitate the integration of these techniques with groundwater management.

  3. A welfare study into capture fisheries in cirata reservoir: a bio-economic model

    Science.gov (United States)

    Anna, Z.; Hindayani, P.

    2018-04-01

    Capture fishery in inland such as reservoirs can be a source of food security and even the economy and public welfare of the surrounding community. This research was conducted on Cirata reservoir fishery in West Java, to see how far reservoir capture fishery can contribute economically in the form of resource rents. The method used is the bioeconomic model Copes, which can analyze the demand and supply functions to calculate the optimization of stakeholders’ welfare in various management regimes. The results showed that the management of capture fishery using Maximum Economic Yield regime (MEY) gave the most efficient result, where fewer inputs would produce maximum profit. In the MEY management, the producer surplus obtained is IDR 2,610.203.099, - per quarter and IDR 273.885.400,- of consumer surplus per quarter. Furthermore, researches showed that sustainable management regime policy MEY result in the government rent/surplus ofIDR 217.891,345, - per quarter with the average price of fish per kg being IDR 13.929. In open access fishery, it was shown that the producer surplus becomesIDR 0. Thus the implementation of the MEY-based instrument policy becomes a necessity for Cirata reservoir capture fishery.

  4. Successful application of MPD (managed pressure drilling) for prevention, control, and detection of borehole ballooning in tight gas reservoir in Cuervito Field, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa, A.; Acevedo, O.; Nieto, L. [Petrobras (United States); Lambarria, J.E. [PEMEX Exploration and Production (Mexico); Perez, H. [Weatherford (United States)

    2011-07-01

    The Cuervito field is an oil play located in the Burgos Basin in northeastern Mexico. In order to reach the highest yielding sands, wells in the Cuervito field are usually set up with 3 casings. However, the ballooning effect, an elastoplastic behavior of a well's walls, occurs during drilling operations, leading to loss of circulation. Two methods, based on geological and geopressure data, were found to minimize this effect: either putting in an extra casing, or using an unconventional drilling technique. As the managed pressure drilling (MPD) technique is less complex and more elegant, a pilot project was implemented using this method on a well. Results showed that MPD minimized lost time and enhanced drilling efficiency. This paper demonstrated that the use of MPD in the Cuervito field is a good solution for identifying and controlling the ballooning effect and this technique was successfully applied to the next 3 wells drilled subsequently.

  5. Digital Threat and Vulnerability Management: The SVIDT Method

    Directory of Open Access Journals (Sweden)

    Roland W. Scholz

    2017-04-01

    Full Text Available The Digital Revolution is inducing major threats to many types of human systems. We present the SVIDT method (a Strengths, Vulnerability, and Intervention Assessment related to Digital Threats for managing the vulnerabilities of human systems with respect to digital threats and changes. The method first performs a multilevel system–actor analysis for assessing vulnerabilities and strengths with respect to digital threats. Then, the method identifies threat scenarios that may become real. By constructing, evaluating, and launching interventions against all identified digital threats and their critical negative outcomes, the resilience of a specific human system can be improved. The evaluation of interventions is done when strengthening the adaptive capacity, i.e., a system’s capability to cope with negative outcomes that may take place in the future. The SVIDT method is embedded in the framework of coupled human–environment systems, the theory of risk and vulnerability assessment, types of adaptation (assimilation vs. accommodation, and a comprehensive sustainability evaluation. The SVIDT method is exemplarily applied to an enterprise (i.e., a Swiss casino for which online gaming has become an essential digital-business field. The discussion reflects on the specifics of digital threats and discusses both the potential benefits and limitations of the SVIDT method.

  6. Reflection Phenomena in Underground Pumped Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    Elena Pummer

    2018-04-01

    Full Text Available Energy storage through hydropower leads to free surface water waves in the connected reservoirs. The reason for this is the movement of water between reservoirs at different elevations, which is necessary for electrical energy storage. Currently, the expansion of renewable energies requires the development of fast and flexible energy storage systems, of which classical pumped storage plants are the only technically proven and cost-effective technology and are the most used. Instead of classical pumped storage plants, where reservoirs are located on the surface, underground pumped storage plants with subsurface reservoirs could be an alternative. They are independent of topography and have a low surface area requirement. This can be a great advantage for energy storage expansion in case of environmental issues, residents’ concerns and an unusable terrain surface. However, the reservoirs of underground pumped storage plants differ in design from classical ones for stability and space reasons. The hydraulic design is essential to ensure their satisfactory hydraulic performance. The paper presents a hybrid model study, which is defined here as a combination of physical and numerical modelling to use the advantages and to compensate for the disadvantages of the respective methods. It shows the analysis of waves in ventilated underground reservoir systems with a great length to height ratio, considering new operational aspects from energy supply systems with a great percentage of renewable energies. The multifaceted and narrow design of the reservoirs leads to complex free surface flows; for example, undular and breaking bores arise. The results show excessive wave heights through wave reflections, caused by the impermeable reservoir boundaries. Hence, their knowledge is essential for a successful operational and constructive design of the reservoirs.

  7. Combining Neural Methods and Knowledge-Based Methods in Accident Management

    Directory of Open Access Journals (Sweden)

    Miki Sirola

    2012-01-01

    Full Text Available Accident management became a popular research issue in the early 1990s. Computerized decision support was studied from many points of view. Early fault detection and information visualization are important key issues in accident management also today. In this paper we make a brief review on this research history mostly from the last two decades including the severe accident management. The author’s studies are reflected to the state of the art. The self-organizing map method is combined with other more or less traditional methods. Neural methods used together with knowledge-based methods constitute a methodological base for the presented decision support prototypes. Two application examples with modern decision support visualizations are introduced more in detail. A case example of detecting a pressure drift on the boiling water reactor by multivariate methods including innovative visualizations is studied in detail. Promising results in early fault detection are achieved. The operators are provided by added information value to be able to detect anomalies in an early stage already. We provide the plant staff with a methodological tool set, which can be co