WorldWideScience

Sample records for reservoir dam ndi

  1. NDI

    Indian Academy of Sciences (India)

    either arms of this chromophore which allowed π-stacking in tandem with hydrogen-bonding, while NDI-2 formed thermally more stable self-assembled fibres possibly due to location of two amide groups in close proxi- mity along single arm of this chromophore. The structural difference in these two isomers lead to distinctly.

  2. Global Reservoir and Dam Database, Version 1 (GRanDv1): Dams, Revision 01

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Reservoir and Dam Database, Version 1 (Revision 01) contains 6,862 records of reservoirs and their associated dams with a cumulative storage capacity of...

  3. Global Reservoir and Dam Database, Version 1 (GRanDv1): Dams, Revision 01

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Reservoir and Dam Database, Version 1, Revision 01 (v1.01) contains 6,862 records of reservoirs and their associated dams with a cumulative storage...

  4. Global Reservoir and Dam Database, Version 1 (GRanDv1): Reservoirs, Revision 01

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Reservoir and Dam (GRanD) Database, Version 1.1 contains 6,862 records of reservoirs and their associated dams with a cumulative storage capacity of 6,197...

  5. The Impact of Dam-Reservoir-Foundation Interaction on Nonlinear Response of Concrete Gravity Dams

    Science.gov (United States)

    Amini, AliReza; Motamedi, Mohammad Hossein; Ghaemian, Mohsen

    2008-07-01

    To study the impact of dam-reservoir-foundation interaction on nonlinear response of concrete gravity dams, a two-dimensional finite element model of a concrete gravity dam including the dam body, a part of its foundation and a part of the reservoir was made. In addition, the proper boundary conditions were used in both reservoir and foundation in order to absorb the energy of outgoing waves at the far end boundaries. Using the finite element method and smeared crack approach, some different seismic nonlinear analyses were done and finally, we came to a conclusion that the consideration of dam-reservoir-foundation interaction in nonlinear analysis of concrete dams is of great importance, because from the performance point of view, this interaction significantly improves the nonlinear response of concrete dams.

  6. The Impact of Dam-Reservoir-Foundation Interaction on Nonlinear Response of Concrete Gravity Dams

    International Nuclear Information System (INIS)

    Amini, Ali Reza; Motamedi, Mohammad Hossein; Ghaemian, Mohsen

    2008-01-01

    To study the impact of dam-reservoir-foundation interaction on nonlinear response of concrete gravity dams, a two-dimensional finite element model of a concrete gravity dam including the dam body, a part of its foundation and a part of the reservoir was made. In addition, the proper boundary conditions were used in both reservoir and foundation in order to absorb the energy of outgoing waves at the far end boundaries. Using the finite element method and smeared crack approach, some different seismic nonlinear analyses were done and finally, we came to a conclusion that the consideration of dam-reservoir-foundation interaction in nonlinear analysis of concrete dams is of great importance, because from the performance point of view, this interaction significantly improves the nonlinear response of concrete dams

  7. Some thoughts on dam safety assessment: Small dams with not-so-small reservoirs

    International Nuclear Information System (INIS)

    Helwig, P.C.; Smith, W.L.

    1993-01-01

    There are about 300 dams in Newfoundland and Labrador of which only 9 are higher than 30 m. A significant number of these dams are less than 3 m in height yet retain appreciable volumes of water. Approaches to safety evaluations of these small dams vary considerably. Some authorities exclude such dams from mandatory inspections altogether, while others apply provisions that were clearly designed for more important structures. Neither approach is wholly satisfactory. Drawing on experience from inspection of over 100 mainly small dams, the issue is discussed and approaches to improve methods for dams safety evaluation of very small dams are suggested. Selection of design flood criteria, design guidelines, and reservoir flood standards are discussed. Newfoundland Power's dam safety assessment procedures for such dams are described. 8 refs., 2 figs., 3 tabs

  8. Dam break flood wave under different reservoir's capacities and ...

    Indian Academy of Sciences (India)

    Dam failure has been the subject of many hydraulic engineering studies due to its complicated physics with many uncertainties involved and the potential to cause many ... This paper presents an experimental study on instantaneous dam failure flood under different reservoir's capacities and lengths in which the side slopes ...

  9. Dam break flood wave under different reservoir's capacities and ...

    Indian Academy of Sciences (India)

    Farhad Hooshyaripor

    2017-07-14

    Jul 14, 2017 ... analysed using common hydraulic rainfall-runoff tools. The failure mode depends upon the failure cause and dam type [2]. Erodible embankment dams ...... distance of the reservoir's centroid to the outlet, larger the catastrophic flood, resulting in higher expected risk. Figure 12 illustrates the flow regime base ...

  10. 33 CFR 208.19 - Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex. 208.19 Section 208.19 Navigation and Navigable Waters... Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex. The Secretary of the...

  11. 33 CFR 208.25 - Pensacola Dam and Reservoir, Grand (Neosho) River, Okla.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pensacola Dam and Reservoir..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.25 Pensacola Dam and Reservoir... Dam, referred to in this section as the Representative shall operate the dam and reservoir in the...

  12. Can Dams and Reservoirs Cause Earthquakes?

    Indian Academy of Sciences (India)

    FAULT. Triggering of Earthquakes. Ramesh Chander. No! Not on their own. But, stresses and pore pressure due to natural causes may already have accumulated in crustal rocks at some dam sites to near critical levels for fresh faulting or renewed slip on nearby pre-existing faults. The stresses and pore pressure induced ...

  13. EVALUATION OF THE WATER TROPHIC STATE OF WAPIENICA DAM RESERVOIR

    Directory of Open Access Journals (Sweden)

    Ewa Jachniak

    2015-01-01

    Full Text Available In this publication the trophy level of Wapienica dam reservoir, based on the composition species of planktonic algae and their biomass, and concentrations of chlorophyll a, was defined. The research was conducted during the vegetative season in 2013 year; the samples were taken from two research points (W1 – the part of river Wapienica inflow to reservoir and W2 – the part of the reservoir dam by using bathometer. The whole biomass of planktonic algae and concentration of chlorophyll a from two research areas were low and it allowed to classify water of this reservoir to oligo-/ mesotrophic. Only in the part of the reservoir dam, in summer season, an increased trophy level was observed (Heinonen 1980. A similar trophic character (oligo-/ mesotrophic of the water reservoir was also indicated by algae species: Achnanthes lanceolata (Bréb. Grun. in Cl. and Grun., Chrysoccoccus minutus (Fritsch Nygaard. For a temporary increase of the trophy level, the diatom Nitzschia acicularis (Kütz. W. Sm. could indicate, because it is a typical species in poorly eutrophic water. The green algae (Pediastrum and Coelastrum, which were observed in summer season could also indicate for a rise of the trophic state, because they are typical for eutrophic water.

  14. 33 CFR 208.27 - Fort Cobb Dam and Reservoir, Pond (Cobb) Creek, Oklahoma.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Fort Cobb Dam and Reservoir, Pond..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.27 Fort Cobb Dam and Reservoir, Pond (Cobb) Creek, Oklahoma. The Bureau of Reclamation shall operate the Fort Cobb Dam and Reservoir in...

  15. 33 CFR 208.33 - Cheney Dam and Reservoir, North Fork of Ninnescah River, Kans.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Cheney Dam and Reservoir, North..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.33 Cheney Dam and Reservoir... the Cheney Dam and Reservoir in the interest of flood control as follows: (a) Flood control storage in...

  16. 33 CFR 208.28 - Foss Dam and Reservoir, Washita River, Oklahoma.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Foss Dam and Reservoir, Washita... THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.28 Foss Dam and Reservoir, Washita River, Oklahoma. The Bureau of Reclamation shall operate the Foss Dam and Reservoir in the interest of...

  17. 33 CFR 208.26 - Altus Dam and Reservoir, North Fork Red River, Okla.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Altus Dam and Reservoir, North..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.26 Altus Dam and Reservoir... Dam and Reservoir in the interest of flood control as follows: (a) Flood control storage in the...

  18. 33 CFR 208.82 - Hetch Hetchy, Cherry Valley, and Don Pedro Dams and Reservoirs.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Hetch Hetchy, Cherry Valley, and..., Cherry Valley, and Don Pedro Dams and Reservoirs. The Turlock Irrigation District and Modesto Irrigation..., shall operate Hetch Hetchy Dam and Reservoir and Cherry Valley Dam and Reservoir in the interest of...

  19. Can Dams and Reservoirs Cause Earthquakes?

    Indian Academy of Sciences (India)

    indirect investigations of these regions are subject to inevitable multiple interpretations. Still, a measure of understanding about reservoir induced earthquakes has been achieved. It is my aim to put the phenomenon in a perspective on this basis. I saw the Koyna Earthquake Recorded. Koyna earthquake of December 10, ...

  20. Vortices in dam reservoir: A case study of Karun III dam

    Indian Academy of Sciences (India)

    The present study focuses on the effect of vortex formation on plane velocities in a reservoir. Velocity measurements are performed in the hydraulic model of Karun III dam and hydropower plant. Different vortices were produced at the horizontal intake by changing the submerged depth. Tangential velocities were measured ...

  1. DAM-LAKEFRONT PLAZA: Revitalization of an Agriculture Reservoir Dam in Kashar-Tirana/Albania

    Directory of Open Access Journals (Sweden)

    Valbona Koçi

    2014-12-01

    Full Text Available The Dam-Lakefront Plaza in Kashar-Tirana/Albania is a research project that proposes not only the re-consideration and reinforcement of the artificial Reservoirs Dams built during Socialism in Albania, but envisions the maintenance of dams and revitalization of the lakeside area promoting the public-private collaboration. In addition, it envisions the generation of qualitative and lively public spaces in sub-urban areas as well. Admitting the artificial lakes as specific nodes of man-made infrastructure in the landscape, and consequently the dams (together with the drainage channels as important hydrotechnic elements of the flood protection infrastructure, this research intends to elaborate on one type of landscape infrastructure - the vertical screens, offering a mediation between the natural and built landscape.

  2. 33 CFR 208.22 - Twin Buttes Dam and Reservoir, Middle and South Concho Rivers, Tex.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Twin Buttes Dam and Reservoir... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.22 Twin Buttes Dam..., shall operate the Twin Buttes Dam and Reservoir in the interest of flood control as follows: (a...

  3. Behavior and dam passage of juvenile Chinook salmon at Cougar Reservoir and Dam, Oregon, March 2011 - February 2012

    Science.gov (United States)

    Beeman, John W.; Hansel, Hal C.; Hansen, Amy C.; Haner, Philip V.; Sprando, Jamie M.; Smith, Collin D.; Evans, Scott D.; Hatton, Tyson W.

    2013-01-01

    The movements and dam passage of juvenile Chinook salmon implanted with acoustic transmitters and passive integrated transponder tags were studied at Cougar Reservoir and Dam, near Springfield, Oregon. The purpose of the study was to provide information to aid with decisions about potential alternatives for improving downstream passage conditions for juvenile salmonids in this flood-control reservoir. In 2011, a total of 411 hatchery fish and 26 wild fish were tagged and released during a 3-month period in the spring, and another 356 hatchery fish and 117 wild fish were released during a 3-month period in the fall. A series of 16 autonomous hydrophones throughout the reservoir and 12 hydrophones in a collective system near the dam outlet were used to determine general movements and dam passage of the fish over the life of the acoustic transmitter, which was expected to be about 3 months. Movements within the reservoir were directional, and it was common for fish to migrate repeatedly from the head of the reservoir downstream to the dam outlet and back to the head of the reservoir. Most fish were detected near the temperature control tower at least once. The median time from release near the head of the reservoir to detection within about 100 meters of the dam outlet at the temperature control tower was between 5.7 and 10.8 days, depending on season and fish origin. Dam passage events occurred over a wider range of dates in the spring and summer than in the fall and winter, but dam passage numbers were greatest during the fall and winter. A total of 10.5 percent (43 of 411) of the hatchery fish and 15.4 percent (4 of 26) of the wild fish released in the spring are assumed to have passed the dam, whereas a total of 25.3 percent (90 of 356) of the hatchery fish and 16.9 percent (30 of 117) of the wild fish released in the fall are assumed to have passed the dam. A small number of fish passed the dam after their transmitters had stopped working and were detected at

  4. Investigation of seasonal thermal flow in a real dam reservoir using 3-D numerical modeling

    Directory of Open Access Journals (Sweden)

    Üneş Fatih

    2015-03-01

    Full Text Available Investigations indicate that correct estimation of seasonal thermal stratification in a dam reservoir is very important for the dam reservoir water quality modeling and water management problems. The main aim of this study is to develop a hydrodynamics model of an actual dam reservoir in three dimensions for simulating a real dam reservoir flows for different seasons. The model is developed using nonlinear and unsteady continuity, momentum, energy and k-ε turbulence model equations. In order to include the Coriolis force effect on the flow in a dam reservoir, Coriolis force parameter is also added the model equations. Those equations are constructed using actual dimensions, shape, boundary and initial conditions of the dam and reservoir. Temperature profiles and flow visualizations are used to evaluate flow conditions in the reservoir. Reservoir flow’s process and parameters are determined all over the reservoir. The mathematical model developed is capable of simulating the flow and thermal characteristics of the reservoir system for seasonal heat exchanges. Model simulations results obtained are compared with field measurements obtained from gauging stations for flows in different seasons. The results show a good agreement with the field measurements.

  5. In-reservoir behavior, dam passage, and downstream migration of juvenile Chinook salmon and juvenile steelhead from Detroit Reservoir and Dam to Portland, Oregon, February 2013-February 2014

    Science.gov (United States)

    Beeman, John W.; Adams, Noah S.

    2015-01-01

    In the second year of 2 years of study, the movements of juvenile spring Chinook salmon (Oncorhynchus tshawytscha) and juvenile summer steelhead (Oncorhynchus mykiss) through Detroit Reservoir, passing Detroit Dam, and migrating downstream to Portland, Oregon, were studied during a 1-year-long period beginning in February 2013. The primary purpose of the study was to provide empirical data to inform decisions about future alternatives for improving downstream passage of salmonids at Detroit Dam. A secondary purpose was to design and assess the performance of a system to detect juvenile salmonids implanted with acoustic transmitters migrating in the Willamette River. Inferences about fish migration were made from detections of juvenile fish of hatchery origin at least 95 millimeters in fork length surgically implanted with an acoustic transmitter and released during the spring (March–May) and fall (September–November) of 2013. Detection sites were placed throughout the reservoir, near the dam, and at two sites in the North Santiam River and at three sites in the Willamette River culminating at Portland, Oregon. We based most inferences on an analysis period up to the 90th percentile of tag life (68–78 days after release, depending on species and season), although a small number of fish passed after that period as late as April 8, 2014. Chinook salmon migrated from the tributaries of release to the reservoir in greater proportion than steelhead, particularly in the fall. The in-reservoir migration behaviors and dam passage of the two species were similar during the spring study, but during the fall study, few steelhead reached the reservoir and none passed the dam within the analysis period. Migrations in the reservoir were directed and non-random, except in the forebay. Depths of fish within 25 meters of the dam were deeper in the day than at night for Chinook salmon and similar in the day and night for steelhead; steelhead generally were at shallower depths

  6. Dam-Break Flood Analysis Upper Hurricane Reservoir, Hartford, Vermont

    National Research Council Canada - National Science Library

    Acone, Scott

    1995-01-01

    .... Various dam break flood conditions were modeled and inundation maps developed. Based on this analysis the dam is rated a Class 2 or significant hazard category in terms of its potential to cause downstream damage...

  7. Design and Construction of Dams, Reservoirs, and Balancing Lakes

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2003-01-01

    The general data presented in sections two and three gives an idea of the extreme diversity of the millions of very large or very small dams worldwide. Dam design and construction methods for the most usual types of large dams are presented and justified in section four. The possibility and usefulness of building as many dams in the 21. century as have been built in the 20. is analyzed in section six. (author)

  8. Use of isotopes techniques during the life cycle of dams and reservoirs: cases in Latin American

    International Nuclear Information System (INIS)

    Leon, S.H.

    2006-01-01

    In fact, the combined use of isotope and conventional techniques is considered a reliable tool for studying problems related to dam safety and has become a new culture for civil / dam engineers, hydro geologists and researchers who involve in water resource management fields. The use of natural (environmental) and artificial isotopes as tracers together with systematic analyses of the hydrochemistry, electrical conductivity and temperature profiles data during the investigation and monitoring of leakage and seepage in dams and reservoirs are now becoming popular among the dam owners in seeking the best solution for dam related problems. Many studies and experiences worldwide on effective dam management programmes have indicated that any investigation about leakages and seepages are not possible to be accomplished successfully without synergic application of the conventional technologies and isotopic techniques. The major advancement in this area is the measurements study for establishment of baseline hydrogeology at each hydraulic work project like dams and reservoirs. The parameters include hydro chemicals, isotopic and geologic in each basin, river, reservoir, dams, tunnels and groundwater which provide high value information for decision making during all the stages in the life cycle of the dams. Many hydroelectric and water supply projects in latin america apply these investigation strategies. The main target is to investigate and understand the water movement around the dam and its vicinity. Then the specialised work teams will decide for the effective and economic monitoring activities and the implementation of the recommended remedial measures to ensure high standards of safety and security of the large dams and reservoirs. A typical example of specific leakage investigation of la Honda dam is briefly discussed. (Author)

  9. Optimization of Multiple and Multipurpose Reservoir System Operations by Using Matrix Structure (Case Study: Karun and Dez Reservoir Dams.

    Directory of Open Access Journals (Sweden)

    Mohammad Heydari

    Full Text Available Optimal operation of water resources in multiple and multipurpose reservoirs is very complicated. This is because of the number of dams, each dam's location (Series and parallel, conflict in objectives and the stochastic nature of the inflow of water in the system. In this paper, performance optimization of the system of Karun and Dez reservoir dams have been studied and investigated with the purposes of hydroelectric energy generation and providing water demand in 6 dams. On the Karun River, 5 dams have been built in the series arrangements, and the Dez dam has been built parallel to those 5 dams. One of the main achievements in this research is the implementation of the structure of production of hydroelectric energy as a function of matrix in MATLAB software. The results show that the role of objective function structure for generating hydroelectric energy in weighting method algorithm is more important than water supply. Nonetheless by implementing ε- constraint method algorithm, we can both increase hydroelectric power generation and supply around 85% of agricultural and industrial demands.

  10. Optimization of Multiple and Multipurpose Reservoir System Operations by Using Matrix Structure (Case Study: Karun and Dez Reservoir Dams).

    Science.gov (United States)

    Heydari, Mohammad; Othman, Faridah; Taghieh, Mahmood

    2016-01-01

    Optimal operation of water resources in multiple and multipurpose reservoirs is very complicated. This is because of the number of dams, each dam's location (Series and parallel), conflict in objectives and the stochastic nature of the inflow of water in the system. In this paper, performance optimization of the system of Karun and Dez reservoir dams have been studied and investigated with the purposes of hydroelectric energy generation and providing water demand in 6 dams. On the Karun River, 5 dams have been built in the series arrangements, and the Dez dam has been built parallel to those 5 dams. One of the main achievements in this research is the implementation of the structure of production of hydroelectric energy as a function of matrix in MATLAB software. The results show that the role of objective function structure for generating hydroelectric energy in weighting method algorithm is more important than water supply. Nonetheless by implementing ε- constraint method algorithm, we can both increase hydroelectric power generation and supply around 85% of agricultural and industrial demands.

  11. THE EFFECT OF RESERVOIR WATER LEVEL FLUCTUATION TO THE SEEPAGE ON EARTH DAM

    Directory of Open Access Journals (Sweden)

    H. Sudardja

    2012-06-01

    Full Text Available The modeling of earth dam was carried out in a drainage and seepage tank to analyze the seepage resulting from water level fluctuation in the upstream of the dam. The dam models were made of the mixture of Mt. Merapi sand deposit with the soil of sandy-silt from Wonosari area. The variations of sand content in the mixture were 100%; 90% and 80% and the upstream slope inclinations were 1:1; 1:1.5 and 1:2. The result showed that the dams with more sandy-silt in the mixture have smaller seepage and the dams with steeper upstream slope have greater seepage. During rapid rising of water level, the dams with steeper upstream slope have a high rising rate of upstream water level and higher height of downstream slope failure. Moreover, during rapid drawdown, the dams with gentler upstream slope have a smaller rate of upstream drawdown and lower height of upstream slope failure. The dams with more sandy-silt in the mixture have a higher value of rising rate and drawdown of upstream water level but lower height of downstream and upstream slope failure. In the dam management, continuous monitoring of the seepage resulting from reservoir water level fluctuation is required to avoid dam failure. Keywords: Earth dam, rapid rising, rapid drawdown, seepage, slope failure.

  12. Environmental-impact assessment of dams and reservoir projects (review and a case study)

    International Nuclear Information System (INIS)

    Shah, S.M.

    2009-01-01

    Dams and reservoirs are among one of the most sensitive of all development Project, in terms of pervasiveness of their influence in altering the environmental conditions and resources. In the present study, major dams and reservoir projects are reviewed, from the environmental point of view. Dams and Reservoir projects bring about major changes in the immediate environment, thus affecting public health, settlements, farmlands, roads and historical sites. Impacts on human population and wildlife may be profound. Tropical diseases, involving fresh-water hosts or vectors in their transmission, are often common around new reservoirs. Large lakes create limnological changes, excessive evaporation, seepage, disturbance in water-table and increased tendencies of landslides and earthquakes. Micro climatic changes are possible, such as fog formation, increased cloudiness and modified rainfall-patterns. Retention of sediment results in silting up of reservoirs. Water shortages on mountain rivers may leave unsightly dry river-beds below a dam. Sediment deposition and growth of vegetation in reservoir affects the water-extraction for navigation power-generation and fishing. Various dams and reservoir projects in the world are critically studied, in terms of creating environmental impacts. The Kala Bagh Dam project (Pakistan), which is ready for construction, has been analysed as a case study, by matrix method. Analyses show that adverse effects of this dam are less than the benefits. It is recommended that based on the experience, appropriate lines and strategies may be drawn up to evaluate the local projects. Multidisciplinary experts need to be involved, for assessing environmental impacts and suggesting mitigation measures, to combat the adverse effects. (author)

  13. The quality of surface waters of the dam reservoir Mexa, Northeast of Algeria

    Directory of Open Access Journals (Sweden)

    Bahroun Sofia

    2017-09-01

    Full Text Available In this work, we have conducted a physicochemical study that assesses the impact of agricultural activities and urban domestic wastewater on the surface water quality of the dam reservoir Mexa in the area of El-Taref, which is located in the eastern coastal basin of Constantine. 36 samplings have been conducted for three years (2010, 2011 and 2012, at the rate of one sampling per month on the dam reservoir water; 36 samples have been analysed. The samples taken have been subjected to an in situ measurement of physicochemical parameters (temperature, hydrogen potential, electric conductivity and dissolved oxygen and laboratory analysis (anions, cations, biological oxygen demand, chemical oxygen demand, organic matter, phosphate, nitrate, nitrite and ammonium. Concentrations of various organic and inorganic pollutants varied from one month to another and from one year to another. From a temporal point of view, the contamination of water of the dam reservoir Mexa varies according to climatic conditions, being generally low during the winter period and high during the low-flow periods. The results obtained reveal that water of the dam reservoir Mexa is fairly contaminated. It is certain that the dam reservoir is subject to pollution of agricultural and urban origin.

  14. Assessing the Habitat Suitability of Dam Reservoirs: A Quantitative Model and Case Study of the Hantan River Dam, South Korea

    Directory of Open Access Journals (Sweden)

    Hyeongsik Kang

    2016-11-01

    Full Text Available The main objective of this study was to investigate ecologically healthy regions near a dam reservoir. This study developed a model for assessing habitat suitability as a proxy for the ecological value of reservoirs. Three main factors comprising nine assessment variables were selected and classified as having a habitat suitability (HS between 0 and 1: (1 geomorphic factors of altitude, slope steepness, and slope aspect; (2 vegetation factors of forest physiognomy, vegetation type, and tree age; and (3 ecological factors of land cover, ecological quality index, and environmental conservation value assessment. The spatial distribution of the nine HS indices was determined using geographic information systems and combined into one HS index value to determine ecologically healthy regions. The assessment model was applied to areas surrounding the Hantan River Dam, South Korea. To verify the model, wildlife location data from the national ecosystem survey of the Ministry of Environment were used. Areas with an HS index between 0.73 and 1 were found to contain 72% of observed wildlife locations. Ecologically healthy areas were identified by adding the indices of each variable. The methods shown here will be useful for establishing ecological restoration plans for dam reservoirs in South Korea.

  15. National Program for Inspection of Non-Federal Dams. Stony Brook Reservoir Dam MA 00293, Charles River Basin, Weston, Massachusetts. Phase I Inspection Report.

    Science.gov (United States)

    1979-06-01

    the dam along the west side of the reservoir. Water supply intakes and a low flow outlet are controlled from the gatehouse near the right end of the dam...face of the dam, the establishment of vegetation on bare areas, the repointing of joints at the spillway and gatehouse , the repair of an inoperative...Stony Brook Reservoir. The routing indicated that there is virtually no reduction of the peak inflow rate of 8,400 cfs into Stony Brook Reservoir and as a

  16. Modeling of Reservoir Inflow for Hydropower Dams Using Artificial ...

    African Journals Online (AJOL)

    The stream flow at the three hydropower reservoirs in Nigeria were modeled using hydro-meteorological parameters and Artificial Neural Network (ANN). The model revealed positive relationship between the observed and the modeled reservoir inflow with values of correlation coefficient of 0.57, 0.84 and 0.92 for Kainji, ...

  17. Dam break flood wave under different reservoir's capacities and ...

    Indian Academy of Sciences (India)

    Farhad Hooshyaripor

    2017-07-14

    Jul 14, 2017 ... the ultimate flash flood risk management plan. In order to improve the inputs and advance our ... dam break flood risk management will be shown by a robust flume test. In the next section the methodology ..... The quality of ADV data in the velocity time series was monitored by two criteria: signal strength of ...

  18. Application of SWAT Model to Estimate the Runoff and Sediment Load from the Right Bank Valleys of Mosul Dam Reservoir

    OpenAIRE

    Ezz-Aldeen, Mohammad; Al-Ansari, Nadhir; Knutsson, Sven

    2012-01-01

    Mosul Dam is the biggest hydraulic structure on the River Tigris in Iraq with 11.11 billion m3 storage capacity. The dam is a multipurpose project. It is used to store the water for irrigation, hydropower generation, and flood control. As in other dams in the world, this dam also have sedimentation problem. Sediment accumulation in its reservoir can effect the dam operation (pumping station, hydropower plants, and bottom outlets) and it will definitely shorten the life span of the dam. In thi...

  19. Vortices in dam reservoir: A case study of Karun III dam

    Indian Academy of Sciences (India)

    Vertical anti-vortex walls and anti-vortex plates are usually considered to be among the effective means for eliminating a vortex. The possibility of vortex formation can be observed by its velocity in the reservoir, vθ , which is defined as the tangential velocity on an arbitrary point in the reservoir. As the tangential velocity of ...

  20. Review on applications of artificial intelligence methods for dam and reservoir-hydro-environment models.

    Science.gov (United States)

    Allawi, Mohammed Falah; Jaafar, Othman; Mohamad Hamzah, Firdaus; Abdullah, Sharifah Mastura Syed; El-Shafie, Ahmed

    2018-04-03

    Efficacious operation for dam and reservoir system could guarantee not only a defenselessness policy against natural hazard but also identify rule to meet the water demand. Successful operation of dam and reservoir systems to ensure optimal use of water resources could be unattainable without accurate and reliable simulation models. According to the highly stochastic nature of hydrologic parameters, developing accurate predictive model that efficiently mimic such a complex pattern is an increasing domain of research. During the last two decades, artificial intelligence (AI) techniques have been significantly utilized for attaining a robust modeling to handle different stochastic hydrological parameters. AI techniques have also shown considerable progress in finding optimal rules for reservoir operation. This review research explores the history of developing AI in reservoir inflow forecasting and prediction of evaporation from a reservoir as the major components of the reservoir simulation. In addition, critical assessment of the advantages and disadvantages of integrated AI simulation methods with optimization methods has been reported. Future research on the potential of utilizing new innovative methods based AI techniques for reservoir simulation and optimization models have also been discussed. Finally, proposal for the new mathematical procedure to accomplish the realistic evaluation of the whole optimization model performance (reliability, resilience, and vulnerability indices) has been recommended.

  1. National Dam Inspection Program. North Arrowhead Lake Dam (NDI ID PA 00743, PA DER 45-246), Delaware River Basin, Unnamed Tributary of Trout Creek, Pennsylvania. Phase I Inspection Report

    Science.gov (United States)

    1981-08-01

    junction with the concreto discharge apron. 7. Irreyular surfaces on the dam and levee should be regraded and back- filled with suitable compacted...for the levee portion- of the dam consist of a 10-inch diameter standpipe, which extends approximately a foot above normal pool ele - vat.ion, and...350 feet downstream of the dam, and 10 houses located along the shores of Arrowhead Lake ( El . 1656-) constitute the hazard area downstream of North

  2. National Dam Inspection Program. Graceton Dam (NDI ID Number PA-279, DER ID Number 32-25) Ohio River Basin, Unnamed Tributary of Two Lick Creek, Indiana County, Pennsylvania. Phase I Inspection Report.

    Science.gov (United States)

    1980-06-18

    built for industrial water supply. Presently, the dam is reportedly serving a single customer, a farm approximately 1000 feet downstream from the dam. g...are available via a farm located about 1000 feet from the dam. 4.5 Evaluation. The visual observations indicate that the dam is essentially abandoned...I ? 4 . q tS~,edld .rytth eler. thn bdlar len er. S l t ecUce " l,*t ce-I’etel. I tec ,, h el ,.,r , u peer~n. e itt e le at teondetc.l and fDekr o Te

  3. Location of the major seepage zones in ''Las alazanas'' dam reservoir

    International Nuclear Information System (INIS)

    Ortiz A, J.L.; Andreu, B.

    1978-01-01

    The reservoir of the ''Las Alazanas'' dam is located on the Soto La Marina River in the State of Tamaulipas. The filling of the reservoir began on December 24, 1971, and beginning on January 18, 1972, a 10 cm. daily (corresponding to an approximate 5 m 3 /sec outflow) fall in the reservoir level was noted, exclusively due to infiltration and evaporation. It is important to call attention to the existence of several springs below the curtain on the river approximately 8 kms. downstream. There is an increase in the outflow from these springs in accordance with raises in the reservoir level, causing thought about a connection between them. A study made with tracers to verify this connection and to locate the reservoir's infiltration zones is presented in this paper. A geophysical study was made to learn the thickness of the drifting material and the consequent possibility of carrying out some work tending to decrease infiltration. (author)

  4. Water Quality Characteristics of Sembrong Dam Reservoir, Johor, Malaysia

    Science.gov (United States)

    Mohd-Asharuddin, S.; Zayadi, N.; Rasit, W.; Othman, N.

    2016-07-01

    A study of water quality and heavy metal content in Sembrong Dam water was conducted from April - August 2015. A total of 12 water quality parameters and 6 heavy metals were measured and classified based on the Interim National Water Quality Standard of Malaysia (INWQS). The measured and analyzed parameter variables were divided into three main categories which include physical, chemical and heavy metal contents. Physical and chemical parameter variables were temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solid (TSS), turbidity, pH, nitrate, phosphate, ammonium, conductivity and salinity. The heavy metals measured were copper (Cu), lead (Pb), aluminium (Al), chromium (Cr), ferum (Fe) and zinc (Zn). According to INWQS, the water salinity, conductivity, BOD, TSS and nitrate level fall under Class I, while the Ph, DO and turbidity lie under Class IIA. Furthermore, values of COD and ammonium were classified under Class III. The result also indicates that the Sembrong Dam water are not polluted with heavy metals since all heavy metal readings recorded were falls far below Class I.

  5. Geographical Overview of the Three Gorges Dam and Reservoir, China - Geologic Hazards and Environmental Impacts

    Science.gov (United States)

    Highland, Lynn M.

    2008-01-01

    The Three Gorges Dam and Reservoir on the Yangtze River, China, has been an ambitious and controversial project. The dam, the largest in the world as of 2008, will provide hydropower, help to manage flood conditions, and increase the navigability of the Yangtze River. However, this massive project has displaced human and animal populations and altered the stability of the banks of the Yangtze, and it may intensify the seismic hazard of the area. It has also hindered archeological investigations in the reservoir and dam area. This report, originally in the form of a Microsoft PowerPoint presentation, gives a short history and overview of the dam construction and subsequent consequences, especially geologic hazards already noted or possible in the future. The report provides photographs, diagrams, and references for the reader's further research - a necessity, because this great undertaking is dynamic, and both its problems and successes continue to evolve. The challenges and consequences of Three Gorges Dam will be closely watched and documented as lessons learned and applied to future projects in China and elsewhere.

  6. Negligible contribution of reservoir dams to organic and inorganic transport in the lower Mimi River, Japan

    Science.gov (United States)

    Nukazawa, Kei; Kihara, Kousuke; Suzuki, Yoshihiro

    2017-12-01

    Rivers fulfill an essential ecological role by forming networks for material transport from upland forests to coastal areas. The way in which dams affect the organic and inorganic cycles in such systems is not well understood. Herein, we investigated the longitudinal profiles of the various components of the water chemistry across three cascade dams in Japan: the Yamasubaru Dam, Saigou Dam, and Ohuchibaru Dam, which are situated along the sediment-productive Mimi River in different flow conditions. We analyzed the following water quality components: suspended solids (SS), turbidity, total iron (TFe), dissolved iron (DFe), total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), humic substance (HS), and major ionic components (Na+, Mg2+, Ca2+, Cl-, NO3-, and SO42-) in the downstream channels of the three dams during the low-intermediate-flow and high-flow events from 2012 to 2014. We estimated hourly loads of each component using hourly turbidity data and discharge data (i.e., L-Q model) separately, and the results are integrated to estimate the annual fluxes. The annual fluxes between the methods were compared to verify predictability of the conventional L-Q models. Annual flux of TOC, TN, DFe, and HS estimated by the turbidity displayed similar values, whereas the flux of SS, TFe, and TP tended to increase downstream of the dams. Among the dams, estimated flux proportions for TP and TFe were higher during high-flow events (74%-94%). Considering geographic conditions (e.g., absence of major tributary between the dams), the result implies that accumulated TP and TFe in the reservoirs may be flushed and transported downstream with SS over the short height dams during flood events. Assuming this process, the reservoir dams probably make only a fractional contribution to the organic and inorganic transport in the catchment studied. The percent flux errors for SS, TFe, and TP fluxes ranged from -7.2% to -97% (except for the TP flux in 2013), which

  7. National Dam Inspection Program. Jennings Pond Dam (NDI I.D. PA-0891 DER I.D. 066-012) Susquehanna River Basin, Little Mehoopany Creek, Wyoming County, Pennsylvania. Phase I Inspection Report,

    Science.gov (United States)

    1981-03-19

    overflow section. 4.2 Maintenance of the Dam. The maintenance of the dam is considered to be fair. The abutments are relatively free of unwanted brush ...drainage area. STORAGE VS. ELEVATION ELEVATION AH, FEET AREA 6VOLUMV STORAI;E (acres) ( 1 ) (acre- teet ) (21 ) (acre-1e-t) 1020 83.6 q. 1009 [1 4

  8. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1990-1994 Investigations of Fish Entrainment Through Libby Dam.

    Energy Technology Data Exchange (ETDEWEB)

    Skaar, Don

    1996-01-01

    We investigated fish entrainment through Libby Dam from December 1990 to June 1994. This study was one portion of the effort by the Montana Department of Fish, Wildlife and Parks to quantify Libby Dam operations necessary to maintain or enhance Libby Reservoir fisheries.

  9. Vortices in dam reservoir: A case study of Karun III dam

    Indian Academy of Sciences (India)

    Typical problems may occur when free surface vortex is present in the reservoir which includes decreasing the efficiency of turbines and their vibration, increasing hydraulic losses at the entrance of power intakes, entraining debris which may cause blockage of trash racks, entraining air into the power tunnel, and reducing ...

  10. National Dam Inspection Program. Page’s Lake Dam NDI Number PA 00062 PennDER Number 58-5) Susquehanna River Basin, Salt Lick Creek, Susquehanna County, Pennsylvania. Phase I Inspection Report.

    Science.gov (United States)

    1981-02-01

    based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, teEting ...potential of the dam. 2) Fill the erosion gully located to the left of the spillway and reseed the area. 3) Remove the brush below the downstream face...in Appendix A. b. Dam - A small erosion gully has formed at the junction of the left spillway training wall and embankment. Brush was present

  11. SWE-SPHysics Simulation of Dam Break Flows at South-Gate Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    Shenglong Gu

    2017-05-01

    Full Text Available This paper applied a Smoothed Particle Hydrodynamics (SPH approach to solve Shallow Water Equations (SWEs to study practical dam-break flows. The computational program is based on the open source code SWE-SPHysics, where a Monotone Upstream-centered Scheme for Conservation Laws (MUSCL reconstruction method is used to improve the Riemann solution with Lax-Friedrichs flux. A virtual boundary particle method is applied to treat the solid boundary. The model is first tested on two benchmark collapses of water columns with the existence of downstream obstacle. Subsequently the model is applied to forecast a prototype dam-break flood, which might occur in South-Gate Gorges Reservoir area of Qinghai Province, China. It shows that the SWE-SPH modeling approach could provide a promising simulation tool for practical dam-break flows in engineering scale.

  12. Examination of dam induced sedimentation of small reservoir near Brennbergbánya

    Science.gov (United States)

    Csáfordi, P.; Kalicz, P.; Gribovszki, Z.; Kucsara, M.

    2009-04-01

    The dams' affects on the stream system also involve accelerated sedimentation of reservoirs, change of water and sediment regime. In consequence of sedimentation the lifetime and the recreational potential of reservoirs decrease and management practices have to be applied. The area of our study is a small forested catchment, where the erosion of forested land and the sedimentation of Brennberg Reservoir were investigated in relationship with each other. The Brennberg Reservoir has been built in 1981. It has been silting up forcefully since that time. It has to be dredged with hydraulic earth-moving to preserve its landscape-aesthetical function for the future. We have surveyed the surface to establish the rate of sedimentation. The results of this measurement were processed with a GIS software (named Digiterra Map). There were several uncertainties during our surveying in the field. Therefore three other methods were applied based on GIS and a simply mathematical calculation. The amount of deposited sediment was determined with these methods. Then we compared the results to each other. The annual specific soil loss was estimated according to results of our measurement. Keywords: dam impact, reservoir sedimentation, GIS

  13. Selected trace and minor elements in sediments of Itaipu dam reservoir

    Science.gov (United States)

    Facetti-Masulli, J. F.; Kump, P.; de Diaz, Z. V.

    2003-01-01

    The X-ray fluorescence analysis of some minor and trace elements in sediments of Itaipu Dam reservoir was used for a study of geochemical processes and the evolution and history of a water body, which characterise the geological history as well as the present changes in the area. Inter alia good correlation with the Ti and incompatible elements content in whole rock was found and that REEs can be used as provenance indicators.

  14. Forward modeling of seepage of reservoir dam based on ground penetrating radar

    Directory of Open Access Journals (Sweden)

    Xueli WU

    2017-08-01

    Full Text Available The risk of the reservoir dam seepage will bring the waste of water resources and the loss of life and property. The ground penetrating radar (GPR is designed as a daily inspection system of dams to improve the existing technology which can't determine the actual situation of the dam seepage tunnel coordinates. The finite difference time domain (FDTD is used to solve the Yee's grids discreatization in two-dimensional space, and its electromagnetic distribution equation is obtained as well. Based on the actual structure of reservoir dam foundation, the ideal model of air layer, concrete layer, clay layer and two water seepage holes is described in detail, and the concrete layer interference model with limestone interference point is established. The system architecture is implemented by using MATLAB, and the forward modeling is performed. The results indicate that ground penetrating radar can be used for deep target detection. Through comparing the detection spectrum of three kinds of frequency electromagnetic wave by changing the center frequency of the GPR electromagnetic wave of 50 MHz, 100 MHz and 200 MHz, it is concluded that the scanning result is more accurate at 100 MHz. At the same time, the simulation results of the interference model show that this method can be used for the detection of complex terrain.

  15. Reservoir stratification affects methylmercury levels in river water, plankton, and fish downstream from Balbina hydroelectric dam, Amazonas, Brazil.

    Science.gov (United States)

    Kasper, Daniele; Forsberg, Bruce R; Amaral, João H F; Leitão, Rafael P; Py-Daniel, Sarah S; Bastos, Wanderley R; Malm, Olaf

    2014-01-21

    The river downstream from a dam can be more contaminated by mercury than the reservoir itself. However, it is not clear how far the contamination occurs downstream. We investigated the seasonal variation of methylmercury levels in the Balbina reservoir and how they correlated with the levels encountered downstream from the dam. Water, plankton, and fishes were collected upstream and at sites between 0.5 and 250 km downstream from the dam during four expeditions in 2011 and 2012. Variations in thermal stratification of the reservoir influenced the methylmercury levels in the reservoir and in the river downstream. Uniform depth distributions of methylmercury and oxygen encountered in the poorly stratified reservoir during the rainy season collections coincided with uniformly low methylmercury levels along the river downstream from the dam. During dry season collections, the reservoir was strongly stratified, and anoxic hypolimnion water with high methylmercury levels was exported downstream. Methylmercury levels declined gradually to 200 km downstream. In general, the methylmercury levels in plankton and fishes downstream from the dam were higher than those upstream. Higher methylmercury levels observed 200-250 km downstream from the dam during flooding season campaigns may reflect the greater inflow from tributaries and flooding of natural wetlands that occurred at this time.

  16. National Dam Inspection Program. Star Junction Number 1 Dam (NDI Number PA-00198, PennDER Number 26-30) Ohio River Basin, Washington Run, Fayette County, Pennsylvania. Phase I Inspection Report,

    Science.gov (United States)

    1980-04-01

    end and erosion K of the training dike has occurred. g. Instrumentation : No instrumentation was observed during the inspection. h. Downstream...DATE: 19 MAR 80 RN TDZ: 10.30.40 NATIONAL PROGR FOR TEM INSPEC ION OF NON-FEERAL DM HXDROLOMC AND MRAILIC ANALISIS OF STAR JUNCTION NamR 1 DAm PROBABLE

  17. Tailoring dam structures to water quality predictions in new reservoir projects: assisting decision-making using numerical modeling.

    Science.gov (United States)

    Marcé, Rafael; Moreno-Ostos, Enrique; García-Barcina, José Ma; Armengol, Joan

    2010-06-01

    Selection of reservoir location, the floodable basin forest handling, and the design of dam structures devoted to water supply (e.g. water outlets) constitute relevant features which strongly determine water quality and frequently demand management strategies to be adopted. Although these crucial aspects should be carefully examined during dam design before construction, currently the development of ad hoc limnological studies tailoring dam location and dam structures to the water quality characteristics expected in the future reservoir is not typical practice. In this study, we use numerical simulation to assist on the design of a new dam project in Spain with the aim of maximizing the quality of the water supplied by the future reservoir. First, we ran a well-known coupled hydrodynamic and biogeochemical dynamic numerical model (DYRESM-CAEDYM) to simulate the potential development of anoxic layers in the future reservoir. Then, we generated several scenarios corresponding to different potential hydraulic conditions and outlet configurations. Second, we built a simplified numerical model to simulate the development of the hypolimnetic oxygen content during the maturation stage after the first reservoir filling, taking into consideration the degradation of the terrestrial organic matter flooded and the adoption of different forest handling scenarios. Results are discussed in terms of reservoir design and water quality management. The combination of hypolimnetic withdrawal from two deep outlets and the removal of all the valuable terrestrial vegetal biomass before flooding resulted in the best water quality scenario. (c) 2010 Elsevier Ltd. All rights reserved.

  18. National Dam Inspection Program. Colonial Dam Number 3, (NDI Number PA-00209, PennDER Number 26-22) Ohio River Basin, Fayette County, Pennsylvania. Phase I Inspection Report.

    Science.gov (United States)

    1980-05-01

    water supply purposes and its current use is unknown. g. Design and Construction History : The dam was designed in 1907 by E. J.Taylor, Chief Engineer and...the ratio of resistire to overtmrniLt aete. ad@o the tactor of ar𔄀- posesa by tOn bectla a6%1=+. roation aheu.. Ito tas. Ux 1~ abomw the ratio ar

  19. National Dam Inspection Program. Laurel Run Dam. NDI ID Number PA-00380. DER ID Number 35-6, Pennsylvania Gas and Water Company. Susquehanna River Basin, Laurel Run, Lackawanna County, Pennsylvania Phase I Inspection Report,

    Science.gov (United States)

    1980-04-01

    materials used. b. Construction Considerations. The Pennsylvania Water Supply Commission Report of 1914 indicated that the dam was well -constructed. They...operation. A record of operation does exist in the form of inspection reports prepared by the Commonwealth between 1919 and 1957 as well as various...shaped downwarp that trends northeast and soutwest from Orson to Orangeville. The rim rocks are of the Pottsville and Pocono Formations; they have dips

  20. National Dam Inspection Program. Shawnee Dam (NDI-ID number PA-00629), DER-ID number 45-115 Shawnee Development, nc. Delaware River Basin, Shawnee Creek, Monroe County, Pennsylvania. Phase I Inspection Report.

    Science.gov (United States)

    1980-01-01

    brush from the embankment. Upon removal of brush and trees, the embankment should be inspected for bulges, cracks, and other signs of distress. Take...apron. j. Regulating Outlets. Type. One 30-inch diameter reinforced concrete pipe. -5- - .- ka ..Sii,-i~~i j. Regulating Outlets. (Cont’d.) Length ( teet ...level is overgrown with brush and trees (Photograph C). The riprap is intact, but it does not extend to the top of the dam. The portion of the slope

  1. Dams

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset �is generated from from the Vermont Dam Inventory (VDI). The VDI is managed by the VT DEC's Dam Safety and Hydrology Section and contains information...

  2. National Dam Inspection Program. Broadford Run Dam. Little Youghiogheny River Site Number 6. (NDI I.D. Number MD-361) Ohio River Basin. Broadford Run. Garrett County, Maryland. Phase I Inspection Report,

    Science.gov (United States)

    1979-07-01

    concrete outlet pipe. The slide gate is operated by a handwheel and lifting nut mechanism, and provides for drawdown of the reservoir. The concrete...of 0 = 280, c 500 psf ( unsoaked ), f = 280, T = 490 psf ( unsoaked ), and 0 = 150, c = 900 psf (soaked). 4) Slope Stability Analysis. Slope stability of

  3. National Dam Inspection Program. Village Two at New Hope Dam (NDI ID PA-00803, PA DER 9-173), Delaware River Basin, Unnamed Tributary of Delaware River, Pennsylvania. Phase Inspection Report,

    Science.gov (United States)

    1981-02-01

    impending dam failure should be developed. O’BRIEN & GERE ENGINEERS, INC. 0 EGISTERED 4 4L PROFESSIONAL 0 hs P: JOHN J. WILLIAMS )hn J ,’Mtlxs, PFe . Vice...two zones. The core material was to have been a clean inorganic clay soil (70% clay by volume) protected with a decomposed shale, shale and random rock...upstream and downstream Zoning Clay core with outer rock shells Cutoff To bedrock Grout Curtain None h. Diversion System None i. Spillway 1. Normal Overflow

  4. National Dam Inspection Program. K-Section Dam (NDI ID Number PA-1045, DER ID Number 1-84), Potomac River Basin, Tributary to Toms Creek, Adams County, Pennsylvania, Carroll Valley Borough. Phase I Inspection Report

    Science.gov (United States)

    1981-08-01

    CONTEITS PAGE SECTION I -PROJECT INFORMATION S*11 General 1 1.2 Description o Project I S1.3 Pertinent Data 2 SECTION 2 - ENGINEERING DATA 5 2.1 Design...5 2.2 Construrction 5 2.3 Operation 5 2.4 Evaluation 5 SECTION 3 - VISUL INSPECTION 6 3.1 Findings 6 3.2 Evaluation 7 SECTION 4 - OPERATIONAL...dam is pres- ently used for recreation. S. Design and Construction history. Based on information con- tained in the PannDER files, it appears as

  5. A coupled FE and scaled boundary FE-approach for the earthquake response analysis of arch dam-reservoir-foundation system

    International Nuclear Information System (INIS)

    Wang Yi; Lin Gao; Hu Zhiqiang

    2010-01-01

    For efficient and accurate modelling of arch dam-reservoir-foundation system a coupled Finite Element method (FEM) and Scaled Boundary Finite Element method (SBFEM) is developed. Both the dam-foundation interaction and the dam-reservoir interaction including the effect of reservoir boundary absorption are taken into account. The arch dam is modelled by FEM, while the reservoir domain and the unbounded foundation are modelled by SBFEM. In order to make comparison with the results available in the literature, the Morrow Point arch dam is selected for numerical analysis. The analyses are carried out in the frequency domain, and then the time-domain response of the dam-reservoir-foundation system is obtained by Inverse Fourier Transform.

  6. The effect of interaction between reservoir and multi-layer foundation on the dynamic response of a typical arch dam (Karaj dam) to ''p'' and ''s'' waves

    International Nuclear Information System (INIS)

    Mohammadi, Pedram Mosahebi; Noorzad, Asadollah; Rahimian, Mohammad; Omidvar, Babak

    2009-01-01

    Analysis of the dynamic response of a three-dimensional arch dam is conducted taking into account the effects of dam-reservoir and dam-foundation interactions. The Karaj arch-dam in Iran is considered as a case study. The dam, fluid, and foundation domains are treated as substructures and modeled with boundary elements. The foundation domain is assumed to be layered and infinite. This study focuses on the effect of geotechnical conditions on the dynamic response of the dam to harmonic P and S waves. Latest investigations show that the foundation flexibility leads to a reduction in the response through radiation of energy. In this research, it is shown that the effect of soil layers may cause amplification of response in some frequency ranges. This study emphasizes the necessity of comprehensive modeling for site effects to resolve such problems. Also, by identifying the bands of excitation frequencies to which the dam may be more sensitive, it helps in the selection of the most critical earthquake records (as random phenomena) to be used in time domain analysis. (author)

  7. Assessing fish assemblages similarity above and below a dam in a Neotropical reservoir with partial blockage

    Directory of Open Access Journals (Sweden)

    FG. Araújo

    Full Text Available Damming rivers disrupts the water flow and changes the ichthyofauna organisation. We investigated an impoundment with permanent connection and homogeneous environmental conditions between the zones above and below the dam. Temperature was comparatively higher during wet season irrespective of zone, and both zones had higher dissolved oxygen, conductivity and transparency in the dry season. A total of 1687 individuals comprising 27 species were collected in the downriver zone, while the reservoir had 879 individuals and 23 species. Each zone had different fish assemblage composition and structure, but assemblages were not explained by the examined environmental variables (r2 = 0.08; p = 0.307. Migratory species such as Pimelodus maculatus, Pimelodus fur, Leporinus copelandii and Prochilodus lineatus were the most affected, and probably are prevented to perform upriver migrations. On the other hand, lentic adapted species such as G. brasiliensis, Hoplias malabaricus and Hoplosternum littorale successfully colonised the reservoir. Therefore we conclude that the presence of the lateral hydrological connectivity alone does not guarantee the ecological connectivity since fish assemblage similarity differed between the two zones. Fish passage facilities should be monitored and managed to evaluate and improve their functionality.

  8. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1990 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Nelson, V. Lance

    1991-05-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout Oncorhynchus mvkiss smolts during the 1990 spring outmigration at migrant traps on the Snake River and the Clearwater River. Chinook salmon catch at the Snake River trap was similar to 1987 and 1988, drought years, but considerably less than 1989, a near normal flow year. Trapping effort was the same during the four years. Hatchery steelhead trout catch was similar to 1988 and 1989. Wild steelhead trout catch was greater than in any previous year. Chinook salmon catch at the Clearwater River trap was slightly less than in 1987 or 1988 and considerably higher than in 1989. Hatchery steelhead trout trap catch was 3 to 26 times greater than in previous years. Wild steelhead trout trap catch was 2 to 11 times greater than in previous years. Fish tagged with Passive Integrated Transponder (PIT) tags at the Snake River trap were recovered at the three dams with PIT tag detection systems (Lower Granite, Little Goose, and McNary dams). Cumulative recovery at the three dams for fish marked at the Snake River trap was 64.4% for chinook salmon, 83.1% for hatchery steelhead trout, and 79.0% for wild steelhead trout. Cumulative recovery at the three dams for fish PIT-tagged at the Clearwater River trap was 54.6% for chinook salmon, 77.6% for hatchery steelhead trout, and 70.4% for wild steelhead trout. Travel time (days) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout, marked at the head of the reservoir, was affected by discharge. Statistical analysis showed that a two-fold increase in discharge increased migration rate by 2.2 times for PIT-tagged chinook salmon released from the Snake River trap and 1.8 times for chinook salmon released from the Clearwater River trap. A two-fold increase in discharge increased migration rate by 3.1 times for PIT-tagged hatchery steelhead trout released from the Snake River trap

  9. Displacement response of a concrete arch dam to seasonal temperature fluctuations and reservoir level rise during the first filling period: evidence from geodetic data

    OpenAIRE

    Cemal Ozer Yigit; Salih Alcay; Ayhan Ceylan

    2016-01-01

    The present study evaluates the dynamic behaviour of the Ermenek Dam, the second highest dam in Turkey, based on conventional geodetic measurements and Finite Element Model (FEM) analyses during its first filling period. In total, eight periods of measured deformation are considered from the end of construction until the reservoir reached its full capacity. The displacement response of the dam to the reservoir level and to seasonal temperature variations is examined in detail. Time series of ...

  10. Billy Shaw Dam and Reservoir : Environmental Assessment and Finding of No Significant Impacts.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Shoshone-Paiute Tribes of the Duck Valley Reservation, Nevada.

    1997-03-01

    This notice announces BPA`s decision to fund the construction, operation, and maintenance of the Billy Shaw Dam and Reservoir on the Duck Valley Reservation. This project is part of a continuing effort to address system-wide fish and wildlife losses caused by the development of the hydropower system in the Columbia River Basin. BPA has prepared an Environmental Assessment (EA) evaluating the potential environmental impacts of the proposed project. Based on the analysis in the EA, BPA has determined that the Proposed Action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

  11. 3-D CFD simulations of hydrodynamics in the Sulejow dam reservoir

    Directory of Open Access Journals (Sweden)

    Ziemińska-Stolarska Aleksandra

    2015-12-01

    Full Text Available This paper reports the processes by which a single-phase 3-D CFD model of hydrodynamics in a 17-km-long dam reservoir was developed, verified and tested. A simplified VOF model of flow was elaborated to determine the effect of wind on hydrodynamics in the lake. A hexahedral mesh with over 17 million elements and a k-ω SST turbulence model were defined for single-phase simulations in steady-state conditions. The model was verified on the basis of the extensive flow measurements (StreamPro ADCP, USA. Excellent agreement (average error of less than 10% between computed and measured velocity profiles was found. The simulation results proved a strong effect of wind on hydrodynamics in the lake, especially on the development of the water circulation pattern in the lacustrine zone.

  12. Billy Shaw Dam and Reservoir: Environmental assessment and finding of no significant impacts

    International Nuclear Information System (INIS)

    1997-03-01

    This notice announces BPA's decision to fund the construction, operation, and maintenance of the Billy Shaw Dam and Reservoir on the Duck Valley Reservation. This project is part of a continuing effort to address system-wide fish and wildlife losses caused by the development of the hydropower system in the Columbia River Basin. BPA has prepared an Environmental Assessment (EA) evaluating the potential environmental impacts of the proposed project. Based on the analysis in the EA, BPA has determined that the Proposed Action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI

  13. Landslide-Generated Waves in a Dam Reservoir: The Effects of Landslide Rheology and Initial Submergence

    Science.gov (United States)

    Yavari Ramsheh, S.; Ataie-Ashtiani, B.

    2017-12-01

    Recent studies revealed that landslide-generated waves (LGWs) impose the largest tsunami hazard to our shorelines although earthquake-generated waves (EGWs) occur more often. Also, EGWs are commonly followed by a large number of landslide hazards. Dam reservoirs are more vulnerable to landslide events due to being located in mountainous areas. Accurate estimation of such hazards and their destructive consequences help authorities to reduce their risks by constructive measures. In this regard, a two-layer two-phase Coulomb mixture flow (2LCMFlow) model is applied to investigate the effects of landslide characteristics on LGWs for a real-sized simplification of the Maku dam reservoir, located in the North of Iran. A sensitivity analysis is performed on the role of landslide rheological and constitutive parameters and its initial submergence in LGW characteristics and formation patterns. The numerical results show that for a subaerial (SAL), a semi-submerged (SSL), and a submarine landslide (SML) with the same initial geometry, the SSLs can create the largest wave crest, up to 60% larger than SALs, for dense material. However, SMLs generally create the largest wave troughs and SALs travel the maximum runout distances beneath the water. Regarding the two-phase (solid-liquid) nature of the landslide, when interestial water is isolated from the water layer along the water/landslide interface, a LGW with up to 30% higher wave crest can be created. In this condition, increasing the pore water pressure within the granular layer results in up to 35% higher wave trough and 40% lower wave crest at the same time. These results signify the importance of appropriate description of two-phase nature and rheological behavior of landslides in accurate estimation of LGWs which demands further numerical, physical, and field studies about such phenomena.

  14. Displacement response of a concrete arch dam to seasonal temperature fluctuations and reservoir level rise during the first filling period: evidence from geodetic data

    Directory of Open Access Journals (Sweden)

    Cemal Ozer Yigit

    2016-07-01

    Full Text Available The present study evaluates the dynamic behaviour of the Ermenek Dam, the second highest dam in Turkey, based on conventional geodetic measurements and Finite Element Model (FEM analyses during its first filling period. In total, eight periods of measured deformation are considered from the end of construction until the reservoir reached its full capacity. The displacement response of the dam to the reservoir level and to seasonal temperature variations is examined in detail. Time series of apparent total displacements at the middle of the crest of the dam exhibits periodicity and linear trends. Correlation analysis revealed that periodic and linear displacement responses of the dam are related to variations of seasonal temperature and linearly increased reservoir level, respectively, indicating a relation between temperature, water load and dam deformation. It is also concluded that measured deformations based on geodetic data show good agreement with the predicted deformation obtained by the FEM analysis.

  15. Smolt Monitoring at the Head of Granite Reservoir and Lower Granite Dam, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Nelson, V. Lance

    1990-04-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1989 spring outmigration at a migrant trap on the Snake River and the Clearwater River. Chinook salmon catch at the Snake River trap was much higher in 1989 than in either of the 1987 or 1988 drought years. The 1989 Snake River trap catch was similar to 1986. Effort was the same during the four years. Steelhead trout catch was greater than in any previous year. Chinook salmon and steelhead trout catch at the Clearwater River trap was similar to 1986, even though effort was greatly reduced in 1989 due to high runoff during most of the season. The 1989 Clearwater River trap catch was lower than in the two drought years (1987 and 1988) and was due to the minimal number of days the trap was operated. Fish tagged with Passive Interrogated Transponder (PIT) tags at the Snake River trap were recovered at the three dams (Lower Granite, Little Goose, and McNary) with PIT tag detection systems. Travel time (days) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout, marked at the head of the reservoir, was affected by discharge. Statistical analysis showed that as discharge increased from 40 kcfs to 80 kcfs, chinook salmon travel time decreased three-fold and steelhead trout travel time decreased two-fold. 11 refs., 8 figs., 17 tabs.

  16. Identifying sources of groundwater recharge in the Merguellil basin (Tunisia) using isotopic methods: implication of dam reservoir water accounting

    Science.gov (United States)

    Dassi, Lassaad; Zouari, Kamel; Faye, Serigne

    2005-11-01

    Thirty-two groundwater samples collected from the Merguellil Wadi basin (central Tunisia) complemented by the Haouareb dam reservoir water samples have been isotopically analysed in order to investigate the implication of the reservoir water to recharging the aquifer, and also to infer the sources, relative ages and mixing processes in the aquifer system. Plots of the stable isotopes data against the local meteoric lines of Tunis-Carthage and Sfax indicate a strong implication of the dam water noticeable up to a distance of 6-7 km. A contribution as much as 80% of the pumped water has been evidenced using isotopic mass balance. In addition, poorly distinguished water clusters in the stable isotope plots, but clearly identified in the diagrams δ18O versus 3H and 3H versus 14C, indicate various water types related to sources and timing of recharge. The isotopic signatures of the dam accounting water, the “old” and “native” recharged waters, have been evidenced in relation to their geographical distribution and also to their radiogenic isotopes (3H and 14C) contents. In the south-western part of the aquifer, mixing process occurs between the dam reservoir water and both the “old” and “native” water components.

  17. Survival estimates for the passage of juvenile salmonids through Snake River dams and reservoirs, 1996. Annual report

    International Nuclear Information System (INIS)

    Smith, S.G.; Muir, W.D.; Hockersmith, E.E.; Achord, S.; Eppard, M.B.; Ruehle, T.E.; Williams, J.G.

    1998-02-01

    In 1996, the National Marine Fisheries Service and the University of Washington completed the fourth year of a multi-year study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake River. Actively migrating smolts were collected near the head of Lower Granite Reservoir and at Lower Granite Dam, tagged with passive integrated transponder (PIT) tags, and released to continue their downstream migration. Individual smolts were subsequently detected at PIT-tag detection facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day and Bonneville Dams. Survival estimates were calculated using the Single-Release (SR) and Paired-Release (PR) Models. Timing of releases of tagged hatchery steelhead (O. mykiss) from the head of Lower Granite Reservoir and yearling chinook salmon (O. tshawytscha) from Lower Granite Dam in 1996 spanned the major portion of their juvenile migrations. Specific research objectives in 1996 were to (1) estimate reach and project survival in the Snake River using the Single-Release and Paired-Release Models throughout the yearling chinook salmon and steelhead migrations, (2) evaluate the performance of the survival-estimation models under prevailing operational and environmental conditions in the Snake River, and (3) synthesize results from the 4 years of the study to investigate relationships between survival probabilities, travel times, and environmental factors such as flow levels and water temperature

  18. Survival Estimates for the Passage of Juvenile Salmonids through Snake River Dams and Reservoirs, 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steven G.

    1998-02-01

    In 1996, the National Marine Fisheries Service and the University of Washington completed the fourth year of a multi-year study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake River. Actively migrating smolts were collected near the head of Lower Granite Reservoir and at Lower Granite Dam, tagged with passive integrated transponder (PIT) tags, and released to continue their downstream migration. Individual smolts were subsequently detected at PIT-tag detection facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day and Bonneville Dams. Survival estimates were calculated using the Single-Release (SR) and Paired-Release (PR) Models. Timing of releases of tagged hatchery steelhead (O. mykiss) from the head of Lower Granite Reservoir and yearling chinook salmon (O. tshawytscha) from Lower Granite Dam in 1996 spanned the major portion of their juvenile migrations. Specific research objectives in 1996 were to (1) estimate reach and project survival in the Snake River using the Single-Release and Paired-Release Models throughout the yearling chinook salmon and steelhead migrations, (2) evaluate the performance of the survival-estimation models under prevailing operational and environmental conditions in the Snake River, and (3) synthesize results from the 4 years of the study to investigate relationships between survival probabilities, travel times, and environmental factors such as flow levels and water temperature.

  19. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

    2009-02-18

    began on March 6 and were terminated on May 17 due to high flows. There were two days when the trap was taken out of service because of mechanical failure. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for passive integrated transponder (PIT) tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2005 data detected a relation between migration rate and discharge for hatchery Chinook but was unable to detect a relation for wild Chinook. The inability to detect a migration rate discharge relation for wild Chinook salmon was caused by a lack of data. For hatchery Chinook salmon there was a 1.8-fold increase in migration rate between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.2-fold and a 2.2-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2005 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon, hatchery steelhead trout, and wild steelhead trout. Migration rate increased 4.2-fold for hatchery Chinook salmon, 2.9-fold for wild Chinook salmon and 2.5-fold for hatchery steelhead, and 1.7-fold for wild steelhead as discharge increased between 50 kcfs and 100 kcfs. Fish tagged with PIT tags at the Snake River and Salmon River traps were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at Lower Granite Dam in 2001

  20. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

    2009-02-18

    /d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2004 data detected a relation between migration rate and discharge for wild Chinook salmon but was unable to detect a relation for hatchery Chinook. The inability to detect a migration rate discharge relation for hatchery Chinook salmon was caused by age-0 fall Chinook being mixed in with the age 1 Chinook. Age-0 fall Chinook migrate much slower than age-1 Chinook, which would confuse the ability to detect the migration rate discharge relation. When several groups, which consisted of significant numbers of age-0 Chinook salmon, were removed from the analysis a relation was detected. For hatchery and wild Chinook salmon there was a 2.8-fold and a 2.4-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.3-fold and a 2.0-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2004 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon and hatchery steelhead trout. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 7.0-fold for hatchery Chinook salmon, 4.7-fold for wild Chinook salmon and 3.8-fold for hatchery steelhead as discharge increased between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River and Salmon River traps were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower

  1. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

    2009-02-18

    increase in hatchery Chinook catch in 2002 was due to a 3.1 fold increase in hatchery production and differences in flow between years. Changes in hatchery and wild steelhead catch are probably due to differences in flow between years. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2002 data detected a relation between migration rate and discharge for hatchery and wild Chinook salmon. For hatchery and wild Chinook salmon there was a 4.7-fold and a 3.7-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 1.8-fold and a 1.7-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2002 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for wild Chinook salmon and hatchery steelhead trout. The analysis was unable to detect a relation between migration rate and discharge for hatchery Chinook salmon. The lack of a detectable relation was probably a result of the migration rate data being spread over a very narrow range of discharge. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 4.3-fold for wild Chinook salmon and 2.2-fold for hatchery steelhead between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth

  2. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

    2009-02-18

    flows. There were zero days when the trap was out of operation due to high flow or debris. The decrease in hatchery Chinook catch in 2003 was partially due to differences in flow between years because there was a 5.9% increase in hatchery production in the Salmon River drainage in 2003. The decrease in hatchery steelhead catch may be partially due to a 13% decrease in hatchery production in the Salmon River drainage in 2003. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2003 data detected a relation between migration rate and discharge for wild Chinook salmon but was unable to detect a relation for hatchery Chinook. The inability to detect a migration rate discharge relation for hatchery Chinook was probably caused by age 0 fall Chinook being mixed in with the age 1 Chinook. Age 0 fall Chinook migrate much slower than age 1 Chinook, which would confuse the ability to detect the migration rate discharge relation. For wild Chinook salmon there was a 1.4-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 1.7-fold and a 1.9-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2003 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon and hatchery steelhead trout. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 14-fold for hatchery Chinook salmon, 8.3-fold for wild

  3. Survival Estimates for the Passage of Juvenile Salmonids through Snake River Dams and Reservoirs, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Muir, William D.

    1995-02-01

    In 1994, the National Marine Fisheries Service and the University of Washington completed the second year of a multi-year study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through the dams and reservoirs of the Snake River. Actively migrating smolts were collected at selected locations above, at, and below Lower Granite Dam, tagged with passive integrated transponder (PIT) tags, and released to continue their downstream migration. Survival estimates were calculated using the Single-Release, Modified Single-Release, and Paired-Release Models.

  4. Influence of Large Reservoir Operation on Water-Levels and Flows in Reaches below Dam: Case Study of the Three Gorges Reservoir.

    Science.gov (United States)

    Yang, Yunping; Zhang, Mingjin; Zhu, Lingling; Liu, Wanli; Han, Jianqiao; Yang, Yanhua

    2017-11-15

    The Three Gorges Project (TGP) is the world's largest water conservation project. The post-construction low-flow water level at the same discharge below the dam has declined, but there remains disagreement over whether the flood level has increased. Measured water levels and upstream and downstream flow data from 1955 to 2016 show that, post-construction: (1) the low-flow water level at the same discharge decreased, and the lowest water level increased due to dry-season reservoir discharge; (2) the decline of the low-flow water level below the dam was less than the undercutting value of the flow channel of the river; (3) the flood level at the same discharge below the dam was slightly elevated, although peak water levels decreased; (4) flood characteristics changed from a high discharge-high flood level to a medium discharge - high flood level; and (5) an expected decline in the flood level downstream was not observed. Channel erosion and the adjustment of rivers and lakes tend to reduce flood levels, while river bed coarsening, vegetation, and human activities downstream increase the flood level. Although the flood control benefits of the Three Gorges Dam (TGD) and the upstream reservoirs are obvious, increased elevation of the downstream flood level remains a concern.

  5. Estimating the Optimal Capacity for Reservoir Dam based on Reliability Level for Meeting Demands

    Directory of Open Access Journals (Sweden)

    Mehrdad Taghian

    2017-02-01

    Full Text Available Introduction: One of the practical and classic problems in the water resource studies is estimation of the optimal reservoir capacity to satisfy demands. However, full supplying demands for total periods need a very high dam to supply demands during severe drought conditions. That means a major part of reservoir capacity and costs is only usable for a short period of the reservoir lifetime, which would be unjustified in economic analysis. Thus, in the proposed method and model, the full meeting demand is only possible for a percent time of the statistical period that is according to reliability constraint. In the general methods, although this concept apparently seems simple, there is a necessity to add binary variables for meeting or not meeting demands in the linear programming model structures. Thus, with many binary variables, solving the problem will be time consuming and difficult. Another way to solve the problem is the application of the yield model. This model includes some simpler assumptions and that is so difficult to consider details of the water resource system. The applicationof evolutionary algorithms, for the problems have many constraints, is also very complicated. Therefore, this study pursues another solution. Materials and Methods: In this study, for development and improvement the usual methods, instead of mix integer linear programming (MILP and the above methods, a simulation model including flow network linear programming is used coupled with an interface manual code in Matlab to account the reliability based on output file of the simulation model. The acre reservoir simulation program (ARSP has been utilized as a simulation model. A major advantage of the ARSP is its inherent flexibility in defining the operating policies through a penalty structure specified by the user. The ARSP utilizes network flow optimization techniques to handle a subset of general linear programming (LP problems for individual time intervals

  6. Bursting Events in Pressure Flushing with Expanding Bottom Outlet Channel within Dam Reservoir

    Directory of Open Access Journals (Sweden)

    soheila Tofighi

    2017-01-01

    Full Text Available Introduction: Currently, large dams in the world, due to the high amount of sediments in the reservoir, especially around the intake, have operational problems. One of the solutions for this problem is pressure flushing. In this type of flushing, a mixture of water and sediment is removed from bottom outlets form dam reservoir and a funnel shaped crater is created in the vicinity of the outlet opening. In laboratory experiments carried out in this study, pressure flushing with the expansion of bottom outlet within the reservoir and its statistical analysis of bursting events were investigated. The structure of the turbulent flow is not fully understood due to their complexity and random nature. Klein et al. Introduced the turbulence bursting in this kind of flow and Nezo and Nakagora suggested that the events resulting from turbulence bursting has a significant effect of transferring the sediment particles. Materials and Methods: For the purposes of this study, the experiments were conducted with a physical model with 7m length, 1.4m width, and 1.5m height, consisting of three parts namely the inlet of the model, the main reservoir, and settling basin. The main reservoir of the model was 5m long and the sediments were placed within this part of the model. The sediment particles were non-cohesive silica with uniform size and with median diameter (d50 1.15mm and geometrics standard deviation (σg 1.37. Experiments carried out with different discharges and water depths above the bottom outlet in different expansion size of outlet channel in constant sediment level of 20cm above the center of the outlet channel. The model was slowly filled with water until the water surface elevation reached to a desired level. The bottom outlet was manually opened, after a while sedimentwere discharged with the water flow in very high concentrations through the outlet channel (sudden discharge and a funnel shaped crater was formed in front of it. After the run of

  7. National Dam Safety Program. Hillburn Reservoir Dam (Inventory Number NY 974), Passaic River Basin, Rockland County, New York. Phase I Inspection Report.

    Science.gov (United States)

    1981-06-30

    Ieupcoemar an Identify by block rnumber) Natna S fet eyyrora Hilburn ’Reservoir*Dam Vioal n s aetyiPgr- Rockland County Visul Ispecion saic River Basin...o the 1dan a3 bit the report dae Information and F~nlj is ara based CKI .pIr:ial .0 inspecti&i of the darn ’ii:’ t*,., performing o-:Zizaton...196A-934 PASSAIC RIVER BASIN ROCKLAND COUNTY, NEW YORK TABLE OF CONTENTS PAGE NO. ASSESSMENT OVERVIEW PHOTOGRAPH PROJECT INFORMATION 1 1.1 GENERAL 1

  8. Analysis and interpretation of the structural behaviour of Alqueva dam during the first filling of the reservoir

    OpenAIRE

    Tavares de Castro, A.; Batista, A. L.; Serra, C.

    2011-01-01

    This paper presents the most relevant monitoring data and the interpretation of the structural behaviour of Alqueva dam during the first filling of the reservoir, which took place between February 2002 and January 2010. The safety control and the interpretation of the dam’s behaviour make use of the data provided by the monitoring system. In particular, the interpretation of the structural behaviour is based on: planimetric (radial and tangential) displacements, measured through plumb-line...

  9. Survival estimates for the passage of juvenile chinook salmon through Snake River dams and reservoirs. Annual report 1993

    International Nuclear Information System (INIS)

    Iwamoto, R.N.; Muir, W.D.; Sandford, B.P.; McIntyre, K.W.; Frost, D.A.; Williams, J.G.; Smith, S.G.; Skalski, J.R.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers

  10. Survival Estimates for the Passage of Juvenile Chinook Salmon through Snake River Dams and Reservoirs, 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Robert N.; Sandford, Benjamin P.; McIntyre, Kenneth W.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers.

  11. Diagenetic setting, dolomitization and reservoir characterization of Late Cretaceous Kawagarh Formation, Khanpur Dam section, Hazara, Pakistan

    Directory of Open Access Journals (Sweden)

    Maqsood Ur Rahman

    2016-12-01

    Full Text Available The Kawagarh Formation is well exposed in Hazara basin in different sections. Due to deep depositional settings, the Kawagarh Formation is least appealing to geologists to investigate it as a hydrocarbon reservoir. In the present study, the diagenetic settings of Kawagarh Formation were chronologically studied to interpret its diagenetic history and the effect of different diagenetic phases on the reservoir potential. The dolomitization is also studied in depth to use it as a key for its reservoir potential. Kawagarh Formation is sampled at Khanpur Dam Section for porosity analysis. The samples were taken from limestone and dolomite facies randomly. The dolomites are in the form of veins and well developed thick size beds. These dolomites are secondary in nature which is hosted by fractures and joints of limestone, which affect about 25% of limestone facies. At outcrop scale different types of dolomites are recognised on the basis of color and texture, yellowish fine-grained, brown blackish coarse-grained in the top portion and saddle dolomites. In petrographic study partial and complete dolomitization are observed. On the basis of crystal sizes and geometry different types of dolomites are recognized which are; (1 fine crystalline planar-euhedral dolomite, (2 medium crystalline planar-subhedral dolomite, (3 medium crystalline non-planar-anhedral dolomite, (4 coarse crystalline planar-subhedral dolomite, (5 coarse crystalline, non-planar-anhedral dolomite and (6 saddle dolomites (SD1. In petrographic study, high inclusions and disturbance are observed at the surfaces of dolomitic rhombs which indicate low Mg replacement or dedolomitization phenomena. On image J porosity analysis, the porosity is found of limestone and dolomitic samples. In limestone facies which is mostly, non-laminated mudstone has very low up to 2 to 3% in the form of vugs and fractures. In dolomitic facies, the porosity is ranging from 5% to 14%. In most of the dolomitic

  12. SILTATION AND EROSION PROCESSES ON A TRIBUTARY OF LAKE ITAIPU DUE A DAM RESERVOIR

    Directory of Open Access Journals (Sweden)

    Cristiano Poleto

    2012-12-01

    creating an imbalance between the small amount of sediment transported after the hydroelectric and flow transport capacity. There are two cases occurring in a dam: 1 the dam upstream has a reduction of velocity and it start a process of sedimentation that will accelerate its siltation and reducing its useful life, 2 dam downstream has water velocity again and then initiate erosion process due the lack of sediments in the liquid mass. It can be concluded that changes of use and occupation of land in the watershed generate increased occurrence of peak flow and sediment transport, but the inadequate management of the area (with removal of riparian vegetation and lack of energy sinks in outputs of drainage systems potentiates the increasing the instability of water bodies morphology. In case of presence of reservoirs, the alterations are worst because they create siltation and erosion process at the same river.

  13. Coordinate reduction for the seismic analysis of dam-foundation-reservoir systems with non-proportional damping

    International Nuclear Information System (INIS)

    Mehai, L.; Paultre, P.; Leger, P.

    1992-01-01

    In the design of dams to withstand seismic events, recent studies have shown that the dam-foundation and dam-reservoir interactions have a significant influence on the dynamic response of the dam. The hypothesis of proportional damping is not realistic for such structures, in which the mechanisms of energy dissipation present notable differences between their various components. A comparative study is presented of different methods of resolution of linear systems with non-proportional damping, using recent techniques of coordinate reduction. Parametric studies were conducted on a 2-dimensional finite element model of a concrete gravity dam-foundation system. The comparison focuses essentially on the numerical efficiency and precision in the calculation of dynamic parameters (displacements, accelerations, and internal stresses) and in the distribution of damping energy among the components of the system. The evaluation of the energy dissipated in the absorbing boundaries has indicated that the algorithms retained for reducing the coordinates in real and complex space conveniently model the conditions at the limits of the structure. The high degree of numerical stability and the efficiency of the interative procedure of Ibrahimbegovic and Wilson (1989), applied to systems with a large number of degrees of freedom, has been confirmed. 10 refs., 8 figs

  14. Evaluation of uncertainty in dam-break analysis resulting from dynamic representation of a reservoir; Evaluation de l'incertitude due au modele de representation du reservoir dans les analyses de rupture de barrage

    Energy Technology Data Exchange (ETDEWEB)

    Tchamen, G.W.; Gaucher, J. [Hydro-Quebec Production, Montreal, PQ (Canada). Direction Barrage et Environnement, Unite Barrages et Hydraulique

    2010-08-15

    Owners and operators of high capacity dams in Quebec have a legal obligation to conduct dam break analysis for each of their dams in order to ensure public safety. This paper described traditional hydraulic methodologies and models used to perform dam break analyses. In particular, it examined the influence of the reservoir drawdown submodel on the numerical results of a dam break analysis. Numerical techniques from the field of fluid mechanics and aerodynamics have provided the basis for developing effective hydrodynamic codes that reduce the level of uncertainties associated with dam-break analysis. A static representation that considers the storage curve was compared with a dynamic representation based on Saint-Venant equations and the real bathymetry of the reservoir. The comparison was based on breach of reservoir, maximum water level, flooded area, and wave arrival time in the valley downstream. The study showed that the greatest difference in attained water level was in the vicinity of the dam, and the difference decreased as the distance from the reservoir increased. The analysis showed that the static representation overestimated the maximum depth and inundated area by as much as 20 percent. This overestimation can be reduced by 30 to 40 percent by using dynamic representation. A dynamic model based on a synthetic trapezoidal reconstruction of the storage curve was used, given the lack of bathymetric data for the reservoir. It was concluded that this model can significantly reduce the uncertainty associated with the static model. 7 refs., 9 tabs., 7 figs.

  15. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Brimmer, Arnold F.

    2000-04-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka, during the 1998 spring outmigration at migrant traps on the Snake and Salmon rivers. All hatchery chinook salmon released above Lower Granite Dam 19 1998 were marked with a fin-clip. Total annual hatchery chinook salmon catch at the Snake River trap was 226% of the 1997 number and 110% of the 1996 catch. The wild chinook catch was 120% of the 1997 catch but was only 93% of 1996. Hatchery steelhead trout catch was 501% of 1997 numbers but only 90% of the 1996 numbers. Wild steelhead trout catch was 569% of 1997 and 125% of the 1996 numbers. The Snake River trap collected 106 age-0 chinook salmon. During 1998, for the first time, the Snake River trap captured a significant number of hatchery sockeye salmon (1,552) and hatchery coho salmon O. kisutch (166). Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 8 and were terminated for the season due to high flows on June 12. The trap was out of operation for 34 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 476% and wild chinook salmon catch was 137% of 1997 numbers and 175% and 82% of 1996 catch, respectively. The hatchery steelhead trout collection in 1998 was 96% of the 1997 catch and 13% of the 1996 numbers. Wild steelhead trout collection in 1998 was 170% of the 1997 catch and 37% of the 1996 numbers. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout, marked at the head of the reservoir were affected by discharge. For fish tagged at the Snake River trap, statistical analysis of 1998 detected a significant relation between migration rate and discharge. For hatchery and

  16. Smolt monitoring at the head of Lower Granite Reservoir and Lower Granite Dam, 1998.; ANNUAL

    International Nuclear Information System (INIS)

    2000-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka, during the 1998 spring outmigration at migrant traps on the Snake and Salmon rivers. All hatchery chinook salmon released above Lower Granite Dam 19 1998 were marked with a fin-clip. Total annual hatchery chinook salmon catch at the Snake River trap was 226% of the 1997 number and 110% of the 1996 catch. The wild chinook catch was 120% of the 1997 catch but was only 93% of 1996. Hatchery steelhead trout catch was 501% of 1997 numbers but only 90% of the 1996 numbers. Wild steelhead trout catch was 569% of 1997 and 125% of the 1996 numbers. The Snake River trap collected 106 age-0 chinook salmon. During 1998, for the first time, the Snake River trap captured a significant number of hatchery sockeye salmon (1,552) and hatchery coho salmon O. kisutch (166). Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 8 and were terminated for the season due to high flows on June 12. The trap was out of operation for 34 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 476% and wild chinook salmon catch was 137% of 1997 numbers and 175% and 82% of 1996 catch, respectively. The hatchery steelhead trout collection in 1998 was 96% of the 1997 catch and 13% of the 1996 numbers. Wild steelhead trout collection in 1998 was 170% of the 1997 catch and 37% of the 1996 numbers. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout, marked at the head of the reservoir were affected by discharge. For fish tagged at the Snake River trap, statistical analysis of 1998 detected a significant relation between migration rate and discharge. For hatchery and

  17. Water Control Manual: Sepulveda Dam and Reservoir, Los Angeles River, California.

    Science.gov (United States)

    1989-05-01

    Generally the quality of urban base flow has been so poor that these facilities are 4-7 rarely used. A downstream reach with cobblestone invert near...by the Los Angeles County Drainage Area Review (see table 1-01; Draft: Los Angeles County Drainage Area Review: Part I, Hydrology Report). b. Rubber ...Dam. The City of Los Angeles Department of Water and Power construct a rubber dam approximately 10 miles below Sepulveda Dam for diversion of water into

  18. What about dams and water reservoirs - to build or to demolish them?

    International Nuclear Information System (INIS)

    Paskalov, Trifun

    2001-01-01

    The paper deals with the problem arising from the action taken by the World Commission of Dams (WCD) to abandon any activity of planning, designing, building and maintaining large dams stipulating some problems from totally negativistic point of view. Under the umbrella of 'Cost of Dams' they are pointing out the following problems: 1. Millions of people have been displaced from their homes each year from large dams. Many were not resettled and those that were rarely had their livelihoods restored. Compensation has in many cases been either non-existent or inadequate. 2. Impact on communities downstream was often significant and was not addressed adequately in planning and design of large dams. 3. Large dams have had extensive impacts on rivers, watershed and aquatic ecosystems and efforts to mitigate these have met with limited success. 4. While there was variability from one project to next, a considerable portion of large dams have fallen short of physical and economic targets with a high tendency to cost overruns. From the other side, to the above provocative questions the International Commission of Large Dams (ICOLD) did not stayed indifferent but took an active action stipulating all the benefits, as well as the concerns about dams from a general point of view. These steps of ICOLD and the views of the writer of this paper are discussed in the following text. (Original)

  19. Impact of damming on the Chironomidae of the upper zone of a tropical run-of-the-river reservoir

    Directory of Open Access Journals (Sweden)

    A. L. Brandimarte

    Full Text Available Abstract We examined the effects of the Mogi-Guaçu river damming (São Paulo State, Brazil on the Chironomidae fauna. Pre, during, and post-filling sampling was carried out in the main channel and margins of one site in the upper zone of the reservoir, using a modified Petersen grab (325 cm2. We evaluated the total, subfamily, and tribe densities and also their relative abundance. Analysis of genera included densities, relative abundance, richness, and dominance. The Rosso’s ecological value index (EVI determined the ecological importance of each genus. There was a tendency of decrease of the total Chironomidae density, increase in the percentage of Chironomini, and decrease in densities and percentages of Orthocladiinae and Tanytarsini. These changes in percentage were respectively related to Polypedilum, Lopescladius, and Rheotanytarsus, the genera with the highest EVI values. After-filling richness was lower in the margins and dominance of genera did not change significantly. Chironomidae in the margins was more sensitive to damming than in the main channel. This difference in sensibility sustains the use of Chironomidae as bioindicators. Damming impact was indicated by the reduction of both genera richness in the margins and relative abundance of groups typical of faster waters. The results have highlighted the need for multi-habitat analysis combined with a before-after sampling approach in the environmental impact studies concerning the damming impact on the benthic fauna.

  20. Preliminary Three-Dimensional Simulation of Sediment and Cesium Transport in the Ogi Dam Reservoir using FLESCOT – Task 6, Subtask 2

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Kurikami, Hiroshi; Yokuda, Satoru T.

    2014-03-28

    After the accident at the Fukushima Daiichi Nuclear Power Plant in March 2011, the Japan Atomic Energy Agency and the Pacific Northwest National Laboratory initiated a collaborative project on environmental restoration. In October 2013, the collaborative team started a task of three-dimensional modeling of sediment and cesium transport in the Fukushima environment using the FLESCOT (Flow, Energy, Salinity, Sediment Contaminant Transport) code. As the first trial, we applied it to the Ogi Dam Reservoir that is one of the reservoirs in the Japan Atomic Energy Agency’s (JAEA’s) investigation project. Three simulation cases under the following different temperature conditions were studied: • incoming rivers and the Ogi Dam Reservoir have the same water temperature • incoming rivers have lower water temperature than that of the reservoir • incoming rivers have higher water temperature than that of the reservoir. The preliminary simulations suggest that seasonal temperature changes influence the sediment and cesium transport. The preliminary results showed the following: • Suspended sand, and cesium adsorbed by sand, coming into the reservoirs from upstream rivers is deposited near the reservoir entrance. • Suspended silt, and cesium adsorbed by silt, is deposited farther in the reservoir. • Suspended clay, and cesium adsorbed by clay, travels the farthest into the reservoir. With sufficient time, the dissolved cesium reaches the downstream end of the reservoir. This preliminary modeling also suggests the possibility of a suitable dam operation to control the cesium migration farther downstream from the dam. JAEA has been sampling in the Ogi Dam Reservoir, but these data were not yet available for the current model calibration and validation for this reservoir. Nonetheless these preliminary FLESCOT modeling results were qualitatively valid and confirmed the applicability of the FLESCOT code to the Ogi Dam Reservoir, and in general to other reservoirs in

  1. Environmental legacies in the catchment area for water source. Dam and bridges of Kawachi reservoir; Suigenchi no kankyo isan. Kawachi chosuichi no dam to kyoryo

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Y. [Saitama University, Saitama (Japan). Faculty of Engineering

    1998-05-15

    Kawachi Resvoir was completed in 1927 as a water source exclusively for Yawata Iron Works. A group of bridges called the five Kawachi bridges on the road making a round along the lake shore is one of the scenic points. The five bridges have all different structural shapes, such as a three-hinge steel frame concrete rib arch bridge, combination of natural rough stone arch bridges of single span and three spans, an ashlar made bridge, and a lens-type steel truss structured bridge. The dam is a gravity type concrete dam, covered with stones working also as a framework. The main body of the embankment is built with as-cut stones. The surface of the embankment is covered with blackish ashlars, which give dull and heavy impression, but the softness of the shape relieves the feeling. Water led from the intake tower in the center of the embankment via the valve room forms a big fountain to a height of 30 meters for deaeration purpose to diffuse odor. Thus, the water source area is inherited as environmental resources transcending the generations. A bicycle road rounding the lake was built in a recent year. Developing reservoirs and national land making the best use of environment requires thought with depth

  2. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Faulkner, James R.; Smith, Steven G.; Muir, William D. [Northwest Fisheries Science Center

    2009-06-23

    In 2008, the National Marine Fisheries Service completed the sixteenth year of a study to estimate survival and travel time of juvenile salmonids Oncorhynchus spp. passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder (PIT) tags. We PIT tagged and released a total of 18,565 hatchery steelhead O. mykiss, 15,991 wild steelhead, and 9,714 wild yearling Chinook salmon O. tshawytscha at Lower Granite Dam in the Snake River. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and at sites within the hydropower system in both the Snake and Columbia Rivers. These included 122,061 yearling Chinook salmon tagged at Lower Granite Dam for evaluation of latent mortality related to passage through Snake River dams. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, Ice Harbor, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the single-release model). Primary research objectives in 2008 were to: (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon and steelhead, (2) evaluate relationships between survival estimates and migration conditions, and (3) evaluate the survival estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2008 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Additional details on the methodology and statistical models used are provided in previous reports cited here. Survival

  3. Non-Destructive Inspection Lab (NDI)

    Data.gov (United States)

    Federal Laboratory Consortium — The NDI specializes in applied research, development and performance of nondestructive inspection procedures (flourescent penetrant, magnetic particle, ultrasonics,...

  4. Dynamic Response of Dam-Reservoir Systems: Review and a Semi-Analytical Proposal

    Directory of Open Access Journals (Sweden)

    Paulo Marcelo Vieira Ribeiro

    Full Text Available Abstract This paper presents a review of current techniques employed for dynamic analysis of concrete gravity dams under seismic action. Traditional procedures applied in design bureaus, such as the Pseudo-Static method, often neglect structural dynamic properties, as well as ground amplification effects. A practical alternative arises with the Pseudo-Dynamic method, which considers a simplified spectrum response in the fundamental mode. The authors propose a self-contained development and detailed examples of this latter method, including a comparison with finite element models using transient response of fluid-structure systems. It is verified that application of the traditional procedure should be done carefully and limited to extremely rigid dams. On the other hand, the proposed development is straightforward and in agreement with finite element results for general cases where dam flexibility plays an important role.

  5. Dams: impacts on the species diversity; Impacts des reservoirs sur la biodiversite

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Domingos de [Quebec Univ., Montreal, PQ (Canada). Dept. de Sciences Biologiques, Inst. de Sciences de l`Environnement

    1996-12-31

    Always you change one ecosystem, you have impacts on the species diversity. The work try to show some impacts of dams for hydroelectric power generation. First of all the author analyses the impacts on the habitats and ecosystems. He considers the problems on a variety of species, since plants and animals that living on the border of the river until the fishes, birds, invertebrates and the mammals. The example of 3 dams, La Grande, Opinaca and Caniapiseau, on Quebec, Canada, are used to give support to the work 14 refs., 1 tab.

  6. National Dam Inspection Program. Long Run Reservoir Number I Dam (NDI Number PA-00882, DER Number 13-004), Delaware River Basin, Carbon County, Pennsylvania. Phase I Inspection Report,

    Science.gov (United States)

    1981-02-01

    adequate spillway capacity, 2. That the cracked spillway slab be repaired/ 3. That the downstream end of the spillway be protected from washouts during...embankment. The construction reports indicate that the trench was excavated to a depth varying from 5 to 12 feet into a red sandstone or shale. Fissured ...that the spillway deteriorated seriously in the 1930’s and that spillway walls and slab were repaired in 1941. The cement mortar slab showed

  7. Long-Term Changes in Sediment and Nutrient Delivery from Conowingo Dam to Chesapeake Bay: Effects of Reservoir Sedimentation.

    Science.gov (United States)

    Zhang, Qian; Hirsch, Robert M; Ball, William P

    2016-02-16

    Reduction of suspended sediment (SS), total phosphorus (TP), and total nitrogen is an important focus for Chesapeake Bay watershed management. The Susquehanna River, the bay's largest tributary, has drawn attention because SS loads from behind Conowingo Dam (near the river's mouth) have been rising dramatically. To better understand these changes, we evaluated histories of concentration and loading (1986-2013) using data from sites above and below Conowingo Reservoir. First, observed concentration-discharge relationships show that SS and TP concentrations at the reservoir inlet have declined under most discharges in recent decades, but without corresponding declines at the outlet, implying recently diminished reservoir trapping. Second, best estimates of mass balance suggest decreasing net deposition of SS and TP in recent decades over a wide range of discharges, with cumulative mass generally dominated by the 75∼99.5th percentile of daily Conowingo discharges. Finally, stationary models that better accommodate effects of riverflow variability also support the conclusion of diminished trapping of SS and TP under a range of discharges that includes those well below the literature-reported scour threshold. Overall, these findings suggest that decreased net deposition of SS and TP has occurred at subscour levels of discharge, which has significant implications for the Chesapeake Bay ecosystem.

  8. Effect of a dam on the optical properties of different-sized fractions of dissolved organic matter in a mid-subtropical drinking water source reservoir.

    Science.gov (United States)

    Sun, Qiyuan; Jiang, Juan; Zheng, Yuyi; Wang, Feifeng; Wu, Chunshan; Xie, Rong-Rong

    2017-11-15

    The presence of a dam on a river is believed to have a key role in affecting changes in the components of the chromophoric dissolved organic matter (CDOM) in reservoirs. However, questions remain about the mechanisms that control these changes. In this study, we used tangential ultrafiltration, fluorescence spectrum and phytoplankton cell density detection to explore the impacts of a dam on the CDOM components in the Shanzai Reservoir, a source of drinking water. The results demonstrated each CDOM size fraction comprised two main components, namely C1 (protein-like substance) and C2 (humic-like substance). The C1 content had a higher value in areas with slow flow than in the normal river channel, while the C2 contents were generally stable in the flow direction. The topography of the reservoir site affected the structure of the CDOM components based on changes in the hydraulic conditions caused by the dam. The variations in the CDOM components, hydraulic parameters and fluorescence indices in the river flow direction indicated that the contribution of the phytoplankton to the CDOM content increased as the distance to the dam decreased, phytoplankton metabolism enhanced C1 content of the 1-10kDa molecular weights range fraction. Further, the contributions of different phytoplankton biomass to C1 proved that the dam changed the hydraulic conditions, had secondary effects on the metabolism of the phytoplankton, and resulted in changes in the structure of the CDOM components. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Phytoplankton of the Boguchany reservoir in 2016-2017 at the stations in front of the hydroelectric dam

    Directory of Open Access Journals (Sweden)

    M. V. Usoltseva

    2017-12-01

    Full Text Available The species structure and seasonal dynamics of the phytoplankton of the dam area of the Boguchany Reservoir were studied in the first years of operation of the hydroelectric power station in 2016-2017. Two peaks of algal bloom are noted in spring and summer. Mass species were: diatom Stephanodiscus minutulus and dinophyte Gymnodinium baicalense in spring; diatoms Asterionella formosa and Fragilaria crotonensis, blue-green Dolichospermum lemmermannii, D. flosaquae, D. flosaquae f. spiroides and Aphanizomenon flosaquae; green Sphaerocystis planctonica and dinophyte Ceratium hirundinella in summer; diatoms F. crotonensis and A. formosa, cryptophytic Rhodomonas pusilla and Cryptomonas ovata in autumn. The cryptophyte R. pusilla and the Cryptomonas species were dominated under the ice. The maximum number of phytoplankton (9 million cells in liter was recorded in the spring. According to the indixes of saprobity, the purity of water corresponded to II-III quality classes (pure and moderately polluted water.

  10. Considerations in Managing the Fill Rate of the Grand Ethiopian Renaissance Dam Reservoir Using a System Dynamics Approach.

    Science.gov (United States)

    Keith, Bruce; Ford, David N.; Horton, Radley M.

    2016-01-01

    The purpose of this study is to evaluate simulated fill rate scenarios for the Grand Ethiopian Renaissance Dam while taking into account plausible climate change outcomes for the Nile River Basin. The region lacks a comprehensive equitable water resource management strategy, which creates regional security concerns and future possible conflicts. We employ climate estimates from 33 general circulation models within a system dynamics model as a step in moving toward a feasible regional water resource management strategy. We find that annual reservoir fill rates of 8-15% are capable of building hydroelectric capacity in Ethiopia while concurrently ensuring a minimum level of stream flow disruption into Egypt before 2039. Insofar as climate change estimates suggest a modest average increase in stream flow into the Aswan, climate changes through 2039 are unlikely to affect the fill rate policies. However, larger fill rates will have a more detrimental effect on stream flow into the Aswan, particularly beyond a policy of 15%. While this study demonstrates that a technical solution for reservoir fill rates is feasible, the corresponding policy challenge is political. Implementation of water resource management strategies in the Nile River Basin specifically and Africa generally will necessitate a national and regional willingness to cooperate.

  11. Geological and geophysical investigation of water leakage from two micro-dam reservoirs: Implications for future site selection, northern Ethiopia

    Science.gov (United States)

    Berhane, Gebremedhin; Amare, Mogos; Gebreyohannes, Tesfamichael; Walraevens, Kristine

    2017-05-01

    Water resources are essential to human development activities and to eradicate extreme poverty and hunger. Geological problems of two water harvesting Micro-Dam Reservoirs (MDRs) were evaluated from leakage perspectives in the northern part of Ethiopia, East Africa. Conventional geological mapping, discontinuity and weathering descriptions, test pits and geophysical methods were used to characterize the hydrogeological features of the MDRs. Vertical Electrical Sounding (VES) and Electrical Profiling (EP), were executed using Terrameter SAS (signal averaging system) 1000 manufactured by ABEM, Sweden, with Schlumberger and Wenner array configuration respectively. It was concluded that the foundations of both MDRs, except the right abutment for Adishuhu which is partly composed of dolerite, are pervious due to the presence of thin bedding planes, joints, weathered materials and fault. The presence of water in the downstream toe of the MDRs, at depressions, existing test pits and test pits excavated during the present study which lie within the seepage zone demarcated during surface geological mapping, correspond with the electrical resistivity study. The results of the electrical resistivity survey (EP and VES) were merged with the geological and structural mapping and the observation of seepage zones, for the delineation of weak zones responsible for leakage. Monitoring of the leakage (reservoir water and groundwater levels), both manually and using automatic divers, is recommended, along with monitoring of the stability of the embankments and the discharge or flow downstream of the MDRs.

  12. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Brimmer, Arnold F.

    1994-10-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1994 spring outmigration at migrant traps on the Snake River, Clearwater River, and Salmon River. The 1994 snowpack was among the lowest since the beginning of the present drought, and the subsequent runoff was very poor. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1994. Total annual (hatchery + wild) chinook salmon catch at the Snake River trap was 1.5 times greater than in 1993. Hatchery and wild steelhead trout catches were similar to 1993. The Snake River trap collected 30 age 0 chinook salmon. Hatchery chinook salmon catch at the Clearwater River trap was 3.5 times higher than in 1993, and wild chinook salmon catch was 4.2 times higher. Hatchery steelhead trout trap catch was less than half of 1993 numbers because the trap was fishing near the north shore during the majority of the hatchery steelhead movement due to flow augmentations from Dworshak. Wild steelhead trout trap catch was 2 times higher than in 1993. The Salmon River trap was operated for about a month longer in 1994 than in 1993 due to extremely low flows. Hatchery chinook salmon catch was 1.4 times greater in 1994 than the previous year. Wild chinook salmon catch was slightly less in 1994. The 1994 hatchery steelhead trout collection did not change significantly from 1993 numbers. Wild steelhead trout collection in 1994 was 59% of the 1993 catch. Fish tagged with Passive Integrated Transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992).

  13. The effect of flow-through regimes zooplankton densities in a canyon-shaped dam reservoir

    Czech Academy of Sciences Publication Activity Database

    Seďa, Jaromír; Macháček, Jiří

    1998-01-01

    Roč. 83, Special Issue (1998), s. 477-484 ISSN 1434-2944. [International Conference on Reservoir Limnology and Water Quality /3./. České Budějovice, 11.08.1997-15.08.1997] R&D Projects: GA AV ČR IAA6017503 Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.632, year: 1997

  14. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1992 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Brimmer, Arnold F.

    1993-11-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout 0. mykiss smolts during the 1992 spring outmigration at migrant traps on the Snake River and the Clearwater River. Annual chinook salmon catch at the Snake River trap was the second lowest since the beginning of this project. The low trap catch wall due to extremely poor trap efficiency associated with severe low flows. Hatchery steelhead trout catch was similar to 1988 through 1991. Wild steelhead trout catch was 35% less than in 1991. Operations at the Snake River trap and a new screw trap were extended through the end of July to collect summer-migrating age-0 chinook. The differentiation of age-0 chinook from spring and Bummer chinook (age-1) using physical characteristics was again employed in 1992. The Snake River trap and the screw trap collected 20 and 18 age-0 chinook salmon, respectively, due to extremely low discharge. Chinook salmon catch at the Clearwater River trap was the highest since trap operation began in 1984. Hatchery steelhead trout trap catch was 23% lower than in 1991. Wild steelhead trout trap catch wall the highest since trap operation began. Fish tagged with Passive Integrated Transponder (PIT) tags at the Snake River trap were interrogated at three dams with PIT-tag detection systems (Lower Granite, Little Goose, and McNary dams). Cumulative interrogation, for fish marked at the Snake River trap, was not calculated for chinook salmon due to a lack of data over the entire migration season. The rates for hatchery steelhead trout and wild steelhead trout were 44.9% and 72.9% respectively. Cumulative interrogation at the three dams for fish PIT-tagged at the Clearwater River trap was 55.1% for chinook salmon, 60.4% for hatchery steelhead trout, and 73.1% for wild steelhead trout. Cumulative interrogations for hatchery steelhead tagged at the Snake River trap and recovered at the downstream dams was about 50% less than in previous years.

  15. New approaches to screening infrastructure investments in multi-reservoir systems- Evaluating proposed dams in Ethiopia and Kenya

    Science.gov (United States)

    Harou, J. J.; Geressu, R. T.; Hurford, A. P.

    2014-12-01

    Two approaches have been used traditionally to screen infrastructure investments in multi-reservoir systems: scenario analysis of a few simulated designs and deterministic optimization, sometimes using hydro-economic models or screening optimization models. Simulation models realistically represent proposed water systems and can easily include multiple performance metrics; however each prospective system operating rules need to be formulated and simulated for each proposed design (time consuming. Optimization models have been used to overcome this burden. Screening optimization models use integer or non-linear programming and can be challenging to apply to large and/or multi-objective systems. Hydro-economic models that use deterministic (implicit stochastic) optimization must be modified to examine each different plan and they cannot always reproduce realistic or politically acceptable system operations. In this presentation we demonstrate the application of a new screening approach to multi-reservoir systems where operating rules and new assets (dams) are simultaneously optimized in a multi-criteria context. Results are not least cost investment plans that satisfy reliability or other engineering constraints, but rather Pareto-optimal sets of asset portfolios that work well under historical and/or future scenarios. This is achieved by using stakeholder-built simulation models linked to multi-criteria search algorithms (e.g. many objective evolutionary algorithms, MOEA). Typical output is demonstrated through two case-studies on the Tana and Blue Nile rivers where operating rules and reservoir assets are efficiently screened together considering stakeholder-defined metrics. The focus on the Tana system is how reservoir operating rules and new irrigation schemes should be co-managed to limit ecological damages. On the Nile system, we identify Blue Nile river reservoir capacities that least negatively impact downstream Nile nations. Limitations and new directions of

  16. Simulation of Sediment and Cesium Transport in the Ukedo River and the Ogi Dam Reservoir during a Rainfall Event using the TODAM Code

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Yokuda, Satoru T.; Kurikami, Hiroshi

    2014-03-28

    The accident at the Fukushima Daiichi Nuclear Power Plant in March 2011 caused widespread environmental contamination. Although decontamination activities have been performed in residential areas of the Fukushima area, decontamination of forests, rivers, and reservoirs is still controversial because of the economical, ecological, and technical difficulties. Thus, an evaluation of contaminant transport in such an environment is important for safety assessment and for implementation of possible countermeasures to reduce radiation exposure to the public. The investigation revealed that heavy rainfall events play a significant role in transporting radioactive cesium deposited on the land surface, via soil erosion and sediment transport in rivers. Therefore, we simulated the sediment and cesium transport in the Ukedo River and its tributaries in Fukushima Prefecture, including the Ogaki Dam Reservoir, and the Ogi Dam Reservoir of the Oginosawa River in Fukushima Prefecture during and after a heavy rainfall event by using the TODAM (Time-dependent, One-dimensional Degradation And Migration) code. The main outcomes are the following: • Suspended sand is mostly deposited on the river bottom. Suspended silt and clay, on the other hand, are hardly deposited in the Ukedo River and its tributaries except in the Ogaki Dam Reservoir in the Ukedo River even in low river discharge conditions. • Cesium migrates mainly during high river discharge periods during heavy rainfall events. Silt and clay play more important roles in cesium transport to the sea than sand does. • The simulation results explain variations in the field data on cesium distributions in the river. Additional field data currently being collected and further modeling with these data may shed more light on the cesium distribution variations. • Effects of 40-hour heavy rainfall events on clay and cesium transport continue for more than a month. This is because these reservoirs slow down the storm-induced high

  17. Post flooding damage assessment of earth dams and historical reservoirs using non-invasive geophysical techniques

    Science.gov (United States)

    Sentenac, Philippe; Benes, Vojtech; Budinsky, Vladimir; Keenan, Helen; Baron, Ron

    2017-11-01

    This paper describes the use of four geophysical techniques to map the structural integrity of historical earth reservoir embankments which are susceptible to natural decay with time. The four techniques that were used to assess the post flood damage were 1. A fast scanning technique using a dipole electromagnetic profile apparatus (GEM2), 2. Electrical Resistivity Tomography (ERT) in order to obtain a high resolution image of the shape of the damaged/seepage zone, 3. Self-Potential surveys were carried out to relate the detected seepage evolution and change of the water displacement inside the embankment, 4. The washed zone in the areas with piping was characterised with microgravimetry. The four geophysical techniques used were evaluated against the case studies of two reservoirs in South Bohemia, Czech Republic. A risk approach based on the Geophysical results was undertaken for the reservoir embankments. The four techniques together enabled a comprehensive non-invasive assessment whereby remedial action could be recommended where required. Conclusions were also drawn on the efficiency of the techniques to be applied for embankments with wood structures.

  18. Designing multi-reservoir system designs via efficient water-energy-food nexus trade-offs - Selecting new hydropower dams for the Blue Nile and Nepal's Koshi Basin

    Science.gov (United States)

    Harou, J. J.; Hurford, A.; Geressu, R. T.

    2015-12-01

    Many of the world's multi-reservoir water resource systems are being considered for further development of hydropower and irrigation aiming to meet economic, political and ecological goals. Complex river basins serve many needs so how should the different proposed groupings of reservoirs and their operations be evaluated? How should uncertainty about future supply and demand conditions be factored in? What reservoir designs can meet multiple goals and perform robustly in a context of global change? We propose an optimized multi-criteria screening approach to identify best performing designs, i.e., the selection, size and operating rules of new reservoirs within multi-reservoir systems in a context of deeply uncertain change. Reservoir release operating rules and storage sizes are optimized concurrently for each separate infrastructure design under consideration across many scenarios representing plausible future conditions. Outputs reveal system trade-offs using multi-dimensional scatter plots where each point represents an approximately Pareto-optimal design. The method is applied to proposed Blue Nile River reservoirs in Ethiopia, where trade-offs between capital costs, total and firm energy output, aggregate storage and downstream irrigation and energy provision for the best performing designs are evaluated. The impact of filling period for large reservoirs is considered in a context of hydrological uncertainty. The approach is also applied to the Koshi basin in Nepal where combinations of hydropower storage and run-of-river dams are being considered for investment. We show searching for investment portfolios that meet multiple objectives provides stakeholders with a rich view on the trade-offs inherent in the nexus and how different investment bundles perform differently under plausible futures. Both case-studies show how the proposed approach helps explore and understand the implications of investing in new dams in a global change context.

  19. Two-dimensional modeling of sediments deposits in dam reservoirs in Algeria; Modelisation bidimensionnelle du depot de sediments dans un barrage en Algerie

    Energy Technology Data Exchange (ETDEWEB)

    Bessenasse, M. [Universite SAAD Dahleb (Blida), Lab. de Recherche des Sciences de l' Eau LRS EAU ENP, Alger (Algeria); Kettab, A. [Ecole Nationale Polytechnique, LRS-EAU, Alger (Algeria); Paquier, A. [Cemagref de Lyon, Unite de Recherche Hydrologie-Hydraulique, 69 (France)

    2004-07-01

    The method to build a numerical model intended to predict the formation and the change of sediment deposits upstream from a dam is presented. From information about the inputs of water and sediments coming from the catchment supported by a QdF type hydrological analysis, a horizontal 2-D hydraulic model which couples shallow water equations and one equation for advection and diffusion of sediment concentration is used. Applying this model to Zardezas reservoir in Skikda (Algeria) region shows, on the one hand, the practical difficulties met on such case and, on the other hand, the potentialities of such a method for the management of Algerian reservoirs. (authors)

  20. Applying 1D Sediment Models to Reservoir Flushing Studies: Measuring, Monitoring, and Modeling the Spencer Dam Sediment Flush with HEC-RAS

    Science.gov (United States)

    2016-07-01

    by Paul Boyd and Stanford Gibson PURPOSE: The purposes of this Coastal and Hydraulics Engineering Technical Note (CHETN) are (1) to summarize the...Kansas River) (Gibson and Boyd 2014; Davis et al. 2014; Shelley and Gibson 2015). However, because these reservoir management strategies are still...as sediment and represented the dam in the model as an inline structure with time-series controlled gates. The unsteady equations required 6-second

  1. Non-ribosomal peptides produced by Planktothrix agardhii from Siemianówka Dam Reservoir SDR (northeast Poland).

    Science.gov (United States)

    Grabowska, Magdalena; Kobos, Justyna; Toruńska-Sitarz, Anna; Mazur-Marzec, Hanna

    2014-10-01

    Planktothtrix agardhii (Oscillatoriales) is a filamentous cyanobacterium, which frequently forms blooms in shallow, polymictic and eutrophicated waters. This species is also a rich source of unique linear and cyclic peptides. In the current study, the profile of the peptides in samples from the P. agardhii-dominated Siemianówka Dam Reservoir (SDR) (northeast Poland) was analyzed for four subsequent years (2009-2012). The LC-MS/MS analyses revealed the presence of 33 peptides. Twelve of the most abundant ones, including five microcystins, five anabaenopeptins, one aeruginosin and one planktocyclin, were present in all field samples collected during the study. The detection of different peptides in two P. agardhii isolates indicated that the SDR population was composed of several chemotypes, characterized by different peptide patterns. The total concentration of microcystins (MCs) positively correlated with the biomass of P. agardhii. Between subsequent years, the changes in the ratio of the total MCs concentration to the biomass of P. agardhii were noticed, but they were less than threefold. This is the first study on the production of different classes of non-ribosomal peptides by freshwater cyanobacteria in Poland.

  2. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Nelson, William R.

    1999-04-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1997 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1997. Total annual hatchery chinook salmon catch at the Snake River trap was 49% of the 1996 number but only 6% of the 1995 catch. The wild chinook catch was 77% of the 1996 but was only 13% of 1995. Hatchery steelhead trout catch was 18% of 1996 numbers but only 7% of the 1995 numbers. Wild steelhead trout catch was 22% of 1996 but only 11% of the 1995 numbers. The Snake River trap collected eight age-0 chinook salmon and one sockeye/kokanee salmon O. nerka. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations were terminated for the season due to high flows and trap damage on May 8 and were out of operation for 23 d due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 37% and wild chinook salmon catch was 60% of 1996 numbers but only 5% and 11% of 1995 catch, respectively. The 1997 hatchery steelhead trout collection was 13% of the 1996 catch and 32% of the 1995 numbers. Wild steelhead trout collection in 1997 was 21% of the 1996 catch and 13% of the 1995 numbers. Trap operations were terminated for the season due to high flows and trap damage on May 7 and were out of operation for 19 d due to high flow and debris.

  3. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Brimmer, Arnold F.; Putnam, Scott A.

    2001-06-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 1999 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1999. Total annual hatchery chinook salmon catch at the Snake River trap was 440% of the 1998 number. The wild chinook catch was 603% of the previous year's catch. Hatchery steelhead trout catch was 93% of 1998 numbers. Wild steelhead trout catch was 68% of 1998 numbers. The Snake River trap collected 62 age-0 chinook salmon. During 1998 the Snake River trap captured 173 hatchery and 37 wild/natural sockeye salmon and 130 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 14 and were terminated for the season due to high flows on May 25. The trap was out of operation for 18 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 214%, and wild chinook salmon catch was 384% of 1998 numbers. The hatchery steelhead trout collection in 1999 was 210% of the 1998 numbers. Wild steelhead trout collection in 1999 was 203% of the 1998 catch. Trap operations began on March 14 and were terminated for the season due to high flows on May 21. The trap was out of operation for 17 d during the season due to high flow and debris.

  4. National Program for Inspection of Non-Federal Dams. Notch Reservoir Dam (MA 00283), Hoosic River Basin, North Adams, Massachusetts. Phase I Inspection Report.

    Science.gov (United States)

    1979-06-01

    the replacing of missing mortar atthe spillway, the patching of concrete at the overflow structure and minor items of repair at the outlet gatehouse ...b. Design and Construction Data - The drawings obtained from the City Engineer show the basic cross-section of the dam. However, there is virtually ...7.7T The gatehouse at the toe of the dam is generally in good condition. The interior of the structure requires maintenance in the form of replacing

  5. Sedimentological and Geomorphological Effects of Reservoir Flushing: The Cachi Reservoir, Costa Rica, 1996

    DEFF Research Database (Denmark)

    Brandt, Anders; Swenning, Joar

    1999-01-01

    Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs......Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs...

  6. Monitoring Water Surface and Level of a Reservoir Using Different Remote Sensing Approaches and Comparison with Dam Displacements Evaluated via GNSS

    Directory of Open Access Journals (Sweden)

    Claudia Pipitone

    2018-01-01

    Full Text Available Remote sensing allowed monitoring the reservoir water level by estimating its surface extension. Surface extension has been estimated using different approaches, employing both optical (Landsat 5 TM, Landsat 7 ETM+ SLC-Off, Landsat 8 OLI-TIRS and ASTER images and Synthetic Aperture Radar (SAR images (Cosmo SkyMed and TerraSAR-X. Images were characterized by different acquisition modes, geometric and spectral resolutions, allowing the evaluation of alternative and/or complementary techniques. For each kind of image, two techniques have been tested: The first based on an unsupervised classification and suitable to automate the process, the second based on visual matching with contour lines with the aim of fully exploiting the dataset. Their performances were evaluated by comparison with water levels measured in situ (r2 = 0.97 using the unsupervised classification, r2 = 0.95 using visual matching demonstrating that both techniques are suitable to quantify reservoir surface extension. However ~90% of available images were analyzed using the visual matching method, and just 37 images out of 58 using the other method. The evaluation of the water level from the water surface, using both techniques, could be easily extended to un-gauged reservoirs to manage the variations of the levels during normal operation. In addition, during the period of investigation, the use of Global Navigation Satellite System (GNSS allowed the estimation of dam displacements. The advantage of using as reference a GNSS permanent station positioned relatively far from the dam, allowed the exclusion of any interaction with the site deformations. By comparing results from both techniques, relationships between the orthogonal displacement component via GNSS, estimated water levels via remote sensing and in situ measurements were investigated. During periods of changing water level (April 2011–September 2011 and October 2011–March 2012, the moving average of displacement time

  7. National Dam Safety Program. Earl Reservoir Dam (Inventory Number N.Y. 203), Lower Hudson River Basin, Orange County, New York. Phase I Inspection Report,

    Science.gov (United States)

    1981-06-30

    3.6 feet at the left end of the dam where only the concrete faced masonry core wall is present, and there is virtually no embankment on either side...Structures o. Stability p. Miscellaneous 10) Appurtenant Structures (Power House, Lock, Gatehouse , Other) a. Description and Condition An abandoned pump house

  8. People and dams: environmental and socio-economic changes induced by a reservoir in Fincha'a watershed, western Ethiopia

    NARCIS (Netherlands)

    Bezuayehu, T.O.

    2006-01-01

    Dams that store water for electricity, irrigation, domestic water supply or flood control have been constructed for thousands of years worldwide. In too many cases, an unacceptable and often unnecessary price has been paid by watershed inhabitants to secure dam benefits, especially in social and

  9. Trends and evolution of contamination in a well-dated water reservoir sedimentary archive: the Brno Dam, Moravia, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Sedláček, J.; Bábek, O.; Matys Grygar, Tomáš

    2013-01-01

    Roč. 69, č. 8 (2013), s. 2581-2593 ISSN 1866-6280 Institutional support: RVO:61388980 Keywords : Brno Dam * Dam sediments * Cs-137 dating * Heavy metals * Eutrophication Subject RIV: DD - Geochemistry Impact factor: 1.572, year: 2013

  10. National Dam Safety Program. Cobbs Hill Reservoir Dam (Inventory Number NY 1448), Lake Ontario Basin, Monroe County, New York. Phase I Inspection Report,

    Science.gov (United States)

    1981-06-30

    Reservoir are hori- zontally lying dolostones of the Lockport Group of Upper Silurian age. Depth to bedrock is unknown. The reservoir is sited on Cobbs Hill...t7 oil L PE w !J " ° ~A 92o IuIsI I FIGURE lb Q , ,. IL I .i. *,’X. ’ -,_ OIL (I) ," ’. o S ,.’lt / I .. ’ " I,"_ __4- . . l ’’I -. .* . I- I ’i’.I

  11. National Program for Inspection of Non-Federal Dams. Otis Reservoir Dam MA 00308, Connecticut River Basin, Otis, Massachusetts. Phase I Inspection Report.

    Science.gov (United States)

    1980-08-01

    Appendix C, Photograph 11). Approximately 100 feet downstream of the fish frap structure, the channel falls over an almost vertical drop. (See App -n...explain] Rcommcnd r- movil from insr.cction list_______ B2-16 - W a W 0 0 0 0 0 a 0 a a -- 9 L-69rESCRIPTION OF DAM 707- DISTRICT ONET Submnitt~d by_ R D

  12. Activation Product Inverse Calculations with NDI

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Mark Girard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-27

    NDI based forward calculations of activation product concentrations can be systematically used to infer structural element concentrations from measured activation product concentrations with an iterative algorithm. The algorithm converges exactly for the basic production-depletion chain with explicit activation product production and approximately, in the least-squares sense, for the full production-depletion chain with explicit activation product production and nosub production-depletion chain. The algorithm is suitable for automation.

  13. National Dam Safety Program. Smith Mills Reservoir Dam (Inventory Number NY-786), Lake Erie Basin, Chautauqua County, New York. Phase 1 Inspection Report

    Science.gov (United States)

    1980-03-01

    REPORT NUMBER Inventory No. 786 ;: 0 7. AUTHOR(s) 0 . CONTRACT OR GRANT NUMBER(&) George Koch ~ S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM...UT A U Q U A C O U N T Y , / j < . INVENTORY No. NY 786 ’ .A T IO N A L D A M S A F E T Y P R O G R A M LL NEW YORK DISTRICT CORPS OF ENGINEERi i AR8...within the vicinity of the dam is generally northwestward, due to its location near the Portage Escarpment. Glacial cover is generally thin, the

  14. National Program for Inspection of Non-Federal Dams. Norton Reservoir Dam (MA 00815), Coastal Basin, Norton, Massachusetts. Phase I Inspection Report.

    Science.gov (United States)

    1978-08-01

    is the left abutment 0 . . and gatehouse . The right abutment shows signs of erosion and could well - be the first section to fail. Owing to the...its age of almost 80 years, is in fair condition. It is virtually impossible to , 0 ascertain where the embankment or fill behind the concrete wing...Appurtenant Structures. The only appurtenant structure, the gatehouse , is in fair condition. d. Reservoir Area. The banks are flat and wooded. There

  15. Fish assemblage in a dammed tropical river: an analysis along the longitudinal and temporal gradients from river to reservoir

    Directory of Open Access Journals (Sweden)

    Bianca de Freitas Terra

    Full Text Available We analysed changes in the fish assemblage structure along a longitudinal gradient of the Paraíba do Sul River and Funil Reservoir. We tested the hypothesis that shifts from lotic to lentic environment affect the richness and structure of the assemblage which are modulated by seasonal rainfall changes. Standardised monthly samplings were carried out from October 2006 to September 2007 in four zones: 1 river upstream from the reservoir; 2 upper part of the reservoir; 3 lower part of the reservoir, and 4 river downstream from the reservoir. Fishes were caught using gillnets deployed for 15 hours. We collected a total of 4550 specimens, representing 35 species and 5 orders. The highest richness and diversity were recorded in zone 2, the transitional zone between river and reservoir. In this ecotone, lotic and lentic species overlap. Greater abundance and biomass was recorded in the river upstream from the reservoir (zone 1; however, there are no differences between the zones in the structure of assemblages during the wet season. During the dry season, the assemblage structure is more differentiated between zones, although no differences in abundance and biomass occur. The seasonal flow of the river is the major driving factor to influence the fish assemblage structure along the longitudinal gradient from the river to the reservoir.

  16. National Program for Inspection of Non-Federal Dams. Shepaug Reservoir Dam (CT 00665), Housatonic River Basin, Litchfield and Warren, Connecticut. Phase I Inspection Report.

    Science.gov (United States)

    1979-05-01

    ENGINEERS D-WALTHAM, MASS. 02154 r-is dct" imrnf has beer .) po d MAY 1979 i ’ un1-i to dL N- -.- . . . -’ 0~i . . . . " . . . ..4...transmits * ~water to a tunnel aqueduct which then flows about 3. 6 miles under- * ground to Morris Reservoir. d 1-3 4~ ~~~ .., 4 4 -. A .(2) There are...observed but there were no observable flows. o It would not have been possible to identify any seeps that may occur in the deepest part of the valley because

  17. THE DESIGNATION OF THE TROPHIC STATE AND WATER QUALITY OF THE PORĄBKA DAM RECREATIONAL RESERVOIR

    Directory of Open Access Journals (Sweden)

    Ewa Jachniak

    2017-04-01

    Full Text Available In this publication the eutrophic level of the reservoir water, based on the chosen methods, was estimated. Additionally, in this publication the quality of the reservoir water (ecological potential, chemical state, state of the water, based on the chosen parameters, was defined. The biological indicators indicated on the significant level of the reservoir water eutrophication (mainly phytoplankton biomass and on the moderate ecological potential – III class (mainly macroinvertebrates. The physical and chemical parameters didn’t exceed the boundary values for first water quality class. Despite this, the total state of the reservoir water was classified as bad, (biological elements had decided about this and their affiliation to III class of the ecological potential.

  18. Sedimentary record and anthropogenic pollution of a complex, multiple source fed dam reservoirs: An example from the Nove Mlyny reservoir, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Sedláček, J.; Bábek, O.; Nováková, Tereza

    2017-01-01

    Roč. 574, JAN (2017), s. 1456-1471 ISSN 0048-9697 Institutional support: RVO:61388980 Keywords : Reservoirs * Multi-proxy stratigraphic analysis * Sediment accumulation rates * Heavy metals * Enrichment factors Subject RIV: DD - Geochemistry OBOR OECD: Geology Impact factor: 4.900, year: 2016

  19. Archive of digital chirp subbottom profile data collected during USGS Cruise 13GFP01, Brownlee Dam and Hells Canyon Reservoir, Idaho and Oregon, 2013

    Science.gov (United States)

    Forde, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Fosness, Ryan L.; Welcker, Chris; Kelso, Kyle W.

    2014-01-01

    From March 16 - 31, 2013, the U.S. Geological Survey in cooperation with the Idaho Power Company conducted a geophysical survey to investigate sediment deposits and long-term sediment transport within the Snake River from Brownlee Dam to Hells Canyon Reservoir, along the Idaho and Oregon border; this effort will help the USGS to better understand geologic processes. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (showing a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansions of acronyms and abbreviations used in this report.

  20. Helimagnetic structures in epitaxial Nd/Y superlattices and alloys

    DEFF Research Database (Denmark)

    Everitt, B.A.; Salamon, M.B.; Borchers, J.A.

    1997-01-01

    The complex magnetic structure of Nd exhibits a new magnetic phase when grown epitaxially, either as a stabilized double hexagonal close-packed alloy, or as part of a Nd/Y superlattice. In the alloy and in those superlattices with small Nd/Y ratios, the incommensurate b axis modulated structure e...

  1. Dams: Pros and Cons

    African Journals Online (AJOL)

    Steve

    Many Dams have been constructed in different parts of the world and for different purposes. While these dams have in most cases served the reason for their construction, the resultant environmental impact have been a subject of concern. The creation of a reservoir not only changes the ecology and hydrology of the ...

  2. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zabel, Richard; Williams, John G.; Smith, Steven G. (Northwest and Alaska Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2002-06-01

    In 2001, the National Marine Fisheries Service and the University of Washington completed the ninth year of a study to estimate survival and travel time of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from passive integrated transponder (PIT)-tagged fish. We PIT tagged and released at Lower Granite Dam a total of 17,028 hatchery and 3,550 wild steelhead. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream of the hydropower system and sites within the hydropower system. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using the Single-Release Model. Primary research objectives in 2001 were to: (1) estimate reach and project survival and travel time in the Snake and Columbia Rivers throughout the yearling chinook salmon and steelhead migrations; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the survival-estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2001 for PIT-tagged yearling chinook salmon and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures with a minimum of text. More details on methodology and statistical models used are provided in previous reports cited in the text. Results for summer-migrating chinook salmon will be reported separately.

  3. Proceedings of dam safety seminar

    International Nuclear Information System (INIS)

    1989-01-01

    A seminar was held to discuss issues of dam safety. Presentations concerned dam safety evaluation, dam monitoring, erosion protection, ice loads, spillway design, flood prediction, emergency preparedness, reservoir management, rehabilitation, and foundation design. Separate abstracts have been prepared for 16 papers from the seminar

  4. Dam removal: Listening in

    Science.gov (United States)

    Foley, M. M.; Bellmore, J. R.; O'Connor, J. E.; Duda, J. J.; East, A. E.; Grant, G. E.; Anderson, C. W.; Bountry, J. A.; Collins, M. J.; Connolly, P. J.; Craig, L. S.; Evans, J. E.; Greene, S. L.; Magilligan, F. J.; Magirl, C. S.; Major, J. J.; Pess, G. R.; Randle, T. J.; Shafroth, P. B.; Torgersen, C. E.; Tullos, D.; Wilcox, A. C.

    2017-07-01

    Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus far, some general conclusions have emerged: (1) physical responses are typically fast, with the rate of sediment erosion largely dependent on sediment characteristics and dam-removal strategy; (2) ecological responses to dam removal differ among the affected upstream, downstream, and reservoir reaches; (3) dam removal tends to quickly reestablish connectivity, restoring the movement of material and organisms between upstream and downstream river reaches; (4) geographic context, river history, and land use significantly influence river restoration trajectories and recovery potential because they control broader physical and ecological processes and conditions; and (5) quantitative modeling capability is improving, particularly for physical and broad-scale ecological effects, and gives managers information needed to understand and predict long-term effects of dam removal on riverine ecosystems. Although these studies collectively enhance our understanding of how riverine ecosystems respond to dam removal, knowledge gaps remain because most studies have been short (< 5 years) and do not adequately represent the diversity of dam types, watershed conditions, and dam-removal methods in the U.S.

  5. Dam removal: Listening in

    Science.gov (United States)

    Foley, Melissa M.; Bellmore, James; O'Connor, James E.; Duda, Jeff; East, Amy E.; Grant, Gordon G.; Anderson, Chauncey; Bountry, Jennifer A.; Collins, Mathias J.; Connolly, Patrick J.; Craig, Laura S.; Evans, James E.; Greene, Samantha; Magilligan, Francis J.; Magirl, Christopher S.; Major, Jon J.; Pess, George R.; Randle, Timothy J.; Shafroth, Patrick B.; Torgersen, Christian E.; Tullos, Desiree D.; Wilcox, Andrew C.

    2017-01-01

    Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus far, some general conclusions have emerged: (1) physical responses are typically fast, with the rate of sediment erosion largely dependent on sediment characteristics and dam-removal strategy; (2) ecological responses to dam removal differ among the affected upstream, downstream, and reservoir reaches; (3) dam removal tends to quickly reestablish connectivity, restoring the movement of material and organisms between upstream and downstream river reaches; (4) geographic context, river history, and land use significantly influence river restoration trajectories and recovery potential because they control broader physical and ecological processes and conditions; and (5) quantitative modeling capability is improving, particularly for physical and broad-scale ecological effects, and gives managers information needed to understand and predict long-term effects of dam removal on riverine ecosystems. Although these studies collectively enhance our understanding of how riverine ecosystems respond to dam removal, knowledge gaps remain because most studies have been short (dam types, watershed conditions, and dam-removal methods in the U.S.

  6. Isotopic composition of nitrate and particulate organic matter in a pristine dam reservoir of western India: Implications for biogeochemical processes

    Digital Repository Service at National Institute of Oceanography (India)

    Bardhan, P.; Naqvi, S.W.A.; Karapurkar, S.G.; Shenoy, D.M.; Kurian, S.; Naik, H.

    Isotopic composition of nitrate (δ15N and δ18O) and particulate organic matter (POM; δ15N and δ13C) were measured in the Tillari Reservoir, located at the foothills of the Western Ghats...

  7. Response of currents and water quality to changes in dam operations in Hoover Reservoir, Columbus, Ohio, August 24–28, 2015

    Science.gov (United States)

    Vonins, Branden L.; Jackson, P. Ryan

    2017-05-25

    Hoover Reservoir, an important drinking water supply for the City of Columbus, Ohio, has been the source of a series of taste and odor problems in treated drinking water during the past few years. These taste and odor problems were caused by the compounds geosmin and 2-methylisoborneol, which are thought to have been related to cyanobacteria blooms. In an effort to reduce the phosphorus available for cyanobacteria blooms at fall turnover, the City of Columbus began experimenting with the dam’s selective withdrawal system to remove excess phosphorus in the hypolimnion, which is released from bottom sediments during summer anoxic conditions.The U.S. Geological Survey completed two synoptic survey campaigns to assess distributions of water quality and water velocity in the lower part of Hoover Reservoir to provide information on the changes to reservoir dynamics caused by changing dam operations. One campaign (campaign 1) was done while water was being withdrawn from the reservoir through the dam’s middle gate and the other (campaign 2) while water was being withdrawn through the dam’s lower gate. Velocities were measured using an acoustic Doppler current profiler, and water-quality parameters were measured using an autonomous underwater vehicle equipped with water-quality sensors. Along with the water-quality and water-velocity data, meteorological, inflow and outflow discharges, and independent water-quality data were compiled to monitor changes in other parameters that affect reservoir behavior. Monthly nutrient data, collected by the City of Columbus, were also analyzed for trends in concentration during periods of expected stratification.Based on the results of the two campaigns, when compared to withdrawing water through the middle gate, withdrawing water through the lower gate seemed to increase shear-driven mixing across the thermocline, which resulted in an increase in the depth of the epilimnion throughout the lower part of Hoover Reservoir. The

  8. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam; Smolt Monitoring by Federal and Non-Federal Entities, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Putnam, Scott A.

    2003-06-01

    due to a reduction in hatchery production (39% of 2000 releases). The increase in hatchery and wild steelhead trap catch is due to the ability to operate the trap in the thalweg for a longer period of time because of the extreme low flow condition in 2001. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout marked at the head of the reservoir were affected by discharge. There were not enough hatchery and wild chinook salmon tagged at the Snake River trap in 2001 to allow migration rate/discharge analysis. For steelhead trout tagged at the Snake River trap, statistical analysis of 2001 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.2-fold and a 1.5-fold increase in migration rate in, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2001 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery and wild chinook salmon and hatchery and wild steelhead trout. Migration rate increased 3.7-fold for hatchery chinook salmon and 2.5-fold for wild chinook salmon between 50 and 100 kcfs. For hatchery steelhead there was a 1.6-fold increase in migration rate, and for wild steelhead trout there was a 2.2-fold increase between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992). Cumulative interrogations at the four dams for fish marked at the Snake River trap were 86% for

  9. USE OF POM AND ARTIFICIAL NEURAL NETWORKS IN THE THREEDIMENSIONAL MODELING OF LAKES : GOKPINAR DAM RESERVOIR AS A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Mahmut FIRAT

    2006-01-01

    Full Text Available The circulation pattern in lakes and reservoirs varies according to many external factors. In situ measurement of the occuring flow pattern in every point of the lake is a very costly and hard task. For this reason, models determining the velocities and surface fluctuations are developed by using computers. The use of these models enables the generation of the foundation for the prediction of possible environmental problems and water pollution concentrations. Today, three dimensional models are widely used in the modelling of lakes and reservoirs. In this study, the velocity profiles and surface fluctuation values generated under various wind speed and directions at some sections in Gokpinar Lake in Denizli are obtained by applying artificial neural networks (ANN on the results of three dimensional hydrodynamic model of the lake made with Princeton Ocean Model (POM. The developed ANN model is applied to the same sections for different wind conditions and it is found that the results are in accordance with the results of POM. As a result of the comparisons of the models, the superiorities of the models on each other at the model generation and solution phases are determined and mentioned.

  10. Evaluation of the hydraulic and biological performance of the portable floating fish collector at Cougar Reservoir and Dam, Oregon, 2014

    Science.gov (United States)

    Beeman, John W.; Evans, Scott D.; Haner, Philip V.; Hansel, Hal C.; Hansen, Amy C.; Hansen, Gabriel S.; Hatton, Tyson W.; Sprando, Jamie M.; Smith, Collin D.; Adams, Noah S.

    2016-01-12

    The biological and hydraulic performance of a new portable floating fish collector (PFFC) located in a cul-de-sac within the forebay of Cougar Dam, Oregon, was evaluated during 2014. The purpose of the PFFC was to explore surface collection as a means to capture juvenile salmonids at one or more sites using a small, cost-effective, pilot-scale device. The PFFC used internal pumps to draw attraction flow over an inclined plane about 3 meters (m) deep, through a flume at a design velocity of as much as 6 feet per second (ft/s), and to empty a small amount of water and any entrained fish into a collection box. Performance of the PFFC was evaluated at 64 cubic feet per second (ft3/s) (Low) and 109 ft3/s (High) inflow rates alternated using a randomized-block schedule from May 27 to December 16, 2014. The evaluation of the biological performance was based on trap catch; behaviors, locations, and collection of juvenile Chinook salmon (Oncorhynchus tshawytscha) tagged with acoustic transmitters plus passive integrated transponder (PIT) tags; collection of juvenile Chinook salmon implanted with only PIT tags; and untagged fish monitored near and within the PFFC using acoustic cameras. The evaluation of hydraulic performance was based on measurements of water velocity and direction of flow in the PFFC.

  11. War damages and reconstruction of Peruca dam

    International Nuclear Information System (INIS)

    Nonveiller, E.; Sever, Z.

    1999-01-01

    The paper describes the heavy damages caused by blasting in the Peruca rockfill dam in Croatia in January 1993. Complete collapse of the dam by overtopping was prevented through quick action of the dam owner by dumping clayey gravel on the lowest sections of the dam crest and opening the bottom outlet of the reservoir, thus efficiently lowering the water level. After the damages were sufficiently established and alternatives for restoration of the dam were evaluated, it was decided to construct a diaphragm wall through the damaged core in the central dam part as the impermeable dam element and to rebuild the central clay core at the dam abutments. Reconstruction works are described

  12. Survival Estimates for the Passage of Juvenile Salmonids through Snake River Dams and Reservoirs, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hockersmith, Eric E.

    1999-03-01

    This report consists of two parts describing research activities completed during 1997 under Bonneville Power Administration Project Number 93-29. Part 1 provides reach survival and travel time estimates for 1997 for PIT-tagged hatchery steelhead and yearling chinook salmon in the Snake and Columbia Rivers. The results are reported primarily in the form of tables and figures with a minimum of text. More detailed information on methodology and the statistical models used in the analysis are provided in previous annual reports cited in the text. Analysis of the relationships among travel time, survival, and environmental factors for 1997 and previous years of the study will be reported elsewhere. Part 2 of this report describes research to determine areas of loss and delay for juvenile hatchery salmonids above Lower Granite Reservoir.

  13. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam; Smolt Monitoring by Federal and Non-Federal Entities, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Putnam, Scott A.

    2002-08-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2000 spring out-migration at migrant traps on the Snake River and Salmon River. In 2000 the Nez Perce Tribe released significant numbers of hatchery chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery chinook salmon catch at the Snake River trap was 36% of the 1999 number. The wild chinook catch was 34% of the previous year's catch. Hatchery steelhead trout catch was 121% of 1999 numbers. Wild steelhead trout catch was 139% of 1999 numbers. The Snake River trap collected 689 age-0 chinook salmon. During 2000, the Snake River trap captured 40 hatchery and 92 wild/natural sockeye salmon and 159 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 13 and were terminated for the season due to high flows on June 16. There were no down days due to high flows or debris. Hatchery chinook salmon catch at the Salmon River trap was 96%, and wild chinook salmon catch was 66% of 1999 numbers. The hatchery steelhead trout collection in 2000 was 90% of the 1999 numbers. Wild steelhead trout collection in 2000 was 147% of the previous years catch. Trap operations began on March 13 and were terminated for the season due to high flows on May 22. There were no days where the trap was out of operation due to high flow or debris. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for passive integrated transponder (PIT) tagged chinook salmon and steelhead trout, marked at the head of the reservoir, were affected by discharge. For

  14. Smolt monitoring at the head of lower granite reservoir and lower Granite Dam, annual report 1999 operations.; ANNUAL

    International Nuclear Information System (INIS)

    United States. Bonneville Power Administration. Division of Fish and Wildlife; Idaho. Dept. of Fish and Game.

    2001-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 1999 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1999. Total annual hatchery chinook salmon catch at the Snake River trap was 440% of the 1998 number. The wild chinook catch was 603% of the previous year's catch. Hatchery steelhead trout catch was 93% of 1998 numbers. Wild steelhead trout catch was 68% of 1998 numbers. The Snake River trap collected 62 age-0 chinook salmon. During 1998 the Snake River trap captured 173 hatchery and 37 wild/natural sockeye salmon and 130 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 14 and were terminated for the season due to high flows on May 25. The trap was out of operation for 18 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 214%, and wild chinook salmon catch was 384% of 1998 numbers. The hatchery steelhead trout collection in 1999 was 210% of the 1998 numbers. Wild steelhead trout collection in 1999 was 203% of the 1998 catch. Trap operations began on March 14 and were terminated for the season due to high flows on May 21. The trap was out of operation for 17 d during the season due to high flow and debris

  15. Smolt monitoring at the head of Lower Granite Reservoir and Lower Granite Dam, annual report 1997 operations.; ANNUAL

    International Nuclear Information System (INIS)

    United States. Bonneville Power Administration. Division of Fish and Wildlife.

    1999-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1997 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1997. Total annual hatchery chinook salmon catch at the Snake River trap was 49% of the 1996 number but only 6% of the 1995 catch. The wild chinook catch was 77% of the 1996 but was only 13% of 1995. Hatchery steelhead trout catch was 18% of 1996 numbers but only 7% of the 1995 numbers. Wild steelhead trout catch was 22% of 1996 but only 11% of the 1995 numbers. The Snake River trap collected eight age-0 chinook salmon and one sockeye/kokanee salmon O. nerka. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations were terminated for the season due to high flows and trap damage on May 8 and were out of operation for 23 d due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 37% and wild chinook salmon catch was 60% of 1996 numbers but only 5% and 11% of 1995 catch, respectively. The 1997 hatchery steelhead trout collection was 13% of the 1996 catch and 32% of the 1995 numbers. Wild steelhead trout collection in 1997 was 21% of the 1996 catch and 13% of the 1995 numbers. Trap operations were terminated for the season due to high flows and trap damage on May 7 and were out of operation for 19 d due to high flow and debris

  16. Survey of Potential Hanford Site Contaminants in the Upper Sediment for the Reservoirs at McNary, John Day, The Dalles, and Bonneville Dams, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Gregory W.; Priddy, M; Yokel, Jerel W.; Delistraty, Damon A.; Stoops, Thomas M.

    2005-02-01

    This report presents the results from a multi-agency cooperative environmental surveillance study. of the study looked at sediment from the pools upstream from dams on the Columbia River that are downstream from Hanford Site operations. The radiological and chemical conditions existing in the upper-level sediment found in the pools upstream from McNary Dam, John Day Dam, The Dalles Lock and Dam, and Bonneville Dam were evaluated. This study also evaluated beach sediment where available. Water samples were collected at McNary Dam to further evaluate potential Hanford contaminants in the lower Columbia River. Samples were analyzed for radionuclides, chemicals, and physical parameters. Results from this study were compared to background values from sediment and water samples collect from the pool upstream of Priest Rapids Dam (upstream of the Hanford Site) by the Hanford Site Surface Environmental Surveillance Project.

  17. Performance Survey of Inflatable Dams in Ice-Affected Waters. Ice Engineering. Number 30, October 2001

    National Research Council Canada - National Science Library

    2001-01-01

    .... Inflatable dam applications include headgates for irrigation, water supply and hydropower, flashboard replacement, raising the crest of an existing dam or reservoir spillway, tidal barriers, sewage...

  18. Survival of Subyearling Fall Chinook Salmon in the Free-flowing Snake River and Lower Snake River Reservoirs in 2003 and from McNary Dam Tailrace to John Day Dam Tailrace in the Columbia River from 1999 to 2002, 1999-2003 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Muir, William D.; Axel, Gordon A.; Smith, Steven G. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2004-12-01

    We report results from an ongoing study of survival and travel time of subyearling fall Chinook salmon in the Snake River during 2003 and in the Columbia River during 1999-2002. Earlier years of the study included serial releases of PIT-tagged hatchery subyearling Chinook salmon upstream from Lower Granite Dam, but these were discontinued in 2003. Instead, we estimated survival from a large number of PIT-tagged fish released upstream from Lower Granite Dam to evaluate transportation from Snake River Dams. During late May and early June 2003, 68,572 hatchery-reared subyearling fall Chinook salmon were PIT tagged at Lyons Ferry Hatchery, trucked upstream, acclimated, and released at Couse Creek and Pittsburg Landing in the free-flowing Snake River. We estimated survival for these fish from release to Lower Granite Dam tailrace. In comparison to wild subyearling fall Chinook salmon PIT tagged and released in the free-flowing Snake River, the hatchery fish we released traveled faster and had higher survival to Lower Granite Dam, likely because of their larger size at release. For fish left in the river to migrate we estimated survival from Lower Granite Dam tailrace to McNary Dam tailrace. Each year, a small proportion of fish released are not detected until the following spring. However, the number of fish released in 2003 that overwintered in the river and were detected as they migrated seaward as yearlings in 2004 was small (<1.0%) and had minimal effect on survival estimates. We evaluated a prototype floating PIT-tag detector deployed upstream from Lower Granite reservoir to collect data for use in partitioning travel time and survival between free-flowing and reservoir habitats. The floating detector performed poorly, detecting only 27 PIT tags in 340 h of operation from a targeted release of 68,572; far too few to partition travel time and survival between habitats. We collected river-run subyearling Chinook salmon (mostly wild fish from the Hanford Reach) at Mc

  19. Narva kant vajab oma brändi / Esko Passila

    Index Scriptorium Estoniae

    Passila, Esko

    2007-01-01

    Autor leiab, et Ida-Virumaa peaks looma ühtse tugeva brändi, mille alusel tulevikuotsuseid teha. See peaks tooma välja soodsa asukoha eelised, võimalused, tööjõu kättesaadavuse, kasutusvalmid maa-alad, hinnad jne.

  20. Moisture and temperature in a proppant-enveloped silt block of a recharge dam reservoir: Laboratory experiment and 1-D mathematical modelling

    Directory of Open Access Journals (Sweden)

    Anvar Kacimov

    2018-01-01

    Full Text Available Mosaic 3-D cascade of parallelepiped-shaped silt blocks, which sandwich sand- lled cracks, has been discovered in the eld and tested in lab experiments. Controlled wetting-drying of these blocks, collected from a dam reservoir, mimics field ponding-desiccation conditions of the topsoil layer subject to caustic solar radiation, high temperature and wind, typical in the Batinah region of Oman. In 1-D analytical modelling of a transient Richards’ equation for vertical evaporation, the method of small perturbations is applied, assuming that the relative permeability is Avery-anov’s 3.5-power function of the moisture content and capillary pressure is a given (measured function. A linearized advective dispersion equation is solved with respect to the second term in the series expansion of the moisture content as a function of spatial coordinates and time. For a single block of a nite thickness we solve a boundary value problem with a no- ow condition at the bottom and a constant moisture content at the surface. Preliminary comparisons with theta-, TDR- probes measuring the moisture content and temperature at several in-block points are made. Results corroborate that a 3-D heterogeneity of soil physical properties, in particular, horizontal and vertical capillary barriers emerging on the interfaces between silt and sand generate eco-niches with stored soil water compartments favourable for lush vegetation in desert conditions. Desiccation significantly increases the temperature in the blocks and re-wetting of the blocks reduces the daily average and peak temperatures, the latter by almost 15°C. This is important for planning irrigation in smartly designed soil substrates and sustainability of wild plants in the region where the top soil peak temperature in the study area exceeds 70°C in Summer but smartly structured soils maintain lash vegetation. Thee layer of dry top-blocks acts as a thermal insulator for the subjacent layers of wet blocks that

  1. Prediction of downstream geomorphological changes after dam construction: A stream power approach

    DEFF Research Database (Denmark)

    Brandt, Anders

    2000-01-01

    physical geography, hydrology, reservoirs, sediment transport, erosion, sedimentation, fluvial geomorphology, dams, river channel geometry......physical geography, hydrology, reservoirs, sediment transport, erosion, sedimentation, fluvial geomorphology, dams, river channel geometry...

  2. Seston fluxes in the dam of a Colombian tropical reservoir Fluxos de seston na barragem de um reservatório tropical Colombiano

    Directory of Open Access Journals (Sweden)

    Yimmy Montoya Moreno

    2010-09-01

    Full Text Available AIM: Quantify sedimentation rates in Rio Grande II reservoir, his temporal fluctuation, and the degree of mineralization of the material that reaches the sediment; METHODS: A system of five sedimentation traps was used to evaluate temporal variability of seston flux and the total sedimentation in the dam of Río Grande II reservoir Antioquia-Colombia (6° 32, 62' N, 75° 27, 27' W; RESULTS: The flux total solids presented a mean value of 4540 g.m-2.d-1 with a range oscillating between 229 and 18573 g.m-2.d-1, being the fixed and suspended fraction the most of the total solids. It was evidenced that the largest fluxes were presented between the fourth and the fifth trap (the nearest to the bottom due to hypolimnetic fluxes which contain materials of the tributaries and resuspended material. The first three traps collected particles that settled from the column of water without evaluate the overtrapping for resuspension. In some samplings the mineralization between the third and fourth trap was maximum (100%. The fluxes of seston particles presented a mean value of 3554 g.m-2.d-1 with a range between 810 and 18955 g.m-2.d-1, being predominant the inorganic fraction; CONCLUSIONS: The seston is mainly of allochthonous origin and variated in the time and in the vertical level. There was not found a significant relationship between level of the reservoir and the mixing depth with the fluxes of total sedimentation and seston; however there was relation between seston concentration and wind speed.OBJETIVO: Quantificar taxas de sedimentação no reservatório do Rio Grande II, sua flutuação temporal, bem como o grau de mineralização do material que chega ao sedimento; MÉTODOS: Foi utilizado um sistema de cinco armadilhas de sedimentação para avaliar a variabilidade temporal do fluxo total de seston e a sedimentação no reservatório Rio Grande II, Antioquia-Colombia (6° 32, 62' N, 75° 27, 27' W; RESULTADOS: Fluxos de seston na barragem de um

  3. Seismicity around the reservoirs of the Jaguari dam, Jaguari River, Sao Paulo State, Brazil; Atividade sismica nas proximidades do reservatorio da barragem de Jaguari, Rio Jaguari (SP)

    Energy Technology Data Exchange (ETDEWEB)

    Mioto, Jose Augusto; Ribotta, Luis Carlos [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    1995-12-31

    The impounding of water of the Jaguari reservoir began in 1969. In 1972 the oscillations of its reservoir water level occurred many times. In December of 1985 fourteen shocks were detected in the vicinities of the reservoir by fourth seismographic station; presently there is only one station for seismic monitoring (maximum magnitude mR = 3,0; highest intensity V-VI MM; greatest depth = 1,7 km). Seismic studies about the Paraibuna-Paraitinga induced seismicity carried out in 1989, showed many other events near the Jaguari reservoir, between 1977 and 1985. Both seismic activity, in Jaguari and Paraibuna-Paraitinga have the same configuration, of high and low incidence of seisms and fluctuations in theirs reservoir water levels. Moreover, both hydraulic projects are located in a region of crustal raising since the Mesozoic-Cenozoic period. Seismic activities in the vicinities of the Jaguari reservoir is supposed a new case of reservoir-induced seisms in Southern Brazil, 50 km far from the Paraibuna-Paraitinga reservoir. (author). 6 refs., 2 figs

  4. Ecohydrology of a Dammed Amazon

    Science.gov (United States)

    Timpe, K. A.; Kaplan, D. A.

    2016-12-01

    The Amazon River watershed is the world's largest river basin and provides >US$30 billion/yr in ecosystem services to local populations, national societies and humanity at large. Construction of >30 large hydroelectric dams and >170 small dams in the Brazilian Amazon is currently underway as a result of governmental plans geared toward increased energy security, economic growth, improved living standards and industrialization. Changes in the Amazon's freshwater ecosystems from the development of hydropower will have a cascade of physical, ecological, and social effects at local to global scales. Here we demonstrate the extensive and large-scale effects of hydroelectric dams in the Amazon region on hydrologic parameters calculated using the Indicators of Hydrologic Alteration (IHA) method applied to 33 small and large dams in the Brazilian Amazon. Our analysis provides the first holistic assessment of hydrological alterations (HA) caused by Amazonian dams and offers insight on the primary physical and management drivers of dam impacts. Across sites, results show that dams have affected all ecologically important flow characteristics (i.e., magnitude, duration, timing, frequency and rate of change of pulse events). While each dam/river system are unique, some dams cause substantially greater HA. The "worst" dams were Balbina (HA=108%), Manso (HA=62%), and Serra da Mesa (HA=48%). All three are "large" dams with substantial reservoirs, however Serra da Mesa produces 6 times more electricity than either Balbina or Manso, with lower impact. The most dramatic dam-induced shifts in hydrologic regime were related to the frequency/duration and frequency/rate of change of pulse events. HA on rivers with multiple dams was only 8% higher than those with individual dams. Dam elevation and reservoir area were the best environmental predictors of HA. Results suggest that hydrological impacts from dams are similar among temperate and tropical climates (i.e., peak flows are often

  5. Assessment of dam construction impact on hydrological regime changes in lowland river – A case of study: the Stare Miasto reservoir located on the Powa River

    Directory of Open Access Journals (Sweden)

    Sojka Mariusz

    2016-09-01

    Full Text Available The purpose of the presented research is analysis and assessment of the Stare Miasto reservoir impact on the hydrological regime changes of the Powa River. The reservoir was built in 2006 and is located in the central part of Poland. The total area of inundation in normal conditions is 90.68 ha and its capacity is 2.159 mln m3. Hydrological regime alteration of the Powa River is analysed on the basis of daily flows from the Posoka gauge station observed during period 1974–2014. Assessment of hydrological regime changes is carried out on the basis of Range of Variability Approach (RVA method. All calculations are made by means of Indicators of Hydrologic Alteration (IHA software version 7.1.0.10. The analysis shows that the Stare Miasto reservoir has a moderate impact on hydrological regime of the Powa River. Construction of the reservoir has positive effect on stability of minimal flows, which are important for protection of river ecosystems. The results obtained indicate that the Stare Miasto reservoir reduces a spring peak flow and enables to moderate control of floods.

  6. Dam safety guidelines

    International Nuclear Information System (INIS)

    Anderson, I.; Raska, C.

    1999-01-01

    The objectives of this report are (1) to define the requirements and outline the guidelines so that the safety of existing dams can be investigated and identified in a consistent and adequate manner across Canada, (2) to enable the consistent evaluation of dam safety deficiencies leading to the construction of improvements which contribute to dam safety, and (3) to provide a basis for dam safety legislation and regulation. The document contains statements of safety requirements, explanatory guidelines and commentaries. These clarify and expand upon some of the requirements and guidelines, and discuss alternative approaches to meeting the safety requirements. The report is divided into 12 sections which address criteria for earthquakes, floods and emergency preparedness. Geotechnical considerations and the effects of the reservoir environment are also discussed. These guidelines are not intended as design specifications for dam safety evaluation, design, construction or rehabilitation. From time to time, portions of these guidelines will be updated and issued to CDSA members. The user is responsible for ensuring that the most up-to-date version is being used. refs, tabs

  7. Establishment and implementation of a dam safety program

    International Nuclear Information System (INIS)

    Rogers, R.

    1993-01-01

    The reasons for implementing dam safety programs are discussed, and a model for a dam safety program is outlined. A dam safety program should consist of regular inspections, reservoir monitoring, an emergency action plan, remedial work, registration permit reports, routine maintenance, and careful water supply management. Recommendations on initiating and implementing a dam safety program include: communication with the appropriate regulatory authority; communication with maintenance crews; communication with management; a well-rounded dam inspection team; the inclusion of maintenance items in dam modification projects; visual inspection of the dam; monitoring key indicators such as monuments and piezometer readings; and keeping current with the literature. 4 refs

  8. 43 CFR 418.18 - Diversions at Derby Dam.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Diversions at Derby Dam. 418.18 Section... Operations and Management § 418.18 Diversions at Derby Dam. (a) Diversions of Truckee River water at Derby Dam must be managed to maintain minimum terminal flow to Lahontan Reservoir or the Carson River except...

  9. Physical and biological responses to an alternative removal strategy of a moderate-sized dam in Washington, USA.

    Science.gov (United States)

    Shannon Claeson; B. Coffin

    2015-01-01

    Dam removal is an increasingly practised river restoration technique, and ecological responses vary with watershed, dam and reservoir properties, and removal strategies. Moderate-sized dams, like Hemlock Dam (7.9m tall and 56m wide), are large enough that removal effects could be significant, but small enough that mitigation may be possible through a modified dam...

  10. Alpine dams

    Directory of Open Access Journals (Sweden)

    Alain Marnezy

    2009-03-01

    Full Text Available Les barrages-réservoirs de montagne ont été réalisés initialement dans les Alpes pour répondre à la demande d’énergie en période hivernale. Une certaine diversification des usages de l’eau s’est ensuite progressivement développée, en relation avec le développement touristique des collectivités locales. Aujourd’hui, la participation des ouvrages d’Électricité De France à la production de neige de culture représente une nouvelle étape. Dans les régions où les aménagements hydroélectriques sont nombreux, les besoins en eau pour la production de neige peuvent être résolus par prélèvements à partir des adductions EDF. Les gestionnaires de stations échappent ainsi aux inconvénients liés à la construction et à la gestion des « retenues collinaires ». Cette évolution, qui concerne déjà quelques régions alpines comme la haute Maurienne ou le Beaufortin, apparaît comme une forme renouvelée d’intégration territoriale de la ressource en eau.Mountain reservoirs were initially built in the Alps to meet energy needs in the winter. A certain diversification in the uses of water then gradually developed, related to tourism development in the local communities. Today, the use of facilities belonging to EDF (French Electricity Authority to provide water for winter resorts to make artificial snow represents a new phase. By taking water from EDF resources to supply snow-making equipment, resort managers are thus able to avoid the problems related to the construction and management of small headwater dams. This new orientation in the use of mountain water resources already affects a number of alpine regions such as the Upper Maurienne valley and Beaufortain massif and represents a renewed form of the territorial integration of water resources.

  11. Estimated Loads of Suspended Sediment and Selected Trace Elements Transported through the Milltown Reservoir Project Area Before and After the Breaching of Milltown Dam in the Upper Clark Fork Basin, Montana, Water Year 2008

    Science.gov (United States)

    Lambing, John H.; Sando, Steven K.

    2009-01-01

    This report presents estimated daily and cumulative loads of suspended sediment and selected trace elements transported during water year 2008 at three streamflow-gaging stations that bracket the Milltown Reservoir project area in the upper Clark Fork basin of western Montana. Milltown Reservoir is a National Priorities List Superfund site where sediments enriched in trace elements from historical mining and ore processing have been deposited since the construction of Milltown Dam in 1907. Milltown Dam was breached on March 28, 2008, as part of Superfund remedial activities to remove the dam and contaminated sediment that had accumulated in Milltown Reservoir. The estimated loads transported through the project area during the periods before and after the breaching of Milltown Dam, and for the entire water year 2008, were used to quantify the net gain or loss (mass balance) of suspended sediment and trace elements within the project area during the transition from a reservoir environment to a free-flowing river. This study was done in cooperation with the U.S. Environmental Protection Agency. Streamflow during water year 2008 compared to long-term streamflow, as represented by the record for Clark Fork above Missoula (water years 1930-2008), generally was below normal (long-term median) from about October 2007 through April 2008. Sustained runoff started in mid-April, which increased flows to near normal by mid-May. After mid-May, flows sharply increased to above normal, reaching a maximum daily mean streamflow of 16,800 cubic feet per second (ft3/s) on May 21, which essentially equaled the long-term 10th-exceedance percentile for that date. Flows substantially above normal were sustained through June, then decreased through the summer and reached near-normal by August. Annual mean streamflow during water year 2008 (3,040 ft3/s) was 105 percent of the long-term mean annual streamflow (2,900 ft3/s). The annual peak flow (17,500 ft3/s) occurred on May 21 and was 112

  12. Spatio-temporal patterns of bacterioplankton production and community composition related to phytoplankton composition and protistan bacterivory in a dam reservoir

    Czech Academy of Sciences Publication Activity Database

    Šimek, Karel; Horňák, Karel; Jezbera, Jan; Nedoma, Jiří; Znachor, Petr; Hejzlar, Josef; Seďa, Jaromír

    2008-01-01

    Roč. 51, č. 3 (2008), s. 249-262 ISSN 0948-3055 R&D Projects: GA ČR(CZ) GA206/08/0015; GA ČR(CZ) GA206/05/0007; GA AV ČR(CZ) 1QS600170504 Institutional research plan: CEZ:AV0Z60170517 Keywords : bacterioplankton composition and production * algal-bacterial relationships * extracellular phytoplankton production * protistan bacterivory * phytoplankton community * reservoir * betaproteobacterial groups Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.190, year: 2008

  13. Physicochemical characteristics of undrainable water dams utilized ...

    African Journals Online (AJOL)

    pH, electro-conductivity and total dissoved solutes (TDS) were measured in-situ from three reservoirs (Gathathini, Lusoi and Kianda dams) differing in their habitat characteristics. Water samples were collected for determination of the ionic concentartions of the reservoirs. Water quality status differed markedly between sites, ...

  14. Groundwater Forecasting Optimization Pertain to Dam Removal

    Science.gov (United States)

    Brown, L.; Berthelote, A. R.

    2011-12-01

    There is increasing interest in removing dams due to changing ecological and societal values. Groundwater recharge rate is closely connected to reservoir presence or absence. With the removal of dams and their associated reservoirs, reductions in groundwater levels are likely to impact water supplies for domestic, industrial and agricultural use. Therefore accessible economic and time effective tools to forecast groundwater level declines with acceptable uncertainty following dam removals are critical for public welfare and healthy regional economies. These tools are also vital to project planning and provide beneficial information for restoration and remediation managements. The standard tool for groundwater forecasting is 3D Numerical modeling. Artificial Neural Networks (ANNs) may be an alternative tool for groundwater forecasting pertain to dam removal. This project compared these two tools throughout the Milltown Dam removal in Western Montana over a five year period. It was determined that ANN modeling had equal or greater accuracy for groundwater forecasting with far less effort and cost involved.

  15. Dredged Material Management Plan and Environmental Impact Statement. McNary Reservoir and Lower Snake River Reservoirs. Appendix C: Economic Analysis

    National Research Council Canada - National Science Library

    2002-01-01

    ...; for managment of dredged material from these reservoirs; and for maintenance of flow conveyance capacity at the most upstream extent of the Lower Granite reservoir for the remaining economic life of the dam and reservoir project (to year 2074...

  16. THE INFLUENCE OF THE HABITATS AND ANTHROPOGENIC PRESSURE ON BIRDS, OBSERVED DURING FEBRUARY 2013 – JANUARY 2014 ON THE DAM RESERVOIRS FROM THE ARGEŞ RIVER BETWEEN VÂLCELE AND GOLEŞTI

    Directory of Open Access Journals (Sweden)

    Adrian Mestecăneanu

    2016-07-01

    Full Text Available The habitats and the anthropogenic pressure are two major causes that affect the presence of birds in every place where they live. The species from the dam reservoirs from the Argeş River do not constitute an exception, the more so as these water bodies are created by people and are situated in an area with a dense network of human settlements. Even if the aspects were discussed with other occasions, we propound here another approaching. Some considerations regarding the main forms of anthropogenic pressure (the hydrotechnical factor, the anthropogenic disturb, the pollution with rubbish, the fishing and the nautical sporting activities exercised on the birds from the area are made. The anthropogenic disturb appeared to be the most important factor on the general scale, in opposition with the fishing and the nautical sporting activities, which, although have strong impact at local level, seem to be the least significant ones. Of the five accumulation lakes taken into consideration (Vâlcele, Budeasa, Bascov, Piteşti and Goleşti, Budeasa is the best affected and Goleşti, the least one. The habitats have a considerable importance, regarding the land cover, and a smaller one, from a phytocoenologic perspective.

  17. No immune responses by the expression of the yeast Ndi1 protein in rats.

    Directory of Open Access Journals (Sweden)

    Mathieu Marella

    Full Text Available BACKGROUND: The rotenone-insensitive internal NADH-quinone oxidoreductase from yeast, Ndi1, has been shown to work as a replacement molecule for complex I in the respiratory chain of mammalian mitochondria. In the so-called transkingdom gene therapy, one major concern is the fact that the yeast protein is foreign in mammals. Long term expression of Ndi1 observed in rodents with no apparent damage to the target tissue was indicative of no action by the host's immune system. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we examined rat skeletal muscles expressing Ndi1 for possible signs of inflammatory or immune response. In parallel, we carried out delivery of the GFP gene using the same viral vector that was used for the NDI1 gene. The tissues were subjected to H&E staining and immunohistochemical analyses using antibodies specific for markers, CD11b, CD3, CD4, and CD8. The data showed no detectable signs of an immune response with the tissues expressing Ndi1. In contrast, mild but distinctive positive reactions were observed in the tissues expressing GFP. This clear difference most likely comes from the difference in the location of the expressed protein. Ndi1 was localized to the mitochondria whereas GFP was in the cytosol. CONCLUSIONS/SIGNIFICANCE: We demonstrated that Ndi1 expression did not trigger any inflammatory or immune response in rats. These results push forward the Ndi1-based molecular therapy and also expand the possibility of using foreign proteins that are directed to subcellular organelle such as mitochondria.

  18. Do we need construct more dams?

    Science.gov (United States)

    Chen, J.; Shi, H.

    2013-12-01

    This paper reviews global dam development in association with the growths of global population, economy, and energy consumption in the past several decades, and also evaluates contributions of dam development to future world sustainable development. Eventually, this paper answers whether we need more dams in the future or not. The world population has rapidly increased from 1.6 billion in 1900, 2.5 billion in 1950, 6.1 billion in 2000, to 7.0 billion in 2011, and is projected to reach 9.5 billion in 2050; similarly, the world economy has dramatically expanded. To maintain socioeconomic development, the consumption of water, food and energy has increased rapidly as well. However, the total volume of available water resource over the world is limited, the food production largely depends on water supply, and the main energy sources are still oil, coal and gas at present, which are regarded as non-renewable resources. Accordingly, it is expected that we will face serious problems to deal with the challenges of water crisis, food security and energy shortage in the near future. In order to enhance the capability of regulating water resource, a great number of global dams (and related reservoirs) have been constructed in the last one hundred years; currently, almost all large rivers over the world have been regulated by dams. The reservoirs can supply sufficient water for irrigated land to ensure food production, and the associated hydropower stations can generate electricity. This article collects the dam data from the ICOLD (International Commission on Large Dams) and GRanD (Global Reservoir and Dam) databases, and some socioeconomic data, including population, economy, and consumptions of water, food and energy over the world. Analysis of these data reveals that global dam development has a great impact on the world sustainable development. Further, it is concluded that we need further dam development to maintain our future development.

  19. Dam spills and fishes

    International Nuclear Information System (INIS)

    1996-01-01

    This short paper reports the main topics discussed during the two days of the annual colloquium of the Hydro-ecology Committee of EdF. The first day was devoted to the presentation of the joint works carried out by EdF, the Paul-Sabatier University (Toulouse), the Provence St-Charles University (Marseille), the ENSAT (Toulouse) and the CEMAGREF (Lyon and Aix-en-Provence) about the environmental impact of dam spills on the aquatic flora and fauna downstream. A synthesis and recommendations were presented for the selection and characterization of future sites. The second day was devoted to the hydro-ecology study of the dam reservoir of Petit-Saut (French Guyana): water reoxygenation, quality evolution, organic matter, plankton, invertebrates and fishes. The 134 French dams concerned by water spills have been classified according to the frequency of spills, the variations of flow rates created, and their impacts on fishing, walking, irrigation, industry, drinking water, navigation, bathing. Particular studies on different sites have demonstrated the complexity of the phenomena involved concerning the impact on the ecosystems and the water quality. (J.S.)

  20. Dam Safety Concepts

    NARCIS (Netherlands)

    Duricic, J.

    2014-01-01

    The majority of dams constructed in the world are dams that can be categorized as embankment dams. Throughout history we can point to many failures of dams, and embankment dams in particular. Nowadays it is clear that the goal to construct stable dams has not been achieved, even with advanced

  1. Seismic risks at Elsie Lake Main Dam

    International Nuclear Information System (INIS)

    McCammon, N.R.; Momenzadeh, M.; Hawson, H.H.; Nielsen, N.M.

    1991-01-01

    The Elsie Lake dams are located on Vancouver Island in an area of high seismic risk. A safety review in 1986 indicated potential deficiencies in the earthfill main dam with respect to modern earthquake design standards. A detailed field investigation program comprising drilling and penetration tests was carried out and the results used in an assessment of seismic stability. A 0.8 m thick less dense layer in the granular shell of the dam, possibly caused by wet construction conditions, would likely liquefy in a major earthquake but sufficient residual strength would likely remain to prevent catastrophic failure. The dam shell might undergo some distortion, and an assessment was initiated to determine the requirements for reservoir drawdown following an extreme earthquake to ensure the timely lowering of the reservoir for inspection and repair. It was suggested that an adequate evacuation capability would be 25% and 50% drawdown in not more than 30 and 50 days, respectively. 9 refs., 11 figs., 1 tab

  2. 75 FR 15458 - Request for Small Reclamation Projects Act Loan To Construct Narrows Dam in Sanpete County, UT

    Science.gov (United States)

    2010-03-29

    ... Projects Act Loan To Construct Narrows Dam in Sanpete County, UT AGENCY: Bureau of Reclamation, Interior... construction by SWCD of the proposed Narrows Dam and reservoir, a non-Federal project to be located on... construction of the 17,000 acre-foot Narrows Dam and reservoir on Gooseberry Creek, pipelines to deliver the...

  3. Nonlinear analysis of concrete gravity dams under normal fault motion

    Directory of Open Access Journals (Sweden)

    Mehdi Alijani Ardeshir

    2016-09-01

    Full Text Available The importance of the seismic behavior of concrete gravity dams in their safety evaluation and stability is inevitable. Many factors affect the prediction of the behavior of concrete dams such as dam-foundation-reservoir interaction, dam and foundation cracking and also displacement due to fault movement that could causes nonlinear behavior. The aim of this study is nonlinear analysis of concrete gravity dams, including displacement caused by normal fault movement in the dam foundation. For this purpose, dam-foundation-reservoir system is modeled using Lagrangian method and analysis of system is done by finite element method. The coordinate smeared crack model based on the nonlinear fracture mechanics is used for crack modeling in the dam body and foundation. Using two separate method including split node technique and contact element, the fault movement are modeled and the position and angle of fault has been studied. To verify the results, dam crest displacement and crack profile in the body of a concrete gravity dam is presented as an example. The results show that low fault movement causes the cracks in the dam body and could be jeopardizes the stability and safety of concrete dam.

  4. Do Hydroelectric Dams Mitigate Global Warming? The Case of Brazil's Curuna Dam

    Energy Technology Data Exchange (ETDEWEB)

    Fearnside, P.M. [National Institute for Research in the Amazon (INPA), C.P. 478, 69011-970 Manaus, Amazonas (Brazil)

    2005-10-15

    Hydroelectric dams in tropical forest areas emit greenhouse gases, as illustrated by the Curuna dam in the Amazonian portion of Brazil. Emissions include carbon dioxide from decay of the above-water portions of trees that are left standing in the reservoir and methane from soft vegetation that decays under anaerobic conditions on the bottom of the reservoir, especially macrophytes (water weeds) and vegetation that grows in the drawdown zone and is flooded when the reservoir water level rises. Some methane is released from the reservoir surface through bubbling and diffusion, but larger amounts are released from water passing through the turbines and spillway. Methane concentration in the water increases with depth, and the turbines and spillway draw water from sufficient depth to have substantial methane content. In 1990 (13 years after filling), the Curuna Dam emitted 3.6 times more greenhouse gases than would have been emitted by generating the same amount of electricity from oil.

  5. The Total Risk Analysis of Large Dams under Flood Hazards

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2018-02-01

    Full Text Available Dams and reservoirs are useful systems in water conservancy projects; however, they also pose a high-risk potential for large downstream areas. Flood, as the driving force of dam overtopping, is the main cause of dam failure. Dam floods and their risks are of interest to researchers and managers. In hydraulic engineering, there is a growing tendency to evaluate dam flood risk based on statistical and probabilistic methods that are unsuitable for the situations with rare historical data or low flood probability, so a more reasonable dam flood risk analysis method with fewer application restrictions is needed. Therefore, different from previous studies, this study develops a flood risk analysis method for large dams based on the concept of total risk factor (TRF used initially in dam seismic risk analysis. The proposed method is not affected by the adequacy of historical data or the low probability of flood and is capable of analyzing the dam structure influence, the flood vulnerability of the dam site, and downstream risk as well as estimating the TRF of each dam and assigning corresponding risk classes to each dam. Application to large dams in the Dadu River Basin, Southwestern China, demonstrates that the proposed method provides quick risk estimation and comparison, which can help local management officials perform more detailed dam safety evaluations for useful risk management information.

  6. Verifying Pressure of Water on Dams, a Case Study.

    Science.gov (United States)

    Bayrak, Temel

    2008-09-03

    Sensing and monitoring deformation pattern of dams is often one of the most effective ways to understand their safety status. The main objective of the present study is to find the extent to which rising reservoir level affects the mechanism of deformation of the Yamula dam under certain changes in the reservoir level conditions during the first filling period. A new dynamic deformation analysis technique was developed to analyze four geodetic monitoring records consisting of vertical and horizontal displacements of nine object points established on the dam and six reference points surrounding it, to see whether the rising reservoir level is responsible for the vertical and horizontal deformations during the first filling period. The largest displacements were determined in the middle points of the dam construction. There is an apparent linear relationship between the dam subsidence and the reservoir level. The dynamic deformation model was developed to model this situation. The model infers a causative relationship between the reservoir level and the dam deformations. The analysis of the results determines the degree of the correlation between the change in the reservoir level and the observed structural deformation of the dam.

  7. Verifying Pressure of Water on Dams, a Case Study

    Directory of Open Access Journals (Sweden)

    Temel Bayrak

    2008-09-01

    Full Text Available Sensing and monitoring deformation pattern of dams is often one of the most effective ways to understand their safety status. The main objective of the present study is to find the extent to which rising reservoir level affects the mechanism of deformation of the Yamula dam under certain changes in the reservoir level conditions during the first filling period. A new dynamic deformation analysis technique was developed to analyze four geodetic monitoring records consisting of vertical and horizontal displacements of nine object points established on the dam and six reference points surrounding it, to see whether the rising reservoir level is responsible for the vertical and horizontal deformations during the first filling period. The largest displacements were determined in the middle points of the dam construction. There is an apparent linear relationship between the dam subsidence and the reservoir level. The dynamic deformation model was developed to model this situation. The model infers a causative relationship between the reservoir level and the dam deformations. The analysis of the results determines the degree of the correlation between the change in the reservoir level and the observed structural deformation of the dam.

  8. Measuring Inclinations in Cabril Dam with an Optoelectronic Sensor

    OpenAIRE

    Henriques, M. J.; Lima, J. N.; Oliveira, S.

    2012-01-01

    A high precision inclinometer was placed at the top gallery of Cabril dam, the highest dam in Portugal (132 m). Cabril dam has been presenting, since the first filling of the reservoir (1953), some horizontal cracks in the central upper zone. The dual axis inclinometer, with a recording measuring rate of 1 Hz, was installed for two days; during the same period a digital thermometer, for recording air temperatures, was placed next to the downstream face of the dam. The dam remained under norma...

  9. Deformation Monitoring and Bathymetry Analyses in Rock-Fill Dams, a Case Study at Ataturk Dam

    Science.gov (United States)

    Kalkan, Y.; Bilgi, S.

    2014-12-01

    Turkey has 595 dams constructed between 1936 and 2013 for the purposes of irrigation, flood control, hydroelectric energy and drinking water. A major portion of the dam basins in Turkey are deprived of vegetation and have slope topography on near surrounding area. However, landscaping covered with forest around the dam basin is desirable for erosion control. In fact; the dams, have basins deprived of vegetation, fill up quickly due to sediment transport. Erosion control and forestation are important factors, reducing the sediment, to protect the water basins of the dams and increase the functioning life of the dams. The functioning life of dams is as important as the investment and construction. Nevertheless, in order to provide safety of human life living around, well planned monitoring is essential for dams. Dams are very large and critical structures and they demand the use or application of precise measuring systems. Some basic physical data are very important for assessing the safety and performance of dams. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. Monitoring is an essential component of the dam after construction and during operation and must en­able the timely detection of any behavior that could deteriorate the dam, potentially result in its shutdown or failure. Considering the time and labor consumed by long-term measurements, processing and analysis of measured data, importance of the small structural motions at regular intervals could be comprehended. This study provides some information, safety and the techniques about the deformation monitoring of the dams, dam safety and related analysis. The case study is the deformation measurements of Atatürk Dam in Turkey which is the 6th largest dam of world considering the filling volume of embankment. Brief information is given about the

  10. The Role of Rainfall Variability in Reservoir Storage Management at ...

    African Journals Online (AJOL)

    Bheema

    The objective is to develop functional hydrological relationship between (rainfall, inflow, reservoir storage and turbine releases) over the dam. This will provide scientific basis for operational decisions which can lead to optimum power plant utilization. 1.1. The Study Area. The study area is the Shiroro dam reservoir.

  11. Dams, fish and fisheries: opportunities, challenges and conflict resolution

    National Research Council Canada - National Science Library

    Marmulla, Gerd

    2001-01-01

    ...) and FAO for the purpose of WCD's global reviews on "Dams and Development". Characteristics of river and reservoir in Africa, Asia, Latin America and the Carabbean, as well as for the Commonwealth of Independent States, are given...

  12. Large dams and risk management

    International Nuclear Information System (INIS)

    Cazelais, N.

    2003-01-01

    In July 1996, Quebec's Saguenay region was subjected to intensive rainfall which caused severe floods and uncontrolled release of several reservoirs, resulting in extensive damage to dam structures and reservoirs. The probability of occurrence for that disaster was 1:10,000. Following the disaster, the Quebec government established a dam management body entitled the Commission scientifique et technique sur la gestion des barrages, which pointed out several safety shortcomings of existing dams. Many were either very old or had undergone significant function change without being subsequently re-evaluated. A report by the Commission stated that damage following the floods could have been limited if the design and operating standards of the dams had been more stringent. A Dam Safety Act was adopted by the Quebec National Assembly on May 30, 2000 following recommendations to retain safer structures. The Act demands regular reporting of operating procedures. Seismic activity was noted as being a topic that requires in-depth examination since Quebec's St. Lawrence Valley, particularly the Charlevoix region, is one of Canada's largest seismic zones. The other is on the west coast in British Columbia. Earthquakes in Quebec are less intense than the ones in British Columbia, but they have higher frequency content which exerts a quasi-resonance wave effect which impacts roads, bridges, buildings and hydroelectric generating facilities. Hydro-Quebec is a public utility which owns 563 retaining structures, of which 228 are ranked as large dams that measure more than 15 metres high, 400 metres long and with a reservoir capacity of more than 1 million cubic metres of water. Hydro-Quebec addresses hydrological, seismic, technological and human risks through a dam safety procedure that includes structured plans for choosing best alternatives through staged exercises. Hazard levels are minimized through the adoption of emergency, prevention and alleviation measures. The utility

  13. Poroid Fungi of Hungary in the Collection of Zoltán Igmándy

    Directory of Open Access Journals (Sweden)

    SZABÓ, Ilona

    2012-01-01

    Full Text Available Zoltán Igmándy (1925–2000, prominent Hungarian mycologist, worked as professor of forest protection at the University of West-Hungary Sopron. His main research area was the investigation of wood-inhabiting poroid fungi of Hungary, their occurrence and importance in forest pathology and wood protection. During his 40 years of scientific activity Igmándy created a rich fungal collection (herbarium Z. Igmándy which includes the complete polypore mycota known to occur in Hungary until 1990. The paper provides a brief compendium of the collection, a list of species characterised by the number of specimens, number of sampling locations and enumeration of the hosts and substrata of the specimens.

  14. Dam overtopping risk using probabilistic concepts – Case study: The Meijaran Dam, Iran

    Directory of Open Access Journals (Sweden)

    Ehsan Goodarzi

    2013-06-01

    Full Text Available Hydrologic risk assessment and uncertainty analysis by mathematical and statistical methods provide useful information for decision makers. This study presents the application of risk and uncertainty analysis to dam overtopping due to various inflows and wind speeds for the Meijaran Dam in the north of Iran. The procedure includes univariate flood and wind speed frequency analyses, reservoir routing, and integration of wind set-up and run-up to calculate the reservoir water elevation. Afterwards, the probability of overtopping was assessed by applying two uncertainty analysis methods (Monte Carlo simulation and Latin hypercube sampling, and considering the quantile of flood peak discharge, initial depth of water in the reservoir, and spillway discharge coefficient as uncertain variables. The results revealed that rising water level in the reservoir is the most important factor in overtopping risk analysis and that wind speed also has a considerable impact on reservoirs that are placed in windy areas.

  15. NDI Acquisition. An Alternative to Business as Usual. Report of the DSMC 1991-1992 Military Research Fellows

    Science.gov (United States)

    1992-10-01

    investigation. user requirements or thresholds are met. In determining NDI acquisition viability , NDI Market surveillance is defined as the ongoing systems or...meditate and stir its yogurt (organic, of course) to a different drummer. 6 The North Face has changed with the times, yet even today the executives who

  16. Dam impacts on and restoration of an alluvial river-Rio Grande, New Mexico

    Science.gov (United States)

    Gigi Richard; Pierre Julien

    2003-01-01

    The impact of construction of dams and reservoirs on alluvial rivers extends both upstream and downstream of the dam. Downstream of dams, both the water and sediment supplies can be altered leading to adjustments in the river channel geometry and ensuing changes in riparian and aquatic habitats. The wealth of pre and post-regulation data on the Middle Rio Grande, New...

  17. study and analysis of asa river hypothetical dam break using hec-ras

    African Journals Online (AJOL)

    Windows User

    Impounded reservoirs provide beneficial functions such as flood control, recreation, hydropower and water supply but they also carry potential risks. Spontaneous dam break phenomenon can occur and the resultant flooding may cause substantial loss of life and property damage downstream of the dam. A hypothetical dam ...

  18. Monitoring the structural integrity of large concrete dams: the case of Cabril dam, Portugal

    OpenAIRE

    Oliveira, S.; Ferreira, I.; Berberan, A. L.; Mendes, P.; Boavida, J.; Baptista, B.

    2010-01-01

    The safety control of large dams under static and dynamic loads, involving observation data and numerical modeling, is now one of the challenges of structural engineering. The complexity of the dam-reservoir-foundation geometry, the presence of different types of discontinuities, the water-structure interaction, the influence of thermal and water level variations, the development of deterioration processes over time and the occurrence of exceptional events such as major floods or earthquakes,...

  19. NRC inventory of dams

    International Nuclear Information System (INIS)

    Lear, G.E.; Thompson, O.O.

    1983-01-01

    The NRC Inventory of Dams has been prepared as required by the charter of the NRC Dam Safety Officer. The inventory lists 51 dams associated with nuclear power plant sites and 14 uranium mill tailings dams (licensed by NRC) in the US as of February 1, 1982. Of the 85 listed nuclear power plants (148 units), 26 plants obtain cooling water from impoundments formed by dams. The 51 dams associated with the plants are: located on a plant site (29 dams at 15 plant sites); located off site but provide plant cooling water (18 dams at 11 additional plant sites); and located upstream from a plant (4 dams) - they have been identified as dams whose failure, and ensuing plant flooding, could result in a radiological risk to the public health and safety. The dams that might be considered NRC's responsibility in terms of the federal dam safety program are identified. This group of dams (20 on nuclear power plant sites and 14 uranium mill tailings dams) was obtained by eliminating dams that do not pose a flooding hazard (e.g., submerged dams) and dams that are regulated by another federal agency. The report includes the principal design features of all dams and related useful information

  20. Seasonal occurrence of anoxygenic photosynthesis in Tillari and Selaulim reservoirs, Western India

    Digital Repository Service at National Institute of Oceanography (India)

    Kurian, S.; Roy, R.; Repeta, D.J.; Gauns, M.; Shenoy, D.M.; Suresh, T.; Sarkar, A.; Narenkar, G.; Johnson, C.G.; Naqvi, S.W.A.

    Phytoplankton and bacterial pigment compositions were determined by high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) in two freshwater reservoirs (Tillari Dam and Selaulim Dam), which are located...

  1. Factors influencing hysteresis characteristics of concrete dam deformation

    Directory of Open Access Journals (Sweden)

    Jia-he Zhang

    2017-04-01

    Full Text Available Thermal deformation of a concrete dam changes periodically, and its variation lags behind the air temperature variation. The lag, known as the hysteresis time, is generally attributed to the low velocity of heat conduction in concrete, but this explanation is not entirely sufficient. In this paper, analytical solutions of displacement hysteresis time for a cantilever beam and an arch ring are derived. The influence of different factors on the displacement hysteresis time was examined. A finite element model was used to verify the reliability of the theoretical analytical solutions. The following conclusions are reached: (1 the hysteresis time of the mean temperature is longer than that of the linearly distributed temperature difference; (2 the dam type has a large impact on the displacement hysteresis time, and the hysteresis time of the horizontal displacement of an arch dam is longer than that of a gravity dam; (3 the reservoir water temperature variation lags behind of the air temperature variation, which intensifies the differences in the horizontal displacement hysteresis time between the gravity dam and the arch dam; (4 with a decrease in elevation, the horizontal displacement hysteresis time of a gravity dam tends to increase, whereas the horizontal displacement hysteresis time of an arch dam is likely to increase initially, and then decrease; and (5 along the width of the dam, the horizontal displacement hysteresis time of a gravity dam decreases as a whole, while the horizontal displacement hysteresis time of an arch dam is shorter near the center and longer near dam surfaces.

  2. Validation of the Greek translation of the Nursing Dimensions Inventory questionnaire (NDI-35).

    Science.gov (United States)

    Kotrotsiou, Evagelia; Gouva, Mary; Kotrotsiou, Stiliani; Malliarou, Maria; Paralikas, Theodosios

    2014-05-08

    The concept of care is a fundamental issue in nursing science. Therefore the development and the use of tools for assessing care is an imperative for the nursing profession. The NDI-35 questionnaire is one such tool for assessing the nursing care. The purpose of this paper is to adapt and use the NDI-35 questionnaire in Greek nursing practice. A translation and validation of NDI-35 questionnaire is performed. Exploratory factor analyses, as well as internal consistency and test-retest analyses, were conducted. Forward translations from English were produced by three independent Greek translators and then back translations by five independent bilingual translators. The Greek NDI-35 questionnaire that was produced was administered to 200 nurses (144 women and 56 men) from tertiary and secondary health care facilities. Data were analyzed using principal component analysis and Cronbach's alpha. One hundred and eighty four nurses that answered the NDI-35 questionnaire were graduates from the Technological Educational Institute (T.E.I.) and 64% of the respondents had more than 15 years of professional experience. Two subscales arbitrarily called "clinical work" and "patient needs" emerged, with the mean "clinical work" subscale score being at 70.16 ±12.90 (a maximum of 85) and mean "patient needs" subscale at 21.49± 6.16. Considerable differences in scoring among different items were observed when the NDI-35 answers were compared to their Greek counterparts'. Results confirmed that: (a) the translated versions are an accurate translation of the original, (b) factor analyses established similar factor solutions as that of the English versions, (c) reliability coefficients are satisfactory (i.e., Cronbach's ? coefficients and test-retests), and (d) construct validity revealed similarities between English and Greek versions, replications consistent with past research, as well as differences explained through theoretical frameworks. Therefore, both scales were accepted as

  3. Aspects of limnological studies of Tagwai dam, Minna, Niger state ...

    African Journals Online (AJOL)

    The seasonal variations in the physico-chemical characteristics of Tagwai dam in relation to their potential for fish production were studied for twelve months. Five sampling stations were located on the reservoir. The stations were established based on the major tributaries to the reservoir and importance of site.

  4. The Dams and Monitoring Systems and Case Study: Ataturk and Karakaya Dams

    Science.gov (United States)

    Kalkan, Y.; Bilgi, S.; Gülnerman, A. G.

    2017-12-01

    Dams are among the most important engineering structures used for flood controls, agricultural purposes as well as drinking and hydroelectric power. Especially after the Second World War, developments on the construction technology, increase the construction of larger capacity dams. There are more than 150.000 dams in the world and almost 1000 dams in Turkey, according to international criteria. Although dams provide benefits to humans, they possess structural risks too. To determine the performance of dams on structural safety, assessing the spatial data is very important. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. These physical data are measured and monitored by the instruments and equipment. Dams and their surroundings have to be monitored by using essential methods at periodic time intervals in order to determine the possible changes that may occur over the time. Monitoring programs typically consist of; surveillance or visual observation. These programs on dams provide information for evaluating the dam's performance related to the design intent and expected changes that could affect the safety performance of the dam. Additionally, these programs are used for investigating and evaluating the abnormal or degrading performance where any remedial action is necessary. Geodetic and non-geodetic methods are used for monitoring. Monitoring the performance of the dams is critical for producing and maintaining the safe dams. This study provides some general information on dams and their different monitoring systems by taking into account two different dams and their structural specifications with the required information. The case study in this paper depends on a comparison of the monitoring surveys on Atatürk Dam and Karakaya Dam, which are constructed on Firat River with two different structural

  5. TYPOLOGY OF LARGE DAMS. A REVIEW

    Directory of Open Access Journals (Sweden)

    Gheorghe ROMANESCU

    2015-06-01

    Full Text Available The dams represent hydrotechnical constructions meant to ensure a judicious use of water resources. The international literature is extremely rich in data regarding the large dams on Earth. In this context, a hierarchy of the main dams is attempted and the role they play in the economic development of the regions they were built in is underlined. The largest dams are built on the big rivers in Asia, North America, South America and Africa. The reservoirs have multiple roles: electricity production, drinking or industrial water supply, irrigations, recreation, etc. High costs and land fragility do not allow the construction of dams in the places most affected by drought or flood. This is why they are usually built in mountainous areas, at great distance from the populated centres. On the Romanian territory, there are 246 large dams, built in the hydrographical basins of Siret, Olt, Arges, Somes, etc. The largest rivers on Earth, by discharge, (Amazon and Zair do not also include the largest dams because the landform and the type of flow have not allowed such constructions.

  6. Yeast AMID homologue Ndi1p displays respiration-restricted apoptotic activity and is involved in chronological aging.

    Science.gov (United States)

    Li, Wei; Sun, Libo; Liang, Qiuli; Wang, Juan; Mo, Weike; Zhou, Bing

    2006-04-01

    Apoptosis-inducing factor (AIF) and AIF-homologous mitochondrion-associated inducer of death (AMID) are both mitochondrial flavoproteins that trigger caspase-independent apoptosis. Phylogenetic analysis suggests that these two proteins evolutionarily diverge back from their common prokaryote ancestor. Compared with AIF, the proapoptotic nature of AMID and its mode of action are much less clarified. Here, we show that overexpression of yeast AMID homologue internal NADH dehydrogenase (NDI1), but not external NADH dehydrogenase (NDE1), can cause apoptosis-like cell death, and this effect can be repressed by increased respiration on glucose-limited media. This result indicates that the regulatory network of energy metabolism, in particular the cross-talk between mitochondria and the rest of the cell, is involved in Ndi1p-induced yeast cell apoptosis. The apoptotic effect of NDI1 overexpression is associated with increased production of reactive oxygen species (ROS) in mitochondria. In addition, NDI1 overexpression in sod2 background causes cell lethality in both fermentable and semifermentable media. Interruption of certain components in the electron transport chain can suppress the growth inhibition from Ndi1p overexpression. We finally show that disruption of NDI1 or NDE1 decreases ROS production and elongates the chronological life span of yeast, accompanied by the loss of survival fitness. Implication of these findings for Ndi1p-induced apoptosis is discussed.

  7. The Neck Disability Index-Russian Language Version (NDI-RU): A Study of Validity and Reliability.

    Science.gov (United States)

    Bakhtadze, Maxim A; Vernon, Howard; Zakharova, Olga B; Kuzminov, Kirill O; Bolotov, Dmitry A

    2015-07-15

    Cross-cultural adaptation and psychometric testing. To perform a validated Russian translation and then to evaluate the validity and reliability of the Russian language version of the Neck Disability Index (NDI-RU). Neck pain is highly prevalent and can greatly affect daily activity. The Neck Disability Index (NDI) is the most frequently used scale for self-rating of disability due to neck pain. Its translated versions are applied in many countries. However, the Russian language version of the NDI has not been developed yet. Cross-cultural adaptation of the NDI-RU was performed according to established guidelines. Then, the NDI-RU was evaluated for content validity, concurrent criterion validity, internal consistency, test-retest reliability, factor structure, and minimum detectable change. Two hundred thirty-two patients took part in the study in total: 109 in validity (39.5 ± 10 yr), 123 in reliability (38.4 ± 11 yr; 80 in the test-retest phase). A culturally valid translation was achieved. NDI-RU total scores were distributed normally. Floor/ceiling effects were absent. Good values of Cronbach α were obtained for each item (from 0.80 to 0.84) and for the total NDI-RU (0.83). A 2-factor solution was found for the NDI-RU. The average interitem correlation coefficient was 0.53. Intraclass correlation coefficients for test-retest reliability coefficients ranged from 0.65 to 0.92 for different items and 0.91 for the total NDI-RU. Moderate correlation (Spearman rs = 0.62; P Russian language version of the Neck Disability Index resulted in a valid, reliable instrument that can be used both in clinical practice and scientific investigations. 1.

  8. Assessment of dam effects on streams and fish assemblages of the conterminous USA.

    Science.gov (United States)

    Cooper, Arthur R; Infante, Dana M; Daniel, Wesley M; Wehrly, Kevin E; Wang, Lizhu; Brenden, Travis O

    2017-05-15

    Despite the prevalence of damming as a global disturbance to river habitats, detailed reach-based assessments of the ecological effects of dams are lacking, particularly across large spatial extents. Using data from nearly 50,000 large dams, we assessed stream network fragmentation and flow alteration by large dams for streams of the conterminous USA. We developed 21 dam metrics characterizing a diversity of dam influences operating at both localized (e.g., distances-to-dams) and landscape scales (e.g., cumulative reservoir storage throughout stream networks) for every stream reach in the study region. We further evaluated how dams have affected stream fish assemblages within large ecoregions using more than 37,000 stream fish samples. Streams have been severely fragmented by large dams, with the number of stream segments increasing by 801% compared to free-flowing streams in the absence of dams and a staggering 79% of stream length is disconnected from their outlet (i.e., oceans and Great Lakes). Flow alteration metrics demonstrate a landscape-scale disturbance of dams, resulting in total upstream reservoir storage volumes exceeding estimated annual discharge volumes of many of the nation's largest rivers. Further, we show large-scale changes in fish assemblages with dams. Species adapted to lentic habitats increase with dams across the conterminous USA, while rheophils, lithophils, and intolerant fishes decrease with dams. Overall, fragmentation and flow alteration by dams have affected fish assemblages as much or more than other anthropogenic stressors, with dam effects generally increasing with stream size. Dam-induced stream fragmentation and flow alteration are critical natural resource issues. This study emphasizes the importance of considering dams as a landscape-scale disturbance to river habitats along with the need to assess differential effects that dams may have on river habitats and the fishes they support. Together, these insights are essential for

  9. Studies Regarding the Safety in Operation of Ezer Reservoir

    Directory of Open Access Journals (Sweden)

    Balan Isabela

    2014-05-01

    Full Text Available The dam of the non-permanent reservoir Ezer, located on Jijia river is an earth dam with a maximum height of 6.18 m, which provides a global retention to the canopy of 10.330 million cubic meters. The dam founded on weak, muddy soils suffered in the years 1989 and 1992 downstream slope failures of the fillings. It was found that hydrostatic levels were high in the piezometric wells and that consolidation of the foundation soil was reduced. This paper presents a brief history of the dam and aspects regarding the behaviour monitoring of Ezer non-permanent reservoir during the years 2000-2012.

  10. A look at the ASEAN-NDI: building a regional health R&D innovation network.

    Science.gov (United States)

    Montoya, Jaime C; Rebulanan, Carina L; Parungao, Nico Angelo C; Ramirez, Bernadette

    2014-01-01

    Globally, there are growing efforts to address diseases through the advancement in health research and development (R&D), strengthening of regional cooperation in science and technology (particularly on product discovery and development), and implementation of the World Health Assembly Resolution 61.21 (WHA61.21) on the Global Strategy and Plan of Action on Public Health, Innovation, and Intellectual Property (GSPA-PHI). As such, the Association of Southeast Asian Nations (ASEAN) is responding to this through the establishment of the ASEAN-Network for Drugs, Diagnostics, Vaccines, and Traditional Medicines Innovation (ASEAN-NDI). This is important in the ASEAN considering that infectious tropical diseases remain prevalent, emerging, and reemerging in the region. This paper looks into the evolution of the ASEAN-NDI from its inception in 2009, to how it is at present, and its plans to mitigate public health problems regionally and even globally.

  11. The role of dams in development

    International Nuclear Information System (INIS)

    Cakmak, C.

    2001-01-01

    Although the amounts of water resources are enough for the entire world, the distribution of them in time and space shows uneven pattern. The water need is increasing with heavy industrial and agricultural requirements, while available water in the world remains as a fixed source. Economic growth, socio-cultural, and environmental developments are being realized following these changes. In order to achieve sustainable management of water resources, these changes have to be taken into consideration in water-related development projects. Demand for water is steadily increasing through out the world, even though the fresh water resources are limited and unevenly distributed, during the past three centuries, the amount of water withdrawn from fresh water resources has increased by a factor of 35, whereas world population by a factor 8. The engineering of dams, which provides regular water from reservoirs of dams to be used in case of demand pattern, is a vital part of the civilization. Dams have played a key rote in the development since the third millennium B C when the first great civilizations evolved on major rivers, such as Tigris-Euphrates, the Nile and the Indus. From these early times dams were built for flood control, water supply, irrigation and navigation. Dams also had been built to produce motive power and electricity since the industrial revolution. Development priorities changed, experience accumulated with the construction and operation of dams. Although the importance of water is well known in the human life and civilization around the world, still various groups argue that expected economic benefits are not being produced and that major environmental, economic and social costs are not being taken into account. By the end of 20th century, there were 45000 large dams in over 150 countries. According to the same classification there are 625 large dams in Turkey. All over the world, 50 % of the large dams were built mainly for irrigation. It is estimated

  12. Dam safety surveillance and sustainability: what can be learnt from isotope techniques?

    International Nuclear Information System (INIS)

    Wan Zakaria Wan Muhamad Tahir; Juhari Mohd Yusof; Johari Abd Latif

    2006-01-01

    In this paper, we briefly discuss in general the use of isotope (natural and artificial) tracer techniques for the investigation of dam safety surveillance and dam sustainability, particularly in diagnosing seepage and leakage problems in dams throughout its life cycle. Two selected case studies are presented. First study deals with the effort to develop a database comprising stable isotopic compositions of different water bodies at and around dams for a number of did-owned dams (existing and newly impounded reservoirs). It was aimed to provide information for later reference should seepage appearance and disappearance issues requiring analysis arise in the future as well as possibility of its inter-connection with reservoir and dam bodies (piezo metric wells). Preliminary results of isotopic dam signatures (fingerprinting) lines from piezo metric wells with respect to local meteoric water line, reservoir, leakage point(s) and dam designed seepage water are presented. Less apparent variations ( 198 Au and HTO) adsorbed onto fine powders were introduced into the reservoir and used to locate the seepage regions along the dam wall as well as reservoir bed by using radiation detectors. (Author)

  13. Simple Organic Salts Having a Naphthalenediimide (NDI) Core Display Multifunctional Properties: Gelation, Anticancer and Semiconducting Properties.

    Science.gov (United States)

    Parveen, Rumana; Maity, Nabasmita; Dastidar, Parthasarathi

    2018-01-18

    Following a supramolecular synthon rationale, a dicarboxylic acid derivative having a naphthalenediimide (NDI) core, namely, bis-N-carboxymethyl naphthalenediimide (NDI-G), was reacted with n-alkyl amines with varying alkyl chain lengths to generate a new series of primary ammonium dicarboxylate (PAD) salts. The majority of the salts (≈85 %) were found to gel various polar solvents. The gels were characterized by dynamic rheology and high-resolution electron microscopy. Single-crystal and powder X-ray diffraction analyses were used to study the supramolecular synthon present in one of the gelator salts (i.e., S8). Charge-transfer (CT)-induced gelation with donor molecules such as anthracene methanol (Ant) and pyrene (Py) was also possible with S8. The CT complex (S8.Ant) displayed anticancer activity as probed by cell migration assay on the highly aggresive breast cancer cell line MDA-MB-231. The DMSO gel of S8.Ant also displayed semiconducting behavior. To the best of our knowledge, simple organic salts with an NDI core that display such mulitifunctional properties are hitherto unknown. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Walter Bouldin Dam failure and reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    Walter Bouldin is one of several hydroelectric developments of Alabama Power Company. On February 10, 1975, an earth embankment section of Walter Bouldin Dam was breached, causing total evacuation of the forebay reservoir and rendering the 225-MW power plant inoperable. The Federal Power Commission instituted an investigation of the dam failure, and a report on the investigation was published in February 1976. Subsequently, an evidentiary hearing was held before an administrative law judge who issued his initial decision on August 19, 1976. The Commission, on April 21, 1977, issued its Opinion No. 795 in which it adopted the initial decision with modifications and terminated the investigation of failure of Walter Bouldin Dam. Opinion No. 795 directs the staff of the Bureau of Power to prepare, for the future guidance of the Commission, a report on the deficiencies which were found in its investigation, together with advice as to how such deficiencies have been and should be remedied. Also, it directs the staff of the Bureau of Power to address certain general recommendations included in the initial decision. This report was prepared in response to that directive and summaries information on the dam failure and its investigation; the evidentiary hearing; the judge's recommendations, the reconstruction of the Bouldin Dam; and the evalution and status of the Federal Energy Regulatory Commission Dam safety program. (LCL)

  15. A review of the effects of dams on the hydrology, water quality and ...

    African Journals Online (AJOL)

    In this paper, the effects of dams on the hydrology, water quality and invertebrate fauna of some Nigerian inland waters were reviewed. The freshwaters considered include Awba Reservoir (Oyo State), Shiroro Lake (Kaduna State), Moro Lake (Kwara State), Aiba Reservoir (Osun State), Ikpoba Reservoir (Edo State), Onah ...

  16. Hoover Dam Learning Packet.

    Science.gov (United States)

    Bureau of Reclamation (Dept. of Interior), Washington, DC.

    This learning packet provides background information about Hoover Dam (Nevada) and the surrounding area. Since the dam was built at the height of the Depression in 1931, people came from all over the country to work on it. Because of Hoover Dam, the Colorado River was controlled for the first time in history and farmers in Nevada, California, and…

  17. Canadian dam safety conference

    International Nuclear Information System (INIS)

    1991-01-01

    A conference was held on the subject of dam safety in Canada. Sessions concerned assessment of existing dam safety under seismic loading, seismic analysis of concrete and embankment dams, selection of seismic criteria, landslides, risk analysis, and floods. Separate abstracts have been prepared for 24 papers presented at the conference

  18. National Dam Inspection Program. Heilman Dam (NDI Number PA-00612, DER Number 13-005), Delaware River Basin, Carbon County, Pennsylvania. Phase I Inspection Report,

    Science.gov (United States)

    1981-02-01

    embankment. The construction reports indicate that the trench was excavated to a depth varying from 5 to 12 feet into a red sandstone or shale. Fissured ...that the sp.ilwav deteriorated seriously in tht 1930’s and that spillway walls and slab were repaired in 1941. The cement mortar slab showed

  19. Sediment Trapping by Dams Creates Methane Emission Hot Spots

    DEFF Research Database (Denmark)

    Maeck, Andreas; DelSontro, Tonya; McGinnis, Daniel F.

    2013-01-01

    Inland waters transport and transform substantial amounts of carbon and account for similar to 18% of global methane emissions. Large reservoirs with higher areal methane release rates than natural waters contribute significantly to freshwater emissions. However, there are millions of small dams...... worldwide that receive and trap high loads of organic carbon and can therefore potentially emit significant amounts of methane to the atmosphere. We evaluated the effect of damming on methane emissions in a central European impounded river. Direct comparison of riverine and reservoir reaches, where...... sedimentation in the latter is increased due to trapping by dams, revealed that the reservoir reaches are the major source of methane emissions (similar to 0.23 mmol CH4 m(-2) d(-1) vs similar to 19.7 mmol CH4 m(-2) d(-1), respectively) and that areal emission rates far exceed previous estimates for temperate...

  20. MORPHOLOGICAL EFFECT OF FLOOD WATER PATHWAY IN RESERVOIRS ON THE DISTRIBUTION OF SEDIMENTATION

    Directory of Open Access Journals (Sweden)

    Nsiri Ines

    2014-01-01

    Full Text Available In the North Africa countries, sediments deposition in the reservoir dams reduces the available surface water resources by 2 to 5% per year. In Tunisia, even many efforts are made to protect reservoir dams against soil erosion, the sedimentation still very important and constitute a limitation their time duration. In order to better understand these phenomena, bathymetry, turbidity, suspended soil particles and sediments were monitored for two reservoir dams in Tunisia: Joumine and Sejnane. These data will be interpreted in order to better characterize the sedimentation process and identify the determinant factors. Geostatistical Technics are applied to the bathymetric data in order to simulate the evolution, in time and in space, of the morphology of the reservoir dams and to estimate the distribution of the sediments deposits. The results for the two dams will permit to better understand the influence of the initial geometry of the reservoir dams on the sedimentation process and to deduce the main water flow path lines. Turbidity, suspended particles and sediments particles size profiles established for fixed stations in the reservoir dams will be interpreted in order to better understand the sedimentation process in the reservoirs dams and to characterize the influence of the initial reservoir geometry.

  1. Mechanics of slide dams

    International Nuclear Information System (INIS)

    Young, G.A.

    1970-01-01

    Studies which promote the use of nuclear energy for peaceful projects in engineering are sponsored by the Atomic Energy Commission under the Plowshare program. Specific projects being considered include the construction of harbors, canals, and dams. Of these projects, perhaps the most difficult to accomplish will be the latter. This paper which is in two parts considers the problems which are associated with the construction of slide dams with nuclear explosives. It examines first the characteristics of conventional earth and rock-fill dams which are based upon proven techniques developed after many years of experience. The characteristics of natural landslide dams are also briefly considered to identify potential problems that must be overcome by slide dam construction techniques. Second, the mechanics of slide dams as determined from small-scale laboratory studies are presented. It is concluded that slide dams can be constructed and that small-scale field tests and additional laboratory studies are justified. (author)

  2. Modelling the relationship between water level and vertical displacements on the Yamula Dam, Turkey

    Directory of Open Access Journals (Sweden)

    T. Bayrak

    2007-01-01

    Full Text Available Monitoring deformation pattern of dams is often one of the most effective ways to understand their safety status. The main objective of the study is to find the extent to which rising reservoir level affects the mechanism of deformation of The Yamula Dam under certain change in the reservoir level conditions during to the first filling period. Three different deformation analysis techniques, namely static, kinematic and dynamic, were used to analyze four geodetic monitoring records consisting of vertical displacements of nine object points established on the Dam and six reference points surrounding of it, to see whether the rising reservoir level have a role in the vertical deformations during the first filling period. The largest vertical displacements were in the middle of the dam. There is an apparent linear relationship between the dam subsidence and the reservoir level. A dynamic deformation model was developed to model this situation. The model infers a causative relationship between the reservoir level and the dam deformations. The analysis of the results determines the degree of the correlation between the change in the reservoir level and the observed structural deformation of the dam.

  3. Chemometric analysis of fatty acids profile of bream (Abramis brama, ruffe (Gymnocephalus cernua and perch (Perca fluviatilis meat from Lake Gopło and Włocławski Dam Reservoir

    Directory of Open Access Journals (Sweden)

    Bogumila Kupcewicz

    2012-01-01

    Full Text Available The 18 fatty acid profiles have been determined in 63 samples of muscles from three freshwater fish species: bream, ruffe and perch by gas chromatography method. The fish were collected in natural condition from two reservoirs located in central Poland: Lake Gopło and Włocławski Reservoir. A chemometric study with the use of hierarchical cluster analysis (HCA, principal component (PCA and stepwise linear discrimination analysis (LDA was applied to characterize, classify and differentiate collected samples. The chemometric techniques by using fatty acids content as descriptors allow clearly distinguish 6 groups according to fish species and their geographical origin.

  4. Rehabilitation of the John Hart dam

    International Nuclear Information System (INIS)

    Cathcart, D.S.

    1989-01-01

    The largest and most recent rehabilitation project undertaken by British Columbia Hydro involves the John Hart Dam on the Campbell River on Vancouver Island. This area has the potential for large earthquake events, with an earthquake with a 7.3 rating on the Richter scale occurring as construction was underway in 1946. Investigation showed that the dam and foundations were liable to liquify under low seismic loading, and the area downstream is now well developed and inhabited. Taking the 120 MW power plant out of operation would jeopardize the power supply to northern Vancouver Island, so it was decided to take immediate steps to stabilize the most sensitive areas and then to rehabilitate the dam to an acceptable level of earthquake resistance while maintaining the reservoir at normal level with the power plant in operation. Using innovative engineering techniques and careful monitoring, the project, which included foundation improvement under existing structures and virtual rebuilding of the earthdam, was completed without lowering the reservoir. In spite of the very restrictive environmental constraints, the work was done without unacceptable environmental impact or adverse public reaction. Costs were $24 million, slightly under budget. All instrumentation has been monitored on a regular basis and the performance of the dam is satisfactory. 7 figs

  5. Mathematical and field analysis of longitudinal reservoir infill

    Science.gov (United States)

    Ke, W. T.; Capart, H.

    2016-12-01

    In reservoirs, severe problems are caused by infilled sediment deposits. In long term, the sediment accumulation reduces the capacity of reservoir storage and flood control benefits. In the short term, the sediment deposits influence the intakes of water-supply and hydroelectricity generation. For the management of reservoir, it is important to understand the deposition process and then to predict the sedimentation in reservoir. To investigate the behaviors of sediment deposits, we propose a one-dimensional simplified theory derived by the Exner equation to predict the longitudinal sedimentation distribution in idealized reservoirs. The theory models the reservoir infill geomorphic actions for three scenarios: delta progradation, near-dam bottom deposition, and final infill. These yield three kinds of self-similar analytical solutions for the reservoir bed profiles, under different boundary conditions. Three analytical solutions are composed by error function, complementary error function, and imaginary error function, respectively. The theory is also computed by finite volume method to test the analytical solutions. The theoretical and numerical predictions are in good agreement with one-dimensional small-scale laboratory experiment. As the theory is simple to apply with analytical solutions and numerical computation, we propose some applications to simulate the long-profile evolution of field reservoirs and focus on the infill sediment deposit volume resulting the uplift of near-dam bottom elevation. These field reservoirs introduced here are Wushe Reservoir, Tsengwen Reservoir, Mudan Reservoir in Taiwan, Lago Dos Bocas in Puerto Rico, and Sakuma Dam in Japan.

  6. Flood and rockslide mitigative measures for the concrete sections of the Daisy Lake Dam

    International Nuclear Information System (INIS)

    Pataky, T.J.

    1991-01-01

    Studies conducted under British Columbia Hydro's dam safety program during the early 1980s indicated that dam sections of the Daisy Lake Dam would be overtopped by the probable maximum flood (PMF) and by a postulated slide generated wave (SGW). It was considered that the overtopping by either of the events could cause several sections of the concrete dam to fall, thereby resulting in uncontrolled release of the reservoir. The criteria used for determining foundation strength parameters, static and SGW induced water pressures, effective uplift and the appropriate factors of safety are discussed. The results of the analyses for the original dam sections and the design and implementation of the selected remedial measures are also described. These measures included lowering the Wing Dam and Saddle Dam by about 2 m to increase the spillway capacity and the installation of 43 post-tensioned anchors in the various sections of the main concrete and Wing dams. 9 refs., 8 figs., 3 tabs

  7. Tailings dams from the perspective of conventional dam engineering

    International Nuclear Information System (INIS)

    Szymanski, M.B.

    1999-01-01

    A guideline intended for conventional dams such as hydroelectric, water supply, flood control, or irrigation is used sometimes for evaluating the safety of a tailings dam. Differences between tailings dams and conventional dams are often substantial and, as such, should not be overlooked when applying the techniques or safety requirements of conventional dam engineering to tailings dams. Having a dam safety evaluation program developed specifically for tailings dams is essential, if only to reduce the chance of potential errors or omissions that might occur when relying on conventional dam engineering practice. This is not to deny the merits of using the Canadian Dam Safety Association Guidelines (CDSA) and similar conventional dam guidelines for evaluating the safety of tailings dams. Rather it is intended as a warning, and as a rationale underlying basic requirement of tailings dam emgineering: specific experience in tailings dams is essential when applying conventional dam engineering practice. A discussion is included that focuses on the more remarkable tailings dam safety practics. It is not addressed to a technical publications intended for such dams, or significantly different so that the use of conventional dam engineering practice would not be appropriate. The CDSA Guidelines were recently revised to include tailings dams. But incorporating tailings dams into the 1999 revision of the CDSA Guidelines is a first step only - further revision is necessary with respect to tailings dams. 11 refs., 2 tabs

  8. Redundancies in Hydro Reservoir Elements and their Contributions ...

    African Journals Online (AJOL)

    Despite the over 100 years of electricity in Nigeria, power generation is still largely lagging behind its demand as all the hydro dams are still performing below installed capacities. The purpose of this paper is to expose the rates of redundancies in the contributions of reservoir elements to power generation in Jebba dam and ...

  9. Development of probabilistic operating rules for Hluhluwe Dam, South Africa

    Science.gov (United States)

    Ndiritu, J.; Odiyo, J.; Makungo, R.; Mwaka, B.; Mthethwa, N.; Ntuli, C.; Andanje, A.

    2017-08-01

    Hluhluwe Dam, with a 30 million m3 reservoir that supplies water for irrigation and Hluhluwe municipality in Kwa-Zulu Natal Province, South Africa, was consistently experiencing low storage levels over several non-drought years since 2001. The dam was operated by rules of thumb and there were no records of water releases for irrigation - the main user of the dam. This paper describes an assessment of the historic behaviour of the reservoir since its completion in 1964 and the development of operating rules that accounted for: i) the multiple and different levels of reliability at which municipal and irrigation demands need to be supplied, and ii) inter-annual and inter-decadal variability of climate and inflows into the dam. The assessment of the behaviour of the reservoir was done by simulation assuming trigonometric rule curves that were optimized to maximize both yield and storage state using the SCE-UA method. The resulting reservoir behaviour matched the observed historic trajectory reasonably well and indicated that the dam has mainly been operated at a demand of 10 million m3/year until 2000 when the demand suddenly rose to 25 million m3/year. Operating rules were developed from a statistical analysis of the base yields from 500 simulations of the reservoir each using 5 year-long stochastically generated sequences of inflows, rainfall and evaporation. After the implementation of the operating rules in 2009, the storage state of the dam improved and matched those of other reservoirs in the region that had established operating rules.

  10. Isotope technique in JPS dam surveillance: its potential

    International Nuclear Information System (INIS)

    Sabri Hassan

    2006-01-01

    Controlling seepage is one of the most important requirements for safe dams. Any leakage at an earth embankment may be potentially dangerous since rapid internal erosion may quickly enlarge an initially minor defect. Thus dam owners need to have thorough surveillance programs that can forewarn of impending problems from seepage or other factors influencing the safety of dams. In carrying out dam surveillance works, all possible efforts should be considered and foreseeing the potential of isotope technique, JPS (Department of Irrigation and Drainage, Malaysia) and MINT (Malaysian Institute for Nuclear Technology Research) participated actively in the UNDP/RCA/IAEA program under RAS/8/093 project sponsored by the International Atomic Energy Agency (IAEA). Through these activities, it was noted that the technique demonstrated very promising potentials such as in assisting dam site selections, site investigations, watershed studies, dam and reservoir design, leakage investigations and sediments related issues, the two latter ones being relatively critical during the operational life of the dam. Establishment of baseline isotopic characteristics (or fingerprint), hydrochemistry, electrical conductivity and temperature profiles is underway for all JPS dams to be later utilized in diagnosing seepage related issues it is suggested that application of this technique be extended to other dam owners nationwide. (Author)

  11. Flood risk management for large reservoirs

    International Nuclear Information System (INIS)

    Poupart, M.

    2006-01-01

    Floods are a major risk for dams: uncontrolled reservoir water level may cause dam overtopping, and then its failure, particularly for fill dams. Poor control of spillway discharges must be taken into consideration too, as it can increase the flood consequences downstream. In both cases, consequences on the public or on properties may be significant. Spillway design to withstand extreme floods is one response to these risks, but must be complemented by strict operating rules: hydrological forecasting, surveillance and periodic equipment controls, operating guides and the training of operators are mandatory too, in order to guarantee safe operations. (author)

  12. Reservoir Sedimentation Based on Uncertainty Analysis

    Directory of Open Access Journals (Sweden)

    Farhad Imanshoar

    2014-01-01

    Full Text Available Reservoir sedimentation can result in loss of much needed reservoir storage capacity, reducing the useful life of dams. Thus, sufficient sediment storage capacity should be provided for the reservoir design stage to ensure that sediment accumulation will not impair the functioning of the reservoir during the useful operational-economic life of the project. However, an important issue to consider when estimating reservoir sedimentation and accumulation is the uncertainty involved in reservoir sedimentation. In this paper, the basic factors influencing the density of sediments deposited in reservoirs are discussed, and uncertainties in reservoir sedimentation have been determined using the Delta method. Further, Kenny Reservoir in the White River Basin in northwestern Colorado was selected to determine the density of deposits in the reservoir and the coefficient of variation. The results of this investigation have indicated that by using the Delta method in the case of Kenny Reservoir, the uncertainty regarding accumulated sediment density, expressed by the coefficient of variation for a period of 50 years of reservoir operation, could be reduced to about 10%. Results of the Delta method suggest an applicable approach for dead storage planning via interfacing with uncertainties associated with reservoir sedimentation.

  13. Investigation of seepage under the Wenxiakou dam using radiotracer

    International Nuclear Information System (INIS)

    Li Zhangsu

    1988-01-01

    This paper describes the result of seepage observation on the dam foundation of Wenxiakou Reservoir using radioactive NaI (I-131) as a tracer. The main feature of the observing technique is to ascertain the seepages between the dam foundation and the clay core wall and around the abutment by measuring vertical flow. The results obtained from the observation have provided some important information for planning the engineering project of anti-seepage and reinforcement of the dam foundation and its right abutment. (author). 2 refs, 4 figs, 1 tab

  14. Investigation on the Causes of Cracking in Earth Dams (Case study: Mahmood-Abad Earth Dam

    Directory of Open Access Journals (Sweden)

    H. Rahimi

    2016-09-01

    river base beneath the dam structure. In fact , this layer has not been considered in the analysis as well in design. Because of fully saturated condition of this layer in an operation period of dam it might subjected to liquefaction during the happening of the earthquake. Evaluation of liquefaction potential of this layer based on Seed and Idriss (1971 diagram showed probability of this phenomenon. To prove this hypothesis, the stability analysis had been conducted in two different conditions by including the thin sandy layer and without considering the mentioned layer. The analysis showed in the case of absence of sandy layer the required safety factor was satisfied, but including the sandy layer leads cause the safety factor dropped to 0.84 that means accruing of liquefaction in the thin layer would lead to structural instability of the studied dam. The simulation of the behavior of dam by employing the accrued earthquake acceleration confirmed the liquefaction has been accrued in the thin sandy layer. The results of finite element simulation showed the depth of the cracks on the crest is about 2 meters and also the upstream slope has slipped about 81 mm to the reservoir of the dam. These results was consistent with the observed values. To overcome the next risks, also to repair the damaged parts of the dam, 3 different methods had been proposed. The curing technics was deploying of the reservoir and removing of the damage part of the dam and as well the thin sandy layer and reconstructed that part of dam, Deploying of reservoir of the dam and adjusting the slope of the upper shoulder to stable condition and at least repairing the developed cracks by injecting cement slurry and tolerate the current condition without imposition any additional costs to the project. The third method has been selected, but for any probable risky condition monitoring of the dam has been advised. Conclusion: Based on the overall results of the investigations, it was concluded that cracking

  15. SIRIU RESERVOIR, BUZAU RIVER (ROMANIA

    Directory of Open Access Journals (Sweden)

    Daniel Constantin DIACONU

    2008-06-01

    Full Text Available Siriu reservoir, owes it`s creation to the dam built on the river Buzau, in the town which bears the same name. The reservoir has a hydro energetic role, to diminish the maximum flow and to provide water to the localities below. The partial exploitation of the lake, began in 1984; Since that time, the initial bed of the river began to accumulate large quantities of alluvia, reducing the retention capacity of the lake, which had a volume of 125 million m3. The changes produced are determined by many topographic surveys at the bottom of the lake.

  16. Genetic forms of nephrogenic diabetes insipidus (NDI): Vasopressin receptor defect (X-linked) and aquaporin defect (autosomal recessive and dominant).

    Science.gov (United States)

    Bichet, Daniel G; Bockenhauer, Detlef

    2016-03-01

    Nephrogenic diabetes insipidus (NDI), which can be inherited or acquired, is characterized by an inability to concentrate urine despite normal or elevated plasma concentrations of the antidiuretic hormone, arginine vasopressin (AVP). Polyuria with hyposthenuria and polydipsia are the cardinal clinical manifestations of the disease. About 90% of patients with congenital NDI are males with X-linked NDI who have mutations in the vasopressin V2 receptor (AVPR2) gene encoding the vasopressin V2 receptor. In less than 10% of the families studied, congenital NDI has an autosomal recessive or autosomal dominant mode of inheritance with mutations in the aquaporin-2 (AQP2) gene. When studied in vitro, most AVPR2 and AQP2 mutations lead to proteins trapped in the endoplasmic reticulum and are unable to reach the plasma membrane. Prior knowledge of AVPR2 or AQP2 mutations in NDI families and perinatal mutation testing is of direct clinical value and can avert the physical and mental retardation associated with repeated episodes of dehydration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Protective Role of rAAV-NDI1, Serotype 5, in an Acute MPTP Mouse Parkinson's Model

    Directory of Open Access Journals (Sweden)

    Jennifer Barber-Singh

    2011-01-01

    Full Text Available Defects in mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I have been implicated in a number of acquired and hereditary diseases including Leigh's syndrome and more recently Parkinson's disease. A limited number of strategies have been attempted to repair the damaged complex I with little or no success. We have recently shown that the non-proton-pumping, internal NADH-ubiquinone oxidoreductase (Ndi1 from Saccharomyces cerevisiae (baker's yeast can be successfully inserted into the mitochondria of mice and rats, and the enzyme was found to be fully active. Using recombinant adenoassociated virus vectors (serotype 5 carrying our NDI1 gene, we were able to express the Ndi1 protein in the substantia nigra (SN of C57BL/6 mice with an expression period of two months. The results show that the AAV serotype 5 was highly efficient in expressing Ndi1 in the SN, when compared to a previous model using serotype 2, which led to nearly 100% protection when using an acute MPTP model. It is conceivable that the AAV-serotype5 carrying the NDI1 gene is a powerful tool for proof-of-concept study to demonstrate complex I defects as the causable factor in diseases of the brain.

  18. Hydrogeophysical investigations at Hidden Dam, Raymond, California

    Science.gov (United States)

    Minsley, Burke J.; Burton, Bethany L.; Ikard, Scott; Powers, Michael H.

    2011-01-01

    Self-potential and direct current resistivity surveys are carried out at the Hidden Dam site in Raymond, California to assess present-day seepage patterns and better understand the hydrogeologic mechanisms that likely influence seepage. Numerical modeling is utilized in conjunction with the geophysical measurements to predict variably-saturated flow through typical two-dimensional dam cross-sections as a function of reservoir elevation. Several different flow scenarios are investigated based on the known hydrogeology, as well as information about typical subsurface structures gained from the resistivity survey. The flow models are also used to simulate the bulk electrical resistivity in the subsurface under varying saturation conditions, as well as the self-potential response using petrophysical relationships and electrokinetic coupling equations.The self-potential survey consists of 512 measurements on the downstream area of the dam, and corroborates known seepage areas on the northwest side of the dam. Two direct-current resistivity profiles, each approximately 2,500 ft (762 m) long, indicate a broad sediment channel under the northwest side of the dam, which may be a significant seepage pathway through the foundation. A focusing of seepage in low-topography areas downstream of the dam is confirmed from the numerical flow simulations, which is also consistent with past observations. Little evidence of seepage is identified from the self-potential data on the southeast side of the dam, also consistent with historical records, though one possible area of focused seepage is identified near the outlet works. Integration of the geophysical surveys, numerical modeling, and observation well data provides a framework for better understanding seepage at the site through a combined hydrogeophysical approach.

  19. Investigation of electronic and morphological changes from thionation of naphthalene diimide (NDI)

    Science.gov (United States)

    Welford, Adam; McNeill, Chris; Maniam, Subashani

    Organic semiconductors (OSCs) possess many inherent advantages that allow them to be used effectively as organic field effect transistors (OFETs). Solution processablility allows rapid, large area fabrication on low cost flexible substrate that make them ideal for specialized applications such as flexible displays and radio frequency identification (RFID). Small molecule OSCs provide chemical specificity that allows changes to be mapped and examined more effectively than polymer based OSCs. Naphthalene diimide (NDI) provides a versatile framework with which to build upon and explore the effects of chemical functionalization. Recent work on a small molecule framework from the same chemical family has shown that substitution of oxygen for sulphur, known as thionation, leads to an increase in crystallinity and an electron mobility. A thionated series of NDI OSCs has been synthesized to examine the effects of increased degrees of thionation on optical, electronic and morphological properties. Investigation via the complimentary synchrotron based techniques of near edge x-ray absorption fine structure (NEXAFS) spectroscopy and grazing incidence wide angle xray scattering (GIWAXS) combine with atomic force microscopy (AFM) and top gate bottom contact (TGBC) transistors to help illuminate the resulting changes of the top interface with increasing degrees of thionation.

  20. Modelling the relationship between water level and vertical displacements on the Yamula Dam, Turkey

    OpenAIRE

    Bayrak , T.

    2007-01-01

    International audience; Monitoring deformation pattern of dams is often one of the most effective ways to understand their safety status. The main objective of the study is to find the extent to which rising reservoir level affects the mechanism of deformation of The Yamula Dam under certain change in the reservoir level conditions during to the first filling period. Three different deformation analysis techniques, namely static, kinematic and dynamic, were used to analyze four geodetic monit...

  1. a rapid health impact assessment of the university of ilorin dam

    African Journals Online (AJOL)

    Many Dams have been constructed in different parts of the world and for different purposes. While these dams have in most cases served the reason for their construction, the resultant environmental impact have been a subject of concern. The creation of a reservoir not only changes the ecology and hydrology of the ...

  2. Studies on the potentials of the Opeki River Dam for water supply ...

    African Journals Online (AJOL)

    Effective management of existing water reservoirs has been identified as profitable strategy to solving the challenge of providing adequate water for domestic and irrigation uses. The Opeki River Dam is a medium size dam with a maximum active storage capacity of 2.1million cubic metre (mcm) and a guaranteed maximum ...

  3. The decline of the Nile crocodile population in Loskop Dam, Olifants ...

    African Journals Online (AJOL)

    The apparent decline in the number of Nile crocodiles present in the Loskop Dam prompted a study to determine the number, size and distribution of Nile crocodiles now present in the reservoir. The number of crocodiles in the Loskop Dam was surveyed using aerial counts and spotlight counts. Surveys revealed the ...

  4. Seismic analysis of high arch dams considering contraction-peripheral joints coupled effects

    Science.gov (United States)

    Hariri-Ardebili, Mohammad; Mirzabozorg, Hasan; Kianoush, M.

    2013-09-01

    Dam-reservoir interaction is one of the classic coupled problems in which two various environments with different physical characteristics are in contact with each other on interface boundary. Consideration of such interaction is important in design of new dams as well as on safety evaluation of the existing ones. In the present study, the effect of hydrodynamic pressures at various reservoir operational levels on seismic behavior of an arch dam is investigated. Dez ultra-high arch dam in Iran was selected as case study and all contraction and peripheral joints were simulated using node-to-node contact elements which have the ability of opening/closing and tangential movement. In addition, stage construction effects including joint grouting based on available construction reports were considered. The reservoir was assumed to be compressible and the foundation rock was modeled to account for its flexibility. The TABAS earthquake record was used to excite the finite element model of dam-reservoir-foundation system. It was found that dam-reservoir interaction has significant structural effects on the system and generally, operating the considered arch dam at different water levels can highly affects the distribution of the crack prone area under the maximum credible earthquake.

  5. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neutral reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  6. Determination of volume and direction of flow of Kainji Reservoir ...

    African Journals Online (AJOL)

    geomatics techniques. ... river bed were produced to create a 3D effect of Kainji reservoir flow direction. A depth of 23.50m was obtained during the sounding field operation. Keywords: Kainji Dam, Reservoir, Bathymetry, Volume, Direction of flow ...

  7. Identification of sources and causes of leakage on a zoned earth dam in northern Taiwan: Hydrological and isotopic evidence

    International Nuclear Information System (INIS)

    Peng, T.-R.; Wang, C.-H.

    2008-01-01

    Seepage through an earth dam body must be regulated as a well-planned process, if it is not properly managed, the abnormal seepage may cause dam failure. This study employed stable isotopic and statistical methods to identify the source and cause of an abnormal leakage on the zoned earth dam of the Xin-Shan reservoir located in northern Taiwan. Water samples from the dam area over a 2-a period were collected and analyzed for their stable O and H isotope compositions. In addition, a 4-a period of hydrological data, including rainfall, reservoir level, well level, seepage of filter drainage and leakage, were statistically analyzed with a stepwise multiple regression approach. Both the stable isotopic and hydrological results indicate that the abnormal leakage on the dam shell comes from the filter drainage in the dam. The reason for abnormal leakage is due to unexpected and significant precipitation-sourced water flowing into the dam's body. The dam filter fails to drain out the incoming water sufficiently, thus generating the abnormal seepage. In addition, the defect in the dam filter may also cause the drainage filter to drain off reservoir seepage inadequately. Therefore, it is suggested that checking the filter function and preventing excessive precipitation-sourced water from flowing into the dam are the two top priorities for the follow-up remedial strategy of the dam

  8. 2. november tähistas Eesti ekstreem-metal-skene jaoks kahe äärmiselt olulise üllitise taassündi

    Index Scriptorium Estoniae

    2009-01-01

    Nailboard Records üllitas pagan-metal-bändi Tharaphita albumi "Raev" digipack-CD, millele on lisatud 1996. aastal ilmunud neljalooline demosalvestis "Kui varjud põlevad" ja dark-elektro-bändi Forgotten Sunrise demo "Behind The Abysmal Sky" (1993) ning minialbumi "Forever Sleeping Greystones" (1994) lood

  9. Investigation on trophic state index by artificial neural networks (case study: Dez Dam of Iran)

    Science.gov (United States)

    Saghi, H.; Karimi, L.; Javid, A. H.

    2015-06-01

    Dam construction and surface runoff control is one of the most common approaches for water-needs supply of human societies. However, the increasing development of social activities and hence the subsequent increase in environmental pollutants leads to deterioration of water quality in dam reservoirs and eutrophication process could be intensified. So, the water quality of reservoirs is now one of the key factors in operation and water quality management of reservoirs. Hence, maintaining the quality of the stored water and identification and examination of changes along time has been a constant concern of humans that involves the water authorities. Traditionally, empirical trophic state indices of dam reservoirs often defined based on changes in concentration of effective factors (nutrients) and its consequences (increase in chlorophyll a), have been used as an efficient tool in the definition of dam reservoirs quality. In recent years, modeling techniques such as artificial neural networks have enhanced the prediction capability and the accuracy of these studies. In this study, artificial neural networks have been applied to analyze eutrophication process in the Dez Dam reservoir in Iran. In this paper, feed forward neural network with one input layer, one hidden layer and one output layer was applied using MATLAB neural network toolbox for trophic state index (TSI) analysis in the Dez Dam reservoir. The input data of this network are effective parameters in the eutrophication: nitrogen cycle parameters and phosphorous cycle parameters and parameters that will be changed by eutrophication: Chl a, SD, DO and the output data is TSI. Based on the results from estimation of modified Carlson trophic state index, Dez Dam reservoir is considered to be eutrophic in the early July to mid-November and would be mesotrophic with decrease in temperature. Therefore, a decrease in water quality of the dam reservoir during the warm seasons is expectable. The results indicated that

  10. Water quality of Flag Boshielo Dam, Olifants River, South Africa ...

    African Journals Online (AJOL)

    2013-07-24

    Jul 24, 2013 ... and the limnology and water chemistry of Flag Boshielo Dam. While the two reservoirs are certain to have inherent differ- ences related to factors such as their physiography, differences in physico-chemical dynamics related to various anthropogenic impacts may provide insights into the causes of pansteati-.

  11. Occurrence of cyanobacteria genera in the Vaal Dam: implications ...

    African Journals Online (AJOL)

    The occurrence of cyanobacteria genera in the Vaal Dam was analysed and the factors that influence its dominance in the particular reservoir were also investigated. The study was motivated by the effects of the secondary metabolites of cyanobacteria genera on potable water production. Cyanobacteria genera have been ...

  12. Stability of earth dam with a vertical core

    Directory of Open Access Journals (Sweden)

    Orekhov Vyacheslav Valentinovich

    2016-01-01

    Full Text Available Earth dam with impervious element in the form of asphaltic concrete core is currently the most promising type of earth dams (due to simple construction technology and universal service properties of asphaltic concrete and is widely used in the world. However, experience in the construction and operation of high dams (above 160 m is not available, and their work is scarcely explored. In this regard, the paper discusses the results of computational prediction of the stress-strain state and stability of a high earth dam (256 m high with the core. The authors considered asphaltic concrete containing 7 % of bitumen as the material of the core. Gravel was considered as the material of resistant prisms. Design characteristics of the rolled asphaltic concrete and gravel were obtained from the processing of the results of triaxial tests. The calculations were performed using finite element method in elastoplastic formulation and basing on the phased construction of the dam and reservoir filling. The research shows, that the work of embankment dam with vertical core during filling of the reservoir is characterized by horizontal displacement of the lower resistant prism in the tailrace and the formation of a hard wedge prism descending along the core in the upper resistant prism. The key issue of the safety assessment is to determine the safety factor of the overall stability of the dam, for calculation of which the destruction of the earth dam is necessary, which can be done by reducing the strength properties of the dam materials. As a results of the calculations, the destruction of the dam occurs with a decrease in the strength characteristics of the materials of the dam by 2.5 times. The dam stability depends on the stability of the lower resistant prism. The destruction of its slope occurs on the classical circular-cylindrical surface. The presence of a potential collapse surface in the upper resistant prism (on the edges of the descending wedge does

  13. Uudised : Vanemuise Sümfoonikute kontsert. Kaks õhtut TMMis. Esimene puhkpilli- ja bigbändiõhtu / Jaanika Juhanson

    Index Scriptorium Estoniae

    Juhanson, Jaanika, 1977-

    2000-01-01

    Eelinfo 11. märtsil toimuva Vanemuise Sümfoonikute kontserdi kohta Vanemuise kontserdimajas. M. Korjuse vitriini avamisest 23. veebr. Teatri- ja Muusikamuuseumis, D. Kokkeri mälestusõhtust 29. veebr. TMMi Assauwe tornis. 4. märtsil EMA saalis toimunud puhkpilliorkestri ja bigbändi kontserdist

  14. EROSION RATE OF RESERVOIR DEPOSIT AS REVEALED BY LABORATORY EXPERIMENT

    Directory of Open Access Journals (Sweden)

    A. S. Amar

    2012-06-01

    Full Text Available The construction of dams and reservoirs in a river can give significant impacts on its flow of water and sediment, and can cause long-term morphological changes on the river. Reservoir sedimentation can reduce a reservoir’s effective flood control volume, and in some severe cases can cause overtopping during floods. Sediment deposition against a dam can reduce its stability, and affect the operation of low-level outlet works, gates, and valves. The abrasive action of sediment particles can roughen the surface of release facilities and can cause cavitations and vibration. Sedimentation can also affect a reservoir’s water quality, and reduce its flood control, water supply, hydropower, and recreation benefits. Consequently, taking sedimentation into consideration not only in the planning and design, but also in the operation and maintenance of a dam and reservoir is important. Keywords: Erosion rate, reservoir deposit, shear stress.

  15. Tailings dams safety - implications for the dam safety community

    International Nuclear Information System (INIS)

    Vick, S.G.

    1999-01-01

    In the context of the impact of privatization and globalization on traditional dam safety practice and the Canadian experience of the environmental dimension of dam failures, various aspects of tailings dam safety have much to offer the wider dam safety community. General design principles for tailings dams are not described, rather an attempt is made to frame some contemporary issues of tailings dam safety in ways that bring out their relevance in a broader dam safety context. Lessons applicable to future dam safety practice in related areas are examined, and the dam safety traditions of the mining, hydroelectric and related industries in Canada are brought together by illustrating some of the common elements and concerns they share. It is becoming evident that future dam safety activities for the hydroelectric, water supply and related dams will be carried out in a more privatized and globalized context by organizations less acquainted with traditional dam safety practices than in the past. If so, then tailings dam experience can be a pathfinder for how and why dam safety needs to be addressed in a corporate setting. It shows that the perceived effects of dam failures, environmental and otherwise, influence corporate damowners in ways that can amplify manyfold the objective consequences that dam safety assessments usually address. Dam safety professionals might do well to better understand and effectively communicate the financial and organizational impacts of dam failure on the corporate entity in ways that go beyond the traditional assessment of downstream hazard and failure consequences. Dam safety efforts can come to be seen less as imposed burdens of dam ownership and more as activities consistent with shareholder accountability and corporate self-interest. The Canadian mining industry, in adopting this perspective, is confirming that support for dam safety activities from the highest corporate level is essential for implementing them throughout the

  16. Ecological-geochemical characteristics of bottom sediments of Sophiivske reservoir

    Directory of Open Access Journals (Sweden)

    Тетяна Миколаївна Альохіна

    2014-09-01

    Full Text Available Results of the investigation of the chemical composition of the bottom sediments Sophiivske reservoir located on the Ingul River was presented in this article. The most significant factor of differential sedimentation chemical compounds can be facies factor that reflects the impact of geomorphic parameters and hydrological characteristics of the reservoir. There are a change of environment sedimentogenesis from oxidative to reductive on sites near reservoir dam.

  17. Deriving Area-storage Curves of Global Reservoirs

    Science.gov (United States)

    Mu, M.; Tang, Q.

    2017-12-01

    Basic information including capacity, dam height, and largest water area on global reservoirs and dams is well documented in databases such as GRanD (Global Reservoirs and Dams), ICOLD (International Commission on Large Dams). However, though playing a critical role in estimating reservoir storage variations from remote sensing or hydrological models, area-storage (or elevation-storage) curves of reservoirs are not publicly shared. In this paper, we combine Landsat surface water extent, 1 arc-minute global relief model (ETOPO1) and GRanD database to derive area-storage curves of global reservoirs whose area is larger than 1 km2 (6,000 more reservoirs are included). First, the coverage polygon of each reservoir in GRanD is extended to where water was detected by Landsat during 1985-2015. Second, elevation of each pixel in the reservoir is extracted from resampled 30-meter ETOPO1, and then relative depth and frequency of each depth value is calculated. Third, cumulative storage is calculated with increasing water area by every one percent of reservoir coverage area and then the uncalibrated area-storage curve is obtained. Finally, the area-storage curve is linearly calibrated by the ratio of calculated capacity over reported capacity in GRanD. The derived curves are compared with in-situ reservoir data collected in Great Plains Region in US, and the results show that in-situ records are well captured by the derived curves even in relative small reservoirs (several square kilometers). The new derived area-storage curves have the potential to be employed in global monitoring or modelling of reservoirs storage and area variations.

  18. DAM BREACH PARAMETERS AND THEIR INFLUENCE ON FLOOD HYDROGRAPHS FOR MOSUL DAM

    Directory of Open Access Journals (Sweden)

    TALAL A. BASHEER

    2017-11-01

    Full Text Available Dams breach geometry prediction is crucial in dam break studies. The characteristics of flood hydrographs resulting from a dam breach essentially depend on the breach geometry and the required time for breach formation. To investigate the impact of breach parameters on maximum breaching outflows, five breach prediction approaches were implemented to calculate the flood hydrographs using HEC-RAS model, for Mosul dam. Numerous reservoir water levels for each approach were considered. ensitivity analysis was carried out to evaluate the effect of each parameter on the resulting flood hydrographs. The time and value of peak discharge for each scenario were analysed and discussed. Results show that the most suitable method for estimating breach parameters for Mosul dam was the Froehlich approach. Furthermore, the sensitivity analysis shows that the breach side slope does not affect the peak discharge time and has a minor influence on peak outflow values. Meanwhile, the required time for the breach to develop was highly sensitive to both peak discharge and peak discharge time.

  19. Dam safety operating guidelines

    International Nuclear Information System (INIS)

    Elsayed, E.; Leung, T.; Kirkham, A.; Lum, D.

    1990-01-01

    As part of Ontario Hydro's dam structure assessment program, the hydraulic design review of several river systems has revealed that many existing dam sites, under current operating procedures, would not have sufficient discharge capacity to pass the Inflow Design Flood (IDF) without compromising the integrity of the associated structures. Typical mitigative measures usually considered in dealing with these dam sites include structural alterations, emergency action plans and/or special operating procedures designed for extreme floods. A pilot study was carried out for the Madawaska River system in eastern Ontario, which has seven Ontario Hydro dam sites in series, to develop and evaluate the effectiveness of the Dam Safety Operating Guidelines (DSOG). The DSOG consist of two components: the flood routing schedules and the minimum discharge schedules, the former of which would apply in the case of severe spring flood conditions when the maximum observed snowpack water content and the forecast rainfall depth exceed threshold values. The flood routing schedules would identify to the operator the optimal timing and/or extent of utilizing the discharge facilities at each dam site to minimize the potential for dam failures cased by overtopping anywhere in the system. It was found that the DSOG reduced the number of structures overtopped during probable maximum flood from thirteen to four, while the number of structures that could fail would be reduced from seven to two. 8 refs., 4 figs., 3 tabs

  20. Parallel computation of seismic analysis of high arch dam

    Science.gov (United States)

    Chen, Houqun; Ma, Huaifa; Tu, Jin; Cheng, Guangqing; Tang, Juzhen

    2008-03-01

    Parallel computation programs are developed for three-dimensional meso-mechanics analysis of fully-graded dam concrete and seismic response analysis of high arch dams (ADs), based on the Parallel Finite Element Program Generator (PFEPG). The computational algorithms of the numerical simulation of the meso-structure of concrete specimens were studied. Taking into account damage evolution, static preload, strain rate effect, and the heterogeneity of the meso-structure of dam concrete, the fracture processes of damage evolution and configuration of the cracks can be directly simulated. In the seismic response analysis of ADs, all the following factors are involved, such as the nonlinear contact due to the opening and slipping of the contraction joints, energy dispersion of the far-field foundation, dynamic interactions of the dam-foundation-reservoir system, and the combining effects of seismic action with all static loads. The correctness, reliability and efficiency of the two parallel computational programs are verified with practical illustrations.

  1. Detection of water leaks in the dam Joumine and study of sedimentation in the dam Ghezela by nuclear method

    International Nuclear Information System (INIS)

    Sari Souha

    2013-01-01

    The objective of this study is to determinate the paths of leaks observed in the dam Joumine and to identify the origin of salinity in the drain D2. In addition, the evaluation of the sedimentation measurement of suspended elements in the dam Ghezela is our second objective. The Joumine dam located in the North-east of Tunisia (governorate of Bizerte), was built in 1983 has an upstream watershed area of 418 km 2 . The reservoir capacity is 130 Mm 3 . This dam observed a water leakage from its implementation at the two drains D1 and D2 with a emerging flow rate reached a value close to 500 l/s, about 16 pour cent of its capacity. The injection of an insulating material in Karsts networks reduces the leakage rate to a value of 120 l / s in 1993 and 88 l / s in 2013, but this decrease was accompanied by an increase in salinity level in D2. The results from a multidisciplinary approach showed that the leakage path from the left bank of the reservoir where the leak was first detected, heading both D1 and D2 drains and the salinity in drain D2 due to the dissolution of the gypsum layer downstream of the dam and the contribution of brackish water from the left bank. The Ghezela dam located in the same area, was built in 1984 has an upstream watershed area of 48 km 2 . This dam has been an increase in sedimentation of 0.3 million m3 in 1994 to 1.7 million m 3 in 2010. In this study, the suspended elements were measured with a nuclear probe composed by a radioactive source of americium 241 and a NaI detector trained by a boat at different depth in the reservoir.

  2. The possible negative consequences of underground dam and reservoir construction and operation in coastal karst areas: an example of the hydro-electric power plant (HEPP) Ombla near Dubrovnik (Croatia)

    Science.gov (United States)

    Roje-Bonacci, T.; Bonacci, O.

    2013-08-01

    The Ombla Spring represents a typical abundant coastal karst spring located in the vicinity of the town of Dubrovnik (Croatia). Its outlet is at an altitude of 2.5 m above sea level (m a.s.l.) and the water from it immediately flows into the Adriatic Sea. The minimum and maximum measured discharges are 3.96 m3 s-1 and 117 m3 s-1, respectively. The Trebišnjica River traverses through its catchment. The mean annual discharge, after the canalization of over 60 km of its watercourse with spray concrete (in the time span 1981-2011), is 24.05 m3 s-1. Before massive civil engineering work which took place during 1968-1980, the mean annual discharge was 28.35 m3 s-1. There is a project for construction of the hydro-electric power plant (HEPP) Ombla, which will exclusively use groundwater from the Ombla Spring karst aquifer. The underground dam will be constructed about 200 m behind the existing karst spring outflow in the karst massif, by injecting a grout curtain. The top of the grout curtain is planned to be at an altitude of 130 m a.s.l. This karst system is complex, sensitive, vulnerable and ecologically extremely valuable. The grout curtain, as well as the HEPP Ombla development, could lead to extremely dangerous technical and environmental consequences. In this paper some probable, negative consequences of the HEPP Ombla construction and development are explained. The HEPP Ombla could result in many large and hard-to-predict negative consequences which are specific for this particular HEPP, for example (1) severe spring discharge change; (2) unpredictable regional groundwater redistribution; (3) threatening of endemic fauna; (4) induced seismicity; (5) induced sinkholes; (6) occurrence of landslides; (7) conflict regarding internationally shared karst aquifers; (8) intensification of karst flash floods; (9) sea water intrusion in coastal karst aquifer; etc.

  3. Thermal effects of dams in the Willamette River basin, Oregon

    Science.gov (United States)

    Rounds, Stewart A.

    2010-01-01

    Methods were developed to assess the effects of dams on streamflow and water temperature in the Willamette River and its major tributaries. These methods were used to estimate the flows and temperatures that would occur at 14 dam sites in the absence of upstream dams, and river models were applied to simulate downstream flows and temperatures under a no-dams scenario. The dams selected for this study include 13 dams built and operated by the U.S. Army Corps of Engineers (USACE) as part of the Willamette Project, and 1 dam on the Clackamas River owned and operated by Portland General Electric (PGE). Streamflows in the absence of upstream dams for 2001-02 were estimated for USACE sites on the basis of measured releases, changes in reservoir storage, a correction for evaporative losses, and an accounting of flow effects from upstream dams. For the PGE dam, no-project streamflows were derived from a previous modeling effort that was part of a dam-relicensing process. Without-dam streamflows were characterized by higher peak flows in winter and spring and much lower flows in late summer, as compared to with-dam measured flows. Without-dam water temperatures were estimated from measured temperatures upstream of the reservoirs (the USACE sites) or derived from no-project model results (the PGE site). When using upstream data to estimate without-dam temperatures at dam sites, a typical downstream warming rate based on historical data and downstream river models was applied over the distance from the measurement point to the dam site, but only for conditions when the temperature data indicated that warming might be expected. Regressions with measured temperatures from nearby or similar sites were used to extend the without-dam temperature estimates to the entire 2001-02 time period. Without-dam temperature estimates were characterized by a more natural seasonal pattern, with a maximum in July or August, in contrast to the measured patterns at many of the tall dam sites

  4. Sudden water pollution accidents and reservoir emergency operations: impact analysis at Danjiangkou Reservoir.

    Science.gov (United States)

    Zheng, Hezhen; Lei, Xiaohui; Shang, Yizi; Duan, Yang; Kong, Lingzhong; Jiang, Yunzhong; Wang, Hao

    2018-03-01

    Danjiangkou Reservoir is the source reservoir of the Middle Route of the South-to-North Water Diversion Project (MRP). Any sudden water pollution accident in the reservoir would threaten the water supply of the MRP. We established a 3-D hydrodynamic and water quality model for the Danjiangkou Reservoir, and proposed scientific suggestions on the prevention and emergency management for sudden water pollution accidents based on simulated results. Simulations were performed on 20 hypothetical pollutant discharge locations and 3 assumed amounts, in order to model the effect of pollutant spreading under different reservoir operation types. The results showed that both the location and mass of pollution affected water quality; however, different reservoir operation types had little effect. Five joint regulation scenarios, which altered the hydrodynamic processes of water conveyance for the Danjiangkou and Taocha dams, were considered for controlling pollution dispersion. The results showed that the spread of a pollutant could be effectively controlled through the joint regulation of the two dams and that the collaborative operation of the Danjiangkou and Taocha dams is critical for ensuring the security of water quality along the MRP.

  5. Allegheny County Dam Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the point locations of dams in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  6. THE SURDUC RESERVOIR (ROMANIA

    Directory of Open Access Journals (Sweden)

    Niculae Iulian TEODORESCU

    2008-06-01

    Full Text Available The Surduc reservoir was projected to ensure more water when water is scarce and to thus provide especially the city Timisoara, downstream of it with water.The accumulation is placed on the main affluent of the Bega river, Gladna in the upper part of its watercourse.The dam behind which this accumulation was created is of a frontal type made of enrochements with a masque made of armed concrete on the upstream part and protected/sustained by grass on the downstream. The dam is 130m long on its coping and a constructed height of 34 m. It is also endowed with spillway for high water and two bottom outlets formed of two conduits, at the end of which is the microplant. The second part of my paper deals with the hydrometric analysis of the Accumulation Surduc and its impact upon the flow, especially the maximum run-off. This influence is exemplified through the high flood from the 29th of July 1980, the most significant flood recorded in the basin with an apparition probability of 0.002%.

  7. A new nidovirus (NamDinh virus NDiV): Its ultrastructural characterization in the C6/36 mosquito cell line

    Energy Technology Data Exchange (ETDEWEB)

    Thuy, Nguyen Thanh, E-mail: ngtthuy02@yahoo.com [National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hai Ba Trung District, Hanoi (Viet Nam); Huy, Tran Quang, E-mail: huytq@nihe.org.vn [National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hai Ba Trung District, Hanoi (Viet Nam); Nga, Phan Thi [National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hai Ba Trung District, Hanoi (Viet Nam); Morita, Kouichi [Department of Virology, Institute of Tropical Medicine, Global COE Program, Nagasaki University, Nagasaki (Japan); Dunia, Irene; Benedetti, Lucio [Institut Jacques Monod, UMR7592 Université Paris Diderot/CNRS, Paris (France)

    2013-09-15

    We describe the ultrastructure of the NamDinh virus (NDiV), a new member of the order Nidovirales grown in the C6/36 mosquito cell line. Uninfected and NDiV-infected cells were investigated by electron microscopy 24–48 h after infection. The results show that the viral nucleocapsid-like particles form clusters concentrated in the vacuoles, the endoplasmic reticulum, and are scattered in the cytoplasm. Mature virions of NDiV were released as budding particles on the cell surface where viral components appear to lie beneath and along the plasma membrane. Free homogeneous virus particles were obtained by ultracentrifugation on sucrose gradients of culture fluids. The size of the round-shaped particles with a complete internal structure was 80 nm in diameter. This is the first study to provide information on the morphogenesis and ultrastructure of the first insect nidovirus NDiV, a missing evolutionary link in the emergence of the viruses with the largest RNA genomes. - Highlights: • NamDinh virus (NDiV), a new member of the order Nidovirales was tested in cultured cell line. • The morphogenesis and ultrastructure of NDiV were investigated by electron microscopy. • The viral nucleocapsid-like particles clustered and scattered in the cytoplasm. • NDiVs were released as budding particles on the cell surface. • The size of the viral particles with a complete internal structure was 80 nm in diameter.

  8. Massive accumulation of highly polluted sedimentary deposits by river damming

    Energy Technology Data Exchange (ETDEWEB)

    Palanques, Albert, E-mail: albertp@icm.csic.es [Institute of Marine Sciences (CSIC), Passeig Maritim de la Barceloneta, 37-49, Barcelona 08003 (Spain); Grimalt, Joan [Institute of Environmental Assessment and Water Research (CSIC), Jordi Girona, 18, Barcelona 08034 (Spain); Belzunces, Marc; Estrada, Ferran; Puig, Pere; Guillén, Jorge [Institute of Marine Sciences (CSIC), Passeig Maritim de la Barceloneta, 37-49, Barcelona 08003 (Spain)

    2014-11-01

    Uncontrolled dumping of anthropogenic waste in rivers regulated by dams has created contaminated deposits in reservoirs that have remained unidentified for decades. The Flix Reservoir is located in the Ebro River, the second largest river flowing into the NW Mediterranean, has been affected by residue dumping from a chlor-alkali electrochemical plant for decades. High-resolution seismic profiles, bathymetric data, surficial sediment samples and sediment cores were obtained in the Flix Reservoir to study the characteristics of the deposit accumulated by this dumping. These data were used to reconstruct the waste deposit history. Since the construction of the Flix Dam in 1948, more than 3.6 × 10{sup 5} t of industrial waste has accumulated in the reservoir generating a delta-like deposit formed by three sediment lobes of fine-grained material highly contaminated by Hg, Cd, Zn and Cr (max: 640, 26, 420 and 750 mg kg{sup −1}, respectively). This contamination was associated with the Hg that was used for the cathode in the electrochemical plant from 1949 and with the production of phosphorite derivatives from 1973. After the construction of two large dams only a few kilometres upstream during the 1960s, the solids discharged from the industrial complex became the main sediment source to the Flix Reservoir. The deposit has remained in the reservoir forming a delta that obstructs about 50% of the river water section. Its stability only depended on the flow retention by the Flix Dam. At present, this contaminated waste deposit is being removed from the water reservoir as it is a cause of concern for the environment and for human health downriver. - Highlights: • A delta-like anthropogenic deposit prograded into the reservoir behind the Flix dam. • More than 3.6 × 10{sup 5} t of anthropogenic waste was accumulated in less than 4 decades. • A waste deposit with extreme levels of Hg and Cd was trapped in the Flix Reservoir. • The main pollution was related to

  9. Understanding the Role of Reservoir Size on Probable Maximum Precipitation

    Science.gov (United States)

    Woldemichael, A. T.; Hossain, F.

    2011-12-01

    This study addresses the question 'Does surface area of an artificial reservoir matter in the estimation of probable maximum precipitation (PMP) for an impounded basin?' The motivation of the study was based on the notion that the stationarity assumption that is implicit in the PMP for dam design can be undermined in the post-dam era due to an enhancement of extreme precipitation patterns by an artificial reservoir. In addition, the study lays the foundation for use of regional atmospheric models as one way to perform life cycle assessment for planned or existing dams to formulate best management practices. The American River Watershed (ARW) with the Folsom dam at the confluence of the American River was selected as the study region and the Dec-Jan 1996-97 storm event was selected for the study period. The numerical atmospheric model used for the study was the Regional Atmospheric Modeling System (RAMS). First, the numerical modeling system, RAMS, was calibrated and validated with selected station and spatially interpolated precipitation data. Best combinations of parameterization schemes in RAMS were accordingly selected. Second, to mimic the standard method of PMP estimation by moisture maximization technique, relative humidity terms in the model were raised to 100% from ground up to the 500mb level. The obtained model-based maximum 72-hr precipitation values were named extreme precipitation (EP) as a distinction from the PMPs obtained by the standard methods. Third, six hypothetical reservoir size scenarios ranging from no-dam (all-dry) to the reservoir submerging half of basin were established to test the influence of reservoir size variation on EP. For the case of the ARW, our study clearly demonstrated that the assumption of stationarity that is implicit the traditional estimation of PMP can be rendered invalid to a large part due to the very presence of the artificial reservoir. Cloud tracking procedures performed on the basin also give indication of the

  10. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1983-1987 Methods and Data Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Ian

    1989-12-01

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin. The authorized purpose of the dam is to provide power, flood control, and navigation and other benefits. Research began in May 1983 to determine how operations of Libby dam impact the reservoir fishery and to suggest ways to lessen these impacts. This study is unique in that it was designed to accomplish its goal through detailed information gathering on every trophic level in the reservoir system and integration of this information into a quantitative computer model. The specific study objectives are to: quantify available reservoir habitat, determine abundance, growth and distribution of fish within the reservoir and potential recruitment of salmonids from Libby Reservoir tributaries within the United States, determine abundance and availability of food organisms for fish in the reservoir, quantify fish use of available food items, develop relationships between reservoir drawdown and reservoir habitat for fish and fish food organisms, and estimate impacts of reservoir operation on the reservoir fishery. 115 refs., 22 figs., 51 tabs.

  11. Dam Construction in Lancang-Mekong River Basin Could Mitigate Future Flood Risk From Warming-Induced Intensified Rainfall: Dam Mitigate Flood Risk in Mekong

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [Changjiang Institute of Survey, Planning, Design and Research, Wuhan China; Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing China; Lu, Hui [Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing China; Joint Center for Global Change Studies, Beijing China; Ruby Leung, L. [Pacific Northwest National Laboratory, Richland WA USA; Li, Hong-Yi [Department of Land Resources and Environmental Sciences and Institute on Ecosystems, Montana State University, Bozeman MT USA; Zhao, Jianshi [State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing China; Tian, Fuqiang [State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing China; Yang, Kun [Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing China; Joint Center for Global Change Studies, Beijing China; Sothea, Khem [Mekong Institute of Cambodia, Phnom Penh Cambodia

    2017-10-25

    Water resources management, in particular flood control, in the Mekong River Basin (MRB) faces two key challenges in the 21st century: climate change and dam construction. A large scale distributed Geomorphology-Based Hydrological Model coupled with a simple reservoir regulation model (GBHM-MK-SOP) is used to investigate the relative effects of climate change and dam construction on the flood characteristics in the MRB. Results suggest an increase in both flood magnitude and frequency under climate change, which is more severe in the upstream basin and increases over time. However, dam construction and stream regulation reduce flood risk consistently throughout this century, with more obvious effects in the upstream basin where larger reservoirs will be located. The flood mitigation effect of dam regulation dominates over the flood intensification effect of climate change before 2060, but the latter emerges more prominently after 2060 and dominates the flood risk especially in the lower basin.

  12. Baseline studies in the Elwha River ecosystem prior to dam removal: Introduction to the special issue

    Science.gov (United States)

    Duda, Jeffrey J.; Freilich, Jerry; Schreiner, Edward G.

    2008-01-01

    The planned removal of two dams that have been in place for over 95 years on the Elwha River provides a unique opportunity to study dam removal effects. Among the largest dams ever considered for removal, this project is compelling because 83% of the watershed lies undisturbed in Olympic National Park. Eighteen million cubic meters of sediment have accumulated in and will be released from the reservoirs, and there is potential for rehabilitating depressed Pacific salmon runs. Researchers from academia, non-profit organizations, federal and state governments, and the Lower Elwha Klallam Tribe are currently assessing baseline ecological conditions of the Elwha River as part of dam removal studies. We introduce dam removal topics, provide a brief history of the dams, and summarize the ecology of the Elwha River basin as an introduction to a special issue devoted to research in the watershed.

  13. Impact of a Thermocline on Water Dynamics in Reservoirs – Dobczyce Reservoir Case

    Directory of Open Access Journals (Sweden)

    Hachaj Paweł S.

    2017-06-01

    Full Text Available While modeling water dynamics in dam reservoirs, it is usually assumed that the flow involves the whole water body. It is true for shallow reservoirs (up to several meters of depth but may be false for deeper ones. The possible presence of a thermocline creates an inactive bottom layer that does not move, causing all the discharge to be carried by the upper strata. This study compares the results of hydrodydynamic simulations performed for the whole reservoir to the ones carried out for the upper strata only. The validity of a non-stratified flow approximation is then discussed.

  14. Economic aspects of hydro geological risk mitigation measures management in Italy: the ReNDiS project experience

    Science.gov (United States)

    Spizzichino, D.; Campobasso, C.; Gallozzi, P. L.; Dessi', B.; Traversa, F.

    2009-04-01

    ReNDiS project is a useful tool for monitoring, analysis and management of information data on mitigation measures and restoration works of soil protection at national scale. The main scope of the project, and related monitoring activities, is to improve the knowledge about the use of national funds and efforts against floods and landslides risk and, as a consequence, to better address the preventive policies in future. Since 1999 after the disastrous mudflow event occurred in Sarno in 1998, which caused the loss of 160 human lives, an extraordinary effort was conducted by the Italian Government in order to promote preventive measures against the hydro geological risk over the entire Italian territory. The Italian Ministry for the Environment promoted several and annual soil protection programmes. The ReNDiS project (Repertory of mitigation measures for National Soil Protection) is carried out by ISPRA - Institute for Environmental protection and Research, with the aim of improving the knowledge about the results of preventive policies against floods and landslides in order to better address national funds as requested by the Minister itself. The repertory is composed by a main archive and two secondary interface, the first for direct data management (ReNDiS-ist) and the latter (ReNDiS-web) for the on-line access and public consultation. At present, ReNDiS database contains about 3000 records concerning those programmes, focused on restoration works but including also information on landslide typologies and processes. The monitoring project is developed taking into account all the information about each step of every mitigation measure from the initial funding phase until the end of the work. During present work, we have statistically analyzed the ReNDiS database in order to highlight the conformity between the characteristic and type of the hazard (identified in a specific area) and the corresponding mitigation measures adopted for risk reduction. Through specific

  15. Dams and Intergovernmental Transfers

    Science.gov (United States)

    Bao, X.

    2012-12-01

    Gainers and Losers are always associated with large scale hydrological infrastructure construction, such as dams, canals and water treatment facilities. Since most of these projects are public services and public goods, Some of these uneven impacts cannot fully be solved by markets. This paper tried to explore whether the governments are paying any effort to balance the uneven distributional impacts caused by dam construction or not. It showed that dam construction brought an average 2% decrease in per capita tax revenue in the upstream counties, a 30% increase in the dam-location counties and an insignificant increase in downstream counties. Similar distributional impacts were observed for other outcome variables. like rural income and agricultural crop yields, though the impacts differ across different crops. The paper also found some balancing efforts from inter-governmental transfers to reduce the unevenly distributed impacts caused by dam construction. However, overall the inter-governmental fiscal transfer efforts were not large enough to fully correct those uneven distributions, reflected from a 2% decrease of per capita GDP in upstream counties and increase of per capita GDP in local and downstream counties. This paper may shed some lights on the governmental considerations in the decision making process for large hydrological infrastructures.

  16. The management of the Diama reservoir (Senegal River)

    Science.gov (United States)

    Duvail, S.; Hamerlynck, O.

    2003-04-01

    The Senegal River is regulated by 2 dams built in the 1980's by the "Organisation pour la Mise en Valeur du fleuve Sénégal" (OMVS), a river basin management organisation grouping Mali, Senegal and Mauritania. The initial objectives of OMVS, which were to regulate the Senegal flows in order to develop irrigated agriculture, produce hydropower and facilitate river navigation has been only partially met. The maintenance of the annual flood by the upstream dam (Manantali), initially to be phased out when irrigated agriculture would have replaced the traditional recession agriculture, is now scheduled to continue indefinitely on the basis of socio-economic and environmental concerns. This change of mindset has however not affected the management of the downstream dam (Diama). Initially conceived as a salt-wedge dam, its function evolved to a reservoir dam with a high and constant water level. During the dry season, the water level is maintained high and constant in order to reduce the pumping costs for the irrigated agriculture in the delta. During the flood season (July-October) the dam is primarily managed for risk avoidance: limit flooding downstream of the dam (especially the city of St. Louis) and secure the infrastructure of the dam itself. The permanent freshwater reservoir lake has adverse effects on ecosystems, on human and animal health and a high social cost for the traditional stakeholders of the deltaic floodplain (fishermen, livestock keepers and gatherers). Upstream of the reservoir there is an excess of stagnant freshwater and managers are confronted with the development of invasive species while substantial downstream flooding is essential for the estuarine ecosystems and local livelihoods. The presentation will review the different approaches to the management of the Diama reservoir and proposes different management scenarios and compares their economical, environmental, and social costs and benefits.

  17. Greenhouse gas emissions from reservoir water surfaces: A new global synthesis

    Science.gov (United States)

    Collectively, reservoirs created by dams are thought to be an important source ofgreenhouse gases (GHGs) to the atmosphere. So far, efforts to quantify, model, andmanage these emissions have been limited by data availability and inconsistenciesin methodological approach. Here we ...

  18. Caenorhabditis elegans expressing the Saccharomyces cerevisiae NADH alternative dehydrogenase Ndi1p, as a tool to identify new genes involved in complex I related diseases

    Directory of Open Access Journals (Sweden)

    Raynald eCossard

    2015-06-01

    Full Text Available Isolated complex I deficiencies are one of the most commonly observed biochemical features in patients suffering from mitochondrial disorders. In the majority of these clinical cases the molecular bases of the diseases remain unknown suggesting the involvement of unidentified factors that are critical for complex I function.The Saccharomyces cerevisiae NDI1 gene, encoding the mitochondrial internal NADH dehydrogenase was previously shown to complement a complex I deficient strain in Caenorhabitis elegans with notable improvements in reproduction, whole organism respiration. These features indicate that Ndi1p can functionally integrate the respiratory chain, allowing complex I deficiency complementation. Taking into account the Ndi1p ability to bypass complex I, we evaluate the possibility to extend the range of defects/mutations causing complex I deficiencies that can be alleviated by NDI1 expression.We report here that NDI1 expressing animals unexpectedly exhibit a slightly shortened lifespan, a reduction in the progeny and a depletion of the mitochondrial genome. However, Ndi1p is expressed and targeted to the mitochondria as a functional protein that confers rotenone resistance to those animals and without affecting their respiration rate and ATP content.We show that the severe embryonic lethality level caused by the RNAi knockdowns of complex I structural subunit encoding genes (e.g. NDUFV1, NDUFS1, NDUFS6, NDUFS8 or GRIM-19 human orthologs in wild type animals is significantly reduced in the Ndi1p expressing worm.All together these results open up the perspective to identify new genes involved in complex I function, assembly or regulation by screening an RNAi library of genes leading to embryonic lethality that should be rescued by NDI1 expression.

  19. The Politics, Development and Problems of Small Irrigation Dams in Malawi: Experiences from Mzuzu ADD

    Directory of Open Access Journals (Sweden)

    Bryson Gwiyani Nkhoma

    2011-10-01

    Full Text Available The paper examines the progress made regarding the development of small irrigation dams in Malawi with the view of establishing their significance in improving rural livelihoods in the country. The paper adopts a political economy theory and a qualitative research approach. Evidence from Mzuzu Agricultural Development Division (ADD, where small reservoirs acquire specific relevance, shows that despite the efforts made, the development of small dams is making little progress. The paper highlights that problems of top-down planning, high investment costs, negligence of national and local interests, over-dependency on donors, and conflicts over the use of dams – which made large-scale dams unpopular in the 1990s – continue to affect the development of small irrigation dams in Malawi. The paper argues that small irrigation dams should not be simplistically seen as a panacea to the problems of large-scale irrigation dams. Like any other projects, small dams are historically and socially constructed through interests of different actors in the local settings, and can only succeed if actors, especially those from formal institutions, develop adaptive learning towards apparent conflicting relations that develop among them in the process of implementation. In the case of Mzuzu ADD, it was the failure of the government to develop this adaptive learning to the contestations and conflicts among these actors that undermined successful implementation of small irrigation dams. The paper recommends the need to consider local circumstances, politics, interests, rights and institutions when investing in small irrigation dams.

  20. Elwha River dam removal-Rebirth of a river

    Science.gov (United States)

    Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    After years of planning for the largest project of its kind, the Department of the Interior will begin removal of two dams on the Elwha River, Washington, in September 2011. For nearly 100 years, the Elwha and Glines Canyon Dams have disrupted natural processes, trapping sediment in the reservoirs and blocking fish migrations, which changed the ecology of the river downstream of the dams. All five Pacific salmon species and steelhead-historically present in large numbers-are locally extirpated or persist in critically low numbers. Upstream of the dams, more than 145 kilometers of pristine habitat, protected inside Olympic National Park, awaits the return of salmon populations. As the dams are removed during a 2-3 year project, some of the 19 million cubic meters of entrapped sediment will be carried downstream by the river in the largest controlled release of sediment into a river and marine waters in history. Understanding the changes to the river and coastal habitats, the fate of sediments, and the salmon recolonization of the Elwha River wilderness will provide useful information for society as future dam removals are considered.

  1. Geomorphic and habitat response to a large-dam removal in a Mediterranean river

    Science.gov (United States)

    Harrison, L.; East, A. E.; Smith, D. P.; Bond, R.; Logan, J. B.; Nicol, C.; Williams, T.; Boughton, D. A.; Chow, K.

    2017-12-01

    The presence of large dams has fundamentally altered physical and biological processes in riverine ecosystems, and dam removal is becoming more common as a river restoration strategy. We used a before-after-control-impact study design to investigate the geomorphic and habitat response to removal of 32-m-high San Clemente Dam on the Carmel River, CA. The project represents the first major dam removal in a Mediterranean river and is also unique among large dam removals in that most reservoir sediment was sequestered in place. We found that in the first year post-removal, a sediment pulse migrated 3.5 km downstream, filling pools and the interstitial pore spaces of gravels with sand. These sedimentary and topographic changes initially reduced the overall quality of steelhead (O. mykiss) spawning and rearing habitat in impacted reaches. Over the second winter after dam removal, a sequence of high flows flushed large volumes of sand from pools and mobilized the river bed throughout much of the active channel. The floods substantially altered fluvial evolution in the upper part of the reservoir, promoting new avulsion and the subsequent delivery of gravel and large wood to below dam reaches. These geomorphic processes increased the availability of spawning-sized gravel and enhanced channel complexity in reaches within several km of the former dam, which should improve habitat for multiple life stages of steelhead. Results indicate that when most reservoir sediment remains impounded, high flows become more important drivers of geomorphic and habitat change than dam removal alone. In such cases, the rates at which biophysical processes are reestablished will depend largely on post-dam removal flow sequencing and the upstream supply of sediment and large wood.

  2. Dam spills and fishes; Eclusees et poissons

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This short paper reports the main topics discussed during the two days of the annual colloquium of the Hydro-ecology Committee of EdF. The first day was devoted to the presentation of the joint works carried out by EdF, the Paul-Sabatier University (Toulouse), the Provence St-Charles University (Marseille), the ENSAT (Toulouse) and the CEMAGREF (Lyon and Aix-en-Provence) about the environmental impact of dam spills on the aquatic flora and fauna downstream. A synthesis and recommendations were presented for the selection and characterization of future sites. The second day was devoted to the hydro-ecology study of the dam reservoir of Petit-Saut (French Guyana): water reoxygenation, quality evolution, organic matter, plankton, invertebrates and fishes. The 134 French dams concerned by water spills have been classified according to the frequency of spills, the variations of flow rates created, and their impacts on fishing, walking, irrigation, industry, drinking water, navigation, bathing. Particular studies on different sites have demonstrated the complexity of the phenomena involved concerning the impact on the ecosystems and the water quality. (J.S.).

  3. Three Sisters Dam: Investigations and monitoring

    International Nuclear Information System (INIS)

    Slopek, R.J.; Courage, L.J.R.; Keys, R.A.

    1990-01-01

    The geotechnical investigations, monitoring and interpretation of data associated with the evaluation of the Three Sisters Dam, which has been suffering from excessive seepage and is in need of enhancement, are outlined. The Three Sisters Dam is located in the continental ranges of the Rocky Mountains in Alberta, impounding the Spray Reservoir, and is founded on 60 m of interbedded sand, gravel, silt and clay layers. The computer code PC-SEEP was used to evaluate seepage. Details are provided of drilling, ground-penetrating radar surveys, seismic surveys, penstock inspection, sinkhole activity, piezometer monitoring, silt wells, settlement monuments, and tailrace monitoring. The intensive investigations of the foundations showed that they consist of a complex formation of interfingered stratified layers and leases of talus and glaciofluvial deposits. Due to the depth and nature of these materials drill hole penetration was limited to the use of the Becker hammer. This equipment successfully delineated the major soil horizons of the foundation. The continued information attained from inspection, drilling, testing, radar surveys, seismic work, monitoring of piezometers, leakage, silt wells and settlement monuments indicated that there are no large voids within the foundation of the dam. 2 refs., 12 figs

  4. National Program for Inspection of Non-Federal Dams. Parks Pond Dam (CT 00071), Housatonic River Basin, Danbury, Connecticut. Phase I Inspection Report.

    Science.gov (United States)

    1980-07-01

    dam is classified as small (height less than 40 teet and storage less than 1,000 acre-feet). d. Hazard Classification - Parks Pond Dam is classified as...with a 2:1 slope. It is well vegetated with grass, brush and trees (Photos 1, 2 and 3). Along the toe of the dam, there are trees and brush which...natural channel (Photo 4). Just below the spillway, brush and debris has accumulated (Photo 3). d. Reservoir Area - The area immediately adjacent to the

  5. Small dams need better management

    Science.gov (United States)

    Balcerak, Ernie

    2012-03-01

    Many small dams around the world are poorly maintained and represent a safety hazard, according to Pisaniello et al. Better oversight of small dams is needed, the authors argue. The researchers reviewed literature, conducted case studies in four states in Australia, and developed policy benchmarks and best practices for small-dam management. Small dams, often just several meters high and typically privately owned by individual farmers, have historically caused major damage when they fail. For instance, in China in 1975, 230,000 people died when two large dams failed because of the cumulative failure of 60 smaller upstream dams. In the United States, in 1977 the 8-meter-high Kelly Barnes Lake dam failed, killing 39 people. Many other small-dam failures around the world have resulted in casualties and severe ecological and economic damage.

  6. Rock Mass Behavior Under Hydropower Embankment Dams: A Two-Dimensional Numerical Study

    Science.gov (United States)

    Bondarchuk, A.; Ask, M. V. S.; Dahlström, L.-O.; Nordlund, E.

    2012-09-01

    Sweden has more than 190 large hydropower dams, of which about 50 are pure embankment dams and over 100 are concrete/embankment dams. This paper presents results from conceptual analyses of the response of typical Swedish rock mass to the construction of a hydropower embankment dam and its first stages of operation. The aim is to identify locations and magnitudes of displacements that are occurring in the rock foundation and grout curtain after construction of the dam, the first filling of its water reservoir, and after one seasonal variation of the water table. Coupled hydro-mechanical analysis was conducted using the two-dimensional distinct element program UDEC. Series of the simulations have been performed and the results show that the first filling of the reservoir and variation of water table induce largest magnitudes of displacement, with the greatest values obtained from the two models with high differential horizontal stresses and smallest spacing of sub-vertical fractures. These results may help identifying the condition of the dam foundation and contribute to the development of proper maintenance measures, which guarantee the safety and functionality of the dam. Additionally, newly developed dams may use these results for the estimation of the possible response of the rock foundation to the construction.

  7. The Impact of a Check Dam on Groundwater Recharge and Sedimentation in an Ephemeral Stream

    Directory of Open Access Journals (Sweden)

    Hakan Djuma

    2017-10-01

    Full Text Available Despite the widespread presence of groundwater recharge check dams, there are few studies that quantify their functionality. The objectives of this study are (i to assess groundwater recharge in an ephemeral river with and without a check dam and (ii to assess sediment build-up in the check-dam reservoir. Field campaigns were carried out to measure water flow, water depth, and check-dam topography to establish water volume, evaporation, outflow, and recharge relations, as well as sediment build-up. To quantify the groundwater recharge, a water-balance approach was applied at two locations: at the check dam reservoir area and at an 11 km long natural stretch of the river upstream. Prediction intervals were computed to assess the uncertainties of the results. During the four years of operation, the check dam (storage capacity of 25,000 m3 recharged the aquifer with an average of 3.1 million m3 of the 10.4 million m3 year−1 of streamflow (30%. The lower and upper uncertainty limits of the check dam recharge were 0.1 and 9.6 million m3 year−1, respectively. Recharge from the upstream stretch was 1.5 million m3 year−1. These results indicate that check dams are valuable structures for increasing groundwater resources in semi-arid regions.

  8. The Influence of Dam Removal on Upland Soils

    Science.gov (United States)

    Lafrenz, M. D.; Bean, R. A.; Uthman, D.

    2011-12-01

    Driven largely by anadromous fish passage issues, several dams have been removed in the Pacific Northwest and several more are slated to be removed there and in other regions of North America. While much effort has gone into modeling and monitoring the geomorphic and ecologic response of stream channels to dam removal, little research has investigated changes in upland soils following inundation resulting from dam construction, and none had evaluated how these upland soils would respond to dewatering following dam removal. The removal of a relatively large dam - Marmot Dam on the Sandy River in Northwest Oregon, presented an opportunity to evaluate the effect of dewatering on what were formerly upland rather than floodplain soils. We compared the dewatered soils to downstream upland soils that had not been inundated and modified a "ripening" index, which had been developed to characterize dewatered estuary soils in Dutch polders, in order to evaluate the physical and chemical changes taking place in these soils. Two years following dam removal, the previously inundated soils have higher organic matter percentage, cation exchange capacity, and nitrogen levels than downstream soils that were not inundated; yet, this new riparian area is largely devoid of vegetation while the downstream soils maintain a thick (10 cm) O horizon. The carbon to nitrogen ratios (C:N) of upstream surface horizons are low (13:1) and increase markedly with soil depth (54:1); the C:N ratios of downstream soils are typical of other forested soils in this region (28:1 at the surface and 26:1 at depth). Prior to dam removal, it is likely that all upstream, inundated soils had high C:N ratios due to the persistent anaerobic conditions under the reservoir. Following dam removal, soil microbes needing to supplement their nitrogen consumption with soluble nitrogen likely out-competed higher plants for plant available nitrogen. The C:N ratio should have dropped to an equilibrium; this was not

  9. Dam health diagnosis and evaluation

    Science.gov (United States)

    Wu, Zhongru; Su, Huaizhi

    2005-06-01

    Based on the bionics principle in the life sciences field, we regard a dam as a vital and intelligent system. A bionics model is constructed to observe, diagnose and evaluate dam health. The model is composed of a sensing system (nerve), central processing unit (cerebrum) and decision-making implement (organism). In addition, the model, index system and engineering method on dam health assessment are presented. The proposed theories and methods are applied to evaluate dynamically the health of one concrete dam.

  10. Assessment of check-dam groundwater recharge with water-balance calculations

    Science.gov (United States)

    Djuma, Hakan; Bruggeman, Adriana; Camera, Corrado; Eliades, Marinos

    2017-04-01

    Studies on the enhancement of groundwater recharge by check-dams in arid and semi-arid environments mainly focus on deriving water infiltration rates from the check-dam ponding areas. This is usually achieved by applying simple water balance models, more advanced models (e.g., two dimensional groundwater models) and field tests (e.g., infiltrometer test or soil pit tests). Recharge behind the check-dam can be affected by the built-up of sediment as a result of erosion in the upstream watershed area. This natural process can increase the uncertainty in the estimates of the recharged water volume, especially for water balance calculations. Few water balance field studies of individual check-dams have been presented in the literature and none of them presented associated uncertainties of their estimates. The objectives of this study are i) to assess the effect of a check-dam on groundwater recharge from an ephemeral river; and ii) to assess annual sedimentation at the check-dam during a 4-year period. The study was conducted on a check-dam in the semi-arid island of Cyprus. Field campaigns were carried out to measure water flow, water depth and check-dam topography in order to establish check-dam water height, volume, evaporation, outflow and recharge relations. Topographic surveys were repeated at the end of consecutive hydrological years to estimate the sediment built up in the reservoir area of the check dam. Also, sediment samples were collected from the check-dam reservoir area for bulk-density analyses. To quantify the groundwater recharge, a water balance model was applied at two locations: at the check-dam and corresponding reservoir area, and at a 4-km stretch of the river bed without check-dam. Results showed that a check-dam with a storage capacity of 25,000 m3 was able to recharge to the aquifer, in four years, a total of 12 million m3 out of the 42 million m3 of measured (or modelled) streamflow. Recharge from the analyzed 4-km long river section without

  11. Risk Perception Analysis Related To Existing Dams In Italy

    Science.gov (United States)

    Solimene, Pellegrino

    2013-04-01

    In the first part of this work, the progress of Italian National Rules about dams design, construction and operation are presented to highlight the strong connection existing between the promulgation of new decrees, as a consequence of a dam accidents, and the necessity to prevent further loss of lives and goods downstream. Following the Gleno Dam failure (1923), a special Ministerial Committee wrote out the first Regulations and made the proposal to establish, within the High Council of Public Works, a special department that become soon the "Dam Service", with the tasks of control and supervision about construction and operation phases of the dams and their reservoirs. A different definition of tasks and the structure of Dam Service were provided in accordance with law n° 183/1989, which transferred all the technical services to the Office of the Prime Minister; the aim was to join the Dam Office with the Department for National Technical Services, with the objective of increasing the knowledge of the territory and promoting the study on flood propagation downstream in case of operations on bottom outlet or hypothetical dam-break. In fact, population living downstream is not ready to accept any amount of risk because has not a good knowledge of the efforts of experts involved in dam safety, both from the operators and from the safety Authority. So it's important to optimize all the activities usually performed in a dam safety program and improve the emergency planning as a response to people's primary needs and feeling about safety from Civil Protection Authority. In the second part of the work, a definition of risk is provided as the relationship existing between probability of occurrence and loss, setting out the range within to plan for prevention (risk mitigation), thanks to the qualitative assessment of the minimum safety level that is suited to assign funds to plan for Civil Protection (loss mitigation). The basic meaning of the reliability of a zoned

  12. Carbon emission from global hydroelectric reservoirs revisited.

    Science.gov (United States)

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs.

  13. Dam safety investigations of the concrete structures of Hugh Keenleyside dam

    International Nuclear Information System (INIS)

    Hanna, A.W.; Nunn, J.O.H.; Cornish, L.; Northcott, P.

    1993-01-01

    The Hugh Keenleyside dam is located on the Columbia River in southeastern British Columbia, and impounds Arrow Lakes Reservoir which has a live storage of 8.8 km 3 and drains an area of 36,000 km 2 . It consists of a number of concrete structures, with a total length of 360 m and a maximum height of 58 m, and an earthfill embankment which spans across the original river channel. The 450 m long zoned earthfill dam is founded on pervious alluvium over 150 m deep. It has a sloping impervious core constructed from glacial till which extends 670 m upstream of the dam. This impervious blanket extends over the full width of the reservoir and is connected to the upstream face of the concrete structures. The results of a dam safety study, which was carried out due to the presence of high uplift pressures at some parts of the foundation, and stability concerns, are presented. The investigation concluded that the high uplift pressures were due to a localized defect in the upstream blanket and did not indicate any general deterioration of the blanket. Techniques that were found to be of particular use in the study for defining the source and nature of the foundation defects were: temperature surveys of flows from piezometers, cells and drains; air injection tests; and pressure response testing of cells, piezometers and drains to establish foundation interconnections. The concrete structures met the stability criteria for all load cases considered except for the navigation lock and the low level outlets. 3 refs., 6 figs

  14. Reservoir-induced seismicity at Castanhao reservoir, NE Brazil

    Science.gov (United States)

    Nunes, B.; do Nascimento, A.; Ferreira, J.; Bezerra, F.

    2012-04-01

    Our case study - the Castanhão reservoir - is located in NE Brazil on crystalline rock at the Borborema Province. The Borborema Province is a major Proterozoic-Archean terrain formed as a consequence of convergence and collision of the São Luis-West Africa craton and the São Francisco-Congo-Kasai cratons. This reservoir is a 60 m high earth-filled dam, which can store up to 4.5 billion m3 of water. The construction begun in 1990 and finished in October 2003.The first identified reservoir-induced events occurred in 2003, when the water level was still low. The water reached the spillway for the first time in January 2004 and, after that, an increase in seismicity occured. The present study shows the results of a campaign done in the period from November 19th, 2009 to December 31th, 2010 at the Castanhão reservoir. We deployed six three-component digital seismographic station network around one of the areas of the reservoir. We analyzed a total of 77 events which were recorded in at least four stations. To determine hypocenters and time origin, we used HYPO71 program (Lee & Lahr, 1975) assuming a half-space model with following parameters: VP= 5.95 km/s and VP/VS=1.73. We also performed a relocation of these events using HYPODD (Waldhauser & Ellsworth, 2000) programme. The input data used we used were catalogue data, with all absolute times. The results from the spatio-temporal suggest that different clusters at different areas and depths are triggered at different times due to a mixture of: i - pore pressure increase due to diffusion and ii - increase of pore pressure due to the reservoir load.

  15. Limnology of hartbeespoort dam

    CSIR Research Space (South Africa)

    Ashton, PJ

    1985-01-01

    Full Text Available Hartbeespoort Dam is a hypertrophic, warm, monomictic impoundment. With a mean depth of 9.6 m and a surface area of 20 km2, the system demonstrates that hypertrophy is not confined to small shallow lakes as concluded by Barica (1981...

  16. Full-Scale Structural and NDI Validation Tests of Bonded Composite Doublers for Commercial Aircraft Applications

    Energy Technology Data Exchange (ETDEWEB)

    Roach, D.; Walkington, P.

    1999-02-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single Boron-Epoxy composite doubler to the damaged structure. Most of the concerns surrounding composite doubler technology pertain to long-term survivability, especially in the presence of non-optimum installations, and the validation of appropriate inspection procedures. This report focuses on a series of full-scale structural and nondestructive inspection (NDI) tests that were conducted to investigate the performance of Boron-Epoxy composite doublers. Full-scale tests were conducted on fuselage panels cut from retired aircraft. These full-scale tests studied stress reductions, crack mitigation, and load transfer capabilities of composite doublers using simulated flight conditions of cabin pressure and axial stress. Also, structures which modeled key aspects of aircraft structure repairs were subjected to extreme tension, shear and bending loads to examine the composite laminate's resistance to disbond and delamination flaws. Several of the structures were loaded to failure in order to determine doubler design margins. Nondestructive inspections were conducted throughout the test series in order to validate appropriate techniques on actual aircraft structure. The test results showed that a properly designed and installed composite doubler is able to enhance fatigue life, transfer load away from damaged structure, and avoid the introduction of new stress risers (i.e. eliminate global reduction in the fatigue life of the structure). Comparisons with test data obtained prior to the doubler installation revealed that stresses in the parent material can be reduced 30%--60% through the use of the composite doubler. Tests to failure demonstrated that the bondline is able to transfer plastic strains into the doubler and that

  17. Anthropogenic Water Uses and River Flow Regime Alterations by Dams

    Science.gov (United States)

    Ferrazzi, M.; Botter, G.

    2017-12-01

    Dams and impoundments have been designed to reconcile the systematic conflict between patterns of anthropogenic water uses and the temporal variability of river flows. Over the past seven decades, population growth and economic development led to a marked increase in the number of these water infrastructures, so that unregulated free-flowing rivers are now rare in developed countries and alterations of the hydrologic cycle at global scale have to be properly considered and characterized. Therefore, improving our understanding of the influence of dams and reservoirs on hydrologic regimes is going to play a key role in water planning and management. In this study, a physically based analytic approach is combined to extensive hydrologic data to investigate natural flow regime alterations downstream of dams in the Central-Eastern United States. These representative case studies span a wide range of different uses, including flood control, water supply and hydropower production. Our analysis reveals that the most evident effects of flood control through dams is a decrease in the intra-seasonal variability of flows, whose extent is controlled by the ratio between the storage capacity for flood control and the average incoming streamflow. Conversely, reservoirs used for water supply lead to an increase of daily streamflow variability and an enhanced inter-catchment heterogeneity. Over the last decades, the supply of fresh water required to sustain human populations has become a major concern at global scale. Accordingly, the number of reservoirs devoted to water supply increased by 50% in the US. This pattern foreshadows a possible shift in the cumulative effect of dams on river flow regimes in terms of inter-catchment homogenization and intra-annual flow variability.

  18. A reservoir operating method for riverine ecosystem protection, reservoir sedimentation control and water supply

    Science.gov (United States)

    Yin, Xin-An; Yang, Zhi-Feng; Petts, Geoffrey E.; Kondolf, G. Mathias

    2014-05-01

    Riverine ecosystem protection requires the maintenance of natural flow and sediment regimes downstream from dams. In reservoir management schedules this requirement should be integrated with sedimentation control and human water supply. However, traditional eco-friendly reservoir operating methods have usually only considered the natural flow regime. This paper seeks to develop a reservoir operating method that accounts for both the natural flow and sediment regimes as well as optimizing the water supply allocations. Herein, reservoir water level (RWL), sediment-occupied ratio of reservoir volume (SOR) and rate of change of SOR (RCSOR) are adopted as three triggers of a drawdown-flushing-based sediment management policy. Two different groups of reservoir operating rule curves (RORCs) are designed for sediment-flushing and non-sediment-flushing years, and the three triggers, RWL, SOR and RCSOR, are used to change the “static” RORCs to “dynamic” ones. The approach is applied to the Wangkuai Reservoir, China to test its effectiveness. This shows that the approach can improve the flexibility of reservoir operators to balance the reservoir management, water supply management and the flow and sediment needs of the downstream riverine ecosystem.

  19. Environmental isotopical techniques as a mean for the investigation of eventual leakages in the dam of Mornos (Greece)

    International Nuclear Information System (INIS)

    Leontiadis, I.L.

    1987-01-01

    The isotopical composition of surface water was tried as a mean of investigation of the possible connection between the reservoir of the dam of Mornos and a spring appeared downstream the dam after the filling of its reservoir. From the respective analyses only those corresponding to the δD values of the water were found to be of some utility by supporting the conclusion that the spring under investigation could not be fed exclusively by the reservoir of the dam, nor even by a portion of as large as 60%. As a conclusion, in most cases of artificial reservoirs, used either for supply of drinking or irrigation water or for energy production, the usefulness of the environmental isotopical techniques for the investigation of eventual leakages is practically limited. In these cases radiotracing remains the most efficacious means. In the specific case of the dam of Mornos the partial feeding of the spring under investigation by the reservoir of the dam, as well as the fact that a small percentage of the water appearing on the roofs of the gallery and the tunnels of the dam is the result of leakages through definite flowpaths, has been proved. (author)

  20. Estimated cumulative sediment trapping in future hydropower reservoirs in Africa

    Science.gov (United States)

    Lucía, Ana; Berlekamp, Jürgen; Zarfl, Christiane

    2017-04-01

    Despite a rapid economic development in Sub-Saharan Africa, almost 70% of the human population in this area remain disconnected from electricity access (International Energy Agency 2011). Mitigating climate change and a search for renewable, "climate neutral" electricity resources are additional reasons why Africa will be one key centre for future hydropower dam building, with only 8% of the technically feasible hydropower potential actually exploited. About 300 major hydropower dams with a total capacity of 140 GW are currently under construction (11.4%) or planned (88.6%) (Zarfl et al. 2015). Despite the benefits of hydropower dams, fragmentation of the rivers changes the natural flow, temperature and sediment regime. This has consequences for a high number of people that directly depend on the primary sector linked to rivers and floodplains. But sediment trapping in the reservoir also affects dam operation and decreases its life span. Thus, the objective of this work is to quantify the dimension of sediment trapping by future hydropower dams in African river basins. Soil erosion is described with the universal soil loss equation (Wischmeier & Smith 1978) and combined with the connectivity index (Cavalli et al. 2013) to estimate the amount of eroded soil that reaches the fluvial network and finally ends up in the existing (Lehner et al. 2011) and future reservoirs (Zarfl et al. 2015) per year. Different scenarios assuming parameter values from the literature are developed to include model uncertainty. Estimations for existing dams will be compared with literature data to evaluate the applied estimation method and scenario assumptions. Based on estimations for the reservoir volume of the future dams we calculated the potential time-laps of the future reservoirs due to soil erosion and depending on their planned location. This approach could support sustainable decision making for the location of future hydropower dams. References Cavalli, M., Trevisani, S., Comiti

  1. Status and Habitat Requirements of White Sturgeon Populations in the Columbia River Downstream from McNary Dam, 1989-1990 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nigro, Anthony A. (Oregon Department of Fish and Wildlife, Portland, OR)

    1990-09-01

    We report on our progress from April 1989 through March 1990 on determining the status and habitat requirements of white sturgeon populations in the Columbia River downstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW), Washington Department of Fisheries (WDF), US Fish and Wildlife Service (FWS) and National Marine Fisheries Service (NMFS). Study objectives addressed by each agency are to describe the life history and population dynamics of subadults and adults between Bonneville and McNary dams and evaluate the need and identify potential methods for protecting, mitigating and enhancing populations downstream from McNary Dam, to describe the white sturgeon recreational fishery between Bonneville and McNary dams, describe reproductive and early life history characteristics downstream from Bonneville Dam and describe life history and population dynamics of subadults and adults downstream from Bonneville Dam, to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available between Bonneville and McNary dams, and to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available downstream from Bonneville Dam. Our approach is to work concurrently downstream and upstream from Bonneville Dam. Upstream from Bonneville Dam we began work in the Dalles Reservoir in 1987 and expanded efforts to Bonneville Reservoir in 1988 and John Day Reservoir in 1989. Highlights from this work is also included. 47 refs., 33 figs., 66 tabs.

  2. Monitoring of the Earth's surface deformation in the area of water dam Zarnowiec

    Science.gov (United States)

    Mojzes, Marcel; Wozniak, Marek; Habel, Branislav; Macak, Marek

    2017-04-01

    Mathematical and physical research directly motivates geodetic community which can provide very accurate measurements for testing of the proposed models Earth's surface motion near the water dams should be monitored due to the security of the area. This is a process which includes testing of existing models and their physical parameters. Change of the models can improve the practical results for analyzing the trends of motion in the area of upper reservoir of water dam Zarnowiec. Since 1998 Warsaw University of Technology realized a research focused on the horizontal displacements of the upper reservoir of water dam Zarnowiec. The 15 selected control points located on the upper reservoir crown of the water dam were monitored by classical distance measurements. It was found out that changes in the object's geometry occur due to the variation of the water level. The control measurements of the changes in the object's geometry occurring during the process of emptying and filling of the upper reservoir of water dam were compared with the deformations computed using improved Boussinesqués method programmed in the software MATLAB and ANSYS for elastic and isotropic half space as derivation of suitable potentials extended to the loaded region. The details and numerical results of this process are presented This presentation was prepared within the project "National Centre for Diagnostic of the Earth's Surface Deformations in the Area of Slovakia", ITMS code: 26220220108.

  3. Chinese engineers and scientists urge leadership to change Three Gorges Dam operating plan

    International Nuclear Information System (INIS)

    2000-01-01

    An appeal to the Chinese Leadership by a group of senior engineers, water management experts and academics about the dire consequences of filling the Three Gorges reservoir on the Yangtze River to 175 metres, is reported. Originally, the plan was to keep water levels behind the Three Gorges Dam at 156 metres for the first ten years of operation, in order to allow for resettlement of people displaced by building the dam, and to evaluate the impact of silt deposits on navigation and ports at the upper end of the reservoir. Plans have changed in 1997; the water level is now scheduled to rise to 175 metres in the sixth year of the dam's operation in order to maximize the dam's power output. The appeal by 53 experts warned the Chinese Government that the filling of the reservoir to 175 metres would displace 1.13 million people and raise the water level in the Yangtze River more than 10 metres at Chongqing City, submerging drainage outlets and backing up the city's sewage, as well as increase silt deposits, blocking shipping traffic along the Yangtze River. A parallel is drawn with the Sanmenxia Dam on the Yellow River. It was completed in 1960; it has proven to be useless for controlling floods while producing only one-third of its expected output due to massive silt build-up in the reservoir

  4. Bathymetry and capacity of Blackfoot Reservoir, Caribou County, Idaho, 2011

    Science.gov (United States)

    Wood, Molly S.; Skinner, Kenneth D.; Fosness, Ryan L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Shoshone-Bannock Tribes, surveyed the bathymetry and selected above-water sections of Blackfoot Reservoir, Caribou County, Idaho, in 2011. Reservoir operators manage releases from Government Dam on Blackfoot Reservoir based on a stage-capacity relation developed about the time of dam construction in the early 1900s. Reservoir operation directly affects the amount of water that is available for irrigation of agricultural land on the Fort Hall Indian Reservation and surrounding areas. The USGS surveyed the below-water sections of the reservoir using a multibeam echosounder and real-time kinematic global positioning system (RTK-GPS) equipment at full reservoir pool in June 2011, covering elevations from 6,090 to 6,119 feet (ft) above the North American Vertical Datum of 1988 (NAVD 88). The USGS used data from a light detection and ranging (LiDAR) survey performed in 2000 to map reservoir bathymetry from 6,116 to 6,124 ft NAVD 88, which were mostly in depths too shallow to measure with the multibeam echosounder, and most of the above-water section of the reservoir (above 6,124 ft NAVD 88). Selected points and bank erosional features were surveyed by the USGS using RTK-GPS and a total station at low reservoir pool in September 2011 to supplement and verify the LiDAR data. The stage-capacity relation was revised and presented in a tabular format. The datasets show a 2.0-percent decrease in capacity from the original survey, due to sedimentation or differences in accuracy between surveys. A 1.3-percent error also was detected in the previously used capacity table and measured water-level elevation because of questionable reference elevation at monitoring stations near Government Dam. Reservoir capacity in 2011 at design maximum pool of 6,124 ft above NAVD 88 was 333,500 acre-ft.

  5. Surveillance of medium-size dams; Surveillance des barrages de taille moyenne

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    French hydro-power buildings belong to the government and are retroceded by the licence holder when the granting delay comes to an end. Experience has shown that less care is given by licence holders to the maintenance of medium-size dams that to big dams. For this reason, the French Ministry of Industry decided to harmonize and standardize the surveillance practices of medium-size dams. A circular was signed on May 23, 1997 which concerns the 10 to 20 m height dams with water reservoir volumes lower than the H{sup 2} x V{sup 0.5} criterion which is an evaluation of the potential risk of the dam. The surveillance modalities concern: the construction, the licence holder file, the first filling up, the operation, and the periodical safety inspections. (J.S.)

  6. Status and habitat requirements of the white sturgeon populations in the Columbia River downstream from McNary Dam

    International Nuclear Information System (INIS)

    Nigro, A.A.

    1991-09-01

    We report on our progress from April 1990 through March 1991 on determining the status and habitat requirements of white sturgeon populations in the Columbia River downstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW), Washington Department of Fisheries (WDF), US Fish and Wildlife Service (FWS) and National Marine Fisheries Service (NMFS). Study objectives addressed by each agency are to describe the life history and population dynamics of subadults and adults between Bonneville and McNary dams and evaluate the need and identify potential methods for protecting, mitigating and enhancing populations downstream from NcNary Dam; to describe the white sturgeon recreational fishery between Bonneville and McNary dams, describe reproductive and early life history characteristics downstream from Bonneville Dam and describe life history and population dynamics of subadults and adults downstream from Bonneville Dam; to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available between Bonneville and McNary dams; and to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available downstream from Bonneville Dam. Our approach is to work concurrently downstream and upstream from Bonneville Dam. Upstream from Bonneville Dam we began work in the Dalles Reservoir in 1987 and expanded efforts to Bonneville Reservoir in 1988 and John Day Reservoir in 1989. Highlights of results of this work in the Dalles, Bonneville and John Day reservoirs are included in the four pages included in this report

  7. Simulation analysis of temperature control on RCC arch dam of hydropower station

    Science.gov (United States)

    XIA, Shi-fa

    2017-12-01

    The temperature analysis of roller compacted concrete (RCC) dam plays an important role in their design and construction. Based on three-dimensional finite element method, in the computation of temperature field, many cases are included, such as air temperature, elevated temperature by cement hydration heat, concrete temperature during placing, the influence of water in the reservoir, and boundary temperature. According to the corresponding parameters of RCC arch dam, the analysis of temperature field and stress field during the period of construction and operation is performed. The study demonstrates that detailed thermal stress analysis should be performed for RCC dams to provide a basis to minimize and control the occurrence of thermal cracking.

  8. Construction and first filling of Pinhão concrete face rockfill dam

    OpenAIRE

    Marcelino, J.; Moras, M.; Ribeiro, S.

    2011-01-01

    The Pinhão dam is located in the municipality of Vila Pouca de Aguiar in the district of Vila Real, intersecting the Pinhão River. Its primary purpose is to create an urban water supply reservoir of 4.24 x106 m3. The dam has a profile of granite riprap with a concrete face as the impervious curtain. The maximum height of the dam is 22 m. Construction took place between September 2006 and March 2008 when, after authorisation was given by INAG, first filling started. This paper is intende...

  9. Use of a dam break model to assess flooding at Haddam Neck Nuclear Power Plant

    International Nuclear Information System (INIS)

    Scherrer, J.S.; Chery, D.L. Jr.

    1984-01-01

    Because of their proximity to necessary supplies of cooling water, nuclear power plants are susceptible to riverine flooding. Greater flood hazards exist where plants are located downstream of larger dams. The consequences of the Quabbin Reservoir dam failure on the Haddam Neck Nuclear Power Plant situated on the Connecticut River were investigated using a dam break flood routing model. Reasons for selecting a particular model are presented and the input assumption for the modeling process are developed. Relevant information concerning the level of manpower involvement is presented. The findings of this analysis demonstrate that the plant is adequately protected from the consequences of the postulated flood event

  10. China’s Policy on Dams at the Crossroads: Removal or Further Construction?

    Directory of Open Access Journals (Sweden)

    Chiyuan Miao

    2015-05-01

    Full Text Available During the past century, the number and scale of reservoirs worldwide has grown substantially to meet the demand for water and hydropower arising from increased population, industrialization, and urbanization. This is particularly the case in China, where reservoir construction increased rapidly after the Chinese economic reform and the introduction of open-door policies. On average, 4.4 large reservoirs with a capacity greater than 0.1 km3 were constructed per annum during the 1970s–1990s. This average reached 11.8 such reservoirs per annum in the 2000s. Considering the adverse impact of dams on rivers and riparian communities, various environmentalists and non-governmental organizations in China have begun to protest against the construction of dams. Now China’s policy on dams is at a crossroads: Removal or further construction? In this paper, we systematically assess the construction of reservoirs in China and discuss the benefits and drawbacks of large-scale reservoir projects on several major rivers in China: The Yangtze River, the Yellow River and the Mekong River. Lastly, we provide a perspective on the future of reservoir development in China, taking into account natural conditions, renewable hydropower resources, and greenhouse gas emissions.

  11. Expansion at Olympic Dam

    International Nuclear Information System (INIS)

    Lewis, C.

    1997-01-01

    The Olympic Dam orebody is the 6th largest copper and the single largest uranium orebody in the world. Mine production commenced in June 1988, at an annual production rate of around 45,000 tonnes of copper and 1,000 tonnes of uranium. Western Mining Corporation announced in 1996 a proposed $1.25 billion expansion of the Olympic Dam operation to raise the annual production capacity of the mine to 200,000 tonnes of copper, approximately 3,700 tonnes of uranium, 75,000 ounces of gold and 950,000 ounces of silver by 2001. Further optimisation work has identified a faster track expansion route, with an increase in the capital cost to $1.487 billion but improved investment outcome, a new target completion date of end 1999, and a new uranium output of 4,600 tonnes per annum from that date

  12. Contaminated Sediment Management in Dam Removals and River Restoration Efforts: Critical Need for Research and Policy Development

    Science.gov (United States)

    Evans, J. E.

    2015-12-01

    Over 1,000 U.S. dams have been removed (1975-2015) for reasons including obsolescence, liability concerns, water quality upgrades, fisheries, or ecosystem enhancements. Contaminated sediment can significantly complicate the approval process, cost, and timeline of a dam removal, or stop it entirely. In a dam removal, reservoir sediment changes from a sink to a source of contaminants. Recently, the Sierra Club sued to stop the removal of a large dam in Ohio because of the potential impact of phosphate releases on toxic algal blooms in Lake Erie. Heavy metals, PCBs, PAHs, pesticides, and petroleum hydrocarbons can be present in reservoir sediments. In a non-dam removal scenario, reservoir management tools range from "no action" to dredging, dewatering and removal, or sediment capping. But it is not clear how these reservoir management techniques apply to dam removals. Case studies show typically >80% of the reservoir sediment is eventually eroded, precluding sediment capping as a containment option. However, the released contaminants are diluted by mixing with "clean" sediment and are transported to different physio-chemical environments which may immobilize or biodegrade the contaminants. Poorly understood options include phased drawdown/reseeding the former reservoir to contain sediments, diking contaminant "hot spots," and addressing contaminant stratigraphy (where historical use created "hot layers" in the reservoir sediment). Research and policy development needs include: (1) assessment methods based on synergistic effects of multiple contaminants being present; (2) ways to translate the pre-removal contaminant concentrations to post-removal health risks downstream; (3) evaluation of management practices for contaminant "hot spots" and "hot layers;" (4) tools to forecast the presence of contaminated sediment using easily accessible information; and (5) ways to limit liability risk for organizations participating in dam removals involving contaminated sediment.

  13. Pournari Dam (W. Greece) Impoundment and Triggered Seismicity

    Science.gov (United States)

    Pavlou, K.; Kouskouna, V.; Makropoulos, K.; Drakatos, G.; Petrou, P.

    2012-04-01

    The Pournari dam is located in the seismically active area of W. Greece, close to Arta. The height of the dam is 87m, with maximum water level height at 126m and maximum volume 865X106m3. The first impoundment commenced in January 1981, and was accompanied by a considerable number of low magnitude seismic events, as well as two major ones on March 10 and April 10, 1981, with magnitudes ML=5.6 and ML=4.7 and focal depths 13km and 10km, respectively, all located in the broader area of the dam. Potential triggering of the second event was studied through the calculation of Coulomb stress changes distribution, due to the occurrence of the first ML=5.6 event. Additionally, the detailed study of temporal correlation between water level increase and seismicity showed triggering seismicity due to both the initial filling and the disordered structure, controlled by the presence of evaporites, south and west of Pournari dam area. Further processing of the recorded seismicity for the period 1982-2010, in comparison with the variations of Pournari dam water level, presented an increase of shallow seismicity in the vicinity of the reservoir up to a 10 km distance -in contrast to the initial period, characterized by a number of deeper events- which was due to the background response change from undrained to drained status.

  14. Priority ranking for maintenance activities on embankment dams

    International Nuclear Information System (INIS)

    Chouinard, L.E.; Andersen, G.R.; Robichaud, J.G.; Blanchette, G.; Gervais, R.

    1998-01-01

    Operators of dams in Canada and the U.S. are steadily shifting from construction of new facilities to the maintenance and repairs of existing ones. This paper emphasized the importance of prioritizing maintenance activities on embankment dams whose maintenance needs vary from structure to structure. Two parallel procedures were developed, one for monitoring devices and the other for defense groups. Both procedures are intended to be used together to rate the condition of the embankment dams. The term 'defense groups' is used to refer to the collection of physical components on dams to prevent adverse conditions from occurring that would result in an uncontrolled release of the reservoir. The priority rankings and condition indices developed by means of this procedure reflects the judgment of a panel of engineers and geologists who implement them. They are not to be interpreted as an index of dam safety. While the process is sufficiently well developed to warrant wide-spread distribution, it is considered to be still in the developmental stage. Therefore, it should be used in conjunction with other parallel processes evaluating structural, mechanical and electrical features of the structure under consideration. 6 refs., 7 tabs

  15. South Channel Dam Rehabilitation Project - Successfully Addressing Dam Rehabilitation Challenges

    OpenAIRE

    Graeser, M. D.; Jensen, M. C.

    2016-01-01

    The Post Falls South Channel Dam is located on the Spokane River in Post Falls, Idaho. The concrete gravity dam was constructed in 1906 and was recently rehabilitated. The rehabilitation project included several design elements; the primary objectives were the replacement of the six spillway gates and hoists and significant rehabilitation of the concrete. The South Channel Dam rehabilitation encountered several challenges due to the age and condition of the existing structure, the large scale...

  16. Impact of dams on flood occurrence of selected rivers in the United States

    Science.gov (United States)

    Mei, Xuefei; Van Gelder, P. H. A. J. M.; Dai, Zhijun; Tang, Zhenghong

    2016-10-01

    A significant large number of dams have been constructed in the past two centuries in the United States. These dams' ability to regulate downstream flooding has received world-wide attention. In this study, data from 38 rivers distributed over the entire conterminous Untied States with extensive pre- and post-dam annual peak discharge records, were collected to research the impacts of various dams on the flood behaviors at a national scale. The results indicate that dams have led to significant reductions in flood magnitude for nearly all of the sites; the decrease rate in the mean of annual peak discharge varies between 7.4% and 95.14%, except for the Dead River, which increased by 1.46%. Because of dams' effectiveness, the probability density curve of annual peak flow changes from a flat to peaked shape because both the range and magnitude of high discharges are decreased. Moreover, the potential impact of dams on flood characteristics were closely related to the dam's geographic location and function, the ratio of the storage capacity of the dam to the mean annual runoff of the river (C/R), and the ratio of reservoir storage capacity to the area of its drainage (C/D). Specifically, the effects of dams on annual peak flows were more related to latitude than longitude. Compared with dams built for other purposes, the dam exclusively used for flood management cut off more flood peaks. Increases in the ratios of C/R and C/D increased the degree of modification of annual maximum discharge.

  17. Importance of using roller compacted concrete in techno-economic investigation and design of small dams

    Science.gov (United States)

    Rouissat, Bouchrit; Smail, N.; Zenagui, S.

    2017-12-01

    In recent years, and under constraints caused by persistent drought, Algeria has launched a new mobilization strategy for surface water resources from small and medium dams. However, by making a review of the studies and achievements of twenty small dams in the west of Algeria, some deficiencies appeared. In addition to reservoir siltation assessment, operation spillways have been the major constraint on the reliability of these types of dams. The objective of this paper is to use the roller compacted concrete (RCC) for small dams' design for the benefit it offers and its ability to incorporate spillways. The development of this reflection was applied to the Khneg Azir earth dam situated in southwest of Algeria. Its uncontrolled lateral spillway has registered significant damage following the flood of October 2005, amounted, at that time, to more than 100 million Algerian dinars (1 million US Dollars). The present research encompasses a technical and economical comparative analysis concerning multiple criteria dam design types coupled with the conjugation of the spillways. Thus, on the basis of financial estimates calculated for all design types, the variant RCC remains competitive with that of the earth dam's spillway isolated (Less than 40% of the cost). To assess the mechanical behavior of the foundations for both types of dams, (earth and RCC dams), numerical modeling has been undertaken, according to the comparative analysis of deformations in the foundations. Analysis of deformations showed that the average foundation deformations was between (0.052-0.85) m for earth dam and (0.023-0.373) m for RCC dam. These economical and technical considerations open up important prospects for the use of RCC in the design of small dams.

  18. Effects of dams and geomorphic context on riparian forests of the Elwha River, Washington

    Science.gov (United States)

    Shafroth, Patrick B.; Perry, Laura G; Rose, Chanoane A; Braatne, Jeffrey H

    2016-01-01

    Understanding how dams affect the shifting habitat mosaic of river bottomlands is key for protecting the many ecological functions and related goods and services that riparian forests provide and for informing approaches to riparian ecosystem restoration. We examined the downstream effects of two large dams on patterns of forest composition, structure, and dynamics within different geomorphic contexts and compared them to upstream reference conditions along the Elwha River, Washington, USA. Patterns of riparian vegetation in river segments downstream of the dams were driven largely by channel and bottomland geomorphic responses to a dramatically reduced sediment supply. The river segment upstream of both dams was the most geomorphically dynamic, whereas the segment between the dams was the least dynamic due to substantial channel armoring, and the segment downstream of both dams was intermediate due to some local sediment supply. These geomorphic differences were linked to altered characteristics of the shifting habitat mosaic, including older forest age structure and fewer young Populus balsamifera subsp. trichocarpa stands in the relatively static segment between the dams compared to more extensive early-successional forests (dominated by Alnus rubra and Salix spp.) and pioneer seedling recruitment upstream of the dams. Species composition of later-successional forest communities varied among river segments as well, with greater Pseudotsuga menziesii and Tsuga heterophylla abundance upstream of both dams, Acer spp. abundance between the dams, and P. balsamifera subsp. trichocarpa and Thuja plicata abundance below both dams. Riparian forest responses to the recent removal of the two dams on the Elwha River will depend largely on channel and geomorphic adjustments to the release, transport, and deposition of the large volume of sediment formerly stored in the reservoirs, together with changes in large wood dynamics.

  19. Impact of a dam breaking wave on a big reservoir

    International Nuclear Information System (INIS)

    Carballada, L.

    1989-01-01

    Six industrial hydrotreating catalysts - Ni- Mo/Al 2 O 3 were evaluated for their activity towards hydrodesulfurization (HDS), hydrodenitrogenation (HDN), and polynuclear aromatics (PNA) reduction. The feedstock was gas oil (249 - 524 degree C) from a hydrocracked 50/50 mixture of Cold Lake/Lloydminister atmospheric residue. The reactions were carried out in a continuous fixed-bed reactor operating in an upflow mode. Results from the experimental runs are presented. HDN, PNA reduction and HDS correlated with molybdenum surface coverage, while chemical hydrogen consumption depended on the phosphorus content of the catalyst. Coke deposition on the catalyst surface showed an inverse dependence with phosphorus loading per unit area. The influences of the Ni-Mo ratio, phosphorus content, pore size, pore size distribution and surface area of the fresh catalysts on their performance are examined. Catalyst performance as measured by the reduction of aromatics, sulfur and nitrogen is discussed. A choice of the most active catalyst was based on results from 1000 h time-on-stream runs and the properties of the spent catalysts. 24 refs., 10 figs., 4 tabs

  20. Large dams and risk management; Grands barrages : gerer le risque

    Energy Technology Data Exchange (ETDEWEB)

    Cazelais, N.

    2003-06-01

    In July 1996, Quebec's Saguenay region was subjected to intensive rainfall which caused severe floods and uncontrolled release of several reservoirs, resulting in extensive damage to dam structures and reservoirs. The probability of occurrence for that disaster was 1:10,000. Following the disaster, the Quebec government established a dam management body entitled the Commission scientifique et technique sur la gestion des barrages, which pointed out several safety shortcomings of existing dams. Many were either very old or had undergone significant function change without being subsequently re-evaluated. A report by the Commission stated that damage following the floods could have been limited if the design and operating standards of the dams had been more stringent. A Dam Safety Act was adopted by the Quebec National Assembly on May 30, 2000 following recommendations to retain safer structures. The Act demands regular reporting of operating procedures. Seismic activity was noted as being a topic that requires in-depth examination since Quebec's St. Lawrence Valley, particularly the Charlevoix region, is one of Canada's largest seismic zones. The other is on the west coast in British Columbia. Earthquakes in Quebec are less intense than the ones in British Columbia, but they have higher frequency content which exerts a quasi-resonance wave effect which impacts roads, bridges, buildings and hydroelectric generating facilities. Hydro-Quebec is a public utility which owns 563 retaining structures, of which 228 are ranked as large dams that measure more than 15 metres high, 400 metres long and with a reservoir capacity of more than 1 million cubic metres of water. Hydro-Quebec addresses hydrological, seismic, technological and human risks through a dam safety procedure that includes structured plans for choosing best alternatives through staged exercises. Hazard levels are minimized through the adoption of emergency, prevention and alleviation measures

  1. Assessment of Reservoir Storage in a Semi-Arid Environment Using ...

    African Journals Online (AJOL)

    Nekky Umera

    Tiga Dam in Kano State, Nigeria, of 1090 x 106m3 using Gould. Probability Matrix method. .... The application of the mass storage equation was data driven and the method for collecting the required data ..... Reservoir in million cubic metres. Distribution of average monthly water demand on Tiga Reservoir in million cubic.

  2. Estimating Water Balance Components of Lakes and Reservoirs Using Various Open Access Satellite Databases

    NARCIS (Netherlands)

    Duan, Z.

    2014-01-01

    There are millions of lakes and ten thousands of reservoirs in the world. The number of reservoirs is still increasing through the construction of large dams to meet the growing demand for water resources, hydroelectricity and economic development. Accurate information on the water balance

  3. 1000 dams down and counting

    Science.gov (United States)

    O'Connor, James E.; Duda, Jeff J.; Grant, Gordon E.

    2015-01-01

    Forty years ago, the demolition of large dams was mostly fiction, notably plotted in Edward Abbey's novel The Monkey Wrench Gang. Its 1975 publication roughly coincided with the end of large-dam construction in the United States. Since then, dams have been taken down in increasing numbers as they have filled with sediment, become unsafe or inefficient, or otherwise outlived their usefulness (1) (see the figure, panel A). Last year's removals of the 64-m-high Glines Canyon Dam and the 32-m-high Elwha Dam in northwestern Washington State were among the largest yet, releasing over 10 million cubic meters of stored sediment. Published studies conducted in conjunction with about 100 U.S. dam removals and at least 26 removals outside the United States are now providing detailed insights into how rivers respond (2, 3).

  4. Reservoir-induced Alterations in Flood Seasonality: Patterns, Processes, and Implications

    Science.gov (United States)

    Abeshu, G. W.; Li, H. Y.; Yigzaw, W.; Hejazi, M. I.; Tang, J.; Demissie, Y.

    2017-12-01

    Reservoirs are by far the most significant human activities that are imposing hydrologic alterations, specifically related to extreme flow conditions. This study presents the effects of reservoir regulation on flood seasonality in different hydrologic and climate settings across the contiguous United States. The data employed consists of reservoir information from the National Inventory of Dams (NID) and Global Reservoir and Dam (GRanD) database along with USGS stream flow data for pre- and post-impoundment periods. A new flood seasonality index was developed with circular statistics to reveal any significant shifts in flood timing between pre- and post-impoundments periods at each USGS station. Reservoir Impact Index (RII) was developed as a function of storage capacity and mean annual streamflow to quantify the regulation effects of reservoirs on flood seasonality. Process understanding of how reservoir regulation affects flow seasonality was analyzed based on RII using simple but physically-based reservoir models with different degrees of complexity, e.g., simple linear and hedging models. Results indicate that the shift in seasonality of annual maximum flood (AMF) at downstream generally increases with increasing RII, given that reservoir has enough storage to regulate the flood. The process modeling results also imply that reservoir state prior to the occurrence of AMF, antecedent climatic patterns and catchment state affect the shift in AMF arrival at downstream. These findings will help improve the ability to examine issues connected to flood frequency characteristics including nutrient delivery, sediment load and stream temperature shifts at downstream of dams.

  5. Hydrogeophysical investigations of the earthen Martis Creek Dam, Truckee, CA

    Science.gov (United States)

    Powers, M.; Minsley, B.; Bedrosian, P. A.; Burton, B.

    2008-12-01

    Martis Creek Dam, to the north of Lake Tahoe, was constructed for flood control in 1972 by the US Army Corp of Engineers. Since completion, all attempts to raise the level of Martis Creek Reservoir to its design level have been aborted due to seepage from locations downstream and along the west dam abutment. Following a recent evaluation, concerns have been raised regarding the potential for dam failure due to such seepage, combined with the consequences of failure on the growing population of Reno downstream. In response to these concerns, the US Geological Survey has undertaken a comprehensive suite of geophysical investigations aimed at understanding the interplay between geologic structure, seepage patterns, lake level, and ground-water levels. Investigations to date are focused upon a series of profiles, along which P- and S- wave reflection/refraction, DC resistivity, time-domain electromagnetic, and self- potential measurements have been made. Preliminary interpretation of coincident velocity, resistivity, and reflection sections suggests the dam rests upon a deep (>300 m) sedimentary section that interfingers with one or more volcanic flows derived from the Dry Lake Volcanic center to the east; this package has been subsequently offset by a NNW-trending fault of undetermined age and activity. Shallow resistivity sections further map glacial outwash deposits of variable thickness that cover most of the region to an average depth of 20-30 m. The ground-water level, as defined from seismic refraction sections, is depressed relative to current reservoir level and lies within sediments of the Truckee Formation that underlie the outwash deposits. The self-potential data are consistent with regional ground-water flow from south to north, as well as downhill flow from a topographic high on the right (east) abutment. The data show little indication of seepage through the dam from the reservoir, though this is likely due to the low reservoir level currently

  6. The Ecological effect of conveyance pipeline from Gurara reservoir ...

    African Journals Online (AJOL)

    The study focuses on the public awareness of the effect of conveyance pipeline from Gurara reservoir to lower Usman Dam on Ecological degradation in Abuja, using data from questionnaire survey of about 150 households as well as field observation. The data from the survey reveals that over 30% ecological degradations ...

  7. The Role of Rainfall Variability in Reservoir Storage Management at ...

    African Journals Online (AJOL)

    Statistical analysis of hydro-meteorological data (rainfall, inflow, reservoir storage and turbine release) at Shiroro dam were carried out with the aim of detecting spatio-temporal trends. Correlation and regression analysis were used to develop models for the variables. The correlation of between 0.120 and 0.774 revealed ...

  8. DECREASING OF WATER TROPHY IN CASCADE SYSTEMS, ON EXAMPLE OF THE SOŁA RIVER DAM CASCADE (SOUTHERN POLAND

    Directory of Open Access Journals (Sweden)

    Ewa Jachniak

    2014-10-01

    Full Text Available In this thesis the subject of water self-purification in cascade systems of water reservoirs was engaged. The results of hydrobiological research of three dam reservoirs (Tresna, Porąbka and Czaniec, creating the Soła river dam cascade were presented. The trophic status of these reservoirs was defined on the grounds of the concentration of chlorophyll a, biomass of phytoplankton and occurrence of indicating species of planktonic algae. The results of research indicated on decreasing of water trophy in the layout from the highest into the lowest reservoir of the cascade. The average concentrations of chlorophyll a amounted appropriately 19,99 μg·dm-3, 8,74 μg·dm-3 and 4,29 μg·dm-3, instead the average biomass of phytoplankton amounted appropriately 4,1 mg·dm-3, 3,4 mg·dm-3 and 0,1 mg·dm-3. The observed species of algae confirmed occurrence of differences between reservoirs. In Tresna reservoir more species of phytoplankton indicating for eutrophy were thrived, instead in Porąbka and Czaniec reservoirs the species occurring in oligomesotrophic water thrived. Water self-purification in the Soła river dam cascade expressed decreasing of their fertility is important for water management of the region, because the Czaniec reservoir fulfill a function of water-supply reservoir.

  9. Final Independent External Peer Review Report for the Intake Diversion Dam Modification Lower Yellowstone Project, Montana Draft Supplement to the 26 April 2010 Environmental Assessment and Appendices

    Science.gov (United States)

    2013-02-08

    drop structures, embankments, and low-head dams for water diversion and flood control, including flood control projects in Contra Costa and Napa... counties , California. He has been a principal consultant on more than 150 small, earth-fill dams and reservoirs for the Vineyard Development Water...Intake Diversion Dam is located along the Lower Yellowstone River, approximately 18 miles downstream from the City of Glendive, Dawson County

  10. White sturgeon mitigation and restoration in the Columbia and Snake rivers upstream from Bonneville Dam, Annual Progress Report April 2006 - March 2007. Report C

    Science.gov (United States)

    Parsley, M.J.; Kofoot, P.

    2008-01-01

    Describe reproduction and early life history characteristics of white sturgeon populations in the Columbia River between Bonneville and Priest Rapids dams. Define habitat requirements for spawning and rearing white sturgeon and quantify the extent of habitat available in the Columbia River between Bonneville and Priest Rapids dams. Progress updates on young-of-the-year recruitment in Bonneville Reservoir and indices of white sturgeon spawning habitat for 2006 for McNary, John Day, The Dalles, and Bonneville dam tailrace spawning areas.

  11. The fluvial sediment budget of a dammed river (upper Muga, southern Pyrenees)

    Science.gov (United States)

    Piqué, G.; Batalla, R. J.; López, R.; Sabater, S.

    2017-09-01

    Many rivers in the Mediterranean region are regulated for urban and agricultural purposes. Reservoir presence and operation results in flow alteration and sediment discontinuity, altering the longitudinal structure of the fluvial system. This study presents a 3-year sediment budget of a highly dammed Mediterranean river (the Muga, southern Pyrenees), which has experienced flow regulation since the 1969 owing to a 61-hm3 reservoir. Flow discharge and suspended sediment concentration were monitored immediately upstream and downstream from the reservoir, whereas bedload transport was estimated by means of bedload formulae and estimated from regional data. Results show how the dam modifies river flow, reducing the magnitude of floods and shortening its duration. At the same time, duration of low flows increases. The downstream flow regime follows reservoir releases that are mostly driven by the irrigation needs in the lowlands. Likewise, suspended sediment and bedload transport are shown to be notably affected by the dam. Sediment transport upstream was mainly associated with floods and was therefore concentrated in short periods of time (i.e., > 90% of the sediment load occurred in transported more constantly (i.e., 90% of the load was carried during 50% of the time). Total sediment load upstream from the dam equalled 23,074 t, while downstream it was transport downstream. More than 95% of the sediments transported from the upstream basins were trapped in the reservoir, a fact that explains the sediment deficit and the river bed armouring observed downstream. Overall, the dam disrupted the natural water and sediment fluxes, generating a highly modified environment downstream. Below the dam, the whole ecosystem shifted to stable conditions owing to the reduction of water and sediment loads.

  12. The potential impact of new Andean dams on Amazon fluvial ecosystems

    Science.gov (United States)

    Melack, John M.; Dunne, Thomas; Barthem, Ronaldo B.; Goulding, Michael; Paiva, Rodrigo C. D.; Sorribas, Mino V.; Silva, Urbano L.; Weisser, Sabine

    2017-01-01

    Increased energy demand has led to plans for building many new dams in the western Amazon, mostly in the Andean region. Historical data and mechanistic scenarios are used to examine potential impacts above and below six of the largest dams planned for the region, including reductions in downstream sediment and nutrient supplies, changes in downstream flood pulse, changes in upstream and downstream fish yields, reservoir siltation, greenhouse gas emissions and mercury contamination. Together, these six dams are predicted to reduce the supply of sediments, phosphorus and nitrogen from the Andean region by 69, 67 and 57% and to the entire Amazon basin by 64, 51 and 23%, respectively. These large reductions in sediment and nutrient supplies will have major impacts on channel geomorphology, floodplain fertility and aquatic productivity. These effects will be greatest near the dams and extend to the lowland floodplains. Attenuation of the downstream flood pulse is expected to alter the survival, phenology and growth of floodplain vegetation and reduce fish yields below the dams. Reservoir filling times due to siltation are predicted to vary from 106–6240 years, affecting the storage performance of some dams. Total CO2 equivalent carbon emission from 4 Andean dams was expected to average 10 Tg y-1 during the first 30 years of operation, resulting in a MegaWatt weighted Carbon Emission Factor of 0.139 tons C MWhr-1. Mercury contamination in fish and local human populations is expected to increase both above and below the dams creating significant health risks. Reservoir fish yields will compensate some downstream losses, but increased mercury contamination could offset these benefits. PMID:28832638

  13. Anticipated sediment delivery to the lower Elwha River during and following dam removal: Chapter 2 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    Science.gov (United States)

    Czuba, Christiana R.; Randle, Timothy J.; Bountry, Jennifer A.; Magirl, Christopher S.; Czuba, Jonathan A.; Curran, Christopher A.; Konrad, Christopher P.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    During and after the planned incremental removal of two large, century-old concrete dams between 2011 and 2014, the sediment-transport regime in the lower Elwha River of western Washington will initially spike above background levels and then return to pre-dam conditions some years after complete dam removal. Measurements indicate the upper reaches of the steep-gradient Elwha River, draining the northeast section of the Olympic Mountains, carries between an estimated 120,000 and 290,000 cubic meters of sediment annually. This large load has deposited an estimated 19 million cubic meters of sediment within the two reservoirs formed by the Elwha and Glines Canyon Dams. It is anticipated that from 7 to 8 million cubic meters of this trapped sediment will mobilize and transport downstream during and after dam decommissioning, restoring the downstream sections of the sediment-starved river and nearshore marine environments. Downstream transport of sediment from the dam sites will have significant effects on channel morphology, water quality, and aquatic habitat during and after dam removal. Sediment concentrations are expected to be between 200 and 1,000 milligrams per liter during and just after dam removal and could rise to as much as 50,000 milligrams per liter during high flows. Downstream sedimentation in the river channel and flood plain will be potentially large, particularly in the lower Elwha River, an alluvial reach with a wide flood plain. Overall aggradation could be as much as one to several meters. Not all reservoir sediment, however, will be released to the river. Some material will remain on hill slopes and flood plains within the drained reservoirs in quantities that will depend on the hydrology, precipitation, and mechanics of the incising channel. Eventually, vegetation will stabilize this remaining reservoir sediment, and the overall sediment load in the restored river will return to pre-dam levels.

  14. Dams release methane even in temperate zoned

    International Nuclear Information System (INIS)

    Lemarchand, F.

    2010-01-01

    The Wohlen lake (near Bern) is a retaining dam built 90 years ago that has undergone a campaign to measure the quantity of methane released. The campaign lasted 1 year and the result was unexpected: 0.15 g/m 2 *day which one of the highest release rates in temperate zones. This result is all the more stunning since water stays only 2 days in average in the reservoir and that the drowned area is not important. In fact the river Aar that feeds the lake is loaded with organic matter coming from humane activities: agriculture and 3 sewage plants. This organic matter decays in the lake releasing methane. (A.C.)

  15. Effects of damming on the distribution and methylation of mercury in Wujiang River, Southwest China.

    Science.gov (United States)

    Zhao, Lei; Guo, Yanna; Meng, Bo; Yao, Heng; Feng, Xinbin

    2017-10-01

    Newly built reservoirs are regarded as sensitive ecosystem for mercury (Hg) methylation. A comprehensive study was conducted to understand the influence of damming on the distribution and methylation of Hg within a river-reservoir ecosystem in Wujiang River Basin (WRB), Southwest China. Hg species in inflow-outflow rivers of six cascade reservoirs were analyzed each month during 2006. Mean concentrations of total Hg (THg) and methylmercury (MeHg) in river water in WRB were 3.41 ± 1.98 ng L -1 and 0.15 ± 0.06 ng L -1 , respectively. THg and particulate Hg (PHg) concentrations in outflow rivers of reservoirs significantly decreased after dam construction, suggesting that a considerable amount of PHg was intercepted by way of sedimentation. However, the influence of damming on the distributions of dissolved Hg (DHg) and reactive Hg (RHg) in rivers was less pronounced. MeHg concentrations in outflow rivers of the older reservoirs significantly increased compared to inflow rivers with the maximum increasing factor of 92%, indicating the active net Hg methylation in the reservoirs. However, the difference between MeHg in inflow rivers and outflow rivers were less pronounced in the newly constructed reservoirs, indicating that these reservoirs were not active sites of Hg methylation. The construction of the cascade reservoirs resulted in the elevation of MeHg in several sections of the Wujiang River, which attributed to the net Hg methylation in reservoirs and discharge of MeHg from hypolimnion. MeHg-enriched water in outflow rivers from hypolimnetic water could be transported to downstream, posing potential threat to the aquatic food web and human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Dam Break Analysis of Embankment Dams Considering Breach Characteristics

    Directory of Open Access Journals (Sweden)

    Abolfazl Shamsaei

    2004-05-01

    Full Text Available The study of dam's break, needs the definition of various parameters such as the break cause, its type, its dimension and the duration of breach development. The precise forecast for different aspects of the breach is one of the most important factors for analyzing it in embankment dam. The characteristics of the breach and determination of their vulnerability has the most effect on the waves resulting from dam break. Investigating, about the parameters of the breach in "Silveh" earth dam have been determined using the suitable model. In Silve dam a trapezoid breach with side slope z=0.01m and the average base line b=80m was computed. The duration of the breaches development is 1.9 hour. Regarding the above results and the application of DAM Break software the consequences of the probable break of the dam was determined. The analysis of the results of water covering of the city of Piranshahr located 12km from silve dam confirms that in 3 hours the water will reach the height (level of 1425 meters.

  17. Total risk-analysing methods for dam structures and a case study in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Tosun, H. [Turkish Association of Dam Safety, Ankara (Turkey); Turkoz, M. [Osmangazi Univ., Eskisehir (Turkey). Dept. of Civil Engineering

    2007-07-01

    By considering the various factors of hazard, the total risk of dam structures in a basin can be systematically analyzed. These factors include structural factors such as settlement, seepage, leakage, and internal erosion; and, dam site factors such as seismic activity, landslide, rockfall and flooding. In order to increase safety, these hazards can be analyzed in detail and design and construction measures can be taken into account. This paper outlined the main principles of total risk analysis of dams in a basin. The paper discussed the geological setting and structural geology of the Euphrates-Tigris basin located in Turkey and dam properties of thirty-two large dams, which are located on different seismic zones of the Euphrates basin. Properties that were identified and compared included: structural height, function, type, completed year, volume of dam fill, and reservoir capacity. The paper discussed the methods of analysis using a computer program for the probabilistic and deterministic assessment of seismic hazard. It was concluded that peak ground acceleration changes within a wide range for the dam sites of the basins. In addition, sixteen large dams were in the high-risk class in the basins. 21 refs., 2 tabs., 2 figs.

  18. Viewpoint – Brazil’s Madeira River Dams: A Setback for Environmental Policy in Amazonian Development

    Directory of Open Access Journals (Sweden)

    Philip Martin Fearnside

    2014-02-01

    Full Text Available Decisions on hydroelectric dam construction will be critical in shaping the future of Amazonia, where planned dams would convert most tributaries into chains of reservoirs. The Santo Antônio and Jirau dams, now nearing completion on the Madeira River, have created dangerous precedents in a trend towards weakening environmental protection in Brazil. Political appointees have overruled the technical staff of the Brazilian Institute for the Environment and Renewable Natural Resources (IBAMA, which is responsible for evaluating the environmental impact study (EIA and for licensing dams. Installation licences were granted without satisfying many of the 'conditions' that had been established as prerequisites. This feature and several others of the licensing process for the Madeira River dams have now been repeated in licensing the controversial Belo Monte Dam on the Xingu River. Brazil plans to build 30 large dams in its Amazon region in a decade, and others are to be financed and built by Brazil in Peru, Bolivia, Ecuador and Guyana. These plans affect virtually all water resources in an area larger than Western Europe. The Madeira River dams indicate the need to reform the decision-making process in Brazil.

  19. Sedimentology of new fluvial deposits on the Elwha River, Washington, USA, formed during large-scale dam removal

    Science.gov (United States)

    Draut, Amy; Ritchie, Andrew C.

    2015-01-01

    Removal of two dams 32 m and 64 m high on the Elwha River, Washington, USA, provided the first opportunity to examine river response to a dam removal and controlled sediment influx on such a large scale. Although many recent river-restoration efforts have included dam removal, large dam removals have been rare enough that their physical and ecological effects remain poorly understood. New sedimentary deposits that formed during this multi-stage dam removal result from a unique, artificially created imbalance between fluvial sediment supply and transport capacity. River flows during dam removal were essentially natural and included no large floods in the first two years, while draining of the two reservoirs greatly increased the sediment supply available for fluvial transport. The resulting sedimentary deposits exhibited substantial spatial heterogeneity in thickness, stratal-formation patterns, grain size and organic content. Initial mud deposition in the first year of dam removal filled pore spaces in the pre-dam-removal cobble bed, potentially causing ecological disturbance but not aggrading the bed substantially at first. During the second winter of dam removal, thicker and in some cases coarser deposits replaced the early mud deposits. By 18 months into dam removal, channel-margin and floodplain deposits were commonly >0.5 m thick and, contrary to pre-dam-removal predictions that silt and clay would bypass the river system, included average mud content around 20%. Large wood and lenses of smaller organic particles were common in the new deposits, presumably contributing additional carbon and nutrients to the ecosystem downstream of the dam sites. Understanding initial sedimentary response to the Elwha River dam removals will inform subsequent analyses of longer-term sedimentary, geomorphic and ecosystem changes in this fluvial and coastal system, and will provide important lessons for other river-restoration efforts where large dam removal is planned or

  20. Suspended-sediment inflows to Watts Bar Reservoir. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, L.K.

    1993-09-01

    Suspended-sediment inflows to Watts Bar Reservoir are important data that are required in numerical modeling of transport and deposition of sediment in the reservoir. Acceptable numerical modeling requires sediment inflow rates and locations in order to be able to compute the location and quantity of sediment deposited within the reservoir. Therefore, the representativeness of modeling results is highly dependent on the characteristics of sediment input to the model. The following recommendations, that account for suspended-sediment inflows to be used in the numerical modeling of sediment transport and deposition in Watts Bar Reservoir, were developed through an evaluation of available watershed and sediment deposition data. (1) Use the suspended-sediment rating regression equations of Gaydos et al., for Emory River at Oakdale, TN, and for Poplar Creek near Oak Ridge, TN, to represent the suspended-sediment inflows into Watts Bar Reservoir from its tributaries; (2) Use a suspended-sediment rating regression equation that was derived from suspended-sediment and streamflow data of the Little Tennessee River at McGhee, TN, to represent sediment inflow from the Little Tennessee River for simulation of any historical year before the completion of Tellico Dam; (3) Check the appropriateness of any assumption for suspended-sediment inflows from upstream reservoirs by using its long-term relationship to local suspended-sediment inflows and to the suspended-sediment outflow through Watts Bar Dam; and (4) Focus refinements to suspended-sediment inflow rates on the Clinch arm of Watts Bar Reservoir.

  1. Past, Present, and Future Nutrient Quality of a Small Southeastern River: A Pre-Dam Assessment

    Directory of Open Access Journals (Sweden)

    Paul M. Stewart

    2013-07-01

    Full Text Available Riverine dams alter both the physical environment and water chemistry, thus affecting species assemblages within these environments. In the United States, dam construction is on the decline and there is a growing trend for dam removal. The Choctawhatchee, Pea, and Yellow Rivers Watershed Management Authority had initiated the permitting process for placing a reservoir dam on the Little Choctawhatchee River (LCR, a tributary to the Choctawhatchee River. The purpose of the proposed reservoir was water supply, and while the permit application has been suspended, history shows that this or related projects are likely to arise in the future. This study collected data on nutrient quality seasonally (four times from 12 sites in the LCR watershed from October 2007 to June 2008 in order to determine pre-dam conditions and to compare these data to historical and regional information. Historical and current nutrient concentrations were elevated throughout the watershed, in most cases above suggested criteria, and indicated that water quality of the river was and continues to be nutrient rich. A future reservoir at recent levels of water quality will likely be highly eutrophic, and anthropogenic influences will further stress this ecosystem and its water quality as the urban region expands.

  2. Dam construction in salt formations

    International Nuclear Information System (INIS)

    Jezierski, H.

    1984-01-01

    Dam Construction is a key task for the safety of the Gorleben repository. In order to seal a fille disposal field from the part in operation and to minimize radionuclide migration during the post-operating time a dam is to be developed and tested under certain accident conditions i.e., mainly the intrusion of brines and natural gas from either side of the dam. The development of this dam is subject of an extensive engineering project. This report summarizes the goals, problems, concepts, and first results of these systematical project studies. By analysing and characterizing special design criteria under site-specific aspects the major development priorities are investigated. First results will be presented concerning concrete based materials and their property changes due to the corrosive behavior of brines at elevated temperatures. Based on these investigations, pilot dams will be built and tested to prove their efficiency

  3. After Three Gorges Dam: What have we learned?

    Science.gov (United States)

    Natali, J.; Williams, P.; Wong, R.; Kondolf, G. M.

    2013-12-01

    China is at a critical point in its development path. By investing heavily in large-scale infrastructure, the rewards of economic growth weigh against long-term environmental and social costs. The construction of Three Gorges Dam, the world's largest hydroelectric project, began in 1994. Between 2002 and 2010, its 660 kilometer reservoir filled behind a 181 meter dam, displacing at least 1.4 million people and transforming Asia's longest river (the Yangtze) while generating nearly 100 billion kWh/yr of electricity -- 2.85% of China's current electric power usage. As the mega-project progenitor in a cascade of planned dams, the Three Gorges Dam emerges as a test case for how China will plan, execute and mitigate its development pathway and the transformation of its environment. Post-Project Assessments (PPA) provide a systematic, scientific method for improving the practice of environmental management - particularly as they apply to human intervention in river systems. In 2012, the Department of Landscape Architecture and Environmental Planning at University of California, Berkeley organized a symposium-based PPA for the Three Gorges Dam on the Yangtze River. Prior to this symposium, the twelve invited Chinese scientists, engineers and economists with recent research on Three Gorges Dam had not had the opportunity to present their evaluations together in an open, public forum. With a 50-year planning horizon, the symposium's five sessions centered on impacts on flows, geomorphology, geologic hazards, the environment and socioeconomic effects. Three Gorges' project goals focused on flood control, hydropower and improved navigation. According to expert research, major changes in sediment budget and flow regime from reservoir operation have significantly reduced sediment discharge into the downstream river and estuary, initiating a series of geomorphic changes with ecological and social impacts. While the dam reduces high flow stages from floods originating above the

  4. Status and Habitat Requirements of White Sturgeon Populations in the Columbia River Downstream from McNary Dam, 1988-1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nigro, Anthony A. (Oregon Dept. of Fish and Wildlife, Portland, OR (USA))

    1989-09-01

    We report on our progress from April 1988 through March 1989 on determining the status and habitat requirements of white sturgeon populations in the Columbia River downstream from McNary Dam. Highlights of results of our work in the Dalles and Bonneville reservoirs are: using setlines, we caught 1,586 sturgeon in The Dalles Reservoir and 484 sturgeon in Bonneville Reservoir in 1988. Fork length of fish caught ranged from 34 cm to 274 cm. Of the fish caught we marked 1,248 in The Dalles Reservoir and 341 in Bonneville Reservoir. Of the fish marked in 1988, we recaptured 82 in The Dalles Reservoir and none in Bonneville Reservoir. We recaptured 89 fish marked in 1987 in The Dalles Reservoir. Anglers recaptured 35 fish marked in 1988 and 16 fish marked in 1987 in The Dalles Reservoir. Anglers recaptured 2 sturgeon marked in 1988 in Bonneville Reservoir. Individual papers were processed separately for the data base.

  5. Can Extreme Hydrological Events Rejuvenate Reservoir GHG Emissions?

    Science.gov (United States)

    Sherman, B. S.; Ford, P.

    2013-12-01

    Cotter Dam (Canberra, Australia), built in 1912 and enlarged to its current size (4 GL) in 1951, is a water supply reservoir that has recently been enlarged again (to 80 GL) to increase water security. Vegetation consists mainly of regrowth Pinus radiata and scrubby bushland as the catchment recovers from a devastating fire in 2003. Periodic floating chamber measurements of CO2 and CH4 fluxes using a Picarro 1301 CRDS have been undertaken to provide baseline flux measurements against which future GHG emissions can be compared as the dam fills and new soil and vegetation are inundated. After the first survey, drought-breaking rains led to heavy flooding for the first time in more than ten years with more than 80 GL passing through the reservoir during a two-month period. Areal mean CH4 emissions from the reservoir prior to the flooding were low (0.26 × 0.14 mmol m-2 d-1), relatively uniform across the 8 measurement sites, and therefore typical of 'mature' reservoirs. Following the flood, the mean reservoir CH4 emission increased to 6.2 × 1.4 mmol m-2 d-1 with emissions at the upstream end of the reservoir (the deposition zone) approximately 100 times greater (31 × 7.6 mmol m-2 d-1) than emissions near the dam wall (0.28 × 0.019 mmol m-2 d-1), a pattern we consistently observed in two other reservoirs in much wetter and more densely vegetated (subtropical and temperate rainforest) southeast Queensland. Over the following year, there has been a return to more normal runoff conditions, mean emissions have fallen to 2.0 × 0.75 mmol m-2 d-1 and the spatial gradient in emissions has weakened. These results raise important questions regarding the temporal and spatial sampling requirements necessary to provide representative estimates of reservoir methane emissions.

  6. Extreme flood abatement in large dams with gate-controlled spillways

    Science.gov (United States)

    Sordo-Ward, Alvaro; Garrote, Luis; Bejarano, M. Dolores; Castillo, Luis G.

    2013-08-01

    In this study the flood abatement effect at dams with gated spillways under a wide range of extreme floods is analysed (100 < return period <10,000 years). A group of integrated models (rainfall generator, hydrological model and dam operation model) interacting within a Monte Carlo simulation framework is used for producing numerous hydrologic events at 21 sites across mainland Spain, and the hydrologic response applied to 81 configurations of dams and reservoirs. Common behavioural patterns are identified and dimensionless coefficients classified, based on the hydrologic variables and the dam and reservoir characteristics. The relationships between these coefficients are analysed, with a significant degree of correlation both among the cases and the varying magnitude of floods being obtained. Finally, models that enable evaluation of the abatement capacity of a dam with a gated spillway in the event of a flood with Tr between 500 and 10,000 years are offered. In addition, they allow the frequency curve of such a maximum flow to be obtained, something which could serve of use not only during the design phase but also in the evaluation of the hydrologic safety of dams.

  7. Seismic resistant design of a nuclear category I earth dam

    International Nuclear Information System (INIS)

    Vaidya, N.R.; Ries, E.R.; Kissenpfennig, J.F.

    1975-01-01

    An integral part of many nuclear power plants is the ultimate heat sink (UHS); the purpose of which is to retain and deliver a supply of service water to the plant when water from the primary circulating water system is not available. The earth dam described herein is designed to retain the reservoir for the UHS of a nuclear power plant in Southern Europe. The usual pseudo-static analysis is only as good as the estimate for the seismic coefficient used to compute an equivalent horizontal static force on a potential sliding mass. In view of the earth dam considered herein, a more accurate computation of the seismic coefficients is to be made. A two-dimensional dynamic finite element analysis is made to predict the response of the earth dam to a Safe Shutdown Earthquake excitation which is in the form of a time history of accelerations appropriately deconvoluted from the surficial time history and applied at the base of the model. The material properties such as shear modulus and damping are adjusted to be compatible with the level of strain obtained. Thus, non-linear behavior of soil is considered in the analysis and a more realistic response is predicted. Acceleration and stress are determined throughout the dam and are used to compute a seismic coefficient for a pseudo-static stability analysis and the dynamic strength to stress ratios at several points in the body of the dam. The need to design the dam to resist a progressive erosion accident resulting from postulated concentrated leaks is discussed. This may be accomplished by providing a wide, well graded core protected by wide transition cores also heavily compacted

  8. Developing a Water Quality Index (WQI) for an Irrigation Dam.

    Science.gov (United States)

    De La Mora-Orozco, Celia; Flores-Lopez, Hugo; Rubio-Arias, Hector; Chavez-Duran, Alvaro; Ochoa-Rivero, Jesus

    2017-04-29

    Pollution levels have been increasing in water ecosystems worldwide. A water quality index (WQI) is an available tool to approximate the quality of water and facilitate the work of decision-makers by grouping and analyzing numerous parameters with a single numerical classification system. The objective of this study was to develop a WQI for a dam used for irrigation of about 5000 ha of agricultural land. The dam, La Vega, is located in Teuchitlan, Jalisco, Mexico. Seven sites were selected for water sampling and samples were collected in March, June, July, September, and December 2014 in an initial effort to develop a WQI for the dam. The WQI methodology, which was recommended by the Mexican National Water Commission (CNA), was used. The parameters employed to calculate the WQI were pH, electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (Alk), total phosphorous (TP), Cl - , NO₃, SO₄, Ca, Mg, K, B, As, Cu, and Zn. No significant differences in WQI values were found among the seven sampling sites along the dam. However, seasonal differences in WQI were noted. In March and June, water quality was categorized as poor. By July and September, water quality was classified as medium to good. Quality then decreased, and by December water quality was classified as medium to poor. In conclusion, water treatment must be applied before waters from La Vega dam reservoir can be used for irrigation or other purposes. It is recommended that the water quality at La Vega dam is continually monitored for several years in order to confirm the findings of this short-term study.

  9. Hydrological Analysis for Inflow Forecasting into Temengor Dam

    Science.gov (United States)

    Najid, MI; Sidek, LM; Hidayah, B.; Roseli, ZA

    2016-03-01

    These days, natural disaster such as flood is the main concern for hydrologists. One of solutions in understanding the reason of flood is by prediction of the event sooner than normal occurrence. One of the criteria is lead time or travel time that is important in the study of fresh waters and flood events. Therefore, estimation of lead or travel time for flood event can be beneficial primary information. The objective of this study is to estimate the lead time or travel time for outlet of Temengor dam in Malaysia. Tenaga Nasional Berhad (TNB) Sungai Perak dam operation has the main contribution on decision support for early water released and flood warning to authorities and locals resident for in the down streams area. For this study, hydrological analysis carried out will help to determine which years that give more rainfall contribution into the reservoir. Rainfall contribution of reservoir help to understanding rainfall distribution and peak discharge on that period. It also help for calibration of forecasting model system for better accuracy of flood hydrograph. There may be various methods to determine the rainfall contribution of catchment. The result has shown that, the rainfall contribution for Temengor catchment, is more on November in each year which is the monsoon season in Malaysia. TNB dam operational decision support systems can prepare and be more aware at this time for flood control and flood mitigation.

  10. Applying the World Water and Agriculture Model to Filling Scenarios for the Grand Ethiopian Renaissance Dam

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Daniel L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tidwell, Vincent C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Passell, Howard D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    The World Water and Agriculture Model has been used to simulate water, hydropower, and food sector effects in Egypt, Sudan, and Ethiopia during the filling of the Grand Ethiopian Renaissance Dam reservoir. This unique capability allows tradeoffs to be made between filling policies for the Grand Ethiopian Renaissance Dam reservoir. This Nile River Basin study is presented to illustrate the capacity to use the World Water and Agriculture Model to simulate regional food security issues while keeping a global perspective. The study uses runoff data from the Intergovernmental Panel for Climate Change Coupled Model Inter-comparison Project Phase 5 and information from the literature in order to establish a reasonable set of hydrological initial conditions. Gross Domestic Product and population growth are modelled exogenously based on a composite projection of United Nations and World Bank data. The effects of the Grand Ethiopian Renaissance Dam under various percentages of water withheld are presented.

  11. Application of Electrical Resistivity Tomography Technique for Characterizing Leakage Problem in Abu Baara Earth Dam, Syria

    Directory of Open Access Journals (Sweden)

    Walid Al-Fares

    2014-01-01

    Full Text Available Electrical Resistivity Tomography (ERT survey was carried out at Abu Baara earth dam in northwestern Syria, in order to delineate potential pathways of leakage occurring through the subsurface structure close to the dam body. The survey was performed along two straight measuring profiles of 715 and 430 m length in up- and downstream sides of the dam’s embankment. The analysis of the inverted ERT sections revealed the presence of fractured and karstified limestone rocks which constitute the shallow bedrock of the dam reservoir. Several subsurface structural anomalies were identified within the fractured bedrock, most of which are associated with probable karstic cavities, voids, and discontinuity features developed within the carbonates rocks. Moreover, results also showed the occurrence of a distinguished subsiding structure coinciding with main valley course. Accordingly, it is believed that the bedrock and the other detected features are the main potential causes of water leakage from the dam’s reservoir.

  12. Use of isotopes and geophysical techniques in studying dam leakage-case of the Afamia dams Syria

    International Nuclear Information System (INIS)

    Kattan, Z.; Naser, R.; Al-Fares, W.; Kadkoy, N.; Sbenati, M.R.; Al-Hilal, M.; Sleman, I.; Al-Ali, A.

    2011-08-01

    Different techniques such as: hydrochemistry, environmental isotopes, radon and geophysical surveys have been applied all together in investigating the water leakages from the Afamia (A, B and C) dams during the period 2006-2008. Groundwater movement in this area shows the existence of two major discharge cones or sinks in the vicinity of B and C reservoirs. This movement suggests a probable vertical leaking and interconnection between the shallow Neogene aquifer and the deeper Karstified water bearing system of the Upper Cretaceous. Spatial distribution patterns of major ions in the groundwater provided comprehensive arguments for the existence of an active dissolution zone of calcareous rocks at a depth of about 45 m below the land surface, facilitating hence the vertical penetration of stored surface water towards the Cretaceous aquifer. The remarkable contrasts in stable isotope compositions between the depleted and highly enriched waters nearby the B reservoir provide another support for water leaks by vertical penetration beneath or very close to the B dam body. The high radon values in the soils, linearly distributed along some tectonic lineaments, may indicate the usefulness of radon method for tracing and mapping unknown faults. Application of some selected geophysical methods (electromagnetic survey, vertical geoelectric sounding and tomography plates) revealed the presence of alternating lithological heterogeneity between permeable and impermeable layers, which may lead to subhorizontal infiltration through the geological formations of the basin. Vertical leakage which could take place in certain locations via existing faults and karst and fractures that hit the main valley may pass through the dam lake. This structure is most likely causing hydraulic connections between the superficial Neogene deposits and the underlying Cretaceous fractured and permeable carbonates rocks. The presence of clayey and silty zones, mostly of high electrical conductivity

  13. How many more dams in the Amazon?

    International Nuclear Information System (INIS)

    Tundisi, J.G.; Goldemberg, J.; Matsumura-Tundisi, T.; Saraiva, A.C.F.

    2014-01-01

    The Amazon watershed harbors a megadiversity of terrestrial and aquatic plants and animals. Mechanisms that sustain this biodiversity are the water level fluctuations the fluvial dynamics and the intense gene flux due to permanent integration of climatological, geomorphological and biological components of the system. The construction of hydroelectric reservoirs to support economic development of Brazil and other countries that share the Amazon basin will interfere with the ecological dynamics of this ecosystem changing the hydrological, hydrosocial and fundamental processes. Furthermore the construction of Andean reservoirs can disrupt the connectivity with the lower Amazon ecosystem. Principles of ecohydrologies, ecological engineering and preservation of key river basins, have to be applied in order to optimize energy production and promote conservation practices. Long term planning and integration of countries that share the Amazon basin is a strategic decision to control and develop the hydropower exploitation in the region. - Highlights: • The Amazon basin is an ecosystem of megadiversity. • The demand for energy threatens this ecosystem. • Climate, water, forests and floodplain interacts in the Amazon basin. • Dams in the Amazon basin will impact the hydrological and biological systems. • Ecohydrological principles and ecological engineering technology are necessary

  14. Responses of spatial-temporal dynamics of bacterioplankton community to large-scale reservoir operation: a case study in the Three Gorges Reservoir, China

    OpenAIRE

    Li, Zhe; Lu, Lunhui; Guo, Jinsong; Yang, Jixiang; Zhang, Jiachao; He, Bin; Xu, Linlin

    2017-01-01

    Large rivers are commonly regulated by damming, yet the effects of such disruption on bacterioplankton community structures have not been adequately studied. The aim of this study was to explore the biogeographical patterns present under dam regulation and to uncover the major drivers structuring bacterioplankton communities. Bacterioplankton assemblages in the Three Gorges Reservoir (TGR) were analyzed using Illumina Miseq sequencing by comparing seven sites located within the TGR before and...

  15. The effect of dam construction on the movement of dwarf caimans, Paleosuchus trigonatus and Paleosuchus palpebrosus, in Brazilian Amazonia

    Science.gov (United States)

    Mourão, Guilherme; Magnusson, William E.

    2017-01-01

    Run-of-the-river hydroelectric dams cause changes in seasonal inundation of the floodplains, and this may cause displacement of semi-aquatic vertebrates present before dam construction. This study evaluated the movement of crocodilians before and after the filling of the Santo Antônio hydroelectric reservoir on the Madeira River in the Brazilian Amazon, which occurred in November 2011. We radio-tracked four adult male Paleosuchus palpebrosus and four adult male Paleosuchus trigonatus before and after the formation of the reservoir between 2011 and 2013. The home ranges of the P. palpebrosus varied from filling and water level in weekly movement and home range. However, overall the dam appears to have had little effect on the use of space by the individuals that were present before dam construction. PMID:29176830

  16. Construção de cenários por análises temporais e métricas espaciais em área sob influência de reservatórios de hidrelétricas. Construction of scenarios by time series analysis and space metrics in region under the influence of hydroelectric dams reservoirs.

    Directory of Open Access Journals (Sweden)

    Rozely Ferreira dos SANTOS

    2008-12-01

    themaps and the change spatial indexes with historicalinformation and interviews with the localleaderships. The study area have five cities thatborder the Jupiá, Ilha Solteira and Três Irmãosreservoirs (SP, BR. These reservoirs, admittedly,changed the regional landscape. The indexes andthe metrics were linked with the historicalinformation, allowing debates of cultural factors,land local conditions, political actions andstrategies adopted to the region. It was verified thatthe deployment of the dams had a great influenceon the region dynamics, mainly for the manpowerabsorption capacity, reducing the labor in the farmsand the renting land. However, other factors,as bankruptcy of agricultural companies andimplantation of cold storage rooms in theneighborhoods, had contributed for the exchangeof agricultural areas to pastures. The leadershipshave conscience of the changes in the region andthey consider that is not good, because there wasnot development in the region.

  17. Geomorphic signature of a dammed Sandy River: The lower Trinity River downstream of Livingston Dam in Texas, USA

    Science.gov (United States)

    Smith, Virginia B.; Mohrig, David

    2017-11-01

    Reservoirs behind dams act as deposition sites for much of the sediment being transported by rivers. As a result, the downstream river flow can be well below the transport capacity for bed-material. This promotes bed erosion and other geomorphic changes over some length of river located immediately downstream from a dam. These adjustments have been characterized for the Trinity River, TX, downstream of Livingston Dam. Field measurements and results from a 1D numerical model define a 50-60 river kilometer segment of river undergoing bed erosion as the transport capacity for bed material is reestablished. Consequences of this erosion include lowering of the channel bed, reduction in the sediment volume of channel bars, coarsening of sediment on bar tops, steepening of channel banks, and reduction in lateral migration rates of river bends. Repeat surveys of the river long profile reveals that 40 yr of dam closure has produced up to seven meters of channel-bottom incision downstream of the dam, transforming an initially linear profile into a convex-up long profile. The model output matches this observed change, providing confidence that calculated estimates for spatial and temporal changes in bed-material sediment flux can be used to explore the long-term signature of dam influence on the geomorphology of a sand-bed channel. Measurements of channel geometry, profile, lateral migration, and grain size of the lower Trinity River with distance downstream define both the trend and expected variability about the trend associated with the disruption to the bed-material load.

  18. Rehabilitation at Olympic Dam

    International Nuclear Information System (INIS)

    Chandler, W.P.; Middleton, B.A.

    1986-01-01

    Rehabilitation work on areas denuded of vegetation during the exploration phase of the Olympic Dam project was used to test various methods for regeneration of vegetation cover in the arid zone. The test work carried out on drill pads and access tracks has indicated that, with adequate site preparation, natural regeneration is the most economical and effective method to ensure post-operational stability of the affected land-forms. An on-going monitoring regime, utilising a computer data base, has been set up to allow year-to-year comparison of rehabilitation effectiveness. The database also provides a catalogue of initial colonising plants and a measure of variations in species diversity with time

  19. Forest structure of artificial islands in the Tucuruí dam reservoir in northern Brazil: a test core-area model Estrutura da floresta em ilhas artificiais no reservatório da usina hidrelétrica de Tucuruí, Brasil: um teste do modelo de área nuclear

    Directory of Open Access Journals (Sweden)

    Leandro V. Ferreira

    2012-06-01

    Full Text Available Construction of hydroelectric dams in tropical regions has been contributing significantly to forest fragmentation. Alterations at edges of forest fragments impact plant communities that suffer increases in tree damage and dead, and decreases in seedling recruitment. This study aimed to test the core-area model in a fragmented landscape caused by construction of a hydroelectric power plant in the Brazilian Amazon. We studied variations in forest structure between the margin and interiors of 17 islands of 8-100 hectares in the Tucuruí dam reservoir, in two plots (30 and >100m from the margin per island. Mean tree density, basal area, seedling density and forest cover did not significantly differ between marginal and interior island plots. Also, no significant differences were found in liana density, dead tree or damage for margin and interior plots. The peculiar topographic conditions associated with the matrix habitat and shapes of the island seem to extend edge effects to the islands' centers independently of the island size, giving the interior similar physical microclimatic conditions as at the edges. We propose a protocol for assessing the ecological impacts of edge effects in fragments of natural habitat surrounded by induced (artificial edges. The protocol involves three steps: (1 identification of focal taxa of particular conservation or management interest, (2 measurement of an "edge function" that describes the response of these taxa to induced edges, and (3 use of a "Core-Area Model" to extrapolate edge function parameters to existing or novel situations.A construção de usinas hidrelétricas em regiões tropicais tem contribuído significativamente para a fragmentação da floresta. As alterações nas bordas de fragmentos florestais causam profundos impactos na comunidade de plantas, tais como, o aumento em de árvores mortas ou danificadas e a diminuição do recrutamento de plântulas. Este estudo tem como objetivo testar o

  20. Effects of the Ben Franklin Dam on the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Harty, H.

    1979-04-01

    A previous assessment of the effects of a Ben Franklin Dam on the Hanford Site made in 1967 was updated so that the potential adverse effects may be better understood in light of existing operations, current environmental and safety standards, and proposed facilities and operations. The major effects would probably arise from flooding of portions of the site by the reservoir associated with the dam and by the raising of the ground water table under the site. A preliminary analysis of the effects of the dam is presented, and a number of studies are recommended in order to fully evaluate and understand these potential impacts. The following seven tasks are identified and discussed: groundwater - hydrology analysis; soil liquefaction analysis; hydrostatic uplift and soil effects on structures; assessment of the potential for landsliding and sloughing; facility decommissioning; hydrothermal analysis; and, meteorological effects. Four other aspects commented upon in this report are: aquatic ecology, terrestrial ecology, socioeconomic effects, and public interaction. Possible effects on ongoing DOE-sponsored R and D are also noted. To the extent possible, cost estimates are developed for corrective actions which must be taken on the Hanford Site to accommodate the dam. Where this was not possible, appropriate courses of action leading to cost estimates are presented.

  1. Rehabilitation of a concrete buttress dam for seismic loads

    International Nuclear Information System (INIS)

    Pataky, T.J.; Kemp, B.G.

    1990-01-01

    A comprehensive inspection and review of the Jordan River Dam, part of the Jordan River Power Development on Vancouver Island, carried out in 1985 by British Columbia Hydro's dam safety program, identified the need for a deficiency investigation. This involved foundation exploration, field non-destructive sampling of buttress sections, removal and testing of concrete samples and dynamic structural analyses. The main conclusion of the investigation was that the buttress dam would likely fail under an earthquake with a horizontal cross-canyon acceleration in the range of 0.05-0.10 gravities. The failure of the dam would result in uncontrolled release of the reservoir, which was considered unacceptable. Cost estimates of the various rehabilitation alternatives indicated that strengthening of the buttresses with a system of cast-in-place reinforced concrete pilasters and struts would be cost effective. Rigorous, iterative finite element analyses allowed for the optimization of the final design, which was proven to be significantly below initial cost estimates. Details are provided of computer models for the analyses, sensitivity studies, optimization of the pilaster-strut layout, and design of pilasters, struts, slabs, buttress reinforcing strips, and anchors. 13 refs., 18 figs

  2. A prediction of Power Duration Curve from the Optimal Operation of the Multi Reservoirs System

    Directory of Open Access Journals (Sweden)

    Abdul Wahab Younis

    2013-04-01

    Full Text Available  This study aims of predication Power Duration Curves(PDC resulting from the optimal operation of the multi reservoirs system which comprises the reservoirs of Bakhma dam,Dokan dam and Makhool dam for the division of years over 30 years.Discrete Differential Dynamic Programming(DDDP has been employed to find the optimal operation of the said reservoirs.    PDC representing the relationship between the generated hydroelectric power and percentage of operation time equaled or exceeded . The importance of these curves lies in knowing the volume of electric power available for that percentage of operation time. The results have shown that the sum of yearly hydroelectric power for average Release and for the single operation was 5410,1604,2929(Mwfor the reservoirs of Bakhma, Dokan, Makhool dams, which resulted from the application of independent DDDP technology. Also, the hydroelectric power whose generation can be guranteed for 90% of the time is 344.91,107.7,188.15 (Mw for the single operation and 309.1,134.08,140.7 (Mw for the operation as a one system for the reservoirs of Bakhma, Dokan, and Makhool dams respectively.

  3. History of dams at the Department of Energy's Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Jones, M.P.; Wilson, C.B.

    1995-01-01

    Since the production of nuclear material at SRS for weapons required large quantities of cooling water, a series of canals, dikes, and dams were constructed to provide conveyance systems and reservoirs. This paper presents a brief overview of the history of the construction of the dams and dikes. Attention is given to the use of asphaltic concrete for 30 years (and its maintenance and repair) to line the banks of dikes and the upstream slopes of dams to prevent erosion and possible failure. The ability of asphaltic concrete in preventing dam/dike failure was proven. Benefits and drawbacks to the use of this material are discussed based on the extensive experience at SRS

  4. Estimating accumulation rates and physical properties of sediment behind a dam: Englebright Lake, Yuba River, northern California

    Science.gov (United States)

    Snyder, Noah P.; Rubin, David M.; Alpers, Charles N.; Childs, Jonathan R.; Curtis, Jennifer A.; Flint, Lorraine E.; Wright, Scott A.

    2004-01-01

    Studies of reservoir sedimentation are vital to understanding scientific and management issues related to watershed sediment budgets, depositional processes, reservoir operations, and dam decommissioning. Here we quantify the mass, organic content, and grain-size distribution of a reservoir deposit in northern California by two methods of extrapolating measurements of sediment physical properties from cores to the entire volume of impounded material. Englebright Dam, completed in 1940, is located on the Yuba River in the Sierra Nevada foothills. A research program is underway to assess the feasibility of introducing wild anadromous fish species to the river upstream of the dam. Possible management scenarios include removing or lowering the dam, which could cause downstream transport of stored sediment. In 2001 the volume of sediments deposited behind Englebright Dam occupied 25.5% of the original reservoir capacity. The physical properties of this deposit were calculated using data from a coring campaign that sampled the entire reservoir sediment thickness (6–32 m) at six locations in the downstream ∼3/4 of the reservoir. As a result, the sediment in the downstream part of the reservoir is well characterized, but in the coarse, upstream part of the reservoir, only surficial sediments were sampled, so calculations there are more uncertain. Extrapolation from one-dimensional vertical sections of sediment sampled in cores to entire three-dimensional volumes of the reservoir deposit is accomplished via two methods, using assumptions of variable and constant layer thickness. Overall, the two extrapolation methods yield nearly identical estimates of the mass of the reservoir deposit of ∼26 × 106 metric tons (t) of material, of which 64.7–68.5% is sand and gravel. Over the 61 year reservoir history this corresponds to a maximum basin-wide sediment yield of ∼340 t/km2/yr, assuming no contribution from upstream parts of the watershed impounded by other dams. The

  5. Reservoir safety, politics and conflict resolution : a British experience

    International Nuclear Information System (INIS)

    Clark, C.

    1998-01-01

    The flooding problem in southwest England, in particular at Somerset, Bruton, was discussed. Recent research has shown that the reservoir spillways in the area may have been underdesigned. A study was conducted in the late 1970s of the local rainfall data in order to determine whether the Bruton area is subject to an increase in severe rainfall and to determine the design of the dam. The probable maximum flood was calculated using the flood studies report method and was found to be 240 m 3 /s. The spillway was designed accordingly and the dam was constructed in 1984. Later, the probable maximum flood was recalculated using different assumptions and the new value obtained was 360 m 3 /s, an increase of 50 per cent over the original value. A subsequent report by a consulting engineering firm pointed out that some overtopping of the dam crest would have to take place and that the integrity of the dam would have to be maintained by the cover of the grass present. This, and other examples illustrate that reservoir design is not always the result of scientific research designed to prevent future reservoir failures, but that it is driven by political considerations, evolving in response to failures of existing structures. The situation remains unresolved to date, due to hesitation on the part of the Environment Agency, the Institute of Hydrology, and the Department of Environment and Transport to discuss and consider the conflicting results of the new research. 19 refs

  6. Dependable Flow and Flood Control Performance of Logung Dam, Central Java Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Faza Ramadhani

    2017-09-01

    Full Text Available The change of land use in Mt. Muria area Central Java has been resulting in the significant sheet erosion of upstream watershed around Mt. Muria, followed by considerably high sedimentation on rivers downstream that lead to the reduction of cross sections of the rivers including Logung River. Such situation has been contributing the condition that downstream of Logung River is very potential to experience over flow and inundation to its surrounding area. An idea of constructing the Logung Dam was introduced in 1986 that aimed at reducing the aforementioned inundation. Besides, the development of Logung Dam was also aimed at fulfilling both irrigation and non-irrigation water demand. This paper presents the results of the analysis of the water availability and flood control performance of the Logung Dam. The dependable flow was analyzed by applying the National Rural Electric Cooperative Association (NRECA method in order to determine the low flow characteristics, whereas the identification of the high flow characteristics was carried out by using the Synthetic Unit Hydrograph (SUH methods, i.e., the GAMA I and Nakayasu modeling approach. At a certain reservoir characteristic and a defined geometry of spillway, several reservoir routing simulations were carried out on both dependable flows and high flows. Results of the reservoir routing showed the promising water availability of the Logung Dam to fulfill water demand for both irrigation and non-irrigation, whereas the reservoir routing could reduce the probable maximum flood from QPMF from 1,031 m3/s to approximately 950 m3/s or damping efficiency at 7.86%. Further analysis suggests necessary operation and maintenance of Logung Dam to sustain its function and to mitigate possible problems related to reservoir sedimentation.

  7. Synthesis of common management concerns associated with dam removal

    Science.gov (United States)

    Tullos, Desiree D.; Collins, Mathias J.; Bellmore, J. Ryan; Bountry, Jennifer A.; Connolly, Patrick J.; Shafroth, Patrick B.; Wilcox, Andrew C.

    2016-01-01

    Managers make decisions regarding if and how to remove dams in spite of uncertainty surrounding physical and ecological responses, and stakeholders often raise concerns about certain negative effects, regardless of whether or not these concerns are warranted at a particular site. We used a dam-removal science database supplemented with other information sources to explore seven frequently-raised concerns, herein Common Management Concerns (CMCs). We investigate the occurrence of these concerns and the contributing biophysical controls. The CMCs addressed are: degree and rate of reservoir sediment erosion, excessive channel incision upstream of reservoirs, downstream sediment aggradation, elevated downstream turbidity, drawdown impacts on local water infrastructure, colonization of reservoir sediments by non-native plants, and expansion of invasive fish. Biophysical controls emerged for some of the concerns, providing managers with information to assess whether a given concern is likely to occur at a site. To fully assess CMC risk, managers should concurrently evaluate site conditions and identify the ecosystem or human uses that will be negatively affected if the biophysical phenomenon producing the CMC occurs. We show how many CMCs have one or more controls in common, facilitating the identification of multiple risks at a site, and demonstrate why CMC risks should be considered in the context of other factors like natural watershed variability and disturbance history.

  8. Proceedings of the Canadian Dam Association's 2006 annual conference: dams: past, present and future

    International Nuclear Information System (INIS)

    2006-01-01

    This conference addressed particular technical challenges regarding the operation of dams with particular focus on best practices for improving dam management and safety. It featured 4 workshops and a technical program led by experts on dams and tailings facilities that addressed topics such as dam construction, design and rehabilitation; dam management in a hydrological uncertainty context; monitoring, instrumentation and maintenance; dam behaviour; dam safety, dam failure and practical approaches to emergency preparedness planning for dam owners; historical aspects and environmental issues and conflicting water use. Recent developments in dam construction were reviewed along with discharge and debris management, tailings dam issues, asset management, seismic issues, public safety, seepage monitoring, flow control, dam rehabilitation, concrete testing, hydrotechnical issues, risk assessment methodology, and dam safety guidelines for extreme flood analyses and their applications. All 80 presentations from this conference have been catalogued separately for inclusion in this database. refs., tabs., figs

  9. Local effects on the water balance in flood plains induced by dam filling in Mediterranean environments

    Science.gov (United States)

    Aguilar, Cristina; Polo, María José

    2011-11-01

    Dams are common structures in order to guarantee water supply and control flash floods in Mediterranean mountainous watersheds. Even though they are known to modify in space and time the natural regimen of natural flows, little has been said about local effects on the ecosystem along the river banks upstream the dam. In 2002, Rules dam (southern Spain) started to function. This work presents the effects of the dam filling on the water balance in flood plains. The influence of the enhanced soil moisture in the surroundings of the free surface of the reservoir on the vegetation cover status was analyzed and related to meteorological agents and topographic features, before and after the construction of the dam. Meteorological, topographic, soil and land use data were analyzed in the contributing area of the dam, together with Landsat TM images during the period 1984-2010 to derive NDVI values. Results showed higher NDVI values (close to 20-30%) once the dam was filled and NDVI values in very dry years similar to the ones obtained in medium-wet years prior to the construction. Besides, NDVI values after the filling of the dam proved to be highly related to meteorological variables. Principal Component Analysis (PCA) was carried out in order to identify individual and combined interactions of meteorological and dam-derived effects. 85% of the total variance can be explained with the combination of three Principal Components (PC) in which the first one includes the combination of NDVI, meteorological (rainfall) and hydrological variables (interception, infiltration, evapotranspiration from the soil), whilst the second and third PC mainly include topographic features. These results quantify the dam influence along the river banks and the superficial recharge effects in dry years.

  10. 7 CFR 1724.55 - Dam safety.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Dam safety. 1724.55 Section 1724.55 Agriculture... § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... for Dam Safety,”(Guidelines), as applicable. A dam, as more fully defined in the Guidelines, is...

  11. Dam safety from theory to practice

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    These proceedings on dam safety consists of 20 papers divided into seven sessions. The first session dealt with tailings dams; sessions 2 to 5 with technology transfer as related to dam safety; the sixth session with dam rehabilitation; and the last session with environmental concerns. The conference took place at Banff, Alberta, in October 1995.refs., figs., tabs

  12. Downstream passage of fish larvae and eggs through a small-sized reservoir, Mucuri river, Brazil

    Directory of Open Access Journals (Sweden)

    Paulo S. Pompeu

    2011-12-01

    Full Text Available In South America, one important symptom of the failure of fish passages to sustain fish migratory recruitment is the inability of eggs and larvae to reach the nurseries. This is especially so when the breeding areas are located upstream of a reservoir, and the floodplain is downstream of the dam. Therefore, the transport of fish larvae and eggs across reservoir barriers is a key factor in the development of effective conservation strategies. In this paper, we evaluate the potential for migratory fish larvae and egg transportation across a small size reservoir in eastern Brazil. We sampled fish daily between 15th October 2002 and 15th February 2003 (spawning period in the Mucuri River, immediately upstream of the reservoir and downstream of the Santa Clara Power Plant dam. Our study was the first to indicate the possibility of successful larval passage through the reservoir of a hydroelectric reservoir and dam in South America, and showed that the passage of migratory fish larvae was associated significantly with residence time of water in the reservoir. The relatively short water residence time and elevated turbidity of the Santa Clara's reservoir waters during the rainy season certainly contributed to the successful passage, and can be considered as key factors for a priori evaluations of the feasibility of a downstream larval passage.

  13. Deduction of reservoir operating rules for application in global hydrological models

    Directory of Open Access Journals (Sweden)

    H. M. Coerver

    2018-01-01

    Full Text Available A big challenge in constructing global hydrological models is the inclusion of anthropogenic impacts on the water cycle, such as caused by dams. Dam operators make decisions based on experience and often uncertain information. In this study information generally available to dam operators, like inflow into the reservoir and storage levels, was used to derive fuzzy rules describing the way a reservoir is operated. Using an artificial neural network capable of mimicking fuzzy logic, called the ANFIS adaptive-network-based fuzzy inference system, fuzzy rules linking inflow and storage with reservoir release were determined for 11 reservoirs in central Asia, the US and Vietnam. By varying the input variables of the neural network, different configurations of fuzzy rules were created and tested. It was found that the release from relatively large reservoirs was significantly dependent on information concerning recent storage levels, while release from smaller reservoirs was more dependent on reservoir inflows. Subsequently, the derived rules were used to simulate reservoir release with an average Nash–Sutcliffe coefficient of 0.81.

  14. Deduction of reservoir operating rules for application in global hydrological models

    Science.gov (United States)

    Coerver, Hubertus M.; Rutten, Martine M.; van de Giesen, Nick C.

    2018-01-01

    A big challenge in constructing global hydrological models is the inclusion of anthropogenic impacts on the water cycle, such as caused by dams. Dam operators make decisions based on experience and often uncertain information. In this study information generally available to dam operators, like inflow into the reservoir and storage levels, was used to derive fuzzy rules describing the way a reservoir is operated. Using an artificial neural network capable of mimicking fuzzy logic, called the ANFIS adaptive-network-based fuzzy inference system, fuzzy rules linking inflow and storage with reservoir release were determined for 11 reservoirs in central Asia, the US and Vietnam. By varying the input variables of the neural network, different configurations of fuzzy rules were created and tested. It was found that the release from relatively large reservoirs was significantly dependent on information concerning recent storage levels, while release from smaller reservoirs was more dependent on reservoir inflows. Subsequently, the derived rules were used to simulate reservoir release with an average Nash-Sutcliffe coefficient of 0.81.

  15. A simplified water temperature model for the Colorado River below Glen Canyon Dam

    Science.gov (United States)

    Wright, S.A.; Anderson, C.R.; Voichick, N.

    2009-01-01

    Glen Canyon Dam, located on the Colorado River in northern Arizona, has affected the physical, biological and cultural resources of the river downstream in Grand Canyon. One of the impacts to the downstream physical environment that has important implications for the aquatic ecosystem is the transformation of the thermal regime from highly variable seasonally to relatively constant year-round, owing to hypolimnetic releases from the upstream reservoir, Lake Powell. Because of the perceived impacts on the downstream aquatic ecosystem and native fish communities, the Glen Canyon Dam Adaptive Management Program has considered modifications to flow releases and release temperatures designed to increase downstream temperatures. Here, we present a new model of monthly average water temperatures below Glen Canyon Dam designed for first-order, relatively simple evaluation of various alternative dam operations. The model is based on a simplified heat-exchange equation, and model parameters are estimated empirically. The model predicts monthly average temperatures at locations up to 421 km downstream from the dam with average absolute errors less than 0.58C for the dataset considered. The modelling approach used here may also prove useful for other systems, particularly below large dams where release temperatures are substantially out of equilibrium with meteorological conditions. We also present some examples of how the model can be used to evaluate scenarios for the operation of Glen Canyon Dam.

  16. The Influence of Dams on Malaria Transmission in Sub-Saharan Africa.

    Science.gov (United States)

    Kibret, Solomon; Wilson, G Glenn; Ryder, Darren; Tekie, Habte; Petros, Beyene

    2017-06-01

    The construction of dams in sub-Saharan Africa is pivotal for food security and alleviating poverty in the region. However, the unintended adverse public health implications of extending the spatial distribution of water infrastructure are poorly documented and may minimize the intended benefits of securing water supplies. This paper reviews existing studies on the influence of dams on the spatial distribution of malaria parasites and vectors in sub-Saharan Africa. Common themes emerging from the literature were that dams intensified malaria transmission in semi-arid and highland areas with unstable malaria transmission but had little or no impact in areas with perennial transmission. Differences in the impacts of dams resulted from the types and characteristics of malaria vectors and their breeding habitats in different settings of sub-Saharan Africa. A higher abundance of a less anthropophilic Anopheles arabiensis than a highly efficient vector A. gambiae explains why dams did not increase malaria in stable areas. In unstable areas where transmission is limited by availability of water bodies for vector breeding, dams generally increase malaria by providing breeding habitats for prominent malaria vector species. Integrated vector control measures that include reservoir management, coupled with conventional malaria control strategies, could optimize a reduction of the risk of malaria transmission around dams in the region.

  17. Physical Model-Based Investigation of Reservoir Sedimentation Processes

    Directory of Open Access Journals (Sweden)

    Cheng-Chia Huang

    2018-03-01

    Full Text Available Sedimentation is a serious problem in the operations of reservoirs. In Taiwan, the situation became worse after the Chi-Chi Earthquake recorded on 21 September 1999. The sediment trap efficiency in several regional reservoirs has been sharply increased, adversely affecting the operations on water supplies. According to the field record, the average annual sediment deposition observed in several regional reservoirs in Taiwan has been increased. For instance, the typhoon event recorded in 2008 at the Wushe Reservoir, Taiwan, produced a 3 m sediment deposit upstream of the dam. The remaining storage capacity in the Wushe Reservoir was reduced to 35.9% or a volume of 53.79 million m3 for flood water detention in 2010. It is urgent that research should be conducted to understand the sediment movement in the Wushe Reservoir. In this study, a scale physical model was built to reproduce the flood flow through the reservoir, investigate the long-term depositional pattern, and evaluate sediment trap efficiency. This allows us to estimate the residual life of the reservoir by proposing a modification of Brune’s method. It can be presented to predict the lifespan of Taiwan reservoirs due to higher applicability in both the physical model and the observed data.

  18. Characteristics and factors that influenced damage to dams in the M s 8.0 Wenchuan earthquake

    Science.gov (United States)

    Jing, Liping; Liang, Haian; Li, Yongqiang; Liu, Chunhui

    2011-09-01

    Based on raw data from dams damaged in the Wenchuan earthquake, including many that were severely damaged, characteristics and factors that influenced the damage are discussed in this paper. Findings from this study include: severely damaged dams were densely distributed along the seismologic fault; small dams, especially small earth-rock dams, had the most serious damage that was caused by a variety of factors; the most serious damage was caused by seismic waves; damage was aggregated by aftershocks; and the extent of the damage patterns increased with the seismic intensity. Damage patterns varied in different intensity zones and cracking was the most common type of damage. Most of the dams had a good base with relatively high bearing capacity, and the walls of the earth-rock dams were mostly of clay soil. This type of base and body material mitigated some of the damage to dams. Reservoir maintenance and other factors also have a significant impact on the seismic safety of the dam. Finally, some recommendations to reduce seismic damage to dams are proposed.

  19. Perspectives on dam safety in Canada

    International Nuclear Information System (INIS)

    Halliday, R.

    2004-01-01

    Canadian dam safety issues were reviewed from the perspective of a water resources engineer who is not a dam safety practitioner. Several external factors affecting dam safety were identified along with perceived problems in dam safety administration. The author claims that the main weakness in safety practices can be attributed to provincial oversights and lack of federal engagement. Some additions to the Canadian Dam Safety Guidelines were proposed to address these weaknesses. Canada has hundreds of large dams and high hazard dams whose failure would result in severe downstream consequences. The safety of dams built on boundary waters shared with the United States have gained particular attention from the International Joint Commission. This paper also examined safety criteria for concerns such as aging dams, sabotage and global climate change that may compromise the safety of a dam. 26 refs

  20. Geomorphic evolution to large check-dam removal on a mountain river in Taiwan

    Science.gov (United States)

    Wang, H.; Kuo, W.

    2012-12-01

    As aging dams become obsolete or economically inefficient, dam removal has become an important aspect of river restoration in recent years. While various efforts are ongoing to enhance our understanding, studies documenting the physical and ecological responses to dam removal are still lacking, particularly for removal of large dams in mountain river and following major flood, where the size of watersheds and the amount of reservoir sediment released can be much greater than for most previously studied dam removals. This presentation documents the geomorphic evolution to removal of a large dam on a coarse-grained, steep (an order of magnitude greater than on the Marmot) mountain channel in Taiwan. The Chijiawan creek is the only habitat in Taiwan of the endangered Formosan landlocked salmon. Its habitat has been cut significantly since the 1960s following construction of check dams designed to prevent reservoir sedimentation downstream. The largest and lowermost barrier on Chijiawan creek is the 15m high, "No. 1 Check Dam" built in 1971. Forty years later, the dam had backfilled with about an estimated 0.2 million m3 sediment and its toe had been scoured about 4m below its foundation, raising a significant risk of dam failure. For these reasons, the Shei-Pa National Park removed the dam in late May 2011. To monitor the channel response to dam removal, we conducted surveys of grain size distributions, cross-sectional and longitudinal profiles, analyzed the stage and turbidity records, and carried out repeat photography. Channel changes were greatest immediately following removal as a result of the high stream power, steep energy slope, and unconsolidated alluvial fill behind the dam. Headcut propagation caused immediate removal of the sand-grade sediment and progressive channel widening. One month after dam removal, a minor flood event with the estimated peak discharge of 20 m3/s excavated a big wedge of sediment from the impoundment. Two months after dam removal

  1. How Physical Processes are Informing River Management Actions at Marble Bluff Dam, Truckee River, Nevada

    Science.gov (United States)

    Bountry, J.; Godaire, J.; Bradley, D. N.

    2017-12-01

    At the terminus of the Truckee River into Pyramid Lake (Nevada, USA), upstream river management actions have dramatically reshaped the river landscape, posing significant challenges for the management of endangered aquatic species and maintenance of existing infrastructure. Within the last 100 years, upstream water withdrawal for human uses has resulted in a rapid lowering of Pyramid Lake which initiated up to 90 ft of channel incision. In 1976 Marble Bluff Dam was constructed to halt the upstream progression of channel incision and protect upstream agricultural lands, tribal resources, and infrastructure. Since construction an additional 40 ft of lake lowering and subsequent channel lowering now poses a potential risk to the structural integrity of the dam. The dynamic downstream river combined with ongoing reservoir sedimentation pose challenges to fish passage facilities that enable migration of numerous endangered cui-ui and threatened Lahontan Cutthroat Trout (LCT) to upstream spawning areas each year. These facilities include a fish lock at the dam, a fish bypass channel which allows fish to avoid the shallow delta area during low lake levels, and a meandering channel constructed by the Nature Conservancy to connect the bypass channel to the receding Pyramid Lake. The reservoir formed by Marble Bluff Dam has completely filled with sediment which impacts fish passage facilities. The original operating manual for the dam recommends year-round flushing of sediment through radial gates, but this can no longer be accomplished. During critical fish migration periods in the spring operators must ensure fish entrance channels downstream of the dam are not buried with released sediment and fish are not trapped in a portion of the reservoir full of sediment that would risk sending them back over the dam. To help inform future reservoir sediment and infrastructure management strategies, we bracket a range of potential river responses to lake level lowering and floods

  2. Dams and Levees: Safety Risks

    Science.gov (United States)

    Carter, N. T.

    2017-12-01

    The nation's flood risk is increasing. The condition of U.S. dams and levees contributes to that risk. Dams and levee owners are responsible for the safety, maintenance, and rehabilitation of their facilities. Dams-Of the more than 90,000 dams in the United States, about 4% are federally owned and operated; 96% are owned by state and local governments, public utilities, or private companies. States regulate dams that are not federally owned. The number of high-hazard dams (i.e., dams whose failure would likely result in the loss of human life) has increased in the past decade. Roughly 1,780 state-regulated, high-hazard facilities with structural ratings of poor or unsatisfactory need rehabilitation. Levees-There are approximately 100,000 miles of levees in the nation; most levees are owned and maintained by municipalities and agricultural districts. Few states have levee safety programs. The U.S. Army Corps of Engineers (Corps) inspects 15,000 miles of levees, including levees that it owns and local levees participating in a federal program to assist with certain post-flood repairs. Information is limited on how regularly other levees are inspected. The consequence of a breach or failure is another aspect of risk. State and local governments have significant authority over land use and development, which can shape the social and economic impacts of a breach or failure; they also lead on emergency planning and related outreach. To date, federal dam and levee safety efforts have consisted primarily of (1) support for state dam safety standards and programs, (2) investments at federally owned dams and levees, and (3) since 2007, creation of a national levee database and enhanced efforts and procedures for Corps levee inspections and assessments. In Public Law 113-121, enacted in 2014, Congress (1) directed the Corps to develop voluntary guidelines for levee safety and an associated hazard potential classification system for levees, and (2) authorized support for the

  3. Limno-reservoirs as a new landscape, environmental and touristic resource: Pareja Limno-reservoir as a case of study (Guadalajara, Spain)

    Science.gov (United States)

    Díaz-Carrión, I.; Sastre-Merlín, A.; Martínez-Pérez, S.; Molina-Navarro, E.; Bienes-Allas, R.

    2012-04-01

    A limno-reservoir is a hydrologic infrastructure with the main goal of generating a body of water with a constant level in the riverine zone of a reservoir, building a dam that makes de limno-reservoir independent from the main body of water. This dam can be built in the main river supplying the reservoir or any tributary as well flowing into it. Despite its novel conception and design, around a dozen are already operative in some Spanish reservoirs. This infrastructure allows the new water body to be independent of the main reservoir management, so the water level stability is its main distinctive characteristic. It leads to the development of environmental, sports and cultural initiatives; which may be included in a touristic exploitation in a wide sense. An opinion poll was designed in 2009 to be carried out the Pareja Limno-reservoir (Entrepeñas reservoir area, Tajo River Basin, central Spain). The results showed that for both, Pareja inhabitants and occasional visitors, the limno-reservoir has become an important touristic resource, mainly demanded during summer season. The performance of leisure activities (especially swimming) are being the main brand of this novel hydraulic and environmental infrastructure, playing a role as corrective and/or compensatory action which is needed to apply in order to mitigate the environmental impacts of the large hydraulic constructions.

  4. Developing Digital Image Techniques with Low-Cost Unmanned Mobile to Monitor the Safety of Dam and Affiliated Structure

    Science.gov (United States)

    Sung, Wen-Pei; Shih, Ming-Hsiang

    2016-04-01

    Global warming phenomena are increasingly serious, the El Niño and La Niña continue to occur repeatedly, causing the irregular drought and flood problem repeatedly. Mountain form of Taiwan is steep and storage ability of rainwater is insufficient to supply the livelihood of people and usage of industry which need to rely on rainwater reservoir. Thus, to ensure the water supply and self-reliance energy supply, one of ways to keep water resource is to build reservoir. Nevertheless, Taiwan is located on Pacific seismic belt; additionally, geological conditions are not fine, over-developed in the hills lead to more natural disasters in the future. Thus, strong shakes and typhoons which caused a degree of severe landslides around dam lead to reduce catchment of dam to result in affecting the safety of dam. Otherwise, the cracks and rusts in dam, induced by the defects of material, bad construction and seismic excitation respectively, thus, the mechanics phenomena of dam and its affiliated structures with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of dam. This research is aimed at the safety evaluation technique of dam and its affiliated structures to develop three dimensional digital image correlation techniques for monitoring the safety of dam and its affiliated structures. Namely, developing the unmanned mobile on two axis of digital image correlation method is to detect the digital images from geometric scanning techniques for dam structure. This developed technique combined with Unmanned Aerial Vehicle (UAV) to develop the near filed scanning and monitoring techniques for local deformation and cracks on dam and its affiliated structures.

  5. Abstracts and electronic proceedings of the Canadian Dam Association's 2008 annual conference : emerging technologies for dams

    International Nuclear Information System (INIS)

    2008-01-01

    This conference provided a national forum to explore and discuss emerging technologies which can be used to enhance dam safety and construction practices on both new and existing projects. Advancements in the fields of dam design, construction, and remedial works were reviewed as well as new techniques for dam monitoring programs. Engineers, geoscientists, dam owners and operators and other stakeholders exchanged ideas and information regarding the operation, maintenance and management of water and tailings dams. The conference sessions dealt with a variety of topics, including dam foundations; mining dams; dams and the environment; embankment dams; dams and seismicity; hydrotechnics; assessment and investigative technologies; dam instrumentation and monitoring; computational hydraulics; and dam safety. The conference featured 46 presentations, of which 37 have been catalogued separately for inclusion in this database. refs., tabs., figs

  6. Determination of the trophic situation in Gheshlagh reservoir (North-Western Iran).

    Science.gov (United States)

    Rezaei, Fariba; Zadeh, Hamed Ghader; Van Damme, Patrick

    2012-01-01

    'Trophic state' is often used to classify aquatic ecosystems according to biotic productivity. Carlson trophic state indices were used to assess the trophic situation in Gheshlagh reservoir (North-Western Iran), on which a dam was constructed three decades ago. Using data from a one-year surface sampling, a comparison of the trophic state index (TSI), between four sampling points in the reservoir and one sampling point under the dam, was performed. The results of the TSI calculated based on chlorophyll a (chl. a) concentration and Secchi depth showed that the aquatic environment in the reservoir is eutrophied (50 < TSI < 80), while it is mesotrophic (40 < TSI < 50) under the dam. Moreover, the measured concentrations of chl. a and phosphate were consistent with the available data ranges on eutrophication. In addition, it was shown that algal biomass bloom occurred at the end of spring, all over the sampling points.

  7. Modeling of reservoir operation in UNH global hydrological model

    Science.gov (United States)

    Shiklomanov, Alexander; Prusevich, Alexander; Frolking, Steve; Glidden, Stanley; Lammers, Richard; Wisser, Dominik

    2015-04-01

    Climate is changing and river flow is an integrated characteristic reflecting numerous environmental processes and their changes aggregated over large areas. Anthropogenic impacts on the river flow, however, can significantly exceed the changes associated with climate variability. Besides of irrigation, reservoirs and dams are one of major anthropogenic factor affecting streamflow. They distort hydrological regime of many rivers by trapping of freshwater runoff, modifying timing of river discharge and increasing the evaporation rate. Thus, reservoirs is an integral part of the global hydrological system and their impacts on rivers have to be taken into account for better quantification and understanding of hydrological changes. We developed a new technique, which was incorporated into WBM-TrANS model (Water Balance Model-Transport from Anthropogenic and Natural Systems) to simulate river routing through large reservoirs and natural lakes based on information available from freely accessible databases such as GRanD (the Global Reservoir and Dam database) or NID (National Inventory of Dams for US). Different formulations were applied for unregulated spillway dams and lakes, and for 4 types of regulated reservoirs, which were subdivided based on main purpose including generic (multipurpose), hydropower generation, irrigation and water supply, and flood control. We also incorporated rules for reservoir fill up and draining at the times of construction and decommission based on available data. The model were tested for many reservoirs of different size and types located in various climatic conditions using several gridded meteorological data sets as model input and observed daily and monthly discharge data from GRDC (Global Runoff Data Center), USGS Water Data (US Geological Survey), and UNH archives. The best results with Nash-Sutcliffe model efficiency coefficient in the range of 0.5-0.9 were obtained for temperate zone of Northern Hemisphere where most of large

  8. Reliability and Robustness Analysis of the Masinga Dam under Uncertainty

    Directory of Open Access Journals (Sweden)

    Hayden Postle-Floyd

    2017-02-01

    Full Text Available Kenya’s water abstraction must meet the projected growth in municipal and irrigation demand by the end of 2030 in order to achieve the country’s industrial and economic development plan. The Masinga dam, on the Tana River, is the key to meeting this goal to satisfy the growing demands whilst also continuing to provide hydroelectric power generation. This study quantitatively assesses the reliability and robustness of the Masinga dam system under uncertain future supply and demand using probabilistic climate and population projections, and examines how long-term planning may improve the longevity of the dam. River flow and demand projections are used alongside each other as inputs to the dam system simulation model linked to an optimisation engine to maximise water availability. Water availability after demand satisfaction is assessed for future years, and the projected reliability of the system is calculated for selected years. The analysis shows that maximising power generation on a short-term year-by-year basis achieves 80%, 50% and 1% reliability by 2020, 2025 and 2030 onwards, respectively. Longer term optimal planning, however, has increased system reliability to up to 95% in 2020, 80% in 2025, and more than 40% in 2030 onwards. In addition, increasing the capacity of the reservoir by around 25% can significantly improve the robustness of the system for all future time periods. This study provides a platform for analysing the implication of different planning and management of Masinga dam and suggests that careful consideration should be given to account for growing municipal needs and irrigation schemes in both the immediate and the associated Tana River basin.

  9. National Dam Inspection Program. Lewis Lake Dam (NDI-ID Number PA-00061, DER-ID Number 58-7), Susquehanna River Basin, Susquehanna County, Pennsylvania. Phase I Inspection Report,

    Science.gov (United States)

    1980-08-01

    STAGE IS 1B33.8 MAXIMUM STAGE IS 1833.0 MAXIMUM STAGE IS 1832,2 MAXIMUM STAGE IS 1831.5 MAXIMUM STAGE IS 1830,5 MAXIMUM STAGE 15 1829.5 i UN STAGE IS...6.52 1 1079. ( 16.B9) I 30.56)( 2 5770. ( 163.39)( 3 abo.01 C 158.59)( 4 4538, I 12B,0)O 5 3238. C 91,70)( SUIhARY OF PAM SAFETY ANALISIS PLAN I

  10. Storage capacity of the Fena Valley Reservoir, Guam, Mariana Islands, 2014

    Science.gov (United States)

    Marineau, Mathieu D.; Wright, Scott A.

    2015-01-01

    The Fena Valley Reservoir is in southern Guam and is the primary source of water for the U.S. Naval Base Guam and nearby village residents. Since the construction of the Fena Dam in 1951, sediment has accumulated in the reservoir and reduced its storage capacity. The reservoir was surveyed previously in 1973, 1979, and 1990 to estimate the loss in storage capacity. To determine the current storage capacity, the U.S. Geological Survey, in cooperation with the U.S. Department of Defense Strategic Environmental Research and Development Program, surveyed the bathymetry of the reservoir in February 2014.

  11. Cumulative sediment reduction to the Lower Mekong River from planned dams

    Science.gov (United States)

    Kondolf, G. M.; Rubin, Z.; Minear, J. T.; Alford, C.

    2012-12-01

    Cumulative sediment reduction to the Lower Mekong River from planned dams Kondolf, G.M.1, Rubin, Z.1, Alford, C.1 1University of California, Berkeley, USA T. Minear, US Geological Survey Essentially unregulated until the 1990s, the Mekong River system is now being rapidly changed by dam construction. On the Lancang River (the upper Mekong in China), a cascade of eight mainstem dams is under construction; on the Lower Mekong and tributaries, over 135 dams are planned or under construction. How will these dams alter the sediment load of the Mekong? Sediment data are lacking from important tributaries, and data from the better-sampled mainstem have data quality problems. Average annual suspended load of the entire Mekong is about 160 million tonnes per year (Mt/y) (Walling 2005), about half of which is derived from the Lancang drainage in China. Prior studies indicate that the eight Chinese dams will reduce sediment yield from the Lancang to the Lower Mekong River basin by 95%. Once the Lower Basin dams are built, what will be the likely cumulative reduction in sediment load? We first estimated sediment yields from tributaries to the lower Mekong River by delineating distinct geomorphic provinces, and based on geomorphic characteristics, the limited sediment sampling data available, and runoff, we reconstructed the unimpaired sediment loads for each tributary and each reach of the mainstem, such that the total load equaled the documented 160Mt/y. We next applied the 3W model of Minear and Kondolf (2009) (a network model that accounts for multiple reservoirs on a given river and changing trap efficiencies as reservoirs fill) to estimate the sediment trapping by various combinations of dams, from a near-term, 'definite-future' scenario to a full build-out scenario. Under the former scenario, the sediment load reaching the Delta will be about half of its pre-1990 level. With full build-out of dams in the Lower Mekong River basin, including mainstem dams, the sediment

  12. Sediment impact assessment of check-dam removal strategies on a mountain river in Taiwan

    Science.gov (United States)

    Kuo, W.; Wang, H.; Stark, C. P.

    2011-12-01

    Dam removal is important for reconnecting river habitats and restoring the free flow of water and sediment, so managing accumulated sediments is crucial in dam removal planning as the cost and potential impacts of dam removal can vary substantially depending on local conditions. A key uncertainty in dam removal is the fate of reservoir sediment stored upstream of the dam. Release of impounded sediment could raise downstream bed elevations leading to flooding, increase lateral channel mobility leading to bank erosion, and potentially bury downstream ecologically sensitive habitats if the sediment is fine. The ability to predict the sediment impacts of dam removal in highly sediment-filled systems is thus increasingly important as the number of such dam-removal cases is growing. Due to the safety concerns and the need for habitat restoration for the Formosan landlocked salmon, the Shei-Pa National Park in Taiwan removed the 15m high Chijiawan "No. 1 Check Dam" in late May 2011. During the planning process prior to removal, we conducted field surveys, numerical simulations, and flume experiments to determine sediment impacts and to suggest appropriate dam removal strategies. We collected river-bed topography and sediment bulk samples in 2010 to establish the channel geometry and grain-size distribution for modeling input. The scaled flume experiment was designed to provide insights on how and if the position of a notch location and size would affect the rate and amount of reservoir erosion under particular discharges. Observations indicated that choices of notch location can force the river to migrate differently. For long-term prediction, we used the quasi-two-dimensional numerical model NETSTARS (Network of Stream Tube model for Alluvial River Simulation) to simulate the channel responses. These simulations indicated that high suspended sediment concentrations would be the most likely major concern in the first year, while concerns for downstream sediment deposition

  13. Blockage of migration routes by dam construction: can migratory fish find alternative routes?

    Directory of Open Access Journals (Sweden)

    Rosimeire Ribeiro Antonio

    Full Text Available The present study explored the interaction between the upriver migration of fish and the blockage of their migration routes by dam construction. Specifically, we studied (i the capacity of migratory fish to locate alternative routes in the presence of an obstacle, and (ii the behavior of the fish after they were artificially transferred to the reservoir. With the use of the mark-recapture technique (tagging, the study was carried out near Porto Primavera Dam (UHE Engenheiro Sérgio Motta between 1994 and 1999, a period prior to the closure of the floodgates and the installation and operation of the fish pass facilities. The fish were caught in the dam forebay downstream, marked with LEA type tags, and released upstream (5113 individuals; 14 species and downstream (1491; 12 from the dam. The recaptures were carried out by local professional and amateur fishermen. A total of 188 individuals (2.8% were recaptured, mostly the curimba Prochilodus lineatus. Nearly half of the recaptures downstream occurred in tributaries, especially in the Paranapanema River, indicating that in the presence of an obstacle the fish are able to locate alternative migration routes. The remainder stayed in the main channel of the Paraná River, at a mean distance of less than 50 km from the release point. Of the fish released upriver from the dam, approximately half were recaptured downriver. Although the river was only partly dammed, the movement of the fish downriver suggests that they became disoriented after being transferred. Those that remained upriver avoided the reservoir and moved, rather rapidly, toward the lotic stretches farther upstream. From these results it is clear that, in the course of the decision process in installing fish passes, it is necessary to take into account the existence of spawning and nursery areas downriver and upriver from the reservoir.

  14. The blue water footprint of the world's artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation

    NARCIS (Netherlands)

    Hogeboom, Hendrik Jan; Knook, Luuk; Hoekstra, Arjen Y.

    2018-01-01

    For centuries, humans have resorted to building dams to gain control over freshwater available for human consumption. Although dams and their reservoirs have made many important contributions to human development, they receive negative attention as well, because of the large amounts of water they

  15. Multiple flow processes accompanying a dam-break flood in a small upland watershed, Centralia, Washington

    Science.gov (United States)

    Costa, John E.

    1994-01-01

    On October 5, 1991, following 35 consecutive days of dry weather, a 105-meter long, 37-meter wide, 5.2-meter deep concrete-lined watersupply reservoir on a hillside in the eastern edge of Centralia, Washington, suddenly failed, sending 13,250 cubic meters of water rushing down a small, steep tributary channel into the city. Two houses were destroyed, several others damaged, mud and debris were deposited in streets, on lawns, and in basements over four city blocks, and 400 people were evacuated. The cause of failure is believed to have been a sliding failure along a weak seam or joint in the siltstone bedrock beneath the reservoir, possibly triggered by increased seepage into the rock foundation through continued deterioration of concrete panel seams, and a slight rise (0.6 meters) in the pool elevation. A second adjacent reservoir containing 18,900 cubic meters of water also drained, but far more slowly, when a 41-cm diameter connecting pipe was broken by the landslide. The maximum discharge resulting from the dam-failure was about 71 cubic meters per second. A reconstructed hydrograph based on the known reservoir volume and calculated peak discharge indicates the flood duration was about 6.2 minutes. Sedimentologic evidence, high-water mark distribution, and landforms preserved in the valley floor indicate that the dam failure flood consisted of two flow phases: an initial debris flow that deposited coarse bouldery sediment along the slope-area reach as it lost volume, followed soon after by a water-flood that achieved a stage about one-half meter higher than the debris flow. The Centralia dam failure is one of three constructed dams destroyed by rapid foundation failure that defines the upper limits of an envelope curve of peak flood discharge as a function of potential energy for failed constructed dams worldwide.

  16. Assessing the potential hydrological impact of the Gibe III Dam on Lake Turkana water level using multi-source satellite data

    Directory of Open Access Journals (Sweden)

    N. M. Velpuri

    2012-10-01

    Full Text Available Lake Turkana, the largest desert lake in the world, is fed by ungauged or poorly gauged river systems. To meet the demand of electricity in the East African region, Ethiopia is currently building the Gibe III hydroelectric dam on the Omo River, which supplies more than 80% of the inflows to Lake Turkana. On completion, the Gibe III dam will be the tallest dam in Africa with a height of 241 m. However, the nature of interactions and potential impacts of regulated inflows to Lake Turkana are not well understood due to its remote location and unavailability of reliable in situ datasets. In this study, we used 12 yr (1998–2009 of existing multi-source satellite and model-assimilated global weather data. We used a calibrated multi-source satellite data-driven water balance model for Lake Turkana that takes into account model routed runoff, lake/reservoir evapotranspiration, direct rain on lakes/reservoirs and releases from the dam to compute lake water levels. The model evaluates the impact of the Gibe III dam using three different approaches – a historical approach, a rainfall based approach, and a statistical approach to generate rainfall-runoff scenarios. All the approaches provided comparable and consistent results. Model results indicated that the hydrological impact of the Gibe III dam on Lake Turkana would vary with the magnitude and distribution of rainfall post-dam commencement. On average, the reservoir would take up to 8–10 months, after commencement, to reach a minimum operation level of 201 m depth of water. During the dam filling period, the lake level would drop up to 1–2 m (95% confidence compared to the lake level modeled without the dam. The lake level variability caused by regulated inflows after the dam commissioning were found to be within the natural variability of the lake of 4.8 m. Moreover, modeling results indicated that the hydrological impact of the Gibe III dam would depend on the initial lake level at the time of

  17. Climate change effects on design floods for dams in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Andreasson, J.; Bergstroem, S. [Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)

    2008-07-01

    Since 1990 new guidelines for hydrological design of the Swedish hydropower system are being implemented. The technique is based on a critical combination of extreme precipitation, extreme snowmelt and an operation strategy for multi-reservoir systems. Hydrological modeling is a central component, as is a prescribed design precipitation sequence. At the time when the guidelines were developed it was not possible to account for possible consequences of a changing climate. Sensitivity analyses using four different regional climate change scenarios (2071-2100) has been carried out for four important Swedish dams and also for the largest lake in Sweden, Lake Vanern. The research project was financed by Elforsk and the Swedish Dam Safety Authority (Svenska Kraftnat) and it was reported in 2006/2007. Some summarizing conclusions are: Changes in the mean climate results in smaller design snow pack according to all scenarios. This component acts towards decreased design inflows and water levels at most locations. Extreme precipitation can be expected to increase at most places in Sweden according to the climate scenarios. This component acts towards increased design inflows and water levels at most locations. Depending on how changes in the mean climate and in the extremes interact, the change in design inflows and water levels can be either an increase or a decrease. The effect depends both on the location of the dam and on the choice of climate scenario. This calls for site-specific analysis for each dam. In 2007 the second edition of the guidelines for hydrological design was issued in which also the question of climate change have been addressed. The first sensitivity analyses are now being extended within a new 2-year research project also funded jointly by Elforsk and the Swedish Dam Safety Authority (Svenska Kraftnat). The aim is to increase the number of regional climate scenarios and the number of high hazard dams in the analysis, but also to move the scenarios

  18. Novel Method to Assess the Risk of Dam Failure

    Directory of Open Access Journals (Sweden)

    Qinli Yang

    2011-11-01

    Full Text Available A new flexible, rapid and affordable risk assessment procedure was developed and verified for dams based on case studies in Scotland (UK and the region of Baden (Germany. A database of six different sustainable flood retention basin (SFRB types with varying flood control potential has been developed. In Scotland, there are a relatively high number of current and former large drinking water reservoirs which could contribute to flood management control. In comparison, purpose-built and relatively small SFRB, which are predominantly used for flood control, dominate the landscape in Baden. Moreover, 13 out of 149 SFRB have recently been upgraded, and 11 new SFRB have been built since 2006. Both the estimated hazard and risk are small in comparison to those found in the flood infrastructure in Scotland. The study assesses a rapid screening tool developed to estimate the Dam Condition and the corresponding Dam Failure Hazard and Dam Failure Risk. Most SFRB in Baden have a relatively poor Dam Condition, high Dam Failure Hazard but low Dam Failure Risk compared to those in Scotland. Findings show that Baden is more advanced in flood defence management as well as adaptation to climate change.Deutscher Titel: Neue Methode zur Beurteilung des Risikos eines DammbruchesZusammenfassung: Eine neue, flexible, schnelle und preisgünstige Methode zur Risokobeurteilung von Dämmen wurde entwickelt und getestet, die auf Fallbeispielen in Schottland (Vereinigtes Königreich und der Region Baden (Deutschland basiert. Eine Datenbank von sechs verschiedenen Typen nachhaltiger Hochwasserrückhaltebecken (NHRB mit unterschiedlichem Hochwasserrückhaltevermögen wurde entwickelt. Eine relativ hohe Anzahl von gegenwärtigen und ehemaligen großen Trinkwassertalsperren, die zur Hochwasserschutzkontolle verwandt werden könnten, befinden sich in Schottland. Zweckmäßig gebaute und relativ kleine NHRB, die hauptsächlich für den Hochwasserschutz verwendet werden, dominieren

  19. Damming the rivers of the Amazon basin.

    Science.gov (United States)

    Latrubesse, Edgardo M; Arima, Eugenio Y; Dunne, Thomas; Park, Edward; Baker, Victor R; d'Horta, Fernando M; Wight, Charles; Wittmann, Florian; Zuanon, Jansen; Baker, Paul A; Ribas, Camila C; Norgaard, Richard B; Filizola, Naziano; Ansar, Atif; Flyvbjerg, Bent; Stevaux, Jose C

    2017-06-14

    More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin's floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.

  20. Reservoir fisheries of Asia

    International Nuclear Information System (INIS)

    Silva, S.S. De.

    1990-01-01

    At a workshop on reservoir fisheries research, papers were presented on the limnology of reservoirs, the changes that follow impoundment, fisheries management and modelling, and fish culture techniques. Separate abstracts have been prepared for three papers from this workshop

  1. Physical chemistry research of a concrete dam with over 50 years of operation

    OpenAIRE

    Portella,K. F.; Joukoski,A.; Swinka Filho,V.; Soares,M. A.; Ferreira,E. S.

    2012-01-01

    Guaricana hydroelectric power plant concrete dam, located in the South of Brazil, was investigated after 49 years of operation. A part of the mortar was altered to ettringite, and other by-products. The inner defects in the fracture and polished sample surfaces were detected by CT and SEM. The samples were extracted from two parts of the dam from top to valley. Elemental chemical composition and phases were determined by EDS and XRD analysis. The reservoir water showed that it was less aggres...

  2. Large reservoirs: Chapter 17

    Science.gov (United States)

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  3. Accounting for Greenhouse Gas Emissions from Reservoirs ...

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used as a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. In the U.S., research approaches include: 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane em

  4. A non-reflecting boundary condition for the finite element modeling of infinite reservoir with layered sediment

    Science.gov (United States)

    Gogoi, Indrani; Maity, Damodar

    2006-10-01

    The design of seismic resistant concrete gravity dam necessitates accurate determination of hydrodynamic pressure developed in the adjacent reservoir. The hydrodynamic pressure developed on structure is dependent on the physical characteristics of the boundaries surrounding the reservoir including reservoir bottom. The sedimentary material in the reservoir bottom absorbs energy at the bottom, which will affect the hydrodynamic pressure at the upstream face of the dam. The fundamental parameter characterizing the effect of absorption of hydrodynamic pressure waves at the reservoir bottom due to sediment is the reflection coefficient. The wave reflection coefficient is determined from parameters based on sediment layer thickness, its material properties and excitation frequencies. An analytical or a closed-form solution cannot account for the arbitrary geometry of the dam or reservoir bed profile. This problem can be efficiently tackled with finite element technique. The need for an accurate truncation boundary is felt to reduce the computational domain of the unbounded reservoir system. An efficient truncation boundary condition (TBC) which accounts for the reservoir bottom effect is proposed for the finite element analysis of infinite reservoir. The results show the efficiency of the proposed truncation boundary condition.

  5. Policy Considerations for Greenhouse Gas Emissions from Freshwater Reservoirs

    Directory of Open Access Journals (Sweden)

    Kirsi Mäkinen

    2010-06-01

    Full Text Available Emerging concern over greenhouse gas (GHG emissions from wetlands has prompted calls to address the climate impact of dams in climate policy frameworks. Existing studies indicate that reservoirs can be significant sources of emissions, particularly in tropical areas. However, knowledge on the role of dams in overall national emission levels and abatement targets is limited, which is often cited as a key reason for political inaction and delays in formulating appropriate policies. Against this backdrop, this paper discusses the current role of reservoir emissions in existing climate policy frameworks. The distance between a global impact on climate and a need for local mitigation measures creates a challenge for designing appropriate mechanisms to combat reservoir emissions. This paper presents a range of possible policy interventions at different scales that could help address the climate impact of reservoirs. Reservoir emissions need to be treated like other anthropogenic greenhouse gases. A rational treatment of the issue requires applying commonly accepted climate change policy principles as well as promoting participatory water management plans through integrated water resource management frameworks. An independent global body such as the UN system may be called upon to assess scientific information and develop GHG emissions policy at appropriate levels.

  6. Geophysical Investigations at Hidden Dam, Raymond, California: Summary of Fieldwork and Data Analysis

    Science.gov (United States)

    Minsley, Burke J.; Burton, Bethany L.; Ikard, Scott; Powers, Michael H.

    2010-01-01

    Geophysical field investigations have been carried out at the Hidden Dam in Raymond, California for the purpose of better understanding the hydrogeology and seepage-related conditions at the site. Known seepage areas on the northwest right abutment area of the downstream side of the dam are documented by Cedergren. Subsequent to the 1980 seepage study, a drainage blanket with a subdrain system was installed to mitigate downstream seepage. Flow net analysis provided by Cedergren suggests that the primary seepage mechanism involves flow through the dam foundation due to normal reservoir pool elevations, which results in upflow that intersects the ground surface in several areas on the downstream side of the dam. In addition to the reservoir pool elevations and downstream surface topography, flow is also controlled by the existing foundation geology as well as the presence or absence of a horizontal drain within the downstream portion of the dam. The purpose of the current geophysical work is to (1) identify present-day seepage areas that may not be evident due to the effectiveness of the drainage blanket in redirecting seepage water, and (2) provide information about subsurface geologic structures that may control subsurface flow and seepage. These tasks are accomplished through the use of two complementary electrical geophysical methods, self-potentials (SP) and direct-current (DC) electrical resistivity, which have been commonly utilized in dam-seepage studies. SP is a passive method that is primarily sensitive to active subsurface groundwater flow and seepage, whereas DC resistivity is an active-source method that is sensitive to changes in subsurface lithology and groundwater saturation. The focus of this field campaign was on the downstream area on the right abutment, or northwest side of the dam, as this is the main area of interest regarding seepage. Two exploratory self-potential lines were also collected on the downstream left abutment of the dam to identify

  7. A Study of the Impact of Dams on Streamflow and Sediment Retention in the Mekong River Basin

    Science.gov (United States)

    Munroe, T.; Anderson, E.; Markert, K. N.; Griffin, R.

    2017-12-01

    Dam construction in the Mekong Basin has many cascading effects on the ecology, economy, and hydrology of the surrounding region. Current studies that assess the hydrological impact of dams in the region focus on only one or a small subset (SWAT), a rainfall-runoff hydrologic model to determine change in streamflow and sedimentation in the Mekong Basin before and after the construction of dams. This study uses land cover land use and reservoir datasets created by the NASA SERVIR-Mekong Regional Land Cover Monitoring System and Dam Inundation Mapping Tool as inputs into the model. The study also builds on the capabilities of the SWAT model by using the sediment trapping efficiency (STE) equation from Brune (1953), rewritten by Kummu (2007), to calculate STE of dams and estimate change in sediment concentration downstream. The outputs from this study can be used to inform dam operation policies, study the correlation between dams and delta subsidence, and study the impact of dams on river fisheries, which are all pressing issues in the Mekong region.

  8. Group prepares guidelines for documenting dam performance

    International Nuclear Information System (INIS)

    McCann, M.W. Jr.

    1993-01-01

    The Association of State Dam Safety Officials and the Center on the Performance of Dams at Stanford University later this summer expect to complete guidelines for reporting the performance of state, federal, and private dams: A working group of state and federal dam safety engineers and consultants is developing the guidelines to identify incidents that should be reported and to establish reporting requirements. The Federal Emergency Management Agency (FEMA) is funding preparation and publication of the guidelines. The guidelines are expected to expedite the process for reporting information on dam incidents in a timely and complete manner. Much the same as the health care industry compiles and evaluates data related to the incidence of disease and the benefits of treatment, a single standard for reporting the performance of dams in the US will help create a national information base on the occurrence and consequence of dam incidents. Currently, incidents involving dam performance are not reported on a regular basis. The guidelines will define dam incidents in terms of events of engineering interest that provide insights to the safety and structural or operational integrity of dams. Examples of incidents include the performance of a dam that experiences ground motion from a large earthquake, extreme spillway or dam overtopping, rehabilitations made to satisfy dam safety requirements, embankment sliding of an earthen dam, and improper operations that leads to damage downstream. When an incident occurs, the satisfactory or unsatisfactory performance of a dam will be reported, either by a state dam safety official, the owner of the dam, or the owner's engineer

  9. Using a sediment budget to understand geomorphic response following dam removal

    Science.gov (United States)

    Major, J. J.; O'Connor, J. E.; Podolak, C.; Keith, M.; Spicer, K.; Pittman, S.; Bragg, H.; Wallick, J.; Grant, G.

    2013-12-01

    Dam removal provides an exceptional setting for developing tightly constrained sediment budgets linking reservoir erosion with downstream deposition. Measurements of erosion of impounded sediment can provide precise values on sediment input, and measurements of downstream flux and deposition provide potentially well-constrained estimates of output and storage. Measurements of sediment erosion, flux, deposition, and composition following the 2007 breaching of Marmot Dam, Oregon, allowed construction of size-fraction sediment budgets for the first year following dam removal, which documented the spatial distributions and fluxes of nearly 400,000 m3 of sand and gravel released from the former reservoir. The budget encompassed a ~25-km-long control-volume-reach of the Sandy River extending from about 10 km upstream of the dam site to about 15 km downstream. Budget components consisted of measurements of sediment flux into the reservoir reach, erosion from the reservoir reach, sediment flux and deposition along a 2-km-long reach immediately downstream of the dam site before the river entered a 7-km-long bedrock gorge, and sediment flux out of the gorge. Our results show that channel morphology strongly filtered the flux and distribution of released sediment. About 70-90 percent of the gravel released by reservoir erosion deposited within 2 km of the dam site, whereas sand largely passed into and through the bedrock gorge. Flux measurements ~8 km beyond the gorge exit indicate that about half the sand load that emerged from the gorge deposited in the intervening 8-km channel reach. Combining flux measurements with volumetric measurements of erosion and deposition greatly aided construction and interpretation of the sediment budget. Despite the immense effort exerted to measure sediment erosion (relatively easy; cost effective), flux (very challenging; expensive), and deposition (relatively easy above gorge; cost effective), and the tight spatial distributions of the

  10. Measurement of Lake Roosevelt biota in relation to reservoir operations. 1991 Annual report

    International Nuclear Information System (INIS)

    Griffith, J.R.; McDowell, A.C.; Scholz, A.T.

    1991-01-01

    The purpose of this study was to collect biological data from Lake Roosevelt to be used in the design of a computer model that would predict biological responses to reservoir operations as part of the System Operation Review program. Major components of the Lake Roosevelt model included: quantification of impacts to phytoplankton, zooplanktons, benthic invertebrates, and fish caused by reservoir drawdowns and low water retention times; quantification of number, distribution, and use of fish food organisms in the reservoir by season; determination of seasonal growth of fish species as related to reservoir operations, prey abundance and utilization; and quantification of entrainment levels of zooplankton and fish as related to reservoir operations and water retention times. This report summarized the data collected on Lake Roosevelt for 1991 and includes limnological, zooplankton, benthic macroinvertebrate, fishery, and reservoir operation data. Discussions cover reservoir operation affect upon zooplankton, benthic macroinvertebrates, and fish. Reservoir operations brought reservoir elevations to a low of 1,221.7 in April, the result of power operations and a flood control shift from Dworshak Dam, in Idaho, to Grand Coulee Dam. Water retention times were correspondingly low reaching a minimum of 14.7 days on April 27th

  11. Measurement of Lake Roosevelt Biota in Relation to Reservoir Operations; 1991 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Janelle R.; McDowell, Amy C.; Scholz, Allan T.

    1995-08-01

    The purpose of this study was to collect biological data from Lake Roosevelt to be used in the design of a computer model that would predict biological responses to reservoir operations as part of the System Operation Review program. Major components of the Lake Roosevelt model included: quantification of impacts to phytoplankton, zooplanktons, benthic invertebrates, and fish caused by reservoir drawdowns and low water retention times; quantification of number, distribution, and use of fish food organisms in the reservoir by season; determination of seasonal growth of fish species as related to reservoir operations, prey abundance and utilization; and quantification of entrainment levels of zooplankton and fish as related to reservoir operations and water retention times. This report summarized the data collected on Lake Roosevelt for 1991 and includes limnological, zooplankton, benthic macroinvertebrate, fishery, and reservoir operation data. Discussions cover reservoir operation affect upon zooplankton, benthic macroinvertebrates, and fish. Reservoir operations brought reservoir elevations to a low of 1,221.7 in April, the result of power operations and a flood control shift from Dworshak Dam, in Idaho, to Grand Coulee Dam. Water retention times were correspondingly low reaching a minimum of 14.7 days on April 27th.

  12. A Recommended Methodology for Quantifying NDE/NDI Based on Aircraft Engine Experience (Le Projet de Methodologie Pour l’Evaluation du Controle Non- Destructif Fonde sur l’Experience Acquise sur les moteurs d’Avions)

    Science.gov (United States)

    1993-04-01

    A Recommended Methodology for Quantifying NDE/NDI Based on Aircraft Engine Experience--Translation(Le Projet de Methodologie Pour l’Evaluation du Controle Non-Destructif Fonde sur l’Experience Acquise sur les moteurs d’Avions)

  13. [Summer Greenhouse Gases Exchange Flux Across Water-air Interface in Three Water Reservoirs Located in Different Geologic Setting in Guangxi, China].

    Science.gov (United States)

    Li, Jian-hong; Pu, Jun-bing; Sun, Ping-an; Yuan, Dao-xian; Liu, Wen; Zhang, Tao; Mo, Xue

    2015-11-01

    Due to special hydrogeochemical characteristics of calcium-rich, alkaline and DIC-rich ( dissolved inorganic carbon) environment controlled by the weathering products from carbonate rock, the exchange characteristics, processes and controlling factors of greenhouse gas (CO2 and CH4) across water-air interface in karst water reservoir show obvious differences from those of non-karst water reservoir. Three water reservoirs (Dalongdong reservoir-karst reservoir, Wulixia reservoir--semi karst reservoir, Si'anjiang reservoir-non-karst reservoir) located in different geologic setting in Guangxi Zhuang Autonomous Region, China were chosen to reveal characteristics and controlling factors of greenhouse gas exchange flux across water-air interface. Two common approaches, floating chamber (FC) and thin boundary layer models (TBL), were employed to research and contrast greenhouse gas exchange flux across water-air interface from three reservoirs. The results showed that: (1) surface-layer water in reservoir area and discharging water under dam in Dalongdong water reservoir were the source of atmospheric CO2 and CH4. Surface-layer water in reservoir area in Wulixia water reservoir was the sink of atmospheric CO2 and the source of atmospheric CH4, while discharging water under dam was the source of atmospheric CO2 and CH4. Surface-layer water in Si'anjiang water reservoir was the sink of atmospheric CO2 and source of atmospheric CH4. (2) CO2 and CH4 effluxes in discharging water under dam were much more than those in surface-layer water in reservoir area regardless of karst reservoir or non karst reservoir. Accordingly, more attention should be paid to the CO2 and CH4 emission from discharging water under dam. (3) In the absence of submerged soil organic matters and plants, the difference of CH4 effluxes between karst groundwater-fed reservoir ( Dalongdong water reservoir) and non-karst area ( Wulixia water reservoir and Si'anjiang water reservoir) was less. However, CO2

  14. Investigation of changes to the operation of Keenleyside Dam to reduce supersaturation of dissolved gases downstream

    International Nuclear Information System (INIS)

    Nunn, J.O.H.; Fidler, L.E.; Northcott, P.

    1993-01-01

    Keenlyside Dam is located on the Columbia River in southeast British Columbia. It impounds Arrow Lakes Reservoir, which has a live storage of 8.8 billion m 3 . The dam is used for flood control and to increase power generation in the USA. Recent field measurements have shown that the current operation of the dam often creates high levels of total gas pressure (TGP) downstream of the dam, with supersaturation levels occasionally reaching as high as 140%. It appeared that these increased levels were associated with the use of the spillway. High levels of dissolved gases may have adverse effects on aquatic life. Therefore, a comprehensive study was initiated to investigate ways of reducing TGP levels. The discharge facilities at the dam are described, along with the effects of dissolved gas supersaturation on fish. Current studies include measurement of field TGP levels, development of a model to predict TGP levels for different modes of operation of the discharge facilities, assessing the effects of TGP on different fish species at different life stages, field testing of the discharge facilities, and assessment of long-term impacts of various operating alternatives on the dam structures and equipment. Preliminary results indicate that the north low-level ports of the spillway increase the TGP level significantly less than the other two components of the discharge facilities. Current operating practice therefore maximizes use of the north ports within current operating limits. 9 refs., 4 figs

  15. Environmental flows in the context of small reservoirs in Ghana

    Science.gov (United States)

    Gao, Y.; Kirshen, P.; Vogel, R.; Walker, P.

    2009-04-01

    Modification of rivers by dams reduces the magnitude and frequency of floods, and impacts the entire flow regime. In many cases, these modifications have adversely affected the ecological and hydrological integrity of the watershed as well as impacting food security and livelihood choices of the local community. There is now an increasing consensus that modification to river flows needs to be balanced with maintenance of essential water-dependent ecological services. Many small multi-purpose reservoirs have been built in West Africa, where rainfall is highly variable, and droughts and flash floods are frequent. These small reservoirs are an important source of water for domestic use, livestock watering, small-scale irrigation and other beneficial uses in rural communities. The small reservoirs are hydrologically linked by their associated stream network. The reservoirs alter the hydrology of the streams and the groundwater resources within the region. When an individual reservoir is considered, alteration to the entire watershed is usually not significant. However, when considered as a system, together the small reservoirs store a significant quantity of water and influence downstream flows. The small reservoirs have rarely been considered as a system, thus little consideration has been given to their collective impact on the natural environment and livelihoods of the local population in the long term. Furthermore, the impact is difficult to quantify given the diffuse nature of the small reservoirs. Therefore, a comprehensive environmental flow assessment is needed to investigate the effect of the small reservoirs as a system on the watershed, and appropriate water policy should be formulated to implement the finding from the assessment. Our project is specifically aimed at addressing this topic. We will present a case study conducted in the Upper East Region of Ghana and will discuss the findings on the hydrological, ecological and socio-economic implications of

  16. Water reservoir characteristics derivation from pubicly available global elevation data

    Science.gov (United States)

    Van De Giesen, N.; van Bemmelen, C.; Mann, M.; de Ridder, M.; Gupta, V.; Rutten, M.

    2017-12-01

    In order to assess human impact on the global hydrological cycle, it is imperative to characterize all major man made reservoirs. One important characteristic is the relationship between the surface area of a reservoir and its stored water volume. Surface areas can readily be determined through optical and radar satellite remote sensing. Once the relationship between the surface area of a reservoir and its stored water volume is known, one can determine the stored volumes over time using remotely sensed surface areas. It has been known for some time that this relationship between surface and stored volume shows a very high level of regional consistency [1]. This implies that if one knows this relationship in a certain region, one can predict the same for any nearby reservoir. We have tried to exploit this fact by examining whether one can build virtual dams in the neighborhood of an existing dam to determine the general relationship between surface area and stored volume. We examined twelve reservoirs around the world and found, generally, very good results. Especially in geomorphologically homogeneous areas, the relationships could reliable be extrapolated over space. Even in very heterogeneous areas, the final results were acceptable and much better than generic relationships used so far. Finally, we have examined to what extent it is possible to select virtual dam sites automatically. The first results for this are promising and show that it may be possible to characterize most major dams in the world according to this approach. It is likely that there will be the need for human detection for a reasonable percentage. For these relatively rare case, some human micro-tasking may be the way forward. It is expected, however, that >90% of the worldś dams can be characterized automatically [1] Liebe, J., N. Van De Giesen, and Marc Andreini. "Estimation of small reservoir storage capacities in a semi-arid environment: A case study in the Upper East Region of Ghana

  17. Determination of metals in water from Billings dam, Sao Paulo

    International Nuclear Information System (INIS)

    Oliveira, Talita; Sarkis, Jorge E.S.; Ulrich, Joao C.; Yamaguishi, Renata Bazante; Menezes, Luciana Carvalho Bezerra de; Castro, Paula Maria Genova de; Monteiro Junior, Adalberto Jose; Maruyama, Lidia Sumile

    2013-01-01

    The Billings reservoir, located in Sao Paulo, Brazil, is used for several purposes such as: water supply, electric generation, fishing and leisure. Although considered an area of environmental protection, in recent years the dam has suffered diverse environmental aggressions including the release of toxic metals. This study presents a recent evaluation of metal contents along the Dam. Samples were collected every three months during the period of winter 2009 to summer 2010. Samples were collected in thirteen points along of the dam, as follows: Rio dos Porcos (Point 1), Summit Control (Point 2), Ilha do Bigua (Point 3), Casa Caida (Point 4), Barragem (Point 5), Foz de Taquacetuba (Point 6), Braco Borore (Point 7), Foz de Borore (Point 8), Alvarenga (Point 9), Pedreira (Point 10), Borore's Margin (Point 11), Capivari I's Margin (Point 12) and Capivari II's Margin (Point 13). The determination of Al, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb and Zn was performed by using high resolution inductively coupled plasma mass spectrometer (HR-ICPMS). The methodology has been validated using certified reference material Riverine Water Reference Material for Trace Metals provided by National Research Council Canada (NRCC). The sampling points located in the Pedreira, Borore's Margin, Alvarenga, Barragem Taquacetuba, Casa Caida e Ilha do Bigua presented the highest concentrations. The level for Fe, Cu and Ni were higher than the ones reported in the literature and above the limit set by CONAMA 2914/201. (author)

  18. Determination of metals in water from Billings dam, Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Talita; Sarkis, Jorge E.S.; Ulrich, Joao C.; Yamaguishi, Renata Bazante, E-mail: taoliveira@ipen.br, E-mail: jesarkis@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Menezes, Luciana Carvalho Bezerra de; Castro, Paula Maria Genova de; Monteiro Junior, Adalberto Jose; Maruyama, Lidia Sumile, E-mail: lcbm@usp.br [Instituto de Pesca, (IP/SAA-SP), Sao Paulo, SP (Brazil). Secretaria da Agricultura e Abastecimento do Estado de Sao Paulo

    2013-07-01

    The Billings reservoir, located in Sao Paulo, Brazil, is used for several purposes such as: water supply, electric generation, fishing and leisure. Although considered an area of environmental protection, in recent years the dam has suffered diverse environmental aggressions including the release of toxic metals. This study presents a recent evaluation of metal contents along the Dam. Samples were collected every three months during the period of winter 2009 to summer 2010. Samples were collected in thirteen points along of the dam, as follows: Rio dos Porcos (Point 1), Summit Control (Point 2), Ilha do Bigua (Point 3), Casa Caida (Point 4), Barragem (Point 5), Foz de Taquacetuba (Point 6), Braco Borore (Point 7), Foz de Borore (Point 8), Alvarenga (Point 9), Pedreira (Point 10), Borore's Margin (Point 11), Capivari I's Margin (Point 12) and Capivari II's Margin (Point 13). The determination of Al, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb and Zn was performed by using high resolution inductively coupled plasma mass spectrometer (HR-ICPMS). The methodology has been validated using certified reference material Riverine Water Reference Material for Trace Metals provided by National Research Council Canada (NRCC). The sampling points located in the Pedreira, Borore's Margin, Alvarenga, Barragem Taquacetuba, Casa Caida e Ilha do Bigua presented the highest concentrations. The level for Fe, Cu and Ni were higher than the ones reported in the literature and above the limit set by CONAMA 2914/201. (author)

  19. Underground dams for irrigation supplies in coastal limestone aquifer, Okinawa, Japan

    Science.gov (United States)

    Yasumoto, J.; Nakano, T.; Nawa, N.

    2011-12-01

    The use of underground dams to store water in regions with arid or tropical climates is a method that has received considerable attention in the last few decades. And now, for the tropical and subtropical islands that are highly vulnerable to climate change underground dams have been attracting attention again as a method of groundwater management. Okinawa Prefecture is Japan's southernmost prefecture, which consists of hundreds of islands in a chain over 1,000 km long, called the Ryukyu Islands which extend southwest from Kyushu to Taiwan. The national irrigation project of the Ryukyu Islands has been carried out, and several underground dams have been constructed. The Komesu and Giiza underground dams are first full scale underground dam facilities constructed for irrigation in Japan. The Komesu underground dam is a salt-water proof type. It prevents salt-water intrusion and provides storage fresh-water for irrigation in coastal limestone aquifer. Giiza underground dam is a dam up type for storage of fresh-water. These groundwater reservoirs are located in the coastal region of southern part of Okinawa (main island), where Ryukyu limestone is extensively distributed. We studied the behaviour of groundwater flow, saltwater intrusion and nitrate nitrogen (NO3-N) in groundwater in this region by using observation data of groundwater and springs through long term (from 1993 to 2010) monitoring. And, a groundwater flow and salt-water intrusion analysis have been conducted with three dimensional numerical model applied to these dam reservoir areas. The MODFLOW-NWT with SWI code and PEST was used to simulate the complex groundwater flow patterns. Through the comparison with simulation and observed data, it was concluded that the cut off wall of underground dams effectively stores the groundwater and prevents the salt-water intrusion in the reservoir areas. The observed groundwater levels at the reservoir areas were almost reproduced by the numerical model, but there

  20. Stream, Lake, and Reservoir Management.

    Science.gov (United States)

    Dai, Jingjing; Mei, Ying; Chang, Chein-Chi

    2017-10-01

    This review on stream, lake, and reservoir management covers selected 2016 publications on the focus of the following sections: Stream, lake, and reservoir management • Water quality of stream, lake, and reservoirReservoir operations • Models of stream, lake, and reservoir • Remediation and restoration of stream, lake, and reservoir • Biota of stream, lake, and reservoir • Climate effect of stream, lake, and reservoir.

  1. Dams and Obstructions along Iowa's Canoe Routes

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This dataset represents obstruction to canoe and boat users of the canoe routes of Iowa. This may represent actual dams, rock dams (natural or man made), large...

  2. Simulation of Breach Outflow for Earthfill Dam

    International Nuclear Information System (INIS)

    Razad, Azwin Zailti Abdul; Muda, Rahsidi Sabri; Sidek, Lariyah Mohd; Azia, Intan Shafilah Abdul; Mansor, Faezah Hanum; Yalit, Ruzaimei

    2013-01-01

    Dams have been built for many reasons such as irrigation, hydropower, flood mitigation, and water supply to support development for the benefit of human. However, the huge amount of water stored behind the dam can seriously pose adverse impacts to the downstream community should it be released due to unwanted dam break event. To minimise the potential loss of lives and property damages, a workable Emergency Response Plan is required to be developed. As part of a responsible dam owner and operator, TNB initiated a study on dam breach modelling for Cameron Highlands Hydroelectric Scheme to simulate the potential dam breach for Jor Dam. Prediction of dam breach parameters using the empirical equations of Froehlich and Macdonal-Langridge-Monopolis formed the basis of the modelling, coupled with MIKE 11 software to obtain the breach outflow due to Probable Maximum Flood (PMF). This paper will therefore discuss the model setup, simulation procedure and comparison of the prediction with existing equations.

  3. Douglas County Dam Breach Inundation Areas

    Data.gov (United States)

    Kansas Data Access and Support Center — Dam breach analysis provides a prediction of the extent and timing of flooding from a catastrophic breach of the dams. These results are sufficient for developing...

  4. Status of Wheeler Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

  5. The Economic Benefits Of Multipurpose Reservoirs In The United States- Federal Hydropower Fleet

    Energy Technology Data Exchange (ETDEWEB)

    Hadjerioua, Boualem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stewart, Kevin M. [Dept. of Energy (DOE), Washington DC (United States). Office of Energy Efficiency and Renewable Energy (EERE); Bonnet Acosta, Marisol [Dept. of Energy (DOE), Washington DC (United States). Office of Energy Efficiency and Renewable Energy (EERE); Mobley, Miles [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The United States is home to over 80,000 dams, of which approximately 3% are equipped with hydroelectric generating capabilities. When a dam serves as a hydropower facility, it provides a variety of energy services that range from clean, reliable power generation to load balancing that supports grid stability. In most cases, the benefits of dams and their associated reservoirs go far beyond supporting the nation s energy demand. As evidenced by the substantial presence of non-powered dams with the ability to store water in large capacities, the primary purpose of a dam may not be hydropower, but rather one of many other purposes. A dam and reservoir may support navigation, recreation, flood control, irrigation, and water supply, with each multipurpose benefit providing significant social and economic impacts on a local, regional, and national level. When hydropower is one of the services provided by a multipurpose reservoir, it is then part of an integrated system of competing uses. Operating rules, management practices, consumer demands, and environmental constraints must all be balanced to meet the multipurpose project s objectives. When federal dams are built, they are authorized by Congress to serve one or more functions. Legislation such as the Water Resources Development Act regulates the operation of the facility in order to coordinate the authorized uses and ensure the dam s intended objectives are being met. While multipurpose reservoirs account for billions of dollars in contributions to National Economic Development (NED) every year, no attempt has been made to evaluate their benefits on a national scale. This study is an on-going work conducted by Oak Ridge National Laboratory in an effort to estimate the economic benefits of multipurpose hydropower reservoirs in the United States. Given the important role that federal hydropower plays in the U.S., the first focus of this research will target the three main federal hydropower owners Tennessee Valley

  6. Geomorphic response of the Sandy River, Oregon, to removal of Marmot Dam

    Science.gov (United States)

    Major, Jon J.; O'Connor, Jim E.; Podolak, Charles J.; Keith, Mackenzie K.; Grant, Gordon E.; Spicer, Kurt R.; Pittman, Smokey; Bragg, Heather M.; Wallick, J. Rose; Tanner, Dwight Q.; Rhode, Abagail; Wilcock, Peter R.

    2012-01-01

    The October 2007 breaching of a temporary cofferdam constructed during removal of the 15-meter (m)-tall Marmot Dam on the Sandy River, Oregon, triggered a rapid sequence of fluvial responses as ~730,000 cubic meters (m3) of sand and gravel filling the former reservoir became available to a high-gradient river. Using direct measurements of sediment transport, photogrammetry, airborne light detection and ranging (lidar) surveys, and, between transport events, repeat ground surveys of the reservoir reach and channel downstream, we monitored the erosion, transport, and deposition of this sediment in the hours, days, and months following breaching of the cofferdam. Rapid erosion of reservoir sediment led to exceptional suspended-sediment and bedload-sediment transport rates near the dam site, as well as to elevated transport rates at downstream measurement sites in the weeks and months after breaching. Measurements of sediment transport 0.4 kilometers (km) downstream of the dam site during and following breaching show a spike in the transport of fine suspended sediment within minutes after breaching, followed by high rates of suspended-load and bedload transport of sand. Significant transport of gravel bedload past the measurement site did not begin until 18 to 20 hours after breaching. For at least 7 months after breaching, bedload transport rates just below the dam site during high flows remained as much as 10 times above rates measured upstream of the dam site and farther downstream. The elevated sediment load was derived from eroded reservoir sediment, which began eroding when a meters-tall knickpoint migrated about 200 m upstream in the first hour after breaching. Rapid knickpoint migration triggered vertical incision and bank collapse in unconsolidated sand and gravel, leading to rapid channel widening. Over the following days and months, the knickpoint migrated upstream more slowly, simultaneously decreasing in height and becoming less distinct. Within 7 months

  7. WinDAM C earthen embankment internal erosion analysis software

    Science.gov (United States)

    Two primary causes of dam failure are overtopping and internal erosion. For the purpose of evaluating dam safety for existing earthen embankment dams and proposed earthen embankment dams, Windows Dam Analysis Modules C (WinDAM C) software will simulate either internal erosion or erosion resulting f...

  8. Dams life; La vie des barrages

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The paper reports on the conclusions of decennial and annual inspections of French dams. Dams surveillance is performed by the operators and consists in visual examinations and measurements. Concrete dams, in particular, always have more or less developed fissures with water sweating threw the concrete mass or the foundations. Old concrete often show low swelling phenomena which are measured too. (J.S.)

  9. 76 FR 12094 - Whitman River Dam, Inc.

    Science.gov (United States)

    2011-03-04

    ... Dam, Inc. Notice of Application Tendered for Filing With the Commission and Soliciting Additional.... Project No.: 13237-002. c. Date Filed: February 14, 2011. d. Applicant: Whitman River Dam, Inc. e. Name of Project: Crocker Dam Hydro Project. f. Location: On the Whitman River, in the Town of Westminster...

  10. 78 FR 62627 - Sam Rayburn Dam Rate

    Science.gov (United States)

    2013-10-22

    ... DEPARTMENT OF ENERGY Southwestern Power Administration Sam Rayburn Dam Rate AGENCY: Southwestern... the power rate for the Sam Rayburn Dam (Rayburn) project pursuant to the Rayburn rate schedule (SRD-13..., Wholesale Rates for Hydro Power and Energy Sold to Sam Rayburn Dam Electric Cooperative, Inc. (Contract No...

  11. EVALUASI KEAMANAN DAM JATILUHUR BERBASIS INDEKS RESIKO

    Directory of Open Access Journals (Sweden)

    Avazbek Ishbaev

    2014-12-01

    Full Text Available The dams have very important roles to agricultural activities. Especially, West Java with 240,000 hectares of agricultural land, needs a good dam structure that can be used sustainably. Jatiluhur dam in Purwakarta, West Java is one of big dams in Indonesia which has important rules not only for Purwakarta but also for Jakarta, Karawang and Bekasi residents. A study and observation about safety and dam stability is needed to prevent any damage. The purpose of this research were to identify parameters that influenced dam safety and to evaluate dam reliability based on index tools. Analysis was done using risk index tools. The result showed that the condition of the dam of Jatiluhur is still satisfied with indicators, "Idam"-750. The total index risk was 127.22 and the safety factor was 83.04 out of 100. Therefore, Jatiluhur dam could be classified as safe and no need for particular treatments. Jatiluhur dam can be operated in normal condition or abnormal condition with periodic monitoring. Keywords: dam safety, evaluation, Jatiluhur Dam, risk index tools

  12. Integrated Flood Forecast and Virtual Dam Operation System for Water Resources and Flood Risk Management

    Science.gov (United States)

    Shibuo, Yoshihiro; Ikoma, Eiji; Lawford, Peter; Oyanagi, Misa; Kanauchi, Shizu; Koudelova, Petra; Kitsuregawa, Masaru; Koike, Toshio

    2014-05-01

    While availability of hydrological- and hydrometeorological data shows growing tendency and advanced modeling techniques are emerging, such newly available data and advanced models may not always be applied in the field of decision-making. In this study we present an integrated system of ensemble streamflow forecast (ESP) and virtual dam simulator, which is designed to support river and dam manager's decision making. The system consists of three main functions: real time hydrological model, ESP model, and dam simulator model. In the real time model, the system simulates current condition of river basins, such as soil moisture and river discharges, using LSM coupled distributed hydrological model. The ESP model takes initial condition from the real time model's output and generates ESP, based on numerical weather prediction. The dam simulator model provides virtual dam operation and users can experience impact of dam control on remaining reservoir volume and downstream flood under the anticipated flood forecast. Thus the river and dam managers shall be able to evaluate benefit of priori dam release and flood risk reduction at the same time, on real time basis. Furthermore the system has been developed under the concept of data and models integration, and it is coupled with Data Integration and Analysis System (DIAS) - a Japanese national project for integrating and analyzing massive amount of observational and model data. Therefore it has advantage in direct use of miscellaneous data from point/radar-derived observation, numerical weather prediction output, to satellite imagery stored in data archive. Output of the system is accessible over the web interface, making information available with relative ease, e.g. from ordinary PC to mobile devices. We have been applying the system to the Upper Tone region, located northwest from Tokyo metropolitan area, and we show application example of the system in recent flood events caused by typhoons.

  13. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River

    Science.gov (United States)

    Wang, Yuankun; Rhoads, Bruce L.; Wang, Dong; Wu, Jichun; Zhang, Xiao

    2018-03-01

    The Yangtze River is one of the largest and most important rivers in the world. Over the past several decades, the natural sediment regime of the Yangtze River has been altered by the construction of dams. This paper uses multi-scale entropy analysis to ascertain the impacts of large dams on the complexity of high-frequency suspended sediment dynamics in the Yangtze River system, especially after impoundment of the Three Gorges Dam (TGD). In this study, the complexity of sediment dynamics is quantified by framing it within the context of entropy analysis of time series. Data on daily sediment loads for four stations located in the mainstem are analyzed for the past 60 years. The results indicate that dam construction has reduced the complexity of short-term (1-30 days) variation in sediment dynamics near the structures, but that complexity has actually increased farther downstream. This spatial pattern seems to reflect a filtering effect of the dams on the on the temporal pattern of sediment loads as well as decreased longitudinal connectivity of sediment transfer through the river system, resulting in downstream enhancement of the influence of local sediment inputs by tributaries on sediment dynamics. The TGD has had a substantial impact on the complexity of sediment series in the mainstem of the Yangtze River, especially after it became fully operational. This enhanced impact is attributed to the high trapping efficiency of this dam and its associated large reservoir. The sediment dynamics "signal" becomes more spatially variable after dam construction. This study demonstrates the spatial influence of dams on the high-frequency temporal complexity of sediment regimes and provides valuable information that can be used to guide environmental conservation of the Yangtze River.

  14. A Study of Nutrient Distribution in Sediment Layer at Sembrong Dam

    Directory of Open Access Journals (Sweden)

    Abu Talib SH

    2018-01-01

    Full Text Available Reservoir is one of the key sources of water supply as it provides hydroelectric power, domestic usage, agriculture, farming, recreation and provides flood protection. Sedimentation in the reservoir makes the storage of water loss and the sediment sink contain a source of nutrients. Sediment deposition creates habitats for aquatic life but if too much sediment, it can destroy their habitats and even physically alter a waterway. The use of nutrients such as Total Phosphorus (TP is key to growing plants and animals thus to feed growing populations. An excess of nutrients in the reservoir such as from agricultural activity makes algae growth rapidly and it can affected the water quality in the reservoir. This research was conducted at the Sembrong dam as this dam is a major water source for people in Kluang and parts Batu Pahat and the water quality become decreased because of algae bloom. The main objective of this study is to determine the distribution of nutrient in different location and to determine the nutrient distribution in vertical sediment layer. The study were conducted by taking sediments samples throughout the reservoir by using sediment corer and the sediment have been sliced every 5 cm. The samples were digested using USEPA Method 3050B which is acid digestion for sediments, sludge and soil for TP. The laboratory testing on these nutrients was conducted by following Standard Method for the Examination of Water and Wastewater (APHA, 1999 using spectrophotometer. The highest value of TP obtain is at outlet of the reservoir which is 30.72 mg/l. The results obtained shows that the top of sediment has high number of TP and it decreasing by depth. However, continuous and periodic monitoring should be done to avoid the increasing of the concentration of TP in the sediment to ensure the life of Sembrong dam can be extending for future.

  15. Assesment of bathymetric maps via GIS for water in reservoir

    Directory of Open Access Journals (Sweden)

    Ayhan Ceylan

    Full Text Available In order to adopt measures for storing more water in reservoirs, lakes and ponds; to prevent water pollution, protect water sources and extend the service life of these facilities, it is important for manager (Municipalities, Directorates of the State Hydraulic Works (DSHW, Irrigation Unions etc. to know the current topographic conditions and any changes in the storage capacities of these facilities. This study aimed to identify the updated topographic and bathymetric data required for the efficient management and usage of Altınapa reservoir, changes in surface area and volume of the facility, and to form a Reservoir Information System (RIS. Two digital elevation models, from 2009 and 1984, were used to determine changes in the storage capacity of the reservoir. The calculations indicated that, within this 25-year period, the storage capacity of the reservoir decreased by 12.7% due to sedimentation. A Dam Information System (RIS was developed from a wide range of data sources, including topographic and bathymetric data of the reservoir and its surrounding area, data on specific features such as plant cover, water quality characteristics (Temperature, Dissolved Oxygen (DO, Secchi Disk Depth (SDD and pH, geological structure, average water level, water supplied from springs, evaporation value of the reservoir, and precipitation.

  16. Geomorphic and Salmon Habitat Response to Dam Removal with Minimal Constraints to Channel Evolution, Wa'atch Creek, Western Washington, U.S.A

    Science.gov (United States)

    Ritchie, A. C.; Shellberg, J. G.

    2010-12-01

    Dam removal has become an important component of aquatic ecosystem restoration, but studies documenting the physical and ecological response to dam removal across a range of human modified hydroclimatic and physiographic settings are still lacking. This research documents channel geomorphic response and fine sediment storage in salmon spawning gravels after removing two derelict dams (largest 6m) from Wa’atch Creek, located in the temperate coastal-marine zone of the Pacific Northwest, USA. After removing dam sheet pile and earthen fill, natural river processes including sediment flushing were allowed occur. Technical engineering solutions were avoided, unlike comparably sized dam removals in western Washington that over-engineered channel stability. However, two-hundred large-logs (LWD) were placed unanchored below the dam sites and throughout the reservoir before drawdown to sort and store sediment and provide future habitat complexity. Initial sedimentation impacts were severe following dam removal, temporarily smothering the bed of the creek with a fine sediment slurry (fluid mud) from dam to delta, killing aquatic biota, and covering spawning gravels with inhospitable levels of fine sediment. Subsequently, several large floods within the first year (max 10-yr recurrence interval) flushed the channel sediment slurry and over half (11,000 m^3) of the fine sediment stored in the reservoir out to sea. Coarse sediment aggraded immediately below the dam where wood was placed in the channel, while channel incision occurred through the reservoir and into tributaries, both diminishing away from the disturbance center. Channel changes were greatest immediately following removal due to high stream power, steep energy slope and saturated unconsolidated alluvium. The rate of change in sediment volume diminished over time (2003 to 2008) due to sediment consolidation, vegetation colonization, and a reduction in energy slope. After reservoir and channel flushing, fine

  17. Forecasting the remaining reservoir capacity in the Laurentian Great Lakes watershed

    Science.gov (United States)

    Alighalehbabakhani, Fatemeh; Miller, Carol J.; Baskaran, Mark; Selegean, James P.; Barkach, John H.; Dahl, Travis; Abkenar, Seyed Mohsen Sadatiyan

    2017-12-01

    Sediment accumulation behind a dam is a significant factor in reservoir operation and watershed management. There are many dams located within the Laurentian Great Lakes watershed whose operations have been adversely affected by excessive reservoir sedimentation. Reservoir sedimentation effects include reduction of flood control capability and limitations to both water supply withdrawals and power generation due to reduced reservoir storage. In this research, the sediment accumulation rates of twelve reservoirs within the Great Lakes watershed were evaluated using the Soil and Water Assessment Tool (SWAT). The estimated sediment accumulation rates by SWAT were compared to estimates relying on radionuclide dating of sediment cores and bathymetric survey methods. Based on the sediment accumulation rate, the remaining reservoir capacity for each study site was estimated. Evaluation of the anthropogenic impacts including land use change and dam construction on the sediment yield were assessed in this research. The regression analysis was done on the current and pre-European settlement sediment yield for the modeled watersheds to predict the current and natural sediment yield in un-modeled watersheds. These eleven watersheds are in the state of Indiana, Michigan, Ohio, New York, and Wisconsin.

  18. Assessing Risks of Mine Tailing Dam Failures

    Science.gov (United States)

    Concha Larrauri, P.; Lall, U.

    2017-12-01

    The consequences of tailings dam failures can be catastrophic for communities and ecosystems in the vicinity of the dams. The failure of the Fundão tailings dam at the Samarco mine in 2015 killed 19 people with severe consequences for the environment. The financial and legal consequences of a tailings dam failure can also be significant for the mining companies. For the Fundão tailings dam, the company had to pay 6 billion dollars in fines and twenty-one executives were charged with qualified murder. There are tenths of thousands of active, inactive, and abandoned tailings dams in the world and there is a need to better understand the hazards posed by these structures to downstream populations and ecosystems. A challenge to assess the risks of tailings dams in a large scale is that many of them are not registered in publicly available databases and there is little information about their current physical state. Additionally, hazard classifications of tailings dams - common in many countries- tend to be subjective, include vague parameter definitions, and are not always updated over time. Here we present a simple methodology to assess and rank the exposure to tailings dams using ArcGIS that removes subjective interpretations. The method uses basic information such as current dam height, storage volume, topography, population, land use, and hydrological data. A hazard rating risk was developed to compare the potential extent of the damage across dams. This assessment provides a general overview of what in the vicinity of the tailings dams could be affected in case of a failure and a way to rank tailings dams that is directly linked to the exposure at any given time. One hundred tailings dams in Minas Gerais, Brazil were used for the test case. This ranking approach could inform the risk management strategy of the tailings dams within a company, and when disclosed, it could enable shareholders and the communities to make decisions on the risks they are taking.

  19. Source contributions to radiocesium contaminated particulate matter deposited in a reservoir after the Fukushima accident

    Science.gov (United States)

    Laceby, J. Patrick; Huon, Sylvain; Hayashi, Seiji; Onda, Yuichi; Evrard, Olivier

    2017-04-01

    The Fukushima nuclear accident resulted in the deposition of radiocesium over forested and rural landscapes northwest of the power plant. Although there have been several investigations into the dynamics of contaminated river sediment, less attention has been paid to the sources of deposited particulate matter in dams and reservoirs. In the Fukushima Prefecture, there are 10 significant dams and over a 1,000 reservoirs for both agricultural and surface water management. These reservoirs may have trapped a significant volume of radiocesium contaminated sediment, and understanding the sources of this material is important for the ongoing management of contamination in the region. Accordingly, the source of contaminated particulate matter (i.e. cultivated, forest and subsoils) deposited in the Mano Dam reservoir, Japan, was investigated with the analyses and modelling of carbon and nitrogen stable isotope ratios, total organic carbon and total nitrogen concentrations. Four sediment cores with lengths ranging from 29-41 cm were sampled in the Mano Dam, approximately 40 km northwest of the FDNPP. Source samples were taken from 46 forest soils, 28 cultivated soils and 25 subsoils in the region. Carbon-nitrogen parameters were analysed on all samples and a concentration-dependent distribution modelling approach was used to apportion source contributions. Three of the four cores sampled in the Mano Dam reservoir had distinct radiocesium peaks representative of the initial post-accident wash-off phase. Cultivated sources were responsible for 48% (SD 7%) of the deposited fine particulate matter in the three cores with the radiocesium peaks, whereas forests were modelled to contribute 27% (SD 6%) and subsoil sources 25% (SD 4%). Ongoing decontamination of cultivated sources in the Fukushima region should result in a decrease of contaminated matter deposited in reservoirs. More research is required to understand the potential ongoing source contributions from forested

  20. Research on Safety Factor of Dam Slope of High Embankment Dam under Seismic Condition

    Directory of Open Access Journals (Sweden)

    Li Bin

    2015-01-01

    Full Text Available With the constant development of construction technology of embankment dam, the constructed embankment dam becomes higher and higher, and the embankment dam with its height over 200m will always adopt the current design criteria of embankment dam only suitable for the construction of embankment dam lower than 200m in height. So the design criteria of high embankment dam shall be improved. We shall calculate the stability and safety factors of dam slope of high embankment dam under different dam height, slope ratio and different seismic intensity based on ratio of safety margin, and clarify the change rules of stability and safety factors of dam slope of high embankment dam with its height over 200m. We calculate the ratio of safety margin of traditional and reliable method by taking the stable, allowable and reliability index 4.2 of dam slope of high embankment dam with its height over 200m as the standard value, and conduct linear regression for both. As a result, the conditions, where 1.3 is considered as the stability and safety factors of dam slope of high embankment dam with its height over 200m under seismic condition and 4.2 as the allowable and reliability index, are under the same risk control level.

  1. Predictive assessment on loss caused by dam break based on GIS

    Science.gov (United States)

    Yang, Shengmei; Ning, Jing; Cao, Bo; Li, Bo

    2013-10-01

    The floods due to dam failure usually do great harm to human beings and social economy. The aim of this paper is to apply geographical information system (GIS) technology, and the loss estimation model to estimate the loss of the hypothetical dam break in Lushui reservoir basin. The general predictive loss evaluation scheme of dam-break flood is illustrated. The empirical formula method is used to determine the flood submerged region. The final loss assessment result is mapped out on GIS software. The result shows that the combination of GIS and loss estimation model can make the overall procedure for loss assessment efficient and effective, which could do favor to long-term basin flood control planning and disaster preparedness.

  2. a Study on the Stability of Earth DAM Subjected to the Seismic Load

    Science.gov (United States)

    Qi, Jinghua; Che, Ailan; Ge, Xiurun

    For ensuring the earth dam's stability of Wangqingtuo reservoir when silt liquefaction happens during Tangshan earthquake, a large amount of laboratory soil tests and field measurements have been performed to obtain the mechanic properties of the soil and silt dynamic parameters. On the basis of the soil tests, the equivalent linear constitutive model is employed in the dynamic numerical simulation of the typical dam and the results indicate that the shear deformation is induced by the foundation liquefaction with the help of the geo-slope software. Moreover, the stability analysis is performed using the finite element elasto-plastic model that is considered the Mohr-Coulomb failure criteria to calculate the stability factor. The factors indicate the local instability would take place because of the shear action. At last, the measures are introduced to the designers for preventing the dam from the instability.

  3. Excellent Performance of Earth Dams under Resonance Motion Using Isolator Damping Layer

    Directory of Open Access Journals (Sweden)

    Behrouz Gordan

    2014-01-01

    Full Text Available The effect of blanket layer using isolator damping layer (IDL between river sand foundation and short embankment to remove damage under severe earthquake was investigated in the present study. In case of numerical analysis by ANSYS program, dominant frequency (DF was computed by free vibration analysis. Soil mechanic tests for thirteen samples to design IDL formula were carried out. In terms of critical condition for earthquake effect such as resonance, five physical small models were tested using vibrator table under the dominant frequency with scale parameter 1/100. As a result, dam was significantly damaged without blanket layer IDL. In order to reduce damage, the best performance was observed using blanket layer (IDL when this layer was expanded below the reservoir region. The reinforced thickness layer size is one-fourth of dam height. This method is a novel suggestion for earth dam design in seismic zone.

  4. Hydrostatic-Season-Time model for Montedoglio earth dam (Italy) rapid drawdown

    Science.gov (United States)

    Rossi, Giuseppe; Lucioli, Elisa; Caporali, Enrica

    2014-05-01

    Understanding the long-term behaviour of an earth dam is essential to interpret the measured data, in order to be able to distinguish the deformations caused by irreversible events and factors as the ageing of the dam in order to ensure its structural safety. Moreover, detecting alarming behaviour on time is difficult because the effects of the involved processes are correlated. In order to minimize the uncertainty in data interpretation, a continuous monitoring and a numerical modelling of the pressures in dam body, is required. The polynomial Hydrostatic-Season-Time (HST) model is applied in order to individuate the correlation between the variation of the pore pressures measured by the piezometers and by manometers and the variation of the water level in the reservoir. The HST model allows to evaluate the long term behaviour of earth dam considering three main components: effects of the reservoir level, seasonal effects, the time drift and the rainfall. This last term must be taken into account when analysing hydraulic related measurements. In the night between 29th and 30th December 2010 during the filling test of the reservoir an incident occurred to the main body of the Montedoglio earth dam, located in Sansepolcro, Tuscany (Italy). Using the HST Model, this study aims to assess the behaviour of the dam core during the rapid drawdown that follows the event. The applicability of the model is verified with a finite elements method passing through different steps. At first step a simplified levee scheme and a simplified hydrograph of the reservoir level are used to determine the flow line with the solver. The results are compared with the ones estimated through the Pavlovsky method. Then the real model of the levee and the real hydrograph of the reservoir level are utilized to find a second flow line. This line is compared with the real pore pressure measurements to obtain the validation of the solver model and then with the HST predicted values. The obtained

  5. Application of decoupled modal approach in dynamic analysis of concrete gravity dams

    Energy Technology Data Exchange (ETDEWEB)

    Lotfi, V. [Amirkabir Univ., Tehran (Iran, Islamic Republic of)

    2003-07-01

    A new approach for the dynamic analysis of general concrete gravity dam-reservoir systems has been proposed. The basis for this approach is the decoupled modal method, which relies on mode shapes extracted by considering the symmetric parts of total mass and stiffness matrices. This method allows for the evaluation of the responses of an idealized triangular dam and the study of the convergence under different conditions encountered at the reservoir bottom. The formulation of the dynamic analysis was presented. It involved the modification of the MAP-76 computer program. It is assumed that water is a compressible fluid. The following conclusions were reached: (1) the modal solution converges to the exact solution as the number of modes increases and the errors are negligible, and (2) the formulation that was introduced proved effective and convenient. It is not dependent on non-standard eigenvalue extraction routines. 9 refs., 1 tab., 5 figs.

  6. Upper and Middle Tiete River Basin dam-hydraulic system, travel time and temperature modeling

    Science.gov (United States)

    Devkota, Bishnu; Imberger, Jörg

    2012-12-01

    SummaryTiete River System in the State of Sao Paolo, Brazil is characterized by complex hydraulics and operational problems due to series of dams and point and diffuse inflows along the river. A one dimension Lagrangian river model was developed and applied to the 313 km reach of the Upper and Middle Tiete River Basin from the Penha Dam to the head water of Bara Bonita Reservoir, a stretch of river that includes six small to medium size dams (3.4-22 m high) including the Pirapora Reservoir and 26 inflows into the river (11 tributaries, 9 diffuse source areas, and discharges of 4 cities stormwater and 2 wastewater treatment plants. The conservative tracer transport and temperature model that accounts for the short and long wave radiation and heat transfers at the free surface was included and solved using the Crank-Nicholson scheme. The time variable catchment input to the model was the simulated output of the external hydrological model called Runoff Load Model which results were provided by CETESB. The numerical treatment of series of dams and spillway (that included uncontrolled overflow spillway, gate-controlled ogee spillway; and underflow gates and tunnels) and parameterisation of hydraulic jumps are described. Special attention was focused on the high spatial and temporal variation of flows in Tiete River Basin, a result of the large variation in catchment inflows and channel geometry due to dams and reservoirs along the river. Predicted and measured spatial and seasonal variation of flow and temperature profiles along the river show good agreement. The simulated travel time of conservative tracer is compared against the CETESB's 1982 and 1984 field study data in a 254 km reach of the Middle Tiete River that again shows good agreement. Being Lagrangian in construction, this new model is computationally efficient making it an ideal tool for long term simulation for water resource planning, management and operation decision making in a large and complex river

  7. Evaluation of the Hydropower Generation Potential of a Dam Using Optimization Techniques: Application to Doma Dam, Nassarawa, in North Central Nigeria

    Directory of Open Access Journals (Sweden)

    Salami Adebayo Wahab

    2017-03-01

    Full Text Available Optimization models have been developed to maximize annual energy generation from the Doma dam, subject to the constraint of releases for irrigation, ecological purposes, the water supply, the maximum yield from the reservoir and reservoir storage. The model was solved with LINGO software for various mean annual inflow exceedence probabilities. Two scenarios of hydropower retrofitting were considered. Scenario 1, with the reservoir inflows at 50%, 75%, and 90% probabilities of exceedence, gives the total annual hydropower as 0.531 MW, 0.450 MW and 0.291 MW, respectively. The corresponding values for scenario 2 were 0.615 MW, 0.507 MW, and 0.346 MW respectively. The study also considered increasing the reservoir’s live storage to 32.63Mm3 by taking part of the flood storage so that the maximum draft increases to 7 Mm3. With this upper limit of storage and draft with reservoir inflows of 50%, 75% and 90% probabilities of exceedence, the hydropower generated increased to 0.609 MW, 0.540 MW, and 0.347 MW respectively for the scenario 1 arrangement, while those of scenario 2 increased to 0.699 MW, 0.579MW and 0.406 MW respectively. The results indicate that the Doma Dam is suitable for the production of hydroelectric power and that its generation potential is between 0.61 MW and 0.70 MW.

  8. The influence of a severe reservoir drawdown on springtime zooplankton and larval fish assemblages in Red Willow Reservoir, Nebraska

    Science.gov (United States)

    DeBoer, Jason A.; Webber, Christa M.; Dixon, Taylor A.; Pope, Kevin L.

    2016-01-01

    Reservoirs can be dynamic systems, often prone to unpredictable and extreme water-level fluctuations, and can be environments where survival is difficult for zooplankton and larval fish. Although numerous studies have examined the effects of extreme reservoir drawdown on water quality, few have examined extreme drawdown on both abiotic and biotic characteristics. A fissure in the dam at Red Willow Reservoir in southwest Nebraska necessitated an extreme drawdown; the water level was lowered more than 6 m during a two-month period, reducing reservoir volume by 76%. During the subsequent low-water period (i.e., post-drawdown), spring sampling (April–June) showed dissolved oxygen concentration was lower, while turbidity and chlorophyll-a concentration were greater, relative to pre-drawdown conditions. Additionally, there was an overall increase in zooplankton density, although there were differences among taxa, and changes in mean size among taxa, relative to pre-drawdown conditions. Zooplankton assemblage composition had an average dissimilarity of 19.3% from pre-drawdown to post-drawdown. The ratio of zero to non-zero catches was greater post-drawdown for larval common carp and for all larval fishes combined, whereas we observed no difference for larval gizzard shad. Larval fish assemblage composition had an average dissimilarity of 39.7% from pre-drawdown to post-drawdown. Given the likelihood that other dams will need repair or replacement in the near future, it is imperative for effective reservoir management that we anticipate the likely abiotic and biotic responses of reservoir ecosystems as these management actions will continue to alter environmental conditions in reservoirs.

  9. Remotely installed steam generator nozzle dam system

    International Nuclear Information System (INIS)

    Mc Donald, F.X.; Weisel, E.M.; Schukei, G.E.

    1990-01-01

    This patent describes a method for remotely installing a dam unit in a nozzle or a nuclear steam generator head, the head including a manway. It comprises: mounting an articulated manipulator to an internal surface of the head, the manipulator having a free end which carries a jaw member; positioning the manipulator so that the jaw member is adjacent the manway and substantially on the manway axis; passing a first dam segment through the manway and attaching the jaw member to the first segment; positioning the manipulator so that the jaw member holds the first dam segment on one side of the manway axis; passing a second dam segment through the manway into engagement with the first dam segment to form a dam subassembly; translating the manipulator through the head until the dam subassembly is adjacent the nozzle; advancing the jaw member toward the nozzle until the cam subassembly is positioned substantially at the desired location of the dam unit with respect to the nozzle; and deploying the manipulator to install dam support structure between the dam subassembly and the steam generator, thereby forming an installed dam unit

  10. Geophysical investigations of geology and structure at the Martis Creek Dam, Truckee, California

    Science.gov (United States)

    Bedrosian, Paul A.; Burton, Bethany L.; Powers, Michael H.; Minsley, Burke J.; Phillips, Jeffrey D.; Hunter, Lewis E.

    2012-02-01

    A recent evaluation of Martis Creek Dam highlighted the potential for dam failure due to either seepage or an earthquake on nearby faults. In 1972, the U.S. Army Corps of Engineers constructed this earthen dam, located within the Truckee Basin to the north of Lake Tahoe, CA for water storage and flood control. Past attempts to raise the level of the Martis Creek Reservoir to its design level have been aborted due to seepage at locations downstream, along the west dam abutment, and at the base of the spillway. In response to these concerns, the U.S. Geological Survey has undertaken a comprehensive suite of geophysical investigations aimed at understanding the interplay between geologic structure, seepage patterns, and reservoir and groundwater levels. This paper concerns the geologic structure surrounding Martis Creek Dam and emphasizes the importance of a regional-scale understanding to the interpretation of engineering-scale geophysical data. Our studies reveal a thick package of sedimentary deposits interbedded with Plio-Pleistocene volcanic flows; both the deposits and the flows are covered by glacial outwash. Magnetic field data, seismic tomography models, and seismic reflections are used to determine the distribution and chronology of the volcanic flows. Previous estimates of depth to basement (or the thickness of the interbedded deposits) was 100 m. Magnetotelluric soundings suggest that electrically resistive bedrock may be up to 2500 m deep. Both the Polaris Fault, identified outside of the study area using airborne LiDAR, and the previously unnamed Martis Creek Fault, have been mapped through the dam area using ground and airborne geophysics. Finally, as determined by direct-current resistivity imaging, time-domain electromagnetic sounding, and seismic refraction, the paleotopography of the interface between the sedimentary deposits and the overlying glacial outwash plays a principal role both in controlling groundwater flow and in the distribution of the

  11. Dam-Breach hydrology of the Johnstown flood of 1889-challenging the findings of the 1891 investigation report.

    Science.gov (United States)

    Coleman, Neil M; Kaktins, Uldis; Wojno, Stephanie

    2016-06-01

    In 1891 a report was published by an ASCE committee to investigate the cause of the Johnstown flood of 1889. They concluded that changes made to the dam by the South Fork Fishing and Hunting Club did not cause the disaster because the embankment would have been overflowed and breached if the changes were not made. We dispute that conclusion based on hydraulic analyses of the dam as originally built, estimates of the time of concentration and time to peak for the South Fork drainage basin, and reported conditions at the dam and in the watershed. We present a LiDAR-based volume of Lake Conemaugh at the time of dam failure (1.455 × 10(7) m(3)) and hydrographs of flood discharge and lake stage decline. Our analytical approach incorporates the complex shape of this dam breach. More than 65 min would have been needed to drain most of the lake, not the 45 min cited by most sources. Peak flood discharges were likely in the range 7200 to 8970 m(3) s(-1). The original dam design, with a crest ∼0.9 m higher and the added capacity of an auxiliary spillway and five discharge pipes, had a discharge capacity at overtopping more than twice that of the reconstructed dam. A properly rebuilt dam would not have overtopped and would likely have survived the runoff event, thereby saving thousands of lives. We believe the ASCE report represented state-of-the-art for 1891. However, the report contains discrepancies and lapses in key observations, and relied on excessive reservoir inflow estimates. The confidence they expressed that dam failure was inevitable was inconsistent with information available to the committee. Hydrodynamic erosion was a likely culprit in the 1862 dam failure that seriously damaged the embankment. The Club's substandard repair of this earlier breach sowed the seeds of its eventual destruction.

  12. Military Hydrology: Report 21, Regulation of Streamflow by Dams and Associated Modeling Capabilities

    Science.gov (United States)

    1992-10-01

    1963 42 22,119 Fort Peck USA 1937 43 21,626 Xinanjiang China 1960 44 21,166 Ilha Solteira Brazil 1973 48. Table 3 shows the distribution of dams by...plants require large volumes of water for condenser cooling, but most of the water is returned to the reservoir or stream. The water removing the heat ...Unstable pollutants, such as biochemical oxygen demand, radioactive wastes, and heat that have a time-dependent decay, are classified as nonconservative

  13. Nonlinear Filtering Effects of Reservoirs on Flood Frequency Curves at the Regional Scale: RESERVOIRS FILTER FLOOD FREQUENCY CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Li, Hong-Yi; Leung, Lai-Yung; Yigzaw, Wondmagegn Y.; Zhao, Jianshi; Lu, Hui; Deng, Zhiqun; Demissie, Yonas; Bloschl, Gunter

    2017-10-01

    Anthropogenic activities, e.g., reservoir operation, may alter the characteristics of Flood Frequency Curve (FFC) and challenge the basic assumption of stationarity used in flood frequency analysis. This paper presents a combined data-modeling analysis of the nonlinear filtering effects of reservoirs on the FFCs over the contiguous United States. A dimensionless Reservoir Impact Index (RII), defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume, is used to quantify reservoir regulation effects. Analyses are performed for 388 river stations with an average record length of 50 years. The first two moments of the FFC, mean annual maximum flood (MAF) and coefficient of variations (CV), are calculated for the pre- and post-dam periods and compared to elucidate the reservoir regulation effects as a function of RII. It is found that MAF generally decreases with increasing RII but stabilizes when RII exceeds a threshold value, and CV increases with RII until a threshold value beyond which CV decreases with RII. The processes underlying the nonlinear threshold behavior of MAF and CV are investigated using three reservoir models with different levels of complexity. All models capture the non-linear relationships of MAF and CV with RII, suggesting that the basic flood control function of reservoirs is key to the non-linear relationships. The relative roles of reservoir storage capacity, operation objectives, available storage prior to a flood event, and reservoir inflow pattern are systematically investigated. Our findings may help improve flood-risk assessment and mitigation in regulated river systems at the regional scale.

  14. Source apportionment of the sediments entering dam using lithological and mineralogical studies

    Directory of Open Access Journals (Sweden)

    S. Afshar

    2016-05-01

    Full Text Available The present study was carried out to determine the possible origins of sediments entering Taleghan Dam in northern part of Iran, in order to avoid further sedimentation and helping in extension of the useful life of the proposed dam. This was performed by XRD analysis. To do so, first of all, sediment sampling points were positioned along the Taleghan River. The collected samples, after coding, were transferred to the laboratory for mineralogical testing. Then, the samples were exposed to X-ray diffraction analysis. The experimental results were compared with data from geology, land cover land use and slope maps in order to find the possible primary origins of deposits in the Taleghan Dam. Furthermore, the geological formations and physiographical parameter such as slope were also analyzed to test erodibility of the formations. The results showed that most sediment samples in Taleghan are of sedimentary sandstone, mainly containing the quartz and plagioclase minerals (quartz sandstone and arkose sandstone. The findings also showed that calcite and dolomite were abundant in the collected samples, while aragonite and anthracite were found to a lesser extent in the samples. Accordingly, acidic and alkaline formations, mudstone, and siltstone of Karaj area formations, the gypsum of upper red formation, particularly at places with steep slope with a dominance of rangeland land use type, are main origins of sediments in the Taleghan reservoir. In another hand, the control of sediments at these areas would substantially decrease total sediment yields of the entire basin as in the dam reservoir.

  15. Investigating Efficiency of Vector-Valued Intensity Measures in Seismic Demand Assessment of Concrete Dams

    Directory of Open Access Journals (Sweden)

    Mohammad Alembagheri

    2018-01-01

    Full Text Available The efficiency of vector-valued intensity measures for predicting the seismic demand in gravity dams is investigated. The Folsom gravity dam-reservoir coupled system is selected and numerically analyzed under a set of two-hundred actual ground motions. First, the well-defined scalar IMs are separately investigated, and then they are coupled to form two-parameter vector IMs. After that, IMs consisting of spectral acceleration at the first-mode natural period of the dam-reservoir system along with a measure of the spectral shape (the ratio of spectral acceleration at a second period to the first-mode spectral acceleration value are considered. It is attempted to determine the optimal second period by categorizing the spectral acceleration at the first-mode period of vibration. The efficiency of the proposed vector IMs is compared with scalar ones considering various structural responses as EDPs. Finally, the probabilistic seismic behavior of the dam is investigated by calculating its fragility curves employing scalar and vector IMs considering the effect of zero response values.

  16. Large-scale dam removal on the Elwha River, Washington, USA: source-to-sink sediment budget and synthesis

    Science.gov (United States)

    Warrick, Jonathan A.; Bountry, Jennifer A.; East, Amy E.; Magirl, Christopher S.; Randle, Timothy J.; Gelfenbaum, Guy R.; Ritchie, Andrew C.; Pess, George R.; Leung, Vivian; Duda, Jeff J.

    2015-01-01

    Understanding landscape responses to sediment supply changes constitutes a fundamental part of many problems in geomorphology, but opportunities to study such processes at field scales are rare. The phased removal of two large dams on the Elwha River, Washington, exposed 21 ± 3 million m3, or ~ 30 million tonnes (t), of sediment that had been deposited in the two former reservoirs, allowing a comprehensive investigation of watershed and coastal responses to a substantial increase in sediment supply. Here we provide a source-to-sink sediment budget of this sediment release during the first two years of the project (September 2011–September 2013) and synthesize the geomorphic changes that occurred to downstream fluvial and coastal landforms. Owing to the phased removal of each dam, the release of sediment to the river was a function of the amount of dam structure removed, the progradation of reservoir delta sediments, exposure of more cohesive lakebed sediment, and the hydrologic conditions of the river. The greatest downstream geomorphic effects were observed after water bodies of both reservoirs were fully drained and fine (silt and clay) and coarse (sand and gravel) sediments were spilling past the former dam sites. After both dams were spilling fine and coarse sediments, river suspended-sediment concentrations were commonly several thousand mg/L with ~ 50% sand during moderate and high river flow. At the same time, a sand and gravel sediment wave dispersed down the river channel, filling channel pools and floodplain channels, aggrading much of the river channel by ~ 1 m, reducing river channel sediment grain sizes by ~ 16-fold, and depositing ~ 2.2 million m3 of sand and gravel on the seafloor offshore of the river mouth. The total sediment budget during the first two years revealed that the vast majority (~ 90%) of the sediment released from the former reservoirs to the river passed through the fluvial system and was discharged to the coastal

  17. Large-scale dam removal on the Elwha River, Washington, USA: Source-to-sink sediment budget and synthesis

    Science.gov (United States)

    Warrick, Jonathan A.; Bountry, Jennifer A.; East, Amy E.; Magirl, Christopher S.; Randle, Timothy J.; Gelfenbaum, Guy; Ritchie, Andrew C.; Pess, George R.; Leung, Vivian; Duda, Jeffrey J.

    2015-10-01

    Understanding landscape responses to sediment supply changes constitutes a fundamental part of many problems in geomorphology, but opportunities to study such processes at field scales are rare. The phased removal of two large dams on the Elwha River, Washington, exposed 21 ± 3 million m3, or 30 million tonnes (t), of sediment that had been deposited in the two former reservoirs, allowing a comprehensive investigation of watershed and coastal responses to a substantial increase in sediment supply. Here we provide a source-to-sink sediment budget of this sediment release during the first two years of the project (September 2011-September 2013) and synthesize the geomorphic changes that occurred to downstream fluvial and coastal landforms. Owing to the phased removal of each dam, the release of sediment to the river was a function of the amount of dam structure removed, the progradation of reservoir delta sediments, exposure of more cohesive lakebed sediment, and the hydrologic conditions of the river. The greatest downstream geomorphic effects were observed after water bodies of both reservoirs were fully drained and fine (silt and clay) and coarse (sand and gravel) sediments were spilling past the former dam sites. After both dams were spilling fine and coarse sediments, river suspended-sediment concentrations were commonly several thousand mg/L with 50% sand during moderate and high river flow. At the same time, a sand and gravel sediment wave dispersed down the river channel, filling channel pools and floodplain channels, aggrading much of the river channel by 1 m, reducing river channel sediment grain sizes by 16-fold, and depositing 2.2 million m3 of sand and gravel on the seafloor offshore of the river mouth. The total sediment budget during the first two years revealed that the vast majority ( 90%) of the sediment released from the former reservoirs to the river passed through the fluvial system and was discharged to the coastal waters, where slightly less

  18. Study of Dam-break Due to Overtopping of Four Small Dams in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Zakaraya Alhasan

    2015-01-01

    Full Text Available Dam-break due to overtopping is one of the most common types of embankment dam failures. During the floods in August 2002 in the Czech Republic, several small dams collapsed due to overtopping. In this paper, an analysis of the dam break process at the Luh, Velký Bělčický, Melín, and Metelský dams breached during the 2002 flood is presented. Comprehensive identification and analysis of the dam shape, properties of dam material and failure scenarios were carried out after the flood event to assemble data for the calibration of a numerical dam break model. A simple one-dimensional mathematical model was proposed for use in dam breach simulation, and a computer code was compiled. The model was calibrated using the field data mentioned above. Comparison of the erodibility parameters gained from the model showed reasonable agreement with the results of other authors.

  19. Nitrogen transport, transformation, and retention in the Three Gorges Reservoir : A mass balance approach

    NARCIS (Netherlands)

    Ran, Xiangbin; Bouwman, Lex; Yu, Zhigang; Beusen, Arthur; Chen, Hongtao; Yao, Qingzhen

    2017-01-01

    Dam construction in river systems affects the biogeochemistry of nitrogen (N), yet most studies on N cycling in reservoirs do not consider the transformations and retention of the different N species. This study addresses the N inputs, transport, transformations, and retention in the Three Gorges

  20. Assessment of Reservoir Storage in a Semi-Arid Environment Using ...

    African Journals Online (AJOL)

    This study made an assessment of the existing reservoir capacity of Tiga Dam in Kano State, Nigeria, of 1090 x 106m3 using Gould Probability Matrix method. A generated annual inflow series between (1906 and 2004), rainfall and evaporation loss estimated for the period between 1990 and 2004 coupled with demand ...

  1. GC51D-0831: A Study of the Impact of Dams on Sediment Retention in the Mekong River Basin

    Science.gov (United States)

    Munroe, Thailynn; Griffin, Robert; Anderson, Eric; Markert, Kel

    2017-01-01

    Dam construction in the Mekong Basin has many cascading effects on the ecology, economy, and hydrology of the surrounding region. The focus of this study is to utilize the Soil Water Assessment Tool (SWAT), developed at Texas A & M, a rainfall-runoff hydrologic model to determine change in sedimentation in the Mekong Basin after the construction of dams. This study uses land cover land use and reservoir datasets created by the NASA SERVIR-Mekong Regional Land Cover Monitoring System and Dam Inundation Mapping Tool as inputs into the model. The study also builds on the capabilities of the SWAT model by using the sediment trapping efficiency (STE) equation from Brune (1953), rewritten by Kummu & Varis (2007), to calculate STE of dams and estimate change in sediment concentration downstream. The outputs from this study can be used to inform dam operation policies, study the correlation between dams and delta subsidence, and study the impact of dams on river fisheries, which are all pressing issues in the Mekong region.

  2. Application of isotope tracer techniques for assessing the seepage of the hydropower dam at tri an, south Vietnam

    International Nuclear Information System (INIS)

    Pham Duy Hien, Le van Khoi

    1996-01-01

    Some symtomps of excessive seepage of water were observed at the earthfill dam of the 400 MW Tri An hydropower plant in South Vietnam. To provide experimental information for assessing the situation, isotope trace experiments were performed using 24 existing piezometric boreholes encompassing a 1100 m long middle section of the dam. Filtration velocites measured were in the ranges (0.2-0.30) cm d -1 in the dam body and (0.5 -75) cm d -1 in subsurface strata. No abnormally permeable horizons were detected. Permeability coefficient were calculated and compared with that obtained in pre-project hydrogeological surveys and by field tests during dam construction. Trracer experiments yielded permeability of the same range for the ssubsurface aquifer but from one two orders of magnitude higher for the dam body. Such a dramatic change of permeability of the dam body media i interpreted as a result of interaction with seeping water after the reservoir impoundment. A transient erosion proes took place during several years. The losses of water by seepage through the dam body and infiltration to underground water were estimated as 1100 m 3 d -1 and 15,000 m 3 d -1 respectively, less than 1/2000 of the quantity of water consumed for power generation. A multi-well interconection experiment was performed to determine the velocity and direction of subsurface flows. (author). 3 refs., 5 figs., 1 tab

  3. Influence of limnological zones on the spatial distribution of fish assemblages in three Brazilian reservoirs

    Directory of Open Access Journals (Sweden)

    Bárbara Becker

    2015-09-01

    Full Text Available Reservoirs can have both positive and negative effects on differing fish species depending on the species concerned and reservoir morphology, flow regime, and basin location.  We assessed the influence of limnological zones on the ichthyofauna of three large Neotropical reservoirs in two different river basins. We sampled fish through use of gill nets set at 40 systematically selected sites on each reservoir. We used satellite images, algae, and suspended solids concentrations to classify those sites as lacustrine or riverine. We observed significant differences in assemblage composition between riverine and lacustrine zones of each reservoir. We either tested if the same region (lacustrine or riverine showed the same patterns in different reservoirs. In São Simão, the riverine zone produced greater abundances of native species, long-distance migratory species, diversity, and richness, whereas the lacustrine zone supported greater total and non-native species abundances. Conversely, in Três Marias, the riverine zone supported greater total and non-native species abundances, whereas the others traits evaluated did not differ significantly between zones. Only lacustrine sites occurred in Volta Grande Reservoir. The same zones in the three reservoirs usually had significantly different patterns in the traits evaluated. The differences in spatial patterns observed between reservoirs could be explained partly by the differing morphologies (complex versus linear, the differential influence of tributaries of each reservoir and basin positions (presence or absence of upstream dams of the reservoirs.

  4. Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions.

    Science.gov (United States)

    Miller, Benjamin L; Arntzen, Evan V; Goldman, Amy E; Richmond, Marshall C

    2017-10-01

    The United States is home to 2198 dams actively used for hydropower production. With the December 2015 consensus adoption of the United Nations Framework Convention on Climate Change Paris Agreement, it is important to accurately quantify anthropogenic greenhouse gas emissions. Methane ebullition, or methane bubbles originating from river or lake sediments, has been shown to account for nearly all methane emissions from tropical hydropower reservoirs to the atmosphere. However, distinct ebullitive methane fluxes have been studied in comparatively few temperate hydropower reservoirs globally. This study measures ebullitive and diffusive methane fluxes from two eastern Washington reservoirs, and synthesizes existing studies of methane ebullition in temperate, boreal, and tropical hydropower reservoirs. Ebullition comprises nearly all methane emissions (>97%) from this study's two eastern Washington hydropower reservoirs to the atmosphere. Summer methane ebullition from these reservoirs was higher than ebullition in six southeastern U.S. hydropower reservoirs, however it was similar to temperate reservoirs in other parts of the world. Our literature synthesis suggests that methane ebullition from temperate hydropower reservoirs can be seasonally elevated compared to tropical climates, however annual emissions are likely to be higher within tropical climates, emphasizing the possible range of methane ebullition fluxes and the need for the further study of temperate reservoirs. Possible future changes to the Intergovernmental Panel on Climate Change and UNFCCC guidelines for national greenhouse gas inventories highlights the need for accurate assessment of reservoir emissions.

  5. Seismic Performance Evaluation of Concrete Gravity Dams with Penetrated Cracks Considering Fluid–Structure Interaction

    Directory of Open Access Journals (Sweden)

    A. Behshad

    2018-02-01

    Full Text Available In this paper, a comprehensive study on the seismic behavior of fractured concrete gravity dams during ground shakings is carried out considering dam–reservoir interaction effects. To gain the seismic behavior of the whole system, finite and boundary elements are employed to model the liquid region and the cracked structure, respectively. Formulation and different computational aspects of the suggested staggered hybrid approach are thoroughly argued. A computer code was developed in order to discuss the presented hybrid BE–DE technique and comparisons are made between the obtained results and those reported in the literature. To gain this goal, several problems of seismic excitations in frequency- and time-domains are presented employing the proposed approach, showing that the present results agree well with the results from other numerical procedures. The cracked Koyna Dam is scrutinized, considering the dynamic interaction between dam and reservoir with focus on the nonlinear behavior due to its top profile crack. The developed numerical model is rigorously validated by extensive comparisons with available results in the literature in which the dam–reservoir interaction were simplified by added masses. It can be concluded that there is significant disparity between the overturning and sliding response schemes of the nonlinear analysis and those of added mass technique.

  6. Simulated effects of dam removal on water temperatures along the Klamath River, Oregon and California, using 2010 Biological Opinion flow requirements

    Science.gov (United States)

    Risley, John C.; Brewer, Scott J.; Perry, Russell W.

    2012-01-01

    Computer model simulations were run to determine the effects of dam removal on water temperatures along the Klamath River, located in south-central Oregon and northern California, using flow requirements defined in the 2010 Biological Opinion of the National Marine Fisheries Service. A one-dimensional, daily averaged water temperature model (River Basin Model-10) developed by the U.S. Environmental Protection Agency Region 10, Seattle, Washington, was used in the analysis. This model had earlier been configured and calibrated for the Klamath River by the U.S. Geological Survey for the U.S. Department of the Interior, Klamath Secretarial Determination to simulate the effects of dam removal on water temperatures for current (2011) and future climate change scenarios. The analysis for this report was performed outside of the scope of the Klamath Secretarial Determination process at the request of the Bureau of Reclamation Technical Services Office, Denver, Colorado.For this analysis, two dam scenarios were simulated: “dams in” and “dams out.” In the “dams in” scenario, existing dams in the Klamath River were kept in place. In the “dams out” scenario, the river was modeled as a natural stream, without the J.C. Boyle, Copco1, Copco2, and Iron Gate Dams, for the entire simulation period. Output from the two dam scenario simulations included daily water temperatures simulated at 29 locations for a 50-year period along the Klamath River between river mile 253 (downstream of Link River Dam) and the Pacific Ocean. Both simulations used identical flow requirements, formulated in the 2010 Biological Opinion, and identical climate conditions based on the period 1961–2009.Simulated water temperatures from January through June at almost all locations between J.C. Boyle Reservoir and the Pacific Ocean were higher for the “dams out” scenario than for the “dams in” scenario. The simulated mean monthly water temperature increase was highest [1.7–2

  7. The grain size distribution of settled sediment within storage reservoir Otmuchów

    Directory of Open Access Journals (Sweden)

    Głowski Robert

    2017-03-01

    Full Text Available The grain size distribution of settled sediment within storage reservoir Otmuchów. The river Nysa Kłodzka is flowing through the flat-reduction Otmuchów. There are localized two storage reservoirs Otmuchów and Nysa. The first of these reservoirs have been constructed in the period 1928-1933 and the filling was completed in 1934. Reservoir Nysa was completed in 1971. Both reservoirs are located within walking distance of each other, creating since 1971 cascade. Reservoir Otmuchów is located above the Nysa reservoir what cause, that in the bowl of the Otmuchów reservoir, the significant part of transported by Nysa Kłodzka sediments is deposited. When established after the 1997 flood damming levels, summer and winter, the length of the reservoir Otmuchów is suitably from 4.5 to 5 km. At the maximum impoundment level and a maximal capacity of 130.45 million m3 the reservoir length reach approx. 7 km. From the analysis of the satellite image can be seen advancing silting of the reservoir Otmuchów especially in the estuary zone of the Nysa Kłodzka. Obtained archival data about changes of the sediment grain size distribution in the longitudinal reservoir profile cover only the region of the still capacity extending a distance of 3 km from the cross-section of the dam. In this zone the fine particles of the suspended load with characteristic diameters ranging from 0.030 to 0.088 mm were embedded. In 2010, the authors presented the results of preliminary analysis of the silting process of the reservoir Otmuchów. The authors pointed out that there is a lack of the data about the dimension of the particles embedded in the usable capacity and flood capacity reserve (above 3 km from the dam causing visible on satellite photo silting. This paper presents the results of the sediment grain size distribution in the usable capacity of the reservoir and in the estuary region of the Nysa Kłodzka located in flood capacity reserve, obtained from the

  8. Williston Reservoir: Site preparation and post-flood cleanup

    International Nuclear Information System (INIS)

    Loose, J.A.

    1990-01-01

    Williston Reservoir is the second largest in Canada and ranks ninth on the world scale. It was formed by the construction of the W.A.C. Bennet Dam and is the most important hydroelectric storage reservoir and largest body of fresh water in British Columbia. Site preparation for the reservoir began in 1962, with pre-flood clearing involving salvage of merchantable timber, handfalling, machine downing, burning of slash and burial. Post-flood cleanup included timber salvage, bailing and burning debris, tractor piling and burning, crane piling in shallows, underwater cutting, and hand cutting during low drawdown. Various types of floating debris have presented problems for recreational use, log booming and transport, waterways and aviation. Protection of the spillway is accomplished with a floating boom upstream of the channel. Administration, funding, forest clearance, salvage methods, clearing standards, wood volumes, project costs, environmental concerns, and future priorities are discussed. 5 figs., 2 tabs

  9. Crotch Lake dam rehabilitation project

    International Nuclear Information System (INIS)

    Brunet, G.; Dobrowolski, E.

    1999-01-01

    Replacement of the existing wood crib dam structure on Crotch Lake on the Mississippi River in eastern Ontario that provided water storage for the power production at High Falls Generating Station, became necessary when it was determined that the dam did not meet Ontario-Hydro's safety standards. This paper describes the project of replacing the existing structure with a PVC coated gabion wall with waterproofing. The entire structure was covered with three layers of wire mesh, laced together, and criss-crossed for superior strength and rigidity. The work was completed in 28 days with no environmental impact . Life expectancy of the new structure is in excess of 40 years. With periodic maintenance of the gabion mat cover, life span could be extended an additional 20 to 40 years. 5 figs

  10. Seismic Analysis of Gravity Dams.

    Science.gov (United States)

    method of analysis with the results produced by the well-known program EADHI. A new simplified method of analysis was developed using the finite element method of analysis to determine the dam’s inertial response along with Chopra’s simplified procedure for estimating the hydrodynamic loading. This new approach was implemented in a user-friendly computer program. The program was tested against a wide variety of problems and found to produce acceptable results. A sample run using this

  11. Environmental monitoring at Olympic Dam

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The environmental management and protection program at the Olympic Dam uranium/copper/gold project, Roxby Downs, South Australia, monitors eight major environmental parameters - meteorology, vegetation, mine site rehabilitation, fauna, terrain, soil salinity, hydrogeology and well fields. It came into effect with the approval of the South Australian Government in March 1987. The Great Artesian Basin, one of the world's greatest artesian basins, is the source of the water supply for the project

  12. Mitigating Dam Impacts Using Environmental Flow Releases

    Science.gov (United States)

    Richter, B. D.

    2017-12-01

    One of the most ecologically disruptive impacts of dams is their alteration of natural river flow variability. Opportunities exist for modifying the operations of existing dams to recover many of the environmental and social benefits of healthy ecosystems that have been compromised by present modes of dam operation. The potential benefits of dam "re-operation" include recovery of fish, shellfish, and other wildlife populations valued both commercially and recreationally, including estuarine species; reactivation of the flood storage and water purification benefits that occur when floods are allowed to flow into floodplain forests and wetlands; regaining some semblance of the naturally dynamic balance between river erosion and sedimentation that shapes physical habitat complexity, and arresting problems associated with geomorphic imbalances; cultural and spiritual uses of rivers; and many other socially valued products and services. Assessing the potential benefits of dam re-operation begins by characterizing the dam's effects on the river flow regime, and formulating hypotheses about the ecological and social benefits that might be restored by releasing water from the dam in a manner that more closely resembles natural flow patterns. These hypotheses can be tested by implementing a re-operation plan, tracking the response of the ecosystem, and continually refining dam operations through adaptive management. This presentation will highlight a number of land and water management strategies useful in implementing a dam re-operation plan, with reference to a variety of management contexts ranging from individual dams to cascades of dams along a river to regional energy grids. Because many of the suggested strategies for dam re-operation are predicated on changes in the end-use of the water, such as reductions in urban or agricultural water use during droughts, a systemic perspective of entire water management systems will be required to attain the fullest possible

  13. Mitigation for the Construction and Operation of Libby Dam, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dunnigan, James L.; Marotz, Brian L.; DeShazer, Jay (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2003-06-01

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possible conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to ''protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries...'' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May, 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to

  14. Hungry Horse mitigation: Aquatic modeling of the selective withdrawal system -- Hungry Horse Dam, Montana

    International Nuclear Information System (INIS)

    Marotz, B.L.; Althen, C.; Gustafson, D.

    1994-04-01

    Hungry Horse Dam presently releases frigid water from the bottom of the reservoir all year long. Cold water effects insect production and fish growth downstream. Rapid temperature changes of up to 8.3 C (14 F) have been measured in the Flathead River downstream of the South Fork confluence, controlled by dam discharges. Thermal effects from Hungry Horse Dam are detectable for over 64 Km downstream to Flathead Lake. The installation of a selective withdrawal structure on each of the dam's discharge penstocks was determined to be the most cost-effective means to provide constant, permanent temperature control without impacting power production and flexibility in dam operation. The thermal model presented herein revealed that fish growth potential in the river would increase two to five times through selective withdrawal, temperature control. Temperature control is possible over the entire range of turbine discharge capacity, with very little effect on power production. Findings indicate that angling would improve through higher catch rates and larger fish. Temperature control will solve the most serious impact to river health. However, flow fluctuations will continue to effect insect production and usable fishery habitat in the Flathead River. A natural thermal regime combined with moderated flow fluctuation would further enhance riverine food production, trout growth and recreation potential

  15. Environmental considerations in energy planning for the Amazon region: Downstream effects of dams

    International Nuclear Information System (INIS)

    Manyari, Waleska Valenca; de Carvalho, Osmar Abilio

    2007-01-01

    The most salient current feature of the electric energy sector in Brazil is the pressing need for expansion. In this context, the hydroelectric resources of the Amazon region are considered a competitive alternative despite the structural problems they entail. These include reliance of new investments and environmental restrictions. Concerning the latter, plans to build large-scale dams in the region have drawn criticism mainly on account of the loss of forest cover in areas flooded by dam reservoirs and the conflicts concerning the relocation of indigenous and riverside communities in the region. This article seeks to contribute to better understanding of the environmental issue in the Amazon by focusing attention on the downstream effects of dams, which have large-scale, hitherto neglected ecological repercussions. The impact of dams extends well beyond the area surrounding the artificial lakes they create, harming rich Amazon wetland ecosystems. The morphology of dammed rivers changes in response to new inputs of energy and matter, which may in turn destroy certain biotopes. This is a remote-sensing-based case study of the Tucurui hydroelectric scheme in the Amazon state of Para. Attention is drawn to the need to take into account effects on alluvial rivers downstream from hydroelectric power plants when it comes to making planning decisions, as part of a sustainable energy policy

  16. Reservoir triggering seismicity in Greece: An evidence based review

    Science.gov (United States)

    Pavlou, Kyriaki; Drakatos, George; Kouskouna, Vasiliki; Makropoulos, Konstantinos

    2017-04-01

    First filling and water fluctuation in artificial lakes and reservoirs are known causes of local seismicity. In Greece, 117 dams were built over the past 60 years, of which, however, only 22 have a capacity greater than 20x206cm3 and could thus affect seismicity in a meaningful way. Most of these larger dams have been constructed and operated by the Greek Public Power Corporation (PPC). The paper aims at a comprehensive review of all relevant studies, undertaken so far, and critically examines the evidence of reservoir triggering seismicity and possible accelerated earthquake occurrence provided. The main reservoirs examined include the Marathon, Kremasta, Pournari, Ilarion and Polyphyto artificial lakes, all of which have recorded seismic events associated with their filling and/or operation for the time period up to 2010. Seismic activity that correlates with maximum or minimum water level fluctuations leads to conclusions about a possible triggering seismicity due to a pore pressure diffusion (drained or un-drained response). In each case we review the cross-correlation coefficients between the reservoir levels and triggered events, and discuss the reasons for their association from an engineering geological (mechanical properties of rocks and formations) and seismological (triggered events) perspective. Our work suggests that, whilst in these cases PCC performs very well the task of hydrological and energy management of the reservoirs, it is crucially important to monitor and validate the daily seismicity at and around the artificial lakes for a better understanding of the upmost limit of triggered seismicity, and possible triggered landslides in the areas surrounding its main reservoirs.

  17. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...

  18. SILTATION IN RESERVOIRS

    African Journals Online (AJOL)

    Calls have been made to the government through various media to assist its populace in combating this nagging problem. It was concluded that sediment maximum accumulation is experienced in reservoir during the periods of maximum flow. Keywords: reservoir model, siltation, sediment, catchment, sediment transport. 1.

  19. Dynamic reservoir well interaction

    NARCIS (Netherlands)

    Sturm, W.L.; Belfroid, S.P.C.; Wolfswinkel, O. van; Peters, M.C.A.M.; Verhelst, F.J.P.C.M.

    2004-01-01

    In order to develop smart well control systems for unstable oil wells, realistic modeling of the dynamics of the well is essential. Most dynamic well models use a semi-steady state inflow model to describe the inflow of oil and gas from the reservoir. On the other hand, reservoir models use steady

  20. Reservoir Engineering Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.; Schwarz, W.J.

    1977-12-14

    The Reservoir Engineering Management Program being conducted at Lawrence Berkeley Laboratory includes two major tasks: 1) the continuation of support to geothermal reservoir engineering related work, started under the NSF-RANN program and transferred to ERDA at the time of its formation; 2) the development and subsequent implementation of a broad plan for support of research in topics related to the exploitation of geothermal reservoirs. This plan is now known as the GREMP plan. Both the NSF-RANN legacies and GREMP are in direct support of the DOE/DGE mission in general and the goals of the Resource and Technology/Resource Exploitation and Assessment Branch in particular. These goals are to determine the magnitude and distribution of geothermal resources and reduce risk in their exploitation through improved understanding of generically different reservoir types. These goals are to be accomplished by: 1) the creation of a large data base about geothermal reservoirs, 2) improved tools and methods for gathering data on geothermal reservoirs, and 3) modeling of reservoirs and utilization options. The NSF legacies are more research and training oriented, and the GREMP is geared primarily to the practical development of the geothermal reservoirs. 2 tabs., 3 figs.

  1. Methane emissions from northern Amazon savanna wetlands and Balbina Reservoir

    Science.gov (United States)

    Kemenes, A.; Belger, L.; Forsberg, B.; Melack, J. M.

    2006-12-01

    To improve estimates of methane emission for the Amazon basin requires information from aquatic environments not represented in the central basin near the Solimoes River, where most of the current data were obtained. We have combined intensive, year-long measurements of methane emission and water levels made in interfluvial wetlands located in the upper Negro basin with calculations of inundation based on a time series of Radarsat synthetic aperature radar images. These grass-dominated savannas emitted methane at an average rate of 18 mg C per m squared per day, a low rate compared to the habitats with floating grasses the occur in the Solimoes floodplains. Reservoirs constructed in the Amazon typically flood forested landscapes and lead to conditions conducive for methane production. The methane is released to the atmosphere from the reservoir and as the water exits the turbines and from the downstream river. Balbina Reservoir near Manaus covers about 2400 km squared along the Uatuma River. Annual averages of measurements of methane emission from the various habitats in the reservoir range from 23 to 64 mg C per m squared per day. Total annual emission from the reservoir is about 58 Gg C. In addition, about 39 Gg C per year are released below the dam, about 50 percent of which is released as the water passes through the turbines. On an annual areal basis, Balbina Reservoir emits 40 Mg C km squared, in contrast to 30 Mg km squared for the Solimoes mainstem floodplain

  2. Comparison of ecological instream flow and release flow downstream of dams in Quebec : the effect of dam management practices, watershed size and the season; Comparaison entre debits reserves ecologiques et debits laches en aval des barrages au Quebec : influence du mode de gestion des barrages, de la taille des bassins versants et de la saison

    Energy Technology Data Exchange (ETDEWEB)

    Lajoie, F.; Assani, A.A; Matteau, M. [Quebec Univ., Trois-Rivieres, PQ (Canada). Dept. de Geographie, Laboratoire d' hydro-climatologie et de geomorphologie fluvial; Mesfioui, M. [Quebec Univ., Trois-Rivieres, PQ (Canada). Dept. de Mathematiques et d' Informatique; Roy, A.G. [Montreal Univ., PQ (Canada). Dept. of Geography

    2006-07-01

    The effect of dams on downstream ecology was examined. The authors argued that clear regulations for discharges from dams should be clearly defined. However, despite the large number of dams in Quebec on important fluvial systems, there are no studies to verify compliance downstream from these dams with standards for ecological instream flows. A study was therefore conducted to compare discharges with recommended instream flows to protect fish habitat and their life cycle. An equation for estimating the instream flows downstream from dams was presented. Three factors that influence the extent of hydrological changes caused by dams in Quebec were identified, namely dam management, watershed size and season. It was shown that there is a lack of compliance with instream flows downstream from the dams. The same 3 factors also determine the frequency of this non-compliance and the variance between the instream flows and the released flows downstream from the dams. Compared to dams associated with hydroelectric generating stations only, dams associated with reservoirs have greater variance between the instream flows and the released flows from the dam. The frequency of non-compliance and variance diminish with the size of the watersheds. The frequency when instream flows are not exceeded is also higher in spring than in winter in the two hydrologic regimes, but the variance between the two seasons is more important during an inversion regime. However, the season was found to have no influence on the variance between the instream flows and the released flows downstream from the dams. 69 refs., 3 tabs., 5 figs.

  3. Hydrological impact of high-density small dams in a humid catchment, Southeast China

    Science.gov (United States)

    Lu, W.; Lei, H.; Yang, D.

    2017-12-01

    The Jiulong River basin is a humid catchment with a drainage area of 14,741 km2; however, it has over 1000 hydropower stations within it. Such catchment with high-density small dams is scarce in China. Yet few is known about the impact of high-density small dams on streamflow changes. To what extent the large number of dams alters the hydrologic patterns is a fundamental scientific issue for water resources management, flood control, and aquatic ecological environment protection. Firstly, trend and change point analyses are applied to determine the characteristics of inter-annual streamflow. Based on the detected change point, the study period is divided into two study periods, the ``natural'' and ``disturbed'' periods. Then, a geomorphology-based hydrological model (GBHM) and the fixing-changing method are adopted to evaluate the relative contributions of climate variations and damming to the changes in streamflow at each temporal scale (i.e., from daily, monthly to annual). Based on the simulated natural streamflow, the impact of dam construction on hydrologic alteration and aquatic ecological environment will be evaluated. The hydrologic signatures that will be investigated include flood peak, seasonality of streamflow, and the inter-annual variability of streamflow. In particular, the impacts of damming on aquatic ecological environment will be investigated using eco-flow metrics and indicators of hydrologic alteration (IHA) which contains 33 individual streamflow statistics that are closely related to aquatic ecosystem. The results of this study expect to provide a reference for reservoir operation considering both ecological and economic benefits of such operations in the catchment with high-density dams.

  4. Small reservoir effects on headwater water quality in the rural-urban fringe, Georgia Piedmont, USA

    Directory of Open Access Journals (Sweden)

    Dr.. Amber R. Ignatius, Geographer

    2016-12-01

    Full Text Available Small reservoirs are prevalent landscape features that affect the physical, chemical, and biological characteristics of headwater streams. Tens of thousands of small reservoirs, often less than a hectare in size, were constructed over the past century within the United States. While remote-sensing and geographic-mapping technologies assist in identifying and quantifying these features, their localized influence on water quality is uncertain. We report a year-long physicochemical study of nine small reservoirs (0.15–2.17 ha within the Oconee and Broad River Watersheds in the Georgia Piedmont. Study sites were selected along an urban-rural gradient with differing amounts of agricultural, forested, and developed land covers. Sites were sampled monthly for discharge and inflow/outflow water quality parameters (temperature, specific conductance, pH, dissolved oxygen, turbidity, alkalinity, total phosphorus, total nitrogen, nitrate, ammonium. While the proportion of developed land cover within watersheds had positive correlations with reservoir specific conductivity values, agricultural and forested land covers showed correlations (positive and negative, respectively with reservoir alkalinity, total nitrogen, nitrate, and specific conductivity. The majority of outflow temperatures were warmer than inflows for all land uses throughout the year, especially in the summer. Outflows had lower nitrate concentrations, but higher ammonium. The type of outflow structure was also influential; top-release dams showed higher dissolved oxygen and pH than bottom-release dams. Water quality effects were still evident 250 m below the dam, albeit reduced.

  5. Surface water leakage, sedimentation and evaporation in arid regions: A case study of the Gargar dam, Algeria

    Directory of Open Access Journals (Sweden)

    Hassen Benfetta

    2017-12-01

    Full Text Available This study was carried out in order to assess the total capacity loss in Gargar dam, third-largest in Algeria, due to the mudding of the reservoir, intense evaporation and water leaks. We analysed the variation in leakage as a function of the reservoir level, and quantify losses due to leaks, sedimentation and evaporation. We relied on site visits and data obtained from the Algerian Agency for Dams and Transfers to assess the leakage volume; reservoir level; sedimentation and evaporation levels for the period 1988–2015. We present an updated report of this problem through the dam. We estimated total average losses of 23 million m3·year−1 for the period 1988–2015, made up of leakage (0.3 million m3·year−1, evaporation (18 million m3·year−1 and dead storage for 4.6 million m3·year−1. However, total losses for 2004 were estimated at 113.9 million m3, which increased to the alarming value of 166.8 million m3 in 2015. We suggest improving the waterproofness by a concrete screen, and reducing mudding and evaporation by reforestation, to increase the storage capacity of the dam.

  6. Exporting dams: China's hydropower industry goes global.

    Science.gov (United States)

    McDonald, Kristen; Bosshard, Peter; Brewer, Nicole

    2009-07-01

    In line with China's "going out" strategy, China's dam industry has in recent years significantly expanded its involvement in overseas markets. The Chinese Export-Import Bank and other Chinese financial institutions, state-owned enterprises, and private firms are now involved in at least 93 major dam projects overseas. The Chinese government sees the new global role played by China's dam industry as a "win-win" situation for China and host countries involved. But evidence from project sites such as the Merowe Dam in Sudan demonstrates that these dams have unrecognized social and environmental costs for host communities. Chinese dam builders have yet to adopt internationally accepted social and environmental standards for large infrastructure development that can assure these costs are adequately taken into account. But the Chinese government is becoming increasingly aware of the challenge and the necessity of promoting environmentally and socially sound investments overseas.

  7. Automated data acquisition for dam monitoring

    International Nuclear Information System (INIS)

    Koopmans, R.; Jakubick, A.T.

    1990-01-01

    Automated data acquisition for dam monitoring is crucial to emergency response, allows frequent readings without increased labour and cost, allows monitoring of instrument response to changing environmental and physical influences, enables direct computer acquisition of data, and has numerous other advantages. The experience of Ontario Hydro, British Columbia Hydro, and other utilities with automated data acquisition systems is described. Details are provided of remote monitoring systems, instrumentation, data loggers, tape cassette backup, power sources, data transmission equipment, modems and telephone networks, computers and peripherals, and system performance. The utility's plans for future expansion of the systems are described. Utility experience with the automated systems is also described for Clarence Dam, Bath County Pumped Storage Station, Scott Dam, and Vermillion Dam in the U.S., Ajaure Dam in Sweden, and ENEL Dam in the Valtellina area of Italy. 17 refs., 2 figs

  8. Quantification of Interbasin Transfers into the Addicks Reservoir during Hurricane Harvey

    Science.gov (United States)

    Sebastian, A.; Juan, A.; Gori, A.; Maulsby, F.; Bedient, P. B.

    2017-12-01

    Between August 25 and 30, Hurricane Harvey dropped unprecedented rainfall over southeast Texas causing widespread flooding in the City of Houston. Water levels in the Addicks and Barker reservoirs, built in the 1940s to protect downtown Houston, exceeded previous records by approximately 2 meters. Concerns regarding structural integrity of the dams and damage to neighbourhoods in within the reservoir pool resulted in controlled releases into Buffalo Bayou, flooding an estimated 4,000 additional structures downstream of the dams. In 2016, during the Tax Day it became apparent that overflows from Cypress Creek in northern Harris County substantially contribute to water levels in Addicks. Prior to this event, little was known about the hydrodynamics of this overflow area or about the additional stress placed on Addicks and Barker reservoirs due to the volume of overflow. However, this information is critical for determining flood risk in Addicks Watershed, and ultimately Buffalo Bayou. In this study, we utilize the recently developed HEC-RAS 2D model the interbasin transfer that occurs between Cypress Creek Watershed and Addicks Reservoir to quantify the volume and rate at which water from Cypress enters the reservoir during extreme events. Ultimately, the results of this study will help inform the official hydrologic models used by HCFCD to determine reservoir operation during future storm events and better inform residents living in or above the reservoir pool about their potential flood risk.

  9. Long-Term Downstream Effects of a Dam on a Lowland River Flow Regime: Case Study of the Upper Narew

    Directory of Open Access Journals (Sweden)

    Paweł Marcinkowski

    2017-10-01

    Full Text Available Most European riverine ecosystems suffer from the negative influence of impoundments on flow regime. Downstream effects of dams lead to a number of environmental and socioeconomic risks and, therefore, should be thoroughly examined in specific contexts. Our study aims to quantify the downstream effects of the Siemianówka Reservoir (Upper Narew, Poland, using statistical analysis of key elements of the river’s flow regime, such as the flow duration and recurrence of floods and droughts. In a comparative study on control catchments not influenced by impoundments (the Supraśl and Narewka Rivers, we revealed the following downstream effects of the analyzed dam: significant shortening of spring floods, reduction of the duration and depth of summer droughts, decrease of the maximum discharge, and homogenization of the discharge hydrographs. Although we determined a significant decrease in the duration of summer floods in the “before” and “after” dam function periods, we showed that this issue is regional, climate-related, and replicated in control catchments, rather than an evident downstream effect of the dam. We conclude that significant hydrological downstream effects of the Siemianówka dam–reservoir system could have been the main driver inducing the deterioration of the anastomosing stretch of the Narew River downstream of the dam.

  10. Measurement of Dam Deformations: Case Study of Obruk Dam (Turkey)

    Science.gov (United States)

    Gulal, V. Engin; Alkan, R. Metin; Alkan, M. Nurullah; İlci, Veli; Ozulu, I. Murat; Tombus, F. Engin; Kose, Zafer; Aladogan, Kayhan; Sahin, Murat; Yavasoglu, Hakan; Oku, Guldane

    2016-04-01

    In the literature, there is information regarding the first deformation and displacement measurements in dams that were conducted in 1920s Switzerland. Todays, deformation measurements in the dams have gained very different functions with improvements in both measurement equipment and evaluation of measurements. Deformation measurements and analysis are among the main topics studied by scientists who take interest in the engineering measurement sciences. The Working group of Deformation Measurements and Analysis, which was established under the International Federation of Surveyors (FIG), carries out its studies and activities with regard to this subject. At the end of the 1970s, the subject of the determination of fixed points in the deformation monitoring network was one of the main subjects extensively studied. Many theories arose from this inquiry, as different institutes came to differing conclusions. In 1978, a special commission with representatives of universities has been established within the FIG 6.1 working group; this commission worked on the issue of determining a general approach to geometric deformation analysis. The results gleaned from the commission were discussed at symposiums organized by the FIG. In accordance with these studies, scientists interested in the subject have begun to work on models that investigate cause and effect relations between the effects that cause deformation and deformation. As of the scientist who interest with the issue focused on different deformation methods, another special commission was established within the FIG engineering measurements commission in order to classify deformation models and study terminology. After studying this material for a long time, the official commission report was published in 2001. In this prepared report, studies have been carried out by considering the FIG Engineering Surveying Commission's report entitled, 'MODELS AND TERMINOLOGY FOR THE ANALYSIS OF GEODETIC MONITORING OBSERVATIONS

  11. Three Dimensional Seepage Analyses in Mollasadra Dam after Its ...

    African Journals Online (AJOL)

    Mollasadra dam is an earth fill dam with a clayey core and a height of 72 m from river bed, constructed on Kor River. pore water pressure in the dam was investigated following its construction and first and second impoundments. The dam was modeled by a finite element mesh. After the first and second dam impoundments, ...

  12. EUTROPHICATION OF WATER RESERVOIRS AND ROLE OF MACROPHYTES IN THIS PROCESS

    Directory of Open Access Journals (Sweden)

    Joanna Jadwiga Sender

    2017-06-01

    Full Text Available The paper presents the problem related with the process of eutrophication, with special emphasis on dam reservoirs. Eutrophication is a global process, threatening the water ecosystem on every continent. It often leads to their degradation. Particularly vulnerable to eutrophication are artificial reservoirs which are dam reservoirs. This paper describes the mechanisms of eutrophication. We also pointed to the importance of aquatic plants in the process of water purification, as well as the possibility of multilateral use. Recently, in the world and in Poland there is a tendency to pay attention to the natural or semi-natural method of water purification (including constructed wetland. On the one hand, the presence of macrophytes in water bodies is a guarantor of good ecological status, on the other hand, the undeniable aesthetic value.

  13. Monitoring the ongoing deformation and seasonal behaviour affecting Mosul Dam through space-borne SAR data

    Science.gov (United States)

    Tessari, G.; Riccardi, P.; Pasquali, P.

    2017-12-01

    Monitoring of dam structural health is an important practice to control the structure itself and the water reservoir, to guarantee efficient operation and safety of surrounding areas. Ensuring the longevity of the structure requires the timely detection of any behaviour that could deteriorate the dam and potentially result in its shutdown or failure.The detection and monitoring of surface displacements is increasingly performed through the analysis of satellite Synthetic Aperture Radar (SAR) data, thanks to the non-invasiveness of their acquisition, the possibility to cover large areas in a short time and the new space missions equipped with high spatial resolution sensors. The availability of SAR satellite acquisitions from the early 1990s enables to reconstruct the historical evolution of dam behaviour, defining its key parameters, possibly from its construction to the present. Furthermore, the progress on SAR Interferometry (InSAR) techniques through the development of Differential InSAR (DInSAR) and Advanced stacking techniques (A-DInSAR) allows to obtain accurate velocity maps and displacement time-series.The importance of these techniques emerges when environmental or logistic conditions do not allow to monitor dams applying the traditional geodetic techniques. In such cases, A-DInSAR constitutes a reliable diagnostic tool of dam structural health to avoid any extraordinary failure that may lead to loss of lives.In this contest, an emblematic case will be analysed as test case: the Mosul Dam, the largest Iraqi dam, where monitoring and maintaining are impeded for political controversy, causing possible risks for the population security. In fact, it is considered one of the most dangerous dams in the world because of the erosion of the gypsum rock at the basement and the difficult interventions due to security problems. The dam consists of 113 m tall and 3.4 km long earth-fill embankment-type, with a clay core, and it was completed in 1984.The deformation

  14. Flood effects provide evidence of an alternate stable state from dam management on the Upper Missouri River

    Science.gov (United States)

    Skalak, Katherine; Benthem, Adam J.; Hupp, Cliff R.; Schenk, Edward R.; Galloway, Joel M.; Nustad, Rochelle A.

    2017-01-01

    We examine how historic flooding in 2011 affected the geomorphic adjustments created by dam regulation along the approximately 120 km free flowing reach of the Upper Missouri River bounded upstream by the Garrison Dam (1953) and downstream by Lake Oahe Reservoir (1959) near the City of Bismarck, ND, USA. The largest flood since dam regulation occurred in 2011. Flood releases from the Garrison Dam began in May 2011 and lasted until